[go: up one dir, main page]

CN104559183A - Preparation method of magnetic micro/nano composite filler/silicon rubber heat-conducting composite material - Google Patents

Preparation method of magnetic micro/nano composite filler/silicon rubber heat-conducting composite material Download PDF

Info

Publication number
CN104559183A
CN104559183A CN201410744987.8A CN201410744987A CN104559183A CN 104559183 A CN104559183 A CN 104559183A CN 201410744987 A CN201410744987 A CN 201410744987A CN 104559183 A CN104559183 A CN 104559183A
Authority
CN
China
Prior art keywords
composite
silicone rubber
filler
nano
conducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410744987.8A
Other languages
Chinese (zh)
Inventor
朱琳
王亚
王丹萍
沈湘黔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201410744987.8A priority Critical patent/CN104559183A/en
Publication of CN104559183A publication Critical patent/CN104559183A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明属于聚合物基导热复合材料领域,涉及一种导热高分子复合材料的制备方法,尤其涉及一种磁性微纳米复合填料/硅橡胶导热复合材料的制备方法。本发明将磁性纳米金属颗粒分散复合到微米级导热填料表面,制备得到磁性复合导热填料,利用微纳米复合带来磁响应性,通过外加磁场对分散在硅橡胶基体中的微纳米复合填料排列取向进行调控,可实现复合导热填料在硅橡胶基体中的定向排列,进而实现在填料的低填充分数下制备导热性能各向异性的高导热硅橡胶复合材料,另外,通过磁性纳米金属颗粒包覆导热填料制备微纳米复合填料,可避免纳米金属颗粒在聚合物基体中不易分散、易团聚问题,可间接实现微纳米粒子在聚合物基体中的均匀分散。

The invention belongs to the field of polymer-based heat-conducting composite materials, and relates to a method for preparing a heat-conducting polymer composite material, in particular to a method for preparing a magnetic micro-nano composite filler/silicone rubber heat-conducting composite material. The invention disperses and composites the magnetic nanometer metal particles on the surface of the micron-scale heat-conducting filler to prepare the magnetic composite heat-conducting filler, utilizes the micro-nano composite to bring magnetic responsiveness, and arranges and aligns the micro-nano composite filler dispersed in the silicone rubber matrix through an external magnetic field Adjusting and controlling can realize the directional arrangement of composite thermally conductive fillers in the silicone rubber matrix, and then realize the preparation of high thermally conductive silicone rubber composites with anisotropic thermal conductivity at a low filling fraction of fillers. Filler Preparation of micro-nano composite filler can avoid the problem of difficult dispersion and agglomeration of nano-metal particles in the polymer matrix, and can indirectly realize the uniform dispersion of micro-nano particles in the polymer matrix.

Description

磁性微纳米复合填料/硅橡胶导热复合材料的制备方法Preparation method of magnetic micro-nano composite filler/silicone rubber heat-conducting composite material

技术领域 technical field

本发明属于聚合物基导热复合材料领域,涉及一种导热高分子复合材料的制备方法,尤其涉及一种磁性微纳米复合填料/硅橡胶导热复合材料的制备方法。 The invention belongs to the field of polymer-based heat-conducting composite materials, and relates to a method for preparing a heat-conducting polymer composite material, in particular to a method for preparing a magnetic micro-nano composite filler/silicone rubber heat-conducting composite material.

背景技术 Background technique

近年来,随着电子元器件日益向着集成化和微型化发展,由此导致的热量聚集和散热问题已成为制约电子元器件工作可靠性及使用寿命的关键因素之一;国内外很多研究者对导热材料进行了广泛的研究以解决此类问题,高分子材料具有电绝缘性好、质轻、耐腐蚀、易于加工等优点,但其导热性差,为此,国内外很多研究通过适当工艺将导热填料填充到高分子材料中,以改善其导热性能。 In recent years, with the increasing integration and miniaturization of electronic components, the resulting heat accumulation and heat dissipation have become one of the key factors restricting the reliability and service life of electronic components; Thermally conductive materials have been extensively studied to solve such problems. Polymer materials have the advantages of good electrical insulation, light weight, corrosion resistance, and easy processing, but their thermal conductivity is poor. Fillers are filled into polymer materials to improve their thermal conductivity.

影响高分子材料导热性能的因素有很多,如不同的材料制备方法、填料导热性能的好坏和填充量的高低、不同的填料形状和尺寸、不同填料的组分比例和填料表面的理化特性等都会显著影响材料的热导率;已有研究结果表明,增加复合材料中高导热填料的比例有利于形成导热网络,从而显著提高材料的导热系数,但同时该方法也会影响复合材料的力学性能,导致材料的可加工性能严重下降等问题;众所周知,提高复合材料的导热性能的关键是在体系中形成与热流方向平行的导热链或导热网络,相关研究中发现,在外加磁场的条件下,磁性填料受外磁场作用可沿磁场方向形成许多链状物,而且链状物排列的方向和磁场一致;目前常用的导热填料多为陶瓷填料、金属氧化物、金属氮化物或碳化物,然而,这些填料,尤其是在低添加量时难以形成导热网链,开发的导热橡胶普遍具有热导率低这一缺陷,虽然硅橡胶作为一种特种合成橡胶,表现出优异的物理化学性能,但同绝大多数聚合物材料的导热性能一样,其导热系数非常低。 There are many factors that affect the thermal conductivity of polymer materials, such as different material preparation methods, the quality of filler thermal conductivity and the level of filling, different filler shapes and sizes, different filler component ratios, and physical and chemical properties of the filler surface, etc. Both will significantly affect the thermal conductivity of the material; existing research results have shown that increasing the proportion of high thermal conductivity fillers in the composite material is conducive to the formation of a thermal network, thereby significantly improving the thermal conductivity of the material, but at the same time this method will also affect the mechanical properties of the composite material. It leads to serious problems such as a serious decline in the machinability of materials; as we all know, the key to improving the thermal conductivity of composite materials is to form a heat conduction chain or network parallel to the direction of heat flow in the system. Related studies have found that under the condition of an external magnetic field, the magnetic The filler can form many chains along the direction of the magnetic field under the action of the external magnetic field, and the direction of the chain arrangement is consistent with the magnetic field; the commonly used thermal conductive fillers are mostly ceramic fillers, metal oxides, metal nitrides or carbides. However, these Fillers, especially when added in a low amount, are difficult to form a heat-conducting network chain. The developed heat-conducting rubber generally has the defect of low thermal conductivity. Although silicone rubber, as a special synthetic rubber, exhibits excellent physical and chemical properties, it is the same Like most polymer materials, thermal conductivity is very low.

