CN103058193B - 一种采用金属镍/非晶碳叠层制备碳化硅纳米线的方法 - Google Patents
一种采用金属镍/非晶碳叠层制备碳化硅纳米线的方法 Download PDFInfo
- Publication number
- CN103058193B CN103058193B CN201310029540.8A CN201310029540A CN103058193B CN 103058193 B CN103058193 B CN 103058193B CN 201310029540 A CN201310029540 A CN 201310029540A CN 103058193 B CN103058193 B CN 103058193B
- Authority
- CN
- China
- Prior art keywords
- nickel
- silicon carbide
- amorphous carbon
- target
- vacuum chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims abstract description 122
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 44
- 229910003481 amorphous carbon Inorganic materials 0.000 title claims abstract description 31
- 238000003475 lamination Methods 0.000 title claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 58
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 37
- 239000000758 substrate Substances 0.000 claims abstract description 36
- 239000002070 nanowire Substances 0.000 claims abstract description 35
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 31
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 31
- 239000002184 metal Substances 0.000 claims abstract description 31
- 229910052751 metal Inorganic materials 0.000 claims abstract description 31
- 238000004544 sputter deposition Methods 0.000 claims abstract description 14
- 238000010438 heat treatment Methods 0.000 claims abstract description 12
- 238000001755 magnetron sputter deposition Methods 0.000 claims abstract description 6
- 238000004321 preservation Methods 0.000 claims abstract 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 31
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 12
- 230000001681 protective effect Effects 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- 238000005477 sputtering target Methods 0.000 claims description 4
- 229910021419 crystalline silicon Inorganic materials 0.000 claims description 3
- 239000013077 target material Substances 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 abstract description 8
- 238000005265 energy consumption Methods 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 4
- 239000011248 coating agent Substances 0.000 abstract 2
- 238000000576 coating method Methods 0.000 abstract 2
