CN103224394A - Lithium carbonate modified cerium barium zirconate proton conductor material and preparation method thereof - Google Patents
Lithium carbonate modified cerium barium zirconate proton conductor material and preparation method thereof Download PDFInfo
- Publication number
- CN103224394A CN103224394A CN2013101379557A CN201310137955A CN103224394A CN 103224394 A CN103224394 A CN 103224394A CN 2013101379557 A CN2013101379557 A CN 2013101379557A CN 201310137955 A CN201310137955 A CN 201310137955A CN 103224394 A CN103224394 A CN 103224394A
- Authority
- CN
- China
- Prior art keywords
- lithium carbonate
- proton conductor
- conductor material
- powder
- hours
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 46
- 229910052808 lithium carbonate Inorganic materials 0.000 title claims abstract description 36
- 239000004020 conductor Substances 0.000 title claims abstract description 23
- 229910021523 barium zirconate Inorganic materials 0.000 title claims abstract description 21
- -1 Lithium carbonate modified cerium barium Chemical class 0.000 title claims abstract description 15
- 238000002360 preparation method Methods 0.000 title claims abstract description 7
- 239000000843 powder Substances 0.000 claims abstract description 50
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims abstract description 25
- 238000005245 sintering Methods 0.000 claims abstract description 24
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000011787 zinc oxide Substances 0.000 claims abstract description 9
- 239000002994 raw material Substances 0.000 claims abstract description 7
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 33
- 101150058765 BACE1 gene Proteins 0.000 claims description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 13
- IFKAROTVVUBMBY-UHFFFAOYSA-N [Ba].[Ce] Chemical compound [Ba].[Ce] IFKAROTVVUBMBY-UHFFFAOYSA-N 0.000 claims description 12
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 11
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 9
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 9
- 229910001220 stainless steel Inorganic materials 0.000 claims description 9
- 239000010935 stainless steel Substances 0.000 claims description 9
- 238000003756 stirring Methods 0.000 claims description 9
- 229910052744 lithium Inorganic materials 0.000 claims description 8
- 229910052684 Cerium Inorganic materials 0.000 claims description 5
- 238000000498 ball milling Methods 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 3
- 238000000227 grinding Methods 0.000 claims description 3
- 238000007873 sieving Methods 0.000 claims description 3
- 239000000084 colloidal system Substances 0.000 claims description 2
- 238000010304 firing Methods 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- 239000000446 fuel Substances 0.000 abstract description 12
- 238000003825 pressing Methods 0.000 abstract description 11
- 239000007787 solid Substances 0.000 abstract description 7
- 238000011161 development Methods 0.000 abstract description 3
- XEFGHVQACKIFMS-UHFFFAOYSA-N 2-hydroxypropane-1,2,3-tricarboxylic acid;nitric acid Chemical compound O[N+]([O-])=O.OC(=O)CC(O)(C(O)=O)CC(O)=O XEFGHVQACKIFMS-UHFFFAOYSA-N 0.000 abstract description 2
- 229910017053 inorganic salt Inorganic materials 0.000 abstract description 2
- NVINIABWMMXGFD-UHFFFAOYSA-M [O-2].[Zn+2].C([O-])(O)=O.[Li+] Chemical compound [O-2].[Zn+2].C([O-])(O)=O.[Li+] NVINIABWMMXGFD-UHFFFAOYSA-M 0.000 abstract 1
- 238000009767 auto-combustion synthesis reaction Methods 0.000 abstract 1
- 239000003792 electrolyte Substances 0.000 description 20
- 238000000034 method Methods 0.000 description 12
- 239000012071 phase Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- 239000002131 composite material Substances 0.000 description 8
- 239000008367 deionised water Substances 0.000 description 8
- 229910021641 deionized water Inorganic materials 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 239000002001 electrolyte material Substances 0.000 description 7
- 229910021645 metal ion Inorganic materials 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- 239000005416 organic matter Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 6
- 239000011805 ball Substances 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 4
- 239000002023 wood Substances 0.000 description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 3
- 238000009841 combustion method Methods 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- 229910002492 Ce(NO3)3·6H2O Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 101100381522 Mus musculus Bcl6b gene Proteins 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- RCFVMJKOEJFGTM-UHFFFAOYSA-N cerium zirconium Chemical compound [Zr].[Ce] RCFVMJKOEJFGTM-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- MNAOMMOZWOKOLE-UHFFFAOYSA-L [Li+].C([O-])([O-])=O.[Ba+2] Chemical compound [Li+].C([O-])([O-])=O.[Ba+2] MNAOMMOZWOKOLE-UHFFFAOYSA-L 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- PNEFIWYZWIQKEK-UHFFFAOYSA-N carbonic acid;lithium Chemical compound [Li].OC(O)=O PNEFIWYZWIQKEK-UHFFFAOYSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- XMHIUKTWLZUKEX-UHFFFAOYSA-N hexacosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O XMHIUKTWLZUKEX-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004502 linear sweep voltammetry Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Landscapes
- Fuel Cell (AREA)
- Conductive Materials (AREA)
Abstract
Description
技术领域technical field
本发明属于一种以成分为特征的陶瓷组合物,尤其涉及一种碳酸锂改性铈锆酸钡质子导体材料及其制备方法。The invention belongs to a ceramic composition characterized by components, in particular to a lithium carbonate modified cerium barium zirconate proton conductor material and a preparation method thereof.
