[go: up one dir, main page]

CN103668108A - Atomic layer deposition method of oxide medium - Google Patents

Atomic layer deposition method of oxide medium Download PDF

Info

Publication number
CN103668108A
CN103668108A CN201310667554.2A CN201310667554A CN103668108A CN 103668108 A CN103668108 A CN 103668108A CN 201310667554 A CN201310667554 A CN 201310667554A CN 103668108 A CN103668108 A CN 103668108A
Authority
CN
China
Prior art keywords
atomic layer
layer deposition
oxide
purity nitrogen
deposition method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310667554.2A
Other languages
Chinese (zh)
Inventor
孙兵
刘洪刚
赵威
王盛凯
常虎东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201310667554.2A priority Critical patent/CN103668108A/en
Publication of CN103668108A publication Critical patent/CN103668108A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了一种氧化物介质的原子层沉积方法,该方法是利用原子层沉积系统进行氧化物介质的制备,包括:步骤1:设定原子层沉积系统生长参数;步骤2:向原子层沉积系统反应腔体中通入金属前驱体源脉冲,紧接着用高纯氮气清洗,冲掉反应副产物和残留的金属前驱体源;步骤3:向原子层沉积系统反应腔体中通入水脉冲,紧接着用高纯氮气清洗,冲掉反应副产物和残留的水;步骤4:向原子层沉积系统反应腔体中通入原位处理气体脉冲,紧接着用高纯氮气清洗,冲掉反应副产物和残留的原位处理气体;步骤5:依次重复进行步骤2、步骤3和步骤4,获得高介电常数的氧化物介质薄膜。本发明提供的氧化物介质的原子层沉积方法,可应用于CMOS技术栅介质的生长。

Figure 201310667554

The invention discloses an atomic layer deposition method of an oxide medium. The method uses an atomic layer deposition system to prepare an oxide medium, comprising: step 1: setting the growth parameters of the atomic layer deposition system; Pass the metal precursor source pulse into the reaction chamber of the deposition system, followed by cleaning with high-purity nitrogen gas to wash away the reaction by-products and residual metal precursor source; Step 3: Pass water pulses into the reaction chamber of the atomic layer deposition system , followed by cleaning with high-purity nitrogen to wash away the reaction by-products and residual water; Step 4: Introduce pulses of in-situ processing gas into the reaction chamber of the atomic layer deposition system, followed by cleaning with high-purity nitrogen to wash away the reaction By-products and residual in-situ processing gas; step 5: repeat step 2, step 3 and step 4 in sequence to obtain a high dielectric constant oxide dielectric film. The atomic layer deposition method of oxide medium provided by the invention can be applied to the growth of CMOS technology gate medium.

Figure 201310667554

Description

一种氧化物介质的原子层沉积方法A kind of atomic layer deposition method of oxide medium

技术领域technical field

本发明涉及氧化物电介质的制备方法,尤其涉及一种氧化物介质的原子层沉积方法,属于半导体集成技术领域。The invention relates to a preparation method of an oxide dielectric, in particular to an atomic layer deposition method of an oxide dielectric, and belongs to the technical field of semiconductor integration.

背景技术Background technique

半导体技术作为信息产业的核心和基础,是衡量一个国家科学技术进步和综合国力的重要标志。在过去的40多年中,硅基集成技术遵循摩尔定律通过缩小器件的特征尺寸来提高器件的工作速度、增加集成度以及降低成本,硅基CMOS器件的特征尺寸已经由微米尺度缩小到纳米尺度。然而当MOS器件的栅长缩小到90纳米以下,传统硅基CMOS集成技术开始面临来自物理与技术方面的双重挑战。二氧化硅已经不能满足当前半导体器件对电介质的要求,高介电常数氧化物作为栅介质材料在CMOS集成技术中获得了越来越多的应用。As the core and foundation of the information industry, semiconductor technology is an important symbol to measure a country's scientific and technological progress and comprehensive national strength. In the past 40 years, silicon-based integration technology has followed Moore's law to increase the working speed of devices, increase integration and reduce costs by reducing the feature size of devices. The feature size of silicon-based CMOS devices has been reduced from micrometers to nanometers. However, when the gate length of MOS devices shrinks below 90 nanometers, the traditional silicon-based CMOS integration technology begins to face challenges from both physical and technical aspects. Silicon dioxide can no longer meet the dielectric requirements of current semiconductor devices, and high dielectric constant oxides have been used more and more in CMOS integration technology as gate dielectric materials.

采用高迁移率沟道材料替代传统硅材料将是半导体集成技术在“后摩尔时代”的重要发展方向,其中锗与III-V族化合物半导体材料最有可能实现大规模应用,寻找适用于锗与III-V族化合物半导体材料的高介电常数氧化物也成为近期国内外研究热点。The use of high-mobility channel materials to replace traditional silicon materials will be an important development direction of semiconductor integration technology in the "post-Moore era". Among them, germanium and III-V compound semiconductor materials are most likely to achieve large-scale applications. High dielectric constant oxides of III-V compound semiconductor materials have also become a recent research hotspot at home and abroad.

