CN102707268A - Movable radar networking batch-processing type error register - Google Patents
Movable radar networking batch-processing type error register Download PDFInfo
- Publication number
- CN102707268A CN102707268A CN2012101755048A CN201210175504A CN102707268A CN 102707268 A CN102707268 A CN 102707268A CN 2012101755048 A CN2012101755048 A CN 2012101755048A CN 201210175504 A CN201210175504 A CN 201210175504A CN 102707268 A CN102707268 A CN 102707268A
- Authority
- CN
- China
- Prior art keywords
- error
- mobile radar
- radar
- dbjective state
- coordinate system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开了一种机动雷达组网批处理式误差配准器,该技术属于雷达数据处理领域。现有机动雷达网误差配准技术的假设和构建的模型都不符合实际工程背景要求,都没有系统、全面地对机动雷达网误差配准问题进行建模和求解,可用性较差。本发明是关于量测的批处理算法,通过对系统误差沿着扰动的最大梯度进行递归优化,最终得到收敛的系统误差估计。该误差配准器不对雷达间的距离进行约束,不需要利用固定参考点的先验知识,且估计收敛速度快、精度高,具有推广应用价值。
The invention discloses a mobile radar network batch processing type error registration device, which belongs to the field of radar data processing. The assumptions and constructed models of the existing mobile radar network error registration technology do not meet the requirements of the actual engineering background, and neither systematically and comprehensively model and solve the mobile radar network error registration problem, and the usability is poor. The invention relates to a batch processing algorithm for measurement, and finally obtains a convergent system error estimate by recursively optimizing the system error along the maximum gradient of the disturbance. The error registerer does not constrain the distance between radars, does not need to use the prior knowledge of fixed reference points, and has fast estimation convergence speed and high accuracy, which has the value of popularization and application.
Description
一、技术领域 1. Technical field
本发明属于多传感器组网融合数据处理技术中的误差配准领域,适用于舰载雷达、机载雷达等机动平台雷达间的组网系统。 The invention belongs to the field of error registration in multi-sensor network fusion data processing technology, and is suitable for a network system between mobile platform radars such as shipboard radars and airborne radars. the
二、背景技术 2. Background technology
机动平台是雷达在实际作战运用中的重要载体,机动雷达网是一种典型的多传感器系统组网模式。在多传感器组网系统中,如何对各传感器的系统误差进行有效的配准和补偿,是其核心关键技术之一。 The mobile platform is an important carrier of radar in actual combat, and the mobile radar network is a typical multi-sensor system networking mode. In a multi-sensor networking system, how to effectively register and compensate the system errors of each sensor is one of the core key technologies. the
目前,关于机动雷达网误差配准技术的研究比较少。Helmick利用卡尔曼滤波技术实现了机动雷达量测和姿态角误差的实时估计,但算法是在假设机动雷达之间距离很近时给出的,只适用于同一机动平台多雷达的误差配准问题。Kastella通过解耦的方式实现了移动平台定位误差的估计,但需要利用固定参考点的先验知识。实际中,机动雷达网主要是由跨平台、大距离范围内分布的雷达构成的,主要包含量测和姿态角系统误差,而在现有机动雷达网误差配准技术中,算法的假设和构建的模型都不符合实际工程背景要求,都没有系统、全面地对机动雷达网误差配准问题进行建模和求解。 At present, there are relatively few studies on the error registration technology of mobile radar networks. Helmick uses the Kalman filter technology to realize the real-time estimation of the maneuvering radar measurement and attitude angle error, but the algorithm is given when the distance between the maneuvering radars is assumed to be very close, and it is only applicable to the error registration problem of multiple radars on the same maneuvering platform . Kastella realizes the estimation of the positioning error of the mobile platform through decoupling, but it needs to use the prior knowledge of the fixed reference point. In practice, the mobile radar network is mainly composed of cross-platform radars distributed over a large distance, mainly including measurement and attitude angle system errors. In the existing mobile radar network error registration technology, the assumption and construction of the algorithm None of the models meets the requirements of the actual engineering background, and there is no systematic and comprehensive modeling and solution for the error registration problem of the mobile radar network. the
