[go: up one dir, main page]

CN104025351A - 用于固体氧化物电化学电池的改进的阳极/电解质结构以及制造所述结构的方法 - Google Patents

用于固体氧化物电化学电池的改进的阳极/电解质结构以及制造所述结构的方法 Download PDF

Info

Publication number
CN104025351A
CN104025351A CN201280052077.2A CN201280052077A CN104025351A CN 104025351 A CN104025351 A CN 104025351A CN 201280052077 A CN201280052077 A CN 201280052077A CN 104025351 A CN104025351 A CN 104025351A
Authority
CN
China
Prior art keywords
anode
electrolyte
skeleton
ceramic
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280052077.2A
Other languages
English (en)
Inventor
M.H.A.贾布巴
J.霍格
E.斯塔马特
N.博纳诺斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Danmarks Tekniske Universitet
Original Assignee
Danmarks Tekniske Universitet
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danmarks Tekniske Universitet filed Critical Danmarks Tekniske Universitet
Publication of CN104025351A publication Critical patent/CN104025351A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/069Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of at least one single element and at least one compound; consisting of two or more compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8846Impregnation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9058Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of noble metals or noble-metal based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

用于固体氧化物电化学电池的新型改进的阳极/电解质结构其是一种组件,包含(a)由选自铌掺杂钛酸锶、钒掺杂钛酸锶、钽掺杂钛酸锶及其混合物的电子导电钙钛矿型氧化物的骨架组成的阳极,(b)氧化钪和氧化钇稳定的氧化锆电解质,和(c)以夹层形式结合在所述阳极和所述电解质之间的界面中的金属和/或陶瓷电催化剂。该组件首先在给定的温度下然后在较低温度下在还原性气体混合物中烧结。这些热处理导致发生所述金属和/或陶瓷夹层在所述电解质/阳极骨架节点中的分布。通过以下步骤来制备所述结构:(a)将陶瓷夹层沉积到电解质的一侧上,(b)任选地在其上施加金属夹层,(c)重复步骤(a)和(b),(d)将选择的阳极骨架的层施加到具有施加的夹层的电解质上,(e)烧结该未加工的组件,和(f)将电催化剂前体渗透到烧结的组件中并热处理所述组件以将额外的电催化剂结合到所述阳极骨架中。