原子层沉积的方法具有均匀性高、表面覆盖好、自限制表面吸附反应及生长速度精确可控等优点,已经应用于当前CMOS技术栅介质的生长过程中。基于原子层沉积的方法,开发高性能高介电常数的氧化物介质的沉积方法具有重要的应用前景。The method of atomic layer deposition has the advantages of high uniformity, good surface coverage, self-limiting surface adsorption reaction and precise controllable growth rate, etc., and has been applied in the growth process of current CMOS technology gate dielectric. Based on the method of atomic layer deposition, the development of high performance and high dielectric constant oxide dielectric deposition method has important application prospects.

发明内容Contents of the invention

(一)要解决的技术问题(1) Technical problems to be solved

本发明的主要目的在于提供一种氧化物介质的原子层沉积方法,以优化高介电常数的氧化物介质的原子层沉积的生长条件。The main purpose of the present invention is to provide an atomic layer deposition method of an oxide medium to optimize the growth conditions of the atomic layer deposition of an oxide medium with a high dielectric constant.

(二)技术方案(2) Technical solutions

为达到上述目的,本发明提供了一种氧化物介质的原子层沉积方法,该方法是利用原子层沉积系统进行氧化物介质的制备,包括:In order to achieve the above object, the present invention provides an atomic layer deposition method of an oxide medium, the method is to utilize an atomic layer deposition system to prepare an oxide medium, comprising:

步骤1:设定原子层沉积系统生长参数;Step 1: Set the growth parameters of the atomic layer deposition system;

步骤2:向原子层沉积系统反应腔体中通入金属前驱体源脉冲,紧接着用高纯氮气清洗,冲掉反应副产物和残留的金属前驱体源;Step 2: Introduce pulses of metal precursor sources into the reaction chamber of the atomic layer deposition system, followed by cleaning with high-purity nitrogen to wash away reaction by-products and residual metal precursor sources;

步骤3:向原子层沉积系统反应腔体中通入水脉冲,紧接着用高纯氮气清洗,冲掉反应副产物和残留的水;Step 3: Pass water pulses into the reaction chamber of the atomic layer deposition system, followed by cleaning with high-purity nitrogen gas to wash away reaction by-products and residual water;

步骤4:向原子层沉积系统反应腔体中通入原位处理气体脉冲,紧接着用高纯氮气清洗,冲掉反应副产物和残留的原位处理气体;Step 4: Pass in-situ processing gas pulses into the reaction chamber of the atomic layer deposition system, followed by cleaning with high-purity nitrogen to wash away reaction by-products and residual in-situ processing gas;

步骤5:依次重复进行步骤2、步骤3和步骤4,获得高介电常数的氧化物介质薄膜。Step 5: Repeat step 2, step 3 and step 4 in sequence to obtain a high dielectric constant oxide dielectric film.

上述方案中,所述步骤1中,所述原子层沉积系统的反应腔温度为20摄氏度-500摄氏度,反应腔压力为0.5毫巴-10毫巴。In the above scheme, in the step 1, the temperature of the reaction chamber of the atomic layer deposition system is 20°C-500°C, and the pressure of the reaction chamber is 0.5mbar-10mbar.

上述方案中,所述步骤2中,所述金属前驱体源是三甲基铝(Al(CH3)3)、四(乙基甲基氨基)铪(Hf[N(CH3)(C2H5)]4)、四(二乙基氨基)铪(Hf[N(CH3)2]4)、四(二乙基氨基)铪(Hf[N(C2H5)2]4)、四叔丁醇铪(Hf[O-C(CH3)3]4)、三(N,N’-二异丙基-amd)钇(Y(iPr2amd)3)、三(N,N’-二异丙基甲脒)镧(La(iPr2fmd)3)和二甲基铍(Be(CH3)2)、四氯化钛(TiCl4)、二乙基锌((C2H5)2Zn)中的一种或多种。In the above scheme, in the step 2, the metal precursor source is trimethylaluminum (Al(CH 3 ) 3 ), tetrakis(ethylmethylamino) hafnium (Hf[N(CH 3 )(C 2 H 5 )] 4 ), tetrakis(diethylamino)hafnium (Hf[N(CH 3 ) 2 ] 4 ), tetrakis(diethylamino)hafnium (Hf[N(C 2 H 5 ) 2 ] 4 ) , hafnium tetra-tert-butoxide (Hf[OC(CH 3 ) 3 ] 4 ), tris(N,N'-diisopropyl-amd)yttrium (Y( i Pr 2 amd) 3 ), tris(N,N '-Diisopropylformamidine) lanthanum (La( i Pr 2 fmd) 3 ) and dimethyl beryllium (Be(CH 3 ) 2 ), titanium tetrachloride (TiCl 4 ), diethylzinc ((C 2 H 5 ) 2 Zn) one or more.

