CN102981162A - Spatial synchronization device and synchronization method for bistatic SAR - Google Patents
Spatial synchronization device and synchronization method for bistatic SAR Download PDFInfo
- Publication number
- CN102981162A CN102981162A CN2012105315511A CN201210531551A CN102981162A CN 102981162 A CN102981162 A CN 102981162A CN 2012105315511 A CN2012105315511 A CN 2012105315511A CN 201210531551 A CN201210531551 A CN 201210531551A CN 102981162 A CN102981162 A CN 102981162A
- Authority
- CN
- China
- Prior art keywords
- antenna
- spatial position
- angle
- attitude
- information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 230000005540 biological transmission Effects 0.000 claims abstract description 23
- 238000005259 measurement Methods 0.000 claims description 17
- 238000004364 calculation method Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 15
- 238000012545 processing Methods 0.000 description 8
- 238000003384 imaging method Methods 0.000 description 6
- 238000005070 sampling Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000013500 data storage Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
技术领域technical field
本发明属于雷达信号处理技术领域,涉及GPS定位技术,特别涉及到机载双基地合成孔径雷达(SyntheticAperture Radar,SAR)空间同步技术。The invention belongs to the technical field of radar signal processing, and relates to GPS positioning technology, in particular to airborne bistatic synthetic aperture radar (Synthetic Aperture Radar, SAR) space synchronization technology.
背景技术Background technique
双基地SAR是一种收、发分置的新体制的合成孔径雷达,具有不同的空间几何坐标关系,抗干扰性能、隐蔽性、抗截获能力强等特点。双基地SAR包括卫星发射、卫星接收的星载双基地SAR,卫星发射、飞机接收的星机双基地SAR,飞机发射、飞机接收的机载双基地SAR等体制。Bistatic SAR is a synthetic aperture radar with a new system of receiving and transmitting separately. It has different spatial geometric coordinate relations, anti-jamming performance, concealment, and strong anti-intercept ability. Bistatic SAR includes space-borne bistatic SAR for satellite launch and satellite reception, satellite bistatic SAR for satellite launch and aircraft reception, and airborne bistatic SAR for aircraft launch and aircraft reception.
机载双基地SAR的空间结构示意图如图1所示,由于收发分置,机载双基地SAR具有新的空间几何结构,因此带来了机载双基地SAR的空间同步问题。空间同步要求发射站和接收站的天线波束对同一个目标区有重合的照射区,从而保证成像区回波有足够的性噪比,是合成孔径雷达成像的保障。由于收发分置且收发载机都处于运动之中,空间位置不断变化,机载双基地SAR实现空间同步的难度较大。The schematic diagram of the spatial structure of the airborne bistatic SAR is shown in Figure 1. Due to the separation of the transceivers, the airborne bistatic SAR has a new spatial geometry, which brings about the spatial synchronization problem of the airborne bistatic SAR. Space synchronization requires that the antenna beams of the transmitting station and the receiving station have overlapping irradiation areas on the same target area, so as to ensure that the echo in the imaging area has a sufficient sex-to-noise ratio, which is the guarantee for synthetic aperture radar imaging. Due to the separate location of the transceiver and the movement of the transceiver and the carrier, the space position is constantly changing, so it is more difficult to realize the space synchronization of the airborne bistatic SAR.
文献:双站合成孔径雷达系统同步问题研究,汤子跃;张守融,现代雷达,Vol.26,No.1,pp.1-2,2004中,提出一种解决机载双基地SAR的空间同步问题的方法,具体为:在收发载机进行成像工作前,按照预定的收发载机的飞行航迹和成像区位置事先算出收发载机的天线波束指向角,在试验之前调整好收发载机的天线波束指向角,通过对收发载机飞行过程中的航速、航向及姿态的控制使收发载机的天线波束都对准成像区。该方法的缺点是不能由系统根据飞机的实际空间位置自动控制天线波束指向角,收发天线波束的对准精度受飞机飞行的实际航迹和预定航迹的差异影响很大。Literature: Research on Synchronization of Bistatic Synthetic Aperture Radar System, Tang Ziyue; Zhang Shourong, Modern Radar, Vol.26, No.1, pp.1-2, 2004, proposed a solution to the space synchronization problem of airborne bistatic SAR The method is specifically as follows: before the transceiver carrier aircraft performs imaging work, calculate the antenna beam pointing angle of the transceiver carrier aircraft in advance according to the predetermined flight path of the transceiver carrier aircraft and the position of the imaging area, and adjust the antenna beam of the transceiver carrier aircraft before the test Pointing angle, through the control of the speed, heading and attitude of the transceiver aircraft during flight, the antenna beams of the transceiver aircraft are all aimed at the imaging area. The disadvantage of this method is that the antenna beam pointing angle cannot be automatically controlled by the system according to the actual spatial position of the aircraft, and the alignment accuracy of the transmitting and receiving antenna beams is greatly affected by the difference between the actual flight path and the predetermined flight path of the aircraft.
发明内容Contents of the invention
本发明的目的是为了解决现有技术存在的上述问题,提出了一种双基地SAR的空间同步装置,及基于该装置的一种双基地SAR的同步方法。The object of the present invention is to solve the above-mentioned problems existing in the prior art, and propose a space synchronization device for bistatic SAR, and a synchronization method for bistatic SAR based on the device.
为了方便描述本发明的内容,首先作以下术语定义:In order to describe content of the present invention conveniently, at first do following term definition:
定义1、同步系统Definition 1. Synchronization system
在本发明中,同步系统分为发射同步系统和接收同步系统,分别使用在发射站和接收站。它可以借助FPGA技术实现,在空间同步装置中起核心控制作用的硬件系统。In the present invention, the synchronization system is divided into a transmission synchronization system and a reception synchronization system, which are used in the transmission station and the reception station respectively. It can be realized with the help of FPGA technology, and it is a hardware system that plays a core control role in the space synchronization device.
定义2、串口Definition 2. Serial port
串口是串行通信接口的简称,其数据传送方式是按一位一位地顺序传送,串行通信接口按电气标准及协议分为RS-232、RS-422、RS485等。Serial port is the abbreviation of serial communication interface. Its data transmission method is transmitted one by one in sequence. The serial communication interface is divided into RS-232, RS-422, RS485, etc. according to electrical standards and protocols.
定义3、定位测姿系统Definition 3. Positioning and attitude measurement system
定位测姿系统是指可实时提供载体的姿态数据(偏航角、俯仰角和滚动角)和空间位置(经度、纬度和海拔高度)信息的系统。The positioning and attitude measurement system refers to a system that can provide real-time attitude data (yaw angle, pitch angle, and roll angle) and spatial position (longitude, latitude, and altitude) information of the carrier.
定义4、循环冗余校验Definition 4, cyclic redundancy check
循环冗余码校验即Cyclical Redundancy Check,简称CRC,它是利用除法及余数的原理来做错误侦测,实际应用时,发送装置计算出CRC值并和数据一同发送给接收装置,接收装置对收到的数据重新计算CRC并与收到的CRC相比较,若两个CRC值不同,则说明数据通讯出现错误。Cyclical Redundancy Check, or CRC for short, uses the principle of division and remainder to detect errors. In practical applications, the sending device calculates the CRC value and sends it to the receiving device together with the data. The received data recalculates the CRC and compares it with the received CRC. If the two CRC values are different, it means that there is an error in the data communication.
定义5、天线伺服器Definition 5. Antenna server
天线伺服器(以下简称“伺服器”)由数据计算模块、伺服电机及转台组成,其中,数据计算模块通过串口接收同步系统的控制数据和姿态数据并加以计算,实时形成伺服器的控制信息;伺服电机利用上述控制信息控制转台转动至指定方向,并利用上述姿态数据稳定天线指向;转台上安置天线;同时伺服器会实时的将天线转台的实际指向通过串口回传给同步系统。The antenna server (hereinafter referred to as "server") is composed of a data calculation module, a servo motor and a turntable. The data calculation module receives and calculates the control data and attitude data of the synchronization system through the serial port, and forms the control information of the server in real time; The servo motor uses the above control information to control the turntable to rotate to the specified direction, and uses the above attitude data to stabilize the antenna pointing; the antenna is placed on the turntable; at the same time, the server will transmit the actual pointing of the antenna turntable back to the synchronization system through the serial port in real time.
