CN102822537B - Hybrid working machine - Google Patents
Hybrid working machine Download PDFInfo
- Publication number
- CN102822537B CN102822537B CN201180005645.9A CN201180005645A CN102822537B CN 102822537 B CN102822537 B CN 102822537B CN 201180005645 A CN201180005645 A CN 201180005645A CN 102822537 B CN102822537 B CN 102822537B
- Authority
- CN
- China
- Prior art keywords
- mentioned
- valve
- hydraulic motor
- motor
- controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000007935 neutral effect Effects 0.000 claims abstract description 35
- 239000012530 fluid Substances 0.000 claims abstract description 15
- 238000006073 displacement reaction Methods 0.000 claims description 5
- 230000007246 mechanism Effects 0.000 description 14
- 238000000034 method Methods 0.000 description 8
- 230000001172 regenerating effect Effects 0.000 description 4
- 230000004043 responsiveness Effects 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2217—Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B21/00—Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
- F15B21/14—Energy-recuperation means
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/2058—Electric or electro-mechanical or mechanical control devices of vehicle sub-units
- E02F9/2062—Control of propulsion units
- E02F9/2075—Control of propulsion units of the hybrid type
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2221—Control of flow rate; Load sensing arrangements
- E02F9/2232—Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
- E02F9/2235—Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2282—Systems using center bypass type changeover valves
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2285—Pilot-operated systems
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2292—Systems with two or more pumps
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2296—Systems with a variable displacement pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/20507—Type of prime mover
- F15B2211/20515—Electric motor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/20507—Type of prime mover
- F15B2211/20523—Internal combustion engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/20576—Systems with pumps with multiple pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/265—Control of multiple pressure sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/80—Other types of control related to particular problems or conditions
- F15B2211/88—Control measures for saving energy
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Operation Control Of Excavators (AREA)
- Fluid-Pressure Circuits (AREA)
Abstract
控制器判断对从主泵向致动器的压力流体的供给进行控制的操作阀是否处于中立位置,检测由来自致动器的返回油进行旋转的油压马达的输入动力,在操作阀处于中立位置、且油压马达的输入动力超过了第一阈值的情况下,缩小比例电磁节流阀的开度。
The controller judges whether the operation valve that controls the supply of pressure fluid from the main pump to the actuator is in the neutral position, detects the input power of the hydraulic motor that is rotated by the return oil from the actuator, and the operation valve is in the neutral position. position and the input power of the hydraulic motor exceeds the first threshold value, the opening degree of the proportional electromagnetic throttle valve is reduced.
Description
技术领域 technical field
本发明涉及一种利用来自致动器的再生流量的混合动力作业机械。The present invention relates to a hybrid work machine utilizing regenerative flow from an actuator.
背景技术 Background technique
JP2009-236190A公开了利用致动器的再生流量的混合动力作业机械。在该混合动力作业机械中,在作为致动器的动臂缸(boom cylinder)和再生用的油压马达之间设有开闭阀。在控制致动器的操作阀返回到中立位置的情况下,开闭阀保持关闭位置。JP2009-236190A discloses a hybrid work machine utilizing regenerative flow rate of an actuator. In this hybrid work machine, an on-off valve is provided between a boom cylinder as an actuator and a hydraulic motor for regeneration. With the operating valve controlling the actuator returning to the neutral position, the on-off valve maintains the closed position.
在使有高负载作用的高速运转中的动臂缸紧急停止的情况下,在将操作阀切换为中立位置的同时将开闭阀切换为关闭位置,防止动臂缸的失控,避免电动发电机的吸收能力以上的高转矩从油压马达输入到电动发电机。由此,防止如下情况:电动发电机的吸收能力以上的高转矩作用于电动发电机,电动发电机发生故障或失控。In the case of an emergency stop of the boom cylinder operating at high speed with a high load, the operation valve is switched to the neutral position and the on-off valve is switched to the closed position at the same time to prevent the boom cylinder from running out of control and avoid the motor generator High torque above the absorbing capacity is input from the hydraulic motor to the motor generator. Accordingly, it is prevented that a high torque exceeding the absorbing capacity of the motor generator acts on the motor generator, causing the motor generator to malfunction or run out of control.
发明内容 Contents of the invention
然而,在上述以往的混合动力作业机械中,在为了紧急停止致动器而将操作阀急剧地返回到中立位置的情况下,电动发电机的吸收能力以上的高转矩有可能作用于电动发电机。这是因为:开闭阀的响应性存在极限,难以瞬时地关闭开闭阀来紧急停止致动器。However, in the above-mentioned conventional hybrid working machine, when the operation valve is returned to the neutral position abruptly in order to stop the actuator in an emergency, a high torque exceeding the absorption capacity of the motor generator may act on the motor generator. machine. This is because there is a limit to the responsiveness of the on-off valve, and it is difficult to instantaneously close the on-off valve to stop the actuator in an emergency.
为了提高电动发电机的吸收能力,还考虑使电动发电机大型化,但是成本随着大型化而相应增大。In order to increase the absorption capacity of the motor generator, it is considered to increase the size of the motor generator, but the cost increases accordingly.
本发明的目的在于,在混合动力作业机械中,在紧急停止了有高负载作用的高速运转中的致动器的情况下,能够可靠地停止致动器,避免吸收能力以上的高转矩作用于电动发电机。The object of the present invention is to reliably stop the actuator and avoid the action of high torque exceeding the absorbing capacity when the actuator in the high-speed operation with a high load is suddenly stopped in the case of a hybrid power working machine. in motor generators.
根据本发明的一种方式,提供一种混合动力作业机械,其具备:主泵;发动机,其驱动上述主泵;可变容量的辅助泵,其经由合流通路连接在上述主泵的排出侧;倾角控制器,其控制上述辅助泵的偏转角;比例电磁节流阀,其设置在上述合流通路上;致动器;操作阀,其控制从上述主泵向上述致动器的压力流体的供给;可变容量的油压马达,其利用来自上述致动器的返回油进行旋转;电动发电机,其连接在上述辅助泵以及上述油压马达;电池,其连接在上述电动发电机;以及控制器,其连接在上述倾角控制器以及上述比例电磁节流阀,判断上述操作阀是否处于中立位置,检测利用来自上述致动器的返回油进行旋转的上述油压马达的输入动力,在上述操作阀处于中立位置、且上述油压马达的输入动力超过第一阈值的情况下,缩小上述比例电磁节流阀的开度。According to one aspect of the present invention, there is provided a hybrid working machine including: a main pump; an engine driving the main pump; a variable capacity auxiliary pump connected to a discharge side of the main pump via a confluence passage; an inclination controller that controls the deflection angle of the above-mentioned auxiliary pump; a proportional electromagnetic throttle valve that is provided on the above-mentioned confluence path; an actuator; an operation valve that controls the supply of pressurized fluid from the above-mentioned main pump to the above-mentioned actuator ; a variable capacity hydraulic motor, which is rotated using return oil from the above-mentioned actuator; a motor generator, which is connected to the above-mentioned auxiliary pump and the above-mentioned hydraulic motor; a battery, which is connected to the above-mentioned motor generator; The device is connected to the above-mentioned inclination controller and the above-mentioned proportional electromagnetic throttle valve, judges whether the above-mentioned operation valve is in the neutral position, and detects the input power of the above-mentioned hydraulic motor that is rotated by the return oil from the above-mentioned actuator. When the valve is in the neutral position and the input power of the hydraulic motor exceeds a first threshold value, the opening degree of the proportional electromagnetic throttle valve is reduced.