上述方案中,所述步骤2中,所述金属前驱体源的温度为15摄氏度-300摄氏度,所述金属前躯体源的脉冲时间为1毫秒-60秒,所述高纯氮气的纯度为99.999%及以上,所述高纯氮气的流量为10sccm-1000sccm,所述高纯氮气的清洗时间为10毫秒-120秒。In the above scheme, in the step 2, the temperature of the metal precursor source is 15 degrees Celsius to 300 degrees Celsius, the pulse time of the metal precursor source is 1 millisecond to 60 seconds, and the purity of the high-purity nitrogen gas is 99.999 % and above, the flow rate of the high-purity nitrogen gas is 10 sccm-1000 sccm, and the cleaning time of the high-purity nitrogen gas is 10 milliseconds-120 seconds.

上述方案中,所述步骤3中,所述水脉冲的脉冲时间为1毫秒-60秒;所述高纯氮气的纯度为99.999%及以上,所述高纯氮气的流量为10sccm-1000sccm,所述高纯氮气的清洗时间为10毫秒-120秒。In the above scheme, in the step 3, the pulse time of the water pulse is 1 millisecond-60 seconds; the purity of the high-purity nitrogen gas is 99.999% and above, and the flow rate of the high-purity nitrogen gas is 10 sccm-1000 sccm, so The cleaning time of the high-purity nitrogen gas is 10 milliseconds to 120 seconds.

上述方案中,所述步骤4中,所述原位处理气体的流量在0sccm-1000sccm之间,所述原位处理气体脉冲的脉冲时间为1毫秒-10分钟。In the above solution, in the step 4, the flow rate of the in-situ processing gas is between 0 sccm-1000 sccm, and the pulse time of the in-situ processing gas pulse is 1 millisecond-10 minutes.

上述方案中,所述步骤4中,所述高纯氮气的流量为10sccm-1000sccm,所述高纯氮气的清洗时间为10毫秒-120秒。In the above solution, in step 4, the flow rate of the high-purity nitrogen gas is 10 sccm-1000 sccm, and the cleaning time of the high-purity nitrogen gas is 10 milliseconds-120 seconds.

上述方案中,所述步骤4中,所述原位处理气体是氧气、氮气、氨气、氢气、笑气中的一种或多种混合气体。In the above solution, in the step 4, the in-situ treatment gas is one or more mixed gases of oxygen, nitrogen, ammonia, hydrogen, and laughing gas.

上述方案中,所述步骤5中,所述氧化物介质是三氧化二铝、二氧化铪、三氧化二镧、三氧化二钇、氧化铍、二氧化钛、氧化锌的一种或多种组合。In the above solution, in the step 5, the oxide medium is one or more combinations of aluminum oxide, hafnium oxide, lanthanum oxide, yttrium oxide, beryllium oxide, titanium dioxide, and zinc oxide.

(三)有益效果(3) Beneficial effects

本发明所提供的氧化物介质的原子层沉积方法,可应用于硅基、锗基和化合物半导体基MOS器件栅介质的制备。该原子层沉积方法将传统原子层沉积方法中两种反应前驱体源增加为三种反应前驱体源,用水做前驱体源确保了反应在低温生长且反应产物中碳杂质含量低,原位处理气体脉冲在水脉冲完成后通入反应腔体中可以有效减小氧化物介质中的氧空位等缺陷,且可以填充因位阻效应引起的空位,从而提高氧化物介质的电学特性,减小栅介质漏电和提高栅介质击穿电压。这些特性表明本发明在后摩尔时代CMOS集成技术栅介质沉积中具备广阔的应用前景和市场前景。The atomic layer deposition method of the oxide medium provided by the invention can be applied to the preparation of gate dielectrics of silicon-based, germanium-based and compound semiconductor-based MOS devices. This atomic layer deposition method increases the two reaction precursor sources in the traditional atomic layer deposition method to three reaction precursor sources, and uses water as the precursor source to ensure that the reaction grows at a low temperature and the carbon impurity content in the reaction product is low. After the gas pulse is passed into the reaction chamber after the water pulse is completed, the defects such as oxygen vacancies in the oxide medium can be effectively reduced, and the vacancies caused by the steric effect can be filled, thereby improving the electrical characteristics of the oxide medium and reducing the gate size. Dielectric leakage and increase gate dielectric breakdown voltage. These characteristics indicate that the present invention has broad application prospects and market prospects in gate dielectric deposition of CMOS integration technology in the post-Moore era.

附图说明Description of drawings

图1为依照本发明实施例的三氧化二铝的原子层沉积的方法流程图。FIG. 1 is a flowchart of a method for atomic layer deposition of aluminum oxide according to an embodiment of the present invention.

