CN103281022B - Double-efficiency fuzzy optimization control method for doubly-fed wind generator - Google Patents
Double-efficiency fuzzy optimization control method for doubly-fed wind generator Download PDFInfo
- Publication number
- CN103281022B CN103281022B CN201310206627.8A CN201310206627A CN103281022B CN 103281022 B CN103281022 B CN 103281022B CN 201310206627 A CN201310206627 A CN 201310206627A CN 103281022 B CN103281022 B CN 103281022B
- Authority
- CN
- China
- Prior art keywords
- reactive power
- value
- wind
- control
- speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000005457 optimization Methods 0.000 title abstract description 8
- 230000008569 process Effects 0.000 claims abstract description 24
- 238000010248 power generation Methods 0.000 claims abstract description 14
- 230000008859 change Effects 0.000 claims description 100
- 238000005070 sampling Methods 0.000 claims description 39
- 238000013139 quantization Methods 0.000 claims description 17
- 230000005611 electricity Effects 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 5
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 230000006872 improvement Effects 0.000 abstract description 2
- 230000006870 function Effects 0.000 description 30
- 238000011156 evaluation Methods 0.000 description 8
- 238000011217 control strategy Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000010355 oscillation Effects 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 230000009977 dual effect Effects 0.000 description 5
- 230000004907 flux Effects 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000006880 cross-coupling reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000010977 unit operation Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
Landscapes
- Control Of Eletrric Generators (AREA)
- Wind Motors (AREA)
Abstract
一种双馈风力发电机双重效率模糊优化的控制方法,其改进在于:开始并网发电后、风力发电机达到允许最高转速之前,先采用最大风能追踪控制对风力发电机进行控制,在最大风能追踪控制过程中,将控制模式适时切换至最优无功搜索控制,从而实现对发电机运行效率的双重优化;本发明的有益技术效果是:在最大风能追踪过程中,可通过改变模糊推理规则表的输入变量的量化因子,提高模糊推理规则表的搜索精度,避免出现调节死区,提高风力发电机对风能的利用率;在最优无功追踪过程中,可有效抑制颤振、提高搜索精度,减小风力发电机的自身损耗,提高有功输出。
A double-fed wind generator dual-efficiency fuzzy optimization control method, the improvement of which is: after the start of grid-connected power generation and before the wind generator reaches the maximum allowable speed, the maximum wind energy tracking control is used to control the wind generator. In the tracking control process, the control mode is switched to the optimal reactive power search control in good time, thereby realizing the double optimization of the operating efficiency of the generator; the beneficial technical effect of the present invention is: in the maximum wind energy tracking process, by changing the fuzzy reasoning rules The quantitative factor of the input variable of the table improves the search accuracy of the fuzzy reasoning rule table, avoids the adjustment dead zone, and improves the utilization rate of wind energy by the wind turbine; in the process of optimal reactive power tracking, it can effectively suppress flutter and improve the search accuracy. Accuracy, reducing the self-loss of the wind turbine and increasing the active output.
Description
技术领域technical field
本发明涉及一种风力发电机控制技术,尤其涉及一种双馈风力发电机双重效率模糊优化的控制方法。The invention relates to a wind power generator control technology, in particular to a double-fed wind power generator double-efficiency fuzzy optimization control method.
背景技术Background technique
对双馈风力发电机进行双重效率模糊优化控制,可以同时实现最大风能追踪和发电机最低损耗运行的双重控制目标,这对增加机组的发电量意义重大,因此,对风电机组的运行效率和整体运行水平作进一步的深入研究具有重要意义。The dual-efficiency fuzzy optimal control of doubly-fed wind turbines can simultaneously achieve the dual control objectives of maximum wind energy tracking and generator minimum loss operation, which is of great significance for increasing the power generation of the unit. It is of great significance to conduct further in-depth research on the operation level.
一般地,通过动态设定发电机定子有功功率参考进行间接转速控制,可实现无风速测量下的最大风能追踪。而发电机定子有功功率的设定与风机的特性有关。在实际中,风机参数和空气密度等参数会影响风机特性。在机组运行中的发电机定子有功功率设定将始终偏离最优值,影响最大风能的追踪效果。因此,采用模糊逻辑搜索风机最优转速,实现无风速测量下的最大风能追踪,不失为一种较好的方法;另一方面,当选取最大程度降低双馈风力发电机损耗作为无功功率参考值的原则时,由于在计算表达式中要涉及到发电机电阻、电感等多个参数,其测量受到精度限制,且电阻阻值又受温度的影响明显,所以这种策略在实际运行中难以真正达到发电机损耗最低。而采用模糊逻辑搜索发电机的最优无功,可不依赖发电机参数的准确性,具有良好适应能力。因此,可以采用模糊逻辑策略分别优化发电机转速和无功功率设定,实现无风速测量下最大风能追踪和发电机最低损耗运行双重目标,从而避免最优参考值设定对于对象参数精确性的依赖,这是利用人工智能决策的优势所在。Generally, by dynamically setting the active power reference of the generator stator for indirect speed control, the maximum wind energy tracking without wind speed measurement can be realized. The setting of the active power of the generator stator is related to the characteristics of the fan. In practice, parameters such as fan parameters and air density will affect fan characteristics. The generator stator active power setting during unit operation will always deviate from the optimal value, which will affect the tracking effect of the maximum wind energy. Therefore, it is a better method to use fuzzy logic to search for the optimal speed of the wind turbine to realize the maximum wind energy tracking without wind speed measurement; principle, due to the The calculation expression involves many parameters such as generator resistance and inductance. The measurement is limited by accuracy, and the resistance value is significantly affected by temperature. Therefore, it is difficult for this strategy to achieve the lowest generator loss in actual operation. The use of fuzzy logic to search for the optimal reactive power of the generator does not depend on the accuracy of the generator parameters and has good adaptability. Therefore, the fuzzy logic strategy can be used to optimize the generator speed and reactive power setting respectively, so as to achieve the dual goals of maximum wind energy tracking and minimum loss operation of the generator without wind speed measurement, so as to avoid the optimal reference value setting from affecting the accuracy of the object parameters. Dependency, which is the advantage of using artificial intelligence decision-making.
一方面,在利用模糊逻辑实现最大风能追踪搜索最优转速参考值过程中,当以一定的搜索步长迫近最佳点时,在小偏差范围时仍然存在着一个调节死区。导致对转速搜索在最佳点附近形成极限环振荡,与此同时输出功率也将在最大功率点附近振荡,限制了模糊逻辑对最优转速参考值和最大功率的高精度搜索与定位,由此会带来传动轴系的长期振动,这将对风机机械部件造成较大损害。这是模糊逻辑搜索存在的缺陷,因此需要采取相应的措施来提高搜索的精度;同时,这里将双馈风力发电机实现最大风能追踪和最低损耗运行作为双重控制目标,需要解决两者之间协调的问题。因为只有在完成了最大风能追踪搜索后,才能继续进行下一步最优无功参考值的搜索。因此,所采取的提高搜索精度的措施还应具有简单、快速的特点。在迅速完成对最大风能搜索后,能很快进入下一步对最优无功参考值的搜索。On the one hand, in the process of using fuzzy logic to realize the maximum wind energy tracking and search for the optimal speed reference value, when approaching the optimal point with a certain search step size, there is still an adjustment dead zone in the small deviation range. As a result, the speed search forms a limit cycle oscillation near the optimal point, and at the same time, the output power will also oscillate near the maximum power point, which limits the high-precision search and positioning of the optimal speed reference value and maximum power by fuzzy logic. It will cause long-term vibration of the transmission shaft, which will cause great damage to the mechanical parts of the fan. This is the defect of fuzzy logic search, so it is necessary to take corresponding measures to improve the accuracy of the search; at the same time, here, the double-fed wind turbine to achieve maximum wind energy tracking and minimum loss operation is the dual control goal, and it is necessary to solve the problem of coordination between the two. The problem. Because only after the maximum wind energy tracking search is completed, the search for the next optimal reactive power reference value can be continued. Therefore, the measures taken to improve the search accuracy should also be simple and fast. After quickly completing the search for the maximum wind energy, the next step of searching for the optimal reactive power reference value can be quickly entered.
另一方面,在对最优无功搜索的过程中,当前所采用单一的模糊逻辑搜索也存在着搜索振荡问题。如何能快速搜索到高精度的最优无功值,降低搜索振荡,使发电机自身的损耗最小,进一步提高发电机运行效率,这也是单一模糊逻辑搜索需要解决的问题。On the other hand, in the process of searching for optimal reactive power, the single fuzzy logic search currently used also has the problem of search oscillation. How to quickly search for the optimal reactive power value with high precision, reduce the search oscillation, minimize the loss of the generator itself, and further improve the operating efficiency of the generator is also a problem to be solved by the single fuzzy logic search.
