CN102365543A - 用全息视频显微术的自动实时粒子表征和三维速度计量 - Google Patents
用全息视频显微术的自动实时粒子表征和三维速度计量 Download PDFInfo
- Publication number
- CN102365543A CN102365543A CN201080009712XA CN201080009712A CN102365543A CN 102365543 A CN102365543 A CN 102365543A CN 201080009712X A CN201080009712X A CN 201080009712XA CN 201080009712 A CN201080009712 A CN 201080009712A CN 102365543 A CN102365543 A CN 102365543A
- Authority
- CN
- China
- Prior art keywords
- sample
- particle
- image data
- estimate
- lorenz
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010865 video microscopy Methods 0.000 title description 6
- 238000011192 particle characterization Methods 0.000 title description 2
- 239000002245 particle Substances 0.000 claims abstract description 83
- 238000000034 method Methods 0.000 claims abstract description 30
- 238000004458 analytical method Methods 0.000 claims abstract description 23
- 238000012512 characterization method Methods 0.000 claims abstract description 16
- 238000012545 processing Methods 0.000 claims description 13
- 239000011324 bead Substances 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 7
- 230000001427 coherent effect Effects 0.000 claims description 6
- 230000009149 molecular binding Effects 0.000 claims description 5
- 238000010223 real-time analysis Methods 0.000 claims description 4
- 230000003993 interaction Effects 0.000 claims description 3
- 230000027455 binding Effects 0.000 claims description 2
- 238000000386 microscopy Methods 0.000 claims 3
- 230000001131 transforming effect Effects 0.000 claims 2
- 238000005259 measurement Methods 0.000 abstract description 16
- 238000000576 coating method Methods 0.000 description 15
- 238000009826 distribution Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 239000004793 Polystyrene Substances 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 8
- 229920002223 polystyrene Polymers 0.000 description 8
- 239000000243 solution Substances 0.000 description 7
- 238000005286 illumination Methods 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 5
- 108090001008 Avidin Proteins 0.000 description 4
- 238000000149 argon plasma sintering Methods 0.000 description 4
- 238000003556 assay Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000002953 phosphate buffered saline Substances 0.000 description 3
- 238000000159 protein binding assay Methods 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001215 fluorescent labelling Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009897 systematic effect Effects 0.000 description 2