定义6、无线收发系统Definition 6. Wireless transceiver system
无线收发系统是指可以实现远程无线数据传输的系统。A wireless transceiver system refers to a system that can realize long-distance wireless data transmission.
定义7、显控单元Definition 7. Display and control unit
显控单元是指通过串口与接收站同步系统通讯的,能够显示收发载机的飞行状态和收发载机天线波束的指向情况的,对空间同步起着监视作用的应用软件。显控单元安装在显示端(主机等)上,显控单元具体可以为显控软件。The display and control unit refers to the application software that communicates with the synchronization system of the receiving station through the serial port, can display the flight status of the transceiver carrier aircraft and the direction of the antenna beam of the transceiver carrier aircraft, and plays a monitoring role in space synchronization. The display and control unit is installed on the display terminal (host, etc.), and the display and control unit may specifically be display and control software.
定义8、天线波束指向角Definition 8. Antenna beam pointing angle
天线波束指向角是指天线波束中心线的方位角和俯仰角。方位角是指从载机平台的指北方向线起,依顺时针方向到天线波束中心线之间的水平夹角;俯仰角是指载机平台所在水平面与天线波束中心线之间的夹角。The antenna beam pointing angle refers to the azimuth and elevation angles of the centerline of the antenna beam. The azimuth angle refers to the horizontal angle between the north pointing line of the carrier platform and the centerline of the antenna beam in a clockwise direction; the pitch angle refers to the angle between the horizontal plane of the carrier platform and the centerline of the antenna beam.
本发明提供的一种双基地SAR的空间同步装置,包括发射站部分和接收站部分,其中,所述发射站端具体包括:第一定位测姿系统、第一天线伺服器、发射同步系统和第一无线收发系统;所述接收站端具体包括:第二定位测姿系统、第二天线伺服器、接收同步系统、第二无线收发系统和显示单元;A space synchronization device for bistatic SAR provided by the present invention includes a transmitting station part and a receiving station part, wherein the transmitting station end specifically includes: a first positioning and attitude measurement system, a first antenna server, a transmitting synchronization system and The first wireless transceiver system; the receiving station end specifically includes: a second positioning and attitude measurement system, a second antenna server, a receiving synchronization system, a second wireless transceiver system and a display unit;
所述第一定位测姿系统用于获取载机的姿态数据信息和空间位置信息,并将获取的信息传输到发射同步系统;The first positioning and attitude measuring system is used to obtain the attitude data information and spatial position information of the carrier aircraft, and transmit the obtained information to the launch synchronization system;
所述发射同步系统根据第一定位测姿系统获取的空间位置以及已知的目标区的空间位置,解算出发射站天线波束对准目标区时的指向角,并将解算出的指向角和载机的姿态角发送给第一天线伺服器;The transmitting synchronization system calculates the pointing angle when the antenna beam of the transmitting station is aimed at the target area according to the spatial position obtained by the first positioning and attitude measurement system and the known spatial position of the target area, and combines the calculated pointing angle and the carrier The attitude angle of the aircraft is sent to the first antenna server;
所述的第一天线伺服器根据接收到发射站天线波束对准目标区时的指向角,控制发射站天线调整天线指向,并将天线当前的实际指向角传输至发射同步系统;The first antenna server controls the antenna of the transmitting station to adjust the antenna pointing according to the received pointing angle when the antenna beam of the transmitting station is aligned with the target area, and transmits the current actual pointing angle of the antenna to the transmitting synchronization system;
所述第二定位测姿系统用于获取空间位置以及已知的目标区的空间位置,并将获取的位置信息传输到接收同步系统;The second positioning and attitude measurement system is used to acquire the spatial position and the known spatial position of the target area, and transmit the acquired position information to the receiving synchronization system;
所述第一无线收发系统用于将发射站的空间位置信息、姿态信息和实际指向角发送给所述的第二无线收发系统;The first wireless transceiver system is used to send the spatial position information, attitude information and actual pointing angle of the transmitting station to the second wireless transceiver system;
所述的第二无线收发系统用于接收的发射站的发送空间位置信息、姿态信息和实际指向角,并传输至接收同步系统;The second wireless transceiver system is used to receive the sending space position information, attitude information and actual pointing angle of the transmitting station, and transmit it to the receiving synchronization system;
所述的接收同步系统根据第二定位测姿系统获取的空间位置以及已知的目标区的空间位置,解算出接收站天线波束对准目标区时的指向角,并将解算出的指向角和载机的姿态角发送给接收站的天线伺服器;The receiving synchronization system calculates the pointing angle when the antenna beam of the receiving station is aimed at the target area according to the spatial position obtained by the second positioning and attitude measurement system and the known spatial position of the target area, and combines the calculated pointing angle and The attitude angle of the carrier aircraft is sent to the antenna server of the receiving station;
所述的第二天线伺服器接收到接收站发射站天线波束对准目标区时的指向角,控制接收站天线调整天线指向,并将天线当前的实际指向角传输至接收同步系统;The second antenna server receives the pointing angle of the antenna beam of the receiving station transmitting station when it is aligned with the target area, controls the antenna of the receiving station to adjust the antenna pointing, and transmits the current actual pointing angle of the antenna to the receiving synchronization system;
所述的接收同步系统还用于将发射站的空间位置信息、姿态信息和天线当前的实际指向角和接收站的空间位置信息、姿态信息和天线当前的实际指向角传输至显示单元;The receiving synchronization system is also used to transmit the spatial position information, attitude information and current actual directional angle of the antenna of the transmitting station and the spatial position information, attitude information and current actual directional angle of the antenna to the display unit;
所述的显示单元用于显示发射站的空间位置信息、姿态信息和天线当前的实际指向角和接收站的空间位置信息、姿态信息和天线当前的实际指向角。The display unit is used to display the spatial position information, attitude information and current actual directional angle of the antenna of the transmitting station and the spatial position information, attitude information and current actual directional angle of the antenna of the receiving station.
进一步的,所述的载机的空间位置信息包括:空间位置的经度、纬度、海拔高度,所述的姿态数据信息具体为载机的姿态角,包括:偏航角、俯仰角、滚动角。Further, the spatial position information of the carrier aircraft includes: longitude, latitude, and altitude of the spatial position, and the attitude data information is specifically the attitude angle of the carrier aircraft, including: yaw angle, pitch angle, and roll angle.
进一步的,天线波束对准目标区时的指向角的具体的解算过程如下:Further, the specific calculation process of the pointing angle when the antenna beam is aimed at the target area is as follows:
引入解算过程中间变量X、Y、N,其中Introduce intermediate variables X, Y, N in the solution process, where
方位角β为:The azimuth β is:
βX-YβX-Y
俯仰角θ为:The pitch angle θ is:
其中,Lor表示载机的空间位置的经度、Lar表示载机的空间位置的纬度、Hr表示载机的空间位置的海拔高度,Lom表示目标区的空间位置的经度,Lam表示目标区的空间位置的纬度,Hm表示目标区的空间位置的海拔高度,R表示地球半径。Among them, Lor represents the longitude of the spatial position of the carrier aircraft, Lar represents the latitude of the spatial position of the carrier aircraft, Hr represents the altitude of the spatial position of the carrier aircraft, Lom represents the longitude of the spatial position of the target area, and Lam represents the spatial position of the target area The latitude of , Hm represents the altitude of the spatial position of the target area, and R represents the radius of the earth.