- 238000004140 cleaning Methods 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 239000013078 crystal Substances 0.000 description 7
- 229910005883 NiSi Inorganic materials 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- RUFLMLWJRZAWLJ-UHFFFAOYSA-N nickel silicide Chemical compound [Ni]=[Si]=[Ni] RUFLMLWJRZAWLJ-UHFFFAOYSA-N 0.000 description 5
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 229910021334 nickel silicide Inorganic materials 0.000 description 4
- SICLLPHPVFCNTJ-UHFFFAOYSA-N 1,1,1',1'-tetramethyl-3,3'-spirobi[2h-indene]-5,5'-diol Chemical compound C12=CC(O)=CC=C2C(C)(C)CC11C2=CC(O)=CC=C2C(C)(C)C1 SICLLPHPVFCNTJ-UHFFFAOYSA-N 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000011031 large-scale manufacturing process Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000001241 arc-discharge method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
一种采用金属镍/非晶碳叠层制备碳化硅纳米线的方法,它涉及制备碳化硅纳米线的方法,本发明要解决现有制备碳化硅纳米线方法中存在制备温度高、能耗大的问题。本发明中一种采用金属镍/非晶碳叠层制备碳化硅纳米线的方法按以下步骤进行:一、衬底材料的清洗;二、溅射前的准备:抽真空、加热及保温;三、磁控溅射方法镀碳膜;四、磁控溅射方法镀镍膜;五、制得金属镍/非晶碳叠层;六、高温退火制得碳化硅纳米线。本发明方法是一种低温、无氢、大尺寸且高质量的制备碳化硅纳米线方法。本发明方法可应用于纳米材料的制备与生产领域。
Description
技术领域
本发明涉及制备碳化硅纳米线的方法。
背景技术
碳化硅纳米线是继第一代(Si)和第二代(GaAs、GaP、InP等)半导体材料后兴起的第三代宽带隙半导体材料,其具有禁带宽、击穿电场大、热导率和电子饱和漂移速度大的特点。这些性能使其在高温、高频、高功率等极端环境下使用的光电子器件制备方面有着巨大的应用前景。而碳化硅纳米线除了具有其宽带隙的性能外,还由于特有的纳米尺寸效应、特殊的形貌和内在的结构及缺陷,在力学性能、发光性能和场发射性能等方面有更多的特异性。
目前合成碳化硅纳米线的方法主要有模板生长法、碳热还原法、激光烧蚀法、电弧放电法和化学气相沉积法。但这些制备方法制备碳化硅纳米线大多需要在高温下进行,能耗大,不利于在电子器件工艺中的广泛应用。
发明内容
本发明是要解决现有制备碳化硅纳米线方法中存在制备温度高、能耗大的问题,而提出一种采用金属镍/非晶碳叠层制备碳化硅纳米线的方法。一种采用金属镍/非晶碳叠层制备碳化硅纳米线的方法按以下步骤进行:
步骤一、将单晶硅片衬底依次放在丙酮、酒精和去离子水中,在超声功率为300W~600W的条件下清洗15min~30min后烘干;
步骤二、将经步骤一处理后单晶硅片衬底置于磁控溅射真空仓内的旋转加热台上,然后将碳靶材和镍靶材分别安装在不同的溅射靶上,先使单晶硅片衬底中心正对碳靶材中心,靶基距为60mm~100mm,通过真空获得系统将真空仓内抽成真空,当真空仓内真空度达到1.0×10-4Pa~9.9×10-4Pa时,启动加热装置,加热至25℃~650℃,并且保温10min~120min;
步骤三、向碳靶施加射频电源启辉,射频功率为60W~200W,控制Ar气流量为10sccm~100sccm,使真空仓内气体压强为0.1Pa~2Pa,预溅射3min~5min后,在单晶硅片衬底上施加0V~200V的脉冲负偏压,占空比为10%~90%,移开挡板,开始向单晶硅片衬底表面镀碳膜5min~15min;
步骤四、沉积完碳薄膜后,拉上挡板,关闭射频电源,然后先使单晶硅片衬底中心正对镍靶材中心,靶基距为60mm~100mm,向镍靶施加直流电源启辉,直流电源功率为60W~200W,控制Ar气流量为10sccm~100sccm,使真空仓内气体压强为0.1Pa~2Pa,预溅射3min~5min后,在单晶硅片衬底上施加0V~200V的脉冲负偏压,占空比为10%~90%,移开挡板,开始向碳膜表面镀镍膜45min~90min;
步骤五、沉积完镍膜后,关闭所有电源,待真空仓内温度降至20℃~25℃时即制得金属镍/非晶碳叠层;
