[go: up one dir, main page]

CN102837307A - Amphibious S-shaped robot on basis of MDOF (Multiple Degree of Freedom) flexible motion units - Google Patents

Amphibious S-shaped robot on basis of MDOF (Multiple Degree of Freedom) flexible motion units Download PDF

Info

Publication number
CN102837307A
CN102837307A CN2012103368694A CN201210336869A CN102837307A CN 102837307 A CN102837307 A CN 102837307A CN 2012103368694 A CN2012103368694 A CN 2012103368694A CN 201210336869 A CN201210336869 A CN 201210336869A CN 102837307 A CN102837307 A CN 102837307A
Authority
CN
China
Prior art keywords
end cover
freedom
snake
freedom flexible
flexible motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012103368694A
Other languages
Chinese (zh)
Inventor
王化明
朱银龙
杨位东
魏礼建
王振
栾云广
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN2012103368694A priority Critical patent/CN102837307A/en
Publication of CN102837307A publication Critical patent/CN102837307A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

本发明公布了一种基于多自由度柔性运动单元的水陆两栖蛇形机器人,属蛇形机器人技术领域。该机器人由多个多自由度柔性运动单元(1)以串联方式固连;所述多自由度柔性运动单元(1)包括上端盖(3)和下端盖(7),在上端盖(3)和下端盖(7)之间还有中心轴(4),该中心轴(4)一端与上端盖(3)固定,另一端穿过下端盖(7)的中心导孔;在上端盖(3)边缘和下端盖(7)边缘之间连接着轴向介电型EAP驱动器组(5)和斜向介电型EAP驱动器组(6);上述上端盖(3)和下端盖(7)之间还安装有压缩弹簧(8)。该蛇形机器人可具有多种运动方式,能模仿生物体运动功能,适用于陆地和水中两种运动场合,对复杂未知环境适应力强。

Figure 201210336869

The invention discloses an amphibious snake-like robot based on a multi-degree-of-freedom flexible motion unit, which belongs to the technical field of snake-like robots. The robot is connected in series by a plurality of multi-degree-of-freedom flexible motion units (1); the multi-degree-of-freedom flexible motion unit (1) includes an upper end cover (3) and a lower end cover (7). There is also a central shaft (4) between the lower end cover (7), one end of the central shaft (4) is fixed with the upper end cover (3), and the other end passes through the central guide hole of the lower end cover (7); on the upper end cover (3) ) and the edge of the lower end cover (7) are connected with the axial dielectric type EAP driver group (5) and the oblique dielectric type EAP driver group (6); the upper end cover (3) and the lower end cover (7) A compression spring (8) is also installed between them. The snake-shaped robot can have multiple movement modes, can imitate the movement function of living organisms, is suitable for two kinds of movement occasions on land and in water, and has strong adaptability to complex and unknown environments.

Figure 201210336869

Description

基于多自由度柔性运动单元的水陆两栖蛇形机器人Amphibious snake-like robot based on multi-degree-of-freedom flexible motion unit

 the

技术领域 technical field

发明涉及一种基于多自由度柔性运动单元的水陆两栖蛇形机器人,属于蛇形机器人的技术领域。 The invention relates to an amphibious snake-like robot based on a multi-freedom flexible motion unit, which belongs to the technical field of snake-like robots.

背景技术 Background technique

蛇形机器人能根据不同地形条件采用不同的运动方式,具有良好的地形适应能力和运动稳定性,适用于抢险救灾、野外考察、军事侦察、管道检查等非结构化环境中,并进一步延伸到深海探测、星际探索等领域,具有极其广泛的应用前景。 Snake-shaped robots can adopt different movement modes according to different terrain conditions, have good terrain adaptability and movement stability, and are suitable for unstructured environments such as emergency rescue and disaster relief, field investigation, military reconnaissance, pipeline inspection, etc., and further extend to the deep sea It has extremely broad application prospects in fields such as detection and interstellar exploration.

目前大多数仿生蛇形机器人是以电机为驱动,通过传动机构使每个模块产生一定的转动角度,相当于将蛇的运动方程进行离散化。然而电机驱动的蛇形机器人运动模块体积大,结构复杂,效率低,有噪声,限制了蛇形机器人的应用。 At present, most bionic snake-like robots are driven by motors, and each module generates a certain rotation angle through the transmission mechanism, which is equivalent to discretizing the snake's motion equation. However, the motor-driven snake-like robot motion module is bulky, complex in structure, low in efficiency, and noisy, which limits the application of snake-like robots.