中国专利201210528511.1公开了一种微纳米混合填料液体硅橡胶导热复合材料的制备方法,专利中将微米级导热颗粒和纳米纤维状导热填料分别加入到硅橡胶基体中,在外加电场的作用下使纳米纤维状填料取向为连接线,从而形成导热链;众所周知,纳米填料的分散问题一直是聚合物基纳米复合材料的中心问题,也是制约复合材料性能提高的瓶颈,专利中添加的纤维状纳米填料相对于纳米颗粒,其分散问题更为突出,而专利中未解决纳米纤维状填料的分散问题。 Chinese patent 201210528511.1 discloses a method for preparing a micro-nano hybrid filler liquid silicone rubber heat-conducting composite material. In the patent, micron-sized heat-conducting particles and nano-fibrous heat-conducting fillers are respectively added to the silicone rubber matrix, and the nanometer Fibrous fillers are oriented as connecting lines, thus forming thermal chains; as we all know, the dispersion of nanofillers has always been the central problem of polymer-based nanocomposites, and it is also the bottleneck restricting the performance of composite materials. The fibrous nanofillers added in the patent are relatively For nanoparticles, the dispersion problem is more prominent, but the patent does not solve the dispersion problem of nanofibrous fillers.

针对以上问题,本专利将磁性纳米金属颗粒分散复合到微米级导热填料表面,制备得到磁性复合导热填料,利用微纳米复合带来磁响应性,通过外加磁场对分散在硅橡胶基体中的微纳米复合填料排列取向进行调控,可实现复合导热填料在硅橡胶基体中的定向排列,进而实现在填料的低填充分数下制备导热性能各向异性的高导热硅橡胶复合材料,另外,通过磁性纳米金属颗粒包覆导热填料制备微纳米复合填料,可避免纳米金属颗粒在聚合物基体中不易分散、易团聚问题,可间接实现微纳米粒子在聚合物基体中的均匀分散。 In response to the above problems, this patent disperses and composites magnetic nano-metal particles on the surface of micron-scale thermally conductive fillers to prepare magnetic composite thermally conductive fillers, and uses micro-nano composites to bring magnetic responsiveness. The arrangement and orientation of the composite fillers can be adjusted to realize the directional arrangement of the composite thermally conductive fillers in the silicone rubber matrix, and then realize the preparation of high thermally conductive silicone rubber composites with anisotropic thermal conductivity at a low filling fraction of the fillers. In addition, through magnetic nano-metal Micro-nano composite fillers are prepared by coating thermally conductive fillers with particles, which can avoid the difficulty of dispersion and agglomeration of nano-metal particles in the polymer matrix, and can indirectly realize the uniform dispersion of micro-nano particles in the polymer matrix.

发明内容 Contents of the invention

本发明的目的是针对现有填充型导热硅橡胶及制备方法的缺点,提供一种具有高导热系数,综合性能优异的磁性微纳米复合填料填充的双组份液体硅橡胶复合材料的制备方法。 The purpose of the present invention is to provide a method for preparing a two-component liquid silicone rubber composite material filled with magnetic micro-nano composite fillers with high thermal conductivity and excellent comprehensive performance for the shortcomings of the existing filled heat-conducting silicone rubber and its preparation method.

本发明的制备方法具体步骤如下: The specific steps of the preparation method of the present invention are as follows:

步骤1:磁性纳米颗粒/微米颗粒复合导热填料的制备: Step 1: Preparation of magnetic nanoparticle/microparticle composite thermally conductive filler:

以微米级颗粒和可溶性金属盐为起始原料,称取一定质量份数的可溶性金属盐,加乙二醇溶解;在搅拌的条件下,向上述溶液中加入一定质量份数的微米级颗粒,继续搅拌使微米级颗粒分散均匀;加入已配置好的氢氧化钠溶液,继续搅拌反应至金属离子的氢氧化物充分形成;用上述氢氧化钠溶液调节溶液pH值为10;最后加入还原剂进行还原,即为磁性纳米颗粒/微米颗粒复合导热填料的乙二醇溶液;经过滤、洗涤、干燥后,得到复合导热填料。 Taking micron-sized particles and soluble metal salts as starting materials, weighing a certain number of soluble metal salts, adding ethylene glycol to dissolve; adding a certain number of parts by mass of micron-sized particles to the above solution under stirring conditions, Continue to stir to disperse the micron-sized particles evenly; add the prepared sodium hydroxide solution, and continue to stir until the metal ion hydroxide is fully formed; use the above sodium hydroxide solution to adjust the pH value of the solution to 10; finally add the reducing agent to carry out Reduction, that is, the ethylene glycol solution of the magnetic nanoparticle/microparticle composite thermally conductive filler; after filtering, washing and drying, the composite thermally conductive filler is obtained.

步骤2:将步骤1中所得的复合导热填料经过干燥后,称取一定质量份数的复合导热填料加入到双组份液体硅橡胶的A组份中,搅拌至均匀。 Step 2: After drying the composite thermally conductive filler obtained in step 1, weigh a certain amount of composite thermally conductive filler and add it to component A of the two-component liquid silicone rubber, and stir until uniform.

步骤3:在步骤2所得的混合液中加入适量双组份液体硅橡胶的B组份,快速搅拌使其混合均匀。 Step 3: Add an appropriate amount of component B of the two-component liquid silicone rubber to the mixture obtained in step 2, and stir quickly to make it evenly mixed.

步骤4:将步骤3所得的混合液注入到施加了磁场的模具中室温固化,干燥后制备得到磁性微纳米复合填料/硅橡胶导热复合材料。 Step 4: Inject the mixed liquid obtained in Step 3 into a mold with a magnetic field applied thereto and solidify at room temperature, and dry to prepare a magnetic micro-nano composite filler/silicone rubber heat-conducting composite material.

步骤1中,所述的微米级颗粒为氧化铝、氧化锌、氧化镁、氮化硅、氮化铝、氮化硼和碳化硅中的一种,颗粒的粒径为1~50μm;所述的可溶性金属盐选自铁、镍或钴的氯酸盐、硝酸盐、乙酸盐、硫酸盐和草酸盐中的一种或几种;所述的还原剂为水合肼或硼氢化钠中的一种;生成的磁性纳米级颗粒为纳米金属颗粒铁、镍、钴中一种或两种以上的混合颗粒,纳米级颗粒占复合导热填料质量分数的1%~10%。 In step 1, the micron-sized particles are one of aluminum oxide, zinc oxide, magnesium oxide, silicon nitride, aluminum nitride, boron nitride and silicon carbide, and the particle size of the particles is 1-50 μm; The soluble metal salt is selected from one or more of chlorate, nitrate, acetate, sulfate and oxalate of iron, nickel or cobalt; the reducing agent is hydrazine hydrate or sodium borohydride A kind of; the generated magnetic nano-particles are the mixed particles of one or more kinds of nano-metal particles iron, nickel and cobalt, and the nano-sized particles account for 1% to 10% of the mass fraction of the composite thermally conductive filler.