步骤六、将步骤五所制备的金属镍/非晶碳叠层放在管式炉中,在Ar为保护气的条件下,加热到900℃~1100℃,保温45min~125min后,随炉冷却,即得碳化硅纳米线。
本发明的工作原理:本发明采用金属镍/非晶碳叠层制备碳化硅纳米线,在温度超过800℃时,由于碳不断溶入金属镍及硅基底内,故金属镍与硅直接接触形成NiSi。镍与硅的熔点较高,均高于1400℃,但NiSi的熔点为964℃,且本发明采用的薄膜尺寸均为纳米级别,由于纳米尺寸效应,所以在900℃时,NiSi成为熔融态的金属液滴,作为一种催化剂促进了碳化硅纳米线在相对较低的温度下形成。
本发明包含以下优点:
1、本发明方法所使用的设备简单,投资少,可在较低温度下进行,能耗低;
2、本发明方法是一种低温、无氢、大尺寸且高质量的制备碳化硅纳米线方法;
3、本发明方法适用于大规模生产碳化硅纳米线。
附图说明
图1是实验一中采用金属镍/非晶碳叠层制备的碳化硅纳米线的SEM图;图2是实验一中采用金属镍/非晶碳叠层制备的碳化硅纳米线的XRD图,图中符号●所处的峰位位置为碳化硅(111)晶面、碳化硅(220)晶面和碳化硅(311)晶面所对应的位置,符号■所处的峰位位置为硅化镍(112)晶面、硅化镍(211)晶面和硅化镍(220)晶面所对应的位置,符号▲所处的峰位位置为单晶硅(100)晶面所对应的位置。
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
具体实施方式一:本实施方式中的一种采用金属镍/非晶碳叠层制备碳化硅纳米线的方法按以下步骤进行:
步骤一、将单晶硅片衬底依次放在丙酮、酒精和去离子水中,在超声功率为300W~600W的条件下清洗15min~30min后烘干;
步骤二、将经步骤一处理后单晶硅片衬底置于磁控溅射真空仓内的旋转加热台上,然后将碳靶材和镍靶材分别安装在不同的溅射靶上,先使单晶硅片衬底中心正对碳靶材中心,靶基距为60mm~100mm,通过真空获得系统将真空仓内抽成真空,当真空仓内真空度达到1.0×10-4Pa~9.9×10-4Pa时,启动加热装置,加热至25℃~650℃,并且保温10min~120min;
步骤三、向碳靶施加射频电源启辉,射频功率为60W~200W,控制Ar气流量为10sccm~100sccm,使真空仓内气体压强为0.1Pa~2Pa,预溅射3min~5min后,在单晶硅片衬底上施加0V~200V的脉冲负偏压,占空比为10%~90%,移开挡板,开始向单晶硅片衬底表面镀碳膜5min~15min;
步骤四、沉积完碳薄膜后,拉上挡板,关闭射频电源,然后先使单晶硅片衬底中心正对镍靶材中心,靶基距为60mm~100mm,向镍靶施加直流电源启辉,直流电源功率为60W~200W,控制Ar气流量为10sccm~100sccm,使真空仓内气体压强为0.1Pa~2Pa,预溅射3min~5min后,在单晶硅片衬底上施加0V~200V的脉冲负偏压,占空比为10%~90%,移开挡板,开始向碳膜表面镀镍膜45min~90min;
步骤五、沉积完镍膜后,关闭所有电源,待真空仓内温度降至20℃~25℃时即制得金属镍/非晶碳叠层;
步骤六、将步骤五所制备的金属镍/非晶碳叠层放在管式炉中,在Ar为保护气的条件下,加热到900℃~1100℃,保温45min~125min后,随炉冷却,即得碳化硅纳米线。
本发明的工作原理:本发明采用金属镍/非晶碳叠层制备碳化硅纳米线,在温度超过800℃时,由于碳不断溶入金属镍及硅基底内,故金属镍与硅直接接触形成NiSi。镍与硅的熔点较高,均高于1400℃,但NiSi的熔点为964℃,且本发明采用的薄膜尺寸均为纳米级别,由于纳米尺寸效应,所以在900℃时,NiSi成为熔融态的金属液滴,做为一种催化剂促进了碳化硅纳米线在相对较低的温度下形成。
本发明包含以下优点:
1、本发明方法所使用的设备简单,投资少,可在较低温度下进行,能耗低;
2、本发明方法是一种低温、无氢、大尺寸且高质量的制备碳化硅纳米线方法;
3、本发明方法适用于大规模生产碳化硅纳米线。
具体实施方式二:本实施方式与具体实施方式一不同的是步骤一中将单晶硅片衬底依次放在丙酮、酒精和去离子水中,在超声功率为400W~500W的条件下清洗20min~25min后烘干。其它步骤及参数与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一不同的是步骤二中靶基距为70mm~90mm,当真空仓内真空度达到2.0×10-4Pa~8.0×10-4Pa时,启动加热装置,加热至100℃~600℃,并且保温30min~90min。其它步骤及参数与具体实施方式一相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是步骤三中控制Ar气流量为20sccm~80sccm,使真空仓内气体压强为0.5Pa~1.5Pa,预溅射3.5min~4.5min。其它步骤及参数与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是步骤三中在单晶硅片衬底上施加10V~180V的脉冲负偏压,占空比为20%~80%,移开挡板,开始向单晶硅片衬底表面镀碳膜8min~12min。其它步骤及参数与具体实施方式一至四之一相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是步骤四中靶基距为70mm~90mm,向镍靶施加直流电源启辉,直流电源功率为90W~150W,控制Ar气流量为20sccm~80sccm,使真空仓内气体压强为0.5Pa~1.5Pa,预溅射3.5min~4.5min。其它步骤及参数与具体实施方式一至五之一相同。