介电型EAP(电活性聚合物)是一种性能最接近生物肌肉的人工肌肉型智能材料,具有能量密度比大、效率高、响应速度快、变形大等明显优点,且是一种柔性材料,便于运动单元结构设计,以实现多自由度柔性运动单元。在此基础上,将多个运动单元串联,以形成蛇形机器人。 Dielectric EAP (Electroactive Polymer) is an artificial muscle smart material whose performance is closest to that of biological muscle. It has obvious advantages such as large energy density ratio, high efficiency, fast response speed, and large deformation. It is also a flexible material. , to facilitate the structural design of the motion unit to realize the multi-degree-of-freedom flexible motion unit. On this basis, multiple motion units are connected in series to form a snake-like robot.

发明内容 Contents of the invention

为解决目前蛇形机器人采用刚性驱动存在的技术缺陷,本发明提供了一种运动灵活、结构简单、效率高、无噪声的基于多自由度柔性运动单元的水陆两栖蛇形机器人。 In order to solve the technical defects of current snake-like robots using rigid drives, the present invention provides an amphibious snake-like robot based on multi-degree-of-freedom flexible motion units with flexible movement, simple structure, high efficiency and no noise.

为了实现上述目的,本发明采用如下技术方案: In order to achieve the above object, the present invention adopts the following technical solutions:

该机器人是由多个多自由度柔性运动单元以串联方式固连;在串联的多自由度柔性运动单元外安装有柔性可被动伸缩弯曲的防水套;所述多自由度柔性运动单元包括上端盖和下端盖,在上端盖和下端盖之间还有中心轴,该中心轴一端与上端盖固定,另一端穿过下端盖的中心导孔;在上端盖边缘和下端盖边缘之间连接着轴向介电型EAP驱动器组和斜向介电型EAP驱动器组;上述上端盖和下端盖之间还安装有使轴向介电型EAP驱动器组和斜向介电型EAP驱动器组处于拉伸状态的压缩弹簧。 The robot is connected in series by a plurality of multi-degree-of-freedom flexible motion units; a flexible, passively stretchable and bendable waterproof cover is installed outside the series-connected multi-degree-of-freedom flexible motion units; the multi-degree-of-freedom flexible motion unit includes an upper end cover And the lower end cover, there is a central axis between the upper end cover and the lower end cover, one end of the central axis is fixed with the upper end cover, and the other end passes through the central guide hole of the lower end cover; the shaft is connected between the edge of the upper end cover and the lower end cover To the dielectric type EAP driver group and the oblique dielectric type EAP driver group; there is also installed between the upper end cover and the lower end cover to make the axial dielectric EAP driver group and the oblique dielectric EAP driver group in a stretched state the compression spring.

本发明的优点在于: The advantages of the present invention are:

1. 本发明的柔性运动单元具有四个自由度,运动灵活,结构简单紧凑,能产生连续柔性转动和伸缩。 1. The flexible motion unit of the present invention has four degrees of freedom, flexible motion, simple and compact structure, and can produce continuous flexible rotation and stretching.

2. 本发明的运动单元外安装有防水套,既提供了密封,又提供了机器人向前运动的反作用推力,机器人适合在陆地和水中运动。 2. The motion unit of the present invention is equipped with a waterproof cover, which not only provides sealing, but also provides the reaction thrust for the forward movement of the robot. The robot is suitable for moving on land and in water.

3. 本发明可具有伸缩、蜿蜒、翻滚等多种运动方式,模仿柔体生物体的运动功能,对复杂未知地形适应性强。 3. The present invention can have multiple motion modes such as stretching, winding, and rolling, imitating the motion function of soft organisms, and has strong adaptability to complex and unknown terrains.

附图说明 Description of drawings

图1为水陆两栖蛇形机器人的结构示意图; Fig. 1 is the structural representation of amphibious snake robot;

图2为多自由度柔性运动单元; Figure 2 is a multi-degree-of-freedom flexible motion unit;

图3为多自由度柔性运动单元的轴向介电型EAP驱动器组布置图; Fig. 3 is a layout diagram of the axial dielectric EAP drive group of the multi-degree-of-freedom flexible motion unit;

图中名称标号: 1为多自由度柔性运动单元,2为防水套。3为上端盖、4为中心轴、5为轴向介电型EAP驱动器组、6为斜向介电型EAP驱动器组、7为下端盖、8为压缩弹簧。 Names and labels in the figure: 1 is the multi-degree-of-freedom flexible motion unit, and 2 is the waterproof case. 3 is the upper end cover, 4 is the central shaft, 5 is the axial dielectric EAP driver group, 6 is the oblique dielectric EAP driver group, 7 is the lower end cover, and 8 is the compression spring.

