CN103592712A - High-performance all-dielectric interference multilayer film-TCO series type light filter and manufacturing method thereof - Google Patents
High-performance all-dielectric interference multilayer film-TCO series type light filter and manufacturing method thereof Download PDFInfo
- Publication number
- CN103592712A CN103592712A CN201310614521.1A CN201310614521A CN103592712A CN 103592712 A CN103592712 A CN 103592712A CN 201310614521 A CN201310614521 A CN 201310614521A CN 103592712 A CN103592712 A CN 103592712A
- Authority
- CN
- China
- Prior art keywords
- film
- tco
- refractive index
- dielectric
- medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Optical Filters (AREA)
Abstract
本发明公开了一种高性能全介质干涉多层膜-TCO串联型滤光器及其制备方法,该滤光器包含:基底;设置在基底第一面上的TCO膜层;设置在TCO膜层上的全介质多层膜;及,设置在基底第二面上减反射膜层;该全介质多层膜由若干层高折射率介质膜与低折射率介质膜交替叠加构成。本发明滤光器的制备方法,全介质多层膜通过薄膜沉积系统制备,TCO滤波器通过薄膜沉积系统制备后进行退火处理,再将二者有机结合,最终得到本发明的串联滤光器。本发明的滤光器将全介质多层膜滤光器与TCO滤光器有机组合,集二者优点于一身,能对全光谱能量进行调制,使可利用的波段能量透射,不可利用的波段能量反射,提高滤光器的光谱效率,能结合热光伏系统使用,提高系统效率。
The invention discloses a high-performance all-dielectric interference multilayer film-TCO series optical filter and a preparation method thereof. The optical filter comprises: a base; a TCO film layer arranged on the first surface of the base; a TCO film layer arranged on the TCO film An all-dielectric multilayer film on the layer; and, an anti-reflection film layer arranged on the second surface of the base; the all-dielectric multilayer film is composed of several layers of high refractive index dielectric films and low refractive index dielectric films alternately stacked. In the preparation method of the optical filter of the present invention, the all-dielectric multilayer film is prepared by a thin film deposition system, and the TCO filter is prepared by a thin film deposition system, followed by annealing treatment, and then the two are organically combined to finally obtain the series optical filter of the present invention. The optical filter of the present invention organically combines an all-dielectric multi-layer film optical filter and a TCO optical filter, integrates the advantages of the two, and can modulate the energy of the entire spectrum, so that the energy of the available bands can be transmitted, and the energy of the unavailable bands can be transmitted. Energy reflection improves the spectral efficiency of the filter and can be used in combination with thermal photovoltaic systems to improve system efficiency.
Description
技术领域 technical field
本发明涉及一种串联型滤光器,具体地,涉及一种全介质多层膜滤光器与透明导电氧化物薄膜(简称TCO)滤光器结合起来,克服了彼此的缺点,将二者优点集于一身,是一种高光谱效率的滤光器。 The present invention relates to a tandem optical filter, in particular to a combination of an all-dielectric multilayer optical filter and a transparent conductive oxide thin film (TCO) optical filter, which overcomes the shortcomings of each other and combines the two It is a filter with high spectral efficiency that combines the advantages in one body. the
背景技术 Background technique
本发明的技术主要针对热光伏发电系统,热光伏系统在未来军用和民用供电方面都有着巨大的应用潜能,因其有众多优点:热源广泛,输出功率密度高,系统在工作中无移动部件,可靠性高等。滤波器是热光伏系统中关键部件,可以将热源辐射的能量进行选择性的通过与反射,减轻电池的热负担,提高热能的利用率,提升系统整体效率,因此滤波器的性能直接影响系统的整体效率。 The technology of the present invention is mainly aimed at thermal photovoltaic power generation systems. Thermal photovoltaic systems have great application potential in future military and civilian power supply because of their many advantages: extensive heat sources, high output power density, and no moving parts in the system. High reliability etc. The filter is a key component in a thermal photovoltaic system. It can selectively pass and reflect the energy radiated by the heat source, reduce the heat burden on the battery, improve the utilization rate of heat energy, and improve the overall efficiency of the system. Therefore, the performance of the filter directly affects the performance of the system. overall efficiency. the