根据上述方式,在油压马达的输入动力超过了第一阈值的情况下,通过辅助泵来吸收油压马达的输入动力,因此能够防止对电动发电机输入吸收能力以上的动力。According to the above aspect, when the input power of the hydraulic motor exceeds the first threshold value, the auxiliary pump absorbs the input power of the hydraulic motor, so that the input of power exceeding the absorbing capacity to the motor generator can be prevented.
因而,即使不提高开闭阀的响应性或者不使电动发电机大型化为所需程度以上,在紧急停止有高负载作用的高速运转中的致动器的情况下,也不会使吸收能力以上的高转矩作用于电动发电机,能够可靠地停止致动器。Therefore, even if the responsiveness of the on-off valve is not improved or the motor generator is not enlarged beyond the necessary level, the absorption capacity will not be reduced when the actuator in high-speed operation with a high load is suddenly stopped. The above high torque acts on the motor generator to reliably stop the actuator.
以下,参照附图来详细地说明本发明的实施方式以及本发明的优点。Hereinafter, embodiments of the present invention and advantages of the present invention will be described in detail with reference to the drawings.
附图说明Description of drawings
图1是本发明的实施方式所涉及的挖掘机(power shovel)的回路图。FIG. 1 is a circuit diagram of a power shovel according to an embodiment of the present invention.
图2是表示第一控制流程的流程图。FIG. 2 is a flowchart showing a first control flow.
图3是表示第二控制流程的流程图。FIG. 3 is a flowchart showing a second control flow.
具体实施方式 Detailed ways
图1是本发明的实施方式所涉及的挖掘机的回路图。挖掘机具备可变容量的第一、第二主泵MP1、MP2。第一主泵MP1与第一回路系统相连接。第二主泵MP2与第二回路系统相连接。FIG. 1 is a circuit diagram of an excavator according to an embodiment of the present invention. The excavator is provided with variable-capacity first and second main pumps MP1 and MP2. The first main pump MP1 is connected to the first circuit system. The second main pump MP2 is connected to the second loop system.
在第一回路系统中,从上游侧按顺序连接有:控制回转马达RM的操作阀1、控制斗杆缸(arm cylinder)的臂1档用的操作阀2、控制动臂缸B C的动臂2档用的操作阀3、控制预备用配件的操作阀4以及控制左行走用马达的操作阀5。In the first circuit system, connected in order from the upstream side are: the operation valve 1 for controlling the swing motor RM, the operation valve 2 for controlling the first gear of the arm cylinder, and the actuator for controlling the arm cylinder BC. The operating valve 3 for arm 2, the operating valve 4 for controlling the spare parts, and the operating valve 5 for controlling the motor for left travel.
各操作阀1~5分别通过中立流路6及并行通路7与第一主泵MP1相连接。The operating valves 1 to 5 are connected to the first main pump MP1 through the neutral flow path 6 and the parallel path 7 , respectively.
在中立流路6上的、操作阀5的下游侧设置有先导压力(pilotpres sure)生成机构8。如果流过先导压力生成机构8的流量多,则该先导压力生成机构8生成高的先导压力,如果流量少则生成低的先导压力。A pilot pressure (pilot pressure) generating mechanism 8 is provided on the downstream side of the operation valve 5 on the neutral flow path 6 . The pilot pressure generating mechanism 8 generates a high pilot pressure when the flow rate flowing through the pilot pressure generating mechanism 8 is large, and generates a low pilot pressure when the flow rate is small.
在操作阀1~5全部处于中立位置或者中立位置附近的情况下,中立流路6将从第一主泵MP1排出的流体的全部或者一部分导向罐T。在这种情况下,通过先导压力生成机构8的流量也变多,因此生成高的先导压力。The neutral flow path 6 guides all or a part of the fluid discharged from the first main pump MP1 to the tank T when all the operation valves 1 to 5 are at or near the neutral position. In this case, the flow rate passing through the pilot pressure generating mechanism 8 also increases, so a high pilot pressure is generated.
如果操作阀1~5切换为全冲程(full stroke)的状态,则中立流路6被关闭而流体的流通停止。在这种情况下,流过先导压力生成机构8的流量几乎消失,先导压力保持为零。If the operating valves 1 to 5 are switched to a full stroke state, the neutral flow path 6 is closed and the flow of fluid is stopped. In this case, the flow through the pilot pressure generating mechanism 8 almost disappears, and the pilot pressure remains at zero.
其中,根据操作阀1~5的操作量,泵排出量的一部分导向致动器而一部分从中立流路6导向罐T,因此先导压力生成机构8生成与流过中立流路6的流量相应的先导压力。即,先导压力生成机构8生成与操作阀1~5的操作量相应的先导压力。Here, according to the operation amount of the operation valves 1 to 5, part of the pump discharge is directed to the actuator and part of the pump discharge is directed to the tank T from the neutral flow path 6, so the pilot pressure generating mechanism 8 generates a flow rate corresponding to the flow rate flowing through the neutral flow path 6. pilot pressure. That is, the pilot pressure generating mechanism 8 generates pilot pressures corresponding to the operation amounts of the operation valves 1 to 5 .
先导压力生成机构8上连接有先导流路9。先导流路9与控制第一主泵MP 1的偏转角的调节器10相连接。调节器10与先导压力成反比地控制第一主泵MP1的排出量。因而,在使操作阀1~5处于全冲程而中立流路6的流动变为零的情况下,换句话说在先导压力生成机构8所产生的先导压力变为零的情况下,第一主泵MP1的排出量保持为最大。A pilot flow path 9 is connected to the pilot pressure generating mechanism 8 . The pilot flow path 9 is connected to a regulator 10 that controls the deflection angle of the first main pump MP1. The regulator 10 controls the discharge amount of the first main pump MP1 inversely proportional to the pilot pressure. Therefore, when the operation valves 1 to 5 are at full stroke and the flow in the neutral flow path 6 becomes zero, in other words, when the pilot pressure generated by the pilot pressure generating mechanism 8 becomes zero, the first main The discharge of pump MP1 is kept at a maximum.