具体实施方式Detailed ways

为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with specific embodiments and with reference to the accompanying drawings.

本发明提供的是一种氧化物介质的原子层沉积方法,该方法是利用原子层沉积系统进行氧化物介质的制备,包括以下步骤:The invention provides an atomic layer deposition method of an oxide medium. The method uses an atomic layer deposition system to prepare an oxide medium, comprising the following steps:

步骤1:设定原子层沉积系统生长参数;其中,原子层沉积系统的反应腔温度为20摄氏度-500摄氏度,反应腔压力为0.5毫巴-10毫巴。Step 1: Set the growth parameters of the atomic layer deposition system; wherein, the temperature of the reaction chamber of the atomic layer deposition system is 20 degrees Celsius to 500 degrees Celsius, and the pressure of the reaction chamber is 0.5 millibar to 10 millibars.

步骤2:向原子层沉积系统反应腔体中通入金属前驱体源脉冲,紧接着用高纯氮气清洗,冲掉反应副产物和残留的金属前驱体源;Step 2: Introduce pulses of metal precursor sources into the reaction chamber of the atomic layer deposition system, followed by cleaning with high-purity nitrogen to wash away reaction by-products and residual metal precursor sources;

其中,所述金属前驱体源是三甲基铝(Al(CH3)3)、四(乙基甲基氨基)铪(Hf[N(CH3)(C2H5)]4)、四(二乙基氨基)铪(Hf[N(CH3)2]4)、四(二乙基氨基)铪(Hf[N(C2H5)2]4)、四叔丁醇铪(Hf[O-C(CH3)3]4)、三(N,N’-二异丙基-amd)钇(Y(iPr2amd)3)、三(N,N’-二异丙基甲脒)镧(La(iPr2fmd)3)和二甲基铍(Be(CH3)2)、四氯化钛(TiCl4)、二乙基锌((C2H5)2Zn)中的一种或多种。所述金属前驱体源的温度为15摄氏度-300摄氏度,所述金属前躯体源的脉冲时间为1毫秒-60秒,所述高纯氮气的纯度为99.999%及以上,所述高纯氮气的流量为10sccm-1000sccm,所述高纯氮气的清洗时间为10毫秒-120秒。Wherein, the metal precursor source is trimethylaluminum (Al(CH 3 ) 3 ), tetrakis(ethylmethylamino)hafnium (Hf[N(CH 3 )(C 2 H 5 )] 4 ), tetrakis (Diethylamino)hafnium (Hf[N(CH 3 ) 2 ] 4 ), tetrakis(diethylamino)hafnium (Hf[N(C 2 H 5 ) 2 ] 4 ), hafnium tetra-tert-butoxide (Hf [OC(CH 3 ) 3 ] 4 ), Tris(N,N'-diisopropyl-amd)yttrium (Y( i Pr 2 amd) 3 ), Tris(N,N'-diisopropylformamidine ) lanthanum (La( i Pr 2 fmd) 3 ) and dimethyl beryllium (Be(CH 3 ) 2 ), titanium tetrachloride (TiCl 4 ), diethyl zinc ((C 2 H 5 ) 2 Zn) one or more of. The temperature of the metal precursor source is 15 degrees Celsius to 300 degrees Celsius, the pulse time of the metal precursor source is 1 millisecond to 60 seconds, the purity of the high-purity nitrogen is 99.999% and above, and the high-purity nitrogen is The flow rate is 10 sccm-1000 sccm, and the cleaning time of the high-purity nitrogen gas is 10 milliseconds-120 seconds.

步骤3:向原子层沉积系统反应腔体中通入水脉冲,紧接着用高纯氮气清洗,冲掉反应副产物和残留的水;Step 3: Pass water pulses into the reaction chamber of the atomic layer deposition system, followed by cleaning with high-purity nitrogen gas to wash away reaction by-products and residual water;

其中,所述水脉冲的脉冲时间为1毫秒-60秒;所述高纯氮气的纯度为99.999%及以上,所述高纯氮气的流量为10sccm-1000sccm,所述高纯氮气的清洗时间为10毫秒-120秒。Wherein, the pulse time of the water pulse is 1 millisecond-60 seconds; the purity of the high-purity nitrogen is 99.999% and above, the flow rate of the high-purity nitrogen is 10sccm-1000sccm, and the cleaning time of the high-purity nitrogen is 10 milliseconds - 120 seconds.