Description

用于固体氧化物电化学电池的改进的阳极/电解质结构以及制造所述结构的方法
技术领域
本发明涉及改进固体氧化物电化学电池中的燃料电极的性能的方法。更具体地,本发明涉及固体氧化物电化学电池的改进的阳极/电解质结构,并且进一步地,本发明涉及制造所述结构的方法。
背景技术
固体氧化物燃料电池(SOFC)是具有阳极(燃料电极)和被致密氧化物离子导电电解质隔开的阴极的电化学电池,所述电池在高温(800-1000℃)下工作。固体氧化物燃料电池中的阳极的功能是与燃料(其可以是氢气和烃)发生电化学反应,而阴极与空气或氧气反应而产生电流。SOFC的阳极包含催化活性的、导电(对于电子和氧化离子)的多孔结构,其被沉积在电解质上。传统的SOFC阳极包括金属催化剂和陶瓷材料的复合混合物,更具体地所述金属催化剂和陶瓷材料分别为镍和氧化钇稳定的氧化锆(YSZ)。
阳极(燃料电极)必须能够在高电化学活性和良好的氧化还原稳定性方面产生高性能以用于燃料电池,如SOFC。目前最先进的Ni-YSZ阳极在高操作温度(往往高于800℃)下提供适当的电化学活性,但它们不是氧化还原稳定的。由于Ni的还原和氧化而产生的Ni-YSZ阳极的任何体积变化将导致阳极材料的不适当的机械应力,其转而将损害燃料电池的总体性能。
近几年来,已经做了许多努力来改进SOFC阳极的功能。例如,出版的美国专利申请2009/0218311记述了制备燃料电池的电极/电解质界面中的具有分层结构的催化剂。与电解质(如YSZ)、催化剂层(如Ni或Pd)和多孔层一起使用了塑料或玻璃基材。然而,在该方法中催化剂保持其层状结构,并由此它不会被分布。
US 2010/0075194公开了具有低极化电阻的高性能、低成本阴极,其很好地结合到电解质。该出版物涉及离子导电层(掺杂氧化铈)后接混合的离子导电和电子导电层。同样,催化剂保留在层状结构中,并因此不会被分布。
US 2009/0148742涉及高性能多层电极以及(i.a.)提到将氧化铈基离子导电和电子导电层插在阳极和电解质之间的界面中以改进SOFC阳极的电化学性能。
在美国专利6.420.064中,描述了包含混合的电子导电(Pd)和离子导电(YSZ)功能层的复合阴极如何通过,例如,丝网印刷沉积在电解质上。然后将钴酸镧印刷在功能层上,其随后在SOFC的工作过程中被原位烧结。
US 2009/0011314涉及具有减小的电阻的SOFC,其包括插在电极层和电解质层之间的包含离子导电材料的界面层。所述离子导电材料可以(i.a.)为YSZ或GDC,优选通过原子层沉积(ALD)插入,并且可以存在催化金属,如Pt。
最后,属于本申请人的US 2009/0061284记述了(i.a.)铌掺杂钛酸锶可以被用作SOFC阳极并用Ni和掺杂氧化铈浸渍。在该例子中,没有改进电极/电解质的界面,但存在与本发明中相同的铌掺杂钛酸锶。
高性能SOFC阳极的最近发展已经集中在利用氧化还原稳定的电子导电钙钛矿型氧化物,如铌掺杂钛酸锶(STN)。尽管STN在阳极测试条件下是稳定的并且也与电解质相容,但其缺乏对于氢氧化的电化学催化活性,而且,离子导电性对于高效阳极性能是不够的。
沉积在电解质上的STN具有骨架多孔结构(以下称为“骨架”),其能够保持电催化剂。阳极的发展中的一个最近趋势为通过催化剂渗透某一相应的盐(如硝酸镍或氯化镍)将纳米结构的电催化剂引入到骨架中。所述电催化剂可以是金属、陶瓷材料,如钆掺杂氧化铈(CGO)或两者的混合物。此外,CGO在骨架中提供了离子导电性。
发明内容
本发明基于以下出人意料的发现,即,如果将薄金属层(如Ni、Pd及其组合)、陶瓷层(如CGO、YSZ及其组合)或金属和陶瓷层两者引入骨架/电极组件(BEA)的界面中,然后加热完成的组件至高温,可能使金属/陶瓷功能夹层分布在骨架中并进入BEA中,则显著改进了作为SOFC 阳极的STN骨架的性能。这种分布的功能夹层充当电化学活性电极,并且此外,电催化剂渗透到STN骨架中显著改进了阳极性能,如上所述。 