为了解决上述问题,本发明还提出了一种双基地SAR的空间同步方法,包括如下步骤:In order to solve the above problems, the present invention also proposes a space synchronization method for bistatic SAR, comprising the following steps:
步骤1:获取载机的空间位置信息和姿态数据信息,Step 1: Obtain the spatial position information and attitude data information of the carrier aircraft,
发射站的第一定位测姿系统和接收站端的第二定位测姿系统获取载机的空间位置信息和姿态数据信息,并分别将获取的载机的空间位置信息和载机的姿态数据信息分别传输到发射站的发射同步系统和接收端的接收同步系统;The first positioning and attitude measuring system at the transmitting station and the second positioning and attitude measuring system at the receiving station obtain the spatial position information and attitude data information of the carrier aircraft, and respectively convert the acquired spatial position information and attitude data information of the carrier aircraft to The transmission synchronization system transmitted to the transmitting station and the reception synchronization system at the receiving end;
步骤2:解算天线波束指向角,Step 2: Calculate the antenna beam pointing angle,
发射站的发射同步系统根据获得的发射站端载机的空间位置信息和已知的目标区的空间位置信息解算得到发射站的天线波束对准目标区的天线波束指向角;接收站的接收同步系统根据获得的接收站端载机的空间位置信息和已知的目标区的空间位置信息解算得到接收站的天线波束对准目标区的天线波束指向角;The transmission synchronization system of the transmitting station calculates the antenna beam pointing angle of the antenna beam of the transmitting station to the target area according to the obtained spatial position information of the terminal carrier of the transmitting station and the known spatial position information of the target area; The synchronization system calculates the antenna beam pointing angle of the antenna beam of the receiving station to the target area according to the obtained spatial position information of the receiving station terminal carrier and the known spatial position information of the target area;
步骤3:将步骤2解算得到的天线波束指向角发送给伺服器,伺服器控制天线调整指向,Step 3: Send the antenna beam pointing angle calculated in step 2 to the server, and the server controls the antenna to adjust the pointing,
发射同步系统和接收同步系统分别将解算得到发射站的天线波束对准目标区的天线波束指向角、载机的姿态角和接收站的天线波束对准目标区的天线波束指向角、载机的姿态角发送给发射站的第一天线伺服器和接收站的第二天线伺服器,第一天线伺服器和第二天线伺服器根据接收到的天线波束指向角分别控制发射站天线调整天线指向和接收站天线调整天线指向,伺服器会根据所述的载机的姿态角稳定天线指向,并分别将天线当前的实际指向角传输至发射同步系统和接收同步系统;The transmitting synchronization system and the receiving synchronization system respectively calculate the antenna beam pointing angle of the transmitting station's antenna beam at the target area, the attitude angle of the carrier aircraft, and the antenna beam pointing angle of the receiving station's antenna beam at the target area, the carrier aircraft's The attitude angle is sent to the first antenna server of the transmitting station and the second antenna server of the receiving station, and the first antenna server and the second antenna server respectively control the antenna of the transmitting station to adjust the antenna pointing according to the received antenna beam pointing angle and the receiving station antenna to adjust the antenna pointing, the server will stabilize the antenna pointing according to the attitude angle of the carrier aircraft, and transmit the current actual pointing angle of the antenna to the transmitting synchronization system and the receiving synchronization system respectively;
步骤4:数据显示,Step 4: Data display,
发射站的第一无线收发系统将发射站的空间位置信息、姿态信息和实际指向角发送给接收站的第二无线收发系统;The first wireless transceiver system of the transmitting station sends the spatial position information, attitude information and actual pointing angle of the transmitting station to the second wireless transceiver system of the receiving station;
接收站的第二无线收发系统用于接收的发射站的发送空间位置信息、姿态信息和实际指向角,并传输至接收同步系统;The second wireless transceiver system of the receiving station is used to receive the transmitting space position information, attitude information and actual pointing angle of the transmitting station, and transmit it to the receiving synchronization system;
接收同步系统将发射站的空间位置信息、姿态信息和天线当前的实际指向角和接收站的空间位置信息、姿态信息和天线当前的实际指向角传输至显示单元;The receiving synchronization system transmits the spatial position information, attitude information and current actual pointing angle of the antenna to the display unit;
接收站的显示单元根据接收到的发射站的空间位置信息、姿态信息和天线当前的实际指向角和接收站的空间位置信息、姿态信息和天线当前的实际指向角传输至显示单元显示发射站的空间位置信息、姿态信息和天线当前的实际指向角信息和接收站的空间位置信息、姿态信息和天线当前的实际指向角信息。The display unit of the receiving station transmits the spatial position information, attitude information and the current actual pointing angle of the antenna to the display unit to display the current actual pointing angle of the transmitting station according to the received spatial position information, attitude information and antenna current pointing angle of the transmitting station Spatial position information, attitude information, and current actual pointing angle information of the antenna, and spatial position information, attitude information, and current actual pointing angle information of the antenna of the receiving station.
进一步的,所述的载机的空间位置信息包括:空间位置的经度、纬度、海拔高度,所述的姿态数据信息具体为载机的姿态角,包括:偏航角、俯仰角、滚动角。Further, the spatial position information of the carrier aircraft includes: longitude, latitude, and altitude of the spatial position, and the attitude data information is specifically the attitude angle of the carrier aircraft, including: yaw angle, pitch angle, and roll angle.
进一步的,天线波束对准目标区时的指向角的具体的解算过程如下:Further, the specific calculation process of the pointing angle when the antenna beam is aimed at the target area is as follows:
引入解算过程中间变量X、Y、N,其中Introduce intermediate variables X, Y, N in the solution process, where
方位角β为:The azimuth β is:
βX-YβX-Y
俯仰角θ为:The pitch angle θ is:
其中,Lor表示载机的空间位置的经度、Lar表示载机的空间位置的纬度、Hr表示载机的空间位置的海拔高度,Lom表示目标区的空间位置的经度,Lam表示目标区的空间位置的纬度,Hm表示目标区的空间位置的海拔高度,R表示地球半径。Among them, Lor represents the longitude of the spatial position of the carrier aircraft, Lar represents the latitude of the spatial position of the carrier aircraft, Hr represents the altitude of the spatial position of the carrier aircraft, Lom represents the longitude of the spatial position of the target area, and Lam represents the spatial position of the target area The latitude of , Hm represents the altitude of the spatial position of the target area, and R represents the radius of the earth.
本发明的有益效果:本发明的双基地SAR的空间同步装置和方法,利用收发载机平台的实际空间位置分别解算得到收发载机平台各自的天线波束对准目标区的指向角,并利用天线伺服器完成波束对准工作,使收发平台的天线波束都能准确的对准目标区,实现机载双基地SAR的空间同步,保证雷达回波的信噪比,提高了空间同步的精度。Beneficial effects of the present invention: the space synchronization device and method of the bistatic SAR of the present invention use the actual spatial positions of the transceiver platform to obtain the pointing angles of the respective antenna beams of the transceiver platform to the target area, and use The antenna server completes the beam alignment work, so that the antenna beams of the transceiver platform can be accurately aligned with the target area, realizing the space synchronization of the airborne bistatic SAR, ensuring the signal-to-noise ratio of the radar echo, and improving the accuracy of space synchronization.
附图说明Description of drawings
图1为机载双基地SAR的空间结构示意图。Figure 1 is a schematic diagram of the spatial structure of an airborne bistatic SAR.
图2为本发明的机载双基地SAR的空间同步装置结构示意图。Fig. 2 is a schematic structural diagram of the space synchronization device of the airborne bistatic SAR of the present invention.
图3为本发明的机载双基地SAR的空间同步方法流程示意图。FIG. 3 is a schematic flowchart of a space synchronization method for an airborne bistatic SAR according to the present invention.
图4为本发明具体实施方式的发射同步系统的系统结构图。Fig. 4 is a system structure diagram of a transmission synchronization system according to a specific embodiment of the present invention.
图5为本发明具体实施方式的接收同步系统的系统结构图。FIG. 5 is a system structure diagram of a receiving synchronization system according to a specific embodiment of the present invention.
图6为本发明具体实施方式中同步系统的航姿解算模块逻辑结构图。Fig. 6 is a logical structure diagram of the attitude calculation module of the synchronization system in the specific embodiment of the present invention.
图7为本发明具体实施方式中同步系统的数据处理模块逻辑结构图。Fig. 7 is a logical structure diagram of the data processing module of the synchronization system in the specific embodiment of the present invention.
图8为本发明具体实施方式中同步系统的天线伺服器模块逻辑结构图。FIG. 8 is a logical structure diagram of the antenna server module of the synchronization system in the specific embodiment of the present invention.
图9为本发明具体实施方式中接收同步系统电台接收模块逻辑结构图。Fig. 9 is a logic structure diagram of the radio receiving module of the receiving synchronization system in the specific embodiment of the present invention.
图10为本发明具体实施方式中发射站同步系统电台发送模块逻辑结构图。Fig. 10 is a logical structure diagram of the radio transmission module of the synchronous system of the transmitting station in the specific embodiment of the present invention.