步骤2中,搅拌时间为10~24h。 In step 2, the stirring time is 10~24h.

步骤4中,磁场强度为0.1-2.5T。 In step 4, the magnetic field strength is 0.1-2.5T.

步骤4中,固化时间为10~20h。 In step 4, the curing time is 10~20h.

所述的磁性纳米颗粒/微米颗粒复合导热填料占磁性微纳米复合填料/硅橡胶导热复合材料总质量的5%~50%。 The magnetic nanoparticle/microparticle composite heat-conducting filler accounts for 5% to 50% of the total mass of the magnetic micro-nano composite filler/silicone rubber heat-conducting composite material.

所述的硅橡胶为市售的双组份、室温固化型液体硅橡胶,其中,A组份为未交联硫化的粘稠状硅橡胶流体, B组份为包括硫化剂、交联剂和增粘剂在内组成的液体混合物;加入的B组分的量占液体硅橡胶总质量的5%~15%。 The silicone rubber is a commercially available two-component, room-temperature-curing liquid silicone rubber, wherein, the A component is a viscous silicone rubber fluid that is not cross-linked and vulcanized, and the B component is composed of a vulcanizing agent, a cross-linking agent and A liquid mixture composed of a tackifier; the amount of component B added accounts for 5% to 15% of the total mass of liquid silicone rubber.

将磁性纳米金属颗粒分散复合到微米级导热填料表面,在导热硅橡胶复合材料的制备过程中施加磁场,使不具备磁场响应的微米级导热填料在聚合物基体中定向排列,实现填料在低填充含量下大幅提高聚合物基复合材料的导热性能;另外,通过磁性纳米金属颗粒包覆导热填料制备微纳米复合填料,可避免纳米金属颗粒在聚合物基体中不易分散、易团聚问题,可间接实现微纳米粒子在聚合物基体中的均匀分散。 Disperse and compound magnetic nano-metal particles on the surface of micron-scale thermally conductive fillers, and apply a magnetic field during the preparation of thermally conductive silicone rubber composites, so that the micron-scale thermally conductive fillers that do not have a magnetic field response are aligned in the polymer matrix to achieve low filling The thermal conductivity of the polymer-based composite material is greatly improved when the content is low; in addition, the micro-nano composite filler is prepared by coating the thermally conductive filler with magnetic nano-metal particles, which can avoid the problem that the nano-metal particles are not easy to disperse and agglomerate in the polymer matrix, and can be indirectly realized. Uniform dispersion of micro-nanoparticles in a polymer matrix.

附图说明 Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的有关本发明的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。 In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the accompanying drawings that need to be used in the description of the embodiments or the prior art will be briefly introduced below. Obviously, the following descriptions related to the present invention The accompanying drawings are only some embodiments of the present invention, and those skilled in the art can obtain other drawings according to these drawings without any creative effort.

图1是本发明中磁性微纳米复合填料/硅橡胶导热复合材料制备过程示意图,如图所示,将磁性纳米金属颗粒分散复合到微米级导热填料表面,在导热硅橡胶复合材料的制备过程中施加磁场,使不具备磁场响应的微米级导热填料在聚合物基体中定向排列,实现填料在低填充含量下大幅提高聚合物基复合材料的导热性能。 Fig. 1 is a schematic diagram of the preparation process of the magnetic micro-nano composite filler/silicone rubber heat-conducting composite material in the present invention, as shown in the figure, the magnetic nano-metal particles are dispersed and compounded on the surface of the micron-scale heat-conducting filler, during the preparation process of the heat-conducting silicone rubber composite material A magnetic field is applied to align the micron-sized thermally conductive fillers that do not have a magnetic field response in the polymer matrix, so that the filler can greatly improve the thermal conductivity of the polymer matrix composite at a low filling content.

图2 为本发明实施例1中制备的磁性纳米级金属镍颗粒/微米级氧化铝导热复合填料的扫面电子显微镜图,从图中可以看出纳米级金属镍颗粒均匀分散在氧化铝颗粒的表面,在氧化铝表面形成纳米层。 Fig. 2 is the scanning electron microscope picture of the magnetic nano-scale metallic nickel particle/micron-sized aluminum oxide heat-conducting composite filler prepared in the embodiment 1 of the present invention, as can be seen from the figure that the nano-sized metallic nickel particle is uniformly dispersed in the surface of the alumina particle surface, forming a nano-layer on the surface of alumina.

图3为本发明实施例中用到的微米级氧化铝填料、制备得到的纳米级金属镍颗粒和金属镍颗粒/氧化铝复合填料的XRD图。 Fig. 3 is an XRD pattern of the micron-sized alumina filler used in the embodiment of the present invention, the prepared nano-sized metallic nickel particles and the metallic nickel particle/alumina composite filler.

具体实施方式 Detailed ways

下面参照实施对本发明进行说明。 The invention will be described below with reference to its implementation.

实施例1: Example 1:

称取1.18g(5mmol)的六水合氯化镍(NiCl2·6H2O),在搅拌的条件下加乙二醇50ml至完全溶解;称取2.5g平均粒径为3μm的氧化铝微米颗粒,加入到氯化镍的乙二醇溶液中,继续搅拌使氧化铝颗粒分散均匀;在搅拌过程中滴加氢氧化钠溶液至氢氧化镍充分形成;调节溶液pH值为10,生成氢氧化镍/氧化铝复合粒子,继续搅拌30min;逐滴加入水合肼的水溶液,直到反应完全,然后将反应混合物溶液分离后,用去离子水洗涤5次,在80℃条件下干燥10小时得到2.74g的纳米镍/氧化铝复合导热填料,其中纳米镍颗粒占复合导热填料的质量分数为9%。 Weigh 1.18g (5mmol) of nickel chloride hexahydrate (NiCl 2 6H 2 O), add 50ml of ethylene glycol under stirring conditions until completely dissolved; weigh 2.5g of alumina micro-particles with an average particle size of 3μm , added to the ethylene glycol solution of nickel chloride, and continued to stir to disperse the alumina particles evenly; during the stirring process, dropwise added sodium hydroxide solution until nickel hydroxide was fully formed; adjusted the pH value of the solution to 10 to generate nickel hydroxide /alumina composite particles, continue to stir for 30min; add the aqueous solution of hydrazine hydrate dropwise until the reaction is complete, then separate the reaction mixture solution, wash 5 times with deionized water, and dry at 80°C for 10 hours to obtain 2.74g of Nano-nickel/alumina composite thermally conductive filler, wherein the mass fraction of nano-nickel particles in the composite thermally conductive filler is 9%.