先导流路9上连接有第一压力传感器11。第一压力传感器11的压力信号输入到控制器C。A first pressure sensor 11 is connected to the pilot flow path 9 . The pressure signal of the first pressure sensor 11 is input to the controller C.
在第二回路系统中,从上游侧按顺序连接有:控制右行走用马达的操作阀12、控制铲斗缸(bucket cylinder)的操作阀13、控制动臂缸BC的动臂1档用的操作阀14以及控制斗杆缸的臂2档用的操作阀15。在操作阀14上设置有检测操作方向以及操作量的传感器14a。In the second circuit system, the operation valve 12 for controlling the right travel motor, the operation valve 13 for controlling the bucket cylinder, and the first gear for controlling the boom cylinder BC are connected in order from the upstream side. The operation valve 14 and the operation valve 15 for controlling the second gear of the arm of the arm cylinder. The operation valve 14 is provided with a sensor 14a for detecting the operation direction and the operation amount.
各操作阀12~15经由中立流路16与第二主泵MP2相连接。操作阀13和操作阀14经由并行通路17与第二主泵MP2相连接。The operation valves 12 to 15 are connected to the second main pump MP2 via the neutral flow path 16 . The operation valve 13 and the operation valve 14 are connected to the second main pump MP2 via a parallel passage 17 .
在中立流路16上的、操作阀15的下游侧设置有先导压力生成机构18。先导压力生成机构18与之前说明的先导压力生成机构8发挥完全相同的功能。A pilot pressure generating mechanism 18 is provided on the neutral flow path 16 downstream of the operation valve 15 . The pilot pressure generating mechanism 18 functions exactly the same as the pilot pressure generating mechanism 8 described above.
先导压力生成机构18上连接有先导流路19。先导流路19与控制第二主泵MP2的偏转角的调节器20相连接。调节器20与先导压力成反比地控制第二主泵MP2的排出量。在使操作阀12~15处于全冲程而中立流路16的流动变为零的情况下,换句话说在先导压力生成机构18所产生的先导压力变为零的情况下,第二主泵MP2的排出量保持为最大。A pilot flow path 19 is connected to the pilot pressure generating mechanism 18 . The pilot flow path 19 is connected to a regulator 20 that controls the deflection angle of the second main pump MP2. The regulator 20 controls the discharge amount of the second main pump MP2 inversely proportional to the pilot pressure. When the operation valves 12 to 15 are at full stroke and the flow in the neutral flow path 16 becomes zero, in other words, when the pilot pressure generated by the pilot pressure generating mechanism 18 becomes zero, the second main pump MP2 The output volume is kept at the maximum.
先导流路19上连接有第二压力传感器21。第二压力传感器21的压力信号输入到控制器C。A second pressure sensor 21 is connected to the pilot flow path 19 . The pressure signal of the second pressure sensor 21 is input to the controller C.
第一、第二主泵MP1、MP2利用一个发动机E的驱动力进行同轴旋转。The first and second main pumps MP1 and MP2 are coaxially rotated by the driving force of one engine E.
在发动机E中设置有发电机(generator)22。发电机22利用发动机E的剩余输出进行旋转并发电。发电机22所发电产生的电力通过电池充电器23充入电池24。The engine E is provided with a generator (generator) 22 . The generator 22 uses the surplus output of the engine E to rotate and generate electricity. The electric power generated by the generator 22 is charged into the battery 24 through the battery charger 23 .
电池充电器23在连接到普通的家庭用的电源25的情况下,也能够将电力充入电池24。即,电池充电器23也能够连接到其它独立系统电源。The battery charger 23 can charge the battery 24 with electric power even when it is connected to a general household power supply 25 . That is, the battery charger 23 can also be connected to other independent system power sources.
在与第一回路系统连接的操作阀1的致动器端口上连接有与回转马达RM连通的通路26、27。在两个通路26、27上分别连接有制动阀28、29。在将操作阀1保持在中立位置的情况下,致动器端口被关闭,回转马达RM维持停止状态。Passages 26 and 27 communicating with the swing motor RM are connected to the actuator port of the operation valve 1 connected to the first circuit system. Brake valves 28 , 29 are respectively connected to the two passages 26 , 27 . When the operation valve 1 is kept at the neutral position, the actuator port is closed, and the turning motor RM remains in a stopped state.
当将操作阀1切换到某一个通路时,从某一方通路例如通路26供给压力流体来使回转马达RM进行旋转。来自回转马达RM的返回流体通过通路27返回到罐T。When the operation valve 1 is switched to a certain path, pressure fluid is supplied from a certain path, for example, the path 26 to rotate the rotary motor RM. Return fluid from swing motor RM returns to tank T through passage 27 .
在正在驱动回转马达RM的情况下,制动阀28或者29发挥溢流阀(relief valve)的功能,当通路26、27为设定压力以上时制动阀28、29打开来将高压侧的流体导向低压侧。When the swing motor RM is being driven, the brake valve 28 or 29 functions as a relief valve, and when the pressure in the passages 26 and 27 is higher than the set pressure, the brake valves 28 and 29 are opened to release the pressure on the high pressure side. Fluid is directed to the low pressure side.
如果在回转马达RM进行旋转的状态下将操作阀1返回到中立位置,则操作阀1的致动器端口被关闭。即使操作阀1的致动器端口被关闭,回转马达RM也利用惯性能量继续旋转,通过回转马达RM利用惯性能量进行旋转,回转马达RM起到泵作用。在这种情况下,由通路26、27、回转马达RM、制动阀28或者29构成闭合回路,通过制动阀28或者29将惯性能量转换为热能。If the operation valve 1 is returned to the neutral position in a state where the swing motor RM is rotating, the actuator port of the operation valve 1 is closed. Even if the actuator port operating the valve 1 is closed, the rotary motor RM continues to rotate by using inertial energy, and by rotating by using inertial energy, the rotary motor RM acts as a pump. In this case, a closed circuit is formed by the passages 26 , 27 , the rotary motor RM, and the brake valve 28 or 29 , and the inertial energy is converted into thermal energy through the brake valve 28 or 29 .
