CN104310454A - Process method of rare earth oxysulfide by using alkali chloride - Google Patents
Process method of rare earth oxysulfide by using alkali chloride Download PDFInfo
- Publication number
- CN104310454A CN104310454A CN201410504355.4A CN201410504355A CN104310454A CN 104310454 A CN104310454 A CN 104310454A CN 201410504355 A CN201410504355 A CN 201410504355A CN 104310454 A CN104310454 A CN 104310454A
- Authority
- CN
- China
- Prior art keywords
- rare earth
- alkali metal
- sulfur
- mol
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 43
- -1 rare earth oxysulfide Chemical class 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 20
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 title 1
- 239000003513 alkali Substances 0.000 title 1
- 239000000463 material Substances 0.000 claims abstract description 29
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 27
- 229910052815 sulfur oxide Inorganic materials 0.000 claims abstract description 24
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 23
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 229910001514 alkali metal chloride Inorganic materials 0.000 claims abstract description 17
- 239000011593 sulfur Substances 0.000 claims abstract description 16
- 238000002844 melting Methods 0.000 claims abstract description 13
- 230000008018 melting Effects 0.000 claims abstract description 13
- 239000000843 powder Substances 0.000 claims abstract description 11
- 238000002360 preparation method Methods 0.000 claims abstract description 11
- 229910052688 Gadolinium Inorganic materials 0.000 claims abstract description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052772 Samarium Inorganic materials 0.000 claims abstract description 7
- 238000001035 drying Methods 0.000 claims abstract description 7
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 7
- 238000004519 manufacturing process Methods 0.000 claims abstract description 7
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 7
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 6
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 6
- 229910052700 potassium Inorganic materials 0.000 claims abstract description 6
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 6
- 238000010438 heat treatment Methods 0.000 claims description 14
- 239000000126 substance Substances 0.000 claims description 11
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims 1
- 239000002994 raw material Substances 0.000 abstract description 3
- 239000011358 absorbing material Substances 0.000 abstract description 2
- 150000001340 alkali metals Chemical class 0.000 abstract description 2
- 238000003756 stirring Methods 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 22
- 238000009826 distribution Methods 0.000 description 8
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 6
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000000498 ball milling Methods 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F17/00—Compounds of rare earth metals
- C01F17/20—Compounds containing only rare earth metals as the metal element
- C01F17/288—Sulfides
- C01F17/294—Oxysulfides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Luminescent Compositions (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
本发明公开了一种用碱金属氯化物制备稀土硫氧化物的工艺方法,其制备步骤为:①按化学计量比称取所需物料RE2O2S(其中RE为稀土元素Y、La、Gd或Sm中的一种)、Na2CO3、升华硫和碱金属氯化物AMCl(其中AM为碱金属元素Li、Na或K中的一种),将称好的物料混合均匀;②将混合均匀的物料装入内外均带盖的套坩埚中,在两坩埚的间隙填充耐高温粉末并压实;③将装有混合料的坩埚梯度升温至1100~1250℃,烧结3h~5h,然后随炉降温至室温;④烧结后的产物用热水洗涤并搅拌,抽滤;⑤将洗涤后的产物放入恒温鼓风干燥箱中烘干,即可得到稀土硫氧化物。本发明以RE2O3、Na2CO3、升华硫和碱金属氯化物AMCl为原料,采用硫熔法制备,且制备方法简单,易操作,可以用于发光材料和光吸收材料等领域。The invention discloses a process for preparing rare earth sulfur oxides from alkali metal chlorides. The preparation steps are as follows: ① Weigh the required material RE 2 O 2 S according to the stoichiometric ratio (wherein RE is the rare earth elements Y, La, one of Gd or Sm), Na 2 CO 3 , sublimed sulfur and alkali metal chloride AMCl (wherein AM is one of alkali metal Li, Na or K), mix the weighed materials evenly; ② put The uniformly mixed material is put into a crucible with a cover both inside and outside, and high-temperature resistant powder is filled in the gap between the two crucibles and compacted; ③ Gradiently raise the temperature of the crucible with the mixed material to 1100-1250°C, sinter for 3h-5h, and then Cool down to room temperature with the furnace; ④ Wash the sintered product with hot water, stir it, and filter it with suction; ⑤ Dry the washed product in a constant temperature blast drying oven to obtain rare earth sulfur oxides. The invention uses RE 2 O 3 , Na 2 CO 3 , sublimed sulfur and alkali metal chloride AMCl as raw materials, is prepared by a sulfur melting method, has a simple preparation method and is easy to operate, and can be used in the fields of luminescent materials and light-absorbing materials.