称取上述制备的复合导热填料1g,加入到8.1g双组份液体硅橡胶的A组份中充分搅拌12h,使其混合均匀;在上述混合液中加入0.9g双组份液体硅橡胶的B组份,快速搅拌使其混合均匀,其中复合导热填料占导热复合材料的质量分数为10%。 Weigh 1g of the composite thermally conductive filler prepared above, add it to 8.1g of component A of two-component liquid silicone rubber and stir for 12 hours to make it evenly mixed; add 0.9g of component B of two-component liquid silicone rubber to the above mixed solution Components, stir quickly to make them evenly mixed, and the mass fraction of the composite heat-conducting filler in the heat-conducting composite material is 10%.

将此混合液注入到施加了0.5T磁场的模具中室温固化12h,干燥后得硅橡胶导热复合材料,用导热系数测定仪分别测试出纯硅橡胶和样品1的导热系数,测试温度为室温;测得纯硅橡胶样品的热导率为0.19W/(m.k),本实施例中样品的热导率为0.28 W/(m.k)。 Inject the mixed solution into a mold with a 0.5T magnetic field and cure it at room temperature for 12 hours. After drying, a silicone rubber thermally conductive composite material is obtained. Use a thermal conductivity tester to test the thermal conductivity of pure silicone rubber and sample 1, and the test temperature is room temperature; The measured thermal conductivity of the pure silicone rubber sample is 0.19 W/(m.k), and the thermal conductivity of the sample in this embodiment is 0.28 W/(m.k).

图2为此实施例制备的纳米镍/氧化铝复合填料的扫描电子显微镜照片,从图中可以看出纳米级金属镍颗粒均匀分散在氧化铝颗粒的表面,在氧化铝表面形成纳米层。 Fig. 2 is a scanning electron micrograph of the nano-nickel/alumina composite filler prepared for this example. It can be seen from the figure that nano-scale metallic nickel particles are uniformly dispersed on the surface of the alumina particles, forming a nano-layer on the surface of the alumina.

图3为此样品和纯纳米镍颗粒和纯氧化铝颗粒的X-射线衍射图谱,从图中可以看出,与纯纳米镍颗粒和纯氧化铝颗粒对比可知,复合填料的谱图可指标为镍和氧化铝的物相,无其它杂相的存在。 Figure 3 is the X-ray diffraction pattern of this sample and pure nano-nickel particles and pure alumina particles, as can be seen from the figure, compared with pure nano-nickel particles and pure alumina particles, the spectrogram of the composite filler can be indexed as The phase of nickel and alumina, without the existence of other impurity phases.

实施例2: Example 2:

称取2.11g(5mmol)的九水合硝酸铁(Fe(NO3)3·9H2O),在搅拌的条件下加乙二醇50ml至完全溶解;称取4.5g平均粒径为1μm的氮化硼微米颗粒,加入到硝酸铁的乙二醇溶液中,继续搅拌使氮化硼颗粒分散均匀;在搅拌过程中滴加氢氧化钠溶液至氢氧化铁充分形成;调节溶液pH值为10,生成氢氧化铁/氮化硼复合粒子,继续搅拌30min;逐滴加入硼氢化钠的水溶液,直到反应完全。然后将反应混合物溶液分离后,用去离子水洗涤5次,在80℃条件下干燥10小时得到4.73g纳米铁/氮化硼复合填料,其中纳米铁颗粒占复合导热填料的质量分数为5%。 Weigh 2.11g (5mmol) of ferric nitrate nonahydrate (Fe(NO 3 ) 3 9H 2 O), add 50ml of ethylene glycol under stirring conditions until completely dissolved; weigh 4.5g of nitrogen with an average particle size of 1μm Add boron nitride microparticles into the ethylene glycol solution of ferric nitrate, and continue stirring to disperse the boron nitride particles evenly; add sodium hydroxide solution dropwise during stirring until ferric hydroxide is fully formed; adjust the pH value of the solution to 10, Ferric hydroxide/boron nitride composite particles were generated, and the stirring was continued for 30 min; an aqueous solution of sodium borohydride was added dropwise until the reaction was complete. Then the reaction mixture solution was separated, washed 5 times with deionized water, and dried at 80°C for 10 hours to obtain 4.73g of nano-iron/boron nitride composite filler, wherein the mass fraction of nano-iron particles in the composite thermally conductive filler was 5%. .

称取上述制备的复合导热填料2g,加入到7.2g双组份液体硅橡胶的A组份中充分搅拌12h,使其混合均匀;在上述混合液中加入0.8g双组份液体硅橡胶的B组份,快速搅拌使其混合均匀,其中复合导热填料占导热复合材料的质量分数为20%。 Weigh 2g of the composite thermally conductive filler prepared above, add it to 7.2g of component A of two-component liquid silicone rubber and stir for 12 hours to make it evenly mixed; add 0.8g of component B of two-component liquid silicone rubber to the above mixed solution Components, stir quickly to make them evenly mixed, and the mass fraction of the composite heat-conducting filler in the heat-conducting composite material is 20%.

将此混合液注入到施加了1T磁场的模具中室温固化14h,干燥后得硅橡胶导热复合材料,用导热系数测定仪测试出样品2的导热系数,测试温度为室温,测得本实施例中样品的热导率为0.37 W/(m.k)。 The mixed solution was injected into a mold with a 1T magnetic field and cured at room temperature for 14 hours. After drying, a silicone rubber thermally conductive composite material was obtained. The thermal conductivity of sample 2 was tested with a thermal conductivity tester. The test temperature was room temperature. The thermal conductivity of the sample is 0.37 W/(m.k).

纳米铁/氮化硼复合填料的扫描电子显微镜照片与图2类似,纳米级金属铁颗粒均匀分散在氮化硼颗粒的表面,在氮化硼表面形成纳米层。 The scanning electron microscope photo of the nano-iron/boron nitride composite filler is similar to that in Figure 2. The nano-scale metallic iron particles are uniformly dispersed on the surface of the boron nitride particles, forming a nano-layer on the surface of the boron nitride.