- HPTJABJPZMULFH-UHFFFAOYSA-N 12-[(Cyclohexylcarbamoyl)amino]dodecanoic acid Chemical compound OC(=O)CCCCCCCCCCCNC(=O)NC1CCCCC1 HPTJABJPZMULFH-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 238000012369 In process control Methods 0.000 description 1
- 238000007476 Maximum Likelihood Methods 0.000 description 1
- XOJVVFBFDXDTEG-UHFFFAOYSA-N Norphytane Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000010965 in-process control Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 108010087904 neutravidin Proteins 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000000275 quality assurance Methods 0.000 description 1
- 238000000163 radioactive labelling Methods 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1429—Signal processing
- G01N15/1433—Signal processing using image recognition
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1429—Signal processing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1434—Optical arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1456—Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
- G01N15/1459—Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0052—Optical details of the image generation
- G02B21/0056—Optical details of the image generation based on optical coherence, e.g. phase-contrast arrangements, interference arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0052—Optical details of the image generation
- G02B21/0068—Optical details of the image generation arrangements using polarisation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/008—Details of detection or image processing, including general computer control
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/0005—Adaptation of holography to specific applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/01—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1484—Optical investigation techniques, e.g. flow cytometry microstructural devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N2015/0023—Investigating dispersion of liquids
- G01N2015/003—Investigating dispersion of liquids in liquids, e.g. emulsion
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1434—Optical arrangements
- G01N2015/144—Imaging characterised by its optical setup
- G01N2015/1445—Three-dimensional imaging, imaging in different image planes, e.g. under different angles or at different depths, e.g. by a relative motion of sample and detector, for instance by tomography
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1434—Optical arrangements
- G01N2015/1454—Optical arrangements using phase shift or interference, e.g. for improving contrast
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N2015/1493—Particle size
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N2015/1497—Particle shape