发明内容 Contents of the invention
本发明的目的在于提供一种滤光器,其能将全介质多层膜滤光器与TCO滤光器进行有机组合,集二者优点于一身,对全光谱能量进行调制,使可利用的波段能量透射,不可利用的波段能量反射,以提高滤光器的光谱效率,可结合热光伏系统使用,提高系统效率。 The object of the present invention is to provide a kind of optical filter, it can organically combine the all-dielectric multi-layer optical filter and the TCO optical filter, combine the advantages of both, and modulate the full-spectrum energy, so that the available Band energy transmission and unusable band energy reflection to improve the spectral efficiency of the filter, which can be used in conjunction with thermal photovoltaic systems to improve system efficiency. the
为达到上述目的,本发明提供了一种高性能全介质干涉多层膜-TCO串联型滤光器,该滤光器包含: In order to achieve the above object, the invention provides a kind of high-performance all-dielectric interference multilayer film-TCO tandem optical filter, and this optical filter comprises:
基底, base,
设置在基底第一面上的TCO膜层; a TCO film layer disposed on the first surface of the substrate;
设置在TCO膜层上的全介质多层膜;及 an all-dielectric multilayer film disposed on the TCO film layer; and
设置在基底第二面上减反射膜层; An anti-reflection film layer is disposed on the second surface of the substrate;
所述的全介质多层膜是由若干层高折射率介质膜与低折射率介质膜交替叠加构成。 The all-dielectric multilayer film is composed of several layers of high-refractive-index dielectric films and low-refractive-index dielectric films alternately stacked.
上述的高性能全介质干涉多层膜-TCO串联型滤光器,其中,所述的全介质多层膜由8-50层高折射率介质膜、低折射率介质膜形成,其中,每层高折射率介质膜、低折射率介质膜的厚度为10-400nm。 The above-mentioned high-performance all-dielectric interference multilayer film-TCO tandem optical filter, wherein the all-dielectric multilayer film is formed of 8-50 layers of high-refractive-index dielectric films and low-refractive-index dielectric films, wherein each layer The thickness of the high refractive index medium film and the low refractive index medium film is 10-400nm. the
上述的高性能全介质干涉多层膜-TCO串联型滤光器,其中,所述的高折射率介质膜为Si膜;所述的低折射率介质膜为SiO2膜。 The above-mentioned high-performance all-dielectric interference multilayer film-TCO tandem optical filter, wherein, the high-refractive-index dielectric film is Si film; the low-refractive-index dielectric film is SiO2 film.
上述的高性能全介质干涉多层膜-TCO串联型滤光器,其中,所述的减反射膜层由若干层高折射率介质膜与低折射率介质膜交替叠加构成。 In the above-mentioned high-performance all-dielectric interference multilayer film-TCO tandem optical filter, the anti-reflection film layer is composed of several layers of high-refractive-index dielectric films and low-refractive-index dielectric films alternately stacked. the
上述的高性能全介质干涉多层膜-TCO串联型滤光器,其中,所述的减反射膜层由4-20层高折射率介质膜与低折射率介质膜形成,其中,每层高折射率介质膜、低折射率介质膜的厚度为10-400nm,所述的高折射率介质膜选择TiO2膜,所述的低折射率介质膜为SiO2膜。 The above-mentioned high-performance all-dielectric interference multilayer film-TCO tandem optical filter, wherein, the anti-reflection film layer is formed by 4-20 layers of high-refractive-index dielectric film and low-refractive-index dielectric film, wherein each layer is high The thickness of the refractive index medium film and the low refractive index medium film is 10-400nm, the high refractive index medium film is TiO 2 film, and the low refractive index medium film is SiO 2 film.