背景技术Background technique
燃料电池由于具有能量装换效率高、无污染、燃料适配性强、重量轻和仑固态结构等优点,极具发展潜力和应用前景,被称为21世纪最有希望的新一代绿色化学发电装置。固体氧化物燃料电池(SOFC)的发展趋势之一是降低电池工作温度。钙铁矿结构质子导体具有较高的电导率和质子迁移数以及较低的电导活化能(Iwallara H,OnoK.Proton conductioninsintered oxides based on BaCeO3[J].J.Electrochem.Soc.,1988,135(2):529~533),是中温固体氧化物燃料电池(IT-SOFC)电解质材料最佳选择之一。简单钙铁矿结构质子导体可分为低价离子掺杂的饰酸盐与锆酸盐两类。饰酸盐质子导体主要包括各种低价离子掺杂的BaCeO3、SrCeO3等,该类材料电导率较高,其单晶材料在高温下的电导率可达S/cln数量级,多相陶瓷一股在10-2~lS/cln之间,但化学稳定性较差,在CO2和H2S气氛中容易反应生成CeO2与相应的碳酸物,从而导致电导率的下降,降低燃料电池的使用寿命,或者对燃气纯度及反应过程中的气氛要求较高,从而导致较高的使用成本及维护费用。锆酸盐质子导体包括BaZrO3和SrZrO3等,该类材料几乎为纯质子电导,化学性质稳定,机械性能优越,但其制备困难,需要较高的烧结温度,且晶界电导率较低,作为燃料电池的电解质内阻较大,影响电池的效率(Lguchi F,Tsurui T,SataN,etal·Therelationship between chemicalcomposition distributions and specific grain boundary conductivity in Y-doped BaZrO3pfotonconductors[J].Solid State Ionics,2009,180(6-8):563~568)。对于单一的锆基与铈基氧化物,高质子电导与高稳定性能难以同时满足,单独作为燃料电池电解质都不甚理想。据报道,BaCeO3与BaZrO3可以形成无限固溶体BaZrxCe1-xO3,通过Ce取代部分BaZrO3中的Zr,可以在保证材料具有较高的化学稳定性的前提下提高材料的电导率。在过去的十几年中,研究者对锆铈基固溶体材料递行了广泛的研究。固溶体材料的性质随着锆铈比的变化而变化,锆含量的提高有利于材料的稳定性,铈含量的提高则有利于材料的导电性能。Liu等人采用柠檬酸自燃烧法合成了BaZf0.1Ce0.7Y0.2O3-δ粉体,以Ni基为阳极,制备了厚度为20μm的BaZf0.1Ce0.7Y0.2O3-δ锆铈固溶薄膜电解质,采用Sln0.5Sr0.5CoO3-δ-BaZr0.1Ce0.7Y0.2O3-δ作为复合阴极,组装的燃料电池在700°C时的输出功率可达650mW/cm2,同时在600°C、0.5V恒定电压下测试具有良好的化学稳定性,并不影响电池的正常运行,较之前的研究成果有较大突破(Mhgfei L,Jianfeng G. High performance of anode supported BaZr0.1Ce0.7Y0.2O3-δ(BZCY)electrolyte cell for IT-SOFC[J].Intemational Journal of Hydrogen Energy,2011,36(21)13741~13745)。但是由于BaZrO3的存在,材料的烧结致密化仍然存在一定困难,而且高温烧结容易造成Ba从A位缺失从而使材料的性能退化,因此研究更加容易的烧结方法是非常重要的。Due to the advantages of high energy conversion efficiency, no pollution, strong fuel adaptability, light weight and solid-state structure, fuel cells have great development potential and application prospects, and are known as the most promising new generation of green chemical power generation in the 21st century. device. One of the development trends of solid oxide fuel cells (SOFCs) is to reduce the operating temperature of the cells. The perovskite structure proton conductor has high conductivity and proton migration number and low conduction activation energy (Iwallara H, OnoK.Proton conductinsintered oxides based on BaCeO 3 [J].J.Electrochem.Soc., 1988, 135 (2):529~533), which is one of the best choices of electrolyte materials for intermediate temperature solid oxide fuel cells (IT-SOFC). The simple perovskite-structured proton conductors can be divided into low-valent ion-doped decoration salts and zirconates. Salt-decorated proton conductors mainly include BaCeO 3 , SrCeO 3 doped with various low-valent ions, etc. These materials have high conductivity, and the conductivity of single crystal materials can reach the order of S/cln at high temperatures. Multiphase ceramics One is between 10 -2 and lS/cln, but its chemical stability is poor, and it is easy to react in the CO 2 and H 2 S atmosphere to form CeO 2 and the corresponding carbonates, which will lead to a decrease in electrical conductivity and reduce the efficiency of the fuel cell. service life, or have higher requirements on the gas purity and the atmosphere in the reaction process, resulting in higher use cost and maintenance cost. Zirconate proton conductors include BaZrO 3 and SrZrO 3 , etc. This type of material is almost purely proton-conductive, with stable chemical properties and superior mechanical properties, but it is difficult to prepare, requires a high sintering temperature, and has low grain boundary conductivity. As a fuel cell, the internal resistance of the electrolyte is large, which affects the efficiency of the battery (Lguchi F, Tsurui T, SataN, et al. Therelationship between chemical composition distributions and specific grain boundary conductivity in Y-doped BaZrO 3 pfotonconductors[J].Solid State Ionics, 2009 , 180(6-8):563-568). For a single zirconium-based and cerium-based oxide, it is difficult to satisfy high proton conductivity and high stability at the same time, and it is not ideal as a fuel cell electrolyte alone. It is reported that BaCeO 3 and BaZrO 3 can form an infinite solid solution BaZr x Ce 1-x O 3 , and by replacing some of the Zr in BaZrO 3 with Ce, the electrical conductivity of the material can be improved under the premise of ensuring high chemical stability of the material. . In the past ten years, researchers have conducted extensive research on zirconium-cerium-based solid solution materials. The properties of solid solution materials change with the ratio of zirconium to cerium. The increase of zirconium content is beneficial to the stability of the material, and the increase of cerium content is beneficial to the electrical conductivity of the material. Liu et al. synthesized BaZf 0.1 Ce 0.7 Y 0.2 O 3-δ powder by citric acid self-combustion method, and prepared BaZf 0.1 Ce 0.7 Y 0.2 O 3-δ zirconium cerium solid solution with a thickness of 20 μm using Ni base as the anode. Thin film electrolyte, using Sln 0.5 Sr 0.5 CoO 3-δ -BaZr 0.1 Ce 0.7 Y 0.2 O 3-δ as composite cathode, the output power of the assembled fuel cell can reach 650mW/cm 2 at 700°C, and at 600° C. The test at a constant voltage of 0.5V has good chemical stability and does not affect the normal operation of the battery, which is a major breakthrough compared with previous research results (Mhgfei L, Jianfeng G. High performance of anode supported BaZr 0.1 Ce 0.7 Y 0.2 O 3-δ (BZCY)electrolyte cell for IT-SOFC[J].International Journal of Hydrogen Energy, 2011, 36(21)13741~13745). However, due to the existence of BaZrO 3 , it is still difficult to sinter and densify the material, and high-temperature sintering may easily cause Ba to be missing from the A site, thereby degrading the performance of the material. Therefore, it is very important to study an easier sintering method.
发明内容Contents of the invention
本发明的目的,是提供一种制备方法简单,节约成本,既能在较低温度下烧结致密又能获得优良电导率的新型固体氧化物燃料电池的质子导体材料。The purpose of the present invention is to provide a new type of proton conductor material for solid oxide fuel cells which has a simple preparation method, saves cost, can be sintered densely at a relatively low temperature and can obtain excellent electrical conductivity.
本发明采用柠檬酸凝胶自燃烧法制备铈锆酸钡质子导体粉木,通过添加碳酸锂烧结助剂来降低烧结温度,提高致密度。改变碳酸锂的添加量,研究碳酸锂-锆铈酸钡材料各项性能,确定其最佳添加量,从而制备出性能优良的阳极支撑型固体氧化物燃料电池。The invention adopts citric acid gel self-combustion method to prepare cerium barium zirconate proton conductor powder wood, and adds lithium carbonate sintering auxiliary agent to reduce sintering temperature and improve density. Change the addition amount of lithium carbonate, study the properties of lithium carbonate-barium zirconate cerate material, determine its optimal addition amount, and prepare an anode-supported solid oxide fuel cell with excellent performance.