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/0005—Adaptation of holography to specific applications
- G03H2001/005—Adaptation of holography to specific applications in microscopy, e.g. digital holographic microscope [DHM]
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Pathology (AREA)
- Dispersion Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Signal Processing (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Engineering & Computer Science (AREA)
- Holo Graphy (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
一种联机全息显微镜,能够被用于在逐帧基础上分析视频流,以跟踪个别胶体粒子的三维运动。该系统和方法能够提供实时纳米分辨率,并同时测量粒子大小和折射率。通过应用Lorenz-Mie分析与选定硬件及软件的组合,该分析能够以近乎实时完成。有效的粒子识别方法以足够精度使初始位置估算自动化,使全息跟踪和表征能够实现无人看管。
Description
本工作通过许可证No.DMR-0606415受National ScienceFoundation的支持。美国政府依据该National Science Foundation许可证享有一定权益。
交叉参考相关专利申请
本申请要求于2009年1月16日递交的美国临时申请No.61/145,402、2008年6月19日递交的美国临时申请No.61/073,959、2007年10月30日递交的美国临时申请No.61/001,023和2008年10月30日递交的PCT申请No.PCT/US2008/081794的优先权。这些申请的内容本文全文引用,供参考。
背景技术
胶体粒子,尤其是球的这种表征,在工业化学、物理和生物医药应用的许多方面中,是重要和盛行的事情。重要功能性的多样化正在被寻找以实行各种表征,包含1)基于小球的分子结合化验,2)流场测量,3)全息图中自动的粒子图像检测,和4)粒子特性的实时分析。例如,相干照明习惯上还没有被广泛用于粒子图像速度计量,因为产生的全息图像难以定量地解读。因此,荧光产量的测量已经被用于实行用单色全息成像的基于小球的分子结合化验。然而,这样的方法要求以常规化验的荧光标记,该常规化验要求数万小球以消除非特殊荧光芽孢(fluorospore)结合和非故意漂白的膺像。近来已经证实,即便在粒子沿光轴相互吸附时,胶体粒子的全息视频显微术图像能够被用于按三维定位粒子的中心。更早把唯象模型用于观察散射图样证实,获得的跟踪分辨率可与用常规粒子成像方法获得的相当。在这些研究中,与常规成像方法相比,相干照明的主要优点是极大地扩展工作距离和焦深。然而,这些方法是低效的,不允许进行任何实时分析且甚至不能够实行大量表征(如上面列举的四点)。因此,上述表征迄今尚无可能,还没有商品化的可行性或问题依然没有明显解决。
发明内容
因此,本发明的目的是提供多种表征方法和系统,使用全息视频显微术,按自动、实时方式分析诸如球体的胶体粒子。
附图说明
图1A示出联机全息视频显微镜的例子;图1B是被放大的图1A围绕样本部分;干涉图样被示出在图1C(1)中,而图1C(2)示出使图1C(1)拟合到Lorenz-Mie理论的推算,以获得各种不同的测量;
图2示出在zp的相对误差和处理速度,用于按照本发明进行的拟合到用一维查阅表(正方形)和单准确度GPU加速拟合(圆)测量的2.2μm直径石英球体的全息图像;插入的图像示出典型的201×201像素全息图,而误差是相对于单线程CPU(中央处理单元)上获得的加倍准确度结果计算的,该CPU的处理速度用虚线表示,而光滑曲线是对眼睛的指导。
图3A和3B分别是三个胶体球体的原来的和变换的全息图像;图3A中重叠的线段表示由三个代表像素投出的“选票”,而图3B中的强度是按选票数量的比例画的,黑代表0而白代表800选票,重叠的表面图示出中间球体的变换(标尺条表示10μm);
图4示出水中1.5μm直径石英球体的全息图估算的均方根误差,作为半径Δap、折射率Δnp、和轴向位置Δzp的函数,图中曲线表示被Δzp参数化的最小误差路径;
图5A示出全息粒子图像速度计量,是通过500个胶体球体的维度流轨测量的,这些球体沿压力驱动流在微流体通道向下流动,每一球体代表在全息快照(snapshot)的一个场中粒子位置,而来自场序列的特性被链接成有灰度级的流轨,该灰度级表明粒子被测量速度的范围;图5B示出沿竖直方向的Poiseuille流分布图,是从图5A数据以不在阴影区的粒子与通道的上和下玻璃壁交互作用得到的(虚线曲线是与预期的抛物线流动分布图的拟合);
图6A(1)用于水中商品化聚苯乙烯球形粒子连续样本的作为折射率和观察的大小的函数的流动粒子的分布;图6A(2)是图6A(1)用于粒子大小的2D横截面,而图6A(3)用于折射率,两个图都是按其他参数的平均值;图6B(1)和图6B(2)示出作为平均速度函数的流轨平均半径和折射率;
图7(A)示出以亮圆表示的结合生物素化聚苯乙烯(biotinylatedpolystyrene)球体的抗生物素蛋白的检测,以暗圆表示的原始球体中被测量粒子半径的概率分布具有用脱醣抗生物素蛋白培育后的球体样本的对应分布(虚线曲线是对眼睛的指导);图7(B)是与箭头指示的概率再分布等价的粒子折射率分布,该箭头从原始样本中低密度的尾部指向有涂层样本中的峰;和
图8示出用于实施本发明的方法的计算机系统的示意方块图。
具体实施方式