发明内容Contents of the invention
针对背景技术中的问题,本发明提出了一种双馈风力发电机双重效率模糊优化的控制方法,包括采用双馈控制系统控制的风力发电机;当风速大于或等于切入风速时,风力发电机并网发电,随着风速的增大,当风力发电机达到允许最高转速时,进入恒转速发电状态,其特征在于:开始并网发电后、风力发电机达到允许最高转速之前,采用如下控制方法对风力发电机进行控制:Aiming at the problems in the background technology, the present invention proposes a double-fed wind generator double-efficiency fuzzy optimization control method, including a wind generator controlled by a double-fed control system; when the wind speed is greater than or equal to the cut-in wind speed, the wind generator Grid-connected power generation, with the increase of wind speed, when the wind turbine reaches the allowable maximum speed, it enters the constant speed power generation state, which is characterized in that: after starting grid-connected power generation and before the wind turbine reaches the allowable maximum speed, the following control method is adopted To control the wind turbine:
风力发电机刚开始并网发电时,先按如下方法进行最大风能追踪控制:When the wind turbine is first connected to the grid for power generation, the maximum wind energy tracking control should be carried out as follows:
1)当风速大于或等于切入风速时,风力发电机并网发电,对风力发电机的转速和有功功率进行连续采样,每个采样周期内,对转速的变化值和有功功率的变化值进行计算;设单个采样周期内记录到的转速变化值为Δωri,单个采样周期内记录到的有功功率变化值为Δpei,i为采样次数,i=1、2、3、4…n;设Δωr1和Δpe1均为正值;1) When the wind speed is greater than or equal to the cut-in wind speed, the wind generator is connected to the grid to generate electricity, and the speed and active power of the wind generator are continuously sampled, and the change value of the speed and the change value of the active power are calculated in each sampling period ; Suppose the rotational speed change value recorded in a single sampling period is Δω ri , the active power change value recorded in a single sampling period is Δp ei , i is the number of samples, i=1, 2, 3, 4...n; set Δω Both r1 and Δp e1 are positive;
2)第二采样周期中,将Lpe1和Δωr1作为第一模糊推理规则表的两个输入变量,根据第一模糊推理规则表获得理论转速变化值,根据理论转速变化值计算出风力发电机的优化转速值,双馈控制系统根据优化转速值对风力发电机转速进行调节;进入步骤3);第二采样周期也即形成第一控制周期;2) In the second sampling period, Lp e1 and Δω r1 are used as the two input variables of the first fuzzy inference rule table, and the theoretical speed change value is obtained according to the first fuzzy inference rule table, and the wind turbine generator is calculated according to the theoretical speed change value The optimized rotational speed value, the double-fed control system adjusts the rotational speed of the wind turbine according to the optimized rotational speed value; enter step 3); the second sampling period also forms the first control period;
其中,Lpe1为对应kp和Δpe1的有功功率输入变量,Lpe1=kp·Δpe1,kp为对应Δpei的输入变量量化因子;Among them, Lp e1 is the active power input variable corresponding to k p and Δp e1 , Lp e1 = k p Δp e1 , k p is the quantization factor of the input variable corresponding to Δp ei ;
3)后续控制周期中,将当前的Lpei和前一控制周期中获得的理论转速变化值作为第一模糊推理规则表的两个输入变量,根据第一模糊推理规则表获得理论转速变化值,根据理论转速变化值计算出风力发电机的优化转速值;双馈控制系统根据对应的优化转速值对风力发电机转速进行连续、动态调节;进入步骤4);3) In the subsequent control cycle, the current Lp ei and the theoretical speed change value obtained in the previous control cycle are used as the two input variables of the first fuzzy inference rule table, and the theoretical speed change value is obtained according to the first fuzzy inference rule table, Calculate the optimal speed value of the wind turbine according to the theoretical speed change value; the double-fed control system continuously and dynamically adjusts the speed of the wind generator according to the corresponding optimal speed value; enter step 4);
其中,Lpei=kp·Δpei;Lpei为对应kp和Δpei的有功功率输入变量;Among them, Lp ei =k p ·Δp ei ; Lp ei is the active power input variable corresponding to k p and Δp ei ;
4)在步骤3)的控制过程中,将当前采样周期对应的Δωri的绝对值|Δωri|与Δωr1/k1进行实时比较:若|Δωri|大于Δωr1/k1,则返回步骤3);若|Δωri|小于或等于Δωr1/k1,则进入步骤5);4) In the control process of step 3), compare the absolute value of Δω ri |Δω ri | corresponding to the current sampling period with Δω r1 /k 1 in real time: if |Δω ri | is greater than Δω r1 /k 1 , return Step 3); if |Δω ri | is less than or equal to Δω r1 /k 1 , go to step 5);
其中,k1为根据经验数据获得的调节因子,k1在2.5~3.5之间取值;Among them, k 1 is an adjustment factor obtained from empirical data, and k 1 takes a value between 2.5 and 3.5;
5)将当前的Lpei *和前一控制周期中获得的理论转速变化值作为第一模糊推理规则表的两个输入变量,根据第一模糊推理规则表获得理论转速变化值,根据理论转速变化值计算出风力发电机的优化转速值;双馈控制系统根据对应的优化转速值对风力发电机转速进行连续、动态调节;进入步骤6);5) Take the current Lp ei * and the theoretical rotational speed change value obtained in the previous control cycle as the two input variables of the first fuzzy inference rule table, obtain the theoretical rotational speed change value according to the first fuzzy inference rule table, and obtain the theoretical rotational speed change value according to the theoretical rotational speed change value to calculate the optimal speed value of the wind turbine; the double-fed control system continuously and dynamically adjusts the speed of the wind turbine according to the corresponding optimal speed value; enter step 6);
其中,Lpei *=Δpei·ky,Lpei *为对应ky和Δpei的有功功率输入变量,ky=kp·k1;ky为调节后的对应Δpei的输入变量量化因子;Among them, Lp ei * = Δp ei · k y , Lp ei * is the active power input variable corresponding to ky and Δp ei , k y = k p · k 1 ; k y is the quantization of the input variable corresponding to Δp ei after adjustment factor;
6)将当前采样周期对应的|Δωri|与εwmin进行实时比较:若|Δωri|大于或等于εwmin,则返回步骤5);若|Δωri|小于εwmin,则由最大风能追踪控制切换至最优无功搜索控制;6) Compare |Δω ri | corresponding to the current sampling period with ε wmin in real time: if |Δω ri | is greater than or equal to ε wmin , return to step 5); if |Δω ri | The control is switched to optimal reactive power search control;
其中,εwmin为对应最大风能追踪控制的临界切换值;Among them, εwmin is the critical switching value corresponding to the maximum wind energy tracking control;
进入最优无功搜索控制后,按如下步骤进行控制:After entering the optimal reactive power search control, control according to the following steps:
1]对风力发电机的无功功率和有功功率进行连续采样,每个无功功率采样周期内,对无功功率的变化值和有功功率的变化值进行计算;设单个无功功率采样周期内记录到的无功功率变化值为ΔQsv,单个无功功率采样周期内记录到的有功功率变化值为Δpv,v为采样次数,v=1、2、3、4…n;1] Continuously sample the reactive power and active power of the wind turbine, and calculate the change value of reactive power and the change value of active power in each reactive power sampling cycle; set a single reactive power sampling cycle The recorded reactive power change value is ΔQ sv , and the recorded active power change value in a single reactive power sampling period is Δp v , where v is the number of samples, v=1, 2, 3, 4...n;
2]第二无功功率采样周期中,将ΔQs1和Δf1作为第二模糊推理规则表的两个输入变量,根据第二模糊推理规则表获得理论无功变化值,根据理论无功变化值计算出风力发电机的优化无功功率值,双馈控制系统根据优化无功功率值对风力发电机的无功功率进行调节;进入步骤3];第二无功功率采样周期也即形成第一无功控制周期;2] In the second reactive power sampling cycle, ΔQ s1 and Δf 1 are used as the two input variables of the second fuzzy inference rule table, and the theoretical reactive power change value is obtained according to the second fuzzy inference rule table, and the theoretical reactive power change value is obtained according to the theoretical reactive power change value Calculate the optimal reactive power value of the wind-driven generator, and the doubly-fed control system adjusts the reactive power of the wind-driven generator according to the optimized reactive power value; enter step 3]; the second reactive power sampling cycle also forms the first Reactive power control period;
其中,Δf1为对应Δp1的有功功率输入变量,Δf1=-Δp1·kf,kf为对应Δpv的输入变量量化因子;Among them, Δf 1 is the active power input variable corresponding to Δp 1 , Δf 1 =-Δp 1 k f , and k f is the quantization factor of the input variable corresponding to Δp v ;
3]后续无功控制周期中,将当前Δfv和前一无功控制周期中获得的理论无功变化值作为第二模糊推理规则表的两个输入变量,根据第二模糊推理规则表获得理论无功变化值,根据理论无功变化值计算出风力发电机的优化无功功率值,双馈控制系统根据优化无功功率值对风力发电机的无功功率进行连续、动态调节;进入步骤4];3] In the subsequent reactive power control cycle, the current Δf v and the theoretical reactive power change value obtained in the previous reactive power control cycle are used as the two input variables of the second fuzzy inference rule table, and according to the second fuzzy inference rule table, the theoretical Reactive power change value, calculate the optimal reactive power value of the wind turbine according to the theoretical reactive power change value, and the double-fed control system continuously and dynamically adjusts the reactive power of the wind turbine according to the optimal reactive power value; enter step 4 ];
其中,Δfv为对应Δpv的有功功率输入变量,Δfv=-Δpv·kf;Among them, Δf v is the active power input variable corresponding to Δp v , Δf v =-Δp v k f ;
4]在步骤3]的控制过程中,每个无功控制周期内都将当前ΔQsv的绝对值|ΔQsv|与k2·|ΔQs1|进行实时比较:4] In the control process of step 3], the absolute value of current ΔQ sv |ΔQ sv | is compared with k 2 |ΔQ s1 | in real time in each reactive power control cycle:
若|ΔQsv|大于k2·|ΔQs1|,则继续将Δpv的绝对值|Δpv|与εw1进行比较:若|Δpv|大于εw1,则停止最优无功搜索控制,同时,双馈控制系统根据设定的无功功率额定值对风力发电机的无功功率进行调节,并切换至最大风能追踪控制;若|Δpv|≤εw1,则返回步骤3];If |ΔQ sv | is greater than k 2 |ΔQ s1 |, continue to compare the absolute value of Δp v |Δp v | with ε w1 : if |Δp v | is greater than ε w1 , stop the optimal reactive power search control, At the same time, the doubly-fed control system adjusts the reactive power of the wind turbine according to the set reactive power rating, and switches to the maximum wind energy tracking control; if |Δp v |≤ε w1 , return to step 3];
若|ΔQsv|小于或等于k2·|ΔQs1|,则进入步骤5];If |ΔQ sv | is less than or equal to k 2 ·|ΔQ s1 |, enter step 5];
其中,k2为根据经验数据获得的调节因子,k2在0.3~0.4之间取值;Among them, k 2 is an adjustment factor obtained from empirical data, and k 2 takes a value between 0.3 and 0.4;
5]将当前Δfv和前一无功控制周期中获得的理论无功变化值作为第三模糊推理规则表的两个输入变量,根据第三模糊推理规则表获得理论无功变化值,根据理论无功变化值计算出风力发电机的优化无功功率值,双馈控制系统根据优化无功功率值对风力发电机的无功功率进行连续、动态调节;进入步骤6];5] The current Δf v and the theoretical reactive power change value obtained in the previous reactive power control cycle are used as the two input variables of the third fuzzy inference rule table, and the theoretical reactive power change value is obtained according to the third fuzzy inference rule table, according to the theoretical The reactive power change value calculates the optimized reactive power value of the wind-driven generator, and the doubly-fed control system continuously and dynamically adjusts the reactive power of the wind-driven generator according to the optimized reactive power value; enter step 6];
6]在步骤5]的控制过程中,每个无功控制周期内都将|Δpv|与εw1进行实时比较:6] In the control process of step 5], the real-time comparison between |Δp v | and ε w1 is performed in each reactive power control cycle:
若满足|Δpv|>εw1的条件,则停止最优无功搜索控制,同时,双馈控制系统根据设定的无功功率额定值对风力发电机的无功功率进行调节,并切换至最大风能追踪控制;若满足|Δpv|≤εw1的条件,则返回步骤5];If the condition of |Δp v |>ε w1 is satisfied, the optimal reactive power search control is stopped, and at the same time, the doubly-fed control system adjusts the reactive power of the wind turbine according to the set reactive power rating, and switches to Maximum wind energy tracking control; if the condition of |Δp v |≤ε w1 is met, return to step 5];
其中,εw1为对应最优无功搜索控制的临界切换值。Among them, ε w1 is the critical switching value corresponding to the optimal reactive power search control.