本发明还提供了一种上述的高性能全介质干涉多层膜-TCO串联型滤光器的制备方法,该方法包含以下具体步骤: The present invention also provides a method for preparing the above-mentioned high-performance all-dielectric interference multilayer film-TCO tandem filter, the method comprising the following specific steps:
步骤1,在10-3Pa的真空度下,将TCO膜以蒸发法镀制在基底上; Step 1, under a vacuum of 10-3Pa, the TCO film is plated on the substrate by evaporation;
步骤2,对镀制好TCO膜层的基底进行退火处理得到TCO滤光器,退火温度为550℃,退火时间为20分钟; Step 2, annealing the substrate coated with the TCO film layer to obtain a TCO filter, the annealing temperature is 550°C, and the annealing time is 20 minutes;
步骤3,将高折射率材料、低折射率材料分别放置于镀膜机内进行预熔,基底加温200℃,真空度为10-3Pa,将高折射率材料和低折射率材料蒸发起来,交替镀制在TCO滤光器表面; Step 3: Put the high-refractive-index material and the low-refractive-index material respectively in the coating machine for pre-melting, heat the substrate at 200°C, and vacuum at 10-3Pa, evaporate the high-refractive-index material and the low-refractive-index material, alternately Plated on the surface of TCO filter;
步骤4,在步骤3做好的滤光器的基底背面镀制减反射膜层,以增强可转化波段的透射率,得到全介质干涉介质膜-TCO串联滤光器。本发明的减反射膜是通过折射率不同的多层膜对入射光进行综合干涉调制,从而起到增透效果的,其中主要增透可利用波段的透射率,而不可利用波段主要通过TCO膜层进行高反射。 In step 4, an anti-reflection film is coated on the back of the substrate of the optical filter prepared in step 3 to enhance the transmittance of the convertible wavelength band, and obtain an all-dielectric interference dielectric film-TCO series optical filter. The anti-reflection film of the present invention performs comprehensive interference modulation on the incident light through multi-layer films with different refractive indices, so as to achieve the effect of anti-reflection, wherein the transmittance of the available wave band is mainly increased, and the unavailable wave band is mainly through the TCO film The layer is highly reflective.
上述的高性能全介质干涉多层膜-TCO串联型滤光器的制备方法,其中,所述步骤1中,TCO膜的镀制厚度达到300nm时,镀制完成。 The above-mentioned high-performance all-dielectric interference multilayer film-TCO tandem optical filter preparation method, wherein, in the step 1, the plating is completed when the plating thickness of the TCO film reaches 300 nm. the
上述的高性能全介质干涉多层膜-TCO串联型滤光器的制备方法,其中,所述的高折射率介质材料为Si材料;所述的低折射率介质材料为SiO2材料。 The above-mentioned high-performance all-dielectric interference multilayer film-TCO tandem optical filter preparation method, wherein, the high refractive index dielectric material is Si material; the low refractive index dielectric material is SiO 2 material.
上述的高性能全介质干涉多层膜-TCO串联型滤光器的制备方法,其中,在步骤3中,交替镀制的每层高折射率材料层、低折射率材料层的厚度均为10~400nm,层数为8-50层。 The above-mentioned high-performance all-dielectric interference multilayer film-TCO tandem optical filter preparation method, wherein, in step 3, the thickness of each layer of high refractive index material layer and low refractive index material layer alternately plated is 10 ~400nm, the number of layers is 8-50 layers. the
上述的高性能全介质干涉多层膜-TCO串联型滤光器的制备方法,其中,在步骤4中,所述的减反射膜层由4~20层高折射率介质层及低折射率介质层交替镀制形成,其中,所述的高折射率介质膜选择TiO2膜,所述的低折射率介质膜为SiO2膜。 The preparation method of the above-mentioned high-performance all-dielectric interference multilayer film-TCO tandem filter, wherein, in step 4, the anti-reflection film layer is composed of 4 to 20 high-refractive-index medium layers and low-refractive-index medium layers Layers are alternately plated, wherein the high refractive index dielectric film is TiO 2 film, and the low refractive index dielectric film is SiO 2 film.
