CN103627055B - Utilize the method that modified microcrystalline cellulose prepares tire tread glue - Google Patents
Utilize the method that modified microcrystalline cellulose prepares tire tread glue Download PDFInfo
- Publication number
- CN103627055B CN103627055B CN201310548311.7A CN201310548311A CN103627055B CN 103627055 B CN103627055 B CN 103627055B CN 201310548311 A CN201310548311 A CN 201310548311A CN 103627055 B CN103627055 B CN 103627055B
- Authority
- CN
- China
- Prior art keywords
- microcrystalline cellulose
- rubber
- modified microcrystalline
- ionic liquid
- tire tread
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229920000168 Microcrystalline cellulose Polymers 0.000 title claims abstract description 84
- 239000008108 microcrystalline cellulose Substances 0.000 title claims abstract description 84
- 229940016286 microcrystalline cellulose Drugs 0.000 title claims abstract description 84
- 235000019813 microcrystalline cellulose Nutrition 0.000 title claims abstract description 79
- 238000000034 method Methods 0.000 title claims abstract description 36
- 239000003292 glue Substances 0.000 title claims 7
- 229920001971 elastomer Polymers 0.000 claims abstract description 57
- 239000002608 ionic liquid Substances 0.000 claims abstract description 31
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 29
- 238000002156 mixing Methods 0.000 claims abstract description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 8
- 239000008367 deionised water Substances 0.000 claims description 6
- 229910021641 deionized water Inorganic materials 0.000 claims description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 5
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 239000011593 sulfur Substances 0.000 claims description 5
- -1 alkyl imidazole halogen Chemical class 0.000 claims description 4
- IUJLOAKJZQBENM-UHFFFAOYSA-N n-(1,3-benzothiazol-2-ylsulfanyl)-2-methylpropan-2-amine Chemical compound C1=CC=C2SC(SNC(C)(C)C)=NC2=C1 IUJLOAKJZQBENM-UHFFFAOYSA-N 0.000 claims description 4
- 239000011787 zinc oxide Substances 0.000 claims description 4
- 235000021355 Stearic acid Nutrition 0.000 claims description 2
- 125000000217 alkyl group Chemical group 0.000 claims description 2
- 150000001450 anions Chemical class 0.000 claims description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 2
- 239000008117 stearic acid Substances 0.000 claims description 2
- 239000002671 adjuvant Substances 0.000 claims 2
- 229910052736 halogen Inorganic materials 0.000 claims 1
- 238000005987 sulfurization reaction Methods 0.000 claims 1
- 239000006229 carbon black Substances 0.000 abstract description 23
- 230000008569 process Effects 0.000 abstract description 17
- 238000004073 vulcanization Methods 0.000 abstract description 16
- 230000003993 interaction Effects 0.000 abstract description 10
- 239000000377 silicon dioxide Substances 0.000 abstract description 7
- 239000004636 vulcanized rubber Substances 0.000 abstract description 7
- 238000002360 preparation method Methods 0.000 abstract description 4
- 238000005096 rolling process Methods 0.000 abstract description 4
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 238000003912 environmental pollution Methods 0.000 abstract description 2
- 238000007493 shaping process Methods 0.000 abstract 1
- 235000010980 cellulose Nutrition 0.000 description 11
- 229920002678 cellulose Polymers 0.000 description 11
- 239000001913 cellulose Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000003014 reinforcing effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000002787 reinforcement Effects 0.000 description 4
- 238000010057 rubber processing Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000003607 modifier Substances 0.000 description 3
- 229920001021 polysulfide Polymers 0.000 description 3
- 239000005077 polysulfide Substances 0.000 description 3
- 150000008117 polysulfides Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- FFIFELJHUFWTBO-UHFFFAOYSA-N 1-prop-2-enyl-1h-imidazol-1-ium;chloride Chemical compound Cl.C=CCN1C=CN=C1 FFIFELJHUFWTBO-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 229920001046 Nanocellulose Polymers 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000013081 microcrystal Substances 0.000 description 2
- 229920005615 natural polymer Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229920003244 diene elastomer Polymers 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 229920006173 natural rubber latex Polymers 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 239000012763 reinforcing filler Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/86—Optimisation of rolling resistance, e.g. weight reduction
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Tires In General (AREA)
Abstract
本发明公开了一种利用改性微晶纤维素制备轮胎胎面胶的方法,其步骤包括:一、利用功能性离子液体改性微晶纤维素;二、将改性微晶纤维素应用到补强胎面胶工艺中,通过常规的混炼工艺,将改性的微晶纤维素部分取代白炭黑得到混炼胶;将混炼胶在130‑180℃下按照工艺正硫化时间进行硫化定型,即可得到硫化胶。本发明通过利用功能性离子液体(含双键、橡胶促进剂或硫化基等)改性微晶纤维素,有效提高微晶纤维素在橡胶基体中分散,提高微晶纤维素与橡胶基体、白炭黑的相互作用,同时限制了白炭黑网络结构的形成,应用于轮胎胎面胶中可以提高胎面胶的强度,显著提高胎面胶的抗湿滑性,同时降低轮胎的滚动阻力,制备工艺简单,无环境污染。
The invention discloses a method for preparing tire tread rubber by using modified microcrystalline cellulose. The steps include: 1. Using functional ionic liquid to modify the microcrystalline cellulose; 2. Applying the modified microcrystalline cellulose to In the reinforced tread rubber process, through the conventional mixing process, the modified microcrystalline cellulose is partially replaced with white carbon black to obtain the mixed rubber; the mixed rubber is vulcanized at 130‑180 °C according to the normal curing time of the process After shaping, vulcanized rubber can be obtained. The present invention uses functional ionic liquid (containing double bond, rubber accelerator or vulcanization group, etc.) The interaction of carbon black also limits the formation of silica network structure, which can improve the strength of tread rubber when applied to tire tread rubber, significantly improve the wet skid resistance of tread rubber, and reduce the rolling resistance of tires at the same time. The preparation process is simple and there is no environmental pollution.