另一方面,当将操作阀14从中立位置切换到附图右侧位置时,来自第二主泵MP2的压力流体经由通路30被供给到动臂缸BC的活塞侧室31。来自杆侧室32的返回流体经由通路33返回到罐T,动臂缸BC伸长。On the other hand, when the operation valve 14 is switched from the neutral position to the right position in the drawing, the pressurized fluid from the second main pump MP2 is supplied to the piston-side chamber 31 of the boom cylinder BC via the passage 30 . The return fluid from the rod side chamber 32 returns to the tank T through the passage 33, and the boom cylinder BC expands.
当将操作阀14切换到附图左方向时,来自第二主泵MP2的压力流体经由通路33被供给到动臂缸BC的杆侧室32。来自活塞侧室31的返回流体经由通路30返回到罐T,动臂缸BC收缩。操作阀3与操作阀14连动地进行切换。When the operation valve 14 is switched to the left direction in the drawing, the pressurized fluid from the second main pump MP2 is supplied to the rod side chamber 32 of the boom cylinder BC through the passage 33 . The return fluid from the piston-side chamber 31 returns to the tank T via the passage 30, and the boom cylinder BC contracts. The operation valve 3 is switched in conjunction with the operation valve 14 .
在连接动臂缸BC的活塞侧室31与操作阀14的通路30中,设有通过控制器C来控制开度的比例电磁阀34。比例电磁阀34在正常状态下保持全开位置。A proportional solenoid valve 34 whose opening degree is controlled by a controller C is provided in a passage 30 connecting the piston-side chamber 31 of the boom cylinder BC and the operation valve 14 . The proportional solenoid valve 34 maintains a fully open position under normal conditions.
接着,说明辅助第一主泵MP1、MP2的输出的可变容量的辅助泵AP。Next, the variable displacement auxiliary pump AP that assists the outputs of the first main pumps MP1 and MP2 will be described.
辅助泵AP利用由电动发电机MG的驱动力进行旋转。通过电动发电机MG的驱动力,可变容量的油压马达AM也进行同轴旋转。电动发电机MG上连接有逆变器I。逆变器I与控制器C相连接,能够通过控制器C来控制电动发电机MG的转速等。Auxiliary pump AP is rotated by driving force from motor generator MG. A variable capacity hydraulic motor AM is also coaxially rotated by the driving force of the motor generator MG. An inverter I is connected to the motor generator MG. The inverter I is connected to a controller C, and the controller C can control the rotation speed of the motor generator MG and the like.
辅助泵AP和油压马达AM的偏转角是由倾角控制器35、36来进行控制的。根据控制器C的输出信号来控制倾角控制器35、36。The deflection angles of the auxiliary pump AP and the hydraulic motor AM are controlled by the inclination controllers 35 and 36 . The inclination controllers 35, 36 are controlled according to the output signal of the controller C.
辅助泵AP上连接有排出通路37。排出通路37分支为与第一主泵MP 1的排出侧合流的第一合流通路38以及与第二主泵MP2的排出侧合流的第二合流通路39。在第一、第二合流通路38、39上分别设置有根据控制器C的输出信号来控制开度的第一、第二比例电磁节流阀40、41。A discharge passage 37 is connected to the auxiliary pump AP. The discharge passage 37 is branched into a first confluent passage 38 that merges with the discharge side of the first main pump MP1 and a second confluent passage 39 that merges with the discharge side of the second main pump MP2. First and second proportional electromagnetic throttle valves 40 and 41 whose openings are controlled according to the output signal of the controller C are provided on the first and second confluent passages 38 and 39 , respectively.
油压马达AM上连接有连接用通路42。连接用通路42经由合流通路43和单向阀(check valve)44、45连接到与回转马达RM连接的通路26、27。在合流通路43中设有通过控制器C进行开闭控制的电磁开闭阀46。在电磁开闭阀46与单向阀44、45之间设置有压力传感器47,该压力传感器47检测回转马达RM的回转时的压力或者制动时的压力。压力传感器47的压力信号输入到控制器C。A connection passage 42 is connected to the hydraulic motor AM. The connection passage 42 is connected to the passages 26 and 27 connected to the rotary motor RM via a confluence passage 43 and check valves (check valves) 44 and 45 . An electromagnetic on-off valve 46 whose opening and closing is controlled by a controller C is provided in the confluent passage 43 . A pressure sensor 47 is provided between the electromagnetic on-off valve 46 and the check valves 44 , 45 , and the pressure sensor 47 detects the pressure during rotation or braking of the swing motor RM. A pressure signal from the pressure sensor 47 is input to the controller C.
在合流通路43的、相对于从回转马达RM向连接用通路42的流动位于电磁开闭阀46的下游侧的位置处设置有安全阀48。例如在电磁开闭阀46等中发生了故障的情况下,安全阀48维持通路26、27的压力来防止回转马达RM失控。A relief valve 48 is provided in the confluent passage 43 at a position downstream of the electromagnetic on-off valve 46 with respect to the flow from the swing motor RM to the connection passage 42 . For example, when a failure occurs in the electromagnetic on-off valve 46 or the like, the safety valve 48 maintains the pressures of the passages 26 and 27 to prevent runaway of the swing motor RM.
在动臂缸BC与比例电磁阀34之间设置有与连接用通路42连通的通路49。在通路49中设有通过控制器C进行控制的电磁开闭阀50。A passage 49 communicating with the connection passage 42 is provided between the boom cylinder BC and the proportional solenoid valve 34 . An electromagnetic on-off valve 50 controlled by a controller C is provided in the passage 49 .
接着,说明本实施方式的作用。Next, the operation of this embodiment will be described.
当在回转马达RM正在回转的过程中将操作阀1切换到中立位置时,在通路26、27间构成闭合回路,制动阀28或者29维持闭合回路的制动压力,将惯性能量转换为热能。When the operating valve 1 is switched to the neutral position during the rotation of the rotary motor RM, a closed circuit is formed between the passages 26 and 27, and the brake valve 28 or 29 maintains the brake pressure of the closed circuit and converts the inertial energy into heat energy .
压力传感器47检测回转压力或者制动压力。压力信号输入到控制器C。控制器C在检测出不影响回转马达RM的回转或者制动动作的范围内的、比制动阀28、29的设定压力低的压力的情况下,切换电磁开闭阀46。如果切换了电磁开闭阀46,则被导向回转马达RM的压力流体流过合流通路43,经由安全阀48和连接用通路42被供给到油压马达AM。The pressure sensor 47 detects swing pressure or brake pressure. The pressure signal is input to controller C. The controller C switches the electromagnetic on-off valve 46 when detecting a pressure lower than the set pressure of the brake valves 28 and 29 within a range that does not affect the rotation of the swing motor RM or the braking operation. When the electromagnetic on-off valve 46 is switched, the pressure fluid guided to the rotary motor RM flows through the confluence passage 43 and is supplied to the hydraulic motor AM via the safety valve 48 and the connection passage 42 .