本发明与现有的模糊效率优化方法不同的在于:The present invention is different from the existing fuzzy efficiency optimization method in that:
一方面,在实现最大风能追踪的过程中,当通过模糊搜索找到的优化转速值逐渐向最优转速参考值逼近时,本发明可在不增加模糊推理规则数和计算量的条件下,仅通过增大输入变量量化因子kp,来提高控制系统对发电机定转子总有功输入增量Δpei的分辨率,使得控制系统可对微小的Δpei做出反应,增大其控制作用,减少搜索振荡,得到精度更高的最优转速参考值;同时,该解决方案简单,在迅速完成对最大风能追踪的处理后,很快地进入最优无功搜索的处理阶段,能较好解决最大风能追踪和最优无功搜索两者之间的协调问题。On the one hand, in the process of realizing maximum wind energy tracking, when the optimal rotational speed value found through fuzzy search is gradually approaching the optimal rotational speed reference value, the present invention can only pass Increase the input variable quantization factor k p to improve the resolution of the control system to the total active input increment Δpe ei of the generator stator and rotor, so that the control system can respond to the small Δpe ei , increase its control effect, and reduce the search Oscillation, the optimal speed reference value with higher accuracy is obtained; at the same time, the solution is simple, and after quickly completing the processing of the maximum wind energy tracking, it quickly enters the processing stage of the optimal reactive power search, which can better solve the maximum wind energy A coordination problem between tracking and optimal var search.
另一方面,在实现最优无功搜索过程中,针对采用单一模糊逻辑搜索存在搜索振荡的问题,本发明采用两级模糊逻辑搜索方式:用粗调模糊逻辑(即前文中的第二模糊推理表)以加快搜索速度,用细调模糊逻辑(即前文中的第三模糊推理表)以提高搜索的准确性,解决了采用单一模糊逻辑搜索中快速性和精确性之间存在矛盾的问题,使发电机自身的定、转子铜耗最小,更有利于发电机有功输出进一步提高。On the other hand, in the process of realizing the optimal reactive power search, in order to solve the problem of search oscillation when using a single fuzzy logic search, the present invention adopts a two-stage fuzzy logic search method: use coarse-tuning fuzzy logic (that is, the second fuzzy reasoning in the preceding text) table) to speed up the search, fine-tune the fuzzy logic (that is, the third fuzzy inference table in the previous article) to improve the accuracy of the search, and solve the problem of contradiction between the speed and accuracy in the search using a single fuzzy logic, The copper loss of the generator's own stator and rotor is minimized, which is more conducive to the further improvement of the active power output of the generator.
本发明的有益技术效果是:在最大风能追踪过程中,可通过改变模糊推理规则表的输入变量的量化因子,提高模糊推理规则表的搜索精度,避免出现调节死区,提高风力发电机对风能的利用率;在最优无功追踪过程中,可有效抑制颤振、提高搜索精度,减小风力发电机的自身损耗,提高有功输出。The beneficial technical effects of the present invention are: in the process of tracking the maximum wind energy, by changing the quantization factor of the input variable of the fuzzy reasoning rule table, the search accuracy of the fuzzy reasoning rule table can be improved, the adjustment dead zone can be avoided, and the wind power generator's ability to wind energy can be improved. In the optimal reactive power tracking process, it can effectively suppress flutter, improve search accuracy, reduce the self-loss of wind turbines, and increase active power output.
附图说明Description of drawings
图1、双馈风力发电机控制系统原理示意图;Figure 1. Schematic diagram of the doubly-fed wind turbine control system;
图2、双馈风力发电机全域段控制原理图;Figure 2. Schematic diagram of the global segment control of doubly-fed wind turbines;
图3、不同风速下风力机输出机械功率与转速关系图;Figure 3. The relationship between the output mechanical power and the rotational speed of the wind turbine at different wind speeds;
图4、评估函数f与的关系曲线图;Figure 4. Evaluation function f vs. relationship curve;
图5、实现第一模糊推理规则表的模糊控制器原理示意图;Fig. 5, realize the schematic diagram of the fuzzy controller principle of the first fuzzy inference rule table;
图6、Lpei的模糊隶属函数;Fig. 6, the fuzzy membership function of Lp ei ;
图7、实现第二模糊推理规则表和第三模糊推理规则表的模糊控制器原理图;Fig. 7, realize the fuzzy controller schematic diagram of the second fuzzy inference rule table and the third fuzzy inference rule table;
图8、第二模糊推理规则表的输入变量Δfv的模糊隶属函数;Fig. 8, the fuzzy membership function of the input variable Δf v of the second fuzzy inference rule table;
图9、第二模糊推理规则表的输入变量ΔQsv的模糊隶属函数;Fig. 9, the fuzzy membership function of the input variable ΔQ sv of the second fuzzy inference rule table;
图10、第二模糊推理规则表的输出变量ΔQs的模糊隶属函数;Fig. 10, the fuzzy membership function of the output variable ΔQ s of the second fuzzy inference rule table;
图11、第三模糊推理规则表的输入变量Δfv的模糊隶属函数;The fuzzy membership function of the input variable Δf v of Fig. 11, the 3rd fuzzy inference rule table;
图12、第三模糊推理规则表的输入变量ΔQsv的模糊隶属函数;Fig. 12, the fuzzy membership function of the input variable ΔQ sv of the third fuzzy inference rule table;
图13、第三模糊推理规则表的输出变量ΔQs的模糊隶属函数;Fig. 13, the fuzzy membership function of the output variable ΔQ s of the third fuzzy inference rule table;
图14、本发明的逻辑框图。Fig. 14, the logical block diagram of the present invention.
具体实施方式Detailed ways
用于双馈风力发电机控制的系统如图1所示,该系统采用基于定子磁链定向的矢量控制系统,实现发电机电磁转矩和转子励磁之间的解耦,再经过前馈补偿去除由反电动势引起的交叉耦合项后,可以通过调节转子电压的d、q轴分量分别控制发电机转子磁链和电磁转矩。The system used for doubly-fed wind turbine control is shown in Figure 1. The system uses a vector control system based on stator flux orientation to realize the decoupling between the generator electromagnetic torque and rotor excitation, and then removes it through feed-forward compensation. After the cross-coupling term caused by the back electromotive force, the generator rotor flux linkage and electromagnetic torque can be controlled respectively by adjusting the d and q axis components of the rotor voltage.
实际环境中,桨叶转速随风速变化而变化,风力发电机的运行状态又会随桨叶转速变化而变化;当风速小于切入风速时,风力发电机不并网发电,当风速大于或等于切入风速时,风力发电机并网发电;在最大风能追踪区,风电机组的转速随风速作相应的变化,以确保风力机的风能利用系数始终保持为最大值。此时,风力机控制子系统实行定桨距控制,发电机控制子系统通过发电机的输出功率来调节机组的转速,实现变速恒频运行;在恒转速区时,风电机组已达最高转速,但风力机的输出功率尚未达到额定工作状态,为保护机组不过载,不再进行最大风能的追踪,而是通过风力机控制子系统的变桨距控制来调节桨距角,确保在允许最大转速上的恒转速发电运行;随着风速的增大风力机输出机械功率不断增大,发电机达到其功率极限。此时需控制机组的输出功率使之不超过额定值,风电机组处于恒转速、恒功率运行状态。In the actual environment, the speed of the blades changes with the wind speed, and the operating state of the wind turbine will change with the changes of the speed of the blades; When the wind speed is cut, the wind turbines are connected to the grid for power generation; in the maximum wind energy tracking area, the speed of the wind turbines changes accordingly with the wind speed to ensure that the wind energy utilization coefficient of the wind turbines is always maintained at the maximum value. At this time, the wind turbine control subsystem implements constant pitch control, and the generator control subsystem adjusts the speed of the unit through the output power of the generator to achieve variable speed and constant frequency operation; when in the constant speed area, the wind turbine has reached the maximum speed. However, the output power of the wind turbine has not yet reached the rated working state. In order to protect the unit from overload, the maximum wind energy is no longer tracked, but the pitch angle is adjusted through the pitch control of the wind turbine control subsystem to ensure that the maximum speed is allowed The constant speed power generation operation on the wind turbine; as the wind speed increases, the output mechanical power of the wind turbine continues to increase, and the generator reaches its power limit. At this time, it is necessary to control the output power of the unit so that it does not exceed the rated value, and the wind turbine is in a constant speed and constant power operation state.
