CN104113393A - Superposition coded modulation method based on subcarrier index modulation (SIM)-orthogonal frequency division multiplexing (OFDM) - Google Patents
Superposition coded modulation method based on subcarrier index modulation (SIM)-orthogonal frequency division multiplexing (OFDM) Download PDFInfo
- Publication number
- CN104113393A CN104113393A CN201410351516.0A CN201410351516A CN104113393A CN 104113393 A CN104113393 A CN 104113393A CN 201410351516 A CN201410351516 A CN 201410351516A CN 104113393 A CN104113393 A CN 104113393A
- Authority
- CN
- China
- Prior art keywords
- bit
- bits
- data
- sim
- scm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Abstract
Description
技术领域technical field
本发明属于通信抗干扰技术领域,尤其涉及叠加编码调制技术(SuperpositionCoded Modulation)通信系统,子载波索引调制(Subcarrier Index Modulation,SIM)及其相关时域检测技术。The invention belongs to the technical field of communication anti-jamming, and in particular relates to a superposition coded modulation (Superposition Coded Modulation) communication system, a subcarrier index modulation (Subcarrier Index Modulation, SIM) and related time domain detection technology.
背景技术Background technique
在噪声信道中,编码调制可以高效的可靠传输,如早期的格状编码调制(TCM)和多级编码调制,在与二进制编码多进制信号相结合的时候可以得到较好的性能增益。而比特交织编码调制(BICM)更是能用相对简单的方法获得更好的性能。而叠加编码调制技术(SCM)可以被看成BICM的一种特殊情况。BICM系统的检测复杂度随传输比特数随指数倍增加,而SCM的复杂度是随着层数的增加而现行增加,且多层的SCM的性能明显优与BICM。In noisy channels, coded modulation can be efficiently and reliably transmitted, such as early trellis coded modulation (TCM) and multilevel coded modulation, which can get better performance gains when combined with binary coded multi-ary signals. And bit-interleaved coded modulation (BICM) can obtain better performance with a relatively simple method. The Superposition Coded Modulation (SCM) can be regarded as a special case of BICM. The detection complexity of BICM system increases exponentially with the number of transmitted bits, while the complexity of SCM increases with the increase of the number of layers, and the performance of multi-layer SCM is obviously better than that of BICM.
近来,基于子载波索引调制(Subcarrier Index Modulation,SIM)的OFDM系统被提出作为新的多载波通信方式。SIM方法通过索引比特来选择不同载波传输数据,使得SIM OFDM比传统OFDM具有更好的性能。但是原始SIM方案可能造成错误比特传播而引发错误集中出现,且在接收端检测时很难确定一个合适的门限进行解调。针对上述问题,目前已经有研究对SIM OFDM方法做出改进,并提出了一种简单的检测方法。Recently, an OFDM system based on Subcarrier Index Modulation (SIM) has been proposed as a new multi-carrier communication method. The SIM method uses index bits to select different carriers to transmit data, which makes SIM OFDM have better performance than traditional OFDM. However, the original SIM scheme may cause error bit propagation to cause error concentration, and it is difficult to determine a suitable threshold for demodulation when the receiving end detects. In response to the above problems, some researches have improved the SIM OFDM method and proposed a simple detection method.
在SCM当中,叠加的层数越多,每一层分配的功率越低、层与层之间的干扰也越严重,接收端也越不容易区分出各层信号,如果区分不开各层信息,就不能分集合并,因此性能随着叠加层数的增加而提升的越来越不明显。In SCM, the more layers are superimposed, the lower the power allocated to each layer, the more serious the interference between layers, and the more difficult it is for the receiving end to distinguish the signals of each layer. If the information of each layer cannot be distinguished , it is impossible to divide and combine, so the performance is less and less obvious as the number of stacked layers increases.
发明内容Contents of the invention
本发明借鉴SIM-OFDM的思想和空间调制SM的思想,将一串比特数据的一部分用于传输,另一部分用作索引比特,并且分别进行编码。在OFDM系统中传输的时候,根据索引比特编码后的比特数据,选择特定的子载波来传输数据。在接收端采用最大似然的方法,求出索引比特的软信息,进而对索引比特进行译码。The present invention learns from the idea of SIM-OFDM and the idea of spatial modulation SM, uses a part of a string of bit data for transmission, and the other part as index bits, and encodes them respectively. During transmission in the OFDM system, a specific subcarrier is selected to transmit data according to bit data coded by index bits. The maximum likelihood method is adopted at the receiving end to obtain the soft information of the index bits, and then decode the index bits.