Description
技术领域technical field
本发明涉及一种轮胎胎面胶的制备工艺,尤其涉及一种利用改性微晶纤维素制备轮胎胎面胶的方法。The invention relates to a preparation process of tire tread rubber, in particular to a method for preparing tire tread rubber by using modified microcrystalline cellulose.
背景技术Background technique
炭黑、白炭黑作为橡胶工业的高效补强剂,它们在橡胶补强中拥有无可取代的地位。但炭黑在加工和使用过程中存在如下问题:①加工污染严重,炭黑在生产、储运及向橡胶中添加时极易飞扬,即使是密炼机也难避免对操作人员健康的损害;②加工时间长,耗能大;③对石油的依赖性大。炭黑是石油化工产品,其持续大量的消耗必然无益于缓解石油资源的日益紧张;④炭黑密度较高,从而使硫化橡胶密度明显增加,从而在一定程度上损害了高分子材料质轻这一重要特性,增加了橡胶制品的体积成本。Carbon black and white carbon black are high-efficiency reinforcing agents in the rubber industry, and they have an irreplaceable position in rubber reinforcement. However, there are the following problems in the process of processing and using carbon black: ①The processing pollution is serious, carbon black is easy to fly during production, storage and transportation, and when it is added to rubber, even if it is an internal mixer, it is inevitable to damage the health of operators; ② Long processing time and high energy consumption; ③ High dependence on oil. Carbon black is a petrochemical product, and its continuous large-scale consumption is bound to be useless to alleviate the growing shortage of petroleum resources; ④The density of carbon black is high, so that the density of vulcanized rubber is significantly increased, which to a certain extent damages the light weight of polymer materials. Important characteristic that increases the volume cost of rubber products.
纤维素是植物通过光合作用合成的天然高分子材料,它广泛存在于植物、动物和细菌中,每年自然界可产生的纤维素高达1010~1011 吨。天然纤维素再生后可制备成各种再生纤维素短纤维。作为一种资源丰富的可再生、可降解的短纤维,如能将其应用于橡胶材料的补强,将为发展低成本、高性能、可降解的橡胶基复合材料工业注入新的活力。Cellulose is a natural polymer material synthesized by plants through photosynthesis. It widely exists in plants, animals and bacteria. The annual cellulose produced in nature is as high as 10 10 to 10 11 tons. Natural cellulose can be prepared into various regenerated cellulose short fibers after regeneration. As a resource-rich renewable and degradable short fiber, if it can be applied to the reinforcement of rubber materials, it will inject new vitality into the development of low-cost, high-performance, and degradable rubber-based composite materials industry.
近年来,作为天然高分子聚合物的微晶纤维素在橡胶补强研究及其高性能轮胎中的应用引起了人们的广泛关注。目前在橡胶工业,改善微晶纤维素在橡胶基体中的最常用的方法有两种,一种是加入表面改性剂,另一种是表面化学接枝。其中表面化学接枝法效果较好,但一般反应条件比较苛刻,处理工艺比较繁琐,生产成本较高。加入表面改性剂是一种简单、方便的方法。目前处理微晶纤维素比较常用的有硅烷偶联剂、钛酸酯偶联剂、表面活性剂等小分子化合物。这些小分子化合物可以与白炭黑表面的羟基发生反应,一般需要对白炭黑进行预处理,而且释放出小分子物质,对环境和操作人员造成危害。In recent years, the application of microcrystalline cellulose as a natural polymer in rubber reinforcement research and high-performance tires has attracted widespread attention. At present, in the rubber industry, there are two most commonly used methods to improve microcrystalline cellulose in the rubber matrix, one is adding surface modifiers, and the other is surface chemical grafting. Among them, the surface chemical grafting method has a better effect, but generally the reaction conditions are relatively harsh, the treatment process is relatively cumbersome, and the production cost is relatively high. Adding surface modifiers is a simple and convenient method. At present, small molecular compounds such as silane coupling agents, titanate coupling agents, and surfactants are commonly used to treat microcrystalline cellulose. These small molecular compounds can react with the hydroxyl groups on the surface of silica. Generally, pretreatment of silica is required, and small molecular substances are released, causing harm to the environment and operators.