本发明方法所针对的控制区段即为风力发电机开始并网发电之后到进入恒转速发电状态之前的最大风能追踪区段,本发明的控制策略(即图2中的双重效率模糊优化控制)与恒转速控制策略和恒功率控制策略所构成的全域段控制系统原理如图2所示,对应于风力发电机不同运行区段的控制策略可通过一个综合协调控制器来进行切换;针对恒功率控制策略和恒转速控制策略,现有技术中均有成熟方案,本发明仅针对图2中的双重效率模糊优化控制区;本发明的核心思路为:图1中的的值(发电机最优转速参考给定值)采用本发明的最大风能追踪控制中的优化转速值,以实现对最大风能的追踪,图1中的的值(最优无功给定值)采用本发明的最优无功搜索控制中的优化无功功率值,以实现风力发电机最低损耗运行,从而实现双重效率模糊优化的控制目标。The control section targeted by the method of the present invention is the maximum wind energy tracking section after the wind power generator starts grid-connected power generation and before entering the constant speed power generation state. The control strategy of the present invention (that is, the dual efficiency fuzzy optimal control in Figure 2) The principle of the global segment control system composed of the constant speed control strategy and the constant power control strategy is shown in Figure 2. The control strategies corresponding to different operating segments of the wind turbine can be switched through an integrated coordination controller; for constant power Both the control strategy and the constant speed control strategy have mature schemes in the prior art, and the present invention is only aimed at the double-efficiency fuzzy optimization control area in Fig. 2; the core idea of the present invention is: in Fig. 1 The value of (generator optimal speed reference given value) adopts the optimal speed value in the maximum wind energy tracking control of the present invention to realize the tracking of the maximum wind energy, as shown in Fig. 1 The value of (optimum reactive power given value) adopts the optimized reactive power value in the optimal reactive power search control of the present invention to realize the operation of the wind turbine with the lowest loss, thereby realizing the control objective of dual efficiency fuzzy optimization.
为了能够使本领域技术人员更好地理解本发明的方案,现对本发明中的最大风能追踪和最优无功追踪的原理分别进行阐释:In order to enable those skilled in the art to better understand the solution of the present invention, the principles of maximum wind energy tracking and optimal reactive power tracking in the present invention are now explained separately:
1)最大风能追踪的原理:参见图3,图中示出了不同风速条件下风力发电机输出机械功率与桨叶转速的关系;其中,Pm是风机输出的机械功率,ωw为桨叶旋转的角速度,v1、v2、v3均为风速,且v1>v2>v3;由图可看出,在同一风速条件下,当桨叶桨距角一定时,桨叶的不同转速所对应的风能利用系数存在差异,这种差异最终使得风机输出的机械功率也不相同,但每种风速条件下,均存在一个对应最佳桨叶转速的最高功率点Pmax,在此最佳桨叶转速条件下,桨叶能达到最佳叶尖速比,从而捕获到该风速下的最大能量,由于风力发电机受风机传动,如果能使风力发电机输出的功率对应于最佳桨叶转速,就能使风能的利用率得到最大化。因此,最大风能追踪的过程可以理解为有效控制风力发电机转速的过程,通过对风力发电机转速的调节来控制风力发电机的输出功率与最佳桨叶转速相匹配,提高对风能的利用效果。1) The principle of maximum wind energy tracking: see Figure 3, which shows the relationship between the output mechanical power of the wind turbine and the blade speed under different wind speed conditions; where, P m is the mechanical power output by the fan, and ω w is the blade Angular velocity of rotation, v 1 , v 2 , and v 3 are all wind speeds, and v 1 >v 2 >v 3 ; it can be seen from the figure that under the same wind speed, when the pitch angle of the blade is constant, the There are differences in wind energy utilization coefficients corresponding to different speeds, and this difference ultimately makes the mechanical power output by the fan different. However, under each wind speed condition, there is a highest power point P max corresponding to the optimal blade speed. Here Under the condition of optimal blade speed, the blade can reach the optimal tip speed ratio, thereby capturing the maximum energy at this wind speed. Since the wind generator is driven by the fan, if the output power of the wind generator can correspond to the optimal The rotation speed of the blades can maximize the utilization rate of wind energy. Therefore, the process of maximum wind energy tracking can be understood as effectively controlling the wind turbine speed The process of controlling the output power of the wind generator to match the optimal blade speed by adjusting the speed of the wind generator improves the utilization effect of wind energy.
2)最优无功追踪的原理:的计算原则是在风力发电机允许运行范围内,选取能使其某一性能评价函数f达到最优的无功功率值,评估函数f与的关系可由图4示出,双馈控制的风力发电机损耗特性在忽略变频器损耗情况下,与定子无功功率Qs有关的损耗主要是发电机定子铜耗Pcus和转子铜耗Pcur,所以可定义评估函数f为:2) The principle of optimal reactive power tracking: The calculation principle is to select the reactive power value that can make a certain performance evaluation function f reach the optimal value within the allowable operating range of the wind turbine, and the evaluation function f and can be shown in Figure 4, the wind turbine loss characteristics of double-fed control in the case of ignoring the frequency converter loss, the loss related to the stator reactive power Q s is mainly the generator stator copper loss P cus and rotor copper loss P cur , so the evaluation function f can be defined as:
f=Pcus+Pcur f=P cus +P cur
展开得:expands to:
①
其中,rs、rr分别为定、转子等效电阻;isd、isq分别为定子d、q轴电流;ird、irq分别为转子d、q轴电流;Among them, r s and r r are equivalent resistances of stator and rotor respectively; i sd and i sq are stator d and q axis currents respectively; i rd and i rq are rotor d and q axis currents respectively;
根据d-q同步旋转坐标系下双馈电机数学模型,将d轴与双馈电机定子磁链ψs重合,有磁链方程:According to the mathematical model of the double-fed motor in the dq synchronous rotating coordinate system, the d-axis coincides with the stator flux ψ s of the double-fed motor, and there is a flux equation:
②ψsd=-Lsisd+Lmird=ψs和③ψsq=-Lsisq+Lmirq=0②ψ sd =-L s i sd +L m i rd =ψ s and ③ψ sq =-L s i sq +L m i rq =0
其中,ψsd、ψsq分别为定子d、q轴磁链;Ls、Lm分别为定子等效自感和互感。Among them, ψ sd , ψ sq are stator d-axis and q-axis flux linkage respectively; L s , L m are stator equivalent self-inductance and mutual inductance respectively.