具体实施方式七:本实施方式与具体实施方式一至五之一不同的是步骤四中靶基距为80mm,向镍靶施加直流电源启辉,直流电源功率为120W,控制Ar气流量为60sccm,使真空仓内气体压强为1.0Pa,预溅射4min。其它步骤及参数与具体实施方式一至五之一相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是步骤四中在单晶硅片衬底上施加10V~180V的脉冲负偏压,占空比为20%~80%,移开挡板,开始向碳膜表面镀镍膜50min~80min。其它步骤及参数与具体实施方式一至七之一相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是步骤六中在Ar为保护气的条件下,加热到920℃~1050℃,保温50min~100min。其它步骤及参数与具体实施方式一至八之一相同。
具体实施方式十:本实施方式与具体实施方式一至八之一不同的是步骤六中在Ar为保护气的条件下,加热到950℃,保温60min。其它步骤及参数与具体实施方式一至八之一相同。
为了验证本发明的有益效果,进行了以下实验:
实验一:一种采用金属镍/非晶碳叠层制备碳化硅纳米线的方法按以下步骤进行:
一、将6片规格为20mm×20mm的P(100)型单晶硅片衬底依次放在丙酮、酒精和去离子水中,在超声功率为450W的条件下清洗25min后烘干;
二、将经步骤一处理后单晶硅片衬底置于磁控溅射真空仓内的旋转加热台上,然后将碳靶材和镍靶材分别安装在不同的溅射靶上,先使单晶硅片衬底中心正对碳靶材中心,靶基距为70mm,通过真空获得系统将真空仓内抽成真空,当真空仓内真空度达到5.0×10-4Pa时,启动加热装置,加热至550℃,并且保温45min;
三、向碳靶施加射频电源启辉,射频功率为100W,控制Ar气流量为60sccm,使真空仓内气体压强为1Pa,预溅射4min后,在单晶硅片衬底上施加150V的脉冲负偏压,占空比为85%,移开挡板,开始向单晶硅片衬底表面镀碳膜10min;
四、沉积完碳薄膜后,拉上挡板,关闭射频电源,然后先使单晶硅片衬底中心正对镍靶材中心,靶基距为70mm,向镍靶施加直流电源启辉,直流电源功率为150W,控制Ar气流量为60sccm,使真空仓内气体压强为1Pa,预溅射4min后,在单晶硅片衬底上施加150V的脉冲负偏压,占空比为85%,移开挡板,开始向碳膜表面镀镍膜60min;
五、沉积完镍膜后,关闭所有电源,待真空仓内温度降至24℃时即制得金属镍/非晶碳叠层;
六、将步骤五所制备的金属镍/非晶碳叠层放在管式炉中,在Ar为保护气的条件下,加热到950℃,保温60min后,随炉冷却,即得碳化硅纳米线。
图1是实验一中采用金属镍/非晶碳叠层制备的碳化硅纳米线的SEM图,由图中可以看出本方法制备的碳化硅纳米线的长度可以达到几微米,纳米线直径为20nm~50nm。相对其它制备方法,本方法制备的纳米线直径均一且外壁干净,质量较佳。图2是实验一中采用金属镍/非晶碳叠层制备的碳化硅纳米线的XRD图,由图中可以看出最终产物主要为碳化硅,硅化镍作为催化剂还有所残留。
Claims (10)
1.一种采用金属镍/非晶碳叠层制备碳化硅纳米线的方法,其特征在于它是通过以下步骤实现的:
步骤一、将单晶硅片衬底依次放在丙酮、酒精和去离子水中,在超声功率为300W~600W的条件下清洗15min~30min后烘干;
步骤二、将经步骤一处理后单晶硅片衬底置于磁控溅射真空仓内的旋转加热台上,然后将碳靶材和镍靶材分别安装在不同的溅射靶上,先使单晶硅片衬底中心正对碳靶材中心,靶基距为60mm~100mm,通过真空获得系统将真空仓内抽成真空,当真空仓内真空度达到1.0×10-4Pa~9.9×10-4Pa时,启动加热装置,加热至25℃~650℃,并且保温10min~120min;
步骤三、向碳靶施加射频电源启辉,射频功率为60W~200W,控制Ar气流量为10sccm~100sccm,使真空仓内气体压强为0.1Pa~2Pa,预溅射3min~5min后,在单晶硅片衬底上施加0V~200V的脉冲负偏压,占空比为10%~90%,移开挡板,开始向单晶硅片衬底表面镀碳膜5min~15min;
步骤四、沉积完碳薄膜后,拉上挡板,关闭射频电源,然后先使单晶硅片衬底中心正对镍靶材中心,靶基距为60mm~100mm,向镍靶施加直流电源启辉,直流电源功率为60W~200W,控制Ar气流量为10sccm~100sccm,使真空仓内气体压强为0.1Pa~2Pa,预溅射3min~5min后,在单晶硅片衬底上施加0V~200V的脉冲负偏压,占空比为10%~90%,移开挡板,开始向碳膜表面镀镍膜45min~90min;
步骤五、沉积完镍膜后,关闭所有电源,待真空仓内温度降至20℃~25℃时即制得金属镍/非晶碳叠层;
步骤六、将步骤五所制备的金属镍/非晶碳叠层放在管式炉中,在Ar为保护气的条件下,加热到900℃~1100℃,保温45min~125min后,随炉冷却,即得碳化硅纳米线。