三、发明内容 3. Contents of the invention
1.要解决的技术问题 1. Technical problems to be solved
本发明的目的在于提供一种用于机动雷达组网的批处理式误差配准器。该误差配准器利用多机动雷达对处于公共探测区域内非合作目标的量测,根据雷达量测值在目标状态空间的投影和系统误差的扰动数学关系,采用批处理式的算法结构,通过对系统误差和目标状态进行期望最大化递归优化,实现对系统误差的配准,并最终得到消除系统误差后的目标状态融合估计。该误差配准器不对雷达间的距离进行约束,不需要利用固定参考点的先验知识,且估计收敛速度快、精度高,因而应用范围广,实用性较强。 The object of the present invention is to provide a batch-processing error registerer for mobile radar networking. The error registerer uses multi-mobile radars to measure non-cooperative targets in the common detection area. According to the projection of radar measurement values in the target state space and the perturbation mathematical relationship of system errors, it adopts a batch-processing algorithm structure. The expectation maximization recursive optimization is performed on the system error and the target state to realize the registration of the system error, and finally obtain the fusion estimation of the target state after the system error is eliminated. The error registerer does not constrain the distance between radars, does not need to use prior knowledge of fixed reference points, and has a fast convergence speed and high precision, so it has a wide range of applications and strong practicability. the
2.技术方案 2. Technical solution
本发明所述的用于机动雷达组网的批处理式误差配准器,包括以下技术措施:首先根据各雷达包含系统误差的量测方程,利用已经得到的系统误差估计(假设系统误差的初始估计为零),把各雷达所有时刻的量测投影到目标状态空间中,得到各雷达的目标状态估计,然后根据所有雷达同一时刻目标状态估计和系统误差的扰动数学关系,利用所有雷达所有时刻的 目标状态估计对已经得到的系统误差估计进行修正,进一步得到优化后的系统误差估计,最后根据设置的阈值,对系统误差估计的收敛性进行判断:如果没有收敛,继续上述过程;如果收敛,输出系统误差的估计,并利用系统误差的估计对所有雷达所有时刻的目标状态估计进行修正和融合,最终输出目标状态的估计。 The batch-processing error registration device for mobile radar networking according to the present invention includes the following technical measures: firstly, according to the measurement equations that each radar contains system errors, the system error estimates that have been obtained are used (assuming the initial value of the system errors) is estimated to be zero), project the measurement of each radar at all times into the target state space, and obtain the target state estimation of each radar, and then according to the perturbation mathematical relationship between the target state estimation and system error of all radars at the same time, use The target state estimation corrects the already obtained system error estimate, further obtains the optimized system error estimate, and finally judges the convergence of the system error estimate according to the set threshold: if there is no convergence, continue the above process; if it converges, Output the estimate of the system error, and use the estimate of the system error to correct and fuse the target state estimates of all radars at all times, and finally output the target state estimate. the
3.有益效果 3. Beneficial effects
本发明相比背景技术具有如下的优点: Compared with background technology, the present invention has the following advantages:
(1)在满足可观测性条件下,该误差配准器可对具有任意位置关系的雷达进行配准; (1) Under the condition of observability, the error registerer can register the radar with any positional relationship;
(2)该误差配准器可对雷达量测和姿态角系统误差进行估计,且估计精度高,收敛速度快; (2) The error registerer can estimate the system error of radar measurement and attitude angle, and has high estimation accuracy and fast convergence speed;
(3)该误差配准器可得到融合所有雷达量测信息的目标状态估计。 (3) The error registerer can obtain the target state estimation fused with all radar measurement information. the
四、附图说明 4. Description of drawings
图1为本发明的实施原理流程图。 Fig. 1 is the flow chart of the implementation principle of the present invention. the
五、具体实施方式 5. Specific implementation