Description
技术领域technical field
本发明涉及一种用碱金属氯化物制备稀土硫氧化物的工艺方法,尤其涉及稀土硫氧化物的硫熔法制备与改性,以及窄颗粒分布稀土硫氧化物的制备与优化。The invention relates to a process for preparing rare earth sulfur oxides from alkali metal chlorides, in particular to the preparation and modification of rare earth sulfur oxides by sulfur melting, and the preparation and optimization of rare earth sulfur oxides with narrow particle distribution.
背景技术Background technique
稀土硫氧化物具有较高的化学稳定性和热稳定性,不溶于水,熔点高达2000~2200℃;禁带宽度为4.6~4.8eV,适合于掺杂离子;其最大声子能量为520cm-1,适合于作为发光材料的基质材料,具有非常高的光吸收与传能效率。六角Ln2O2S晶体结构最大的特点是具有较宽敞的空间结构,允许一定量的阳离子和阴离子空位形成及一定量的间隙离子进入,而晶体结构基本保持不变。其中La2O2S、Y2O2S和Gd2O2S作为发光材料的基质材料,通过掺杂Eu3+、Tb3+、Ce3+等发光离子在紫外和真空紫外激发下具有良好的发光性能,而Sm2O2S作为光学吸收材料,对1.06μm和1.54μm激光具有良好的光吸收特性。因此,稀土硫氧化物作为光学材料得到了广泛的应用。稀土硫氧化物主要的制备方法是硫熔法,适用于工业大规模生产,晶体完整,发光性能优于其他方法制备的产品。但硫熔法的助熔剂用量和种类不固定,还没有一个明确的范围。目前硫熔法制备的稀土硫氧化物,产品的颗粒较大,需要球磨,使得发光性能大大降低,而且颗粒的尺寸分布有待进一步改善。因此优化硫熔法制备稀土硫氧化物的工艺过程,提高稀土硫氧化物的颗粒物性是非常必要的。Rare earth sulfur oxides have high chemical stability and thermal stability, are insoluble in water, and have a melting point as high as 2000-2200°C; the band gap is 4.6-4.8eV, suitable for doping ions; its maximum phonon energy is 520cm - 1. It is suitable as a host material for luminescent materials, and has very high light absorption and energy transfer efficiency. The biggest feature of the hexagonal Ln 2 O 2 S crystal structure is that it has a relatively spacious space structure, allowing a certain amount of cation and anion vacancies to form and a certain amount of interstitial ions to enter, while the crystal structure remains basically unchanged. Among them, La 2 O 2 S, Y 2 O 2 S, and Gd 2 O 2 S are used as the host material of the luminescent material. By doping Eu 3+ , Tb 3+ , Ce 3+ and other luminescent ions, they have Good luminescence performance, and Sm 2 O 2 S as an optical absorption material has good light absorption characteristics for 1.06μm and 1.54μm lasers. Therefore, rare earth oxysulfides have been widely used as optical materials. The main preparation method of rare earth sulfur oxides is the sulfur melting method, which is suitable for large-scale industrial production, with complete crystals and better luminescent properties than products prepared by other methods. However, the amount and type of flux used in the sulfur melting method are not fixed, and there is no clear range. At present, the rare earth sulfur oxides prepared by the sulfur melting method have large particles and require ball milling, which greatly reduces the luminescent performance, and the size distribution of the particles needs to be further improved. Therefore, it is very necessary to optimize the process of preparing rare earth sulfur oxides by sulfur melting method and improve the particle properties of rare earth sulfur oxides.
发明内容Contents of the invention
本发明要解决的技术问题是克服上述缺陷,通过碱金属氯化物AMCl辅助的硫熔法制备出化学式为RE2O2S的稀土硫氧化物。The technical problem to be solved in the present invention is to overcome the above-mentioned defects, and prepare rare earth sulfur oxides with the chemical formula RE 2 O 2 S through the sulfur melting method assisted by alkali metal chloride AMCl.