本发明通过如下技术方案予以实现:The present invention is achieved through the following technical solutions:
碳酸钝改性铈锆酸钡质子导体材料,其原料组分及其摩尔含量为:BaCe0.7Zr0.1Y0.2O3-δ,在此基础上,外加质量百分比0%~7.5%的碳酸锂和摩尔百分比0%~4%的氧化锌;Carbonic acid passivation modified barium cerium zirconate proton conductor material, its raw material components and molar content are: BaCe 0.7 Zr 0.1 Y 0.2 O 3-δ , on this basis, add 0% to 7.5% of carbonic acid Lithium and zinc oxide with a molar percentage of 0% to 4%;
该碳酸锂改性铈锆酸钡质子导体材料的制备方法,步骤如下:The preparation method of this lithium carbonate modified cerium barium zirconate proton conductor material, the steps are as follows:
(1)按照BaCe0.7Zr0.1Y0.2O3-δ化学计量比分别称取原料:Ba(NO3)2、ZrWO3)4·5H2O、Ce(NO3)3·6H2O、Y(NO3)3·6H2O;按照总金属盐离子:乙二胺四乙酸即EDTA:柠檬酸为1:1.5:1~1:2:1摩尔比混合,加入到500mL去离子水中,用浓氨水调节pH值为6~8,加热搅拌蒸发水分,获得粘稠状的胶体,在不锈钢反应容器中进行反应;再在240°C下预烧,保温5小时;最后在1000~1100°C下煅烧,保温5小时,获得浅黄色纯相BaCe0.7Zf0.1Y0.2O3-δ粉体;(1) Weigh the raw materials according to BaCe 0.7 Zr 0.1 Y 0.2 O 3-δ stoichiometric ratio: Ba(NO 3 ) 2 , ZrWO 3 ) 4 5H 2 O, Ce(NO 3 ) 3 6H 2 O, Y (NO 3 ) 3 6H 2 O; mix according to the molar ratio of total metal salt ions: ethylenediaminetetraacetic acid (EDTA: citric acid) 1:1.5:1~1:2:1, add to 500mL deionized water, use Adjust the pH value of concentrated ammonia water to 6-8, heat and stir to evaporate water, obtain a viscous colloid, and react in a stainless steel reaction vessel; then pre-fire at 240°C and keep it warm for 5 hours; finally, at 1000-1100°C Calcined at lower temperature and kept for 5 hours to obtain light yellow pure phase BaCe 0.7 Zf 0.1 Y 0.2 O 3-δ powder;
(2)以步骤(1)制备的粉体为基体材料,添加质量百分比0%~7.5%碳酸锂和摩尔百分比0%~4%的氧化锌,以无水乙醇为介质球磨混合;经干燥、研磨、过筛后将粉体放入模具中,在100~200MPa下干压成型为坯体;再将所得坯体在1150~1300°C空气气氛中烧结,保温4~6小时,自然冷却至室温,制得碳酸锂改性铈锆酸钡质子导体材料。(2) Taking the powder prepared in step (1) as the base material, adding 0% to 7.5% by mass percentage of lithium carbonate and 0% to 4% by mole percentage of zinc oxide, and using absolute ethanol as the medium for ball milling; drying, After grinding and sieving, put the powder into the mold, and dry press it at 100-200MPa to form a green body; then sinter the obtained green body in an air atmosphere at 1150-1300°C, keep it warm for 4-6 hours, and cool naturally to At room temperature, a lithium carbonate-modified cerium barium zirconate proton conductor material is prepared.
所述步骤(2)的烧结方式为埋烧,升温速率5°C/分钟。The sintering method of the step (2) is buried firing, and the heating rate is 5°C/min.
该铈锆酸钡质子导体材料的相对密度为90%以上。The relative density of the barium cerium zirconate proton conductor material is above 90%.
本发明的有益效果:使用BaCe0.7Zr0.1Y0.2O3-δ作为电解质材料·,外加Li2CO3作为液相烧结助剂,从而使电解质材料在较低的烧结温度下达到致密。由于添加了无机盐碳酸锂,增加了质子传导的数目,改善了材料的晶界状况,600°C下电导率预期可达10-2西门子/厘米。本发明在提高其烧结性能的同时改善了其电性能和稳定性,为不断推进铈锆酸钡质子导体材料的应用、开发固体氧化物燃料电池奠定理论基础。Beneficial effects of the present invention: BaCe 0.7 Zr 0.1 Y 0.2 O 3-δ is used as the electrolyte material, and Li 2 CO 3 is added as the liquid phase sintering aid, so that the electrolyte material can be dense at a lower sintering temperature. Due to the addition of inorganic salt lithium carbonate, the number of proton conduction is increased and the grain boundary condition of the material is improved. The conductivity at 600°C is expected to reach 10 -2 Siemens/cm. The invention improves its sintering performance and simultaneously improves its electrical performance and stability, and lays a theoretical foundation for continuously promoting the application of cerium barium zirconate proton conductor materials and developing solid oxide fuel cells.
附图说明Description of drawings
图1为本发明实施例l中BZCY2.5L和BZCY试样的XRD图谱;Fig. 1 is the XRD collection of illustrative plates of BZCY2.5L and BZCY sample in the embodiment of the
图2为木发明实施例1中添加碳酸锂试样的相对密度曲线;Fig. 2 is the relative density curve of adding lithium carbonate sample in the embodiment of the
图3为本发明实施例1中烧结后电解质断面的扫描电子显微镜(SEM)照片;Fig. 3 is the scanning electron microscope (SEM) photograph of the electrolyte section after sintering in the
图4为本发明实施例2中BZCY-5L试样的扫描电子显微镜照片;Fig. 4 is the scanning electron micrograph of BZCY-5L sample in the embodiment of the
图5为本发明实施例1,2和5中添加不同Li2CO3掺杂含量的材料的电导率曲线。Fig. 5 is the conductivity curves of materials with different Li 2 CO 3 doping contents in Examples 1, 2 and 5 of the present invention.
具体实施方式Detailed ways
本发明所用原料均为分析纯试剂,采用硝酸盐-柠檬酸凝胶自燃烧法制备BaCe0.7Zr0.1Y0.2O3-δ粉体;下面结合具体实施例对本发明作进一步描述。The raw materials used in the present invention are analytical reagents, and the BaCe 0.7 Zr 0.1 Y 0.2 O 3-δ powder is prepared by the self-combustion method of nitrate-citric acid gel; the present invention will be further described in conjunction with specific examples below.