更具体地,本发明涉及用于固体氧化物电化学电池的新的改进的阳极/电解质结构,所述结构为一种组件,其包含(a)由选自铌掺杂钛酸锶、钒掺杂钛酸锶、钽掺杂钛酸锶及其混合物的电子导电钙钛矿氧化物的骨架组成的阳极,(b)氧化钪和氧化钇稳定的氧化锆电解质,和(c)以夹层形式结合在所述阳极和所述电解质之间的界面中的金属和/或陶瓷电催化剂。首先该组件在空气中在约1200℃的温度下进行烧结,然后该烧结的组件在单独的加热炉中在H2/N2中加热至约1000℃持续最多5小时。这些热处理导致所述金属和/或陶瓷夹层被分布在电解质/阳极骨架节点(junction)中。
此外,本发明涉及制备本发明的阳极/电解质结构的方法,所述方法包括步骤(a)将陶瓷夹层沉积到电解质的一侧上,(b)任选地在其上施加金属夹层,(c)重复步骤(a)和(b),(d)将选择的阳极骨架的层施加到具有施加的夹层的电解质上,(e)通过将该未加工的组件在空气中加热至约1200℃来烧结它,随后在H2/N2中加热所述烧结的组件至约1000℃持续最多5小时,和(f)将电催化剂前体渗透到烧结的组件中并在空气中在约350-650℃的温度下进一步热处理所述烧结的组件以将电催化剂结合到阳极骨架中。
将金属层、陶瓷层或两者的组合沉积在BEA界面中以使催化剂位于燃料的电化学反应要求的位置的想法构成了设计SOFC阳极的新方法。在改进的骨架上利用众所周知的溶液渗透技术也是新的,由此随着电催化剂的负载量增加阳极的性能出人意料地增强了。
使用传统的溶液渗透技术来将电催化剂结合到STN骨架中本身不会确保BEA界面被充分覆盖或涂覆。由此,即使在增加电催化剂的负载量之后,界面阻力的进一步降低也是不可能的。相反,通过本发明,电催化剂位于BEA界面或有利于改进的电化学反应的位置上。由此进一步降低了界面阻力。
金属基功能层(MFL)优选为Pd、但其它金属,如Ni、Pt和Ru,也是可能的。此外,也可以使用上述金属的二元合金,如Pd-Ni,或甚至三元合金,如Pd-Ni-Ru,而非单个金属。对于陶瓷基功能层(CFL),优选为钆掺杂氧化铈(CGO),但它也可以为,例如钐掺杂氧化铈。
使用本发明,可能避免已知的金属(如Ni)和陶瓷(如YSZ)掺混形成复合阳极。进一步地,补充了将电催化剂结合到钙钛矿基阳极中的溶液渗透技术。
本发明相对于现有技术提供了一些优点,首先使界面阻力与传统的阳极相比降低了几个数量级。本发明还提供了降低固体氧化物燃料电池的工作温度(<600℃)的适合方法。此外,根据本发明的方法,其中将薄金属或陶瓷薄膜层沉积在电解质表面上,使得在制备固体氧化物燃料电池时大大提高生产速率成为可能。
现在将通过以下具体的实施例进一步说明本发明。也参考附图1-6,其中
图1为根据本发明的方法的示意草图,
图2显示了具有在ScYSZ电解质上的MFL烧结的STN骨架的透射电子显微镜(TEM)图像,
图3显示了对于在STN/ScYSZ 界面中各种MFL 厚度于600℃在3%H2O/H2燃料中获得的阻抗谱,
图4显示了根据本发明于600℃在3%H2O/H2燃料中制备的一些阳极的性能。 
图5为具有和不具有MFL 的STN对称电池在相同的Pd-CGO电催化剂负载量下获得的阿利纽斯图,和
图6为具有和不具有CFL 的STN对称电池在不同的Pd-CGO电催化剂负载量下获得的阿利纽斯图。
实施例1
此实施例说明了在根据本发明的SOFC阳极的制备中涉及的方法步骤。此实施例由图1 支持。
使用一卷120 μm厚的ScYSZ(氧化钪和氧化钇稳定的氧化锆)作为电解质。骨架为铌掺杂钛酸锶(STN),放在所述电解质上以形成骨架/电解质组件(BEA)。
将功能层引入BEA,即骨架和电解质之间。该功能层可以为金属基功能层(MFL),例如20-200nm的层厚的Pd,或陶瓷基功能层(CFL),例如20-500 nm的层厚的钆掺杂氧化铈(CGO)。所述功能层也可以为金属基和陶瓷基层的组合。
实践中,首先将功能层施加到电解质带上,其是通过溅射(MFL)或旋涂(CFL)完成的。当使用组合的功能层时,首先用CGO旋涂然后用Pd溅射所述电解质带。在用于电化学电极特征的对称电池的情况下,在电解质的两侧上都这样做。
当电解质已经被提供了预期的功能层后,其被用STN油墨丝网印刷,产生任选地在电解质的两侧上的18-20μm厚的层。随后在空气中或在H2/N2气体混合物中加热所得到的“未加工的”组件(图 1,左部分)至1200℃的烧结温度持续4小时。通过该烧结处理,所述功能层的颗粒(P)被分布在骨架上(图 1,中间部分)。