目前在高分子工业,对于微晶纤维素的改性方法较多,中国专利(专利号03114288.5)在纳米微晶纤维素的水分散介质中添加亲水性胶体并用超声波进行均匀分散,然后干燥、粉碎制得易水分散纳米微晶纤维素。美国专利(专利号3539365)中披露了在超细纤维素微晶(粒径最小达微米级)中通过共混加入羟甲基纤维素,以克服超细纤维素微晶因表面氢键作用也发生的团聚。中国专利(专利号03126825.0、申请号201210156331.5)在液体分散介质中,在催化剂作用下,将超细和纳米微晶纤维素与酯化液反应,得到表面酯化改性的微晶纤维素。中国专利(申请号201110333820.9)先利用无水二甲基亚砜对干燥后的微晶纤维素进行溶胀,再用氯化亚砜进行纳米化处理,最后通入氨气进行改性,在超声波辅助下得到稳定的纳米纤维素悬浮液,最后经冷冻干燥得到羰基化改性纳米纤维素。中国专利(专利号200810219532.9)先将微晶纤维素进行表面接枝处理,然后将所制得的改性微晶纤维素采用传统的橡胶加工工艺与橡胶混炼,制备橡胶/改性微晶纤维素复合材料,该复合材料具有较好的力学性能。中国专利(申请号201010522126.7、申请号201010522109.3)将纳米微晶纤维素与胶乳先进行混合后,加入天然胶乳中,干燥得到纳米微晶纤维素/天然橡胶混合物,然后加入炭黑或白炭黑进行混炼,得到纳米微晶纤维素补强的橡胶。At present, in the polymer industry, there are many methods for modifying microcrystalline cellulose. Chinese patent (patent number 03114288.5) adds hydrophilic colloid to the water dispersion medium of nano-microcrystalline cellulose and uniformly disperses it with ultrasonic waves, and then dries, Pulverize to prepare water-dispersible nano-microcrystalline cellulose. US Patent (Patent No. 3,539,365) discloses adding hydroxymethyl cellulose to ultrafine cellulose microcrystals (with a particle size as small as micron) by blending to overcome the problem of surface hydrogen bonding of ultrafine cellulose microcrystals. The reunion happened. Chinese patent (Patent No. 03126825.0, Application No. 201210156331.5) in a liquid dispersion medium, under the action of a catalyst, reacts ultrafine and nano-microcrystalline cellulose with an esterification liquid to obtain surface esterification-modified microcrystalline cellulose. Chinese patent (application number 201110333820.9) first uses anhydrous dimethyl sulfoxide to swell the dried microcrystalline cellulose, then uses thionyl chloride for nano-treatment, and finally introduces ammonia gas for modification. A stable nanocellulose suspension was obtained, and finally the carbonylated modified nanocellulose was obtained by freeze-drying. Chinese patent (Patent No. 200810219532.9) first grafts microcrystalline cellulose on the surface, and then uses traditional rubber processing technology to mix the obtained modified microcrystalline cellulose with rubber to prepare rubber/modified microcrystalline fiber The composite material has good mechanical properties. Chinese patent (Application No. 201010522126.7, Application No. 201010522109.3) mixes nano-microcrystalline cellulose and latex first, then adds it to natural latex, and dries to obtain a nano-microcrystalline cellulose/natural rubber mixture, and then adds carbon black or white carbon black Mixing to obtain nano-microcrystalline cellulose-reinforced rubber.
综上所述,可以看出,当前利用微晶纤维素补强橡胶所存在的问题仍有以下几点:In summary, it can be seen that there are still the following problems in the use of microcrystalline cellulose to reinforce rubber:
(1)微晶纤维素表面含有大量羟基,因此微晶纤维素间相互作用较强,在橡胶基体中均匀分散困难,尤其是当把微晶纤维素的尺寸由微米级降为纳米级后,团聚现象更加严重,大大降低了微晶纤维素的补强效果。(1) The surface of microcrystalline cellulose contains a large number of hydroxyl groups, so the interaction between microcrystalline cellulose is strong, and it is difficult to disperse evenly in the rubber matrix, especially when the size of microcrystalline cellulose is reduced from micron to nanometer. The agglomeration phenomenon is more serious, which greatly reduces the reinforcing effect of microcrystalline cellulose.