具体实施方式 Detailed ways

下面结合附图对本发明作进一步详述。 The present invention will be described in further detail below in conjunction with the accompanying drawings.

如图1所示,本发明是由多个多自由度柔性运动单元组成,相邻运动单元之间以串联方式固连,在串联运动单元外安装柔性可被动伸缩弯曲的防水套,具有很好的密封效果并产生向前运动的反作用推力。 As shown in Figure 1, the present invention is composed of a plurality of multi-degree-of-freedom flexible motion units, and the adjacent motion units are connected in series, and a flexible, passively stretchable and bendable waterproof cover is installed outside the series motion units, which has a good The sealing effect and produce the reaction thrust of forward motion.

如图2所示,柔性运动单元由上端盖3、中心轴4、轴向介电型EAP驱动器组5、斜向介电型EAP驱动器组6、下端盖7和压缩弹簧8组成,其中上下端盖之一与中心轴4固连,另一端盖可沿中心轴4轴线轴向移动。如图2所示,在上下端盖之间沿圆周方向均匀布置四个轴向介电型EAP驱动器组。在上下端盖之间斜向布置两个斜向介电型EAP驱动器组。介电型EAP驱动器两端连接在上下端盖上。 As shown in Figure 2, the flexible motion unit is composed of an upper end cover 3, a central shaft 4, an axial dielectric EAP driver group 5, an oblique dielectric EAP driver group 6, a lower end cover 7 and a compression spring 8, wherein the upper and lower ends One of the covers is fixedly connected with the central shaft 4, and the other end cover can move axially along the axis of the central shaft 4. As shown in Figure 2, four axial dielectric EAP driver groups are evenly arranged along the circumferential direction between the upper and lower end covers. Two oblique dielectric EAP driver groups are arranged obliquely between the upper and lower end covers. Both ends of the dielectric type EAP driver are connected to the upper and lower end caps.

如图3所示柔性运动单元具有四个自由度,即绕x轴、y轴和z轴的连续转动(俯仰、水平偏航、扭转)及沿z轴的线性运动(伸缩)。当x轴一侧的轴向介电型EAP驱动器组通电、另一侧不通电时,则中心轴产生绕x轴的连续弯曲转动(俯仰)。当y轴一侧的轴向介电型EAP驱动器组通电、另一侧不通电时,则中心轴产生绕y轴的连续弯曲转动(水平偏航)。当一倾斜方向的斜向介电型EAP驱动器组通电时,则中心轴4产生绕z轴的连续扭转。当所有轴向介电型EAP驱动器和斜向介电型EAP驱动器都通电时,运动单元产生沿z轴轴向的线性运动(伸缩)。 As shown in Figure 3, the flexible motion unit has four degrees of freedom, namely continuous rotation around the x- axis, y -axis and z-axis (pitch, horizontal yaw, twist) and linear motion along the z-axis (telescopic). When the axial dielectric EAP actuator group is powered on one side of the x- axis and not on the other side, the central shaft produces a continuous bending rotation (pitch) around the x- axis. When the axial dielectric EAP driver group on one side of the y- axis is energized and the other side is not energized, the central axis produces a continuous bending rotation around the y- axis (horizontal yaw). When an oblique dielectric EAP actuator group in an oblique direction is energized, the central shaft 4 produces a continuous twist around the z-axis. When all axial dielectric EAP actuators and oblique dielectric EAP actuators are energized, the motion unit produces linear motion (telescopic) along the z-axis.

本发明结构简单紧凑,自由度多,工作灵活,具有多种运动方式,能模仿生物蛇的运动功能,适用于陆地和水中等复杂未知地形的应用场合。 The invention has simple and compact structure, many degrees of freedom, flexible work, multiple movement modes, can imitate the movement function of biological snakes, and is suitable for application occasions with complex and unknown terrains such as land and water.