作为最后的加工步骤,使电催化剂以前体溶液的形式渗透到该预烧结的骨架(图1,右部分)中。
实施例2
此实施例显示了一些位于STN和ScYSZ电解质的界面中的明显的Pd颗粒(图2,左上部分)和分布在STN 骨架上的小的Pd纳米颗粒(图 2,底部三部分)。使用能量色散谱(EDS)分析(图2,右上部分)证实了Pd纳米颗粒在STN骨架上的存在。
实施例3
此实施例显示了用如实施例1中所述制备的,但没有渗透的阳极获得的性能结果。作为参考,使用了不具有任何功能层的阳极。
在表1中总结了测试的阳极:
表1
选定的阳极的组成
阳极编号 骨架* 功能层
1 STN,还原
2 STN,还原 Pd (170 nm)
3 STN,还原 Pd (100 nm)
4 STN,还原 Pd (30 nm)
5 STN,还原 Pd (20 nm)
6 STN,还原 Pd (30 nm) + CGO
7 STN,空气 CGO
*)BEA的烧结条件为空气或还原(H2/N2)。
下面的表2中列出了获得的结果(气体条件:97% 的H2,3% 的H2O;温度:600℃)。
表2
选定的阳极的界面阻力
阳极编号 Rp (Ω·cm2)
1 (无功能层) 90
2 (Pd 170 nm) 54
3 (Pd 100 nm) 45
4 (Pd 30 nm) 33
5 (Pd 20 nm) 30
6 (Pd 30 nm) + CGO 24
7 (CGO) 16
不具有功能层的阳极(阳极编号1)清楚地显示了测试的阳极中最差的性能,即最高的界面阻力。阻抗谱显示在图3中。在光谱中显示的数字表示角频率。
实施例4
在此实施例中显示了用五个如实施例1所述制备的,即包括渗透的阳极获得的性能结果。
下面的表3中总结了测试的阳极。
表3
选定的阳极的组成
阳极编号 骨架 功能层 渗透物
8 STN,还原 Pd CGO
9 STN,还原 Pd + CGO
10 STN,还原 Pd + CGO Pd + CGO
11 STN,还原 Pd Pd + CGO
12 STN,还原 CGO Pd + CGO
在图4中说明了获得的结果(气体条件:97%的H2;3% 的H2O;温度:600℃)。
下面的表4为用根据本发明的阳极获得的一些有利的结果与不具有功能层的参考阳极对比的总结。在表中前三个阳极为参考阳极,而其余的为根据本发明的阳极。
表4
选定的阳极与参考阳极的界面阻力(气体条件:97%的H2;3% 的H2O;温度:600℃)
骨架* 功能层 渗透物 负载量(vol.%) Rp (Ω·cm2)
STN,空气 CGO 10 4.6
STN,还原 Pd和CGO 8.5 1
STN,空气 Ni和CGO 11.2 0.42
STN,还原 CGO Pd和CGO 0.8 0.25
STN,还原 CGO Pd和CGO 13.9 0.13
STN,还原 CGO Pd和CGO 21.1 0.09
STN,空气 CGO Ni和CGO 8.6 0.19
STN,空气 CGO CGO 12.8 2
STN,还原 Pd (20 nm) Pd和CGO 7.6 0.35
STN,还原 Pd (30 nm) Pd和CGO 12.2 0.15
STN,还原 Pd (100nm) Pd和CGO 5 0.5
STN,还原 Pd (170nm) Pd和CGO 4.2 0.5
STN,还原 Pd (30 nm)+CGO Pd和CGO 8.4 0.27
STN,还原 Pd (30 nm)+CGO Ni和CGO 11.5 0.23
*)空气和还原(H2/N2)为骨架/电解质组件(BEA)的烧结条件。
实施例5
在此实施例中显示的结果(图5)说明了含有相同负载量的Pd和CGO电催化剂的MFL改进的 STN骨架的性能提高。所述性能是在3%的H2O/H2燃料中测定的。 
实施例6
在图6中显示的此实施例说明了具有和不具有CFL的对称电也获得的结果。将结果与各种负载量的Pd和CGO电催化剂进行比较。结果发现,即使用小的负载量(0.8% 的Pd和CGO),性能也比不具有CFL的阳极好。对于更大负载量的电催化剂,性能大大改进。该性能是在3%的H2O/H2燃料中测定的。