本发明的全介质薄膜滤波器可设计光谱范围为短波部分(如小于4μm),通过薄膜沉积系统制备;TCO滤光器可设计光谱范围为长波部分(大于4μm),通过薄膜沉积系统制备后进行退火处理;再将二者有机结合,并进行适当调整,就可以进行大范围的光谱控制。 The all-dielectric thin-film filter of the present invention can be designed to have a short-wave spectral range (such as less than 4 μm) and can be prepared by a thin-film deposition system; the TCO filter can be designed to have a long-wave spectral range (greater than 4 μm) and can be prepared by a thin-film deposition system. Annealing treatment; then organically combine the two, and make appropriate adjustments, a wide range of spectral control can be performed. the
本发明首先在基片上制备TCO滤波膜层,其可以对≥4μm的长波部分进行高反射,并且在短波部分高透射,然后在镀制好的TCO膜层上制备多层介质膜,为高、低折射率膜层交替叠加的膜系,其可以对1.8~4μm波段进行高反射,短波部分高透射,最终形成短波高透射,长波高反射,并且有着很宽的反射带,提高了滤波器光谱效率,并且提升了整体热光伏系统效率。 The present invention first prepares a TCO filter film layer on the substrate, which can perform high reflection on the long-wave part of ≥ 4 μm, and high transmission in the short-wave part, and then prepare a multi-layer dielectric film on the plated TCO film layer, which is high, The film system with alternately stacked low-refractive index film layers can perform high reflection in the 1.8~4μm band, high transmission in the short-wave part, and finally form a high transmission in the short-wave, high reflection in the long-wave, and has a wide reflection band, which improves the filter spectrum. Efficiency, and improve the overall thermal photovoltaic system efficiency. the
本发明针对热光伏系统对光学滤波器的特殊需求,结合两种不同光谱特性的滤波器(TCO滤光膜层、多层介质膜滤光器),提供了一种高性能全介质干涉多层膜-TCO串联型滤光器,二者的结合可以使各自的优点进行有机的组合,提高了滤波器的光谱效率,同时也提高了热光伏系统的转化效率。 Aiming at the special requirements of thermal photovoltaic systems for optical filters, the present invention provides a high-performance all-dielectric interference multilayer by combining two filters with different spectral characteristics (TCO filter film layer and multilayer dielectric film filter) Membrane-TCO series filter, the combination of the two can make their respective advantages organically combined, improve the spectral efficiency of the filter, and also improve the conversion efficiency of the thermal photovoltaic system. the
全介质膜的主要缺点是在长波波段反射率低;TCO的缺点是截止带较宽;二者结合国内外尚无先例。 The main disadvantage of the all-dielectric film is the low reflectivity in the long-wave band; the disadvantage of TCO is the wide cut-off band; there is no precedent for the combination of the two at home and abroad. the
本发明的优势在于:将多层介质膜滤光膜系与TCO滤光膜层以及减反射膜层进行有机结合,将多层介质膜系在2~4μm波段高反射特性与TCO 滤波膜层在≥4μm波段的高反射特性组合在一起,并能增强透射率,集三者优点于一身,克服了各自的缺点和不足,提高了滤光器的光谱效率,从而提高了热光伏整体系统的效率。 The advantage of the present invention is that: organically combine the multilayer dielectric film filter film system with the TCO filter film layer and the anti-reflection film layer, and combine the high reflection characteristics of the multilayer dielectric film system in the 2-4 μm band with the TCO filter film layer The high reflection characteristics of the ≥4μm band are combined together, and the transmittance can be enhanced. It combines the advantages of the three, overcomes their respective shortcomings and deficiencies, and improves the spectral efficiency of the filter, thereby improving the efficiency of the thermal photovoltaic overall system. . the
附图说明 Description of drawings
图1为本发明的高性能全介质干涉多层膜-TCO串联型滤光器的结构示意图。 FIG. 1 is a schematic structural view of the high-performance all-dielectric interference multilayer film-TCO tandem optical filter of the present invention. the
图2为TCO滤光膜层光谱曲线图。 Figure 2 is a graph of the spectrum of the TCO filter film layer. the
图3为多层介质膜滤光器光谱曲线图。 Fig. 3 is a spectrum graph of a multilayer dielectric film filter. the