Claims (2)

1. Amphibious snake-like robot based on the multiple degrees of freedom flexible moving cell is characterized in that:
This robot is connected with series system by a plurality of multiple degrees of freedom flexible moving cells (1);
The waterproof jacket (2) that flexibility can passive flexible bending is installed outside the multiple degrees of freedom flexible moving cell (1) of series connection;
Said multiple degrees of freedom flexible moving cell (1) comprises upper end cover (3) and bottom end cover (7); Between upper end cover (3) and bottom end cover (7), also has central shaft (4); These central shaft (4) one ends and upper end cover (3) are fixing, and the other end passes the center guide hole of bottom end cover (7); Between upper end cover (3) edge and bottom end cover (7) edge, connecting axially dielectric EAP driver bank (5) and oblique dielectric EAP driver bank (6);
The compression spring (8) that makes axial dielectric EAP driver bank (5) and oblique dielectric EAP driver bank (6) be in extended state also is installed between above-mentioned upper end cover (3) and the bottom end cover (7).
2. the Amphibious snake-like robot based on the multiple degrees of freedom flexible moving cell according to claim 1 is characterized in that: above-mentioned compression spring (8) is enclosed within on the central shaft (4).
CN2012103368694A 2012-09-13 2012-09-13 Amphibious S-shaped robot on basis of MDOF (Multiple Degree of Freedom) flexible motion units Pending CN102837307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012103368694A CN102837307A (en) 2012-09-13 2012-09-13 Amphibious S-shaped robot on basis of MDOF (Multiple Degree of Freedom) flexible motion units

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012103368694A CN102837307A (en) 2012-09-13 2012-09-13 Amphibious S-shaped robot on basis of MDOF (Multiple Degree of Freedom) flexible motion units

Publications (1)

Publication Number Publication Date
CN102837307A true CN102837307A (en) 2012-12-26

Family

ID=47365165

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012103368694A Pending CN102837307A (en) 2012-09-13 2012-09-13 Amphibious S-shaped robot on basis of MDOF (Multiple Degree of Freedom) flexible motion units

Country Status (1)

Country Link
CN (1) CN102837307A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103056876A (en) * 2013-01-16 2013-04-24 北京化工大学 Variable rigidity parallel joint snake-shaped robot mechanism
CN103358305A (en) * 2013-06-17 2013-10-23 西安电子科技大学 Closed-loop control available multifunctional in-water snake-shaped robot
CN103529704A (en) * 2013-10-12 2014-01-22 中国人民解放军第四军医大学 Skeletal muscle linear netlike array type artificial muscle design and artificial nerve control method
CN103895005A (en) * 2014-04-10 2014-07-02 东南大学 Humanoid-neck parallel robot and control method thereof
CN103909520A (en) * 2014-03-04 2014-07-09 青岛海艺自动化技术有限公司 Snakelike robot with creeping and swinging function
CN104942790A (en) * 2015-06-16 2015-09-30 天津理工大学 Mini-type soft modularized reconfigurable robot unit module
CN106428480A (en) * 2016-06-12 2017-02-22 上海大学 Underwater snake-like detector and its motion driving method
CN108422441A (en) * 2018-05-21 2018-08-21 南京航空航天大学 A kind of submarine mechanical arm and its control method based on piezoelectric, screws pump
CN108583713A (en) * 2018-05-02 2018-09-28 北京林业大学 A kind of bionic type standing tree climbing robot and its application method
CN108972527A (en) * 2018-07-09 2018-12-11 中南大学 A kind of snakelike arm robot of variable rigidity based on phase-change material
CN105598959B (en) * 2016-02-19 2019-01-11 上海交通大学 Bionic deformation link robot based on electroactive polymer
CN109262600A (en) * 2018-10-17 2019-01-25 尉长虹 A kind of scalable software mechanical device
CN109551470A (en) * 2018-09-13 2019-04-02 清华大学 A kind of variable diameters snake-shaped robot module and snake-shaped robot
WO2019104907A1 (en) * 2017-12-01 2019-06-06 深圳光启合众科技有限公司 Flexible curved structure and robot with same
CN110116404A (en) * 2019-05-06 2019-08-13 天津大学 Plane modular Pneumatic artificial muscle
CN110125924A (en) * 2019-06-11 2019-08-16 哈尔滨工业大学 A kind of bionical legged type robot of software
CN111828773A (en) * 2019-04-22 2020-10-27 西北工业大学 A space steering mechanism of a pipeline robot
CN113427494A (en) * 2021-07-02 2021-09-24 西安工业大学 Bionic water snake-shaped robot based on dielectric elastomer
CN114643574A (en) * 2022-03-24 2022-06-21 长沙理工大学 Bionic snake-shaped robot
CN114770484A (en) * 2022-05-19 2022-07-22 上海大学 Electrically-driven rigid-flexible coupling water snake robot
CN115091439A (en) * 2022-07-28 2022-09-23 浙江大学 Modularized soft mechanical arm system based on dielectric elastomer and control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751821A (en) * 1985-03-29 1988-06-21 Birchard William G Digital linear actuator
CN2774717Y (en) * 2005-01-17 2006-04-26 江南大学 Snaik shape robot of multiple freedom flexible joints
CN201342916Y (en) * 2008-12-19 2009-11-11 中国科学院沈阳自动化研究所 Amphibious snake-shaped robot
CN101585188A (en) * 2009-06-19 2009-11-25 南京航空航天大学 Multidimensional active joint based on dielectric type EAP
US20100116081A1 (en) * 2008-11-11 2010-05-13 Intuitive Surgical, Inc. Robotic linkage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751821A (en) * 1985-03-29 1988-06-21 Birchard William G Digital linear actuator
CN2774717Y (en) * 2005-01-17 2006-04-26 江南大学 Snaik shape robot of multiple freedom flexible joints
US20100116081A1 (en) * 2008-11-11 2010-05-13 Intuitive Surgical, Inc. Robotic linkage
CN201342916Y (en) * 2008-12-19 2009-11-11 中国科学院沈阳自动化研究所 Amphibious snake-shaped robot
CN101585188A (en) * 2009-06-19 2009-11-25 南京航空航天大学 Multidimensional active joint based on dielectric type EAP