在d-q同步旋转坐标系下的有功功率Ps和无功功率Qs分别为:The active power P s and reactive power Q s in the dq synchronous rotating coordinate system are respectively:
④Ps=Usisq和⑤Qs=Usisd ④P s =U s i sq and ⑤Q s =U s i sd
其中,Us为定子有效电压;将②、③、④、⑤式代入①式可得:Among them, U s is the stator effective voltage; substituting ②, ③, ④, ⑤ into ① to get:
其中,系数a、b、c分别为:Among them, the coefficients a, b, and c are respectively:
显然,a、b、c均大于零,在同步角速度ω1下,当(式⑥)时,有:
由于最优无功值恒为负,满足双馈发电机稳定运行的无功条件,现有技术一般根据式⑥直接设定为无功参考;但是,由于发电机参数测量的精度限制和电阻阻值受温度影响明显,所以这种策略在实际运行中难以真正达到电机损耗最低。针对这一问题,本发明提出了基于如下思路的最优无功搜索控制:从式⑥可以看出,尽管f的形状将因电机参数摄动而发生改变,但是,当以降低风力发电机损耗作为选择最优的原则时,由于f与Qs之间具有极小值的二次曲线关系始终成立,可以通过技术手段来寻找到满足损耗最小条件下的从而降低风力发电机的损耗;Due to the optimal reactive power value is always negative, which satisfies the reactive power condition for the stable operation of the doubly-fed generator. In the prior art, it is generally set directly according to formula ⑥ is the reactive power reference; however, due to the accuracy limitation of the generator parameter measurement and the resistance value being significantly affected by the temperature, it is difficult for this strategy to achieve the lowest motor loss in actual operation. Aiming at this problem, the present invention proposes an optimal reactive power search control based on the following ideas: It can be seen from formula ⑥ that although the shape of f will be changed due to the perturbation of the motor parameters, when reducing the loss of the wind power generator optimal as an option When the principle of , since the quadratic curve relationship with the minimum value between f and Q s is always established, technical means can be used to find the condition that satisfies the minimum loss Thereby reducing the loss of wind turbines;
前文的“发明内容”中记载的“最大风能追踪控制”和“最优无功搜索控制”即为基于前述分析而提出的解决方案,其中涉及到的第一模糊推理规则表、第二模糊推理规则表和第三模糊推理规则表即为用于实现本发明目的的技术工具,这些模糊推理规则是这样与本发明结合的:The "maximum wind energy tracking control" and "optimum reactive power search control" recorded in the previous "Invention Summary" are the solutions proposed based on the aforementioned analysis, which involves the first fuzzy inference rule table, the second fuzzy inference Rule table and the 3rd fuzzy inference rule table are technical tools for realizing the object of the present invention, and these fuzzy inference rules are combined with the present invention like this:
(1)第一模糊推理规则表(1) The first fuzzy inference rule table
参见图5,图5中给出了实现第一模糊推理规则表的模糊推理原理图:当桨叶转速变化时,轴系机械损耗变化量相比于吸收风能变化量Δpm可以忽略;而pm由于不可直接测量,所以可用风力发电机定转子总有功增量Δpe代替Δpm;图5中的Z-1表示一步滞后(时延)环节;其中,kp是输入变量的量化因子(也即对应方案中的“对应Δpei的输入变量量化因子”),以实现风力发电机定转子总有功增量Δpei从基本论域到语言变量论域的转换,语言变量的论域范围定义为[-1,1];kw是输出变量比例因子;图中的最优转速参考模糊逻辑控制模块是核心部分(即实现模糊推理),它综合每拍采样中的功率增量和转速变化给出新的转速参考,它不依赖于风机参数和空气密度等参数,所以此最大风能追踪策略对环境具有很强的适应性(现有技术一般通过动态设定发电机定子有功功率参考进行间接转速控制,可以实现无风速测量下的最大风能追踪,而发电机定子有功功率的设定与风机的特性有关,在实际中,随着气象地理条件变化,空气密度会发生变化,机组运行老化、灰尘沉积叶片等状况同样会影响风机特性,因此在机组运行中的发电机定子有功功率设定将始终偏离最优,导致对最大风能的追踪效果较差)。Referring to Fig. 5, Fig. 5 shows the schematic diagram of the fuzzy inference for realizing the first fuzzy inference rule table: when the blade speed changes, the shaft mechanical loss variation is negligible compared to the absorbed wind energy variation Δp m ; and p Since m cannot be directly measured, Δp m can be replaced by the total active power increment of the wind turbine stator and rotor Δp e ; Z -1 in Figure 5 represents a one-step lag (time delay) link; where k p is the quantization factor of the input variable ( That is, the "quantization factor of the input variable corresponding to Δp ei " in the corresponding scheme) to realize the conversion of the total active power increment Δp ei of the stator and rotor of the wind turbine from the basic domain of discourse to the language variable domain of discourse, and the definition of the domain of discourse of language variables is [-1, 1]; k w is the scale factor of the output variable; the optimal speed reference fuzzy logic control module in the figure is the core part (i.e. realizes fuzzy inference), which synthesizes the power increment and speed change in each beat sampling A new speed reference is given, which does not depend on parameters such as fan parameters and air density, so this maximum wind energy tracking strategy has strong adaptability to the environment (the existing technology generally uses the dynamic setting of the active power reference of the generator stator to indirect The speed control can realize the maximum wind energy tracking without wind speed measurement, and the setting of the active power of the generator stator is related to the characteristics of the fan. In practice, as the meteorological and geographical conditions change, the air density will change, and the unit will age. Conditions such as dust deposition on blades will also affect the characteristics of the fan, so the active power setting of the generator stator will always deviate from the optimum during the operation of the unit, resulting in poor tracking of the maximum wind energy).
第一模糊推理规则表的推理规则可按如下思路设定:The inference rules of the first fuzzy inference rule table can be set according to the following ideas:
1、上一控制周期内,若Δωri和Δpei均为正值,说明工作点正在靠近极值点(即优化转速值),则新的发电机转速增量Δωr(即理论转速变化值)也应为正,需要进行正向搜索;1. In the last control cycle, if both Δω ri and Δp ei are positive, it means that the operating point is approaching the extreme point (that is, the optimal speed value), and the new generator speed increment Δω r (that is, the theoretical speed change value ) should also be positive, and a forward search is required;
2、上一控制周期内,若Δωri为正而Δpei为负时,说明工作点正在远离极值点,这时新的发电机转速增量Δωr应为负,需要进行反向搜索;2. In the last control cycle, if Δω ri is positive and Δp ei is negative, it means that the operating point is moving away from the extreme point. At this time, the new generator speed increment Δω r should be negative, and a reverse search is required;
再加上前述1、2项推理规则所设定条件的逆过程,据此即可建立以Lpei和Δωri为输入变量,以理论转速变化值Δωr为输出变量的模糊规则,如下表1所示:In addition to the inverse process of the conditions set by the above-mentioned 1 and 2 inference rules, a fuzzy rule with Lp ei and Δω ri as input variables and the theoretical rotational speed change value Δω r as output variables can be established, as shown in Table 1 Shown:
表1Table 1
上表即为第一模糊推理规则表,该表采用双输入-单输出模式,输入变量Lpei模糊论域包含7个模糊子集,在论域上的语言值取{NB,NM,NS,ZE,PS,PM,PB},即{负大,负中,负小,零,正小,正中,正大}。附图6是输入变量Lpei的模糊隶属函数。隶属函数采用不均匀分布的三角形函数,其目的是当变量接近零时,隶属函数的敏感性增加,以便在搜索迫近最佳点时即时调整搜索步长以提高搜索效率。输入变量的Δωri模糊论域包含3个模糊子集,在论域上的语言值取{N,ZE,P},即{负,零,正}。输出变量Δωr的模糊论域上的语言值与输入变量Lpei相同。The above table is the first fuzzy inference rule table, which adopts the double-input-single-output mode. The input variable Lp ei fuzzy discourse contains 7 fuzzy subsets, and the language value on the discourse is {NB, NM, NS, ZE, PS, PM, PB}, namely {negative big, negative middle, negative small, zero, positive small, positive middle, positive big}. Accompanying drawing 6 is the fuzzy membership function of the input variable Lpei . The membership function uses a triangular function with uneven distribution. The purpose is that when the variable is close to zero, the sensitivity of the membership function increases, so that when the search is approaching the optimal point, the search step size can be adjusted immediately to improve the search efficiency. The Δω ri fuzzy universe of input variables contains three fuzzy subsets, and the language values on the universe are {N, ZE, P}, namely {negative, zero, positive}. The linguistic value of the output variable Δω r on the fuzzy universe is the same as that of the input variable Lp ei .
最大风能追踪控制方案的步骤4)、5)中,涉及到对输入变量量化因子kp的调整,其原理为:虽然在输人变量Lpei和Δωri的隶属函数设计中,考虑了选取不均匀分布的三角形函数,以使变量接近零时提高隶属函数的敏感性,但模糊控制器本身由于不具有积分环节,因而搜索精度不高,存在静态余差,这是模糊逻辑搜索存在的缺陷,当以一定的搜索步长迫近最佳点时,在小偏差范围时仍然存在着一个调节死区,导致搜索在最佳点附近形成极限环振荡,由此会带来传动轴系的长期振动,这将对风力发电机机械部件造成较大损害,因此需要采用进一步的措施来提高搜索精度;现有技术中在解决模糊推理中的调节死区时,一般通过将模糊规则表的档分得较细来提高模糊控制的精度,但这种处理方式也会使规则数和系统计算量也随之增加,从而造成系统开销和延迟时间大幅增大,影响控制的实时性,并且会导致后续控制出现时延。因此在解决模糊推理中的调节死区问题时,应采用更为简单、快速的搜索方式,本发明即采用了步骤4)、5)中的方案来实现简单、快速的搜索:In steps 4) and 5) of the maximum wind energy tracking control scheme, it involves the adjustment of the input variable quantization factor k p , the principle is: although in the design of the membership function of the input variables Lp ei and Δω ri , the selection of different Uniformly distributed triangular function to improve the sensitivity of the membership function when the variable is close to zero, but the fuzzy controller itself does not have an integral link, so the search accuracy is not high, and there is a static residual error, which is the defect of fuzzy logic search. When approaching the optimal point with a certain search step, there is still an adjustment dead zone in the small deviation range, which causes the search to form a limit cycle oscillation near the optimal point, which will cause long-term vibration of the transmission shaft. This will cause great damage to the mechanical parts of the wind turbine, so further measures need to be taken to improve the search accuracy; in the prior art, when solving the adjustment dead zone in fuzzy reasoning, generally by dividing the files of the fuzzy rule table However, this processing method will also increase the number of rules and the amount of calculation of the system, resulting in a significant increase in system overhead and delay time, affecting the real-time performance of control, and will lead to subsequent control failures. delay. Therefore, when solving the problem of adjusting the dead zone in fuzzy reasoning, a simpler and faster search method should be adopted. The present invention adopts the solutions in steps 4) and 5) to realize simple and faster search:
步骤4)、5)中的方案使得本发明对输出变量Δωr的模糊搜索形成一种变步长的搜索,即前期的|Δωr|值较大,后期|Δωr|值较小。当模糊搜索逐渐向最优转速参考值逼近时,最初给定范围较大的输入论域上的模糊划分就显得粗糙,控制精度不高;为进一步细分零域,加大模糊控制器对系统转速参考增量小范围的搜索作用,该解决方案从输入变量的量化因子kp入手,与通常模糊控制器所选输入变量量化因子为固定值的方法不同,在搜索后期接近最佳点的过程中增大kp,相当于缩小了输入变量Lpei的基本论域,提高了模糊控制器对输入变量Lpei的分辨率,使得模糊控制器可以对微小的Lpei做出反应,增大了它的控制作用,从而能够减少搜索振荡,改善搜索性能。The schemes in steps 4) and 5) make the fuzzy search of the output variable Δω r form a variable step-size search in the present invention, that is, the value of |Δω r | in the early stage is large, and the value of |Δω r | in the later stage is small. When the fuzzy search is gradually approaching the optimal speed reference value, the fuzzy division on the input domain with a larger given range at first appears rough, and the control accuracy is not high; The search function of the small range of the speed reference increment, the solution starts from the quantization factor k p of the input variable, which is different from the method in which the quantization factor of the input variable selected by the fuzzy controller is a fixed value, and the process of approaching the optimal point in the later stage of the search Increasing k p in the middle is equivalent to narrowing the basic domain of the input variable Lp ei , improving the resolution of the fuzzy controller to the input variable Lp ei , so that the fuzzy controller can respond to the small Lp ei , increasing the It controls the action, thereby being able to reduce search oscillations and improve search performance.