一种基于SIM-OFDM的叠加编码调制方法,具体如下:A kind of superposition coding modulation method based on SIM-OFDM, specifically as follows:
S1、由数字化信源产生M1+M2×L位信息比特,经过一个串并转换器,前M1位作为索引比特,后M2×L位作为数据比特,将数据比特送入另一个串并转换器;S1. Generate M 1 +M 2 ×L information bits from a digital source, and pass through a serial-to-parallel converter. The first M 1 bits are used as index bits, and the last M 2 ×L bits are used as data bits, and the data bits are sent to another Serial-to-parallel converter;
S2、索引比特编码和交织:将S1所述M1位比特进行编码,对编码完成后的索引比特进行交织,得到索引数据{uj},其中,编码方式为Turbo码,编码码率为R,j=1,2,…,M1/R;S2. Index bit encoding and interleaving: encode the M 1 bits described in S1, and interleave the encoded index bits to obtain index data {u j }, wherein the encoding method is Turbo code, and the encoding rate is R , j=1,2,...,M 1 /R;
S3、进行SCM调制:S1所述M2×L位比特经过一个串并转换器后,将数据分在L层上传输,第l层的数据为经过扩频长度为S的扩频器,交织,BPSK调制,得到各层分别经过加权值{ω(l),ω(2),…,ω(L)}进行加权,将加权后的数据进行叠加,得到送入SIM调制器,等待发送,其中,m=1,2,…,M2,j=1,2,…,M2×S;S3, perform SCM modulation: after the M 2 ×L bits described in S1 pass through a serial-to-parallel converter, the data is divided into L layers for transmission, and the data of the first layer is After a spreader with a spreading length of S, interleaving, and BPSK modulation, we get Each layer is weighted by the weighted value {ω (l) ,ω (2) ,…,ω (L) }, and the weighted data are superimposed to obtain Send to the SIM modulator, waiting to be sent, where m=1,2,...,M 2 , j=1,2,...,M 2 ×S;
S4、进行SIM调制:对S3得到的采用子载波2选1的方式进行SIM调制,即S3所得M2×S位数据通过M2×S×2个子载波来传输;S4, carry out SIM modulation: obtain for S3 SIM modulation is performed by selecting 1 from 2 subcarriers, that is, the M 2 ×S bit data obtained by S3 is transmitted through M 2 ×S×2 subcarriers;
S5、将S4得到的M2×S×2位数据进行IFFT变换到时域对所述加循环前缀后,过信道加噪声,进行FFT变换到频域,去掉循环前缀得到其中,N=2×M2×S,K代表实际有数据的子载波数,是对应子载波的信道参数值,所述是未知的,需要通过ML的方法来求得,表示第j时刻第l层的比特,nj为0均值,方差为δ2=N0/2的高斯噪声;S5. Perform IFFT transformation on the M 2 ×S×2-bit data obtained in S4 to the time domain to the said After adding the cyclic prefix, add noise through the channel, perform FFT transformation to the frequency domain, and remove the cyclic prefix to obtain Among them, N=2×M 2 ×S, K represents the number of subcarriers actually having data, is the channel parameter value corresponding to the subcarrier, the is unknown and needs to be obtained by ML method, Represents the bits of layer l at the jth moment, n j is Gaussian noise with zero mean and variance of δ 2 =N 0 /2;
S6、ML准则检测索引比特得到信道参数,具体如下:S6. The ML criterion detects the index bit to obtain the channel parameter, specifically as follows:
S61、用和表示第j个比特为1和为0的时候,采用ML的方法,算出索引比特的似然比信息
S62、根据S61所述L(uj)得到的值,若L(uj)≥0,则所述是第2j个子载波上的信道参数值,若L(uj)<0,则所述是第2j-1个子载波上的信道参数值;S62, obtain according to the L(u j ) described in S61 value, if L(u j )≥0, then the is the channel parameter value on the 2jth subcarrier, if L(u j )<0, then the is the channel parameter value on the 2j-1th subcarrier;
S63、根据S62所述,得到信道参数H={hj},其中,j=M2×S;S63. According to S62, obtain the channel parameter H={h j }, where j=M 2 ×S;
S7、将S6得到的信道参数信息H送入SCM的检测译码,将S61所述索引比特的似然比信息L(uj)解交织后送入译码器译码,译码完成以后,得到检测完成的索引比特数据,其中,译码方式对应于发送端的编码器;S7. Send the channel parameter information H obtained in S6 to the detection and decoding of the SCM, deinterleave the likelihood ratio information L(u j ) of the index bits described in S61 and send it to the decoder for decoding. After the decoding is completed, Obtain the detected index bit data, wherein the decoding method corresponds to the encoder at the sending end;