(2)微晶纤维素表面极性较强,与常用的非极性的二烯类橡胶的界面粘合行较差,界面结合强度较弱,这也降低了微晶纤维素的补强效果。(2) The surface polarity of microcrystalline cellulose is relatively strong, and the interface bonding with commonly used non-polar diene rubber is poor, and the interface bonding strength is weak, which also reduces the reinforcing effect of microcrystalline cellulose .
(3)为了提高微晶纤维素的分散,一般须将纤维素先与天然橡胶胶乳共凝沉,然后再进行混炼,生产工艺复杂,且成本较高。(3) In order to improve the dispersion of microcrystalline cellulose, the cellulose must be co-retrograded with natural rubber latex first, and then mixed. The production process is complicated and the cost is high.
发明内容Contents of the invention
为了解决现有技术中的问题,本发明的目的是提供一种工艺简单、成本低、改性效果好,可以满足高性能绿色轮胎的使用要求的利用改性微晶纤维素制备轮胎胎面胶的方法。In order to solve the problems in the prior art, the object of the present invention is to provide a tire tread rubber prepared from modified microcrystalline cellulose with simple process, low cost and good modification effect, which can meet the requirements of high-performance green tires. Methods.
为达到上述目的,本发明所采用的技术手段是:利用改性微晶纤维素制备轮胎胎面胶的方法,其步骤包括:In order to achieve the above object, the technical means adopted in the present invention is: utilize modified microcrystalline cellulose to prepare the method for tire tread rubber, and its steps comprise:
一、利用功能性离子液体改性微晶纤维素:首先将离子液体、去离子水和微晶纤维素加入到反应器中,在80℃下搅拌3h,然后将搅拌结束后的产物在80℃烘干12h,即得离子液体改性微晶纤维素;1. Use functional ionic liquid to modify microcrystalline cellulose: first add ionic liquid, deionized water and microcrystalline cellulose into the reactor, stir at 80°C for 3 hours, and then put the product after stirring at 80°C Dry for 12 hours to obtain ionic liquid modified microcrystalline cellulose;
二、将改性的微晶纤维素应用到补强橡胶工艺中:混炼、在开炼机或密炼机中将基体橡胶先与离子液体改性微晶纤维素混炼,然后加入白炭黑,再加入辅料,最后加硫磺和促进剂,薄通6次打三角包后下片,得到混炼胶,上述混炼起始温度为70-100℃、混炼转速40-70转/min,混炼总时间为6-10min;硫化定型、将混炼胶130-180℃进行硫化,硫化时间为由硫化仪确定的工艺正硫化时间,即可得到硫化胶。2. Apply the modified microcrystalline cellulose to the reinforcing rubber process: mixing, mixing the base rubber with the ionic liquid modified microcrystalline cellulose in an open mill or internal mixer, and then adding white carbon Black, then add auxiliary materials, add sulfur and accelerator at the end, make a triangular bag for 6 times, and then release the tablet to obtain a mixed rubber. The above mixing starting temperature is 70-100°C, and the mixing speed is 40-70 rpm , the total mixing time is 6-10min; vulcanization and finalization, vulcanization of the mixed rubber at 130-180°C, the vulcanization time is the process positive vulcanization time determined by the vulcanization meter, and the vulcanized rubber can be obtained.
进一步,所述步骤一中的离子液体为烷基咪唑卤盐,其中烷基为含双键、多硫键或促进基的基团,阴离子为Cl- 或Br-。Further, the ionic liquid in the step 1 is an alkyl imidazolium halide salt, wherein the alkyl group is a group containing a double bond, a polysulfide bond or a promoting group, and the anion is Cl- or Br-.
进一步的,所述步骤一中,离子液体:微晶纤维素∶去离子水= 1~5 ∶ 100 ∶300。Further, in step 1, ionic liquid: microcrystalline cellulose: deionized water = 1-5: 100: 300.
进一步的,所述步骤一中微晶纤维素的粒径为1-100um。Further, the particle size of the microcrystalline cellulose in the step 1 is 1-100um.
进一步的,所述步骤二中微晶纤维素:白炭黑为5~25 ∶ 45~25。Further, in the second step, the ratio of microcrystalline cellulose: white carbon black is 5-25: 45-25.
进一步的,所述步骤二中辅料包括TBBS(NS)、Si-69、氧化锌、硬脂酸。Further, the auxiliary materials in the second step include TBBS (NS), Si-69, zinc oxide, and stearic acid.