Claims (10)

1.用于固体氧化物电化学电池的改进的阳极/电解质结构,所述结构为一种组件,其包含:
(a)由选自铌掺杂钛酸锶、钒掺杂钛酸锶、钽掺杂钛酸锶及其混合物的电子导电钙钛矿型氧化物的骨架组成的阳极,
(b)氧化钪和氧化钇稳定的氧化锆电解质,和
(c)以夹层的形式结合在所述阳极和所述电解质之间的界面中的金属和/或陶瓷电催化剂,
所述组件首先在空气中于约1200℃的温度下进行烧结,然后所述烧结的组件在单独的加热炉中在H2/N2中加热至约1000℃持续最多5小时,这些热处理导致所述金属和/或陶瓷夹层被分布在所述电解质/阳极骨架节点中。
2.根据权利要求1所述的阳极/电解质结构,其中所述电催化剂中的所述金属选自Ni、 Pd、 Pt、 Ru及其组合。
3.根据权利要求1或2所述的阳极/电解质结构,其中所述电催化剂中的所述陶瓷材料选自钆掺杂氧化铈、钇掺杂氧化铈,钐掺杂氧化铈和无掺杂氧化铈。
4.制备根据权利要求1-3中任一项所述的阳极/电解质结构的方法,所述方法包括以下步骤:
(a)将陶瓷夹层沉积到所述电解质的一侧上,
(b)任选地在其上施加金属夹层,
(c)重复步骤(a)和(b)
(d)将选择的阳极骨架的层施加到具有施加的夹层的电解质上,
(e)通过将该未加工的组件在空气中加热至约1200℃来烧结所述未加工的组件,随后在H2/N2中加热烧结的组件至约1000℃持续最多5小时,和
(f)将电催化剂前体渗透到所述烧结的组件中并在空气中于约350-650℃的温度进一步热处理所述烧结的组件以将电催化剂结合到阳极骨架中。
5.根据权利要求4所述的方法,其中所述电解质为具有约50-250 μm的厚度的带或具有约5-50 μm的厚度的负载型电解质。
6.根据权利要求5所述的方法,其中所述金属夹层选自以约20-200 nm 的厚度施加的Pd、Ni、 Pt、 Ru及其组合。
7.根据权利要求5所述的方法,其中所述任选地施加的陶瓷夹层由具有约20-500nm的厚度的钆掺杂氧化铈和无掺杂氧化铈组成。
8.根据权利要求7所述的方法,其中通过旋涂施加所述层。
9.根据权利要求1-3中任一项所述的阳极/电解质结构在固体氧化物燃料电池(SOFC)中的用途。
10.根据权利要求1-3中任一项所述的阳极/电解质结构在固体氧化物燃料电池(SOFC)中的用途,在该情况下其为阴极。
CN201280052077.2A 2011-10-24 2012-10-23 用于固体氧化物电化学电池的改进的阳极/电解质结构以及制造所述结构的方法 Pending CN104025351A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DKPA201100810 2011-10-24
DKPA201100810 2011-10-24
PCT/EP2012/070949 WO2013060669A1 (en) 2011-10-24 2012-10-23 A modified anode/electrolyte structure for a solid oxide electrochemical cell and a method for making said structure