为实施本发明而构造的全息显微镜100在图1A中被示意示出。样本110以准直并线偏振的光束120照明,该光束来自工作在真空波长λ=632.8nm(Uniphase 5mW)的He-Ne激光器。其他激光器波长,诸如λ=537nm也能够被采用(5W的Coherent Verdi)。被样本110散射的光130与照明光束120的未被散射部分干涉,以在显微镜100的焦平面或成像平面125中形成联机全息图。得到的外差散射图样(见图1C(1))被显微镜的物镜145(Zeiss S Plan Apo 100×油浸,数值孔径1.4)放大,并被以1×视频目镜投影到视频摄像机135(或对一些实施例是多台摄像机)(NEC TI-324AII),该摄像机以101μm/像素的系统放大率每33ms记录1ms的曝光。如在下文所描述,这种散射的或干涉的图样,被拟合到Lorenz-Mie理论的推算(见图1C(2))。
该视频信号或者作为30帧/s的未压缩数字视频流被记录在商品化数字视频记录器(Pioneer H520S)上,供离线分析,或者用Arvoo PicassoPCI-25Q帧捕获器直接数字化,以得到8比特图像A(r)。用以前记录的背景图像B(r)规格化每一图像,消除因反射和光序列中不完善产生的寄生干涉条纹,并提供用于分析的实值阵列a(r)=a(r)/B(r)。在我们的实施方案中,在640/480阵列中每一像素粗略地包含5比特信息。
我们用普遍化的Lorenz-Mie散射理论的结果解读a(r)中的数据。显微镜焦平面中的电场,是入射平面波和由于围绕中心rp的球体产生的散射图样Es(r)=u0(rp)fs(k(r-rp))的叠加。这里k=2πnm/λ是光在折射率nm介质中的波数。在规格化之后,
该散射函数可以展开成矢量球谐函数的级数
这里fn=in(2n+1)/[n(n+1)]。普遍化的Lorenz-Mie展开系数an和bn,取决于散射粒子在照明场中的大小、形状、成分和取向。对被波数k的平面波照明的半径a的均匀各向同性球体,这些系数随阶n迅速下降,发现该级数在项数nc=(ka)+4.05(ka)1/3+2之后收敛。对水中微米尺度的胶乳球体,nc≤30。个别球体的规格化图像能够对球体的位置rp、它的半径a、和它的折射率nm被拟合到方程式(1)。
虽然散射系数必须以极其小心被计算[10,11],方程式(2)给出的数值难题在于对每一试验值rp在a(r)中的每一像素,评估矢量球谐函数和每一球体的图像能够对着数万像素,而该函数通常必须在每一非线性拟合的过程中被评估数百次。即使以相关特殊函数的最佳常规计算效率公式,充分收敛的拟合能够在单个处理器上用时数秒。
本发明的一个最可取形式涉及用Lorenz-Mie技术与特定编程步骤的组合加速这些拟合。正如下文所指出,该方法揭示问题的解决方案并使商品化的有效表征能够实现,其中这些解决方案在以前是不可用的。我们的参考系统之一包含在室温下的水中自由扩散的微米尺度的胶乳球体,它们的规格化全息图在图1C(1)中示出。我们分析像这样的图像,是用IDL程序语言(ITT Visual Information Solution,Boulder,CO)开发的软件,利用Levenberg-Marquardt非线性最小二乘方拟合子程序的MPFIT序列。这些拟合通常产生粒子的平面内位置达3nm以内、它的轴向位置达10nm以内、它的半径达1nm以内和它的折射率达104分之一以内。从拟合参数中不确定度获得的误差估算,通过动力学测量被独立地确认。
使方程式(1)拟合到规格化全息图像的大量计算的繁重任务,能够被沿线段R=|r-rp|评估fs(kR)然后内插以获得fs(k(r-rp))而解除。该方案开发关于粒子中心的a(r)的近似径向对称性。图2中的数据表明以此方式取得的处理时间的显著缩减。虽然便利,但一维查阅表没有考虑球体图像中轻微偏振依赖的非对称性,并且不能快速捕获a(r)的变化特性。因此,从内插的拟合获得的粒子位置和特征的结果,略微不同于以两维拟合获得的参考值。在准确度能够为速度牺牲的情况下,在一维和两维拟合二者上的收敛容限能够被松弛,以便以较少数的几个优化周期获得结果。例如,接受平面中5nm和轴向中20nm的跟踪误差,在3.2GHz Intel Core 2Duo处理器上,对201×201像素图像得到的跟踪速率为2帧/s,如图2所示。
更实质的进展凭借组合Lorenz-Mie形式与开发图形处理单元(GPU)的并行处理能力能够获得,该图形处理单元通常用在高端计算机图形卡中。关于GPU更多的细节,将在下文参考图8和计算机200示出。尽管常用的基于CPU的实现方案对序列中每一像素操作,但GPU使能的算法是同时对所有像素操作。我们实施GPU使能的fs(kR)的计算,是用在nVidia 280GTX图形卡(nVidia Corp.,Santa Clara,CA)上扩展到IDL的GPUlib(Tech-X Corp.,Boulder,CO),该图形卡被安装在主计算机中。GPUlib提供向基础CUDA框架的接入,以便在GPU上的数学计算,而不要求通常在GPU上实施数学计算所要求的复杂的编程技术。利用这些增强,两维拟合用全准确度以接近3帧/s运行,比基于CPU的分析快20倍。接受5nm的平面内分辨率和50nm的轴向分辨率以大于5帧/s产生粒子跟踪和表征数据,如图2所示。此外,GPU支持多线程操作。当受多核CPU支持时,这意味着数个分析能够并行进行,得到总处理速度的按比例增加。这在一些应用中可以认为是实时性能。“实时”的意思是,在最后的帧快照到达之前,来自图像数据每个帧快照的图像数据可供处理和使用。诸如下文将要指出,这样允许样本粒子的实时表征,例如,作为例子样本的位置、半径和折射率,以及如基于小球的分子结合特性的这样的分子水平涂层(coating)。这些参数的至少两个能够一次并能够甚至全部同时被确定。实质性的再加速可以凭借在优化汇编编程语言中实施相同拟合算法取得。
即使向粒子图像的拟合对实时应用前进得足够快,分析快照也要求视场中样本粒子110的预先识别,并在开头估算粒子位置、大小和折射率,这些估算足够地精确以便拟合收敛于全面地优化的解。如果全息分析对无人看管的自动处理有用的话,这个自举过程必须快且可靠。