图11为本发明具体实施方式中接收同步系统的显控模块逻辑结构图。Fig. 11 is a logical structure diagram of the display and control module of the receiving synchronization system in the specific embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明做进一步的说明。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
本发明的双基地SAR的空间同步装置的结构示意图如图2所示,包括发射站部分和接收站部分,其中,所述发射站端具体包括:第一定位测姿系统、第一天线伺服器、发射同步系统和第一无线收发系统;所述接收站端具体包括:第二定位测姿系统、第二天线伺服器、接收同步系统、第二无线收发系统和显示单元;The structural diagram of the space synchronization device of the bistatic SAR of the present invention is shown in Figure 2, including a transmitting station part and a receiving station part, wherein, the transmitting station end specifically includes: a first positioning and attitude measuring system, a first antenna server , a transmitting synchronization system and a first wireless transceiver system; the receiving station end specifically includes: a second positioning and attitude measurement system, a second antenna server, a receiving synchronization system, a second wireless transceiver system and a display unit;
所述第一定位测姿系统用于获取载体的姿态数据信息和空间位置信息,并将获取的信息传输到发射同步系统;The first positioning and attitude measuring system is used to obtain the attitude data information and spatial position information of the carrier, and transmit the obtained information to the launch synchronization system;
所述发射同步系统根据第一定位测姿系统获取的空间位置以及已知的目标区的空间位置,解算出发射站天线波束对准目标区时的指向角,并将解算出的指向角和载机的姿态角发送给第一天线伺服器;The transmitting synchronization system calculates the pointing angle when the antenna beam of the transmitting station is aimed at the target area according to the spatial position obtained by the first positioning and attitude measurement system and the known spatial position of the target area, and combines the calculated pointing angle and the carrier The attitude angle of the aircraft is sent to the first antenna server;
所述的第一天线伺服器根据接收到发射站天线波束对准目标区时的指向角,控制发射站天线调整天线指向,并将天线当前的实际指向角传输至发射同步系统;The first antenna server controls the antenna of the transmitting station to adjust the antenna pointing according to the received pointing angle when the antenna beam of the transmitting station is aligned with the target area, and transmits the current actual pointing angle of the antenna to the transmitting synchronization system;
所述第二定位测姿系统用于获取空间位置以及已知的目标区的空间位置,并将获取的位置信息传输到接收同步系统;The second positioning and attitude measurement system is used to acquire the spatial position and the known spatial position of the target area, and transmit the acquired position information to the receiving synchronization system;
所述第一无线收发系统用于将发射站的空间位置信息、姿态信息和实际指向角发送给所述的第二无线收发系统;The first wireless transceiver system is used to send the spatial position information, attitude information and actual pointing angle of the transmitting station to the second wireless transceiver system;
所述的第二无线收发系统用于接收的发射站的发送空间位置信息、姿态信息和实际指向角,并传输至接收同步系统;The second wireless transceiver system is used to receive the sending space position information, attitude information and actual pointing angle of the transmitting station, and transmit it to the receiving synchronization system;
所述的接收同步系统根据第二定位测姿系统获取的空间位置以及已知的目标区的空间位置,解算出接收站天线波束对准目标区时的指向角,并将解算出的指向角和载机的姿态角发送给接收站的天线伺服器;The receiving synchronization system calculates the pointing angle when the antenna beam of the receiving station is aimed at the target area according to the spatial position obtained by the second positioning and attitude measurement system and the known spatial position of the target area, and combines the calculated pointing angle and The attitude angle of the carrier aircraft is sent to the antenna server of the receiving station;
所述的第二天线伺服器接收到接收站发射站天线波束对准目标区时的指向角,控制接收站天线调整天线指向,并将天线当前的实际指向角传输至接收同步系统;The second antenna server receives the pointing angle of the antenna beam of the receiving station transmitting station when it is aligned with the target area, controls the antenna of the receiving station to adjust the antenna pointing, and transmits the current actual pointing angle of the antenna to the receiving synchronization system;
所述的接收同步系统还用于将发射站的空间位置信息、姿态信息和天线当前的实际指向角和接收站的空间位置信息、姿态信息和天线当前的实际指向角传输至显示单元;The receiving synchronization system is also used to transmit the spatial position information, attitude information and current actual directional angle of the antenna of the transmitting station and the spatial position information, attitude information and current actual directional angle of the antenna to the display unit;
所述的显示单元用于显示发射站的空间位置信息、姿态信息和天线当前的实际指向角和接收站的空间位置信息、姿态信息和天线当前的实际指向角。The display unit is used to display the spatial position information, attitude information and current actual directional angle of the antenna of the transmitting station and the spatial position information, attitude information and current actual directional angle of the antenna of the receiving station.
这里的定位测姿系统采用中电集团第26研究所研制的CHA-4G型捷联航姿仪(以下简称“航姿仪”),天线伺服器采用中电集团第54研究所研制的伺服器,无线收发系统采用由GE公司生产的MDS无线电台,发射同步系统和接收同步系统具体采用的处理器是Xilinx公司的型号为Spantan3的FPGA,利用Verilog作为硬件描述语言,采用20MHz的晶振。The positioning and attitude measurement system here adopts the CHA-4G strapdown attitude measuring instrument (hereinafter referred to as "the attitude measuring instrument") developed by the 26th Research Institute of China Power Group, and the antenna server adopts the server developed by the 54th Research Institute of China Power Group. , The wireless transceiver system adopts the MDS radio station produced by GE, and the processor used in the transmission synchronization system and the reception synchronization system is the FPGA of Xilinx Company's model Spantan3, using Verilog as the hardware description language, and using a 20MHz crystal oscillator.
下面结合机载双基地SAR的空间同步方法具体描述发射同步系统和接收同步系统的详细结构。The detailed structure of the transmission synchronization system and the reception synchronization system will be specifically described below in combination with the space synchronization method of the airborne bistatic SAR.
在上述机载双基地SAR的空间同步装置的本发明提出的机载双基地SAR的空间同步方法的流程示意图如图3所示,具体步骤如下:The flow diagram of the space synchronization method of the airborne bistatic SAR proposed in the present invention of the space synchronization device of the above-mentioned airborne bistatic SAR is as shown in Figure 3, and the specific steps are as follows:
步骤1:获取载机的空间位置信息和载体的姿态数据信息,Step 1: Obtain the spatial position information of the carrier aircraft and the attitude data information of the carrier,
发射站的第一定位测姿系统和接收站端的第二定位测姿系统获取载机的空间位置信息和姿态数据信息,并分别将获取的载机的空间位置信息和载机的姿态数据信息分别传输到发射站的发射同步系统和接收端的接收同步系统。The first positioning and attitude measuring system at the transmitting station and the second positioning and attitude measuring system at the receiving station obtain the spatial position information and attitude data information of the carrier aircraft, and respectively convert the acquired spatial position information and attitude data information of the carrier aircraft to Transmission to the transmission synchronization system at the transmitting station and the reception synchronization system at the receiving end.
这里的第一定位测姿系统和第二定位测姿系统具体为航姿仪,航姿仪正常工作后可输出载机的空间位置(经度Lor、纬度Lar、海拔高度Hr)和载机的姿态角(偏航角、俯仰角、滚动角),其串口协议为RS422,数据协议为:波特率115200bps,8位数据位,1位停止位,无校验,数据输出周期为10ms/帧。Here, the first positioning and attitude measuring system and the second positioning and attitude measuring system are specifically the heading and attitude instrument. After the heading and attitude measuring instrument works normally, it can output the spatial position of the carrier aircraft (longitude Lor, latitude Lar, altitude Hr) and the attitude of the carrier aircraft. Angle (yaw angle, pitch angle, roll angle), the serial port protocol is RS422, the data protocol is: baud rate 115200bps, 8 data bits, 1 stop bit, no parity, and the data output cycle is 10ms/frame.
发射同步系统的结构示意图如图4所示,具体包括:航姿解算模块(Hz_uart_module)、数据处理模块(Data_process_module)、电台发送模块(Dt_uart_module_tx)和天线伺服模块(SIFU_uart_module)。The structural diagram of the transmission synchronization system is shown in Figure 4, which specifically includes: attitude calculation module (Hz_uart_module), data processing module (Data_process_module), radio transmission module (Dt_uart_module_tx) and antenna servo module (SIFU_uart_module).
接收同步系统的结构示意图如图5所示,具体包括:航姿解算模块(Hz_uart_module)、数据处理模块(Data_process_module)、电台接收模块(Dt_uart_module_rx)、天线伺服模块(SIFU_uart_module)和显控模块(XK_uart_module)。The structural diagram of the receiving synchronization system is shown in Figure 5, which specifically includes: attitude calculation module (Hz_uart_module), data processing module (Data_process_module), radio receiving module (Dt_uart_module_rx), antenna servo module (SIFU_uart_module) and display control module (XK_uart_module ).