实施例3: Example 3:

称取1.3g(5mmol)的六水合硫酸镍(NiSO4·6H2O),在搅拌的条件下加乙二醇50ml至完全溶解;称取4g平均粒径为20μm的氮化铝微米颗粒,加入到硫酸镍的乙二醇溶液中,继续搅拌使氧化铝颗粒分散均匀;在搅拌过程中滴加氢氧化钠溶液至氢氧化镍充分形成;调节溶液pH值为10,生成氢氧化镍/氮化铝复合粒子,继续搅拌30min;逐滴加入硼氢化钠的水溶液,直到反应完全。然后将反应混合物溶液分离后,用去离子水洗涤5次,在80℃条件下干燥10小时得到4.23g纳米镍/氮化铝复合填料,其中纳米镍颗粒占复合导热填料的质量分数为5%。 Weigh 1.3g (5mmol) of nickel sulfate hexahydrate (NiSO 4 6H 2 O), add 50ml of ethylene glycol under stirring conditions until completely dissolved; weigh 4g of aluminum nitride micro-particles with an average particle size of 20μm, Add it into the ethylene glycol solution of nickel sulfate, and continue to stir to disperse the alumina particles evenly; add sodium hydroxide solution dropwise during the stirring process until nickel hydroxide is fully formed; adjust the pH value of the solution to 10, and generate nickel hydroxide/nitrogen Aluminum composite particles, continue to stir for 30min; add sodium borohydride aqueous solution dropwise until the reaction is complete. Then the reaction mixture solution was separated, washed 5 times with deionized water, and dried at 80°C for 10 hours to obtain 4.23g of nano-nickel/aluminum nitride composite filler, wherein the mass fraction of nano-nickel particles in the composite thermally conductive filler was 5%. .

称取上述制备的复合填料1g,加入到8.1g双组份液体硅橡胶的A组份中充分搅拌12h,使其混合均匀;在上述混合液中加入0.9g双组份液体硅橡胶的B组份,快速搅拌使其混合均匀,其中复合填料占导热复合材料的质量分数为10%。 Weigh 1g of the above-prepared composite filler, add it to 8.1g of component A of two-component liquid silicone rubber and stir for 12 hours to make it evenly mixed; add 0.9g of component B of two-component liquid silicone rubber to the above mixture parts, stir quickly to make it evenly mixed, and the mass fraction of the composite filler in the heat-conducting composite material is 10%.

将此混合液注入到施加了0.5T磁场的模具中室温固化14h,干燥后得硅橡胶导热复合材料,用导热系数测定仪测试出样品3的导热系数,测试温度为室温,测得本实施例中样品的热导率为0.25 W/(m.k)。 The mixed solution was injected into a mold with a 0.5T magnetic field applied to it and cured at room temperature for 14 hours. After drying, a silicone rubber thermally conductive composite material was obtained. The thermal conductivity of sample 3 was tested with a thermal conductivity tester. The test temperature was room temperature. The thermal conductivity of the medium sample is 0.25 W/(m.k).

纳米镍/氮化铝复合填料的扫描电子显微镜照片与图2类似,纳米级金属镍颗粒均匀分散在氮化铝颗粒的表面,在氮化铝表面形成纳米层。 The scanning electron microscope photo of the nano-nickel/aluminum nitride composite filler is similar to that shown in Figure 2. Nano-scale metallic nickel particles are uniformly dispersed on the surface of the aluminum nitride particles, forming a nano-layer on the surface of the aluminum nitride.

实施例4: Example 4:

称取1.25g(5mmol)的四水合乙酸钴(Co·C4H6O4·4H2O),在搅拌的条件下加乙二醇50ml至完全溶解;称取3.5g平均粒径为3μm的碳化硅微米颗粒,加入到乙酸钴的乙二醇溶液中,继续搅拌使碳化硅颗粒分散均匀;在搅拌过程中滴加氢氧化钠溶液至氢氧化钴充分形成;调节溶液pH值为10,生成氢氧化钴/碳化硅复合粒子,继续搅拌30min;逐滴加入水合肼的水溶液,直到反应完全,然后将反应混合物溶液分离后,用去离子水洗涤5次,在80℃条件下干燥10小时得到3.74g纳米钴/碳化硅复合填料,其中纳米钴颗粒占复合导热填料的质量分数为6%。 Weigh 1.25g (5mmol) of cobalt acetate tetrahydrate (Co·C 4 H 6 O 4 4H 2 O), add 50ml of ethylene glycol under stirring conditions until completely dissolved; weigh 3.5g with an average particle size of 3μm Add silicon carbide micron particles into the ethylene glycol solution of cobalt acetate, continue to stir to disperse the silicon carbide particles evenly; add dropwise sodium hydroxide solution until the cobalt hydroxide is fully formed during stirring; adjust the pH value of the solution to 10, Generate cobalt hydroxide/silicon carbide composite particles, continue to stir for 30 minutes; add the aqueous solution of hydrazine hydrate dropwise until the reaction is complete, then separate the reaction mixture solution, wash with deionized water 5 times, and dry at 80°C for 10 hours 3.74g of nano-cobalt/silicon carbide composite filler was obtained, wherein the mass fraction of nano-cobalt particles in the composite thermally conductive filler was 6%.

称取上述制备的复合填料3g,加入到6.3g双组份液体硅橡胶的A组份中充分搅拌12h,使其混合均匀;在上述混合液中加入0.7g双组份液体硅橡胶的B组份,快速搅拌使其混合均匀,其中复合填料占导热复合材料的质量分数为30%。 Weigh 3g of the above-prepared composite filler, add it to 6.3g of component A of two-component liquid silicone rubber and stir for 12 hours to make it evenly mixed; add 0.7g of component B of two-component liquid silicone rubber to the above mixture parts, stir quickly to make it evenly mixed, and the mass fraction of the composite filler in the heat-conducting composite material is 30%.

将此混合液注入到施加了1.5T磁场的模具中室温固化14h,干燥后得硅橡胶导热复合材料,用导热系数测定仪测试出样品4的导热系数,测试温度为室温,测得本实施例中样品的热导率为0.42 W/(m.k)。 The mixed solution was injected into a mold with a 1.5T magnetic field and cured at room temperature for 14 hours. After drying, a silicone rubber thermally conductive composite material was obtained. The thermal conductivity of sample 4 was tested with a thermal conductivity tester. The thermal conductivity of the medium sample is 0.42 W/(m.k).

纳米钴/碳化硅复合填料的扫描电子显微镜照片与图2类似,纳米级金属钴颗粒均匀分散在碳化硅颗粒的表面,在碳化硅表面形成纳米层。 The scanning electron microscope photo of the nano-cobalt/silicon carbide composite filler is similar to that in Figure 2. Nano-scale metal cobalt particles are uniformly dispersed on the surface of the silicon carbide particles, forming a nano-layer on the surface of the silicon carbide.