如下面所说明的那样,控制器C根据来自压力传感器47的压力信号来控制油压马达AM的偏转角。As will be described below, the controller C controls the deflection angle of the hydraulic motor AM based on the pressure signal from the pressure sensor 47 .
如果通路26或者27的压力没有保持在回转动作或者制动动作所需的压力,则无法使回转马达RM进行回转、或者施以制动。If the pressure in the passage 26 or 27 is not maintained at the pressure required for the turning operation or braking operation, the turning motor RM cannot be turned or braked.
因此,为了将通路26或者27的压力保持为回转压力或者制动压力,控制器C控制油压马达AM的偏转角,控制回转马达RM的负载。具体地说,控制器C控制油压马达AM的偏转角使得由压力传感器47检测出的压力与回转马达RM的回转压力或者制动压力大致相等。Therefore, in order to maintain the pressure in the passage 26 or 27 as the swing pressure or the brake pressure, the controller C controls the deflection angle of the hydraulic motor AM and controls the load of the swing motor RM. Specifically, the controller C controls the deflection angle of the hydraulic motor AM so that the pressure detected by the pressure sensor 47 is substantially equal to the turning pressure or braking pressure of the turning motor RM.
如果油压马达AM获得旋转力,则该旋转力作用于进行同轴旋转的电动发电机MG。油压马达AM的旋转力作为针对电动发电机MG的辅助力而起作用。因而,能够使电动发电机MG的消耗电力减少与油压马达AM的旋转力相当的量。When the hydraulic motor AM obtains a rotational force, the rotational force acts on the coaxially rotating motor generator MG. The rotational force of hydraulic motor AM acts as an assist force for motor generator MG. Therefore, it is possible to reduce the power consumption of the motor generator MG by an amount equivalent to the rotational force of the hydraulic motor AM.
也能够以油压马达AM的旋转力来对辅助泵AP的旋转力进行辅助。The rotational force of the auxiliary pump AP can also be assisted by the rotational force of the hydraulic motor AM.
接着,说明切换操作阀14以及与其连动的操作阀3来控制动臂缸BC的情况。Next, a case where the boom cylinder BC is controlled by switching the operation valve 14 and the operation valve 3 linked thereto will be described.
当为了使动臂缸BC进行动作而切换操作阀14以及与其连动的操作阀3时,利用传感器14a检测操作阀14的操作方向和操作量。操作信号输入到控制器C。When the operation valve 14 and the operation valve 3 linked thereto are switched to operate the boom cylinder BC, the operation direction and the operation amount of the operation valve 14 are detected by the sensor 14 a. The operation signal is input to the controller C.
根据传感器14a的操作信号,控制器C判断操作员是要使动臂缸BC上升还是下降。如果用于使动臂缸B C上升的信号输入到控制器C,则控制器C将比例电磁阀34保持为正常状态。换句话说,将比例电磁阀34保持在全开位置。在这种情况下,为了确保从辅助泵AP排出规定的排出量,控制器C使电磁开闭阀50保持在图示的关闭位置,并控制电动发电机MG的转速、辅助泵AP的偏转角。Based on the operation signal of the sensor 14a, the controller C judges whether the operator intends to raise or lower the boom cylinder BC. If a signal for raising the boom cylinder BC is input to the controller C, the controller C keeps the proportional solenoid valve 34 in a normal state. In other words, the proportional solenoid valve 34 is kept at the fully open position. In this case, in order to ensure a predetermined discharge amount from the auxiliary pump AP, the controller C keeps the electromagnetic on-off valve 50 at the illustrated closed position, and controls the rotation speed of the motor generator MG and the deflection angle of the auxiliary pump AP. .
当用于使动臂缸BC下降的信号从传感器14a输入到控制器C时,控制器C根据操作阀14的操作量来运算操作员所要求的动臂缸BC的下降速度,关闭比例电磁阀34,将电磁开闭阀50切换到打开位置。When the signal for lowering the boom cylinder BC is input from the sensor 14a to the controller C, the controller C calculates the lowering speed of the boom cylinder BC requested by the operator based on the operation amount of the operation valve 14, and closes the proportional solenoid valve. 34. Switch the electromagnetic on-off valve 50 to the open position.
如果关闭比例电磁阀34并将电磁开闭阀50切换到打开位置,则动臂缸BC的返回流体的全量被供给到油压马达AM。但是,如果油压马达AM所消耗的流量小于维持操作员所要求的下降速度所需的流量,则动臂缸BC无法维持操作员所要求的下降速度。在这种情况下,控制器C根据操作阀14的操作量、油压马达AM的偏转角、电动发电机MG的转速等来控制比例电磁阀34的开度使得由油压马达AM消耗的流量以上的流量返回到罐T,以维持操作员所要求的动臂缸BC的下降速度。When the proportional electromagnetic valve 34 is closed and the electromagnetic on-off valve 50 is switched to the open position, the entire amount of return fluid of the boom cylinder BC is supplied to the hydraulic motor AM. However, if the flow rate consumed by the oil motor AM is smaller than the flow rate required to maintain the operator-requested descending speed, the boom cylinder BC cannot maintain the operator-requested descending speed. In this case, the controller C controls the opening degree of the proportional solenoid valve 34 so that the flow rate consumed by the oil motor AM is The above flow is returned to tank T to maintain the lowering speed of boom cylinder BC as requested by the operator.
当向油压马达AM供给流体时,油压马达AM进行旋转。油压马达AM的旋转力作用于进行同轴旋转的电动发电机MG。油压马达AM的旋转力作为针对电动发电机MG的辅助力而起作用。因而,能够使消耗电力减少与油压马达AM的旋转力相当的量。When fluid is supplied to hydraulic motor AM, hydraulic motor AM rotates. The rotational force of the hydraulic motor AM acts on the coaxially rotating motor generator MG. The rotational force of hydraulic motor AM acts as an assist force for motor generator MG. Therefore, power consumption can be reduced by an amount corresponding to the rotational force of the hydraulic motor AM.
在将油压马达AM用作驱动源并将电动发电机MG用作发电机的情况下,将辅助泵AP的偏转角设为零来形成几乎无负载状态,并使油压马达AM维持使电动发电机MG旋转所需的输出。由此,利用油压马达AM的输出,能够使电动发电机MG发挥发电功能。In the case where the hydraulic motor AM is used as the drive source and the motor generator MG is used as the generator, the deflection angle of the auxiliary pump AP is set to zero to form an almost no-load state, and the hydraulic motor AM is maintained to be electrically powered. The output required for the rotation of the generator MG. Thereby, the motor generator MG can be made to perform the power generation function by utilizing the output of the hydraulic motor AM.