为解决上述问题,本发明采用如下技术方案是:In order to solve the above problems, the present invention adopts the following technical solutions:
一种用碱金属氯化物制备稀土硫氧化物的工艺方法,其特征在于,所述碱金属氯化物AMCl中AM为碱金属元素Li、Na或K中的一种;所述稀土硫氧化物化学式为RE2O2S中RE为稀土元素Y、La、Gd或Sm中的一种;所述的化学式为RE2O2S的稀土硫氧化物由硫熔法制备,其制备步骤如下:A process for preparing rare earth sulfur oxides with alkali metal chlorides, characterized in that AM is one of the alkali metal elements Li, Na or K in the alkali metal chlorides AMCl; the chemical formula of the rare earth sulfur oxides In RE 2 O 2 S, RE is one of the rare earth elements Y, La, Gd or Sm; the rare earth sulfur oxide whose chemical formula is RE 2 O 2 S is prepared by sulfur melting method, and the preparation steps are as follows:
①按化学计量比称取所需物料RE2O2S(其中RE为稀土元素Y、La、Gd或Sm中的一种)、Na2CO3、升华硫和碱金属氯化物AMCl(其中AM为碱金属元素Li、Na或K中的一种),将称好的物料混合均匀;① Weigh the required materials RE 2 O 2 S (where RE is one of the rare earth elements Y, La, Gd or Sm), Na 2 CO 3 , sublimed sulfur and alkali metal chloride AMCl (where AM It is one of the alkali metal elements Li, Na or K), and the weighed materials are mixed uniformly;
②将混合均匀的物料装入内外均带盖的套坩埚中,在两坩埚的间隙填充耐高温粉末并压实;②Put the uniformly mixed material into a crucible with a cover inside and outside, fill the gap between the two crucibles with high-temperature resistant powder and compact it;
③将装有混合料的坩埚梯度升温至1100~1250℃,烧结3h~5h,然后随炉降温至室温;③Gradiently raise the temperature of the crucible containing the mixture to 1100-1250°C, sinter for 3h-5h, and then cool down to room temperature with the furnace;
④烧结后的产物用热水洗涤并搅拌,抽滤;④ The sintered product is washed with hot water and stirred, and suction filtered;
⑤将洗涤后的产物放入恒温鼓风干燥箱中烘干,即可得到稀土硫氧化物。⑤Put the washed product into a constant temperature blast drying oven to dry to obtain the rare earth sulfur oxide.
所述步骤①中mol(Na2CO3):mol(RE2O3)=1.5~2,mol(升华硫):mol(RE2O3)=3.5~4.5,mol(AMCl):mol(RE2O3)=0.25~1。In the step ①, mol(Na 2 CO 3 ): mol(RE 2 O 3 )=1.5~2, mol(sublimed sulfur): mol(RE 2 O 3 )=3.5~4.5, mol(AMCl):mol( RE 2 O 3 )=0.25~1.
所述步骤③中梯度升温制度是以升温速率2~3℃/min升温到300~400℃,并保温1h~2h,然后以升温速率3~5℃/min升温到1100~1250℃,并保温3h~5h。The gradient heating system in the step ③ is to raise the temperature to 300-400°C at a heating rate of 2-3°C/min, and keep it warm for 1h-2h, then raise the temperature to 1100-1250°C at a heating rate of 3-5°C/min, and keep it warm 3h~5h.
本发明稀土硫氧化物是以RE2O3(其中RE为稀土元素Y、La、Gd或Sm中的一种)、Na2CO3、升华硫和碱金属氯化物AMCl(其中AM为碱金属元素Li、Na或K中的一种)为原料,采用硫熔法制备,制备合成方法简单,易操作。The rare earth sulfur oxide of the present invention is based on RE 2 O 3 (where RE is one of the rare earth elements Y, La, Gd or Sm), Na 2 CO 3 , sublimed sulfur and alkali metal chloride AMCl (wherein AM is alkali metal One of the elements Li, Na or K) is used as a raw material, and is prepared by a sulfur melting method, and the preparation and synthesis method is simple and easy to operate.