每一球体出现在快照中,诸如在图3A的例图中作为同心的亮和暗圆环。每一像素的强度梯度因而定义成像平面中的线段,沿该线段可以有球体中心。这样的线的交点定义在焦平面中的粒子的质心的估算。在最可取的实施例中,粒子是球体。我们用圆形Hough变换的简化变形识别这样的交点,在该圆形Hough变换中,原来图像中的每一像素对被变换图像中可能成为质心的像素投出“选票”。图3A表明由原来图像中三个代表像素投出的“选票”。单个像素选票在变换的图像中被累计,诸如图3B中的例子。在此情形中,被变换图像与原来的有相同分辨率,这是产生合理精度和速度两者的选择。有最多选票的被变换图像中的那些像素,成为质心的候选者,而它们的位置被用作使拟合初始化的平面内坐标。插入的表面图显示,被扩大的干涉图样如何因单个球体而被变换成为尖锐地定义的峰,即使两个或更多球体的全息图像重叠。该方法比常用的圆形Hough变换在计算上更有效,该变换使用附加的资源记录关于每一潜在圆形区的半径的信息。依靠计算被变换图像中每一特性的亮度的亮度加权中心以改善质心估算,通常要识别粒子质心到像素的数个十分之一或数十纳米。
在已经估算粒子或球体的平面内坐标后,我们用Rayleigh-Sommerfeld传播函数使被测量光场向后传播,估算它的轴向坐标。重构的轴向强度中的峰,即使当粒子沿光轴相互吸附时,也对应于100nm以内的粒子位置。该向后传播能够以粒子位置为中心的图像数据的一维薄片完成,因而能够非常快速地被完成。
精确地估算未知粒子的大小和折射率实质上更为困难。幸运的是,非线性拟合的误差表面,在由ap、np和zp定义的参数空间中非常大汇流区域(catchment basin)上,光滑地并单调地向全面地优化的值倾斜。图4示出分别作为粒子的位置半径、折射率和轴向位置的误差Δap、Δnp和Δzp的函数的局部图像强度的均方根误差,该局部图像强度是对水中1.5mm直径石英球体在zp=20mm处计算的。这些数据表明,对这种粒子图像的拟合应当收敛于最佳值,即使初始估算的误差在折射率中大于0.1,在半径中大于0.5mm和在轴向位置中大于2mm。如果估算的平面内质心的误差大于1百纳米左右,误差表面变成更复杂的结构,因而较少原谅。幸运的是,选票算法经常产生足够精确的结果,以确保稳健的收敛。通过一系列图像跟踪粒子还能够借助使用来自一次拟合的结果作为下次的初始估算而被加速。在此情形中,不需要另外的预拟合。
快速质心识别与加速图像拟合的组合,得到胶体球体位置和表征的接近或实时的精确和高准确的测量,如在前文所描述。无人看管的全息粒子跟踪和表征可以在过程控制和质量保证以及高产量及组合化验中找到诸多应用。通过更积极的软件优化和并行化,不必求助样式奇异的硬件解决方案,实质的再加速是可能的。
全息粒子跟踪对三维粒子图像速度计量有直接的应用。图5A示出的例子的形式,是500个单独的1微米直径的聚苯乙烯球体(Duke Scientific,分类号5100A),在100μm宽和17μm深的2cm长微流体通道向下流动的重叠的流轨。球体以10-5分之一的体积被分散在水中,并通过水的压力驱动流被平流输送,该压力驱动流驱动流是通过升起蓄水器对抗重力建立的。图像是在靠近通道中部50×70μm2面积中获得的,焦平面被设定在下玻璃/水界面以下大致5μm。在每一快照中球体的位置,按1/60秒间隔抽样,以最大似然形式逼近被链接成单粒子流轨rp(t)。不是每一次步骤都出现在每个粒子的轨迹中,因为靠近流的中间平面运动较快的粒子偶尔阻挡靠近壁的运动较慢的粒子。图5A只给出那些不含糊地被识别的粒子位置。即使这种不完全时间系列也能够被用于估算粒子的瞬时速度。图5A中的轨迹是按照流轨平均速度的灰度级。
这些流轨还对映射三维流场有用。图5B中每个点表示在微流体通道中,作为一个粒子的平均高度z的函数的该粒子的速度。1000条这样的流轨的重叠的结果,清楚地表明Poiseuille流向下流过通道的预期的抛物线流分布图,数据的簇的宽度反映跨越通道的长水平轴的空间变化。竖直轴的极限表明通道的上、下壁位置,高度是相对于显微镜焦平面被报告的。虚线水平线代表粒子因为它们的硬球体与玻璃壁的交互作用而不能漂流进入的流区。拟合抛物线表明流在通道的边界消失。
每一流轨还个别地产生每一粒子的半径和折射率的流轨平均测量。对单个粒子的组合多次测量,使由于照明中不可避免的依赖位置变化所产生的系统误差最小。图6A(1)-A(3)中的结果,表明分散在水中的商品化聚苯乙烯微球体样本中球体的半径和折射率。图6A(2)和A(3)表明从图6A(1)取得的2D直方图。ap=0.4995μm的平均半径与用常规光散射获得的制造商的规格符合,连半径中测得的2.5百分比的多分散性也一样。np=1.595的平均折射率与对聚苯乙烯球体的独立测量一致。
单粒子表征与大量光散射测量比较,实质上得益于全息表征,该大量光散射测量是用于分析粒子分散的实用基础。诸如图6A(1)-A(3)中的例子,从单粒子测量建立的分布,消除对总体模型的需要,从而提供样本成分的更普遍的深入了解。例如,粒子的大小和在图6A(1)-A(3)中显露的折射率之间的反相关性,在光散射数据中不是明显的。在均匀流体滴的全息分析中没有这种反相关性。该观测的一种解读是,乳液聚合的样本中较大球体是更多孔的,从而有较低的折射率。
同时地跟踪和表征个别粒子(和如前文所述实时地),使我们能够确认我们的来自基于运动的膺像的结果的自由度。如果胶体粒子在摄像机快门打开的周期中运动,胶体粒子的图像变模糊。该模糊把实质上的膺像引进常规的亮场视频显微术数据中。然而,当该结果在图6B(1)和B(2)中显示时,运动模糊对作为平均速度函数的半径和折射率的值没有可察觉的影响,该平均速度是对高达500μm/s的速度用全息分析获得的。附加的测量揭示,只对峰流速度超过700μm/s出现总体平均值的偏差。
该稳健性(robustness)是令人惊讶的,因为以每秒数百微米行进的粒子,在摄像机的1ms快门周期中横过我们摄像机的数个像素。摆动的散射图样产生的非相干平均,主要沿运动方向起降低对比度的作用,然而,由此对Lorenz-Mie拟合有很小的影响。甚至该模糊量可以通过使用更快的快门或照明的脉冲激光器而被降低。
因为当个别胶体粒子向下通过微流体通道时,能实时表征个别胶体粒子,为检测功能化小球上的分子尺度涂层提供有效的基础。如果个别球体半径已知在纳米左右之内,那么相似折射率的分子涂层的存在可以因半径的明显增加而被察觉。更一般地说,被处置样本的特征能够与未被处置球体上的控制测量比较。