实施例1Example 1
按照BaCe0.7Zr0.1Y0.2O3-δ的化学计量比,取1摩尔Ba(NO3)2、0.7摩尔CeWO3)3·6H2O、0.1摩尔Zr(NO3)4·5H2O、0.2摩尔Y(NO3)3·6H2O,按照总金属离子:EDTA:柠檬酸(摩尔比)=1:1.5:1混合,溶解在50OlnL去离子水中,使用氨水调节溶液pH值为8,加热搅拌使水分不断蒸发从而获得粘稠状的浅黄色的凝胶,在不锈钢反应容器内有机物燃烧从而获得灰白色的粉末,再在240°C下预烧,保温5小时,最后在1000°C下煅烧,保温5小时,制备出纯相的BaCe0.7Zr0.1Y0.2O3-δ(BZCY)浅黄色粉体。在基体粉料中添加质量百分比为2.5%碳酸锂,以无水乙醇为介质球磨混合6小时,再经过干燥、研磨、过筛后,将混合的电解质粉料称量0.7克倒入12mm模具中进行干压成型,压力为100MPa,埋入碳酸锂掺杂铈锆酸钡粉料、在空气气氛中于1250°C中埋烧,升温速率5°C/分钟,保温5小时,然后自然冷却至室温,制得BaCe0.7Zr0.1Y0.2O3-δ-2.5%Li2CO3(BZCY2.5L)复合电解质。图1为BZCY和BZCY2.5L的XIRD图谱,从图中可以看出两种材料均呈现单一的钙铁矿结构,对于试样BZCY-2.5L,虽然碳酸锂作为独立相加入,但在烧结试样中并未出现碳酸锂峰,说明碳酸锂与主晶相固溶,从而促进烧结,使材料更加致密。According to the stoichiometric ratio of BaCe 0.7 Zr 0.1 Y 0.2 O 3-δ , 1 mole of Ba(NO 3 ) 2 , 0.7 mole of CeWO 3 ) 3 ·6H 2 O, 0.1 mole of Zr(NO 3 ) 4 · 5H 2 O, 0.2 moles of Y(NO 3 ) 3 6H 2 O, mixed according to the total metal ion: EDTA: citric acid (molar ratio) = 1:1.5:1, dissolved in 50OlnL deionized water, and adjusted the pH of the solution with ammonia water The value is 8, heat and stir to make the water evaporate continuously so as to obtain a viscous light yellow gel, burn the organic matter in the stainless steel reaction vessel to obtain off-white powder, then pre-fire at 240 ° C, keep the temperature for 5 hours, and finally in Calcined at 1000°C and kept for 5 hours, the pure-phase BaCe 0.7 Zr 0.1 Y 0.2 O 3-δ (BZCY) light yellow powder was prepared. Add 2.5% lithium carbonate by mass to the base powder, and use absolute ethanol as the medium for ball milling and mixing for 6 hours. After drying, grinding, and sieving, weigh 0.7 grams of the mixed electrolyte powder and pour it into a 12mm mold. Carry out dry pressing molding, the pressure is 100MPa, embed lithium carbonate doped cerium barium zirconate powder, bury and burn in 1250 ℃ in air atmosphere, heating rate 5 ℃/min, keep warm for 5 hours, then naturally cool to At room temperature, BaCe 0.7 Zr 0.1 Y 0.2 O 3-δ -2.5%Li 2 CO 3 (BZCY2.5L) composite electrolyte was prepared. Figure 1 shows the XIRD patterns of BZCY and BZCY2.5L. It can be seen from the figure that both materials present a single perovskite structure. For the sample BZCY-2.5L, although lithium carbonate was added as an independent phase, the sintering test Lithium carbonate peak does not appear in the sample, indicating that lithium carbonate is in solid solution with the main crystal phase, thereby promoting sintering and making the material more compact.
采用阿基米德排水法测量其密度,从图2可以看出在1250°C烧结后BZCY2.5L的相对密度达93%,从图3该材料的扫描电子显微镜照片可见,晶粒排列紧密,并无气孔存在,该材料表现出较好的烧结性能,说明碳酸锂的添加提高了材料的烧结性能。The density was measured by the Archimedes drainage method. It can be seen from Figure 2 that the relative density of BZCY2.5L after sintering at 1250°C reaches 93%. It can be seen from the scanning electron microscope photo of the material in Figure 3 that the grains are closely arranged. There is no porosity, and the material exhibits good sintering performance, indicating that the addition of lithium carbonate improves the sintering performance of the material.
实施例2Example 2
按照BaCe0.7Zr0.1Y0.2O3-δ的化学计量比,取1摩尔Ba(NO3)2、0.7摩尔CeWO3)3·6H2O、0.1摩尔Zf(NO3)4·5H2O、0.2摩尔Y(NO3)3·6H2O,按照总金属离子:EDTA:柠檬酸(摩尔比)=1:2:1混合,溶解在500mL去离子水中,使用氨水调节溶液pH值为6,加热搅拌使水分不断蒸发从而获得粘稠状的浅黄色的凝胶,在不锈钢反应容器内有机物燃烧从而获得灰白色的粉末,再在240°C下预烧5小时,最后在1050°C下煅烧5小时,制备出纯相的BZCY浅黄色粉体。在基体粉料中添加质量百分比为5%的碳酸锂,以无水乙醇为介质混合球磨6小时,再经过干燥、研磨、过筛后,将混合的电解质粉料称量0.7克倒入12mm模具中进行干压成型,压力为150MPa,埋入碳酸锂掺杂铈锆酸钡粉料、在空气气氛中于1250°C中埋烧,升温速率5°C/分钟,保温5小时,然后自然冷却至室温,制得BaCe0.7Zr0.1Y0.2O3-δ-5%Li2CO3(BZCY-5L)复合电解质。According to the stoichiometric ratio of BaCe 0.7 Zr 0.1 Y 0.2 O 3-δ , 1 mole of Ba(NO 3 ) 2 , 0.7 mole of CeWO 3 ) 3 ·6H 2 O, 0.1 mole of Zf(NO 3 ) 4 ·5H 2 O, 0.2 moles of Y(NO 3 ) 3 6H 2 O were mixed according to total metal ions: EDTA: citric acid (molar ratio) = 1:2:1, dissolved in 500mL deionized water, and the pH value of the solution was adjusted to 6 with ammonia water. Heat and stir to continuously evaporate the water to obtain a viscous light yellow gel, burn the organic matter in a stainless steel reaction vessel to obtain off-white powder, then pre-calcine at 240°C for 5 hours, and finally calcined at 1050°C for 5 hours Hours, a pure-phase BZCY light yellow powder was prepared. Add lithium carbonate with a mass percentage of 5% to the matrix powder, mix and ball mill with absolute ethanol for 6 hours, then dry, grind, and sieve, weigh 0.7 grams of the mixed electrolyte powder and pour it into a 12mm mold Carry out dry pressing molding in the middle, the pressure is 150MPa, embed lithium carbonate doped with cerium barium zirconate powder, bury and burn in air atmosphere at 1250°C, heating rate 5°C/min, keep warm for 5 hours, and then cool naturally to room temperature to prepare BaCe 0.7 Zr 0.1 Y 0.2 O 3-δ -5%Li 2 CO 3 (BZCY-5L) composite electrolyte.
采用阿基米德排水法测量其密度,相对密度达到95%以上。图4是烧结试样的扫描照片,试样晶粒紧密排列,该材料表现出较好的烧结性能。The density is measured by the Archimedes drainage method, and the relative density reaches more than 95%. Figure 4 is a scanning photo of the sintered sample, the grains of the sample are closely arranged, and the material shows good sintering performance.