S8、SCM检测,具体如下:S8, SCM detection, specifically as follows:
S81、在GA模块中,采用高斯近似检测,加权系数为W={w(1),w(2),…,w(l)},第j时刻的接收信息为
S82、将接收信息送入GA模块,针对S3所述可以得到
S83、初始化,得到接收信号rj的均值和方差;S83, initialization, Get the mean and variance of the received signal r j ;
S84、求得的均值
S85、根据S84所述求得第j时刻传送的第l个比特的对数似然比为
S86、根据S85求得L层所有用户的传送数据对应的似然比信息L(c);S86. According to S85, obtain the likelihood ratio information L(c) corresponding to the transmitted data of all users in the L layer;
S9、在SCM中的每一层,根据S86所述L(c)进行解交织得到L(a),用表示第l层的第i个比特,将所述送入解扩频模块进行解扩频,得到第l层的第1个比特的对数似然比其中,S为发射机中的扩频长度,为的扩频比特;S9, at each layer in the SCM, perform deinterleaving according to L(c) described in S86 to obtain L(a), use Indicates the i-th bit of layer l, the Send it to the despreading module for despreading to obtain the log likelihood ratio of the first bit of the l layer where S is the spreading length in the transmitter, is the spreading bit;
S10、得到S9所述的解交织后的比特外信息
S11、将S10所述比特外信息经过交织,得到将所述再次送入GA模块,对的均值和方差进行更新:
S12、完成L层所有数据的均值和方差的更新,将更新后的发送数据的均值和方差代入S8-S9,按照设置的迭代次数CH进行迭代,根据迭代进行到第CH次时得到的可以求得其中,表示第k层第m个比特的估计;S12. Complete the update of the mean value and variance of all data in the L layer, substitute the mean value and variance of the updated sent data into S8-S9, iterate according to the set number of iterations CH, and obtain the value obtained when the iteration reaches the CHth time available in, Indicates the estimate of the mth bit of the kth layer;
S13、将S12所述和S7所述检测完成的索引比特数据送入串并转换器,得到最终输出比特。S13, the S12 said The index bit data detected in step S7 is sent to the serial-to-parallel converter to obtain the final output bit.
进一步地,S83所述初始化在第一次迭代时候进行。Further, the initialization in S83 is performed during the first iteration.
进一步地,S12所述迭代次数CH≥5。Further, in S12, the number of iterations CH≥5.
本发明的有益效果是:The beneficial effects of the present invention are:
本发明提供了一种基于SIM-OFDM的SCM技术,该技术以SCM技术为基础,结合SIM的方法,一部分数据进行SIM调制做索引,一部分用做SCM传输,只要在索引的检测方面采用合适的方法,得到较高的性能,那么整个方法的性能跟之前的SCM相比,不但由于SCM的叠加层数变少,复杂度降低,还可以在一定程度上保持甚至提高误码率性能。同时,用SCM调制代替QAM调制,在相同的传输效率下,也能使得性能得到提高。并且采用SIM-OFDM的方法,可以使得其对抗ICI的效果更好,并且当改变IFFT有效子载波个数的时候,频谱效率也可以灵活调节。The present invention provides a SIM-OFDM-based SCM technology. The technology is based on the SCM technology and combined with the method of SIM. Part of the data is used for SIM modulation as an index, and part of the data is used for SCM transmission. Compared with the previous SCM, the performance of the whole method can not only reduce the number of superimposed layers of SCM and reduce the complexity, but also maintain or even improve the bit error rate performance to a certain extent. At the same time, using SCM modulation instead of QAM modulation can also improve performance under the same transmission efficiency. And adopting the method of SIM-OFDM can make its anti-ICI effect better, and when changing the number of effective subcarriers of IFFT, the spectral efficiency can also be adjusted flexibly.
附图说明Description of drawings
图1是本发明所提出的发射机方案的流程图。Fig. 1 is a flowchart of the transmitter scheme proposed by the present invention.
图2是本发明提出的接收检测流程图。Fig. 2 is a flow chart of reception detection proposed by the present invention.