Publications (1)

Publication Number Publication Date
CN104025351A true CN104025351A (zh) 2014-09-03

Family

ID=47046629

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280052077.2A Pending CN104025351A (zh) 2011-10-24 2012-10-23 用于固体氧化物电化学电池的改进的阳极/电解质结构以及制造所述结构的方法

Country Status (10)

Country Link
US (1) US20140287341A1 (zh)
EP (1) EP2771931A1 (zh)
JP (1) JP2014534576A (zh)
KR (1) KR20140096309A (zh)
CN (1) CN104025351A (zh)
AU (1) AU2012327276A1 (zh)
CA (1) CA2850780A1 (zh)
EA (1) EA201490857A1 (zh)
IN (1) IN2014CN03488A (zh)
WO (1) WO2013060669A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2814100A1 (en) 2013-06-12 2014-12-17 Topsøe Fuel Cell A/S Impregnation of an electrochemical cell cathode backbone
WO2015054065A1 (en) * 2013-10-08 2015-04-16 Phillips 66 Company Liquid phase modification of electrodes of solid oxide fuel cells
WO2015054024A1 (en) 2013-10-08 2015-04-16 Phillips 66 Company Gas phase modification of solid oxide fuel cells
WO2015054096A1 (en) 2013-10-08 2015-04-16 Phillips 66 Company Formation of solid oxide fuel cells by spraying
KR102196248B1 (ko) * 2019-08-20 2020-12-29 한국과학기술연구원 박막 전해질 고체 산화물 셀 연료극용 촉매 중간층 및 이의 형성방법
CN111834662B (zh) * 2020-08-31 2022-07-08 珠海冠宇电池股份有限公司 界面功能层及其制备方法和锂离子电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1747212A (zh) * 2005-10-11 2006-03-15 厦门大学 一种固体氧化物燃料电池电极/夹层/电解质结构
CN101383417A (zh) * 2007-08-31 2009-03-11 丹麦技术大学 基于二氧化铈和钛酸锶的电极
CN101383418A (zh) * 2007-08-31 2009-03-11 丹麦技术大学 基于二氧化铈和不锈钢的电极

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2912031B2 (ja) * 1991-01-31 1999-06-28 三洋電機株式会社 固体電解質燃料電池の製造方法
AU769575B2 (en) 1999-10-08 2004-01-29 Versa Power Systems Ltd. Composite electrodes for solid state electrochemical devices
WO2002058169A2 (en) * 2000-11-09 2002-07-25 Trustees Of The University Of Pennsylvania The use of sulfur-containing fuels for direct oxidation fuel cells
US20040018409A1 (en) * 2002-02-28 2004-01-29 Shiqiang Hui Solid oxide fuel cell components and method of manufacture thereof
UA83400C2 (uk) * 2003-12-02 2008-07-10 Нанодайнемікс, Інк. Твердооксидні паливні елементи з керметним електролітом та спосіб їх одержання
DE102006030393A1 (de) * 2006-07-01 2008-01-03 Forschungszentrum Jülich GmbH Keramische Werkstoffkombination für eine Anode für eine Hochtemperatur-Brennstoffzelle
US20090011314A1 (en) * 2007-07-05 2009-01-08 Cheng-Chieh Chao Electrode/electrolyte interfaces in solid oxide fuel cells
US8821968B2 (en) 2007-10-31 2014-09-02 The Board Of Trustees Of The Leland Stanford Junior University Process for making layer-structured catalysts at the electrode/electrolyte interface of a fuel cell
US8828618B2 (en) 2007-12-07 2014-09-09 Nextech Materials, Ltd. High performance multilayer electrodes for use in reducing gases
US9276267B2 (en) 2008-09-23 2016-03-01 Delphi Technologies, Inc. Low-temperature bonding of refractory ceramic layers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1747212A (zh) * 2005-10-11 2006-03-15 厦门大学 一种固体氧化物燃料电池电极/夹层/电解质结构
CN101383417A (zh) * 2007-08-31 2009-03-11 丹麦技术大学 基于二氧化铈和钛酸锶的电极
CN101383418A (zh) * 2007-08-31 2009-03-11 丹麦技术大学 基于二氧化铈和不锈钢的电极