实施例3Example 3
按照BaCe0.7Zr0.1Y0.2O3-δ的化学计量比,取1摩尔Ba(NO3)2、0.7摩尔CeWO3)3·6H2O、0.1摩尔Zr(NO3)4·5H2O、0.2摩尔YWO3)3·6H2O,按照总金属离子:EDTA:柠檬酸(摩尔比)=1:1.5:1混合,溶解在500mL去离子水中,使用氨水调节溶液pH值为7,加热搅拌使水分不断蒸发从而获得粘稠状的浅黄色的凝胶,在不锈钢反应容器内有机物燃烧从而获得灰白色的粉木,再在240°C下预烧5小时,最后在1100°C下煅烧5小时,制备出纯相的BZCY浅黄色粉体。在基体粉料中添加质量百分比为7%碳酸锂,以无水乙醇为介质混合球磨6小时,再经过干燥、研磨、过筛后,将混合的电解质粉料称量0.7克倒入15mm模具中进行干压成型,压力为200MPa,埋入碳酸锂掺杂铈锆酸钡粉料、在空气气氛中于1150°C中埋烧,升温速率5°C/分钟,保温6小时,然后自然冷却至室温,制得BaCe0.7Zr0.1Y0.2O3-δ-7%Li2CO3(BZCY7L)复合电解质。According to the stoichiometric ratio of BaCe 0.7 Zr 0.1 Y 0.2 O 3-δ , 1 mole of Ba(NO 3 ) 2 , 0.7 mole of CeWO 3 ) 3 ·6H 2 O, 0.1 mole of Zr(NO 3 ) 4 ·5H 2 O, 0.2 moles of YWO 3 ) 3 6H 2 O, mixed according to total metal ions: EDTA: citric acid (molar ratio) = 1:1.5:1, dissolved in 500mL deionized water, using ammonia water to adjust the pH of the solution to 7, heating and stirring The water is continuously evaporated to obtain a viscous light yellow gel, and the organic matter is burned in a stainless steel reaction vessel to obtain off-white powder wood, then pre-calcined at 240°C for 5 hours, and finally calcined at 1100°C for 5 hours , the pure phase BZCY light yellow powder was prepared. Add 7% lithium carbonate by mass to the matrix powder, mix and ball mill for 6 hours with absolute ethanol as the medium, then dry, grind and sieve, weigh 0.7 g of the mixed electrolyte powder and pour it into a 15mm mold Carry out dry pressing molding, the pressure is 200MPa, embed lithium carbonate doped cerium barium zirconate powder, bury and burn in 1150 ℃ in air atmosphere, heating rate 5 ℃/min, keep warm for 6 hours, then naturally cool to At room temperature, BaCe 0.7 Zr 0.1 Y 0.2 O 3-δ -7%Li 2 CO 3 (BZCY7L) composite electrolyte was prepared.
采用阿基米德排水法测量其密度,相对密度达到90%,该材料表现出较好的烧结性能。The density was measured by the Archimedes drainage method, and the relative density reached 90%, and the material showed good sintering performance.
实施例4Example 4
按照BaCe0.7Zr0.1Y0.2O3-δ的化学计量比,取1摩尔Ba(NO3)2、0.7摩尔CeWO3)3·6H2O、0.1摩尔Zr(NO3)4·5H2O、0.2摩尔Y(NO3)3·6H2O,按照总金属离子:EDTA:柠檬酸(摩尔比)=1:2:1混合,溶解在500mL去离子水中,使用氨水调节溶液pH值为8,加热搅拌使水分不断蒸发从而获得粘稠状的浅黄色的凝胶,在不锈钢反应容器内有机物燃烧从而获得灰白色的粉木,再在240°C下预烧5小时,最后在1100°C下煅烧5小时,制备出纯相的BZCY浅黄色粉体。在基体粉料中添加质量百分比为7.5%碳酸锂,以无水乙醇为介质混合球磨6小时,再经过干燥、研磨、过筛后,将混合的电解质粉料称量0.7克倒入12mm模具中进行干压成型,压力为100MPa,埋入碳酸锂掺杂铈锆酸钡粉料、在空气气氛中于1150°C中埋烧,升温速率5°C/分钟,保温5小时,然后自然冷却至室温,制得BaCe0.7Zr0.1Y0.2O3-δ-7.5%Li2CO3(BZCY7.5L)复合电解质。According to the stoichiometric ratio of BaCe 0.7 Zr 0.1 Y 0.2 O 3-δ , 1 mole of Ba(NO 3 ) 2 , 0.7 mole of CeWO 3 ) 3 ·6H 2 O, 0.1 mole of Zr(NO 3 ) 4 ·5H 2 O, 0.2 moles of Y(NO 3 ) 3 6H 2 O were mixed according to total metal ions:EDTA:citric acid (molar ratio)=1:2:1, dissolved in 500mL deionized water, and the pH value of the solution was adjusted to 8 with ammonia water. Heat and stir to evaporate the water continuously to obtain a viscous light yellow gel, burn the organic matter in a stainless steel reaction vessel to obtain off-white powder wood, then pre-calcine at 240°C for 5 hours, and finally calcined at 1100°C After 5 hours, a pure-phase BZCY light yellow powder was prepared. Add a mass percentage of 7.5% lithium carbonate to the matrix powder, mix and ball mill it with absolute ethanol for 6 hours, then dry, grind, and sieve, weigh 0.7 grams of the mixed electrolyte powder and pour it into a 12mm mold Carry out dry pressing molding, the pressure is 100MPa, embed lithium carbonate doped cerium barium zirconate powder, bury and burn in 1150 ℃ in air atmosphere, heating rate 5 ℃/min, keep warm for 5 hours, then naturally cool to At room temperature, BaCe 0.7 Zr 0.1 Y 0.2 O 3-δ -7.5%Li 2 CO 3 (BZCY7.5L) composite electrolyte was prepared.
采用阿基米德排水法测量其密度,相对密度达到89%,与BaCe0.7Zr0.1Y0.2O3-δ基体相比,该材料表现出较好的烧结性能。Its density was measured by the Archimedes drainage method, and the relative density reached 89%. Compared with the BaCe 0.7 Zr 0.1 Y 0.2 O 3-δ matrix, the material showed better sintering performance.