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李刚: "电场活化聚合物(DE)一维伸缩致动器设计", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103056876A (en) * 2013-01-16 2013-04-24 北京化工大学 Variable rigidity parallel joint snake-shaped robot mechanism
CN103056876B (en) * 2013-01-16 2015-03-04 北京化工大学 Variable rigidity parallel joint snake-shaped robot mechanism
CN103358305A (en) * 2013-06-17 2013-10-23 西安电子科技大学 Closed-loop control available multifunctional in-water snake-shaped robot
CN103358305B (en) * 2013-06-17 2015-05-20 西安电子科技大学 Closed-loop control available multifunctional in-water snake-shaped robot
CN103529704A (en) * 2013-10-12 2014-01-22 中国人民解放军第四军医大学 Skeletal muscle linear netlike array type artificial muscle design and artificial nerve control method
CN103529704B (en) * 2013-10-12 2016-04-27 中国人民解放军第四军医大学 The netted array artificial-muscle design of class skeletal muscle straight line and the neural control method of class
CN103909520A (en) * 2014-03-04 2014-07-09 青岛海艺自动化技术有限公司 Snakelike robot with creeping and swinging function
CN103909520B (en) * 2014-03-04 2016-01-20 青岛海艺自动化技术有限公司 There is the snake-shaped robot of wriggling and oscillating function
CN103895005A (en) * 2014-04-10 2014-07-02 东南大学 Humanoid-neck parallel robot and control method thereof
CN103895005B (en) * 2014-04-10 2017-02-01 东南大学 Humanoid-neck parallel robot and control method thereof
CN104942790A (en) * 2015-06-16 2015-09-30 天津理工大学 Mini-type soft modularized reconfigurable robot unit module
CN104942790B (en) * 2015-06-16 2016-10-05 天津理工大学 A kind of miniature software module reconstruction robot unit module
CN105598959B (en) * 2016-02-19 2019-01-11 上海交通大学 Bionic deformation link robot based on electroactive polymer
CN106428480A (en) * 2016-06-12 2017-02-22 上海大学 Underwater snake-like detector and its motion driving method
WO2019104907A1 (en) * 2017-12-01 2019-06-06 深圳光启合众科技有限公司 Flexible curved structure and robot with same
CN108583713A (en) * 2018-05-02 2018-09-28 北京林业大学 A kind of bionic type standing tree climbing robot and its application method
CN108583713B (en) * 2018-05-02 2019-09-13 北京林业大学 A bionic standing tree climbing robot and its application method
CN108422441A (en) * 2018-05-21 2018-08-21 南京航空航天大学 A kind of submarine mechanical arm and its control method based on piezoelectric, screws pump
CN108422441B (en) * 2018-05-21 2023-05-09 南京航空航天大学 Underwater mechanical arm based on piezoelectric screw pump and control method thereof
CN108972527A (en) * 2018-07-09 2018-12-11 中南大学 A kind of snakelike arm robot of variable rigidity based on phase-change material
CN109551470A (en) * 2018-09-13 2019-04-02 清华大学 A kind of variable diameters snake-shaped robot module and snake-shaped robot
CN109262600A (en) * 2018-10-17 2019-01-25 尉长虹 A kind of scalable software mechanical device
CN109262600B (en) * 2018-10-17 2022-02-22 尉长虹 Telescopic soft mechanical device
CN111828773A (en) * 2019-04-22 2020-10-27 西北工业大学 A space steering mechanism of a pipeline robot
CN111828773B (en) * 2019-04-22 2022-05-27 西北工业大学 Space steering mechanism of pipeline robot
CN110116404A (en) * 2019-05-06 2019-08-13 天津大学 Plane modular Pneumatic artificial muscle
CN110125924B (en) * 2019-06-11 2021-06-04 哈尔滨工业大学 Soft bionic foot type robot
CN110125924A (en) * 2019-06-11 2019-08-16 哈尔滨工业大学 A kind of bionical legged type robot of software
CN113427494A (en) * 2021-07-02 2021-09-24 西安工业大学 Bionic water snake-shaped robot based on dielectric elastomer
CN114643574A (en) * 2022-03-24 2022-06-21 长沙理工大学 Bionic snake-shaped robot
CN114643574B (en) * 2022-03-24 2024-10-15 长沙理工大学 Bionic snake robot
CN114770484A (en) * 2022-05-19 2022-07-22 上海大学 Electrically-driven rigid-flexible coupling water snake robot
CN114770484B (en) * 2022-05-19 2023-12-05 上海大学 An electric-driven rigid-soft coupling water snake robot
CN115091439A (en) * 2022-07-28 2022-09-23 浙江大学 Modularized soft mechanical arm system based on dielectric elastomer and control method
CN115091439B (en) * 2022-07-28 2024-03-29 浙江大学 A modular soft manipulator system and control method based on dielectric elastomer