本发明合成的稀土硫氧化物La2O2S、Y2O2S和Gd2O2S作为发光材料的基质材料,通过掺杂Eu3+、Tb3+或Ce3+等发光离子在紫外和真空紫外激发下具有良好的发光性能,而Sm2O2S作为光学吸收材料,对1.06μm和1.54μm激光具有良好的光吸收特性,其通过对碱金属氯化物种类和用量的选择,采用硫熔法制备出颗粒分布窄的稀土硫氧化物,从而可以用于发光材料和光吸收材料等领域。另外,本发明开发了一种碱金属氯化物的新用途,减小了稀土硫氧化物的颗粒分布范围,使得产物不需要球磨,降低了生产成本。The rare earth sulfur oxides La 2 O 2 S, Y 2 O 2 S and Gd 2 O 2 S synthesized by the present invention are used as the host material of the luminescent material, and the luminescent ions such as Eu 3+ , Tb 3+ or Ce 3+ are doped in the It has good luminescent performance under ultraviolet and vacuum ultraviolet excitation, and Sm 2 O 2 S, as an optical absorption material, has good light absorption characteristics for 1.06 μm and 1.54 μm lasers. Through the selection of the type and amount of alkali metal chloride, The rare earth sulfur oxide with narrow particle distribution is prepared by adopting the sulfur melting method, so that it can be used in the fields of light-emitting materials and light-absorbing materials. In addition, the invention develops a new use of alkali metal chloride, which reduces the particle distribution range of rare earth sulfur oxides, makes the product unnecessary for ball milling, and reduces production costs.
具体实施方式Detailed ways
下面结合具体实施例对本发明作进一步的说明。The present invention will be further described below in conjunction with specific examples.
本发明用碱金属氯化物辅助的硫熔法合成化学式为RE2O2S(其中RE为稀土元素Y、La、Gd或Sm中的一种)的稀土硫氧化物的4个具体实施例如表1所示:The present invention uses alkali metal chloride-assisted sulfur melting method to synthesize chemical formula RE 2 O 2 S (wherein RE is a kind of in rare earth element Y, La, Gd or Sm) 4 specific examples of rare earth sulfur oxides are shown in the table 1 shows:
表1Table 1
实施例1#:Embodiment 1 # :
原料组成如表1中1#所示,具体制备方法包括下列步骤:Raw material composition is as shown in 1 # in table 1, and concrete preparation method comprises the following steps:
①按重量称取18.672g Y2O3、13.146g Na2CO3(mol(Na2CO3):mol(Y2O3)=1.5)、9.280g升华硫(mol(升华硫):mol(Y2O3)=3.5)和0.876gLiCl(mol(LiCl):mol(Y2O3)=0.25),将称好的物料混合均匀;①Weigh 18.672g Y 2 O 3 , 13.146g Na 2 CO 3 (mol(Na 2 CO 3 ):mol(Y 2 O 3 )=1.5), 9.280g sublimated sulfur (mol(sublimed sulfur):mol (Y 2 O 3 )=3.5) and 0.876gLiCl (mol(LiCl):mol(Y 2 O 3 )=0.25), mix the weighed materials evenly;
②将混合均匀的物料装入内外均带盖的套坩埚中,在两坩埚的间隙填充耐高温粉末并压实;②Put the uniformly mixed material into a crucible with a cover inside and outside, fill the gap between the two crucibles with high-temperature resistant powder and compact it;
③将装有混合料的坩埚以升温速率2℃/min升温到300℃,并保温1h,然后以升温速率3℃/min升温至1100℃,烧结3h,然后随炉降温至室温;③Raise the temperature of the crucible containing the mixture to 300°C at a heating rate of 2°C/min, and keep it warm for 1h, then raise the temperature to 1100°C at a heating rate of 3°C/min, sinter for 3h, and then cool down to room temperature with the furnace;
④烧结后的产物用热水洗涤并搅拌,抽滤;④ The sintered product is washed with hot water and stirred, and suction filtered;
⑤将洗涤后的产物放入恒温鼓风干燥箱中烘干,得到稀土硫氧化物。⑤Put the washed product into a constant temperature blast drying oven to dry to obtain rare earth sulfur oxides.