具体实施方式Detailed ways
本发明是将叠加编码调制与SIM-OFDM的结合,使SCM的发送端可以按照一定的规则,在每个时隙可以选取一定的子载波来发送数据,使得接收端通过一定的方法对索引比特进行译码,找出有效的子载波,找出对应的信道参数值。因此在SCM的接收端,只需要按照高斯近似的方法来做检测。只要对索引比特的译码采用合适的方法,可以使得SCM与SIM-OFDM结合相比其他调制方式与SIM-OFDM的结合,可以获得更好的性能增益。具体如下:The present invention combines superposition coding modulation with SIM-OFDM, so that the sending end of the SCM can select a certain subcarrier to send data in each time slot according to certain rules, so that the receiving end can use a certain method to compare the index bits Decoding is performed to find effective subcarriers and corresponding channel parameter values. Therefore, at the receiving end of the SCM, only the Gaussian approximation method needs to be used for detection. As long as an appropriate method is adopted for decoding the index bits, the combination of SCM and SIM-OFDM can obtain better performance gains than the combination of other modulation methods and SIM-OFDM. details as follows:
S1、由数字化信源产生M1+M2×L位信息比特,经过一个串并转换器,前M1位作为索引比特,后M2×L位作为数据比特,将数据比特送入另一个串并转换器;S1. Generate M 1 +M 2 ×L information bits from a digital source, and pass through a serial-to-parallel converter. The first M 1 bits are used as index bits, and the last M 2 ×L bits are used as data bits, and the data bits are sent to another Serial-to-parallel converter;
S2、索引比特编码和交织:将S1所述M1位比特进行编码,对编码完成后的索引比特进行交织,得到索引数据{uj},其中,编码方式为Turbo码,编码码率为R,j=1,2,…,M1/R;S2. Index bit encoding and interleaving: encode the M 1 bits described in S1, and interleave the encoded index bits to obtain index data {u j }, wherein the encoding method is Turbo code, and the encoding rate is R , j=1,2,...,M 1 /R;
S3、进行SCM调制:S1所述M2×L位比特经过一个串并转换器后,将数据分在L层上传输,第l层的数据为经过扩频长度为S的扩频器,交织,BPSK调制,得到各层分别经过加权值{ω(l),ω(2),…,ω(L)}进行加权,将加权后的数据进行叠加,得到送入SIM调制器,等待发送,其中,m=1,2,…,M2,j=1,2,…,M2×S;S3, perform SCM modulation: after the M 2 ×L bits described in S1 pass through a serial-to-parallel converter, the data is divided into L layers for transmission, and the data of the first layer is After a spreader with a spreading length of S, interleaving, and BPSK modulation, we get Each layer is weighted by the weighted value {ω (l) ,ω (2) ,…,ω (L) }, and the weighted data are superimposed to obtain Send to the SIM modulator, waiting to be sent, where m=1,2,...,M 2 , j=1,2,...,M 2 ×S;
S4、进行SIM调制:对S3得到的采用子载波2选1的方式进行SIM调制,即S3所得M2×S位数据通过M2×S×2个子载波来传输。因此,得到的M2×S位数据通过2×M2×S个子载波来传输,每两个临近的子载波传输一个数据比特,具体哪一个传,则根据索引比特来定,比如,第一个索引比特u1为0,则x1放在第1个子载波传,若u1为1,则x1放在第2个子载波传;若第2个索引比特u2为1,则第2个数据放在第4个子载波,以此类推。由以上可知,所述索引比特{uj,j=1,2,…,M1/R},满足M1/R=M2×S。S4, carry out SIM modulation: obtain for S3 SIM modulation is performed by selecting 1 from 2 subcarriers, that is, the M 2 ×S bit data obtained in S3 is transmitted through M 2 ×S×2 subcarriers. Therefore, the obtained M 2 ×S bit data is transmitted through 2×M 2 ×S subcarriers, and every two adjacent subcarriers transmit one data bit, and which one to transmit depends on the index bit, for example, the first If the index bit u 1 is 0, then x 1 is transmitted on the first subcarrier; if u 1 is 1, then x 1 is transmitted on the second subcarrier; if the second index bit u 2 is 1, then the second data on the 4th subcarrier, and so on. It can be known from the above that the index bits {u j , j=1, 2, ..., M 1 /R} satisfy M 1 /R=M 2 ×S.
S5、将S4得到的M2×S×2位数据进行IFFT变换到时域对所述加循环前缀后,过信道加噪声,进行FFT变换到频域,去掉循环前缀得到其中,N=2×M2×S,K代表实际有数据的子载波数,是对应子载波的信道参数值,所述是未知的,需要通过ML的方法来求得,表示第j时刻第l层的比特,nj为0均值,方差为δ2=N0/2的高斯噪声。S5. Perform IFFT transformation on the M 2 ×S×2-bit data obtained in S4 to the time domain to the said After adding the cyclic prefix, add noise through the channel, perform FFT transformation to the frequency domain, and remove the cyclic prefix to obtain Among them, N=2×M 2 ×S, K represents the number of subcarriers actually having data, is the channel parameter value corresponding to the subcarrier, the is unknown and needs to be obtained by ML method, Represents the bits of layer l at the jth moment, n j is Gaussian noise with zero mean and variance of δ 2 =N 0 /2.