以下结合说明书附图对本发明作进一步详细描述。参照说明书附图,本发明的具体实施方式分以下几个步骤: The present invention will be described in further detail below in conjunction with the accompanying drawings. With reference to the accompanying drawings in the description, the specific implementation of the present invention is divided into the following steps:
(1)组网系统由n部三维机动雷达i(i=1,2,...,n)组成,雷达i存在距离误差 方位角误差 俯仰角误差 偏航角误差 纵摇角误差 和横摇角误差 且它们都是常量加性误差。在k时刻,雷达i在地球直角坐标系中的坐标为xis(k)=[xis(k),yis(k),zis(k)]′,对应的地理坐标为xisp(k)=[Li(k),Bi(k),Hi(k)]′,其机动载体平台包含误差的姿态角为 。根据载体坐标系、NED坐标系和地球直角坐标系之间的变换关系,机动雷达组网系统存在系统误差的量测方程可表示为 (1) The networking system is composed of n three-dimensional mobile radars i (i=1, 2, ..., n), and the radar i has a distance error Azimuth error pitch angle error Yaw angle error pitch angle error and roll angle error And they are all constant additive errors. At time k, the coordinates of radar i in the Earth's Cartesian coordinate system are x is (k)=[x is (k), y is (k), z is (k)] ', and the corresponding geographic coordinates are x isp ( k)=[L i (k), B i (k), H i (k)]′, the attitude angle of the mobile carrier platform including error is . According to the transformation relationship between the carrier coordinate system, the NED coordinate system and the earth's Cartesian coordinate system, the measurement equation for the systematic error of the mobile radar networking system can be expressed as
z(k)=h(g(x(k),bz))+bl+w (1) z(k)=h(g(x(k), b z ))+b l +w (1)
其中z(k)=[z1(k)′,z2(k)′,...,zn(k)′]′为组网系统在k时刻的量测向量; 为系统的量测系统误差向量; 为系统的姿态角系统误差向量;w=[w1′,w2′,...,wn′]′为系统的高斯白色量测噪声,wi为雷达i的量测噪声,其协方差 为 且不同雷达wi之间相互独立;h(g)=[h1(g1)′,h2(g2)′,...,hn(gn)′]′为系统在地球直角坐标系中对目标状态x(k)的量测函数, Where z(k)=[z 1 (k)', z 2 (k)', ..., z n (k)']' is the measurement vector of the networking system at time k; is the measurement system error vector of the system; is the attitude angle system error vector of the system; w=[w 1 ′, w 2 ′,...,w n ′]′ is the Gaussian white measurement noise of the system, w i is the measurement noise of radar i, and its correlation variance for And different radars w i are independent of each other; h(g)=[h 1 (g 1 )′, h 2 (g 2 )′,..., h n (g n )′]′ is the system at right angles to the earth The measurement function of the target state x(k) in the coordinate system,
(2)根据式(1),利用雷达的量测和系统误差的当前估计值 (如果还未进行系统误差估计,设 计算所有雷达所有时刻的量测zi(k)在目标状态空间中的投影 (2) According to Equation (1), using radar measurements and the current estimate of the system error (If no systematic error estimation has been performed, set Calculate the projection of the measurement z i (k) on the target state space for all radars at all times
其中 in
(3)利用已经得到的系统误差估计 和各雷达的目标状态估计 按照复合函数的求导 公式,近似计算hi(·)关于x(k)的雅可比矩阵Hix(k)、关于 的雅可比矩阵 其中令R(k)=ui(k)2+si(k)2+mi(k)2、R′(k)=ui(k)2+si(k)2、 x′k=x(k)-xis(k) (3) Using the already obtained systematic error estimation and target state estimation for each radar According to the derivation formula of the composite function, the Jacobian matrix H ix (k) of h i (·) about x(k), about The Jacobian matrix of where R(k)=u i (k) 2 +s i (k) 2 +m i (k) 2 , R′(k)=u i (k) 2 +s i (k) 2 , x′ k =x(k)-x is (k)
(4)根据雷达的量测方程,可得系统误差和目标状态的扰动关系为 (4) According to the measurement equation of the radar, the disturbance relationship between the system error and the target state can be obtained as
X(k)≈X0(k)-Q(k)b (14) X(k)≈X 0 (k)-Q(k)b (14)
其中
(5)根据扰动方程(14)和目标状态的最大似然估计方程,可求出系统误差的最大似然估计为 (5) According to the disturbance equation (14) and the maximum likelihood estimation equation of the target state, the maximum likelihood estimation of the system error can be obtained as
其中 in
(6)根据 判定估计值 是否收敛,其中||·||表示某种向量范数,可以自行选取, ε表示接受门限。如果估计值 已收敛,继续向下执行,否则令 然后重新从步骤(2)向下执行。 (6) According to judgment estimate Convergence or not, where ||·|| represents a certain vector norm, which can be selected by yourself, and ε represents the acceptance threshold. if estimated value has converged, continue to execute downward, otherwise let Then re-execute from step (2).