对该稀土硫氧化物的测试结果如下:The test results of this rare earth sulfur oxide are as follows:
将过程⑤中烘干后的粉料用X射线衍射仪(XRD,D/Max2500)进行相组成分析,结果显示主要衍射峰的位置都与六方Y2O2S相对应,并且没有其他物质相的峰存在;用扫描电子显微镜(SEM,JEOL-6310)进行颗粒形貌分析,并采用软件进行颗粒尺寸统计,结果显示颗粒分布均匀,平均颗粒尺寸为3μm。Analyze the phase composition of the dried powder in process ⑤ with an X-ray diffractometer (XRD, D/Max2500). The results show that the positions of the main diffraction peaks correspond to hexagonal Y 2 O 2 S, and there is no other substance phase. The peak exists; the scanning electron microscope (SEM, JEOL-6310) is used to analyze the particle morphology, and the software is used for particle size statistics. The results show that the particle distribution is uniform, and the average particle size is 3 μm.
实施例2#:Embodiment 2 # :
①按重量称取19.060g La2O3、10.541g Na2CO3(mol(Na2CO3):mol(La2O3)=1.7)、7.034g升华硫(mol(升华硫):mol(La2O3)=3.75)和1.709gNaCl(mol(NaCl):mol(La2O3)=0.5),将称好的物料混合均匀;①Weigh 19.060g La 2 O 3 , 10.541g Na 2 CO 3 (mol(Na 2 CO 3 ):mol(La 2 O 3 )=1.7), 7.034g sublimated sulfur (mol(sublimed sulfur):mol (La 2 O 3 )=3.75) and 1.709gNaCl (mol(NaCl):mol(La 2 O 3 )=0.5), mix the weighed materials evenly;
②将混合均匀的物料装入内外均带盖的套坩埚中,在两坩埚的间隙填充耐高温粉末并压实;②Put the uniformly mixed material into a crucible with a cover inside and outside, fill the gap between the two crucibles with high-temperature resistant powder and compact it;
③将装有混合料的坩埚以升温速率2.5℃/min升温到330℃,并保温1.5h,然后以升温速率3.5℃/min升温至1150℃,烧结4h,然后随炉降温至室温;③Raise the temperature of the crucible containing the mixture to 330°C at a heating rate of 2.5°C/min, and keep it warm for 1.5h, then raise the temperature to 1150°C at a heating rate of 3.5°C/min, sinter for 4h, and then cool down to room temperature with the furnace;
④烧结后的产物用热水洗涤并搅拌,抽滤;④ The sintered product is washed with hot water and stirred, and suction filtered;
⑤将洗涤后的产物放入恒温鼓风干燥箱中烘干,得到稀土硫氧化物。⑤Put the washed product into a constant temperature blast drying oven to dry to obtain rare earth sulfur oxides.
对该稀土硫氧化物的测试结果如下:The test results of this rare earth sulfur oxide are as follows:
将过程⑤中烘干后的粉料用X射线衍射仪(XRD,D/Max2500)进行相组成分析,结果显示主要衍射峰的位置都与六方La2O2S相对应,并且没有其他物质相的峰存在;用扫描电子显微镜(SEM,JEOL-6310)进行颗粒形貌分析,并采用软件进行颗粒尺寸统计,结果显示颗粒分布均匀,平均颗粒尺寸为2.3μm。Analyze the phase composition of the dried powder in process ⑤ with an X-ray diffractometer (XRD, D/Max2500). The results show that the positions of the main diffraction peaks correspond to hexagonal La 2 O 2 S, and there is no other substance phase. The peak exists; the scanning electron microscope (SEM, JEOL-6310) is used to analyze the particle morphology, and the software is used for particle size statistics. The results show that the particle distribution is uniform, and the average particle size is 2.3 μm.