实施例5Example 5
按照BaCe0.7Zr0.1Y0.2O3-δ的化学计量比,取1摩尔Ba(NO3)2、0.7摩尔Ce(NO3)3·6H2O、0.1摩尔Zr(NO3)4·5H2O、0.2摩尔Y(NO3)3·6H2O,按照总金属离子:EDTA:柠檬酸(摩尔比)=1:1.5:1混合,溶解在5OOmL去离子水中,使甩氨水调节溶液pH值为7,加热搅拌使水分不断蒸发从而获得粘稠状的浅黄色的凝胶,在不锈钢反应容器内有机物燃烧从而获得灰白色的粉末,再在240°C下预烧5小时,最后在1100°C下煅烧5小时,制备出纯相的BZCY浅黄色粉体。在基体粉料中添加质量百分比为2.5%碳酸锂和摩尔百分比为2.5%氧化锌,以无水乙醇为介质混合球磨6小时,再经过干燥、研磨、过筛后,将混合的电解质粉料称量0.7克倒入12mm模具中进行干压成型,压力为100MPa,埋入碳酸锂掺杂铈锆酸钡粉料、在空气气氛中于1250°C中埋烧,升温速率5°C/分钟,保温4小时,然后自然冷却至室温,制得BaCe0.7Zr0.1Y0.2O3-δ-2.5%ZnO-2.5%Li2CO3(BZCY-2.5L-2.5Z)复合电解质。According to the stoichiometric ratio of BaCe 0.7 Zr 0.1 Y 0.2 O 3-δ , take 1 mole of Ba(NO 3 ) 2 , 0.7 mole of Ce(NO 3 ) 3 ·6H 2 O, and 0.1 mole of Zr(NO 3 ) 4 ·5H 2 O, 0.2 moles of Y(NO 3 ) 3 6H 2 O, mixed according to total metal ions: EDTA: citric acid (molar ratio) = 1:1.5:1, dissolved in 500mL deionized water, and adjusted the pH value of the solution with ammonia water 7, heat and stir to make the water evaporate continuously to obtain a viscous light yellow gel, burn the organic matter in a stainless steel reaction vessel to obtain off-white powder, then pre-fire at 240°C for 5 hours, and finally heat it at 1100°C Calcined at lower temperature for 5 hours, the pure-phase BZCY light yellow powder was prepared. Add 2.5% lithium carbonate by mass percentage and 2.5% zinc oxide by mole percentage to the base powder, mix ball milling with absolute ethanol as the medium for 6 hours, and then dry, grind and sieve the mixed electrolyte powder. Amount of 0.7 grams is poured into a 12mm mold for dry pressing molding, the pressure is 100MPa, embedded lithium carbonate doped with cerium barium zirconate powder, buried and fired at 1250°C in an air atmosphere, the heating rate is 5°C/min, Keeping it warm for 4 hours, and then naturally cooling to room temperature, the BaCe 0.7 Zr 0.1 Y 0.2 O 3-δ -2.5%ZnO-2.5%Li 2 CO 3 (BZCY-2.5L-2.5Z) composite electrolyte was prepared.
采用阿基米德排水法测量其密度,相对密度达到90%,该材料表现出较好的烧结性能。The density was measured by the Archimedes drainage method, and the relative density reached 90%, and the material showed good sintering performance.
实施例6Example 6
按照BaCe0.7Zr0.1Y0.2O3-δ的化学计量比,取1摩尔Ba(NO3)2、0.7摩尔Ce(NO3)3·6H2O、0.1摩尔Zr(NO3)4·5H2O、0.2摩尔Y(NO3)3·6H2O,按照总金属离子:EDTA:柠檬酸(摩尔比)=1:1.5:1混合,溶解在50OmL去离子水中,使用氨水调节溶液pH值为7,加热搅拌使水分不断蒸发从而获得粘稠状的浅黄色的凝胶,在不锈钢反应容器内有机物燃烧从而获得灰白色的粉木,再在240°C下预烧5小时,最后在1100°C下煅烧5小时,制备出纯相的BZCY浅黄色粉体。在基体粉料中添加摩尔百分比为2.5%氧化锌,以无水乙醇为介质混合球磨6小时,再经过干燥、研磨、过筛后,将混合的电解质粉料称量0.7克倒入15mm模具中进行干压成型,压力为150MPa,埋入碳酸锂掺杂饰错酸钡粉料、在空气气氛中于1200°C中埋烧,升温速率5°C/分钟,保温5小时,然后自然冷却至室温,制得BaCe0.7Zr0.1Y0.2O3-δ-2.5ZnO(BZCY-2.5Z)复合电解质。According to the stoichiometric ratio of BaCe 0.7 Zr 0.1 Y 0.2 O 3-δ , take 1 mole of Ba(NO 3 ) 2 , 0.7 mole of Ce(NO 3 ) 3 ·6H 2 O, and 0.1 mole of Zr(NO 3 ) 4 ·5H 2 O, 0.2 moles of Y(NO 3 ) 3 6H 2 O, mixed according to total metal ions: EDTA: citric acid (molar ratio) = 1:1.5:1, dissolved in 500mL deionized water, using ammonia water to adjust the pH value of the solution 7. Heat and stir to continuously evaporate the water to obtain a viscous light yellow gel, burn the organic matter in a stainless steel reaction vessel to obtain off-white powder wood, then pre-burn at 240°C for 5 hours, and finally heat it at 1100°C Calcined at lower temperature for 5 hours, the pure-phase BZCY light yellow powder was prepared. Add zinc oxide with a molar percentage of 2.5% to the base powder, mix and ball mill with absolute ethanol for 6 hours, then dry, grind, and sieve, weigh 0.7 grams of the mixed electrolyte powder and pour it into a 15mm mold Carry out dry pressing molding, the pressure is 150MPa, embed lithium carbonate doping barium oxide powder, bury and burn in 1200 ℃ in air atmosphere, heating rate 5 ℃/min, keep warm for 5 hours, then naturally cool to At room temperature, BaCe 0.7 Zr 0.1 Y 0.2 O 3-δ -2.5ZnO (BZCY-2.5Z) composite electrolyte was prepared.
采用阿基米德排水法测量其密度,相对密度达到90%,该材料表现出较好的烧结性能。The density was measured by the Archimedes drainage method, and the relative density reached 90%, and the material showed good sintering performance.
实施例7Example 7
按照BaCe0.7Zr0.1Y0.2O3-δ的化学计量比,取1摩尔Ba(NO3)2、0.7摩尔Ce(NO3)3·6H2O、0.1摩尔ZfWO3)4·5H2O、0.2摩尔Y(NO3)3·6H2O,按照总金属离子:EDTA:柠檬酸(摩尔比)=1:1.5:1混合,溶解在500mL去离子水中,使用氨水调节溶液pH值为8,加热搅拌使水分不断蒸发从而获得粘稠状的浅黄色的凝胶,在不锈钢反应容器内有机物燃烧从而获得灰白色的粉末,再在240°C下预烧5小时,最后在1100°C下煅烧5小时,制备出纯相的BZCY浅黄色粉体。在基体粉料中添加质量百分比为2.5%碳酸锂和摩尔百分比为4%氧化锌,以无水乙醇为介质混合球磨6小时,再经过干燥、研磨、过筛后,将混合的电解质粉料称量0.7克倒入12mm模具中进行干压成型,压力为100MPa,埋入碳酸锂掺杂铈锆酸钡粉料、在空气气氛中于1300°C中埋烧,升温速率5°C/分钟,保温5小时,然后自然冷却至室温,制得BaCe0.7Zr0.1Y0.2O3-δ-4%ZnO-2.5%Li2CO3(BZCY-2.5L-4Z)复合电解质。According to the stoichiometric ratio of BaCe 0.7 Zr 0.1 Y 0.2 O 3-δ , 1 mole of Ba(NO 3 ) 2 , 0.7 mole of Ce(NO 3 ) 3 6H 2 O, 0.1 mole of ZfWO 3 ) 4 5H 2 O, 0.2 moles of Y(NO 3 ) 3 6H 2 O were mixed according to total metal ions:EDTA:citric acid (molar ratio)=1:1.5:1, dissolved in 500mL deionized water, and the pH value of the solution was adjusted to 8 with ammonia water. Heat and stir to continuously evaporate the water to obtain a viscous light yellow gel, burn the organic matter in a stainless steel reaction vessel to obtain off-white powder, then pre-calcine at 240°C for 5 hours, and finally calcined at 1100°C for 5 hours Hours, a pure-phase BZCY light yellow powder was prepared. Add 2.5% lithium carbonate by mass percentage and 4% zinc oxide by mole percentage to the base powder, mix and ball mill with absolute ethanol for 6 hours, and then dry, grind and sieve the mixed electrolyte powder. Amount of 0.7 grams is poured into a 12mm mold for dry pressing molding, the pressure is 100MPa, embedded lithium carbonate doped with cerium barium zirconate powder, buried and fired at 1300°C in an air atmosphere, the heating rate is 5°C/min, Keeping it warm for 5 hours, and then naturally cooling to room temperature, the BaCe 0.7 Zr 0.1 Y 0.2 O 3-δ -4%ZnO-2.5%Li 2 CO 3 (BZCY-2.5L-4Z) composite electrolyte was prepared.