本发明的有益效果在于:提高微晶纤维素在橡胶基体中分散,提高加工性能;提高微晶纤维素橡胶基体的相互作用;提高微晶纤维素与白炭黑的相互作用,限制白炭黑网络的形成;应用于胎面胶,可以显著降低滚动阻力,同时提高胎面胶的抗湿滑性;制备工艺简单,无环境污染。The beneficial effects of the present invention are: improving the dispersion of microcrystalline cellulose in the rubber matrix, improving processing performance; improving the interaction between microcrystalline cellulose and rubber matrix; improving the interaction between microcrystalline cellulose and white carbon black, limiting the amount of white carbon black The formation of the network; applied to the tread rubber, can significantly reduce the rolling resistance, and at the same time improve the wet skid resistance of the tread rubber; the preparation process is simple, and there is no environmental pollution.
附图说明Description of drawings
下面结合附图和实施例对本发明做进一步的说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
图1为本发明硫化胶的动态力学(DMA)性能曲线图。Figure 1 is a graph showing the dynamic mechanical (DMA) properties of the vulcanized rubber of the present invention.
具体实施方式detailed description
实施例1Example 1
利用改性微晶纤维素制备轮胎胎面胶的方法,其步骤包括:Utilize modified microcrystalline cellulose to prepare the method for tire tread rubber, its step comprises:
利用功能性离子液体改性微晶纤维素:将盛有1g烯丙基咪唑氯([AMIM]Cl) 离子液体,100g 微晶纤维素,300g 去离子水置于璃反应器中,在80℃水浴锅中加热并搅拌搅拌3h,然后将搅拌结束后的上述产物在80℃的真空干燥箱中烘干12h,冷却即得离子液体改性微晶纤维素;其中微晶纤维素的粒径为20-80um。Using functional ionic liquid to modify microcrystalline cellulose: put 1g of allyl imidazolium chloride ([AMIM]Cl) ionic liquid, 100g of microcrystalline cellulose, and 300g of deionized water in a glass reactor, at 80°C Heating and stirring in a water bath for 3 hours, then drying the above-mentioned product after the stirring in a vacuum oven at 80°C for 12 hours, and cooling to obtain ionic liquid-modified microcrystalline cellulose; wherein the particle size of the microcrystalline cellulose is 20-80um.
将改性的微晶纤维素应用到补强橡胶工艺中:混炼、在密炼机中将基体橡胶先与离子液体改性微晶纤维素混炼,混炼起始温度为90℃,混炼转速60转/min,然后加入白炭黑,其中离子液体改性微晶纤维素 5、白炭黑45 g,再加入辅料TBBS(NS) 1g和Si-69 3.6g、氧化锌3g、硬脂酸1g,最后加硫磺1.76g和促进剂DPG 1g,在开炼机上薄通6次打三角包后下片,得到混炼胶,上述混炼起始温度为70-100℃、混炼转速40-70转/min,混炼总时间为8min;硫化定型、将混炼胶160℃进行硫化,硫化时间为由硫化仪确定的工艺正硫化时间,即可得到硫化胶。Apply the modified microcrystalline cellulose to the reinforcing rubber process: mixing, mixing the base rubber with the ionic liquid modified microcrystalline cellulose in the internal mixer, the mixing starting temperature is 90 ° C, mixing The refining speed was 60 rpm, and then white carbon black was added, including 5 g of ionic liquid modified microcrystalline cellulose, 45 g of white carbon black, 1 g of auxiliary materials TBBS (NS), 3.6 g of Si-69, 3 g of zinc oxide, hard Fatty acid 1g, finally add sulfur 1.76g and accelerator DPG 1g, thin pass 6 times on the open mill, make a triangular bag and then remove the sheet to obtain a mixed rubber. The above mixing starting temperature is 70-100 ° C 40-70 rpm, the total mixing time is 8 minutes; vulcanization and setting, vulcanization of the mixed rubber at 160 ° C, the vulcanization time is the process positive vulcanization time determined by the vulcanization meter, and the vulcanized rubber can be obtained.
实施例2Example 2
利用改性微晶纤维素制备轮胎胎面胶的方法,其步骤包括:Utilize modified microcrystalline cellulose to prepare the method for tire tread rubber, its step comprises:
利用功能性离子液体改性微晶纤维素:将盛有1g烯丙基咪唑氯([AMIM]Cl) 离子液体,100g 微晶纤维素,300g 去离子水置于璃反应器中,在80℃水浴锅中加热并搅拌搅拌3h,然后将搅拌结束后的上述产物在80℃的真空干燥箱中烘干12h,冷却即得离子液体改性微晶纤维素;其中微晶纤维素的粒径为20-80um。Using functional ionic liquid to modify microcrystalline cellulose: put 1g of allyl imidazolium chloride ([AMIM]Cl) ionic liquid, 100g of microcrystalline cellulose, and 300g of deionized water in a glass reactor, at 80°C Heating and stirring in a water bath for 3 hours, then drying the above-mentioned product after the stirring in a vacuum oven at 80°C for 12 hours, and cooling to obtain ionic liquid-modified microcrystalline cellulose; wherein the particle size of the microcrystalline cellulose is 20-80um.