实施例3#:Embodiment 3 # :
组成如表1中3#所示,具体制备方法包括下列步骤:Composition is as shown in 3 # in table 1, and concrete preparation method comprises the following steps:
①按重量称取19.151gGd2O3、10.639g Na2CO3(mol(Na2CO3):mol(Gd2O3)=1.9)、7.200g升华硫(mol(升华硫):mol(Gd2O3)=4.25)和2.954gKCl(mol(KCl):mol(Gd2O3)=0.75),将称好的物料混合均匀;①Weigh 19.151g Gd 2 O 3 , 10.639g Na 2 CO 3 (mol(Na 2 CO 3 ):mol(Gd 2 O 3 )=1.9), 7.200g sublimated sulfur (mol(sublimed sulfur):mol( Gd 2 O 3 )=4.25) and 2.954g KCl (mol(KCl):mol(Gd 2 O 3 )=0.75), mix the weighed materials evenly;
②将混合均匀的物料装入内外均带盖的套坩埚中,在两坩埚的间隙填充耐高温粉末并压实;②Put the uniformly mixed material into a crucible with a cover inside and outside, fill the gap between the two crucibles with high-temperature resistant powder and compact it;
③将装有混合料的坩埚以升温速率3℃/min升温到360℃,并保温2h,然后以升温速率4℃/min升温至1200℃,烧结5h,然后随炉降温至室温;③Raise the temperature of the crucible containing the mixture to 360°C at a heating rate of 3°C/min, and keep it warm for 2h, then raise the temperature to 1200°C at a heating rate of 4°C/min, sinter for 5h, and then cool down to room temperature with the furnace;
④烧结后的产物用热水洗涤并搅拌,抽滤;④ The sintered product is washed with hot water and stirred, and suction filtered;
⑤将洗涤后的产物放入恒温鼓风干燥箱中烘干,得到稀土硫氧化物。⑤Put the washed product into a constant temperature blast drying oven to dry to obtain rare earth sulfur oxides.
对该稀土硫氧化物的测试结果如下:The test results of this rare earth sulfur oxide are as follows:
将过程⑤中烘干后的粉料用X射线衍射仪(XRD,D/Max2500)进行相组成分析,结果显示主要衍射峰的位置都与六方Gd2O2S相对应,并且没有其他物质相的峰存在;用扫描电子显微镜(SEM,JEOL-6310)进行颗粒形貌分析,并采用软件进行颗粒尺寸统计,结果显示颗粒分布均匀,平均颗粒尺寸为1.8μm。Analyze the phase composition of the dried powder in process ⑤ with an X-ray diffractometer (XRD, D/Max2500). The results show that the positions of the main diffraction peaks correspond to hexagonal Gd 2 O 2 S, and there is no other substance phase The peak exists; the scanning electron microscope (SEM, JEOL-6310) is used to analyze the particle morphology, and the software is used for particle size statistics. The results show that the particle distribution is uniform, and the average particle size is 1.8 μm.
实施例4#:Embodiment 4 # :
组成如表1中4#所示,具体制备方法包括下列步骤:Composition is as shown in 4 # in table 1, and concrete preparation method comprises the following steps:
①按重量称取19.119gSm2O3、11.620g Na2CO3(mol(Na2CO3):mol(Sm2O3)=2)、7.910g升华硫(mol(升华硫):mol(Sm2O3)=4.5)和4.087gKCl(mol(KCl):mol(Sm2O3)=1),将称好的物料混合均匀;①Weigh 19.119g Sm 2 O 3 , 11.620g Na 2 CO 3 (mol(Na 2 CO 3 ):mol(Sm 2 O 3 )=2), 7.910g sublimated sulfur (mol(sublimed sulfur):mol( Sm 2 O 3 )=4.5) and 4.087g KCl (mol(KCl):mol(Sm 2 O 3 )=1), mix the weighed materials evenly;
②将混合均匀的物料装入内外均带盖的套坩埚中,在两坩埚的间隙填充耐高温粉末并压实;②Put the uniformly mixed material into a crucible with a cover inside and outside, fill the gap between the two crucibles with high-temperature resistant powder and compact it;
③将装有混合料的坩埚以升温速率2.5℃/min升温到400℃,并保温2h,然后以升温速率5℃/min升温至1250℃,烧结4h,然后随炉降温至室温;③Raise the temperature of the crucible containing the mixture to 400°C at a heating rate of 2.5°C/min, and keep it warm for 2h, then raise the temperature to 1250°C at a heating rate of 5°C/min, sinter for 4h, and then cool down to room temperature with the furnace;
④烧结后的产物用热水洗涤并搅拌,抽滤;④ The sintered product is washed with hot water and stirred, and suction filtered;
⑤将洗涤后的产物放入恒温鼓风干燥箱中烘干,得到稀土硫氧化物。⑤Put the washed product into a constant temperature blast drying oven to dry to obtain rare earth sulfur oxides.