步骤4:向原子层沉积系统反应腔体中通入原位处理气体脉冲,紧接着用高纯氮气清洗,冲掉反应副产物和残留的原位处理气体;Step 4: Pass in-situ processing gas pulses into the reaction chamber of the atomic layer deposition system, followed by cleaning with high-purity nitrogen to wash away reaction by-products and residual in-situ processing gas;

其中,所述原位处理气体的流量在0sccm-1000sccm之间,所述原位处理气体脉冲的脉冲时间为1毫秒-10分钟。所述高纯氮气的流量为10sccm-1000sccm,所述高纯氮气的清洗时间为10毫秒-120秒。所述原位处理气体是氧气、氮气、氨气、氢气、笑气中的一种或多种混合气体。Wherein, the flow rate of the in-situ processing gas is between 0 sccm-1000 sccm, and the pulse time of the in-situ processing gas pulse is 1 millisecond-10 minutes. The flow rate of the high-purity nitrogen gas is 10 sccm-1000 sccm, and the cleaning time of the high-purity nitrogen gas is 10 milliseconds-120 seconds. The in-situ treatment gas is one or more mixed gases of oxygen, nitrogen, ammonia, hydrogen and laughing gas.

步骤5:依次重复进行步骤2、步骤3和步骤4,获得高介电常数的氧化物介质薄膜;其中,所述氧化物介质是三氧化二铝、二氧化铪、三氧化二镧、三氧化二钇、氧化铍、二氧化钛、氧化锌的一种或多种组合。Step 5: Repeat step 2, step 3 and step 4 in sequence to obtain an oxide dielectric film with a high dielectric constant; wherein, the oxide dielectric is aluminum oxide, hafnium oxide, dilanthanum oxide, trioxide One or more combinations of diyttrium, beryllium oxide, titanium dioxide, and zinc oxide.

以下实施例具体描述本发明所提供的一种氧化物介质三氧化二铝(Al2O3)的原子层沉积方法。The following examples specifically describe an atomic layer deposition method of an oxide medium aluminum oxide (Al 2 O 3 ) provided by the present invention.

如图1所示,图1为依照本发明实施例的三氧化二铝的原子层沉积的方法流程图,该方法包括如下步骤:As shown in Figure 1, Figure 1 is a flow chart of a method for atomic layer deposition of aluminum oxide according to an embodiment of the present invention, the method includes the following steps:

步骤101:如图1所示,原子层沉积系统参数设定,反应腔温度为250摄氏度,反应腔压力为1.5毫巴;Step 101: As shown in Figure 1, the parameters of the atomic layer deposition system are set, the temperature of the reaction chamber is 250 degrees Celsius, and the pressure of the reaction chamber is 1.5 mbar;

步骤102:向原子层沉积系统反应腔体中通入金属前驱体源Al(CH3)3脉冲,Al(CH3)3源的温度为20摄氏度,脉冲时间为100毫秒,紧接着用高纯氮气清洗,高纯氮气的纯度为99.999%,高纯氮气的流量为300sccm,清洗时间为3秒。Step 102: Introduce a metal precursor source Al(CH 3 ) 3 pulse into the reaction chamber of the atomic layer deposition system. The temperature of the Al(CH 3 ) 3 source is 20 degrees Celsius, and the pulse time is 100 milliseconds. For nitrogen cleaning, the purity of high-purity nitrogen is 99.999%, the flow rate of high-purity nitrogen is 300 sccm, and the cleaning time is 3 seconds.

步骤103:向原子层沉积系统反应腔体中通入水脉冲,水源的温度为20摄氏度,脉冲时间为100毫秒,紧接着用高纯氮气清洗,高纯氮气的纯度为99.999%,高纯氮气的流量为300sccm,清洗时间为3秒。Step 103: Pass water pulses into the reaction chamber of the atomic layer deposition system. The temperature of the water source is 20 degrees Celsius, and the pulse time is 100 milliseconds, followed by cleaning with high-purity nitrogen. The purity of high-purity nitrogen is 99.999%. The flow rate is 300 sccm, and the cleaning time is 3 seconds.

步骤104:向原子层沉积系统反应腔体中通入氧气脉冲,氧气脉冲为纯度为99.9999%,氧气的流量500sccm,氧气的脉冲时间5秒,紧接着用高纯氮气清洗,高纯氮气的纯度为99.999%,高纯氮气的流量为300sccm,清洗时间为4秒。Step 104: Pass oxygen pulses into the reaction chamber of the atomic layer deposition system. The oxygen pulses have a purity of 99.9999%, the flow rate of oxygen is 500 sccm, and the pulse time of oxygen is 5 seconds, followed by cleaning with high-purity nitrogen. It is 99.999%, the flow rate of high-purity nitrogen gas is 300 sccm, and the cleaning time is 4 seconds.

步骤102、步骤103和步骤104组成三氧化二铝的一个生长周期,每个生长周期的厚度为0.1纳米,依次重复步骤102、步骤103和步骤104循环100次,生长10nm厚的三氧化二铝薄膜。Step 102, step 103 and step 104 form a growth cycle of Al2O3, the thickness of each growth cycle is 0.1 nanometer, repeat Step 102, Step 103 and Step 104 in sequence for 100 cycles, and grow Al2O3 with a thickness of 10nm film.