将改性的微晶纤维素应用到补强橡胶工艺中:混炼、在密炼机中将基体橡胶先与离子液体改性微晶纤维素混炼,混炼起始温度为90℃,混炼转速60转/min,然后加入白炭黑,其中离子液体改性微晶纤维素 10 g、白炭黑40 g,再加入辅料TBBS(NS) 1g和Si-693.2g、氧化锌3g、硬脂酸1g,最后加硫磺1.76g和促进剂DPG 1g,在开炼机上薄通6次打三角包后下片,得到混炼胶,上述混炼起始温度为70-100℃、混炼转速40-70转/min,混炼总时间为8min;硫化定型、将混炼胶160℃进行硫化,硫化时间为由硫化仪确定的工艺正硫化时间,即可得到硫化胶。Apply the modified microcrystalline cellulose to the reinforcing rubber process: mixing, mixing the base rubber with the ionic liquid modified microcrystalline cellulose in the internal mixer, the mixing starting temperature is 90 ° C, mixing The refining speed was 60 rpm, and then white carbon black was added, including 10 g of ionic liquid modified microcrystalline cellulose, 40 g of white carbon black, 1 g of auxiliary materials TBBS (NS), 3.2 g of Si-693.2 g, 3 g of zinc oxide, hard Fatty acid 1g, finally add sulfur 1.76g and accelerator DPG 1g, thin pass 6 times on the open mill, make a triangular bag and then remove the sheet to obtain a mixed rubber. The above mixing starting temperature is 70-100 ° C 40-70 rpm, the total mixing time is 8 minutes; vulcanization and setting, vulcanization of the mixed rubber at 160 ° C, the vulcanization time is the process positive vulcanization time determined by the vulcanization meter, and the vulcanized rubber can be obtained.
实施例3Example 3
此实施例为实施例1的对比实施例,与实施例1不同之处在于:其中所加入的微晶纤维素为未改性微晶纤维素,所加入质量均相同。This example is a comparative example of Example 1, which differs from Example 1 in that the added microcrystalline cellulose is unmodified microcrystalline cellulose, and the added quality is the same.
实施例4Example 4
此实施例为实施例2的对比实施例,与实施例2不同之处在于:其中所加入的微晶纤维素为未改性微晶纤维素,所加入质量均相同。This example is a comparative example of Example 2, which differs from Example 2 in that the added microcrystalline cellulose is unmodified microcrystalline cellulose, and the added quality is the same.
实施例5Example 5
此实施例为对比实施例,其中加入白炭黑为50g,不加入微晶纤维素,所加入的Si-69 4g,This embodiment is a comparative example, wherein adding white carbon black is 50g, does not add microcrystalline cellulose, added Si-69 4g,
硫磺1.78g。Sulfur 1.78g.
上述5个实施例中得到的硫化胶的物理机械性能如下表所示。The physical and mechanical properties of the vulcanizates obtained in the above five examples are shown in the table below.
上述实验数据表明,离子液体改性纤维素取代5phr白炭黑后,硫化胶的物理机械性能都有较大幅度的提高,而未改性微晶纤维素取代5phr白炭黑后,硫化胶的物理机械性能下降。硫化胶的动态性能如图1所示。从图1可知,含离子液体改性微晶纤维素的硫化胶在0℃下的tanδ值较高,而在60℃下的tanδ值较低,说明该胶料具有抗湿滑性好,同时滚动阻力低的优点。The above experimental data show that after ionic liquid modified cellulose replaces 5phr silica, the physical and mechanical properties of the vulcanizate are greatly improved, while unmodified microcrystalline cellulose replaces 5phr silica, the vulcanizate Decreased physical and mechanical properties. The dynamic properties of the vulcanizate are shown in Figure 1. It can be seen from Figure 1 that the vulcanized rubber containing ionic liquid modified microcrystalline cellulose has a higher tanδ value at 0°C, but a lower tanδ value at 60°C, indicating that the rubber compound has good wet skid resistance, and at the same time The advantage of low rolling resistance.