(7)利用系统误差的收敛估计 和相应的Q(k)、X0(k),带入到式(14),计算目标状态的去偏估计 并根据多雷达目标状态的融合方程,进一步求取融合估计 (7) Convergence estimation using systematic error and the corresponding Q(k), X 0 (k), put them into formula (14), and calculate the debiased estimate of the target state And according to the fusion equation of the multi-radar target state, the fusion estimation is further obtained
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101755048A CN102707268A (en) | 2012-05-23 | 2012-05-23 | Movable radar networking batch-processing type error register |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101755048A CN102707268A (en) | 2012-05-23 | 2012-05-23 | Movable radar networking batch-processing type error register |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102707268A true CN102707268A (en) | 2012-10-03 |
Family
ID=46900198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012101755048A Pending CN102707268A (en) | 2012-05-23 | 2012-05-23 | Movable radar networking batch-processing type error register |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102707268A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104713560A (en) * | 2015-03-31 | 2015-06-17 | 西安交通大学 | Spatial multisource distance measuring sensor registering method based on expectation maximization |
CN107229037A (en) * | 2017-06-01 | 2017-10-03 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | Mobile platform sensor metric data is augmented spatial registration method |
CN107341321A (en) * | 2017-07-27 | 2017-11-10 | 中国船舶重工集团公司第七二四研究所 | A kind of method based on general purpose radar emulation module structure radar simulation model |
CN108594193A (en) * | 2018-04-24 | 2018-09-28 | 西安交通大学 | A kind of radar system bias estimation method based on fixed target and noncooperative target |
CN110596653A (en) * | 2019-09-24 | 2019-12-20 | 江苏集萃智能传感技术研究所有限公司 | Multi-radar data fusion method and device |
-
2012
- 2012-05-23 CN CN2012101755048A patent/CN102707268A/en active Pending
Non-Patent Citations (2)
Title |
---|
崔亚奇 等: ""基于MLR的机动平台传感器误差配准算法"", 《航空学报》 * |
崔亚奇 等: ""基于改进EX的机动雷达误差配准算法"", 《宇航学报》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104713560A (en) * | 2015-03-31 | 2015-06-17 | 西安交通大学 | Spatial multisource distance measuring sensor registering method based on expectation maximization |
CN104713560B (en) * | 2015-03-31 | 2017-10-20 | 西安交通大学 | Multi-source distance measuring sensor spatial registration method based on expectation maximization |
CN107229037A (en) * | 2017-06-01 | 2017-10-03 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | Mobile platform sensor metric data is augmented spatial registration method |
CN107229037B (en) * | 2017-06-01 | 2020-04-28 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | Mobile platform sensor measurement data dimension-expanding space registration method |
CN107341321A (en) * | 2017-07-27 | 2017-11-10 | 中国船舶重工集团公司第七二四研究所 | A kind of method based on general purpose radar emulation module structure radar simulation model |
CN107341321B (en) * | 2017-07-27 | 2020-10-16 | 中国船舶重工集团公司第七二四研究所 | Method for constructing radar simulation model based on general radar simulation module |
CN108594193A (en) * | 2018-04-24 | 2018-09-28 | 西安交通大学 | A kind of radar system bias estimation method based on fixed target and noncooperative target |
CN110596653A (en) * | 2019-09-24 | 2019-12-20 | 江苏集萃智能传感技术研究所有限公司 | Multi-radar data fusion method and device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhao et al. | Learning-based bias correction for time difference of arrival ultra-wideband localization of resource-constrained mobile robots | |
CN107255795B (en) | Indoor mobile robot positioning method and device based on EKF/EFIR hybrid filtering | |
CN106352876B (en) | A kind of airborne distribution POS Transfer Alignments based on H ∞ and CKF mixed filterings | |
CN107315171B (en) | Radar networking target state and system error joint estimation algorithm | |
CN103925925B (en) | A kind of real-time high-precision position calculation method for multipoint location system | |
CN103941233B (en) | The radar interval alternately radiation control method of tracking worked in coordination with by a kind of multi-platform main passive sensor | |
CN103065037B (en) | Nonlinear system is based on the method for tracking target of distributing volume information filtering | |
CN103941264A (en) | Positioning method using laser radar in indoor unknown environment | |
CN107300697A (en) | Moving target UKF filtering methods based on unmanned plane | |
CN105447574B (en) | A kind of auxiliary blocks particle filter method, device and method for tracking target and device | |
CN106482728A (en) | Communication support spacecraft relative status method of estimation based on maximum cross-correlation entropy criterion Unscented kalman filtering | |
CN104833949A (en) | Multiple-unmanned aerial vehicle cooperative passive location method based on improved distance parameterization | |
CN106019217A (en) | AOA-based two-dimensional wireless sensor network semi-definite programming positioning method | |
CN101701826A (en) | Passive Multi-Sensor Target Tracking Method Based on Hierarchical Particle Filter | |
CN102707268A (en) | Movable radar networking batch-processing type error register | |
Xu et al. | An improved indoor localization method for mobile robot based on WiFi fingerprint and AMCL | |
CN107390171A (en) | Underwater sensor node positioning method based on TOA rangings and Doppler effect | |
CN104833981A (en) | Bearings-only target tracking method based on distance parameterization SRCKF in mixed coordinate system | |
CN110209180A (en) | A kind of UAV navigation method for tracking target based on HuberM-Cubature Kalman filtering | |
CN104535993A (en) | High-precision ground object positioning method using multiple airborne active radars for range finding | |
Tang et al. | Vehicle heterogeneous multi-source information fusion positioning method | |
CN103792515B (en) | A kind of different platform 2 ties up radar and infrared sensor metric data synthetic method | |
CN104199024A (en) | Target positioning method based on optical measurement of very short base line | |
CN107843259A (en) | A kind of multirobot collaborative navigation localization method based on VCKF | |
CN108828509B (en) | Multi-platform multi-radiation source bearing relation judgment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20121003 |