以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.

Claims (9)

1.一种氧化物介质的原子层沉积方法,其特征在于,该方法是利用原子层沉积系统进行氧化物介质的制备,包括:1. an atomic layer deposition method of oxide medium, it is characterized in that, the method utilizes atomic layer deposition system to carry out the preparation of oxide medium, comprising: 步骤1:设定原子层沉积系统生长参数;Step 1: Set the growth parameters of the atomic layer deposition system; 步骤2:向原子层沉积系统反应腔体中通入金属前驱体源脉冲,紧接着用高纯氮气清洗,冲掉反应副产物和残留的金属前驱体源;Step 2: Introduce pulses of metal precursor sources into the reaction chamber of the atomic layer deposition system, followed by cleaning with high-purity nitrogen to wash away reaction by-products and residual metal precursor sources; 步骤3:向原子层沉积系统反应腔体中通入水脉冲,紧接着用高纯氮气清洗,冲掉反应副产物和残留的水;Step 3: Pass water pulses into the reaction chamber of the atomic layer deposition system, followed by cleaning with high-purity nitrogen gas to wash away reaction by-products and residual water; 步骤4:向原子层沉积系统反应腔体中通入原位处理气体脉冲,紧接着用高纯氮气清洗,冲掉反应副产物和残留的原位处理气体;Step 4: Pass in-situ processing gas pulses into the reaction chamber of the atomic layer deposition system, followed by cleaning with high-purity nitrogen to wash away reaction by-products and residual in-situ processing gas; 步骤5:依次重复进行步骤2、步骤3和步骤4,获得高介电常数的氧化物介质薄膜。Step 5: Repeat step 2, step 3 and step 4 in sequence to obtain a high dielectric constant oxide dielectric film. 2.根据权利要求1所述的氧化物介质的原子层沉积方法,其特征在于,所述步骤1中,所述原子层沉积系统的反应腔温度为20摄氏度-500摄氏度,反应腔压力为0.5毫巴-10毫巴。2. The atomic layer deposition method for oxide media according to claim 1, characterized in that, in the step 1, the temperature of the reaction chamber of the atomic layer deposition system is 20 degrees Celsius to 500 degrees Celsius, and the pressure of the reaction chamber is 0.5 millibar - 10 millibar. 3.根据权利要求1所述的氧化物介质的原子层沉积方法,其特征在于,所述步骤2中,所述金属前驱体源是三甲基铝(Al(CH3)3)、四(乙基甲基氨基)铪(Hf[N(CH3)(C2H5)]4)、四(二乙基氨基)铪(Hf[N(CH3)2]4)、四(二乙基氨基)铪(Hf[N(C2H5)2]4)、四叔丁醇铪(Hf[O-C(CH3)3]4)、三(N,N’-二异丙基-amd)钇(Y(iPr2amd)3)、三(N,N’-二异丙基甲脒)镧(La(iPr2fmd)3)和二甲基铍(Be(CH3)2)、四氯化钛(TiCl4)、二乙基锌((C2H5)2Zn)中的一种或多种。3. The atomic layer deposition method of the oxide medium according to claim 1, characterized in that, in the step 2, the metal precursor source is trimethylaluminum (Al(CH 3 ) 3 ), tetra( Ethylmethylamino) hafnium (Hf[N(CH 3 )(C 2 H 5 )] 4 ), tetrakis(diethylamino)hafnium (Hf[N(CH 3 ) 2 ] 4 ), tetrakis(diethyl Amino) hafnium (Hf[N(C 2 H 5 ) 2 ] 4 ), hafnium tetra-tert-butoxide (Hf[OC(CH 3 ) 3 ] 4 ), tris(N,N'-diisopropyl-amd ) yttrium (Y( i Pr 2 amd) 3 ), tris(N,N'-diisopropylformamidine) lanthanum (La( i Pr 2 fmd) 3 ) and dimethyl beryllium (Be(CH 3 ) 2 ), titanium tetrachloride (TiCl 4 ), and diethylzinc ((C 2 H 5 ) 2 Zn). 4.根据权利要求1所述的氧化物介质的原子层沉积方法,其特征在于,所述步骤2中,所述金属前驱体源的温度为15摄氏度-300摄氏度,所述金属前躯体源的脉冲时间为1毫秒-60秒,所述高纯氮气的纯度为99.999%及以上,所述高纯氮气的流量为10sccm-1000sccm,所述高纯氮气的清洗时间为10毫秒-120秒。