采用阿基米德排水法测量其密度,相对密度达到96%,该材料表现出较好的烧结性能。The density was measured by the Archimedes drainage method, and the relative density reached 96%. The material showed good sintering performance.
应用实施例1Application Example 1
以BaCe0.7Zr0.1Y0.2O3-δ-Li2CO3(2·5%质量百分比)粉体为电解质材料,将其放入12mm直径模具中进行干压成型,压力为150MPa;埋入碳酸钝掺杂铈锆酸钡电解质粉体在1250°C在空气中烧结,升温速率5°C/分钟,保温5小时,然后自然冷却至室温。将得到的试样片放置在自制电导率测试试管上,两端引入银丝作为电极,在湿氢气气氛下进行测试,试样测试温度为500~800°C,温度间隔为50°C,用电化学工作站采用线性扫描伏安进行测试,利用公式O=L/RA计算电导率。从图5可以看出,在600°C、650°C、700°C时,电导率分别为7.27X10-3S/cm、9.81×10-3S/cm、1.11×10-2S/cm。Using BaCe 0.7 Zr 0.1 Y 0.2 O 3-δ -Li 2 CO 3 (2.5% by mass) powder as the electrolyte material, put it into a 12mm diameter mold for dry pressing at a pressure of 150MPa; The passivated doped cerium barium zirconate electrolyte powder was sintered in air at 1250°C, the heating rate was 5°C/min, kept for 5 hours, and then naturally cooled to room temperature. Place the obtained sample piece on a self-made conductivity test tube, introduce silver wires at both ends as electrodes, and conduct the test under a wet hydrogen atmosphere. The electrochemical workstation uses linear sweep voltammetry to test, and uses the formula O=L/RA to calculate the conductivity. It can be seen from Figure 5 that at 600°C, 650°C, and 700°C, the electrical conductivity is 7.27X10 -3 S/cm, 9.81×10 -3 S/cm, 1.11×10 -2 S/cm .
应用实施例2Application Example 2
以BaCe0.7Zr0.1Y0.2O3-δLi2CO3(5%质量百分比)粉体为电解质材料,用与应用实施例1相同的配料方法,压制方法,热处理技术和电导率测试方法。从图5可以看出,在600°C、650°C、700°C时,电解质材料的电导率分别为8.58X10-3S/cm、1.39×10-3S/cm、1.6×10-2S/cm。BaCe 0.7 Zr 0.1 Y 0.2 O 3-δ Li 2 CO 3 (5% by mass) powder was used as the electrolyte material, and the same batching method, pressing method, heat treatment technology and conductivity testing method as in Application Example 1 were used. It can be seen from Figure 5 that at 600°C, 650°C, and 700°C, the electrical conductivity of the electrolyte material is 8.58X10-3 S/cm, 1.39× 10-3 S/cm, and 1.6× 10-2 S/cm.
应用实施例3Application Example 3
以BaCe0.7Zr0.1Y0.2O3-δZnO(2.5%质量)-Li2CO3(2.5%质量百分比)粉体为电解质材料,用与应用实施例1相同的配料方法,压制方法,热处理技术和电导率测试方法。从图5可以看出,在600°C、650°C、700°C时,电导率分别为2.89×10-3S/cm、3.51×10-3S/cm、4.32X10-3S/cm。Using BaCe 0.7 Zr 0.1 Y 0.2 O 3-δ ZnO (2.5% by mass)-Li 2 CO 3 (2.5% by mass) powder as the electrolyte material, using the same batching method, pressing method, and heat treatment technology as in Application Example 1 and conductivity testing methods. It can be seen from Figure 5 that at 600°C, 650°C, and 700°C, the electrical conductivity is 2.89×10 -3 S/cm, 3.51×10 -3 S/cm, 4.32X10 -3 S/cm .
本发明提出的碳酸锂改性铈锆酸钡质子导体材料及其制备方法,己通过实施例进行了描述,相关技术人员明显能在不脱离本发明的内容、精神和范围内对本文所述的内容进行改动或适当变更与组合,来实现本发明。特别需要指出的是,所有相类似的替换和改动对本领域技术人员来说是显而易见的,他们都被视为包括在本发明的精神、范围和内容中。The lithium carbonate modified cerium barium zirconate proton conductor material and preparation method thereof proposed by the present invention have been described through the examples, and those skilled in the art can obviously understand the content, spirit and scope of the present invention. The content is modified or appropriately modified and combined to realize the present invention. In particular, it should be pointed out that all similar substitutions and modifications would be obvious to those skilled in the art, and they are all considered to be included in the spirit, scope and content of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013101379557A CN103224394A (en) | 2013-04-19 | 2013-04-19 | Lithium carbonate modified cerium barium zirconate proton conductor material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013101379557A CN103224394A (en) | 2013-04-19 | 2013-04-19 | Lithium carbonate modified cerium barium zirconate proton conductor material and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103224394A true CN103224394A (en) | 2013-07-31 |
Family
ID=48835069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013101379557A Pending CN103224394A (en) | 2013-04-19 | 2013-04-19 | Lithium carbonate modified cerium barium zirconate proton conductor material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103224394A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103531833A (en) * | 2013-10-22 | 2014-01-22 | 天津大学 | Proton conductor material in lithium/yttrium carbonate doped cerium barium zirconium complex phase structure |
CN103586014A (en) * | 2013-11-28 | 2014-02-19 | 南京工程学院 | Membrane capable of performing electrocatalysis degradation of tail gas nitrogen oxide with high selectivity under low temperature and its preparation method |
CN105531860A (en) * | 2013-08-27 | 2016-04-27 | 住友电气工业株式会社 | Electrode material for fuel electrode, solid electrolyte-electrode laminate, method for producing solid electrolyte-electrode laminate, and fuel cell |
CN107406332A (en) * | 2015-03-30 | 2017-11-28 | 住友电气工业株式会社 | Proton conductor, solid electrolyte layer for fuel cell, battery structure, and fuel cell including battery structure |
CN108232263A (en) * | 2018-01-02 | 2018-06-29 | 珠海光宇电池有限公司 | Composite solid electrolyte and preparation method thereof |
CN110444796A (en) * | 2019-09-10 | 2019-11-12 | 东北大学 | A method of improving solid-oxide fuel battery electrolyte conductivity |
CN112062567A (en) * | 2020-09-17 | 2020-12-11 | 中国科学院上海应用物理研究所 | Method for preparing zirconium-yttrium-doped barium ceria powder by using molten salt and powder obtained therefrom |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1470455A (en) * | 2002-07-25 | 2004-01-28 | 浙江大学 | Cerium-zirconium-barium composite oxide and preparation method thereof |
CN102403511A (en) * | 2011-11-24 | 2012-04-04 | 天津大学 | Lithium ion battery cathode material lanthanum strontium cobalt oxide and carbon coated lithium iron phosphate and preparation method thereof |
CN102408233A (en) * | 2011-08-18 | 2012-04-11 | 天津大学 | Barium zirconate cerate complex phase structure proton conductor material and preparation method thereof |
CN102531587A (en) * | 2012-01-06 | 2012-07-04 | 天津大学 | Yttrium-doped barium zirconate-cerate/inorganic salt complex phase-structured proton conductor material and preparation method thereof |