图4为本发明的高性能全介质干涉多层膜-TCO串联型滤光器的光谱曲线图。 Fig. 4 is a spectrum curve diagram of the high-performance all-dielectric interference multilayer film-TCO series filter of the present invention. the
具体实施方式 Detailed ways
以下结合实施例与附图对本发明的技术方案作进一步地说明。 The technical solutions of the present invention will be further described below in conjunction with the embodiments and the accompanying drawings. the
如图1所示为本发明的全介质干涉多层膜-TCO串联型滤光器的结构,该滤光器包含: As shown in Figure 1, it is the structure of the all-dielectric interference multilayer film-TCO tandem optical filter of the present invention, and this optical filter comprises:
基底10,
设置在基底10第一面上的TCO膜层20,其对≥4μm的不可利用波段高反射,对≤4μm的可利用波段高透射;
The
设置在TCO膜层20上的全介质多层膜30,其对1.8-4μm的不可利用波段高反射,对≤1.8μm的可利用波段高透射;
The all-
及 and
设置在基底10第二面上减反射膜层40,该减反射膜主要对可利用波段(≤1.8μm)进行增透;
An
所述的全介质多层膜30是由若干层高折射率介质膜与低折射率介质膜交替叠加构成。
The all-
入射光从本发明的高性能全介质干涉多层膜-TCO串联型滤光器的多层膜系一面入射,其得到的反射光谱曲线如图4所示,在≤1.8μm部分(可利用波段)高透射,≥1.8μm部分(不可利用波段)高反射,这样使得可以进行高效率利用的辐射光谱部分(≤1.8μm)通过滤光器到达光电池,进行高效光电转化,不可被利用的部分(≥1.8μm)被反射回来进行重复利用,这样可以提高能量的利用率,而且还减小了长波辐射对光电池的热负担,提高电池转化效率,从整体上提高系统的转化效率。 The incident light is incident from one side of the multilayer film system of the high-performance all-dielectric interference multilayer film-TCO tandem optical filter of the present invention, and the reflection spectrum curve obtained by it is shown in Figure 4. ) High transmittance, ≥1.8μm part (unusable band) high reflection, so that the part of the radiation spectrum (≤1.8μm) that can be used with high efficiency reaches the photocell through the filter for efficient photoelectric conversion, and the part that cannot be used ( ≥1.8μm) is reflected back for reuse, which can improve the utilization rate of energy, and also reduce the thermal burden of long-wave radiation on the photovoltaic cell, improve the conversion efficiency of the battery, and improve the conversion efficiency of the system as a whole. the
本发明的全介质干涉多层膜-TCO串联型滤光器的制作方式如下: The manufacturing method of the all-dielectric interference multilayer film-TCO series filter of the present invention is as follows:
1)将需要镀制的薄膜材料放置于镀膜机内坩埚中,将清洁好的基片固定于夹具上,然后关闭镀膜机舱门,对其进行抽真空,当真空度达到10-3Pa时,夹具开公转,打开电子枪电源,选择合适的电子枪参数(如束流50mA),将要镀制的TCO材料蒸发并附着在镀膜机顶部的K9玻璃上,通过晶体振荡膜厚仪实时监控薄膜厚度,当TCO膜的镀制厚度达到300nm时,镀制完成; 1) Place the film material to be plated in the crucible of the coating machine, fix the cleaned substrate on the fixture, then close the door of the coating machine, and vacuum it. When the vacuum reaches 10-3Pa, the fixture Turn on the revolution, turn on the electron gun power supply, select the appropriate electron gun parameters (such as beam current 50mA), evaporate the TCO material to be plated and attach it to the K9 glass on the top of the coating machine, monitor the film thickness in real time through the crystal oscillator film thickness meter, when the TCO When the coating thickness of the film reaches 300nm, the coating is completed;
2)然后将镀制好TCO膜层的基片放置于退火炉中进行退火处理,一般退火温度为550℃,退火时间为20分钟,最后得到TCO滤光器; 2) Then place the substrate coated with the TCO film layer in an annealing furnace for annealing treatment, the general annealing temperature is 550°C, and the annealing time is 20 minutes, and finally a TCO filter is obtained;