载机的空间位置和姿态角在发射同步系统和接收同步系统的FPGA中通过航姿解算模块(Hz_uart_module)获得,该模块中包含接收波特率选择模块(speed_select_rx)、串转并模块(Hz_uart_rx)和数据寄存模块(dat_an_Hz)三个子模块,如附图6所示。The spatial position and attitude angle of the carrier aircraft are obtained through the attitude calculation module (Hz_uart_module) in the FPGA of the transmitting synchronization system and the receiving synchronization system, which includes the receiving baud rate selection module (speed_select_rx), serial-to-parallel module (Hz_uart_rx ) and the data register module (dat_an_Hz) three sub-modules, as shown in Figure 6.
在接收波特率选择模块中,需要事先根据系统晶振频率算出接收1位数据需要的时钟周期。由于采用的晶振为20MHz,常用波特率(9600,19200,38400,115200)对应接收1位数据所需时钟周期为(1152,576,288,96),模块输出为接收数据的采样脉冲(clk_bps_rx);串转并模块将接收到的串行数据(rs232_rx),根据航姿仪的数据格式,将8位数据位转换成并行数据(rx_data);数据寄存模块根据数据帧的格式,将并行数据寄存到各个输出寄存器中,包括经度(Hz_lor)、纬度(Hz_lat)、海拔高度(Hz_h)、航向角(Hz_Hangxiang)、俯仰角(Hz_Fuyang)、滚动角(Hz_Gundong)。In the receiving baud rate selection module, it is necessary to calculate the clock cycle required to receive 1-bit data in advance according to the system crystal frequency. Since the crystal oscillator used is 20MHz, the common baud rate (9600, 19200, 38400, 115200) corresponds to the clock cycle required to receive 1-bit data (1152, 576, 288, 96), and the module output is the sampling pulse of the received data (clk_bps_rx ); the serial-to-parallel module converts the received serial data (rs232_rx) into parallel data (rx_data) according to the data format of the flight attitude instrument; the data register module converts the parallel data into parallel data according to the format of the data frame Registered in each output register, including longitude (Hz_lor), latitude (Hz_lat), altitude (Hz_h), heading angle (Hz_Hangxiang), pitch angle (Hz_Fuyang), roll angle (Hz_Gundong).
说明:图6~11中的clk和rst_n分别表示时钟信号和复位信号。Explanation: clk and rst_n in Figure 6~11 represent clock signal and reset signal respectively.
步骤2:解算天线波束指向角,Step 2: Calculate the antenna beam pointing angle,
发射站的发射同步系统根据获得的发射站端载机的空间位置信息和已知的目标区的空间位置信息解算得到发射站的天线波束对准目标区的天线波束指向角;接收站的接收同步系统根据获得的接收站端载机的空间位置信息和已知的目标区的空间位置信息解算得到接收站的天线波束对准目标区的天线波束指向角。The transmission synchronization system of the transmitting station calculates the antenna beam pointing angle of the antenna beam of the transmitting station to the target area according to the obtained spatial position information of the terminal carrier of the transmitting station and the known spatial position information of the target area; The synchronization system calculates the antenna beam pointing angle at which the antenna beam of the receiving station is aligned with the target area based on the obtained spatial position information of the aircraft at the receiving station and the known spatial position information of the target area.
根据步骤1,同步系统获得了载机的空间位置信息,目标区的空间位置信息(经度Lom、纬度Lam、海拔高度Hm)在成像工作前确定。同步系统可根据载机的空间位置和目标区的空间位置解算出天线波束对准目标区时的指向角。According to step 1, the synchronization system obtains the spatial position information of the carrier aircraft, and the spatial position information (longitude Lom, latitude Lam, altitude Hm) of the target area is determined before the imaging work. The synchronization system can calculate the pointing angle of the antenna beam when aiming at the target area according to the spatial position of the carrier aircraft and the spatial position of the target area.
引入解算过程中间变量X、Y、N,其中Introduce intermediate variables X, Y, N in the solution process, where
方位角β为:The azimuth β is:
βX-Y(4)βX-Y(4)
俯仰角θ为:The pitch angle θ is:
其中,Lor表示载机的空间位置的经度、Lar表示载机的空间位置的纬度、Hr表示载机的空间位置的海拔高度,Lom表示目标区的空间位置的经度,Lam表示目标区的空间位置的纬度,Hm表示目标区的空间位置的海拔高度,R表示地球半径。Among them, Lor represents the longitude of the spatial position of the carrier aircraft, Lar represents the latitude of the spatial position of the carrier aircraft, Hr represents the altitude of the spatial position of the carrier aircraft, Lom represents the longitude of the spatial position of the target area, and Lam represents the spatial position of the target area The latitude of , Hm represents the altitude of the spatial position of the target area, and R represents the radius of the earth.
天线波束指向角的计算通过FPGA中数据处理模块(Data_process_module)实现。数据处理模块包含角度转弧度模块(degree_to_radian),角度计算模块(count_beta_theta)和指向角计算模块(radian_to_degree)三个子模块,如图7所示。为了方便实现式(1)~(5)中的正余弦运算,乘法运算,加减运算,反正切运算以及处理过程中数据的存储,数据处理模块中添加了Xilinx的SINCOS,MULT,ADD,SUB,ARCTAN和RAM这六种数据块。The calculation of the antenna beam pointing angle is realized by the data processing module (Data_process_module) in the FPGA. The data processing module includes three sub-modules: angle to radian module (degree_to_radian), angle calculation module (count_beta_theta) and pointing angle calculation module (radian_to_degree), as shown in Figure 7. In order to facilitate the realization of sine and cosine operations, multiplication operations, addition and subtraction operations, arctangent operations, and data storage during processing in formulas (1)~(5), Xilinx's SINCOS, MULT, ADD, and SUB are added to the data processing module , ARCTAN and RAM these six data blocks.
由于SINCOS运算所用到的输入角度都是以弧度为单位,而从航姿仪的数据解出的经度(Hz_lor)、纬度(Hz_lat)、目标经度(M_lor)和目标纬度(M_lat)都是以度为单位,因此利用角度转弧度模块将输入经纬度转换成弧度,转换的方法是经纬度均乘以一个转换常数因子DTR(32位十进制数1572052833)。角度转弧度模块将输入经纬度转换成弧度后,将其输入到角度计算模块,角度计算模块再根据平台的海拔高度(Hz_h)和目标的海拔高度(M_h)按照式(1)~(5)解算出天线波束方位角beta_temp和天线波束俯仰角theta_temp。Since the input angle used in the SINCOS operation is in radians, the longitude (Hz_lor), latitude (Hz_lat), target longitude (M_lor) and target latitude (M_lat) obtained from the data of the attitude indicator are all in degrees Therefore, the angle-to-radian module is used to convert the input longitude and latitude into radians. The conversion method is to multiply the longitude and latitude by a conversion constant factor DTR (32-digit decimal number 1572052833). The angle to radian module converts the input longitude and latitude into radians, and then inputs it to the angle calculation module, and the angle calculation module then solves the problem according to the formula (1)~(5) according to the altitude of the platform (Hz_h) and the altitude of the target (M_h). Calculate the antenna beam azimuth angle beta_temp and the antenna beam elevation angle theta_temp.
由于ARCTAN的运算结果是弧度,因此角度计算模块得到的天线波束方位角beta_temp和天线波束俯仰角theta_temp单位都是弧度,需要将天线波束方位角beta_temp和天线波束俯仰角theta_temp转换成角度,转换的方法是乘以一个转换常数因子RTD(32位十进制数1201579585),进而得到天线波束方位角beta和天线波束俯仰角theta,并输出解算完成脉冲(process_finish)。Since the calculation result of ARCTAN is in radians, the units of the antenna beam azimuth angle beta_temp and the antenna beam elevation angle theta_temp obtained by the angle calculation module are both radians, and the antenna beam azimuth angle beta_temp and the antenna beam elevation angle theta_temp need to be converted into angles. The conversion method It is multiplied by a conversion constant factor RTD (32-digit decimal number 1201579585), and then the antenna beam azimuth angle beta and the antenna beam elevation angle theta are obtained, and the solution completion pulse (process_finish) is output.