Also Published As

Publication number Publication date
WO2013060669A1 (en) 2013-05-02
KR20140096309A (ko) 2014-08-05
IN2014CN03488A (zh) 2015-10-09
EP2771931A1 (en) 2014-09-03
AU2012327276A1 (en) 2014-05-15
US20140287341A1 (en) 2014-09-25
EA201490857A1 (ru) 2014-10-30
JP2014534576A (ja) 2014-12-18
CA2850780A1 (en) 2013-05-02

Similar Documents

Publication Publication Date Title
JP5366804B2 (ja) 高温型燃料電池用アノードのためのセラミック材料の組み合わせ
JP5192944B2 (ja) セリア及びステンレス鋼に基づく電極
JP5591526B2 (ja) 固体酸化物セル及び固体酸化物セルスタック
JP5167033B2 (ja) セリア及びチタン酸ストロンチウムに基づく電極
US20060194097A1 (en) Nano-structured metal-carbon composite for electrode catalyst of fuel cell and process for preparation thereof
Zhou et al. Performance and degradation of metal-supported solid oxide fuel cells with impregnated electrodes
US20060234855A1 (en) Preparation of solid oxide fuel cell electrodes by electrodeposition
CN104025352A (zh) 用于固体氧化物电化学电池的高性能燃料电极
Wang et al. Electrochemical performance and redox stability of solid oxide fuel cells supported on dual-layered anodes of Ni-YSZ cermet and Ni–Fe alloy
CA2516226A1 (en) Porous electrode, solid oxide fuel cell, and method of producing the same
JP2009110934A5 (zh)
JP2009110933A5 (zh)
Lee et al. Bimodally integrated anode functional layer for lower temperature solid oxide fuel cells
JP2012033418A (ja) 固体酸化物型燃料電池、及びその製造方法
CN104025351A (zh) 用于固体氧化物电化学电池的改进的阳极/电解质结构以及制造所述结构的方法
KR20140048738A (ko) 고체산화물 연료전지용 양극 복합체, 이의 제조방법 및 이를 포함하는 고체산화물 연료전지
KR101186929B1 (ko) 고체 산화물 연료 전지용 금속 산화물 박막의 저온 무수축 제조 방법
Ai et al. Vacuum-assisted electroless copper plating on Ni/(Sm, Ce) O2 anodes for intermediate temperature solid oxide fuel cells
Rehman et al. Parametric study on electrodeposition of a nanofibrous LaCoO3 SOFC cathode
CN105762391A (zh) 组件组成一体化的质子导体低温固体氧化物电池及其制备
KR102261142B1 (ko) 전기화학기법을 적용한 고체산화물연료전지 공기극 및 이의 제조방법
JP2016091878A (ja) 電極材料の製造方法、膜電極接合体および燃料電池スタック
Sun Advances in nanoengineering of cathodes for next-generation solid oxide fuel cells
Hassan et al. Nanoengineering of a Commercial-Scale Cathode Undergoing Highly Active Oxygen Dissociation via a Synergistic Effect of Sm0. 5Sr0. 5CoO3/Ce0. 8Sm0. 2O2 Composite Catalyst Infiltration for High-Performance Solid Oxide Fuel Cells
CN110088952A (zh) 用于电化学电池的阳极和用于制造包含此类阳极的电化学电池的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140903