Claims (7)

1.磁性微纳米复合填料/硅橡胶导热复合材料的制备方法,其特征在于具体步骤如下: 1. The preparation method of magnetic micro-nano composite filler/silicone rubber heat-conducting composite material is characterized in that the specific steps are as follows: 步骤1:磁性纳米颗粒/微米颗粒复合导热填料的制备 Step 1: Preparation of Magnetic Nanoparticle/Microparticle Composite Thermally Conductive Filler 以微米级颗粒和可溶性金属盐为起始原料,称取一定质量份数的可溶性金属盐,加乙二醇溶解;在搅拌的条件下,向上述溶液中加入一定质量份数的微米级颗粒,继续搅拌使微米级颗粒分散均匀;加入已配置好的氢氧化钠溶液,继续搅拌反应至金属离子的氢氧化物充分形成;用上述氢氧化钠溶液调节溶液pH值为10;最后加入还原剂进行还原,即为磁性纳米颗粒/微米颗粒复合导热填料的乙二醇溶液;经过滤、洗涤、干燥后,得到复合导热填料; Taking micron-sized particles and soluble metal salts as starting materials, weighing a certain number of soluble metal salts, adding ethylene glycol to dissolve; adding a certain number of parts by mass of micron-sized particles to the above solution under stirring conditions, Continue to stir to disperse the micron-sized particles evenly; add the prepared sodium hydroxide solution, and continue to stir until the metal ion hydroxide is fully formed; use the above sodium hydroxide solution to adjust the pH value of the solution to 10; finally add the reducing agent to carry out Reduction, that is, the ethylene glycol solution of the magnetic nanoparticle/microparticle composite thermally conductive filler; after filtering, washing and drying, the composite thermally conductive filler is obtained; 步骤2:将步骤1中所得的复合导热填料经过干燥后,称取一定质量份数的复合导热填料加入到双组份液体硅橡胶的A组份中,搅拌至均匀; Step 2: After drying the composite thermally conductive filler obtained in step 1, weigh a certain mass of composite thermally conductive filler and add it to component A of the two-component liquid silicone rubber, and stir until uniform; 步骤3:在步骤2所得的混合液中加入适量双组份液体硅橡胶的B组份,快速搅拌使其混合均匀; Step 3: Add an appropriate amount of component B of the two-component liquid silicone rubber to the mixture obtained in step 2, and stir quickly to make it evenly mixed; 步骤4:将步骤3所得的混合液注入到施加了磁场的模具中室温固化,干燥后制备得到磁性微纳米复合填料/硅橡胶导热复合材料。 Step 4: Inject the mixed liquid obtained in Step 3 into a mold with a magnetic field applied thereto and solidify at room temperature, and dry to prepare a magnetic micro-nano composite filler/silicone rubber heat-conducting composite material. 2.如权利要求1所述的磁性微纳米复合填料/硅橡胶导热复合材料的制备方法,其特征在于:步骤1中,所述的微米级颗粒为氧化铝、氧化锌、氧化镁、氮化硅、氮化铝、氮化硼和碳化硅中的一种,颗粒的粒径为1~50μm;所述的可溶性金属盐选自铁、镍或钴的氯酸盐、硝酸盐、乙酸盐、硫酸盐和草酸盐中的一种或几种;所述的还原剂为水合肼或硼氢化钠中的一种;生成的磁性纳米级颗粒为纳米金属颗粒铁、镍、钴中一种或两种以上的混合颗粒,纳米级颗粒占复合导热填料质量分数的1%~10%。 2. The preparation method of magnetic micro-nano composite filler/silicone rubber heat-conducting composite material as claimed in claim 1, characterized in that: in step 1, the micron-sized particles are aluminum oxide, zinc oxide, magnesium oxide, nitride One of silicon, aluminum nitride, boron nitride and silicon carbide, the particle size of the particles is 1-50 μm; the soluble metal salt is selected from iron, nickel or cobalt chlorate, nitrate, acetate One or more of , sulfate and oxalate; the reducing agent is one of hydrazine hydrate or sodium borohydride; the magnetic nano-scale particles generated are one of nano-metal particles iron, nickel and cobalt Or more than two kinds of mixed particles, nano-sized particles account for 1% to 10% of the mass fraction of the composite thermally conductive filler. 3.如权利要求1所述的磁性微纳米复合填料/硅橡胶导热复合材料的制备方法,其特征在于:步骤2中,搅拌时间为10~24h。 3. The method for preparing magnetic micro-nano composite filler/silicone rubber heat-conducting composite material according to claim 1, characterized in that: in step 2, the stirring time is 10-24 hours. 4.如权利要求1所述的磁性微纳米复合填料/硅橡胶导热复合材料的制备方法,其特征在于:步骤4中,磁场强度为0.1-2.5T。 4 . The method for preparing magnetic micro-nano composite filler/silicone rubber heat-conducting composite material according to claim 1 , characterized in that: in step 4, the magnetic field strength is 0.1-2.5T. 5.如权利要求1所述的磁性微纳米复合填料/硅橡胶导热复合材料的制备方法,其特征在于:步骤4中,固化时间为10~20h。 5. The method for preparing magnetic micro-nano composite filler/silicone rubber heat-conducting composite material according to claim 1, characterized in that: in step 4, the curing time is 10-20 hours. 6.如权利要求1所述的磁性微纳米复合填料/硅橡胶导热复合材料的制备方法,其特征在于:所述的磁性纳米颗粒/微米颗粒复合导热填料占磁性微纳米复合填料/硅橡胶导热复合材料总质量的5%~50%。 6. The preparation method of magnetic micro-nano composite filler/silicone rubber heat-conducting composite material as claimed in claim 1, characterized in that: the magnetic nano-particle/micron-particle composite heat-conducting filler accounts for 5%~50% of the total mass of composite materials. 7.如权利要求1所述的磁性微纳米复合填料/硅橡胶导热复合材料的制备方法,其特征在于:所述的硅橡胶为市售的双组份、室温固化型液体硅橡胶,其中,A组份为未交联硫化的粘稠状硅橡胶流体, B组份为包括硫化剂、交联剂和增粘剂在内组成的液体混合物;加入的B组分的量占液体硅橡胶总质量的5%~15%。 7. The preparation method of magnetic micro-nano composite filler/silicone rubber heat-conducting composite material as claimed in claim 1, characterized in that: said silicone rubber is a commercially available two-component, room-temperature-curing liquid silicone rubber, wherein, Component A is uncrosslinked and vulcanized viscous silicone rubber fluid, and component B is a liquid mixture composed of vulcanizing agent, crosslinking agent and tackifier; the amount of component B added accounts for the total amount of liquid silicone rubber. 5%~15% of the mass.
CN201410744987.8A 2014-12-09 2014-12-09 Preparation method of magnetic micro/nano composite filler/silicon rubber heat-conducting composite material Pending CN104559183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410744987.8A CN104559183A (en) 2014-12-09 2014-12-09 Preparation method of magnetic micro/nano composite filler/silicon rubber heat-conducting composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410744987.8A CN104559183A (en) 2014-12-09 2014-12-09 Preparation method of magnetic micro/nano composite filler/silicon rubber heat-conducting composite material

Publications (1)