4. The atomic layer deposition method of oxide medium according to claim 1, characterized in that, in the step 2, the temperature of the metal precursor source is 15 degrees Celsius-300 degrees Celsius, and the temperature of the metal precursor source is The pulse time is 1 millisecond-60 seconds, the purity of the high-purity nitrogen gas is 99.999% or above, the flow rate of the high-purity nitrogen gas is 10 sccm-1000 sccm, and the cleaning time of the high-purity nitrogen gas is 10 milliseconds-120 seconds. 5.根据权利要求1所述的高介电常数氧化物的制备方法,其特征在于,所述步骤3中,所述水脉冲的脉冲时间为1毫秒-60秒;所述高纯氮气的纯度为99.999%及以上,所述高纯氮气的流量为10sccm-1000sccm,所述高纯氮气的清洗时间为10毫秒-120秒。5. the preparation method of high dielectric constant oxide according to claim 1 is characterized in that, in described step 3, the pulse time of described water pulse is 1 millisecond-60 second; The purity of described high-purity nitrogen 99.999% and above, the flow rate of the high-purity nitrogen gas is 10 sccm-1000 sccm, and the cleaning time of the high-purity nitrogen gas is 10 milliseconds-120 seconds. 6.根据权利要求1所述的氧化物介质的原子层沉积方法,其特征在于,所述步骤4中,所述原位处理气体的流量在0sccm-1000sccm之间,所述原位处理气体脉冲的脉冲时间为1毫秒-10分钟。6. The atomic layer deposition method of oxide medium according to claim 1, characterized in that, in the step 4, the flow rate of the in-situ processing gas is between 0sccm-1000sccm, and the in-situ processing gas pulse The pulse time is from 1 millisecond to 10 minutes. 7.根据权利要求1所述的氧化物介质的原子层沉积方法,其特征在于,所述步骤4中,所述高纯氮气的流量为10sccm-1000sccm,所述高纯氮气的清洗时间为10毫秒-120秒。7. the atomic layer deposition method of oxide medium according to claim 1, is characterized in that, in described step 4, the flow rate of described high-purity nitrogen gas is 10sccm-1000sccm, and the cleaning time of described high-purity nitrogen gas is 10sccm. milliseconds - 120 seconds. 8.根据权利要求1所述的氧化物介质的原子层沉积方法,其特征在于,所述步骤4中,所述原位处理气体是氧气、氮气、氨气、氢气、笑气中的一种或多种混合气体。8. The atomic layer deposition method of oxide medium according to claim 1, characterized in that, in the step 4, the in-situ treatment gas is one of oxygen, nitrogen, ammonia, hydrogen, laughing gas or a mixture of gases. 9.根据权利要求1所述的氧化物介质的原子层沉积方法,其特征在于,所述步骤5中,所述氧化物介质是三氧化二铝、二氧化铪、三氧化二镧、三氧化二钇、氧化铍、二氧化钛、氧化锌的一种或多种组合。9. The atomic layer deposition method of oxide medium according to claim 1, characterized in that, in the step 5, the oxide medium is aluminum oxide, hafnium oxide, dilanthanum oxide, trioxide One or more combinations of diyttrium, beryllium oxide, titanium dioxide, and zinc oxide.
CN201310667554.2A 2013-12-10 2013-12-10 Atomic layer deposition method of oxide medium Pending CN103668108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310667554.2A CN103668108A (en) 2013-12-10 2013-12-10 Atomic layer deposition method of oxide medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310667554.2A CN103668108A (en) 2013-12-10 2013-12-10 Atomic layer deposition method of oxide medium