S6、ML准则检测索引比特得到信道参数,具体如下:S6. The ML criterion detects the index bit to obtain the channel parameter, specifically as follows:
S61、用和表示第j个比特为1和为0的时候,采用ML的方法,算出索引比特的似然比信息
S62、根据S61所述L(uj)得到的值,若L(uj)≥0,则所述是第2j个子载波上的信道参数值,若L(uj)<0,则所述是第2j-1个子载波上的信道参数值;S62, obtain according to the L(u j ) described in S61 value, if L(u j )≥0, then the is the channel parameter value on the 2jth subcarrier, if L(u j )<0, then the is the channel parameter value on the 2j-1th subcarrier;
S63、根据S62所述,得到信道参数H={hj},其中,j=M2×S;S63. According to S62, obtain the channel parameter H={h j }, where j=M 2 ×S;
S7、将S6得到的信道参数信息H送入SCM的检测译码,将S61所述索引比特的似然比信息L(uj)解交织后送入译码器译码,译码完成以后,得到检测完成的索引比特数据,其中,译码方式对应于发送端的编码器;S7. Send the channel parameter information H obtained in S6 to the detection and decoding of the SCM, deinterleave the likelihood ratio information L(u j ) of the index bits described in S61 and send it to the decoder for decoding. After the decoding is completed, Obtain the detected index bit data, wherein the decoding method corresponds to the encoder at the sending end;
S8、SCM检测,具体如下:S8, SCM detection, specifically as follows:
S81、在GA模块中,采用高斯近似检测,加权系数为W={w(1),w(2),…,w(l)},第j时刻的接收信息为
S82、将接受信息送入GA模块,针对S3所述可以得到
S83、初始化,得到接收信号rj的均值和方差;S83, initialization, Get the mean and variance of the received signal r j ;
S84、求得的均值
S85、根据S84所述求得第j时刻传送的第l个比特的对数似然比为
S86、根据S85求得L层所有用户的传送数据对应的似然比信息L(c);S86. According to S85, obtain the likelihood ratio information L(c) corresponding to the transmitted data of all users in the L layer;
S9、在SCM中的每一层,根据S86所述L(c)进行解交织得到L(a),用表示第l层的第i个比特,将所述送入解扩频模块模块进行解扩频,得到第l层的第1个比特的对数似然比其中,S为发射机中的扩频长度,为的扩频比特;S9, at each layer in the SCM, perform deinterleaving according to L(c) described in S86 to obtain L(a), use Indicates the i-th bit of layer l, the Send it to the despreading module module for despreading to obtain the log likelihood ratio of the first bit of the l layer where S is the spreading length in the transmitter, is the spreading bit;
S10、得到S9所述的解交织后的比特外信息
S11、将S10所述比特外信息经过交织,得到将所述再次送入GA模块,对的均值和方差进行更新:
S12、完成L层所有数据的均值和方差的更新,将更新后的发送数据的均值和方差代入S8-S9,按照设置的迭代次数CH进行迭代,根据迭代进行到第CH次时得到的可以求得其中,表示第k层第m个比特的估计,CH≥5。所述迭代次数越多,译码越准确,但复杂度也越高。S12. Complete the update of the mean value and variance of all data in the L layer, substitute the mean value and variance of the updated sent data into S8-S9, iterate according to the set number of iterations CH, and obtain the value obtained when the iteration reaches the CHth time available in, Indicates the estimate of the mth bit of the kth layer, CH≥5. The greater the number of iterations, the more accurate the decoding, but the higher the complexity.
S13、将S12所述和S7所述检测完成的索引比特数据送入串并转换器,得到最终输出比特。S13, the S12 said The index bit data detected in step S7 is sent to the serial-to-parallel converter to obtain the final output bit.
下面结合实施例和附图,详细说明本发明的技术方案。The technical solution of the present invention will be described in detail below in combination with the embodiments and the accompanying drawings.
假设SCM的层数为4,因此加权系数为4个,为W={w1,w2,w3,w4,},扩频长度为4。It is assumed that the number of layers of the SCM is 4, so there are 4 weighting coefficients, W={w 1 , w 2 , w 3 , w 4 ,}, and the spreading length is 4.
步骤1:假设发送的序列为:{1,1,0,1,0,0,1,1}。前面的比特1101则用来作为索引比特,索引比特经过编码交织,假设编码交织后的索引比特为{1,1,0,1,0,0,1,1,1,1,0,1,0,0,1,1}。Step 1: Suppose the sequence sent is: {1,1,0,1,0,0,1,1}. The previous bit 1101 is used as an index bit, and the index bit is coded and interleaved, assuming that the coded and interleaved index bit is {1,1,0,1,0,0,1,1,1,1,0,1, 0,0,1,1}.