对该稀土硫氧化物的测试结果如下:The test results of this rare earth sulfur oxide are as follows:
将过程⑤中烘干后的粉料用X射线衍射仪(XRD,D/Max2500)进行相组成分析,结果显示主要衍射峰的位置都与六方Sm2O2S相对应,并且没有其他物质相的峰存在;用扫描电子显微镜(SEM,JEOL-6310)进行颗粒形貌分析,并采用软件进行颗粒尺寸统计,结果显示颗粒分布均匀,平均颗粒尺寸为2.0μm。Analyze the phase composition of the dried powder in process ⑤ with an X-ray diffractometer (XRD, D/Max2500). The results show that the positions of the main diffraction peaks correspond to hexagonal Sm 2 O 2 S, and there is no other substance phase The peak exists; the scanning electron microscope (SEM, JEOL-6310) is used for particle morphology analysis, and the software is used for particle size statistics. The results show that the particle distribution is uniform, and the average particle size is 2.0 μm.
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明,对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The foregoing description of the disclosed embodiments enables those skilled in the art to implement or use the present invention, and various modifications to these embodiments will be apparent to those skilled in the art. The general terms defined herein The principles may be implemented in other embodiments without departing from the spirit or scope of the invention. Therefore, the present invention will not be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410504355.4A CN104310454B (en) | 2014-09-28 | 2014-09-28 | A kind of alkali metal chloride prepares the process of rare-earth oxide sulfate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410504355.4A CN104310454B (en) | 2014-09-28 | 2014-09-28 | A kind of alkali metal chloride prepares the process of rare-earth oxide sulfate |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104310454A true CN104310454A (en) | 2015-01-28 |
CN104310454B CN104310454B (en) | 2016-08-17 |
Family
ID=52365808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410504355.4A Active CN104310454B (en) | 2014-09-28 | 2014-09-28 | A kind of alkali metal chloride prepares the process of rare-earth oxide sulfate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104310454B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105129833A (en) * | 2015-07-13 | 2015-12-09 | 盐城工学院 | Method of preparing rare earth oxysulfide with carbon disulfide |
CN106929018A (en) * | 2017-03-13 | 2017-07-07 | 盐城工学院 | A kind of laser protective material and preparation method thereof |
CN110203960A (en) * | 2019-06-28 | 2019-09-06 | 南阳师范学院 | A kind of rare earth oxysulfide and preparation method thereof as lube oil additive |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1483789A (en) * | 2003-06-16 | 2004-03-24 | 华南师范大学 | Method for low-temperature solid-phase synthesis of rare earth sulfur oxide phosphor |
CN101486909A (en) * | 2009-02-16 | 2009-07-22 | 昆明理工大学 | Green phosphor and preparation thereof |
CN103045260A (en) * | 2011-10-17 | 2013-04-17 | 海洋王照明科技股份有限公司 | Holmium-doped yttrium oxysulfide up-conversion luminescent material as well as preparation method and application thereof |
CN103045262A (en) * | 2013-01-04 | 2013-04-17 | 太原理工大学 | White long-lasting luminescent material and synthetic method thereof |
-
2014
- 2014-09-28 CN CN201410504355.4A patent/CN104310454B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1483789A (en) * | 2003-06-16 | 2004-03-24 | 华南师范大学 | Method for low-temperature solid-phase synthesis of rare earth sulfur oxide phosphor |
CN101486909A (en) * | 2009-02-16 | 2009-07-22 | 昆明理工大学 | Green phosphor and preparation thereof |
CN103045260A (en) * | 2011-10-17 | 2013-04-17 | 海洋王照明科技股份有限公司 | Holmium-doped yttrium oxysulfide up-conversion luminescent material as well as preparation method and application thereof |
CN103045262A (en) * | 2013-01-04 | 2013-04-17 | 太原理工大学 | White long-lasting luminescent material and synthetic method thereof |
Non-Patent Citations (3)
Title |
---|
罗昔贤: ""Ln202S:Yb,Pr(Ln=Y、La)纳米材料的上转换发光研究"", 《功能材料》 * |
韩朋德等: ""La2O2S∶Yb,Er的制备及其上转换发光性能"", 《过程工程学报》 * |
黄秋平等: ""稀土硫氧化物发光材料的制备技术"", 《材料导报》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105129833A (en) * | 2015-07-13 | 2015-12-09 | 盐城工学院 | Method of preparing rare earth oxysulfide with carbon disulfide |