在第一、第二比例电磁节流阀40、41的下游侧设置有单向阀51、52。单向阀51、52仅允许从辅助泵AP向第一、第二主泵MP1、MP2侧流通。On the downstream side of the first and second proportional electromagnetic throttle valves 40 and 41, one-way valves 51 and 52 are provided. The one-way valves 51 and 52 allow only flow from the auxiliary pump AP to the first and second main pumps MP1 and MP2.
控制器C始终监视油压马达AM的输入动力(入口侧的动力)的大小。计算动力的大小的方法例如考虑以下三种。The controller C constantly monitors the magnitude of the input power (power on the inlet side) of the hydraulic motor AM. For example, the following three methods are considered for calculating the magnitude of power.
(1)利用电动发电机的发电动力即电流×电压来进行计算的方法。(1) A method of calculating using electric power generated by a motor generator, that is, current×voltage.
(2)根据油压马达AM的偏转角和电动发电机MG的转速计算流量,将该流量乘以油压马达AM的入口压力来进行计算的方法。(2) A method of calculating the flow rate from the deflection angle of the hydraulic motor AM and the rotational speed of the motor generator MG, and multiplying the flow rate by the inlet pressure of the hydraulic motor AM.
(3)将油压马达AM的动态特性进行数学模型化来估计油压马达AM的偏转角,根据偏转角并基于电动发电机MG的转速来计算流量,将流量乘以油压马达AM的入口压力来进行计算的方法。(3) Mathematically model the dynamic characteristics of the hydraulic motor AM to estimate the deflection angle of the hydraulic motor AM, calculate the flow rate based on the deflection angle and the rotation speed of the motor generator MG, and multiply the flow rate by the inlet of the hydraulic motor AM pressure to calculate the method.
也可以使用除了以上三种计算方法以外的任意计算方法。不管采用哪种方法,控制器C都监视油压马达AM的输入动力。Any calculation method other than the above three calculation methods may also be used. Regardless of which method is used, the controller C monitors the input power of the oil hydraulic motor AM.
控制器C监视油压马达AM的输入动力,根据来自设置于操作阀1~5、12~15的传感器的信号,检查这些全部的操作阀1~5、12~15是否保持中立位置。The controller C monitors the input power of the hydraulic motor AM, and checks whether all the operation valves 1-5, 12-15 maintain the neutral position based on the signals from the sensors provided on the operation valves 1-5, 12-15.
例如在停止动臂缸B C的情况下,操作员使操作阀3、14返回到中立位置。在这种情况下,控制器C根据来自传感器的信号来关闭电磁开闭阀50。For example, when the boom cylinder BC is stopped, the operator returns the operation valves 3 and 14 to the neutral position. In this case, the controller C closes the electromagnetic on-off valve 50 according to the signal from the sensor.
在紧急停止动臂缸B C的情况下,在使操作阀3、14返回到中立位置的同时必须瞬时关闭电磁开闭阀50,但是电磁开闭阀50的响应性存在极限,在电磁开闭阀50关闭时产生响应延迟。In the case of an emergency stop of the boom cylinder BC, it is necessary to close the electromagnetic on-off valve 50 instantaneously while returning the operation valves 3 and 14 to the neutral position. However, there is a limit to the responsiveness of the electromagnetic on-off valve 50. A response delay occurs when valve 50 is closed.
如果动臂缸BC进行高负载动作,则当在电磁开闭阀50中产生响应延迟时,此时的大动力输入到油压马达AM。控制器C对此时的输入动力进行运算,判断该运算结果是否超过预先设定的第一阈值ε1。然后,控制器C根据判断结果来执行与图2所示的流程图相应的控制。When the boom cylinder BC operates with a high load, a large power at that time is input to the hydraulic motor AM when a response delay occurs in the electromagnetic on-off valve 50 . The controller C calculates the input power at this time, and judges whether the result of the calculation exceeds a preset first threshold ε1. Then, the controller C executes control corresponding to the flowchart shown in FIG. 2 according to the judgment result.
即,当开始混合动力控制(步骤S 1)时,控制器C判断所有的操作阀1~5、12~15是否保持中立位置(步骤S2)。如果操作阀1~5、12~15中的某一个操作阀处于中立位置以外的切换位置,则控制器C输出进行普通的混合动力控制所需的指令信号(步骤S 3)。That is, when the hybrid control is started (step S1), the controller C judges whether or not all the operation valves 1~5, 12~15 are maintained at neutral positions (step S2). If one of the operating valves 1-5, 12-15 is in a switching position other than the neutral position, the controller C outputs the command signal required for normal hybrid control (step S3).
在所有的操作阀1~5、12~15保持中立位置的情况下,运算油压马达AM的输入动力PL(步骤S4),判断输入动力PL是否大于第一阈值ε1(步骤S 5)。When all the operating valves 1-5, 12-15 maintain neutral positions, calculate the input power PL of the hydraulic motor AM (step S4), and determine whether the input power PL is greater than the first threshold ε1 (step S5).
如果输入动力PL小于第一阈值ε1,则判断为不处于紧急停止动臂缸BC的状况,控制器C返回到步骤S3。If the input power PL is smaller than the first threshold ε1, it is determined that the emergency stop boom cylinder BC is not in the situation, and the controller C returns to step S3.
但是,如果输入动力PL大于第一阈值ε1,则判断为紧急停止了进行高负载动作的动臂缸BC,转移到步骤S6。However, if the input power PL is greater than the first threshold value ε1, it is determined that the boom cylinder BC performing a high-load operation is urgently stopped, and the process proceeds to step S6.
在步骤S6中,控制器C控制辅助泵AP的偏转角控制器35来增大辅助泵AP的偏转角,增大每一转的排量。并且,控制器C减少第一、第二比例电磁节流阀40、41的开度。因而,从辅助泵AP增大每一转的排出量,其通过第一、第二比例电磁节流阀40、41,因此压力损失增大,压力损失量作为针对油压马达AM的制动力而发挥功能。In step S6, the controller C controls the deflection angle controller 35 of the auxiliary pump AP to increase the deflection angle of the auxiliary pump AP to increase the displacement per revolution. Furthermore, the controller C reduces the opening degrees of the first and second proportional electromagnetic throttle valves 40 and 41 . Therefore, the discharge amount per revolution is increased from the auxiliary pump AP, which passes through the first and second proportional electromagnetic throttle valves 40, 41, so the pressure loss increases, and the pressure loss amount is used as the braking force for the hydraulic motor AM. function.