步骤2:后面的0011,经过串并转换,映射到SCM的4层中去,第一层为0,第二层为0,第三层为1,第四层为1。通过BPSK调制以后,假设四层的扩频序列都一为{-1,1,-1,1},则第一层的数据则变为{1,-1,1,-1},第二层也为{1,-1,1,-1},第三四层都为{-1,1,-1,1}。假设交织完成以后1到4层,每一层的数据分别为{1,-1,-1,1},{1,1,-1,-1},{1,-1,1,-1},{-1,-1,1,1}:。则第1时刻发送的数据为x1=1·w1+1·w2+1·w3-1·w4。Step 2: After serial-to-parallel conversion, the following 0011 is mapped to the 4 layers of SCM, the first layer is 0, the second layer is 0, the third layer is 1, and the fourth layer is 1. After BPSK modulation, assuming that the spreading sequences of the four layers are all {-1,1,-1,1}, the data of the first layer becomes {1,-1,1,-1}, the second The layer is also {1,-1,1,-1}, and the third and fourth layers are {-1,1,-1,1}. Assuming that after interleaving is completed, layers 1 to 4, the data of each layer are {1,-1,-1,1}, {1,1,-1,-1}, {1,-1,1,-1 },{-1,-1,1,1}: . Then the data sent at the first moment is x 1 =1·w 1 +1·w 2 +1·w 3 −1·w 4 .
步骤3:根据前索引比特{1,1,0,1,0,0,1,1,1,1,0,1,0,0,1,1},按照对应的二选一的方式,由于第一个比特为1,则将x1放在第一个子载波上。以此类推,依照索引比特将数据放在相应的子载波上。然后过信道加噪声。Step 3: According to the previous index bits {1,1,0,1,0,0,1,1,1,1,0,1,0,0,1,1}, according to the corresponding one-of-two method, Since the first bit is 1, put x 1 on the first subcarrier. By analogy, the data is placed on the corresponding subcarriers according to the index bits. Then add noise through the channel.
步骤4:对索引比特软信息的检测,采用最大似然的方法,
步骤5:将H={hj,j=M2×S}带入SCM的比特检测当中。第一个时隙,接收到的得到的信号为:
在第一次叠代的时候,可以进行初始化:因此可以求得接收信号r1的均值和方差,以此求得的均值
通过以上的推导,就可以求得第一层的第1个比特的对数似然比为
以此方法可以算出的对数似然比,同理可求得第一个时隙,其他层的比特对数似然比。由于H={hj,j=M2×S},根据不同时隙的信道参数,但同理都可以求得每个时隙每一层的软信息。In this way it can be calculated The logarithmic likelihood ratio of the first time slot can be obtained in the same way, and the logarithmic likelihood ratio of the bits of other layers. Since H={h j ,j=M 2 ×S}, according to the channel parameters of different time slots, the soft information of each layer of each time slot can be obtained in the same way.
步骤6:然后将似然比信息进行解交织得到解扩频:其中,4为发射机中的扩频长度,为第l层对应的第i个的扩频比特。得到解交织后的比特的外信息
步骤7:将得到的外信息经过交织,即可得到再次送入GA模块,对的均值和方差进行更新:Step 7: After interleaving the obtained external information, you can get into the GA module again, for The mean and variance of are updated:
以此方法完成L层所有数据的均值和方差的更新。再将更新后的数据反馈给GA模块,重复进行步骤5和6。In this way, the update of the mean and variance of all data in the L layer is completed. Feedback the updated data to the GA module, and repeat steps 5 and 6.
步骤8:将{L(uj),j=1,2,…,M1/R},经过索引比特的解交织器以后,送入译码器译码,即可以得到所有初始索引的值。Step 8: Send {L(u j ),j=1,2,...,M 1 /R} to the decoder for decoding after passing through the deinterleaver of index bits, and then all initial index values can be obtained .