Publication Number Publication Date
CN104559183A true CN104559183A (en) 2015-04-29

Family

ID=53076296

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410744987.8A Pending CN104559183A (en) 2014-12-09 2014-12-09 Preparation method of magnetic micro/nano composite filler/silicon rubber heat-conducting composite material

Country Status (1)

Country Link
CN (1) CN104559183A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105199396A (en) * 2015-10-17 2015-12-30 平湖阿莱德实业有限公司 Silica gel based carbon material oriented heat conduction interface material and production method thereof
CN105504822A (en) * 2016-01-13 2016-04-20 德阳烯碳科技有限公司 Preparation method of silicone rubber pad
CN105542469A (en) * 2015-12-24 2016-05-04 平湖阿莱德实业有限公司 Electromagnetic shielding heat conducting composition and electromagnetic shielding heat conducting gasket
CN106467670A (en) * 2016-09-13 2017-03-01 杭州师范大学 A kind of preparation method of silver nanoparticle mixed fillers modified silicon rubber conducing composite material
CN106531902A (en) * 2016-11-16 2017-03-22 广州宏庆电子有限公司 Extremely-thin flexible heat-radiation film and method for manufacturing the same
CN106626583A (en) * 2016-11-16 2017-05-10 广州宏庆电子有限公司 Ultra-thin heat dissipation film and preparation method thereof
CN106916450A (en) * 2015-12-24 2017-07-04 北京中石伟业科技股份有限公司 A kind of electromagnetic wave absorption thermally conductive composition and electromagnetic wave absorption heat-conducting pad
CN107934973A (en) * 2017-11-24 2018-04-20 上海麟敏信息科技有限公司 A kind of method and device that vegetalitas silicon is prepared by agricultural wastes
CN108165237A (en) * 2018-01-12 2018-06-15 哈尔滨工业大学 A kind of preparation method for improving Silica hydrogel composite wood heat conductivility
CN108659536A (en) * 2018-03-23 2018-10-16 昆山德睿懿嘉电子材料科技有限公司 Heat Conduction Material and preparation method thereof
CN109181312A (en) * 2018-09-11 2019-01-11 中国科学院金属研究所 The boron nitride of vertical orientation and organosilicon composite heat-conducting thin-film material and preparation method thereof under a kind of magnetic field
CN109466152A (en) * 2018-09-04 2019-03-15 浙江罗奇泰克科技股份有限公司 A kind of production method of high thermal conductivity iron substrate
CN109501396A (en) * 2017-09-14 2019-03-22 东莞市荣腾纳米科技有限公司 A kind of leaded light thermal isolation film and preparation method thereof
CN110563981A (en) * 2019-05-22 2019-12-13 青岛科技大学 Preparation method of oriented boron nitride composite film
CN110862689A (en) * 2019-11-29 2020-03-06 中国科学院合肥物质科学研究院 A kind of preparation method of magnetron flexible surface material with orthotropic wettability
CN110911114A (en) * 2019-11-29 2020-03-24 横店集团东磁股份有限公司 Composite magnetic separation sheet for high-thermal-conductivity wireless charging receiving end and preparation method thereof
CN112194903A (en) * 2020-09-21 2021-01-08 深圳市鸿富诚屏蔽材料有限公司 Heat-conducting wave-absorbing silica gel composite material and preparation method thereof
CN113004658A (en) * 2021-02-25 2021-06-22 西北工业大学 Thermosetting composite material with magnetic control conversion electric conduction and heat conduction characteristics and preparation method thereof
CN113278163A (en) * 2020-11-18 2021-08-20 百色学院 Method for improving heat conductivity coefficient of flaky alumina/polymer composite sheet material through electric field induction
CN113278288A (en) * 2021-05-25 2021-08-20 扬州工业职业技术学院 Polymer-based heat-conducting composite material and preparation method thereof
CN113524801A (en) * 2020-12-11 2021-10-22 中国科学院国家空间科学中心 Preparation method of heat-conducting insulating pad
CN113956663A (en) * 2021-10-26 2022-01-21 中节能太阳能科技(镇江)有限公司 Directional high-thermal-conductivity silica gel for improving heat dissipation of photovoltaic module junction box and preparation method thereof
CN114031943A (en) * 2021-11-15 2022-02-11 西北工业大学深圳研究院 Interfacial high-thermal-conductivity composite material and preparation method thereof
CN115625946A (en) * 2022-10-14 2023-01-20 深圳市鸿富诚新材料股份有限公司 A kind of thermal interface material and its preparation method and application
CN116605881A (en) * 2023-05-22 2023-08-18 南京航空航天大学 A heat-conducting and wave-absorbing integrated material and its preparation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101479342A (en) * 2006-06-26 2009-07-08 陶氏康宁公司 Preparation of silicone rubber elastomers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101479342A (en) * 2006-06-26 2009-07-08 陶氏康宁公司 Preparation of silicone rubber elastomers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
马洁: "高导热硅橡胶基复合材料的制备及表征", 《万方数据 企业知识服务平台》 *