步骤3:将步骤2解算得到的天线波束指向角发送给伺服器,伺服器控制天线调整指向,Step 3: Send the antenna beam pointing angle calculated in step 2 to the server, and the server controls the antenna to adjust the pointing,
发射同步系统和接收同步系统分别将解算得到发射站的天线波束对准目标区的天线波束指向角、载机的姿态角和接收站的天线波束对准目标区的天线波束指向角、载机的姿态角发送给发射站的第一天线伺服器和接收站的第二天线伺服器,第一天线伺服器和第二天线伺服器根据接收到的天线波束指向角分别控制发射站天线调整天线指向和接收站天线调整天线指向,伺服器会根据所述的载机的姿态角稳定天线指向,并分别将天线当前的实际指向角传输至发射同步系统和接收同步系统。The transmitting synchronization system and the receiving synchronization system respectively calculate the antenna beam pointing angle of the transmitting station's antenna beam at the target area, the attitude angle of the carrier aircraft, and the antenna beam pointing angle of the receiving station's antenna beam at the target area, the carrier aircraft's The attitude angle is sent to the first antenna server of the transmitting station and the second antenna server of the receiving station, and the first antenna server and the second antenna server respectively control the antenna of the transmitting station to adjust the antenna pointing according to the received antenna beam pointing angle and the receiving station antenna to adjust the antenna pointing, the server will stabilize the antenna pointing according to the attitude angle of the carrier aircraft, and transmit the current actual pointing angle of the antenna to the transmitting synchronization system and the receiving synchronization system respectively.
天线伺服模块分为发送和接收两个部分,如图8所示,发送部分完成将天线波束指向角发送给天线伺服器;接收部分完成接收天线伺服器回传的数据。伺服器的串口为RS232,数据协议是:波特率19200bps,8位数据位,1位停止位,无校验。The antenna servo module is divided into two parts: sending and receiving. As shown in Figure 8, the sending part completes sending the antenna beam pointing angle to the antenna server; the receiving part completes receiving the data returned by the antenna server. The serial port of the server is RS232, the data protocol is: baud rate 19200bps, 8 data bits, 1 stop bit, no parity.
发送部分包含发送波特率选择模块(speed_select_tx)和并转串模块(SIFU_uart_tx)以及数据读取模块(SIFU_dat_tx)三个子模块。天线伺服模块控制数据输出周期为100ms/帧。发送波特率选择模块根据伺服器的实际波特率(19200bps)计算发送1位所需时钟周期(576),输出发送数据的采样脉冲(clk_bps_tx);数据读取模块将天线波束方位角(Cal_Beta)和天线波束俯仰角(Cal_Theta)按伺服器的数据帧格式以字节为单位依次发送给并转串模块;并转串模块将需要发送的数据(tx_data)转换成串行数据(rs232_tx),顺序发送到FPGA对应伺服器的串口引脚,并输出一个发送完成脉冲信号(SIFU_finish)。The sending part includes three sub-modules: sending baud rate selection module (speed_select_tx), parallel-to-serial module (SIFU_uart_tx) and data reading module (SIFU_dat_tx). The control data output period of the antenna servo module is 100ms/frame. The sending baud rate selection module calculates the clock cycle (576) required to send 1 bit according to the actual baud rate (19200bps) of the server, and outputs the sampling pulse (clk_bps_tx) of the sending data; the data reading module converts the antenna beam azimuth (Cal_Beta ) and the antenna beam pitch angle (Cal_Theta) are sent to the parallel-to-serial module sequentially in bytes according to the data frame format of the server; the parallel-to-serial module converts the data to be sent (tx_data) into serial data (rs232_tx), Sequentially send to the serial port pin of the FPGA corresponding to the server, and output a sending completion pulse signal (SIFU_finish).
接收部分包含接收波特率选择模块(speed_select_rx)和串转并模块(SIFU_uart_rx)以及数据寄存模块(SIFU_dat_rx)三个子模块。伺服器的数据回传周期为100ms/帧,接收波特率选择模块计算出伺服器波特率19200bps对应接收1位所需时钟周期为576,模块输出为接收数据的采样脉冲(clk_bps_rx);串转并模块将接收到的串行数据(rs232_rx),根据伺服器的串口协议,将8位数据位转换成并行数据(rx_data);数据寄存模块根据伺服器的数据帧格式,将并行数据解算并寄存到天线指向方位角(Local_Beta)和天线指向俯仰角(Local_Theta)两个寄存器中。The receiving part includes three sub-modules: receiving baud rate selection module (speed_select_rx), serial-to-parallel module (SIFU_uart_rx) and data register module (SIFU_dat_rx). The data return period of the server is 100ms/frame, and the receiving baud rate selection module calculates that the baud rate of the server is 19200bps, corresponding to the clock cycle required to receive 1 bit is 576, and the module output is the sampling pulse (clk_bps_rx) of the received data; The parallel module converts the received serial data (rs232_rx) into parallel data (rx_data) according to the serial port protocol of the server; the data storage module solves the parallel data according to the data frame format of the server And store it in the two registers of antenna pointing azimuth (Local_Beta) and antenna pointing pitch angle (Local_Theta).
步骤4:数据显示,Step 4: Data display,
发射站的第一无线收发系统将发射站的空间位置信息、姿态信息和实际指向角发送给接收站的第二无线收发系统;The first wireless transceiver system of the transmitting station sends the spatial position information, attitude information and actual pointing angle of the transmitting station to the second wireless transceiver system of the receiving station;
接收站的第二无线收发系统用于接收的发射站的发送空间位置信息、姿态信息和实际指向角,并传输至接收同步系统;The second wireless transceiver system of the receiving station is used to receive the transmitting space position information, attitude information and actual pointing angle of the transmitting station, and transmit it to the receiving synchronization system;
接收同步系统将发射站的空间位置信息、姿态信息和天线当前的实际指向角和接收站的空间位置信息、姿态信息和天线当前的实际指向角传输至显示单元;The receiving synchronization system transmits the spatial position information, attitude information and current actual pointing angle of the antenna to the display unit;
接收站的显示单元根据接收到的发射站的空间位置信息、姿态信息和天线当前的实际指向角和接收站的空间位置信息、姿态信息和天线当前的实际指向角传输至显示单元显示发射站的空间位置信息、姿态信息和天线当前的实际指向角信息和接收站的空间位置信息、姿态信息和天线当前的实际指向角信息。The display unit of the receiving station transmits the spatial position information, attitude information and the current actual pointing angle of the antenna to the display unit to display the current actual pointing angle of the transmitting station according to the received spatial position information, attitude information and antenna current pointing angle of the transmitting station Spatial position information, attitude information, and current actual pointing angle information of the antenna, and spatial position information, attitude information, and current actual pointing angle information of the antenna of the receiving station.
发射同步系统控制发射站MDS电台开始不断向接收站发送数据,FPGA中通过电台发送模块实现,电台发送模块包含接收波特率选择模块(speed_select_tx)和并转串模块(dt_uart_tx)以及数据读取模块(dt_dat_tx_)三个子模块。每发送完一帧数据产生一个触发脉冲(dt_finish),触发天线伺服模块(SIFU_uart_module)给发射站的天线伺服器发送天线指向角。The transmission synchronization system controls the MDS station of the transmitting station to start sending data to the receiving station continuously, which is realized by the radio sending module in the FPGA. The radio sending module includes a receiving baud rate selection module (speed_select_tx), a parallel-to-serial module (dt_uart_tx) and a data reading module (dt_dat_tx_) three submodules. Every time a frame of data is sent, a trigger pulse (dt_finish) is generated, and the antenna servo module (SIFU_uart_module) is triggered to send the antenna pointing angle to the antenna server of the transmitting station.
接收同步系统可以不断的接收到发射站发送过来的数据,FPGA中通过电台接收模块(Dt_uart_module_rx)实现,电台接收模块包括接收波特率选择模块(speed_select_rx)和串转并模块(dt_uart_rx)以及数据寄存模块(dat_an_dt)三个子模块,如附图9所示。每接收完成一帧数据产生一个触发脉冲(Dt_start_rx),触发天线伺服模块(SIFU_uart_module)给发射站的天线伺服器发送天线指向角。The receiving synchronization system can continuously receive the data sent by the transmitting station, which is realized by the radio receiving module (Dt_uart_module_rx) in the FPGA. The radio receiving module includes the receiving baud rate selection module (speed_select_rx) and the serial-to-parallel module (dt_uart_rx) and data storage The module (dat_an_dt) has three submodules, as shown in Figure 9. Every time a frame of data is received, a trigger pulse (Dt_start_rx) is generated, and the antenna servo module (SIFU_uart_module) is triggered to send the antenna pointing angle to the antenna server of the transmitting station.