步骤9:将索引比特和SCM译码所得比特进行串并转换,就得到了原始的数据。Step 9: Perform serial-to-parallel conversion on the index bits and the bits obtained through SCM decoding to obtain the original data.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410351516.0A CN104113393A (en) | 2014-07-23 | 2014-07-23 | Superposition coded modulation method based on subcarrier index modulation (SIM)-orthogonal frequency division multiplexing (OFDM) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410351516.0A CN104113393A (en) | 2014-07-23 | 2014-07-23 | Superposition coded modulation method based on subcarrier index modulation (SIM)-orthogonal frequency division multiplexing (OFDM) |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104113393A true CN104113393A (en) | 2014-10-22 |
Family
ID=51710035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410351516.0A Pending CN104113393A (en) | 2014-07-23 | 2014-07-23 | Superposition coded modulation method based on subcarrier index modulation (SIM)-orthogonal frequency division multiplexing (OFDM) |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104113393A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104780130A (en) * | 2015-04-27 | 2015-07-15 | 电子科技大学 | Improved pilot-frequency-based SIM-OFDM channel estimation method |
CN104780129A (en) * | 2015-04-27 | 2015-07-15 | 电子科技大学 | Improved pilot-frequency-based SIM-OFDM channel estimation method |
CN105099974A (en) * | 2015-08-28 | 2015-11-25 | 中国人民解放军理工大学 | Low-complexity spatial modulation soft-decision detection method |
WO2016195331A1 (en) * | 2015-05-29 | 2016-12-08 | Samsung Electronics Co., Ltd. | Receiver and signal processing method thereof |
CN106254036A (en) * | 2016-08-18 | 2016-12-21 | 重庆邮电大学 | A kind of detection method being layered under supercomposed coding generalized spatial modulation system |
CN107277567A (en) * | 2014-12-24 | 2017-10-20 | 上海数字电视国家工程研究中心有限公司 | Signalling coding modulator approach and demodulation coding method based on supercomposed coding |
CN107707500A (en) * | 2017-08-30 | 2018-02-16 | 华南理工大学 | A kind of OFDM sequence number modulator approaches based on various modes |
CN108736948A (en) * | 2018-04-03 | 2018-11-02 | 重庆临菲电子科技有限公司 | A kind of space-frequency-code three-dimensional index modulation wireless communications method |
CN108900291A (en) * | 2018-06-28 | 2018-11-27 | 电子科技大学 | Data-pilot frequency design joint index modulator approach for SIM-OFDM system |
CN109412998A (en) * | 2018-12-25 | 2019-03-01 | 电子科技大学 | Position design method of pattern in pilot frequency design modulating system |
CN112671430A (en) * | 2020-12-23 | 2021-04-16 | 北京升哲科技有限公司 | Code division multiplexing spread spectrum index modulation and demodulation communication method, transmitter and receiver |
CN112713912A (en) * | 2020-12-23 | 2021-04-27 | 北京升哲科技有限公司 | Spread spectrum index modulation, demodulation communication method, transmitter, receiver and storage medium |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1547339A (en) * | 2003-12-05 | 2004-11-17 | 清华大学 | An Efficient Iterative Coding Multiuser Detection Method for OFDM Systems |
CN103647741A (en) * | 2013-12-19 | 2014-03-19 | 电子科技大学 | Subcarrier Index Modulation (SIM)-Orthogonal Frequency Division Multiplexing (OFDM) based superposition coded modulation method |
-
2014
- 2014-07-23 CN CN201410351516.0A patent/CN104113393A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1547339A (en) * | 2003-12-05 | 2004-11-17 | 清华大学 | An Efficient Iterative Coding Multiuser Detection Method for OFDM Systems |
CN103647741A (en) * | 2013-12-19 | 2014-03-19 | 电子科技大学 | Subcarrier Index Modulation (SIM)-Orthogonal Frequency Division Multiplexing (OFDM) based superposition coded modulation method |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107277567B (en) * | 2014-12-24 | 2020-02-14 | 上海数字电视国家工程研究中心有限公司 | Signaling coding modulation method and demodulation decoding method based on superposition coding |
CN107277567A (en) * | 2014-12-24 | 2017-10-20 | 上海数字电视国家工程研究中心有限公司 | Signalling coding modulator approach and demodulation coding method based on supercomposed coding |
CN104780129B (en) * | 2015-04-27 | 2017-10-17 | 电子科技大学 | A kind of improved SIM OFDM based on pilot tone channel estimation methods |
CN104780129A (en) * | 2015-04-27 | 2015-07-15 | 电子科技大学 | Improved pilot-frequency-based SIM-OFDM channel estimation method |
CN104780130A (en) * | 2015-04-27 | 2015-07-15 | 电子科技大学 | Improved pilot-frequency-based SIM-OFDM channel estimation method |
US10211949B2 (en) | 2015-05-29 | 2019-02-19 | Samsung Electronics Co., Ltd. | Receiver and signal processing method thereof |
CN107667494A (en) * | 2015-05-29 | 2018-02-06 | 三星电子株式会社 | Receiver and its signal processing method |
CN107667494B (en) * | 2015-05-29 | 2021-05-25 | 三星电子株式会社 | Receiver and signal processing method thereof |
WO2016195331A1 (en) * | 2015-05-29 | 2016-12-08 | Samsung Electronics Co., Ltd. | Receiver and signal processing method thereof |