3)将需要的具有高低折射率材料放置于镀膜机内坩埚中,高折射率材料为Si材料,低折射率材料为SiO2材料,然后将上一步制备好的TCO滤光器固定于镀膜机顶部的夹具上,镀有薄膜面朝下,然后关闭镀膜机舱门,对其进行抽真空,并对基底加温200℃,夹具开公转,当真空度达到10-3Pa时,打开电子枪,将坩埚中的Si材料与SiO2材料进行预熔,然后将Si和SiO2蒸发起来,交替镀制在TCO滤光器表面(即镀制一层Si,再镀制一层SiO2,再镀制一层Si,再镀制一层SiO2……如此将两种材料交替镀制在TCO滤光器表面),通过膜厚仪实时监控薄膜厚度,每层薄膜厚度控制为10-400nm,层数为8-50层,镀制完成后,等待十分钟,破真空,取出滤光器; 3) Place the required high and low refractive index materials in the crucible of the coating machine, the high refractive index material is Si material, the low refractive index material is SiO 2 material, and then fix the TCO filter prepared in the previous step on the coating machine On the jig at the top, the film-coated side faces down, then close the coating machine cabin door, vacuumize it, and heat the substrate to 200°C. The Si material and the SiO 2 material in the pre-melting, and then Si and SiO 2 are evaporated, alternately plated on the surface of the TCO filter (that is, a layer of Si is plated, a layer of SiO 2 is plated, and a layer of SiO 2 is plated again. layer Si, and then plate a layer of SiO 2 ... so that the two materials are alternately plated on the surface of the TCO filter), and the film thickness is monitored in real time by a film thickness meter. The film thickness of each layer is controlled at 10-400nm, and the number of layers is 8-50 layers, after the plating is completed, wait for ten minutes, break the vacuum, and take out the filter;
4)最后在做好的滤光器背面镀制减反射膜层,减反射膜为4~20层,厚度范围在10~400nm的高、低折射率的多层膜交替镀制组合,所述的高折射率介质膜选择TiO2膜,所述的低折射率介质膜为SiO2膜;这样的减反射膜层结构能增强可转化波段的透射率,最后得到全介质干涉介质膜-TCO串联滤光器。 4) Finally, an anti-reflection film layer is coated on the back of the finished optical filter. The anti-reflection film is 4-20 layers, and the thickness range is 10-400nm. High and low refractive index multi-layer films are alternately plated and combined. The high refractive index dielectric film selects TiO 2 film, and the low refractive index dielectric film is SiO 2 film; such an anti-reflection film layer structure can enhance the transmittance of the convertible band, and finally obtain the all-dielectric interference dielectric film-TCO series filter.
本发明提供的高性能全介质干涉多层膜-TCO串联型滤光器,首先在基片上制备TCO滤波膜层,其可以对≥4μm的长波部分进行高反射,并且在短波部分高透射,如图2所示,然后在镀制好的TCO膜层上制备多层介质膜,为Si和SiO2高低折射率膜层交替叠加的膜系,其可以对1.8~4μm波段进行高反射,短波(≤1.8μm)部分高透射,如图3所示,最终形成短波高透射,长波高反射,如图4所示,并且有着很宽的反射带,提高了滤波器光谱效率,并且提升了整体热光伏系统效率。 The high-performance all-dielectric interference multilayer film-TCO tandem optical filter provided by the present invention first prepares a TCO filter film layer on the substrate, which can perform high reflection on the long-wave part of ≥ 4 μm, and high transmittance on the short-wave part, such as As shown in Figure 2, a multi-layer dielectric film is then prepared on the plated TCO film layer, which is a film system in which Si and SiO2 high and low refractive index film layers are alternately superimposed, which can perform high reflection on the 1.8~4μm band, short-wave (≤ 1.8μm) part of the high transmission, as shown in Figure 3, finally forms a short-wave high transmission, long-wave high reflection, as shown in Figure 4, and has a very wide reflection band, which improves the spectral efficiency of the filter and improves the overall thermophotovoltaic system efficiency. the
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。 Although the content of the present invention has been described in detail through the above preferred embodiments, it should be understood that the above description should not be considered as limiting the present invention. Various modifications and alterations to the present invention will become apparent to those skilled in the art upon reading the above disclosure. Therefore, the protection scope of the present invention should be defined by the appended claims. the