在最大风能追踪控制过程中,上述方案能在不增加系统开销和延迟的条件下,提高搜索精度,解决调节死区的问题;完整的最大风能追踪控制方案如下:In the process of maximum wind energy tracking control, the above scheme can improve the search accuracy and solve the problem of adjusting the dead zone without increasing system overhead and delay; the complete maximum wind energy tracking control scheme is as follows:
1)当风速大于或等于切入风速时,启动风力发电机并网发电,对风力发电机的转速和有功功率进行连续采样,每个采样周期内,对转速的变化值和有功功率的变化值进行计算;设单个采样周期内记录到的转速变化值为Δωri,单个采样周期内记录到的有功功率变化值为Δpei,i为采样次数,i=1、2、3、4…n;设Δωr1和Δpe1均为正值;1) When the wind speed is greater than or equal to the cut-in wind speed, the wind turbine is started to connect to the grid for power generation, and the speed and active power of the wind turbine are continuously sampled. In each sampling period, the change value of the speed and the change value of active power are analyzed. Calculation; assuming that the rotational speed change value recorded in a single sampling period is Δω ri , the active power change value recorded in a single sampling period is Δp ei , i is the number of sampling times, i=1, 2, 3, 4...n; set Both Δω r1 and Δp e1 are positive;
2)第二采样周期中,将Lpe1和Δωr1作为第一模糊推理规则表的两个输入变量(Δωr1为第一采样周期中采集到的转速变化值,它也是转速变化值中的最大值),根据第一模糊推理规则表获得理论转速变化值,根据理论转速变化值计算出风力发电机的优化转速值,双馈控制系统根据优化转速值对风力发电机转速进行调节;进入步骤3);第二采样周期也即形成第一控制周期;2) In the second sampling period, Lp e1 and Δω r1 are used as the two input variables of the first fuzzy inference rule table (Δω r1 is the rotational speed change value collected in the first sampling period, which is also the largest rotational speed change value value), according to the first fuzzy inference rule table to obtain the theoretical speed change value, calculate the optimal speed value of the wind turbine according to the theoretical speed change value, and the double-fed control system adjusts the wind turbine speed according to the optimal speed value; enter step 3 ); the second sampling period also forms the first control period;
其中,Lpe1为对应kp和Δpe1的有功功率输入变量,Lpe1=kp·Δpe1,kp为对应Δpei的输入变量量化因子;Among them, Lp e1 is the active power input variable corresponding to k p and Δp e1 , Lp e1 = k p Δp e1 , k p is the quantization factor of the input variable corresponding to Δp ei ;
3)后续控制周期中,将当前的Lpei和前一控制周期中获得的理论转速变化值作为第一模糊推理规则表的两个输入变量,根据第一模糊推理规则表获得理论转速变化值,根据理论转速变化值计算出风力发电机的优化转速值;双馈控制系统根据对应的优化转速值对风力发电机转速进行连续、动态调节;进入步骤4);3) In the subsequent control cycle, the current Lp ei and the theoretical speed change value obtained in the previous control cycle are used as the two input variables of the first fuzzy inference rule table, and the theoretical speed change value is obtained according to the first fuzzy inference rule table, Calculate the optimal speed value of the wind turbine according to the theoretical speed change value; the double-fed control system continuously and dynamically adjusts the speed of the wind generator according to the corresponding optimal speed value; enter step 4);
其中,Lpei=kp·Δpei;Lpei为对应kp和Δpei的有功功率输入变量;Among them, Lp ei =k p ·Δp ei ; Lp ei is the active power input variable corresponding to k p and Δp ei ;
4)在步骤3)的控制过程中,将当前采样周期对应的Δωri的绝对值|Δωri|与Δωr1/k1进行实时比较:若|Δωri|大于Δωr1/k1,说明风力发电机转速仍有较大的上升余量,无需调节kp,应返回步骤3);若|Δωri|小于或等于Δωr1/k1,说明风力发电机转速的上升余量已经较小,应当对kp进行调节,进入步骤5);4) In the control process of step 3), compare the absolute value of Δω ri |Δω ri | corresponding to the current sampling period with Δω r1 /k 1 in real time: if |Δω ri | is greater than Δω r1 /k 1 , it means that the wind force There is still a large margin for the increase of the generator speed, no need to adjust k p , return to step 3); if |Δω ri | is less than or equal to Δω r1 /k 1 , it means that the increase margin of the wind turbine speed is already small, K p should be adjusted, go to step 5);
其中,k1为根据经验数据获得的调节因子,k1在2.5~3.5之间取值;Among them, k 1 is an adjustment factor obtained from empirical data, and k 1 takes a value between 2.5 and 3.5;
5)将当前的Lpei *和前一控制周期中获得的理论转速变化值作为第一模糊推理规则表的两个输入变量,根据第一模糊推理规则表获得理论转速变化值,根据理论转速变化值计算出风力发电机的优化转速值;双馈控制系统根据对应的优化转速值对风力发电机转速进行连续、动态调节;进入步骤6);5) Take the current Lp ei * and the theoretical rotational speed change value obtained in the previous control cycle as the two input variables of the first fuzzy inference rule table, obtain the theoretical rotational speed change value according to the first fuzzy inference rule table, and obtain the theoretical rotational speed change value according to the theoretical rotational speed change value to calculate the optimal speed value of the wind turbine; the double-fed control system continuously and dynamically adjusts the speed of the wind turbine according to the corresponding optimal speed value; enter step 6);
其中,Lpei *=Δpei·ky,Lpei *为对应ky和Δpei的有功功率输入变量,ky=kp·k1;ky为调节后的对应Δpei的输入变量量化因子;Among them, Lp ei * = Δp ei · k y , Lp ei * is the active power input variable corresponding to ky and Δp ei , k y = k p · k 1 ; k y is the quantization of the input variable corresponding to Δp ei after adjustment factor;
6)当风速进入平稳状态时,转速基本上在最佳功率点附近波动,继续进行最大风能追踪控制的意义不大,应该将注意力转移至降低风力发电机损耗上,因此可通过设定一数值较小的εwmin,来适时地将控制策略切换至最优无功搜索控制:将当前采样周期对应的|Δωri|与εwmin进行实时比较:若|Δωri|大于或等于εwmin,则返回步骤5);若|Δωri|小于εwmin,则由最大风能追踪控制切换至最优无功搜索控制;6) When the wind speed enters a steady state, the speed basically fluctuates around the optimal power point, and it is of little significance to continue the maximum wind energy tracking control, and attention should be shifted to reducing the loss of the wind turbine, so by setting a ε wmin with a smaller value is used to switch the control strategy to the optimal reactive power search control in a timely manner: compare |Δω ri | corresponding to the current sampling period with ε wmin in real time: if |Δω ri | is greater than or equal to ε wmin , Then return to step 5); if |Δω ri | is less than ε wmin , switch from maximum wind energy tracking control to optimal reactive power search control;
其中,εwmin为对应最大风能追踪控制的临界切换值,其值可通过实验或经验数据确定;Among them, εwmin is the critical switching value corresponding to the maximum wind energy tracking control, and its value can be determined through experiments or empirical data;
(2)第二模糊推理规则表和第三模糊推理规则表(2) The second fuzzy inference rule table and the third fuzzy inference rule table
参见图4,用于最优无功搜索控制的模糊推理规则表基本设计思想是:通过模糊搜索方式,实时改变发电机无功增量,同时检测输入损耗增量的变化和上一时刻无功参考增量的变化,从而确定新的无功参考增量,通过这样的搜索,可以使工作点最终稳定在评估函数的最小点fmin附近。Referring to Figure 4, the basic design idea of the fuzzy inference rule table used for optimal reactive power search control is: through fuzzy search, the generator reactive power increment is changed in real time, and at the same time, the change of input loss increment and the reactive power The change of the reference increment, so as to determine the new reactive reference increment, through such a search, the working point can finally be stabilized near the minimum point f min of the evaluation function.
当用于最优无功追踪的模糊控制器以一定的搜索步长迫近最佳点时,也会存在与现有技术一样的调节死区问题,因此,在设计用于实现最优无功搜索控制的模糊控制器时,为了取得较好的效果,应该考虑如何兼顾前期的快速搜索和后期的精确定位问题;When the fuzzy controller used for optimal reactive power tracking approaches the optimal point with a certain search step size, there will also be the same adjustment dead zone problem as in the prior art. Therefore, in the design for optimal reactive power search When controlling the fuzzy controller, in order to achieve better results, it should be considered how to take into account the problem of fast search in the early stage and precise positioning in the later stage;
从前面的最大风能追踪控制和最优无功搜索控制的切换条件可以看出,最优无功搜索控制发挥控制作用的区段对应于风力较为稳定时的风力发电机运行状态。此种情况下,风力发电机运行状态变化的复杂度相对于最大风能追踪控制阶段更为简单,此时所需的模糊推理规则数量相对较少,因此,即使将模糊控制器的档位进一步细化,随之增加的模糊推理规则数量也相对较少,对系统开销和延时所造成的负面影响十分有限;故在最优无功搜索控制中,本发明借鉴于现有技术中处理调节死区的手段,设计了两个模糊控制器(也即两个模糊推理规则表)来分别对应两个时域,分别用来满足前期搜索的快速性和后期接近最优无功值点时精确定位的要求。It can be seen from the switching conditions of the maximum wind energy tracking control and the optimal reactive power search control above that the section where the optimal reactive power search control plays a controlling role corresponds to the operating state of the wind turbine when the wind force is relatively stable. In this case, the complexity of the change of the operating state of the wind turbine is simpler than that of the maximum wind energy tracking control stage, and the number of fuzzy inference rules required at this time is relatively small. Therefore, even if the gears of the fuzzy controller are further refined The number of fuzzy inference rules increased accordingly is relatively small, and the negative impact on system overhead and delay is very limited; therefore, in the optimal reactive power search control, the present invention draws lessons from the prior art to deal with the adjustment dead area, two fuzzy controllers (that is, two tables of fuzzy inference rules) are designed to correspond to the two time domains respectively, which are used to meet the rapidity of the early search and the precise positioning when the later stage is close to the optimal reactive value point. requirements.