CN105099974A (en) * | 2015-08-28 | 2015-11-25 | 中国人民解放军理工大学 | Low-complexity spatial modulation soft-decision detection method |
CN105099974B (en) * | 2015-08-28 | 2018-03-09 | 中国人民解放军理工大学 | A kind of spatial modulation soft decision detection method of low complex degree |
CN106254036A (en) * | 2016-08-18 | 2016-12-21 | 重庆邮电大学 | A kind of detection method being layered under supercomposed coding generalized spatial modulation system |
CN106254036B (en) * | 2016-08-18 | 2019-07-19 | 重庆邮电大学 | A detection method under layered superposition coding generalized spatial modulation system |
CN107707500A (en) * | 2017-08-30 | 2018-02-16 | 华南理工大学 | A kind of OFDM sequence number modulator approaches based on various modes |
CN107707500B (en) * | 2017-08-30 | 2021-05-14 | 华南理工大学 | An OFDM Sequence Number Modulation Method Based on Multiple Modes |
CN108736948A (en) * | 2018-04-03 | 2018-11-02 | 重庆临菲电子科技有限公司 | A kind of space-frequency-code three-dimensional index modulation wireless communications method |
CN108736948B (en) * | 2018-04-03 | 2021-05-28 | 重庆临菲电子科技有限公司 | Space-frequency-code three-dimensional index modulation wireless communication method |
CN108900291A (en) * | 2018-06-28 | 2018-11-27 | 电子科技大学 | Data-pilot frequency design joint index modulator approach for SIM-OFDM system |
CN109412998B (en) * | 2018-12-25 | 2020-12-18 | 电子科技大学 | Position Pattern Design Method in Pilot Pattern Modulation System |
CN109412998A (en) * | 2018-12-25 | 2019-03-01 | 电子科技大学 | Position design method of pattern in pilot frequency design modulating system |
CN112671430A (en) * | 2020-12-23 | 2021-04-16 | 北京升哲科技有限公司 | Code division multiplexing spread spectrum index modulation and demodulation communication method, transmitter and receiver |
CN112713912A (en) * | 2020-12-23 | 2021-04-27 | 北京升哲科技有限公司 | Spread spectrum index modulation, demodulation communication method, transmitter, receiver and storage medium |
CN112671430B (en) * | 2020-12-23 | 2022-05-03 | 北京升哲科技有限公司 | Code division multiplexing spread spectrum index modulation and demodulation communication method, transmitter and receiver |
CN112713912B (en) * | 2020-12-23 | 2022-06-17 | 北京升哲科技有限公司 | Spread spectrum index modulation and demodulation communication method, transmitter, receiver and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104113393A (en) | Superposition coded modulation method based on subcarrier index modulation (SIM)-orthogonal frequency division multiplexing (OFDM) | |
CN103647741A (en) | Subcarrier Index Modulation (SIM)-Orthogonal Frequency Division Multiplexing (OFDM) based superposition coded modulation method | |
CN109391369B (en) | Encoder input selector | |
EP3497799A1 (en) | Iterative multi-level equalization and decoding | |
CN106559144A (en) | OFDM MFSK underwater acoustic communication methods based on technology time reversal | |
JPWO2007029734A1 (en) | Data transmission system and data transmission method | |
KR100924526B1 (en) | Coded modulation for partially coherent systems | |
CN112290957B (en) | Orthogonal time-frequency expansion tail biting Turbo coding and decoding communication method | |
US8369449B2 (en) | Method and system of diversity transmission of data employing M-point QAM modulation | |
CN115276912B (en) | Decoding cascade iterative underwater acoustic communication system based on Gauss approximate improved polarization code | |
CN107017975A (en) | A kind of time-frequency diversity copy method based on OFDM | |
US20060098747A1 (en) | Coded OFDM system and method with improved PAPR reduction | |
CN101860514A (en) | An Unequal Error Protection Method Based on Adaptive Symbol Carrier Allocation | |
CN115208736B (en) | A high-order modulation constellation design method for hybrid automatic repeat request systems | |
CN109361637B (en) | Orthogonal spatial coding modulation system and method for high-dimensional signal transmission | |
JP5122459B2 (en) | Method and system for data diversity transmission | |
KR20060043799A (en) | Transceiver and method for implementing the spatiotemporal block encoding apparatus and method for performance improvement | |
CN105450259A (en) | Smart meter reading system multicarrier communication module adaptive modulation method | |
CN113067676A (en) | Novel bit mapping method in polar code high-order modulation system | |
Benkhouya et al. | Evaluation of the polar coded OFDM system | |
CN114500212A (en) | FPGA-based biting differential OFDM communication system and method | |
Mathews et al. | Performance of turbo coded FBMC based MIMO systems | |
CN108737029B (en) | A joint method of time-frequency interleaving preprocessing against narrowband interference and impulse noise in OFDM system | |
CN101383809A (en) | Space Frequency Modulation Method for Digital TV Terrestrial Broadcasting Transmitter Based on Embedded Training Sequence and BICM | |
Tan et al. | Subcarrier index modulated OFDM with soft decoder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20141022 |