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105199396A (en) * 2015-10-17 2015-12-30 平湖阿莱德实业有限公司 Silica gel based carbon material oriented heat conduction interface material and production method thereof
CN105542469A (en) * 2015-12-24 2016-05-04 平湖阿莱德实业有限公司 Electromagnetic shielding heat conducting composition and electromagnetic shielding heat conducting gasket
CN106916450A (en) * 2015-12-24 2017-07-04 北京中石伟业科技股份有限公司 A kind of electromagnetic wave absorption thermally conductive composition and electromagnetic wave absorption heat-conducting pad
CN105504822A (en) * 2016-01-13 2016-04-20 德阳烯碳科技有限公司 Preparation method of silicone rubber pad
CN105504822B (en) * 2016-01-13 2019-06-18 德阳烯碳科技有限公司 A kind of preparation method of silicone rubber pad
CN106467670B (en) * 2016-09-13 2019-03-29 杭州师范大学 A kind of preparation method of silver nanoparticle mixed fillers modified silicon rubber conducing composite material
CN106467670A (en) * 2016-09-13 2017-03-01 杭州师范大学 A kind of preparation method of silver nanoparticle mixed fillers modified silicon rubber conducing composite material
CN106531902A (en) * 2016-11-16 2017-03-22 广州宏庆电子有限公司 Extremely-thin flexible heat-radiation film and method for manufacturing the same
CN106626583A (en) * 2016-11-16 2017-05-10 广州宏庆电子有限公司 Ultra-thin heat dissipation film and preparation method thereof
CN106626583B (en) * 2016-11-16 2021-11-12 广州宏庆电子有限公司 Ultrathin heat dissipation film and manufacturing method thereof
CN109501396A (en) * 2017-09-14 2019-03-22 东莞市荣腾纳米科技有限公司 A kind of leaded light thermal isolation film and preparation method thereof
CN109501396B (en) * 2017-09-14 2021-06-22 东莞市荣腾纳米科技有限公司 Light guide and heat insulation film and preparation method thereof
CN107934973A (en) * 2017-11-24 2018-04-20 上海麟敏信息科技有限公司 A kind of method and device that vegetalitas silicon is prepared by agricultural wastes
CN108165237A (en) * 2018-01-12 2018-06-15 哈尔滨工业大学 A kind of preparation method for improving Silica hydrogel composite wood heat conductivility
CN108659536A (en) * 2018-03-23 2018-10-16 昆山德睿懿嘉电子材料科技有限公司 Heat Conduction Material and preparation method thereof
CN109466152A (en) * 2018-09-04 2019-03-15 浙江罗奇泰克科技股份有限公司 A kind of production method of high thermal conductivity iron substrate
CN109181312B (en) * 2018-09-11 2021-02-19 中国科学院金属研究所 A boron nitride and organosilicon composite thermally conductive thin film material vertically oriented under a magnetic field and a preparation method thereof
CN109181312A (en) * 2018-09-11 2019-01-11 中国科学院金属研究所 The boron nitride of vertical orientation and organosilicon composite heat-conducting thin-film material and preparation method thereof under a kind of magnetic field
CN110563981A (en) * 2019-05-22 2019-12-13 青岛科技大学 Preparation method of oriented boron nitride composite film
CN110862689A (en) * 2019-11-29 2020-03-06 中国科学院合肥物质科学研究院 A kind of preparation method of magnetron flexible surface material with orthotropic wettability
CN110911114A (en) * 2019-11-29 2020-03-24 横店集团东磁股份有限公司 Composite magnetic separation sheet for high-thermal-conductivity wireless charging receiving end and preparation method thereof
CN110911114B (en) * 2019-11-29 2020-12-22 横店集团东磁股份有限公司 Composite magnetic separation sheet for high-thermal-conductivity wireless charging receiving end and preparation method thereof
CN110862689B (en) * 2019-11-29 2022-04-26 中国科学院合肥物质科学研究院 A kind of preparation method of magnetron flexible surface material with orthotropic wettability
CN112194903A (en) * 2020-09-21 2021-01-08 深圳市鸿富诚屏蔽材料有限公司 Heat-conducting wave-absorbing silica gel composite material and preparation method thereof
CN113278163A (en) * 2020-11-18 2021-08-20 百色学院 Method for improving heat conductivity coefficient of flaky alumina/polymer composite sheet material through electric field induction
CN113524801A (en) * 2020-12-11 2021-10-22 中国科学院国家空间科学中心 Preparation method of heat-conducting insulating pad
CN113524801B (en) * 2020-12-11 2022-03-22 中国科学院国家空间科学中心 Preparation method of heat-conducting insulating pad
CN113004658A (en) * 2021-02-25 2021-06-22 西北工业大学 Thermosetting composite material with magnetic control conversion electric conduction and heat conduction characteristics and preparation method thereof
CN113004658B (en) * 2021-02-25 2022-11-25 西北工业大学 Thermosetting composite material with magnetic control switchable electrical and thermal conductivity and preparation method
CN113278288A (en) * 2021-05-25 2021-08-20 扬州工业职业技术学院 Polymer-based heat-conducting composite material and preparation method thereof
CN113956663A (en) * 2021-10-26 2022-01-21 中节能太阳能科技(镇江)有限公司 Directional high-thermal-conductivity silica gel for improving heat dissipation of photovoltaic module junction box and preparation method thereof
CN114031943A (en) * 2021-11-15 2022-02-11 西北工业大学深圳研究院 Interfacial high-thermal-conductivity composite material and preparation method thereof
CN115625946A (en) * 2022-10-14 2023-01-20 深圳市鸿富诚新材料股份有限公司 A kind of thermal interface material and its preparation method and application
CN116605881A (en) * 2023-05-22 2023-08-18 南京航空航天大学 A heat-conducting and wave-absorbing integrated material and its preparation method

Similar Documents

Publication Publication Date Title
CN104559183A (en) Preparation method of magnetic micro/nano composite filler/silicon rubber heat-conducting composite material
CN104861910B (en) A kind of graphene coated inorganic filler epoxy resin compound adhesive and preparation method thereof
CN109825010B (en) Method for preparing brick-mud structure heat-conducting polymer composite material by utilizing magnetic field orientation
CN103614098B (en) A kind of functionalized graphene-doped epoxy resin conductive adhesive and preparation method thereof
CN103183889B (en) High-thermal-conductivity and insulating polymer composite material and preparation method thereof
CN104788909B (en) A kind of heat conductive insulating composite and preparation method thereof
CN104610706B (en) A kind of bitter earth nano crystalline substance coated graphite alkene-epoxy resin composite material and preparation method thereof
CN105348797A (en) Graphene-based heat conduction silica gel phase change composite material and preparation method thereof
CN103013122A (en) Preparation method of micro-nanometer mixed stuffing/liquid silicon rubber heat-conductive composite material
CN105778510A (en) Method for preparing thermally conductive composite material with directivity
CN108586809B (en) Carbon nanotube-based composite filler, preparation method thereof and epoxy resin-based electromagnetic shielding nanocomposite
CN110079266A (en) A kind of nano silver is carbon nano-tube modified to prepare high heat-conductivity conducting glue and preparation method thereof
CN111909516B (en) Heat-conducting composite material and preparation method thereof
CN108115151B (en) In-situ reduction preparation method of nano-silver modified reduced graphene oxide hybrid structure
CN103450681A (en) Preparation method of nickel-plated coiled carbon nanotubes/polyaniline composite electromagnetic shielding material
CN104724732A (en) Method for coating magnesia with graphene
CN111530459B (en) A kind of preparation method and application of 0D/2D composite material based on AlOOH nanosheet
CN103694632B (en) A kind of preparation method of epoxy resin composite material
CN100556587C (en) Microwave auxiliary liquid phase reduction method preparing needle-shaped nanometer nickel
CN105153453A (en) Nano-copper/polymer hollow composite microsphere and preparation method thereof
CN108165237A (en) A kind of preparation method for improving Silica hydrogel composite wood heat conductivility
CN104327460A (en) Method for efficiently preparing heat-conducting epoxy resin based on polyether sulfone and boron nitride
CN103769216A (en) Nano silver catalyst with thermosensitivity and magnetic property and preparation method thereof
CN111393795B (en) Three-dimensional heat-conducting insulating epoxy resin composite material and preparation method thereof
CN106084577B (en) Method for preparing polyvinylidene fluoride heat-conducting composite material by utilizing magnetic field orientation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150429