发射同步系统将发射站的经度、纬度、海拔高度、航向角、滚动角、俯仰角、天线波束方位角和天线波束俯仰角打包发送给MDS电台,由电台发送给接收站。FPGA中通过电台发送模块(Dt_uart_module_tx)实现,电台发送模块包含接收波特率选择模块(speed_select_tx)和并转串模块(dt_uart_tx)以及数据读取模块(dt_dat_tx_)三个子模块,如图10所示。The transmission synchronization system sends the longitude, latitude, altitude, heading angle, roll angle, pitch angle, antenna beam azimuth and antenna beam pitch angle of the transmitting station to the MDS station in a package, and the station sends it to the receiving station. The FPGA is implemented through the radio transmission module (Dt_uart_module_tx), which includes three sub-modules: the receiving baud rate selection module (speed_select_tx), the parallel-to-serial module (dt_uart_tx) and the data reading module (dt_dat_tx_), as shown in Figure 10.
MDS电台的串口为RS232,数据协议是:波特率19200bps,8位数据位,1位停止位,无校验。电台模块控制数据输出周期为100ms/帧,每一帧数据最后两个字节为CRC校验码。发送波特率选择模块根据电台的实际波特率(19200bps)计算发送1位数据所需要的时钟周期(576),输出发送数据采样脉冲(clk_bps_tx);数据读取模块将发射站的经度、纬度、海拔高度、滚动角、航向角、俯仰角、天线波束方位角和天线波束俯仰角按照电台的数据帧格式以字节为单位顺序发送给并转串模块;并转串模块将需要发送的数据(tx_data)转换成串行数据(rs232_tx),顺序发送到FPGA对应电台的串口引脚,并输出发送完成脉冲(dt_finish)。The serial port of the MDS radio is RS232, and the data protocol is: baud rate 19200bps, 8 data bits, 1 stop bit, no parity. The radio module controls the data output cycle to be 100ms/frame, and the last two bytes of each frame of data are CRC check codes. The sending baud rate selection module calculates the clock cycle (576) required to send 1 bit of data according to the actual baud rate (19200bps) of the station, and outputs the sending data sampling pulse (clk_bps_tx); the data reading module takes the longitude and latitude of the transmitting station , altitude, roll angle, heading angle, pitch angle, antenna beam azimuth angle and antenna beam pitch angle are sent to the parallel-to-serial module in byte order according to the data frame format of the station; the parallel-to-serial module sends the data that needs to be sent (tx_data) is converted into serial data (rs232_tx), sequentially sent to the serial port pin of the corresponding FPGA station, and output the transmission completion pulse (dt_finish).
同时,并转串模块还要实现CRC校验运算,采用的CRC生成多项式为CRC-16-IBM(x16+x15+x2+1)。将待发送的串行数据循环除以多项式(11000000000000101),最后得到16位CRC校验码。At the same time, the parallel-to-serial module also implements CRC check operation, and the CRC generator polynomial used is CRC-16-IBM (x16+x15+x2+1). Divide the serial data to be sent cyclically by the polynomial (11000000000000101), and finally get a 16-bit CRC check code.
接收同步系统将发射站和接收站的空间位置信息、姿态信息和天线指向角打包发送给显示端,显示端上安装显控软件,用以显示发射站和接收站的空间位置信息、姿态信息和天线指向角,对空间同步起到监控作用。打包数据的发送通过显控模块(XK_uart_module)实现,显控模块包含发送波特率选择模块(speed_select_tx)、并转串模块(XK_uart_tx)和数据读取模块(XK_tx_n)三个子模块完成,如图11所示。The receiving synchronization system packs the spatial position information, attitude information and antenna pointing angle of the transmitting station and the receiving station and sends them to the display terminal, and the display and control software is installed on the display terminal to display the spatial position information, attitude information and Antenna pointing angle, which monitors space synchronization. The sending of packaged data is realized through the display and control module (XK_uart_module), which includes three sub-modules of sending baud rate selection module (speed_select_tx), parallel-to-serial module (XK_uart_tx) and data reading module (XK_tx_n), as shown in Figure 11 shown.
显示端的串口为RS232,数据协议为:波特率19200bps,8位数据位,1位停止位,无校验。显控模块控制数据输出周期为100ms/帧。发送波特率选择模块根据电台的实际波特率(19200bps)计算发送1位所需时钟周期(576),输出发送数据的采样脉冲(clk_bps_tx);数据读取模块将发射站的空间位置信息(经度Hz_lor_dt,纬度Hz_lat_dt,海拔高度Hz_h_dt)、姿态信息(滚动角Hz_Gundong_dt,航向角Hz_Hangxiang_dt,俯仰角Hz_Fuyang_dt)和天线指向角(方位角beta,俯仰角theta)和接收站的空间位置信息(经度Hz_lor,纬度Hz_lat,海拔高度Hz_h)、姿态信息(滚动角Hz_Gundong,航向角Hz_Hangxiang,俯仰角Hz_Fuyang)和天线指向角(方位角Cal_Beta,俯仰角Cal_Theta)按照数据帧格式依次发送给并转串模块;并转串模块将需要发送的数据(XK_tx_dat)转换成串行数据(rs232_tx),顺序发送到FPGA对应显示端的串口引脚,并输出一个发送完成脉冲信号(XK_finish)。The serial port of the display terminal is RS232, the data protocol is: baud rate 19200bps, 8 data bits, 1 stop bit, no parity. The display and control module controls the data output cycle to be 100ms/frame. The sending baud rate selection module calculates the clock cycle (576) required to send 1 bit according to the actual baud rate (19200bps) of the station, and outputs the sampling pulse (clk_bps_tx) of the sending data; the data reading module sends the spatial position information of the transmitting station ( Longitude Hz_lor_dt, latitude Hz_lat_dt, altitude Hz_h_dt), attitude information (roll angle Hz_Gundong_dt, heading angle Hz_Hangxiang_dt, pitch angle Hz_Fuyang_dt), antenna pointing angle (azimuth beta, pitch angle theta) and spatial position information of the receiving station (longitude Hz_lor, Latitude Hz_lat, altitude Hz_h), attitude information (roll angle Hz_Gundong, heading angle Hz_Hangxiang, pitch angle Hz_Fuyang) and antenna pointing angle (azimuth angle Cal_Beta, pitch angle Cal_Theta) are sent to the parallel-to-serial module in sequence according to the data frame format; The serial module converts the data to be sent (XK_tx_dat) into serial data (rs232_tx), sends them sequentially to the serial port pins of the corresponding display end of the FPGA, and outputs a sending completion pulse signal (XK_finish).
通过上述步骤,机载双基地SAR发射站和接收站的天线波束都能够对准目标区,能够实现双基地SAR的空间同步。Through the above steps, the antenna beams of the airborne bistatic SAR transmitting station and receiving station can be aimed at the target area, and the spatial synchronization of the bistatic SAR can be realized.