两个模糊控制器的系统结构均采用图7所示结构,图7中的Z-1表示一步滞后(时延)环节,图中的两个输入变量Δfv和ΔQsv分别为评估函数f的变化量和无功功率变化值,kf是输入变量量化因子,语言变量的论域范围定义为[-1,1];kq是输出变量比例因子,其中最优无功参考模糊逻辑控制是核心部分,它输入Δfv和前一无功控制周期中获得的理论无功变化值,输出新的理论无功变化值,该方式不依赖发电机参数的准确性,具有良好的适应能力。The system structures of the two fuzzy controllers both adopt the structure shown in Figure 7. Z -1 in Figure 7 represents a one-step lag (time delay) link, and the two input variables Δf v and ΔQ sv in the figure are the evaluation function f change and reactive power change value, k f is the quantization factor of the input variable, and the range of discourse of the language variable is defined as [-1, 1]; k q is the proportional factor of the output variable, and the optimal reactive power reference fuzzy logic control is The core part, it inputs Δf v and the theoretical reactive power change value obtained in the previous reactive power control cycle, and outputs a new theoretical reactive power change value. This method does not depend on the accuracy of generator parameters and has good adaptability.
由于直接计算评估函数f的变化量要用到定、转子电阻和电感等多个参数值,这会导致问题复杂化,考虑到此时风力发电机已工作在风速稳定阶段,因此,评估函数的变化量可用有功功率变化量的反值代替,即-Δpv,故有Δfv=-Δpv·kf;Since the direct calculation of the variation of the evaluation function f requires the use of multiple parameter values such as stator and rotor resistance and inductance, this will complicate the problem. Considering that the wind turbine is already working in the wind speed stable stage, the evaluation function The variation can be replaced by the inverse value of the variation of active power, namely -Δp v , so Δf v = -Δp v k f ;
第二模糊推理规则表的推理规则可按如下思路设定:The inference rules of the second fuzzy inference rule table can be set according to the following ideas:
1、当ΔQsv和Δfv均为正时,说明目前工作点正在远离最优无功值点,则新的ΔQs(即理论无功变化值)应为负,需反向搜索;1. When both ΔQ sv and Δf v are positive, it means that the current operating point is far away from the optimal reactive power value point, then the new ΔQ s (that is, the theoretical reactive power change value) should be negative, and reverse search is required;
2、当ΔQsv为正,而Δfv为负,则说明目前工作点正在靠近最优无功值点,则应继续按当前搜索方向进行搜索;2. When ΔQ sv is positive and Δf v is negative, it means that the current working point is approaching the optimal reactive value point, and you should continue to search according to the current search direction;
再加上前述1、2项推理规则所设定条件的逆过程,可建立以ΔQsv和Δfv为输入变量、理论无功变化值(即图7中的ΔQs)为输出变量的第二模糊推理规则表,如下表2所示:Coupled with the inverse process of the conditions set by the aforementioned inference rules 1 and 2, it is possible to establish a second model with ΔQ sv and Δf v as input variables and the theoretical reactive power change value (i.e. ΔQ s in Figure 7) as output variable. The table of fuzzy inference rules is shown in Table 2 below:
表2、Table 2,
第二模糊推理规则表采用双输入-单输出模式,图8、9、10分别是Δfv、ΔQsv和输出变量的模糊隶属函数。Δfv的模糊论域包含5个模糊子集,在论域上的语言值取{NB,NS,ZE,PS,PB},即{负大,负小,零,正小,正大}。隶属函数采用不均匀分布的三角形函数,其目的是当变量接近零时,隶属函数的敏感性增加,以便在搜索迫近最佳点时及时调整搜索步长以提高搜索效率。ΔQsv的模糊论域包含2个模糊子集,在论域上的语言值取{N,P},即{负,正}。输出变量的模糊论域上的语言值与输入变量Δfv相同。The second fuzzy inference rule table adopts a double-input-single-output mode. Figures 8, 9, and 10 are the fuzzy membership functions of Δf v , ΔQ sv and output variables, respectively. The fuzzy domain of Δf v contains 5 fuzzy subsets, and the linguistic values on the domain of discourse are {NB, NS, ZE, PS, PB}, that is, {negative large, negative small, zero, positive small, positive large}. The membership function uses a triangular function with uneven distribution. The purpose is that when the variable is close to zero, the sensitivity of the membership function increases, so that when the search is approaching the optimal point, the search step can be adjusted in time to improve the search efficiency. The fuzzy universe of ΔQ sv contains two fuzzy subsets, and the linguistic value on the universe is {N, P}, that is, {negative, positive}. The linguistic value of the output variable on the fuzzy universe is the same as that of the input variable Δf v .
第三模糊推理规则表如下表3所示。The third fuzzy inference rule table is shown in Table 3 below.
表3table 3
第三模糊推理规则表采用双输入-单输出模式,附图11、12、13分别是Δfv、ΔQsv和输出变量的模糊隶属函数。Δfv的模糊论域比表2增加4个模糊子集,为9个模糊子集,在论域上的语言值取{NVB,NB,NM,NS,ZE,PS,PM,PB,PVB},即{负很大,负大,负中,负小,零,正小,正中,正大,正很大}。隶属函数选取不均匀分布的三角形函数,其目的同前。ΔQsv的模糊论域包含2个模糊子集,在论域上的语言值取{N,P},即{负,正}。输出变量的模糊论域上的语言值与Δfv相同。The third fuzzy inference rule table adopts the double-input-single-output mode, and the accompanying drawings 11, 12, and 13 are the fuzzy membership functions of Δf v , ΔQ sv and output variables, respectively. The fuzzy domain of Δf v has 4 more fuzzy subsets than Table 2, and it is 9 fuzzy subsets, and the language value on the domain of discourse is {NVB, NB, NM, NS, ZE, PS, PM, PB, PVB} , that is, {negative large, negative large, negative medium, negative small, zero, positive small, positive medium, positive large, positive large}. The membership function selects a triangular function with uneven distribution, and its purpose is the same as before. The fuzzy universe of ΔQ sv contains two fuzzy subsets, and the linguistic value on the universe is {N, P}, that is, {negative, positive}. The linguistic value on the fuzzy universe of the output variable is the same as Δf v .