离子液体(ionic liquids)与纤维素具有极强的相互作用,甚至可以部分溶解纤维素。而且离子液体与炭黑通过π-π键,与白炭黑通过羟基也可以产生很强的相互作用。本发明利用可以与橡胶基体发生化学作用的功能性离子液体(含双键、多硫键或促进基等)为改性剂,可以将微晶纤维素-橡胶基体-补强填料紧密结合起来,形成牢固的界面结合,对橡胶产生显著的补强作用和其他改性作用。本发明基于咪唑类离子液体与纤维素的强相互作用,利用功能性离子液体(含双键、多硫键或促进基等)改性微晶纤维素,既可以有效的防止纤维素的团聚,又可以提高微晶纤维素与橡胶间的相互作用。该技术应用与胎面胶中,可赋予胶料以下优异的特性:Ionic liquids (ionic liquids) have a strong interaction with cellulose, and can even partially dissolve cellulose. Moreover, the ionic liquid can also have a strong interaction with carbon black through π-π bonds, and with white carbon black through hydroxyl groups. The present invention utilizes the functional ionic liquid (containing double bonds, polysulfide bonds or accelerators, etc.) that can chemically interact with the rubber matrix as a modifier, and can closely combine the microcrystalline cellulose-rubber matrix-reinforcing filler, Form a firm interfacial bond, and have significant reinforcement and other modification effects on rubber. Based on the strong interaction between imidazole ionic liquid and cellulose, the present invention utilizes functional ionic liquid (containing double bonds, polysulfide bonds or promoting groups, etc.) to modify microcrystalline cellulose, which can effectively prevent the agglomeration of cellulose, It can also improve the interaction between microcrystalline cellulose and rubber. The application of this technology in tread rubber can endow the rubber with the following excellent characteristics:
①提高微晶纤维素在橡胶基体中分散,提高加工性能。① Improve the dispersion of microcrystalline cellulose in the rubber matrix and improve the processing performance.
②提高微晶纤维素橡胶基体的相互作用。② Improve the interaction of microcrystalline cellulose rubber matrix.
③提高微晶纤维素与白炭黑、炭黑的相互作用,打破炭黑、白炭黑网络。③ Improve the interaction between microcrystalline cellulose, silica and carbon black, and break the network of carbon black and silica.
④应用与胎面胶,可以显著提高胎面胶的抗湿滑性,同时降低轮胎的滚动阻力。④ Applied with tread rubber, it can significantly improve the wet skid resistance of the tread rubber and reduce the rolling resistance of the tire at the same time.
⑤制备工艺简单,可以采用预处理法也可以在橡胶加工过程中原位处理微晶纤维素。⑤ The preparation process is simple, and the microcrystalline cellulose can be treated in situ during the rubber processing process by using a pretreatment method.
本实施例中利用离子液体水溶液预处理微晶纤维素,也可以在橡胶加工过程中直接加入功能性离子液体,在橡胶加工过程中原位处理微晶纤维素。这两种工艺都有改性效果显著、工艺过程简单,绿色无污染的特点。技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。In this embodiment, the ionic liquid aqueous solution is used to pretreat the microcrystalline cellulose, and the functional ionic liquid can also be directly added in the rubber processing process to treat the microcrystalline cellulose in situ during the rubber processing process. These two processes have the characteristics of remarkable modification effect, simple process, green and pollution-free. Within the technical scope disclosed in the present invention, skilled persons can easily think of changes or substitutions, and all should be covered within the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310548311.7A CN103627055B (en) | 2013-11-08 | 2013-11-08 | Utilize the method that modified microcrystalline cellulose prepares tire tread glue |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310548311.7A CN103627055B (en) | 2013-11-08 | 2013-11-08 | Utilize the method that modified microcrystalline cellulose prepares tire tread glue |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103627055A CN103627055A (en) | 2014-03-12 |
CN103627055B true CN103627055B (en) | 2016-08-17 |
Family
ID=50208520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310548311.7A Expired - Fee Related CN103627055B (en) | 2013-11-08 | 2013-11-08 | Utilize the method that modified microcrystalline cellulose prepares tire tread glue |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103627055B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019053602A1 (en) * | 2017-09-13 | 2019-03-21 | Pirelli Tyre S.P.A. | Tyre for vehicle wheels comprising a composite reinforcing filler |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6449580B2 (en) * | 2014-07-25 | 2019-01-09 | 東洋ゴム工業株式会社 | Pneumatic tire manufacturing method and tire member manufacturing method |
CN104629105B (en) * | 2015-01-27 | 2017-01-11 | 山东大学 | Microcrystalline cellulose reinforced rubber wear-resistant material and preparation method thereof |
CN106087411B (en) * | 2016-06-06 | 2018-06-12 | 深圳市新纶科技股份有限公司 | A kind of modifying aramid fiber pulp and preparation method thereof and the brake block manufactured with it |
CN106519352B (en) * | 2016-09-20 | 2018-12-04 | 青岛科技大学 | Microcrystalline cellulose-nano silicon dioxide hybridization material, preparation method and its application |
CN106478991A (en) * | 2016-10-11 | 2017-03-08 | 青岛科技大学 | A kind of preparation method and applications of microcrystalline cellulose nano-ZnO hybrid material |
CN107674254A (en) * | 2017-09-29 | 2018-02-09 | 安徽北马科技有限公司 | A kind of production method of tire tread glue |