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310614521.1A CN103592712A (en) | 2013-11-28 | 2013-11-28 | High-performance all-dielectric interference multilayer film-TCO series type light filter and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310614521.1A CN103592712A (en) | 2013-11-28 | 2013-11-28 | High-performance all-dielectric interference multilayer film-TCO series type light filter and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103592712A true CN103592712A (en) | 2014-02-19 |
Family
ID=50082921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310614521.1A Pending CN103592712A (en) | 2013-11-28 | 2013-11-28 | High-performance all-dielectric interference multilayer film-TCO series type light filter and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103592712A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107356559A (en) * | 2017-06-01 | 2017-11-17 | 宁波大学 | The acquisition methods of refractive index at a kind of any wavelength of single layer optical film |
CN110212404A (en) * | 2019-04-17 | 2019-09-06 | 深港产学研基地(北京大学香港科技大学深圳研修院) | The automobile-used mixing Fresnel Lenses interferometric filter semiconductor laser of intelligence |
CN111856639A (en) * | 2020-07-15 | 2020-10-30 | 晋中学院 | An all-dielectric UV filter film |
CN112305655A (en) * | 2020-10-29 | 2021-02-02 | 沈阳仪表科学研究院有限公司 | B-level solar simulation optical filter for photovoltaic and plating method thereof |
CN114412243A (en) * | 2022-03-03 | 2022-04-29 | 长沙像素码科技有限公司 | Energy cabin system for efficiently configuring energy and circuit |
CN114919250A (en) * | 2022-05-13 | 2022-08-19 | 温州大学 | A dark-field imaging slide based on a multi-angle tunable filter film |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04122909A (en) * | 1990-09-14 | 1992-04-23 | Fuji Elelctrochem Co Ltd | Anti-reflection coating for adhesives on Faraday rotators |
CN201173977Y (en) * | 2008-04-02 | 2008-12-31 | 甘国工 | Optical filter of plasma display device |
CN102759768A (en) * | 2012-07-31 | 2012-10-31 | 杭州科汀光学技术有限公司 | Optical filter |
CN102826763A (en) * | 2012-09-25 | 2012-12-19 | 上海北玻玻璃技术工业有限公司 | Method for producing transparent conducting oxide (TCO) coated glass |
CN103151963A (en) * | 2013-03-27 | 2013-06-12 | 上海空间电源研究所 | Electric heating type universal thermophotovoltaic system |
CN203164459U (en) * | 2013-02-19 | 2013-08-28 | 东莞五方光电科技有限公司 | antireflection filter |
-
2013
- 2013-11-28 CN CN201310614521.1A patent/CN103592712A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04122909A (en) * | 1990-09-14 | 1992-04-23 | Fuji Elelctrochem Co Ltd | Anti-reflection coating for adhesives on Faraday rotators |
CN201173977Y (en) * | 2008-04-02 | 2008-12-31 | 甘国工 | Optical filter of plasma display device |
CN102759768A (en) * | 2012-07-31 | 2012-10-31 | 杭州科汀光学技术有限公司 | Optical filter |
CN102826763A (en) * | 2012-09-25 | 2012-12-19 | 上海北玻玻璃技术工业有限公司 | Method for producing transparent conducting oxide (TCO) coated glass |
CN203164459U (en) * | 2013-02-19 | 2013-08-28 | 东莞五方光电科技有限公司 | antireflection filter |
CN103151963A (en) * | 2013-03-27 | 2013-06-12 | 上海空间电源研究所 | Electric heating type universal thermophotovoltaic system |
Non-Patent Citations (1)
Title |
---|
茆磊: "热光伏系统数值模拟及其光谱控制方法研究", 《中国博士学位论文全文数据库工程科技Ⅱ辑》, no. 9, 30 September 2010 (2010-09-30), pages 43 - 68 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107356559A (en) * | 2017-06-01 | 2017-11-17 | 宁波大学 | The acquisition methods of refractive index at a kind of any wavelength of single layer optical film |
CN107356559B (en) * | 2017-06-01 | 2020-05-08 | 宁波大学 | Method for obtaining refractive index of single-layer optical film at any wavelength |
CN110212404A (en) * | 2019-04-17 | 2019-09-06 | 深港产学研基地(北京大学香港科技大学深圳研修院) | The automobile-used mixing Fresnel Lenses interferometric filter semiconductor laser of intelligence |