2.如权利要求1所述的一种采用金属镍/非晶碳叠层制备碳化硅纳米线的方法,其特征在于步骤一中将单晶硅片衬底依次放在丙酮、酒精和去离子水中,在超声功率为400W~500W的条件下清洗20min~25min后烘干。
3.如权利要求1或2所述的一种采用金属镍/非晶碳叠层制备碳化硅纳米线的方法,其特征在于步骤二中靶基距为70mm~90mm,当真空仓内真空度达到2.0×10-4Pa~8.0×10-4Pa时,启动加热装置,加热至100℃~600℃,并且保温30min~90min。
4.如权利要求1或2所述的一种采用金属镍/非晶碳叠层制备碳化硅纳米线的方法,其特征在于步骤三中控制Ar气流量为20sccm~80sccm,使真空仓内气体压强为0.5Pa~1.5Pa,预溅射3.5min~4.5min。
5.如权利要求4所述的一种采用金属镍/非晶碳叠层制备碳化硅纳米线的方法,其特征在于步骤三中在单晶硅片衬底上施加10V~180V的脉冲负偏压,占空比为20%~80%,移开挡板,开始向单晶硅片衬底表面镀碳膜8min~12min。
6.如权利要求4所述的一种采用金属镍/非晶碳叠层制备碳化硅纳米线的方法,其特征在于步骤四中靶基距为70mm~90mm,向镍靶施加直流电源启辉,直流电源功率为90W~150W,控制Ar气流量为20sccm~80sccm,使真空仓内气体压强为0.5Pa~1.5Pa,预溅射3.5min~4.5min。
7.如权利要求4所述的一种采用金属镍/非晶碳叠层制备碳化硅纳米线的方法,其特征在于步骤四中靶基距为80mm,向镍靶施加直流电源启辉,直流电源功率为120W,控制Ar气流量为60sccm,使真空仓内气体压强为1.0Pa,预溅射4min。
8.如权利要求6所述的一种采用金属镍/非晶碳叠层制备碳化硅纳米线的方法,其特征在于步骤四中在单晶硅片衬底上施加10V~180V的脉冲负偏压,占空比为20%~80%,移开挡板,开始向碳膜表面镀镍膜50min~80min。
9.如权利要求8所述的一种采用金属镍/非晶碳叠层制备碳化硅纳米线的方法,其特征在于步骤六中在Ar为保护气的条件下,加热到920℃~1050℃,保温50min~100min。
10.如权利要求8所述的一种采用金属镍/非晶碳叠层制备碳化硅纳米线的方法,其特征在于步骤六中在Ar为保护气的条件下,加热到950℃,保温60min。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310029540.8A CN103058193B (zh) | 2013-01-25 | 2013-01-25 | 一种采用金属镍/非晶碳叠层制备碳化硅纳米线的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310029540.8A CN103058193B (zh) | 2013-01-25 | 2013-01-25 | 一种采用金属镍/非晶碳叠层制备碳化硅纳米线的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103058193A CN103058193A (zh) | 2013-04-24 |
CN103058193B true CN103058193B (zh) | 2015-03-04 |
Family
ID=48101135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310029540.8A Expired - Fee Related CN103058193B (zh) | 2013-01-25 | 2013-01-25 | 一种采用金属镍/非晶碳叠层制备碳化硅纳米线的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103058193B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103257178A (zh) * | 2013-04-25 | 2013-08-21 | 南通大学 | 一种一维纳米电极材料及其制备方法与应用 |
CN103332692B (zh) * | 2013-07-31 | 2015-12-02 | 哈尔滨工业大学 | 一种高密度缺陷碳化硅纳米线的制备方法 |
CN108565405B (zh) * | 2018-01-03 | 2020-10-27 | 西北工业大学 | α-Fe2O3@Si@C柔性锂离子电池负极材料及其制备方法 |
CN113278933B (zh) * | 2021-04-23 | 2022-09-13 | 重庆交通大学绿色航空技术研究院 | 一种图案化的碳化硅纳米线和硅纳米线一维复合材料及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0799169A (ja) * | 1993-09-28 | 1995-04-11 | Fuji Electric Co Ltd | 炭化けい素電子デバイスの製造方法 |
CN101315435A (zh) * | 2007-06-01 | 2008-12-03 | 哈尔滨工业大学 | 可见光波段内碳化硅反射镜的高反膜及其制备方法 |