CN111793258B (en) * | 2020-07-24 | 2022-04-19 | 吉林农业大学 | A kind of corn by-product-based synthetic rubber environmentally friendly material and preparation method thereof |
CN114437430B (en) * | 2022-02-28 | 2023-08-11 | 青岛科技大学 | High-wear-resistance rubber-based composite material and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101412825A (en) * | 2008-11-28 | 2009-04-22 | 华南理工大学 | Rubber / modified microcrystalline cellulose composite material and preparation thereof |
CN102002173A (en) * | 2010-10-26 | 2011-04-06 | 华南理工大学 | Preparation method for nanocrystals cellulose/white carbon black/rubber composite material |
CN102382870A (en) * | 2011-08-10 | 2012-03-21 | 中国科学院西双版纳热带植物园 | Method for pretreating and hydrolyzing microcrystalline cellulose |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070006774A1 (en) * | 2005-06-29 | 2007-01-11 | Rogers Robin D | Ionic liquid reconstituted cellulose composites as solid support matrices |
-
2013
- 2013-11-08 CN CN201310548311.7A patent/CN103627055B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101412825A (en) * | 2008-11-28 | 2009-04-22 | 华南理工大学 | Rubber / modified microcrystalline cellulose composite material and preparation thereof |
CN102002173A (en) * | 2010-10-26 | 2011-04-06 | 华南理工大学 | Preparation method for nanocrystals cellulose/white carbon black/rubber composite material |
CN102382870A (en) * | 2011-08-10 | 2012-03-21 | 中国科学院西双版纳热带植物园 | Method for pretreating and hydrolyzing microcrystalline cellulose |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019053602A1 (en) * | 2017-09-13 | 2019-03-21 | Pirelli Tyre S.P.A. | Tyre for vehicle wheels comprising a composite reinforcing filler |
Also Published As
Publication number | Publication date |
---|---|
CN103627055A (en) | 2014-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103627055B (en) | Utilize the method that modified microcrystalline cellulose prepares tire tread glue | |
CN103102514B (en) | Ionic liquid modified graphene oxide/natural rubber vulcanized rubber and preparation method thereof | |
CN102002173B (en) | Preparation method for nanocrystals cellulose/white carbon black/rubber composite material | |
CN103627040B (en) | A kind of preparation method of pre-treatment Bai Tan Hei ∕ native rubber composite material | |
CN104893042B (en) | A kind of vulcanization of rubber glue containing ion liquid modified graphene oxide and preparation method thereof | |
CN110028702B (en) | Nano-silica-doped nano-cellulose material and preparation method and application thereof | |
CN104311906B (en) | A kind of preparation method of tire belt white carbon/NR masterbatch | |
CN105670040A (en) | Loaded rubber anti-aging agent and preparation method and application thereof | |
CN103923351B (en) | A kind of lignocellulose/the preparation method of polynite rubber reinforcing filler and the reinforcement of rubber | |
CN102205225A (en) | Method for preparing enhanced epoxy resin/curing agent double-wall microcapsule | |
CN106519352B (en) | Microcrystalline cellulose-nano silicon dioxide hybridization material, preparation method and its application | |
CN113462040A (en) | Preparation method of graphene-silicon dioxide modified natural rubber composite material with high thermal conductivity and excellent low-thermophysical property for tire | |
CN106146906A (en) | A kind of preparation method and application of natural emulsion filler | |
CN108641150A (en) | A kind of repeatable processing rubber material and preparation method thereof | |
CN104987584A (en) | Chemically grafted carbon fiber/EVA compound foam material as well as preparation method and application thereof | |
CN104530496B (en) | A kind of nano micro crystal cellulose based on waste paper and the preparation method of rubber composite thereof | |
CN103554563A (en) | Room-temperature sulfurization preparation method for carbon nanotube-filled natural rubber composite material | |
CN107163412A (en) | A kind of ethylene propylene diene rubber and preparation method thereof | |
CN109734960A (en) | Application of a Modified Silica in Combined Rubber | |
CN106366387A (en) | Preparing method of epoxidized natural rubber organic/inorganic hybrid material | |
CN109796790A (en) | Modified MXenes of a kind of ion insertion agent and preparation method thereof and the application in rubber | |
CN102816350B (en) | Wet mixing method for preparing natural rubber/carbon black-nano silica rubber compound | |
CN107337811A (en) | A kind of organic modification of surface clay mineral reinforced filling and its application | |
CN114524978B (en) | Chitosan/silicon dioxide nano hybrid material and biomimetic mineralization preparation method and application thereof | |
CN103131066A (en) | Active calcium silicate/rubber composite material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160817 Termination date: 20161108 |