图7(A)和7(B)表明一种这样的比较例子研究,该例子研究2μm直径生物素化聚苯乙烯球体在以脱醣抗生物素蛋白(neutravidin)培育之前和之后的比较。在该研究中使用的生物素化聚苯乙烯球体,是从Polysciences Inc(Warrington,PA)(分类号24172)获得的。脱醣抗生物素蛋白是从Invitrogen(Carlsbad,CA)(分类号A2666)获得的。浓度为1mg/mL的脱醣抗生物素蛋白溶液是通过把1mg脱醣抗生物素蛋白添加到1mL磷酸盐缓冲盐水(PBS)(50mM,[NaCl]=50mM)制备。小球的原始样本(stock sample)是通过把10μL相随给付的分散剂(the as-delivered dispersion)添加到990μL的PBS获得的。有涂层的样本(coated sample)是通过把10μL相随给付的分散剂添加到990μL的脱醣抗生物素蛋白溶液中制备的。粒子在它们被用毛细管操作引进微流体通道前,在室温下培育并振动1小时。流借助引进的吸水纸滑进通道一端而被诱导并被记录图像,直到对每一种样本的1,000个球体的结果被获得。每一数据集包含大致5,000次全息测量,这些测量在约5分钟的过程上获得。
我们从这些测量确定,未被处置的样本有总体平均半径0∶996±0∶015μm(见图7(A)),与制造商的规格一致。培育的总体似乎一些大于6nm,有平均半径1∶002±0∶015μm。虽然图7A示出的该两种大小分布基本上重叠,但Wilcoxon分级求和测试表明,以优于百分之99的确定性,它们的方式是不相同的。于是这样构成统计上有意义的在被处置样本的半径中变化的检测,该检测能够合理地被归因于分子尺度的涂层的存在。在本情形中,该涂层的厚度与多畴抗生物素蛋白衍生物的大小一致。
两种样本之间明确的差异在测量的折射率分布中也是明显的,在图7(B)示出。培育的样本的分布显著地更尖,可推测是因为与聚苯乙烯折射率相似的蛋白质在球体的多孔表面置换水,从而提升它们的有效折射率,这样会倾向于使折射率分布下侧上的多孔的粒子比高侧较致密的粒子更多,从而分布变尖。图7(B)中的箭头指示这样的再分布。
两个数据集的随机样本的类似分析,还确认未被处置样本的粒子全部来自相同的总体,它们的大小和折射率与制造商的规格一致。被处置的样本,相反地展示大小的更多可变性,可能因为受约束的抗生物素蛋白层的厚度和平滑度能够从一个球体到另一个球体变化。
这些结果表明硬件加速数字视频显微术,在实时检测功能化胶体球体上分子尺度涂层的利用。不像常规的分子结合化验,全息分析不要求荧光或放射标记,因此消除一般地要求标识被约束于小球的分子的努力和花费。
在本发明的一个实施例中,本发明的方法能够用图8所示计算机系统被实施,以确定所关注的参数和特性。图8的系统包含计算机200(它能够包含CPU和/或在最可取实施例中的GPU,如在本文所描述,该GPU与Lorenz-Mie分析连接),该计算机能够执行计算机可读媒体,诸如有指令的计算机软件模块,该指令被埋藏在例如计算机可寻址存储媒体210中。GPU在计算机200中的使用由此允许参数的实时分析和同时评估,这些参数诸如是分子涂层和/或关于粒子位置、半径和折射率。该存储媒体210能够读/可写,它使数据能够被写入其中。该特性允许随后静态的或动态的数据分析;并且该分析的结果允许用户对该信息操作,以便有利的应用。计算机200执行计算机软件模块指令,以分析前面描述的本发明的方法所产生的数据。这样的数据能够从存储媒体210获得并经由装置220输入。其他常用的装置,诸如输出装置230(如显示器、打印机和/或存储媒体),能够实现观看和进一步数据分析。这种分析能够实时或延迟时间产生关于粒子的位置和特征的信息。
上文描述的某些实施例,使用单一波长的全息视频显微术,以在微米直径的介质胶体球体上检测分子尺度的涂层。这种检测是通过分析球体的总体完成的,这些球体已经被暴露于涂层的分子,并与那些通过分析尚未被暴露的可比的球体总体而获得的结果比较。每一总体中个别球体的全息快照,被用光散射的Lorenz-Mie理论分析,以获得球体半径和综合的折射率。Lorenz-Mie分析产生每一球体有纳米分辨率的半径和它的到千分之几内的折射率。这些性质的总体分布中系统性差异构成检测分子的基础。有涂层的球体似乎系统地大出与涂层厚度一致的量。
在一个替换的实施例中,Lorenz-Mie分析能够采用两色或多色全息图以提供可与只用单个球体比较,而不是与球体总体比较的检测分辨率。因此图1A的输入光束120提供多色全息图的输出。该实施例以两种或更多波长建立同时的全息图像。这些多色全息图能够被记录在独立的用滤波器分离图像的视频摄像机135(见图1A)上。代替的是,它们能够用彩色摄像机135记录,并从记录的彩色通道获得分离的图像。
用于这些类型的测量的球体应当具有在所使用的波长上的可比较的光学特性。但是,涂层应当在至少两个波长上具有非常不同的特性。例如,涂层可以在一个波长上是纯介质,而在另一个波上是强吸收。在没有涂层时,在多个波长上获得的全息图应当产生粒子位置和大小的相同结果。有涂层的球体的全息图在估算的大小上和在估算的从每个波长获得的折射率的定量特征上显著不同。这样的差别会构成分子尺度涂层的检测。适当选择波长,球体大小和球体成分应当提供关于涂层厚度或完整性的定量信息。
本发明前面的描述已经为说明和描述的目的给出。不企图穷尽或把本发明限制于所公开的准确形式,而鉴于上面的教导,或可以从本发明的实地应用得到的修改和变化是可能的。这些实施例被选择和描述,为的是解释本发明的原理和它的实际应用,使本领域的熟练技术人员能够按不同的实施例并以不同的修改利用本发明,该不同的修改适合于所考虑的特定使用。
Claims (18)
1.一种用全息显微术表征样本的参数的方法,包括的步骤有:
从存储介质提供样本的图像数据;
把Lorenz-Mie分析应用于来自样本的图像数据,以表征样本的性质并产生样本的参数的信息特征;和
同时地实时确定样本粒子的大小、位置和折射率。
2.按权利要求1定义的方法,其中提供图像数据的步骤,包含产生偏振光束并使该光束散射离开样本,以产生全息图。
3.按权利要求1定义的方法,其中该Lorenz-Mie分析包含使用图形处理单元,通过以图像数据的并行处理执行Lorenz-Mie分析。