CN102942364A (en) * | 2012-11-02 | 2013-02-27 | 天津大学 | Zinc oxide-carbonate co-doped cerium barium zirconate proton conductor material and preparation method thereof |
-
2013
- 2013-04-19 CN CN2013101379557A patent/CN103224394A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1470455A (en) * | 2002-07-25 | 2004-01-28 | 浙江大学 | Cerium-zirconium-barium composite oxide and preparation method thereof |
CN102408233A (en) * | 2011-08-18 | 2012-04-11 | 天津大学 | Barium zirconate cerate complex phase structure proton conductor material and preparation method thereof |
CN102403511A (en) * | 2011-11-24 | 2012-04-04 | 天津大学 | Lithium ion battery cathode material lanthanum strontium cobalt oxide and carbon coated lithium iron phosphate and preparation method thereof |
CN102531587A (en) * | 2012-01-06 | 2012-07-04 | 天津大学 | Yttrium-doped barium zirconate-cerate/inorganic salt complex phase-structured proton conductor material and preparation method thereof |
CN102942364A (en) * | 2012-11-02 | 2013-02-27 | 天津大学 | Zinc oxide-carbonate co-doped cerium barium zirconate proton conductor material and preparation method thereof |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105531860A (en) * | 2013-08-27 | 2016-04-27 | 住友电气工业株式会社 | Electrode material for fuel electrode, solid electrolyte-electrode laminate, method for producing solid electrolyte-electrode laminate, and fuel cell |
CN103531833A (en) * | 2013-10-22 | 2014-01-22 | 天津大学 | Proton conductor material in lithium/yttrium carbonate doped cerium barium zirconium complex phase structure |
CN103586014A (en) * | 2013-11-28 | 2014-02-19 | 南京工程学院 | Membrane capable of performing electrocatalysis degradation of tail gas nitrogen oxide with high selectivity under low temperature and its preparation method |
CN103586014B (en) * | 2013-11-28 | 2015-10-07 | 南京工程学院 | Film of low temperature high selectivity Electrocatalysis Degradation tail gas nitrogen oxide and preparation method thereof |
CN107406332A (en) * | 2015-03-30 | 2017-11-28 | 住友电气工业株式会社 | Proton conductor, solid electrolyte layer for fuel cell, battery structure, and fuel cell including battery structure |
CN107406332B (en) * | 2015-03-30 | 2020-11-03 | 住友电气工业株式会社 | Proton conductor, solid electrolyte layer for fuel cell, cell structure, and fuel cell including cell structure |
CN108232263A (en) * | 2018-01-02 | 2018-06-29 | 珠海光宇电池有限公司 | Composite solid electrolyte and preparation method thereof |
CN110444796A (en) * | 2019-09-10 | 2019-11-12 | 东北大学 | A method of improving solid-oxide fuel battery electrolyte conductivity |
CN110444796B (en) * | 2019-09-10 | 2022-05-17 | 东北大学 | A method for improving the conductivity of solid oxide fuel cell electrolyte |
CN112062567A (en) * | 2020-09-17 | 2020-12-11 | 中国科学院上海应用物理研究所 | Method for preparing zirconium-yttrium-doped barium ceria powder by using molten salt and powder obtained therefrom |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103811772B (en) | Composite containing perovskite structure oxide and its production and use | |
Nguyen et al. | Preparation and evaluation of BaZr0. 1Ce0. 7Y0. 1Yb0. 1O3− δ (BZCYYb) electrolyte and BZCYYb-based solid oxide fuel cells | |
CN102569786B (en) | Perovskite Co-based composite negative electrode material as well as preparation and application thereof | |
CN103224394A (en) | Lithium carbonate modified cerium barium zirconate proton conductor material and preparation method thereof | |
CN103208634B (en) | For the composite cathode material of middle low-temperature protonic transmission Solid Oxide Fuel Cell | |
CN113149092B (en) | Electrolyte material for B site doped proton conductor fuel cell, preparation method and application in direct ammonia fuel cell | |
CN102942364A (en) | Zinc oxide-carbonate co-doped cerium barium zirconate proton conductor material and preparation method thereof | |
CN110797542A (en) | A kind of symmetrical solid oxide fuel cell electrode material and preparation method thereof | |
CN103531833A (en) | Proton conductor material in lithium/yttrium carbonate doped cerium barium zirconium complex phase structure | |
CN104409742A (en) | A BaCoO3-δ-based B-site Bi2O3 and Nb2O5 co-doped solid oxide fuel cell cathode material and its preparation method and application | |
CN108649235A (en) | A kind of A laminated perovskite type electrode material and preparation method thereof | |
Cai et al. | Ni-doped A-site-deficient La0. 7Sr0. 3Cr0. 5Mn0. 5O3-δ perovskite as anode of direct carbon solid oxide fuel cells | |
CN102208663A (en) | BaFeO3-δ-based ABO3-type perovskite fuel cell cathode material doped with B-site of transition metal element and its application | |
CN102842723B (en) | Intermediate temperature solid oxide fuel cell cathode material with perovskite structure and preparation method thereof | |
Yusoff et al. | Recent advances and influencing parameters in developing electrode materials for symmetrical solid oxide fuel cells | |
CN105932299A (en) | Cathode material with composite phase structure of intermediate-low-temperature solid oxide fuel cell | |
CN108470918A (en) | A kind of anion doped La of F0.8Sr0.2MnFxO3-x-δCathode material and preparation method thereof | |
CN103730678B (en) | The single part low-temperature solid oxide fuel cell manufactured with rare earth oxide composite with LiMn2O4 | |
CN115810763A (en) | A kind of fuel cell/electrolyzer oxygen electrode material, preparation method and application thereof | |
CN101252190B (en) | A mixed conduction type medium and low temperature fuel cell cathode material and its preparation method | |
CN103794804B (en) | Electrode of symmetrical type solid oxide fuel cell and composite electrode material | |
CN115044928A (en) | A kind of proton conductor type solid oxide electrochemical cell oxygen electrode material and preparation method thereof | |
CN104934613A (en) | Anode material of high-temperature solid oxide electrolysis cell and composite anode material | |
CN105428677B (en) | A kind of barium stannate base complex phase electrolyte and preparation method thereof | |
CN102054991B (en) | A kind of solid oxide fuel cell cathode material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130731 |