通过步骤S2判断是否所有的操作阀1~5、12~15处于中立位置是基于如下理由。例如,在某一个操作阀保持为中立位置以外的切换位置的情况下,使连接于该操作阀的致动器进行动作,或者该致动器的负载作用于辅助泵AP。因而,在紧急停止动臂缸BC的情况下,也能够由作用于辅助泵AP的负载来吸收油压马达AM的输入动力。因此,只有在所有的操作阀1~5、操作阀12~15都处于中立位置的情况下,执行步骤S6所示的控制。Whether or not all the operation valves 1 to 5 and 12 to 15 are in the neutral position is judged in step S2 for the following reason. For example, when one of the operation valves is held at a switching position other than the neutral position, the actuator connected to the operation valve is operated, or the load of the actuator acts on the auxiliary pump AP. Therefore, even when the boom cylinder BC is suddenly stopped, the input power of the hydraulic motor AM can be absorbed by the load acting on the auxiliary pump AP. Therefore, only when all of the operation valves 1 to 5 and all of the operation valves 12 to 15 are in the neutral position, the control shown in step S6 is executed.
因而,例如在起重机(crane)的情况下,用于进行伸缩控制的操作阀只要有一个即可,因此只要判断该操作阀是否处于中立位置即可。Therefore, for example, in the case of a crane (crane), only one operation valve for telescopic control is required, and therefore it is only necessary to determine whether or not the operation valve is in the neutral position.
在上述实施方式中,同时执行辅助泵AP的偏转角的控制和第一、第二比例电磁节流阀40、41的开度的控制,但是也可以一边将辅助泵AP的偏转角保持为某种程度,一边控制第一、第二比例电磁节流阀40、41的开度。In the above-mentioned embodiment, the control of the deflection angle of the auxiliary pump AP and the control of the opening degrees of the first and second proportional electromagnetic throttle valves 40 and 41 are performed simultaneously, but it is also possible to keep the deflection angle of the auxiliary pump AP at a certain value. To this extent, the opening degrees of the first and second proportional electromagnetic throttle valves 40 and 41 are controlled.
在图2所示的步骤S5中,即使油压马达AM的输入动力PL小于第一阈值ε1,在经过时间t1后输入动力PL仍没有变得充分小的情况下,也能够判断为动臂缸BC处于异常的状态。In step S5 shown in FIG. 2 , even if the input power PL of the hydraulic motor AM is smaller than the first threshold ε1, if the input power PL does not become sufficiently small after the lapse of time t1, it can be determined that the boom cylinder BC is in an abnormal state.
在这种情况下,只要执行基于图3所示的流程图的控制,就能够可靠地停止动臂缸BC。In this case, boom cylinder BC can be stopped reliably only by executing the control based on the flowchart shown in FIG. 3 .
在图3所示的控制方式中,步骤S1~S6与图2的情况相同。In the control method shown in FIG. 3 , steps S1 to S6 are the same as those in FIG. 2 .
在步骤S5中,即使油压马达AM的输入动力PL小于第一阈值ε1,控制器C通过步骤S 7来判断在预先设定的时间t 1后输入动力PL是否变得小于第二阈值ε2。第一阈值、第二阈值是ε1>ε2的关系。In step S5, even if the input power PL of the hydraulic motor AM is less than the first threshold ε1, the controller C judges in step S7 whether the input power PL becomes less than the second threshold ε2 after the preset time t1. The first threshold and the second threshold have a relationship of ε1>ε2.
如果在步骤S 7中输入动力PL变得小于第二阈值ε2,则控制器C判断为充分吸收了输入动力PL,返回到步骤S3,执行普通的混合动力控制。If the input power PL becomes smaller than the second threshold ε2 in step S7, the controller C judges that the input power PL is sufficiently absorbed, returns to step S3, and performs normal hybrid control.
但是,如果在步骤S7中输入动力PL大于第二阈值ε2,则控制器C判断为没有充分吸收来自动臂缸BC的输入动力PL而处于异常的状态,转移到步骤S8。However, if the input power PL is greater than the second threshold ε2 in step S7, the controller C determines that the input power PL from the boom cylinder BC is not sufficiently absorbed and is in an abnormal state, and proceeds to step S8.
在步骤S8中,控制器C控制倾角控制器35来使辅助泵AP的偏转角变为最大,使每一转的排量变为最大。同时关闭第一、第二比例电磁节流阀40、41。In step S8, the controller C controls the inclination controller 35 to maximize the deflection angle of the auxiliary pump AP to maximize the displacement per revolution. At the same time, the first and second proportional electromagnetic throttle valves 40 and 41 are closed.
由此,动臂缸BC可靠地停止,解除异常的状态。As a result, the boom cylinder BC is reliably stopped, and the abnormal state is released.
在上述实施方式中,以动臂缸BC的再生动力控制为例进行了说明,但是控制回转马达RM的再生动力的情况也与动臂缸BC的情况相同。In the above-mentioned embodiment, the regenerative power control of the boom cylinder BC has been described as an example, but the case of controlling the regenerative power of the swing motor RM is also the same as that of the boom cylinder BC.
即,在紧急停止了回转马达RM的情况下,使操作阀1返回到中立位置,并且关闭电磁开闭阀46。此时的电磁开闭阀46的响应性存在极限,因此油压马达AM的输入动力变为超过电动发电机MG的吸收能力的大小。That is, when the turning motor RM is stopped urgently, the operation valve 1 is returned to the neutral position, and the electromagnetic on-off valve 46 is closed. At this time, there is a limit to the responsiveness of the electromagnetic on-off valve 46 , so the input power of the hydraulic motor AM exceeds the absorbing capacity of the motor generator MG.
在这种情况下,控制器C也进行基于图2、3所示的流程图的控制。In this case, the controller C also performs control based on the flowcharts shown in FIGS. 2 and 3 .
以上,说明了本发明的实施方式,但是上述实施方式只不过是本发明的应用例的一部分,而不是将本发明的技术范围具体地限定为上述实施方式的意思。As mentioned above, although embodiment of this invention was described, the said embodiment is only a part of the application example of this invention, and it does not mean that the technical scope of this invention is specifically limited to the said embodiment.
本申请要求基于2010年5月20日向日本专利局申请的特愿2010-116604号的优先权,将该申请的所有内容通过参照编入本说明书。This application claims the priority based on Japanese Patent Application No. 2010-116604 for which it applied to Japan Patent Office on May 20, 2010, All the content of this application is incorporated in this specification by reference.