CN106929018A (en) * | 2017-03-13 | 2017-07-07 | 盐城工学院 | A kind of laser protective material and preparation method thereof |
CN106929018B (en) * | 2017-03-13 | 2019-08-13 | 盐城工学院 | A kind of laser protective material and preparation method thereof |
CN110203960A (en) * | 2019-06-28 | 2019-09-06 | 南阳师范学院 | A kind of rare earth oxysulfide and preparation method thereof as lube oil additive |
CN110203960B (en) * | 2019-06-28 | 2021-07-30 | 南阳师范学院 | A kind of rare earth oxysulfide as lubricating oil additive and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN104310454B (en) | 2016-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Synthesis and luminescence properties of Tb3+/Eu3+ co-doped GdAlO3 phosphors with enhanced red emission | |
CN105018090B (en) | A kind of enhanced rare-earth oxide sulfate up-conversion luminescent material of Mn and preparation method | |
CN104310454B (en) | A kind of alkali metal chloride prepares the process of rare-earth oxide sulfate | |
CN111019648A (en) | A kind of preparation method of molten salt method of oxo acid salt or nitrogen oxide phosphor | |
CN101870491B (en) | Co-precipitation method for preparing yttrium aluminum garnet nano powder in narrow pH range | |
CN106241853B (en) | A kind of preparation method of yittrium oxide nano material | |
CN105602564A (en) | Zn reinforced rare earth sulfur oxide up-conversion luminescent material and preparation method thereof | |
CN102286284A (en) | Method for synthesizing unidimensional red long-afterglow phosphor material | |
CN105112056B (en) | A kind of Er3+, Yb3+It is co-doped with NaYF4The preparation method of fluorescent material | |
CN101586029B (en) | Yttrium-gadolinium-europium borate red phosphors and preparation method thereof | |
CN106433641B (en) | A kind of method that low heat temperature solid state reaction prepares rear-earth-doped calcium stannate fluorescent material | |
CN104293351B (en) | A kind of Blue-green phosphor and preparation method thereof | |
CN112480917B (en) | Europium-doped zinc orthotitanate red fluorescent powder with hexagonal prism shape and preparation method thereof | |
CN104845615A (en) | A rare earth-doped β-phase Sr2SiO4 nanopowder and its preparation method | |
CN101255337B (en) | A kind of preparation method of the red phosphor powder that is used for LED or PDP display | |
CN103450892B (en) | A kind of method improving Eu ion characteristic glow peak intensity in zno-based matter | |
Han et al. | Upconversion White Light Output in (Y0. 9Gd0. 1) 2O2S Matrix Tri-Doped with Yb3+/Tm3+/Er3+ or Yb3+/Tm3+/Ho3+ | |
CN106634993B (en) | A cubic strontium niobate red phosphor and preparation method thereof | |
CN105131957B (en) | Polyacrylic acid modified bar-shaped single dispersing NaGdF4:Yb3+,Er3+Up-conversion phosphor | |
CN107697936B (en) | A kind of synthetic method improving γ phase nano aluminium oxide crystalline quality | |
CN104310422B (en) | Low-temperature preparation method of rare earth n-borate | |
CN103146388B (en) | Method for synthesizing one-dimensional red long afterglow material | |
CN103601168B (en) | A kind of two-step method prepares NaSrPO The method for powder | |
CN109943331B (en) | A kind of bismuth phosphate doped europium crystal and preparation method thereof | |
Jia et al. | A New Method for preparation and luminescence of YBO3: Eu3+ phosphor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20201211 Address after: 537100 Guigang (Taiwan) Industrial Park, qintang District, Guigang City, Guangxi Zhuang Autonomous Region Patentee after: Guangxi Hemei New Energy Vehicle Technology Co.,Ltd. Address before: 224000 the Yellow Sea Road No. 20, Pavilion Lake District, Yancheng City, Jiangsu Patentee before: YANCHENG INSTITUTE OF TECHNOLOGY |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220324 Address after: 226000 203c, building A45, sihaijiayuan, No. 1, Huanghai Second Road, Yangkou Town, Rudong County, Nantong City, Jiangsu Province Patentee after: Nantong jieshida New Material Co.,Ltd. Address before: 537100 Guigang (Taiwan) Industrial Park, qintang District, Guigang City, Guangxi Zhuang Autonomous Region Patentee before: Guangxi Hemei New Energy Vehicle Technology Co.,Ltd. |
|
TR01 | Transfer of patent right |