CN111856639A (en) * | 2020-07-15 | 2020-10-30 | 晋中学院 | An all-dielectric UV filter film |
CN111856639B (en) * | 2020-07-15 | 2022-06-14 | 晋中学院 | An all-dielectric UV filter film |
CN112305655A (en) * | 2020-10-29 | 2021-02-02 | 沈阳仪表科学研究院有限公司 | B-level solar simulation optical filter for photovoltaic and plating method thereof |
CN112305655B (en) * | 2020-10-29 | 2023-02-17 | 沈阳仪表科学研究院有限公司 | B-level solar simulation optical filter for photovoltaic and plating method thereof |
CN114412243A (en) * | 2022-03-03 | 2022-04-29 | 长沙像素码科技有限公司 | Energy cabin system for efficiently configuring energy and circuit |
CN114919250A (en) * | 2022-05-13 | 2022-08-19 | 温州大学 | A dark-field imaging slide based on a multi-angle tunable filter film |
CN114919250B (en) * | 2022-05-13 | 2023-07-25 | 温州大学 | Dark field imaging glass slide based on multi-angle tunable filter film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103592712A (en) | High-performance all-dielectric interference multilayer film-TCO series type light filter and manufacturing method thereof | |
JP2010055058A (en) | Broadband reflecting mirror | |
CN104865618B (en) | Infrared stealth thin film with spectral selectivity and low emission rate and preparation method of infrared stealth thin film | |
CN103884122B (en) | A kind of solar energy optical-thermal conversion transparent heat mirror of heat collector and preparation method thereof | |
CN102650709A (en) | Band-pass filter of spatial silicon solar cell | |
CN109683214A (en) | Double-sided coated glass and production technology applied to visible light and near infrared light wave band | |
CN104865617B (en) | An infrared stealth film with spectral selectivity and low emissivity and its preparation method | |
CN104035147B (en) | Take germanium as the LONG WAVE INFRARED anti-reflection film with sunshine reflection function of substrate | |
CN102033255A (en) | Method for preparing broad-spectrum wide-angle antireflection sub-wave length structure | |
CN108726891A (en) | Low radiation coated glass and preparation method thereof | |
WO2024251307A1 (en) | High-transmittance radiative cooling protective film and use thereof | |
CN103066161B (en) | Preparation method for solar cell composite antireflection coating | |
CN108515743B (en) | A kind of metal/dielectric ultra-broadband absorption film and preparation method thereof | |
CN104765084A (en) | Laser dual-band highly-reflective dielectric film and preparation method thereof | |
CN214675056U (en) | A photovoltaic module with a reflective device | |
CN115011936B (en) | Selective spectroscopic heat absorption coating based on periodical loss medium and preparation method thereof | |
CN214675055U (en) | A photovoltaic power generation system with selective reflection film | |
Kim et al. | Design and fabrication of color coatings for high-performance building-integrated photovoltaics | |
CN215867429U (en) | Device structure for improving quantum efficiency of SiC light guide device | |
CN214795268U (en) | Perfect Broadband Absorber for Visible Light Based on Transition Metal Films | |
CN209624816U (en) | A kind of tunable wave length narrow band filter based on gold nano grain | |
CN203116350U (en) | Solar photothermal conversion heat collector transparent thermal lens with anti-reflection coating system structure | |
CN103426939A (en) | Composite antireflective film for solar cells and preparation method thereof | |
CN113098385A (en) | Photovoltaic module with reflecting device | |
CN113104678A (en) | A winding type quick storage reflective device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140219 |