Similar Documents

Publication Publication Date Title
CN102837307A (en) Amphibious S-shaped robot on basis of MDOF (Multiple Degree of Freedom) flexible motion units
Chu et al. Review of biomimetic underwater robots using smart actuators
Joshi et al. FludoJelly: Experimental study on jellyfish-like soft robot enabled by soft pneumatic composite (SPC)
CN103950527B (en) The piezoelectricity coupling propulsive mechanism of bionical ray pectoral fin
Wang et al. Soft underwater swimming robots based on artificial muscle
Qu et al. Recent advances on underwater soft robots
CN101890888B (en) Amphibious bionic turtle robot
Low Current and future trends of biologically inspired underwater vehicles
Wang et al. Moisture induced electricity for self-powered microrobots
CN110127015A (en) A single-drive fluctuating fin propulsion device and bionic underwater vehicle
CN102975782A (en) Wheel foot amphibious robot mechanism based on differential wheel eccentric mechanism
CN105857556B (en) The bionical ray fish of shape-memory alloy wire driving and its method of work
CN105857557B (en) Double freedom bionic pectoral fin propulsive mechanism based on case Molidae fish
US10661869B2 (en) Acoustically stealthy soft-bodied UUV propulsion system
Yue et al. Design and performance evaluation of a biomimetic microrobot for the father–son underwater intervention robotic system
CN101168371B (en) Tracked self-reconfigurable microrobot
Li et al. Actuation mechanisms and applications for soft robots: A comprehensive review
CN104149953A (en) Machine jellyfish driven by embedded type cylindrical motor
Bu et al. Biomimetic aquatic robots based on fluid-driven actuators: a review
CN104477358A (en) Jellyfish swimming type serial bionic underwater propulsion device
Ma et al. A review of robotic fish based on smart materials
CN102795068B (en) Compound driven jellyfish-like amphibious robot
CN104443331A (en) Jellyfish imitating underwater propelling device driven by embedded flexible joints
Zhou et al. Ultrasound vibration energy harvesting from a rotary-type piezoelectric ultrasonic actuator
Wang et al. Review of multi-fin propulsion and functional materials of underwater bionic robotic fish

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20121226