CN101974730A (zh) * | 2010-11-24 | 2011-02-16 | 南京理工大学 | 在微米级颗粒上通过磁控溅射镀易氧化薄膜的方法 |
-
2013
- 2013-01-25 CN CN201310029540.8A patent/CN103058193B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0799169A (ja) * | 1993-09-28 | 1995-04-11 | Fuji Electric Co Ltd | 炭化けい素電子デバイスの製造方法 |
CN101315435A (zh) * | 2007-06-01 | 2008-12-03 | 哈尔滨工业大学 | 可见光波段内碳化硅反射镜的高反膜及其制备方法 |
CN101974730A (zh) * | 2010-11-24 | 2011-02-16 | 南京理工大学 | 在微米级颗粒上通过磁控溅射镀易氧化薄膜的方法 |
Non-Patent Citations (4)
Title |
---|
Fanping Meng等.Microstructure and mechanical properties of Ni-alloyed SiC coatings.《Surface & Coatings Technology》.2012,(第213期), * |
lms on nickel photonic crystals with high emissivity for high temperature applications.《Applied Surface Science》.2012,(第259期), * |
Zhenyu Li等.Magnetron sputtering SiC fi * |
磁控溅射制备SiC薄膜的高温热稳定性;祝元坤等;《材料研究学报》;20090830;第23卷(第4期);第410-414页 * |
Also Published As
Publication number | Publication date |
---|---|
CN103058193A (zh) | 2013-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105826362B (zh) | 一种氧化镓纳米线阵列及其制备方法 | |
CN103981507B (zh) | 一种石墨烯制备方法 | |
CN103058193B (zh) | 一种采用金属镍/非晶碳叠层制备碳化硅纳米线的方法 | |
CN108203090B (zh) | 一种石墨烯的制备方法 | |
CN103194795B (zh) | 一种低成本制备大尺寸单晶石墨烯的方法 | |
CN103193224B (zh) | 在非金属基底上低温制备石墨烯薄膜的方法 | |
WO2013013419A1 (zh) | 一种在绝缘基底上制备石墨烯纳米带的方法 | |
CN102774065B (zh) | 一种具有石墨烯结构的非晶碳膜及其制备方法 | |
CN104498897B (zh) | 一种碳化硅薄膜的制备方法 | |
CN107311158A (zh) | 一种在镍基上制备石墨烯薄膜并转移到其它基底的方法 | |
CN104495829A (zh) | 一种在低温衬底上制备石墨烯薄膜的方法 | |
CN103407988A (zh) | 一种低温制备石墨烯薄膜的方法 | |
CN107513698A (zh) | 一种立方碳化硅涂层的制备方法 | |
CN101140866A (zh) | 多晶硅薄膜及其组件的制备方法 | |
CN108149198B (zh) | 一种wc硬质合金薄膜及其梯度层技术室温制备方法 | |
CN105568228A (zh) | 一种放射状金属纳米线-陶瓷复合薄膜的制备方法 | |
CN110629184A (zh) | 介质衬底上直接生长二维六方氮化硼的方法 | |
CN102226294B (zh) | 一种优化硅基GaN场发射特性的晶体结构调制方法 | |
CN108624863B (zh) | 一种表面硬度增强涂层及其制备方法 | |
CN102492922A (zh) | 一种采用热蒸发GeC制备石墨烯的方法 | |
CN103820763B (zh) | 一种在金刚石/铜复合基体表面制备Mo/AlN/BN涂层的方法 | |
CN108505006A (zh) | 一种采用磁控溅射沉积纳米纯Ti薄膜的方法 | |
CN105132875B (zh) | 一种扩散法制备高浓度梯度azo单晶导电薄膜的方法 | |
CN103332692B (zh) | 一种高密度缺陷碳化硅纳米线的制备方法 | |
CN111933514B (zh) | 电子束蒸镀工艺制备外延单晶金刚石用Ir(111)复合衬底的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150304 Termination date: 20160125 |
|
EXPY | Termination of patent right or utility model |