4.按权利要求3定义的方法,还包含步骤:变换图像数据,以确定图像数据中物体数量的第一估算和在平面中物体大致的x、y位置;使用被变换的数据,确定每一物体轴向位置(z)的第一估算以及每一物体的大小和成分的第一估算;其中Lorenz-Mie分析确定样本的位置、大小和折射率的第二估算,其中以用结果更新存储介质和输出该结果供显示与用户操作中的至少一个步骤,该第二估算具有比第一估算更高的精度。
5.按权利要求1定义的方法,其中该样本包括至少一个粒子。
6.按权利要求1定义的方法,其中参数表征包含确定基于小球的分子结合特性的步骤。
7.按权利要求1定义的方法,其中参该数表征包含自动粒子检测。
8.按权利要求1定义的方法,其中该Lorenz-Mie分析包含确定沿线段R=/r-rp/的Lorenz-Mie功能性散射函数fs(kr)和内插,以获得函数fs(k(r-rp)),从而降低处理时间和提供样本的实时分析。
9.按权利要求8定义的方法,其中该样本包括粒子,而该Lorenz-Mie分析方法实时确定该粒子的大小、形状、成分和取向中的至少之一。
10.按权利要求9定义的方法,其中该粒子包括球,从而能实现粒子半径的快速变化特性的实时确定。
11.按权利要求1定义的方法,其中该偏振光束包括该光的单一波长。
12.按权利要求1定义的方法,其中该光束包括多个相干光波长。
13.按权利要求1定义的方法,还包含实行Lorenz-Mie分析和在处于未处置状态的粒子与已经经历处置的另一个粒子的图像数据之间比较的步骤,从而使存在于被处置粒子与未处置粒子上的分子层能够实时表征。
14.按权利要求13定义的方法,其中该实时表征从折射率和粒子半径的组选出。
15.按权利要求12定义的方法,其中有关联的多个全息图由样本和多个相干光波长之间的交互作用形成,从而能够确定样本对相干光的不同波长的不同响应,并分析该不同响应以识别样本的参数。
16.一种用于物体的全息显微术的表征参数的方法,包括的步骤有:
从存储介质接收图像数据;
变换该图像数据以确定图像数据中物体数量的第一估算和在平面中物体大致的x、y位置;
使用被变换的数据,确定每一物体的轴向位置(z)的第一估算以及每一物体的大小和成分的第一估算;和
对每一物体应用图像数据的Lorenz-Mie分析,以确定每一物体的分辨率位置、大小和成分的第二估算,其中以用结果更新存储介质和提供该结果供显示与供用户解读中的至少一个步骤,该第二估算具有比第一估算更高的精度。
17.一种用全息显微术表征样本的参数的系统,包括:
全息显微镜,包含激光器光束源和物镜,该激光器光束从样本散射并与激光器光束未散射部分交互作用,以提供全息散射图样;
图像收集装置,用于从全息显微镜收集散射图样的图像数据特征;和
计算机系统,包含计算机和计算机软件,该计算机软件被计算机执行以分析图像数据,该计算机软件包含Lorenz-Mie方法学,而该软件被图形处理单元执行,以提供样本的参数特征的基本上实时的输出。
18.按权利要求17定义的系统,其中该参数同时地包含该样本的样本粒子大小、样本粒子位置、样本粒子折射率和样本粒子的基于小球的分子结合特性中的至少两个。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14540209P | 2009-01-16 | 2009-01-16 | |
US61/145,402 | 2009-01-16 | ||
US17119909P | 2009-04-21 | 2009-04-21 | |
US61/171,199 | 2009-04-21 | ||
PCT/US2010/021045 WO2010101671A1 (en) | 2009-01-16 | 2010-01-14 | Automated real-time particle characterization and three-dimensional velocimetry with holographic video microscopy |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102365543A true CN102365543A (zh) | 2012-02-29 |
Family
ID=42709956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201080009712XA Pending CN102365543A (zh) | 2009-01-16 | 2010-01-14 | 用全息视频显微术的自动实时粒子表征和三维速度计量 |
Country Status (5)
Country | Link |
---|---|
US (4) | US9316578B2 (zh) |
EP (1) | EP2387708B1 (zh) |
JP (1) | JP5269207B2 (zh) |
CN (1) | CN102365543A (zh) |
WO (1) | WO2010101671A1 (zh) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104567682A (zh) * | 2015-01-14 | 2015-04-29 | 天津大学 | 液态环境下微粒三维位置纳米级分辨力测量方法 |
CN104634793A (zh) * | 2015-02-04 | 2015-05-20 | 南京理工大学 | 共轴数字全息显微成像装置及检测玻璃亚表面缺陷的方法 |
CN104697906A (zh) * | 2015-03-18 | 2015-06-10 | 东南大学 | 一种基于近场散射的颗粒粒度测量装置及方法 |
CN105144675A (zh) * | 2013-03-15 | 2015-12-09 | 耶鲁大学 | 用于处理具有传感器相关噪声的成像数据的技术 |
CN107003228A (zh) * | 2014-10-09 | 2017-08-01 | 巴黎城市物理化工高等学院 | 用于光学检测流体样品中的纳米粒子的方法和设备 |
CN107993273A (zh) * | 2017-12-01 | 2018-05-04 | 中国科学院长春光学精密机械与物理研究所 | 一种单粒子Mie散射特性的计算机绘图器及绘图方法 |