Publications (1)

Publication Number Publication Date
CN103668108A true CN103668108A (en) 2014-03-26

Family

ID=50306867

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310667554.2A Pending CN103668108A (en) 2013-12-10 2013-12-10 Atomic layer deposition method of oxide medium

Country Status (1)

Country Link
CN (1) CN103668108A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106756878A (en) * 2016-12-29 2017-05-31 中国科学院微电子研究所 Atomic layer deposition method of oxide medium
CN107190362A (en) * 2017-07-17 2017-09-22 宁波工程学院 A kind of high-purity ZnO/BiVO4The preparation method of heterogeneous micro belt
CN107516692A (en) * 2016-06-15 2017-12-26 常州天合光能有限公司 Method for depositing dielectric film on silicon substrate and solar cell
CN110042365A (en) * 2019-03-04 2019-07-23 中国科学院物理研究所 A kind of Atomic layer deposition method in two-dimensional material surface growth aluminium oxide
CN112746265A (en) * 2020-12-29 2021-05-04 兰州空间技术物理研究所 Method for preparing coating on inner surface of spray pipe
TWI744313B (en) * 2016-04-14 2021-11-01 日商Wacom研究所股份有限公司 Manufacturing method of HfN film and HfN film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101014730A (en) * 2004-06-15 2007-08-08 阿维扎技术公司 System and method for forming multi-component dielectric films
US20100227061A1 (en) * 2006-11-14 2010-09-09 Maitreyee Mahajani LOW TEMPERATURE ALD Si02
WO2010114386A1 (en) * 2009-03-30 2010-10-07 Universitetet I Oslo Thin films containing molybdenum oxide
CN101864562A (en) * 2010-07-07 2010-10-20 南京大学 Method for preparing oxide surface on metal medical device by ALD technology
CN102892921A (en) * 2010-05-10 2013-01-23 贝尼科公司 A method for producing a deposit and a deposit on a surface of a silicon substrate
CN102994975A (en) * 2011-09-15 2013-03-27 上海纳米技术及应用国家工程研究中心有限公司 Preparation method of aluminum-doped zinc oxide transparent conductive oxide film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101014730A (en) * 2004-06-15 2007-08-08 阿维扎技术公司 System and method for forming multi-component dielectric films
US20100227061A1 (en) * 2006-11-14 2010-09-09 Maitreyee Mahajani LOW TEMPERATURE ALD Si02
WO2010114386A1 (en) * 2009-03-30 2010-10-07 Universitetet I Oslo Thin films containing molybdenum oxide
CN102892921A (en) * 2010-05-10 2013-01-23 贝尼科公司 A method for producing a deposit and a deposit on a surface of a silicon substrate
CN101864562A (en) * 2010-07-07 2010-10-20 南京大学 Method for preparing oxide surface on metal medical device by ALD technology
CN102994975A (en) * 2011-09-15 2013-03-27 上海纳米技术及应用国家工程研究中心有限公司 Preparation method of aluminum-doped zinc oxide transparent conductive oxide film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI744313B (en) * 2016-04-14 2021-11-01 日商Wacom研究所股份有限公司 Manufacturing method of HfN film and HfN film
CN107516692A (en) * 2016-06-15 2017-12-26 常州天合光能有限公司 Method for depositing dielectric film on silicon substrate and solar cell
CN106756878A (en) * 2016-12-29 2017-05-31 中国科学院微电子研究所 Atomic layer deposition method of oxide medium
CN106756878B (en) * 2016-12-29 2019-04-02 中国科学院微电子研究所 Atomic layer deposition method of oxide medium
CN107190362A (en) * 2017-07-17 2017-09-22 宁波工程学院 A kind of high-purity ZnO/BiVO4The preparation method of heterogeneous micro belt
CN110042365A (en) * 2019-03-04 2019-07-23 中国科学院物理研究所 A kind of Atomic layer deposition method in two-dimensional material surface growth aluminium oxide
CN112746265A (en) * 2020-12-29 2021-05-04 兰州空间技术物理研究所 Method for preparing coating on inner surface of spray pipe

Similar Documents

Publication Publication Date Title
CN103668108A (en) Atomic layer deposition method of oxide medium
CN102891077B (en) Water base technique for atomic layer deposition is adopted to prepare the method for high-k gate dielectric at graphenic surface
CN116053122B (en) Preparation method of silicon carbide MOSFET gate oxide layer
CN104498894B (en) Preparation method of porous diamond film
CN105551934A (en) Method for preparing carbon silicon-based thin film material containing silicon quantum dots
CN105226114A (en) A kind of black silicon passivating structure and preparation method thereof
CN110066985A (en) The method for preparing GaON film coated fine structure material using atomic layer deposition
CN102931068A (en) Preparation method of germanium-based MOSFET gate dielectric
CN103628037A (en) Preparation method of high dielectric constant oxide
CN105244326B (en) The passivation layer structure and its manufacture method of a kind of power device
WO2012116477A1 (en) Preparation method of high density zinc oxide nanometer granules
CN107527803B (en) Preparation method of SiC device gate dielectric layer and SiC device structure
CN108470800A (en) A method of reducing PECVD board TMA consumptions
CN108893725A (en) A method of uniform mixing of metal oxide is grown using multistep technique for atomic layer deposition
CN106756878A (en) Atomic layer deposition method of oxide medium
CN102543751A (en) Preparation method of Ge-based Metal Oxide Semiconductor (MOS) device with sub-nanometer equivalent to oxide thickness
CN109055916B (en) Method for preparing ferroelectric film at low temperature through PEALD (plasma enhanced chemical vapor deposition) and ferroelectric film
CN109285801B (en) Method for solving graphite boat pollution of PERC battery with double-sided alumina structure
CN102956467B (en) Method for preparing gate medium on surface of graphene
CN103866277B (en) Method for preparing double-acceptor co-doped zinc oxide film by atomic layer deposition
CN105154848A (en) Method for preparing nitrogen oxygen silicon thin film
CN103065955B (en) Method for preparing gate dielectric structure by using ALD (atomic layer deposition)
CN104733285A (en) Method for preparing zinc-doped ultra-shallow junction on surface of semiconductor substrate
CN103972079B (en) The preparation method of the orderly silicon quantum dot of a kind of three-dimensional spatial distribution
CN103205729B (en) Method for growing gallium nitride film by using ALD (atomic layer deposition) equipment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140326