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。Those skilled in the art will appreciate that the embodiments described here are to help readers understand the principles of the present invention, and it should be understood that the protection scope of the present invention is not limited to such specific statements and embodiments. Those skilled in the art can make various other specific modifications and combinations based on the technical revelations disclosed in the present invention without departing from the essence of the present invention, and these modifications and combinations are still within the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210531551.1A CN102981162B (en) | 2012-12-11 | 2012-12-11 | Spatial synchronization device and synchronization method for bistatic SAR |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210531551.1A CN102981162B (en) | 2012-12-11 | 2012-12-11 | Spatial synchronization device and synchronization method for bistatic SAR |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102981162A true CN102981162A (en) | 2013-03-20 |
CN102981162B CN102981162B (en) | 2014-07-09 |
Family
ID=47855367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210531551.1A Expired - Fee Related CN102981162B (en) | 2012-12-11 | 2012-12-11 | Spatial synchronization device and synchronization method for bistatic SAR |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102981162B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104049241A (en) * | 2014-05-29 | 2014-09-17 | 电子科技大学 | Space synchronizing method of bistatic synthetic aperture radar (BiSAR) with unknown target position coordinates |
CN104569965A (en) * | 2014-12-24 | 2015-04-29 | 西安电子工程研究所 | Method for synchronizing time and frequency of motor-driven configured bistatic radar |
CN104820441A (en) * | 2015-04-30 | 2015-08-05 | 国家电网公司 | Automatic direction finding and adjusting method and system of wireless network bridge |
CN105450490A (en) * | 2015-12-29 | 2016-03-30 | 北京迈特力德信息技术有限公司 | Avionic bus data receiver and application thereof in airborne satellite communication |
CN107064880A (en) * | 2017-04-10 | 2017-08-18 | 南京航空航天大学 | Distributed many base radar transmit-receive beam Synchronizations and the accuracy method of wave beam control |
CN107942332A (en) * | 2017-12-28 | 2018-04-20 | 成都汇蓉国科微系统技术有限公司 | A kind of Biradical synthetic aperture radar (SAR) imaging system spacing synchronization process for aircraft landing |
CN108490412A (en) * | 2018-03-29 | 2018-09-04 | 中国人民解放军海军航空大学 | A kind of bistatic radar sea clutter measurement experimental rig |
CN109444888A (en) * | 2018-12-31 | 2019-03-08 | 成都汇蓉国科微系统技术有限公司 | A kind of star forward sight double-base SAR image-region monitor method and system |
CN111865446A (en) * | 2020-07-29 | 2020-10-30 | 中南大学 | Intelligent beam registration method and device using network environment context information |
CN113728244A (en) * | 2019-04-26 | 2021-11-30 | 索尼集团公司 | Radar detection using radio communication terminal |
CN114814742A (en) * | 2022-06-30 | 2022-07-29 | 南京宇安防务科技有限公司 | Airborne radar countermeasure equipment based on servo platform |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5469167A (en) * | 1993-10-18 | 1995-11-21 | The United States Of America As Represented By The Secretary Of The Army | Synthetic aperture radar for nonlinear trajectories using range relative doppler processing and invariant mapping |
US5926125A (en) * | 1997-03-27 | 1999-07-20 | Ems Technologies Canada, Ltd. | Synthetic aperture radar |
US20040178944A1 (en) * | 2001-03-12 | 2004-09-16 | Richardson David L. | Radio tag for lfm radar |
JP2011191099A (en) * | 2010-03-12 | 2011-09-29 | Mitsubishi Electric Corp | Synthetic aperture radar apparatus |
-
2012
- 2012-12-11 CN CN201210531551.1A patent/CN102981162B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5469167A (en) * | 1993-10-18 | 1995-11-21 | The United States Of America As Represented By The Secretary Of The Army | Synthetic aperture radar for nonlinear trajectories using range relative doppler processing and invariant mapping |
US5926125A (en) * | 1997-03-27 | 1999-07-20 | Ems Technologies Canada, Ltd. | Synthetic aperture radar |
US20040178944A1 (en) * | 2001-03-12 | 2004-09-16 | Richardson David L. | Radio tag for lfm radar |
JP2011191099A (en) * | 2010-03-12 | 2011-09-29 | Mitsubishi Electric Corp | Synthetic aperture radar apparatus |
Non-Patent Citations (2)
Title |
---|
《中国博士学位论文全文数据库 信息科技辑》 20090515 黄钰林 "机载双基地SAR同步与成像处理研究" 115-151 1,2,4,5 , * |
黄钰林: ""机载双基地SAR同步与成像处理研究"", 《中国博士学位论文全文数据库 信息科技辑》 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104049241A (en) * | 2014-05-29 | 2014-09-17 | 电子科技大学 | Space synchronizing method of bistatic synthetic aperture radar (BiSAR) with unknown target position coordinates |
CN104569965A (en) * | 2014-12-24 | 2015-04-29 | 西安电子工程研究所 | Method for synchronizing time and frequency of motor-driven configured bistatic radar |
CN104820441A (en) * | 2015-04-30 | 2015-08-05 | 国家电网公司 | Automatic direction finding and adjusting method and system of wireless network bridge |
CN105450490A (en) * | 2015-12-29 | 2016-03-30 | 北京迈特力德信息技术有限公司 | Avionic bus data receiver and application thereof in airborne satellite communication |
CN107064880A (en) * | 2017-04-10 | 2017-08-18 | 南京航空航天大学 | Distributed many base radar transmit-receive beam Synchronizations and the accuracy method of wave beam control |
CN107942332A (en) * | 2017-12-28 | 2018-04-20 | 成都汇蓉国科微系统技术有限公司 | A kind of Biradical synthetic aperture radar (SAR) imaging system spacing synchronization process for aircraft landing |
CN108490412A (en) * | 2018-03-29 | 2018-09-04 | 中国人民解放军海军航空大学 | A kind of bistatic radar sea clutter measurement experimental rig |
CN108490412B (en) * | 2018-03-29 | 2020-06-09 | 中国人民解放军海军航空大学 | Bistatic radar sea clutter measurement test device |
CN109444888A (en) * | 2018-12-31 | 2019-03-08 | 成都汇蓉国科微系统技术有限公司 | A kind of star forward sight double-base SAR image-region monitor method and system |
CN109444888B (en) * | 2018-12-31 | 2020-10-23 | 成都汇蓉国科微系统技术有限公司 | Satellite-ground foresight bistatic SAR image area monitoring method and system |
CN113728244A (en) * | 2019-04-26 | 2021-11-30 | 索尼集团公司 | Radar detection using radio communication terminal |
CN111865446A (en) * | 2020-07-29 | 2020-10-30 | 中南大学 | Intelligent beam registration method and device using network environment context information |
CN114814742A (en) * | 2022-06-30 | 2022-07-29 | 南京宇安防务科技有限公司 | Airborne radar countermeasure equipment based on servo platform |
CN114814742B (en) * | 2022-06-30 | 2022-09-06 | 南京宇安防务科技有限公司 | Airborne radar countermeasure equipment based on servo platform |
Also Published As
Publication number | Publication date |
---|---|
CN102981162B (en) | 2014-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102981162B (en) | Spatial synchronization device and synchronization method for bistatic SAR | |
CN109212471B (en) | Positioning base station, system and method | |
CN105547297B (en) | A kind of indoor orientation method based on UWB positioning systems | |
CN104280716B (en) | Indoor positioning device and method | |
CN102981144B (en) | Method for three-dimensional passive positioning of targets by air moving platform | |
CN102253368B (en) | Target positioning and tracking system based on ultrasonic waves | |
US20170123045A1 (en) | Mobile apparatus for measuring relative location based on uwb and method thereof | |
CN104133221B (en) | A kind of fake satellite positioning system based on general purpose receiver | |
US10935625B2 (en) | Methods and systems for selecting the shortest path in a multi-path environment | |
CA3016332A1 (en) | Position estimation in a low earth orbit satellite communications system | |
CN102866407A (en) | Satellite navigation anti-interference test simulator and simulation method thereof | |
CN101833103A (en) | Positioning method of deep open pit based on pseudolite | |
CN103576138B (en) | A Spaceborne Passive Radar Positioning Method Based on GNSS-R Signal Geometric Relationship | |
JP2015155897A (en) | Radio frequency method and system for determining relative angular position between multiple remote spacecraft by a pair of spacecraft | |
CN106772493A (en) | Unmanned plane course calculating system and its measuring method based on Big Dipper Differential positioning | |
CN101776746A (en) | Device and method for positioning angle of signal arrival and measuring wave-path difference of signal | |
CN103901413A (en) | Three-coordinate radar height dynamic calibration equipment and method based on rotor unmanned helicopter | |
CN111638502A (en) | Time-base-based transmitting one-way zero-value ranging system for measurement and control communication ground station | |
CN111586565A (en) | One-dimensional scene coal mine underground positioning method based on TOA and RSSI ranging | |
CN110596657B (en) | Device for testing operation of distance measuring machine/Takang | |
CN107991709B (en) | A UAV Airborne Stepped Frequency Ground Penetrating Radar | |
CN105699958A (en) | Wireless carrier wave communication technology-based range finding device | |
CN203133272U (en) | High frequency ground wave radar synchronization device based on CPCI bus | |
CN103149550B (en) | Adaptive self-organizing and multi-mode positioning method | |
CN203941286U (en) | Three-coordinate Radar Height Dynamic Calibration Equipment Based on Rotor Unmanned Helicopter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140709 |