产业上的可利用性Industrial availability
本发明能够利用于混合动力挖掘机等混合动力作业机械。The present invention can be utilized in hybrid working machines such as hybrid excavators.
Claims (3)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-116604 | 2010-05-20 | ||
JP2010116604A JP5424982B2 (en) | 2010-05-20 | 2010-05-20 | Hybrid work machine |
PCT/JP2011/059967 WO2011145432A1 (en) | 2010-05-20 | 2011-04-22 | Hybrid work machine |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102822537A CN102822537A (en) | 2012-12-12 |
CN102822537B true CN102822537B (en) | 2015-08-26 |
Family
ID=44991546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201180005645.9A Expired - Fee Related CN102822537B (en) | 2010-05-20 | 2011-04-22 | Hybrid working machine |
Country Status (6)
Country | Link |
---|---|
US (1) | US9032722B2 (en) |
JP (1) | JP5424982B2 (en) |
KR (1) | KR101286841B1 (en) |
CN (1) | CN102822537B (en) |
DE (1) | DE112011101710T5 (en) |
WO (1) | WO2011145432A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI123361B (en) * | 2007-10-01 | 2013-03-15 | Sandvik Mining & Constr Oy | Procedure and apparatus and computer program for adjusting the function of a hydraulic boom |
JP6114065B2 (en) * | 2013-02-28 | 2017-04-12 | Kyb株式会社 | Construction machinery and controller |
FR3007085B1 (en) * | 2013-06-17 | 2015-06-26 | Technoboost | GIVING DEVICE COMPRISING A HYDRAULIC ENGINE CONTAINING A GAVING PUMP |
JP6740132B2 (en) * | 2014-10-06 | 2020-08-12 | 住友重機械工業株式会社 | Excavator |
JP2016098588A (en) * | 2014-11-25 | 2016-05-30 | Kyb株式会社 | Hybrid construction machine control system |
JP6360824B2 (en) * | 2015-12-22 | 2018-07-18 | 日立建機株式会社 | Work machine |
CN107654427B (en) * | 2017-09-07 | 2024-05-03 | 浙江志高机械股份有限公司 | Multi-power control drilling machine system |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3910560B2 (en) * | 2003-06-18 | 2007-04-25 | 日立建機株式会社 | Hybrid work vehicle |
JP4907231B2 (en) * | 2006-06-06 | 2012-03-28 | カヤバ工業株式会社 | Energy regenerative power unit |
JP5078694B2 (en) * | 2008-03-26 | 2012-11-21 | カヤバ工業株式会社 | Control device for hybrid construction machine |
JP5078693B2 (en) | 2008-03-26 | 2012-11-21 | カヤバ工業株式会社 | Control device for hybrid construction machine |
JP5078692B2 (en) * | 2008-03-26 | 2012-11-21 | カヤバ工業株式会社 | Control device for hybrid construction machine |
US8510000B2 (en) | 2008-03-26 | 2013-08-13 | Kayaba Industry Co., Ltd. | Hybrid construction machine |
JP5258341B2 (en) * | 2008-03-26 | 2013-08-07 | カヤバ工業株式会社 | Control device for hybrid construction machine |
JP5317517B2 (en) * | 2008-04-14 | 2013-10-16 | カヤバ工業株式会社 | Control device for hybrid construction machine |
JP4942699B2 (en) * | 2008-04-25 | 2012-05-30 | カヤバ工業株式会社 | Control device for hybrid construction machine |
JP5377887B2 (en) * | 2008-05-30 | 2013-12-25 | カヤバ工業株式会社 | Control device for hybrid construction machine |
JP5172477B2 (en) * | 2008-05-30 | 2013-03-27 | カヤバ工業株式会社 | Control device for hybrid construction machine |
JP5428298B2 (en) | 2008-11-13 | 2014-02-26 | 株式会社Ihi | How to decorate repair structures |
-
2010
- 2010-05-20 JP JP2010116604A patent/JP5424982B2/en not_active Expired - Fee Related
-
2011
- 2011-04-22 CN CN201180005645.9A patent/CN102822537B/en not_active Expired - Fee Related
- 2011-04-22 KR KR1020127008472A patent/KR101286841B1/en not_active Expired - Fee Related
- 2011-04-22 US US13/512,850 patent/US9032722B2/en not_active Expired - Fee Related
- 2011-04-22 DE DE112011101710T patent/DE112011101710T5/en not_active Ceased
- 2011-04-22 WO PCT/JP2011/059967 patent/WO2011145432A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
US20120233995A1 (en) | 2012-09-20 |
DE112011101710T5 (en) | 2013-03-14 |
JP5424982B2 (en) | 2014-02-26 |
KR101286841B1 (en) | 2013-07-17 |
CN102822537A (en) | 2012-12-12 |
WO2011145432A1 (en) | 2011-11-24 |
KR20120053063A (en) | 2012-05-24 |
JP2011241948A (en) | 2011-12-01 |
US9032722B2 (en) | 2015-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5511425B2 (en) | Control device for hybrid construction machine | |
CN102388227B (en) | Control device for hybrid construction machine | |
KR101572288B1 (en) | Controller of hybrid construction machine | |
CN102822537B (en) | Hybrid working machine | |
JP5258341B2 (en) | Control device for hybrid construction machine | |
CN104364536B (en) | The control system of hybrid construction machine | |
US9026297B2 (en) | Control system for hybrid construction machine | |
WO2010128645A1 (en) | Control device for hybrid construction machine | |
WO2009119704A1 (en) | Controller of hybrid construction machine | |
WO2011142187A1 (en) | Hybrid construction machine | |
JP5078748B2 (en) | Control device for hybrid construction machine | |
JP5317517B2 (en) | Control device for hybrid construction machine | |
CN105579715A (en) | Control systems for hybrid construction machines | |
KR101522061B1 (en) | Control device for hybrid construction machine | |
CN104334871B (en) | The control system of hybrid construction machine | |
JP5398614B2 (en) | Control device for hybrid construction machine | |
JP5265595B2 (en) | Control device for hybrid construction machine | |
WO2011096404A1 (en) | Charging device for construction machinery | |
JP2013145059A (en) | Method and device for controlling construction machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C56 | Change in the name or address of the patentee | ||
CP01 | Change in the name or title of a patent holder |
Address after: Tokyo, Japan, Japan Patentee after: KAYABA INDUSTRY CO LTD Address before: Tokyo, Japan, Japan Patentee before: Kayaba Industry Co., Ltd. |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150826 Termination date: 20200422 |
|
CF01 | Termination of patent right due to non-payment of annual fee |