完整的最优无功搜索控制方案如下:The complete optimal reactive search control scheme is as follows:
1]对风力发电机的无功功率和有功功率进行连续采样,每个无功功率采样周期内,对无功功率的变化值和有功功率的变化值进行计算;设单个无功功率采样周期内记录到的无功功率变化值为ΔQsv,单个无功功率采样周期内记录到的有功功率变化值为Δpv,v为采样次数,v=1、2、3、4…n;1] Continuously sample the reactive power and active power of the wind turbine, and calculate the change value of reactive power and the change value of active power in each reactive power sampling cycle; set a single reactive power sampling cycle The recorded reactive power change value is ΔQ sv , and the recorded active power change value in a single reactive power sampling period is Δp v , where v is the number of samples, v=1, 2, 3, 4...n;
2]第二无功功率采样周期中,将ΔQs1和Δf1作为第二模糊推理规则表的两个输入变量,根据第二模糊推理规则表获得理论无功变化值,根据理论无功变化值计算出风力发电机的优化无功功率值,双馈控制系统根据优化无功功率值对风力发电机的无功功率进行调节;进入步骤3];第二无功功率采样周期也即形成第一无功控制周期;2] In the second reactive power sampling cycle, ΔQ s1 and Δf 1 are used as the two input variables of the second fuzzy inference rule table, and the theoretical reactive power change value is obtained according to the second fuzzy inference rule table, and the theoretical reactive power change value is obtained according to the theoretical reactive power change value Calculate the optimal reactive power value of the wind-driven generator, and the doubly-fed control system adjusts the reactive power of the wind-driven generator according to the optimized reactive power value; enter step 3]; the second reactive power sampling cycle also forms the first Reactive power control cycle;
其中,Δf1为对应Δp1的有功功率输入变量,Δf1=-Δp1·kf,kf为对应Δpv的输入变量量化因子;Among them, Δf 1 is the active power input variable corresponding to Δp 1 , Δf 1 =-Δp 1 k f , and k f is the quantization factor of the input variable corresponding to Δp v ;
3]后续无功控制周期中,将当前Δfv和前一无功控制周期中获得的理论无功变化值作为第二模糊推理规则表的两个输入变量,根据第二模糊推理规则表获得理论无功变化值,根据理论无功变化值计算出风力发电机的优化无功功率值,双馈控制系统根据优化无功功率值对风力发电机的无功功率进行连续、动态调节;进入步骤4];3] In the subsequent reactive power control cycle, the current Δf v and the theoretical reactive power change value obtained in the previous reactive power control cycle are used as the two input variables of the second fuzzy inference rule table, and according to the second fuzzy inference rule table, the theoretical Reactive power change value, calculate the optimal reactive power value of the wind turbine according to the theoretical reactive power change value, and the double-fed control system continuously and dynamically adjusts the reactive power of the wind turbine according to the optimal reactive power value; enter step 4 ];
其中,Δfv为对应Δpv的有功功率输入变量,Δfv=-Δpv·kf;Among them, Δf v is the active power input variable corresponding to Δp v , Δf v =-Δp v k f ;
4]在步骤3]的控制过程中,每个无功控制周期内都将当前ΔQsv的绝对值|ΔQsv|与k2·|ΔQs1|进行实时比较:4] In the control process of step 3], the absolute value of current ΔQ sv |ΔQ sv | is compared with k 2 |ΔQ s1 | in real time in each reactive power control cycle:
若|ΔQsv|大于k2·|ΔQs1|,说明风力发电机的无功功率还在以较大步长单向逼近对应最低损耗的无功功率点,则继续将Δpv的绝对值|Δpv|与εw1进行比较:若|Δpv|大于εw1,说明风速变化已引起有功突变,应重新追踪最大风能,此时,停止最优无功搜索控制,同时,双馈控制系统根据设定的无功功率额定值对风力发电机的无功功率进行调节,并切换至最大风能追踪控制;若|Δpv|≤εw1,则返回步骤3];If |ΔQ sv | is greater than k 2 ·|ΔQ s1 |, it means that the reactive power of the wind turbine is still approaching the reactive power point corresponding to the lowest loss in one direction with a large step size, then continue to change the absolute value of Δp v | Δp v | is compared with ε w1 : if |Δp v | is greater than ε w1 , it means that the wind speed change has caused a sudden change in active power, and the maximum wind energy should be re-tracked. At this time, the optimal reactive power search control is stopped. The set reactive power rating adjusts the reactive power of the wind turbine and switches to the maximum wind energy tracking control; if |Δp v |≤ε w1 , return to step 3];
若|ΔQsv|小于或等于k2·|ΔQs1|,说明风力发电机的无功功率已位于对应最低损耗的无功功率点不远处,需要对最优无功功率点进行较为精确的定位,则进入步骤5];If |ΔQ sv | is less than or equal to k 2 ·|ΔQ s1 |, it means that the reactive power of the wind turbine is not far from the reactive power point corresponding to the lowest loss, and it is necessary to conduct a more accurate calculation of the optimal reactive power point positioning, enter step 5];
其中,k2为根据经验数据获得的调节因子,k2在0.3~0.4之间取值;Among them, k 2 is an adjustment factor obtained from empirical data, and k 2 takes a value between 0.3 and 0.4;
5]将当前Δfv和前一无功控制周期中获得的理论无功变化值作为第三模糊推理规则表的两个输入变量,根据第三模糊推理规则表获得理论无功变化值,根据理论无功变化值计算出风力发电机的优化无功功率值,双馈控制系统根据优化无功功率值对风力发电机的无功功率进行连续、动态调节;进入步骤6];5] The current Δf v and the theoretical reactive power change value obtained in the previous reactive power control cycle are used as the two input variables of the third fuzzy inference rule table, and the theoretical reactive power change value is obtained according to the third fuzzy inference rule table, according to the theoretical The reactive power change value calculates the optimized reactive power value of the wind-driven generator, and the doubly-fed control system continuously and dynamically adjusts the reactive power of the wind-driven generator according to the optimized reactive power value; enter step 6];
6]在步骤5]的控制过程中,每个无功控制周期内都将|Δpv|与εw1进行实时比较:6] In the control process of step 5], the real-time comparison between |Δp v | and ε w1 is performed in each reactive power control cycle:
若满足|Δpv|>εw1的条件,说明风速变化已引起有功突变,应重新追踪最大风能,应停止最优无功搜索控制,同时,双馈控制系统根据设定的无功功率额定值对风力发电机的无功功率进行调节,并切换至最大风能追踪控制;若满足|Δpv|≤εw1的条件,说明风速相对平稳,则返回步骤5];If the condition of |Δp v |>ε w1 is met, it means that the change of wind speed has caused a sudden change in active power, and the maximum wind energy should be tracked again, and the optimal reactive power search control should be stopped. Adjust the reactive power of the wind turbine and switch to the maximum wind energy tracking control; if the condition of |Δp v |≤ε w1 is met, it means that the wind speed is relatively stable, and then return to step 5];
其中,εw1为对应最优无功搜索控制的临界切换值,其值可根据实验或经验数据确定。Among them, εw1 is the critical switching value corresponding to optimal reactive power search control, and its value can be determined according to experimental or empirical data.
本发明的逻辑框图如图14所示。The logical block diagram of the present invention is shown in FIG. 14 .
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310206627.8A CN103281022B (en) | 2013-05-29 | 2013-05-29 | Double-efficiency fuzzy optimization control method for doubly-fed wind generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310206627.8A CN103281022B (en) | 2013-05-29 | 2013-05-29 | Double-efficiency fuzzy optimization control method for doubly-fed wind generator |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103281022A CN103281022A (en) | 2013-09-04 |
CN103281022B true CN103281022B (en) | 2015-04-01 |
Family
ID=49063493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310206627.8A Expired - Fee Related CN103281022B (en) | 2013-05-29 | 2013-05-29 | Double-efficiency fuzzy optimization control method for doubly-fed wind generator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103281022B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107069799B (en) * | 2017-01-25 | 2019-09-13 | 华北电力大学 | Control method and system for doubly-fed wind power generating set |
CN113623126B (en) * | 2021-06-23 | 2022-12-06 | 湖南大学 | Control method, system, terminal and readable storage medium for direct-drive permanent magnet hydroelectric power generation system based on fuzzy control |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102594244A (en) * | 2012-02-20 | 2012-07-18 | 江苏省电力试验研究院有限公司 | Joint control method of primary frequency modulation for doubly-fed wind power generation set |
CN103032265A (en) * | 2012-12-12 | 2013-04-10 | 天津市电力公司 | Maximum output tracking control method of wind generation unit based on extremum research |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4082054B2 (en) * | 2002-03-25 | 2008-04-30 | 株式会社明電舎 | Maximum power point tracking control method and apparatus for wind power generation equipment |
BE1019240A5 (en) * | 2010-01-29 | 2012-05-08 | 3E | PASSIVE INVERTER. |
-
2013
- 2013-05-29 CN CN201310206627.8A patent/CN103281022B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102594244A (en) * | 2012-02-20 | 2012-07-18 | 江苏省电力试验研究院有限公司 | Joint control method of primary frequency modulation for doubly-fed wind power generation set |
CN103032265A (en) * | 2012-12-12 | 2013-04-10 | 天津市电力公司 | Maximum output tracking control method of wind generation unit based on extremum research |
Non-Patent Citations (2)
Title |
---|
A Method of Tracking the Peak Power Points for a Variable Speed Wind Energy Conversion Sysem;Rajib Datta et.al;《IEEE TRANSACTIONS ON ENERGY CONVERSION》;20030331;第18卷;全文 * |
基于模糊逻辑的双馈型风电机组最优功率控制;徐大平 等;《太阳能学报》;20080630;第29卷(第6期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN103281022A (en) | 2013-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103016266B (en) | Wind generating set variable-pitch control method combining fuzzy feed-forward with linear active disturbance rejection | |
CN106684925A (en) | A Microgrid Inverter Control Method Based on Virtual Synchronous Generator | |
CN101915203A (en) | Damping Injection Control Method for Improving Power Angle Oscillation of Hydrogenerator Units | |
CN103603767A (en) | Extreme value searching control parameter self-adaptive adjusting method based on slip form | |
Abo-Khalil et al. | Sensorless control for DFIG wind turbines based on support vector regression | |
CN107437820A (en) | A kind of power system simulation model of double-fed wind power generator | |
Xin et al. | Sliding mode control of pitch angle for direct driven PM wind turbine | |
CN103281022B (en) | Double-efficiency fuzzy optimization control method for doubly-fed wind generator | |
CN110360051A (en) | One kind is small-sized to determine paddle permanent magnet synchronous wind generator group controller | |
CN101895249A (en) | Maximum wind energy tracking control method for variable-speed constant-frequency wind power generation | |
CN108678902B (en) | Disturbance-aware control method for direct-drive PMSM wind power generation system MPPT | |
CN106294959A (en) | The modeling and simulating method that model reference self-adapting control combines with double-fed blower fan reduced-order model | |
Yachir et al. | Control Of a Grid-Connected PMSG-Based Wind Energy System with A Back-To-Back Converter Using a Hybrid Fuzzy Sliding Mode Control | |
CN110417047B (en) | Method for analyzing SSCI damping characteristics of doubly-fed fan based on complex torque coefficient | |
CN104832368B (en) | Concentarted wind energy Wind turbines variable pitch control method based on PD characteristic | |
Fontanella et al. | Variable-speed Variable-pitch control for a wind turbine scale model | |
CN117691626A (en) | A frequency modulation method and computer device for a doubly-fed variable-speed pumped storage system | |
CN102360182A (en) | Method for carrying out simulation on operation of isolated island of wind-gas turbine hybrid power system | |
Rached et al. | Control strategies for DFIG based on wind energy conversion system using RST and fuzzy logic controllers | |
CN101813053A (en) | Correcting and controlling method of interconnecting structure for improving power-angle oscillation of hydroelectric generating set | |
Sun et al. | Modelling and simulation of doubly-fed induction wind power system based on Matlab/Simulink | |
CN112072693B (en) | High-dimensional multi-fractional order optimization method for high-dimensional multi-fractional order doubly-fed fan control | |
Wang et al. | Sliding mode control for maximum wind energy capture of DFIG-based wind turbine | |
Wang et al. | Model predictive direct current control of DFIG at low switching frequency | |
Liu et al. | Research on variable-pitch control strategy of wind turbine based on the nonlinear PID |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150401 Termination date: 20160529 |