CN108254295A (zh) * | 2018-01-15 | 2018-07-06 | 南京大学 | 一种定位与表征球形微粒的方法及其装置 |
CN108351288A (zh) * | 2015-09-18 | 2018-07-31 | 纽约大学 | 精密浆料中大杂质颗粒的全息检测和表征 |
CN109154563A (zh) * | 2016-05-30 | 2019-01-04 | 生物梅里埃有限公司 | 用于获取样本中所存在的粒子的装置和方法 |
CN109297874A (zh) * | 2018-11-30 | 2019-02-01 | 浙江大学 | 一种用于测量运动颗粒粒径的全息实时测量方法及装置 |
CN110057294A (zh) * | 2019-03-26 | 2019-07-26 | 天津大学 | 光镊系统微粒轴向纳米级位移测量方法 |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010101671A1 (en) | 2009-01-16 | 2010-09-10 | New York University | Automated real-time particle characterization and three-dimensional velocimetry with holographic video microscopy |
JP6039570B2 (ja) * | 2010-11-12 | 2016-12-07 | ユニヴェルシテ・リブレ・ドゥ・ブリュッセル | 透明粒子の特性を決定する光学的方法 |
US9188529B2 (en) | 2012-02-24 | 2015-11-17 | New York University | Holographic microrefractometer for determining refractive index of a medium |
EP2973404B1 (en) * | 2013-03-15 | 2019-02-27 | Luminex Corporation | Real-time tracking and correlation of microspheres |
WO2014144053A2 (en) * | 2013-03-15 | 2014-09-18 | Intelligent Imaging Innovations, Inc. | Multi-channel simultaneous photostimulation |
ES2812611T3 (es) * | 2014-02-12 | 2021-03-17 | Univ New York | Identificación rápida de características para el seguimiento holográfico y la caracterización de partículas coloidales |
WO2015200512A1 (en) | 2014-06-25 | 2015-12-30 | New York University | In-line particle characterization |
US10222315B2 (en) | 2014-10-13 | 2019-03-05 | New York University | Machine-learning approach to holographic particle characterization |
US11085864B2 (en) | 2014-11-12 | 2021-08-10 | New York University | Colloidal fingerprints for soft materials using total holographic characterization |
US11385157B2 (en) | 2016-02-08 | 2022-07-12 | New York University | Holographic characterization of protein aggregates |
US10670677B2 (en) | 2016-04-22 | 2020-06-02 | New York University | Multi-slice acceleration for magnetic resonance fingerprinting |
US10768630B2 (en) * | 2017-02-09 | 2020-09-08 | International Business Machines Corporation | Human imperceptible signals |
CN106932912B (zh) * | 2017-03-13 | 2020-02-07 | 深圳市纳姆达科技有限公司 | 一种可实现全视差的全息立体图像记录系统及记录方法 |
EP3752879A1 (en) | 2018-02-12 | 2020-12-23 | Intelligent Imaging Innovations, Inc. | Tiling light sheet selective plane illumination microscopy using discontinuous light sheets |
GB2589012B (en) * | 2018-09-12 | 2022-06-01 | Aist | Particulate observation device and particulate observation method |
CN108918504A (zh) * | 2018-09-12 | 2018-11-30 | 广州医科大学 | 基于拉曼光谱和oct实现宝石鉴定的系统及方法 |
CN109115747B (zh) * | 2018-09-12 | 2021-07-13 | 广州医科大学 | 基于拉曼光谱和oct测定玻璃材料性质的系统与方法 |
JP7593933B2 (ja) * | 2019-10-15 | 2024-12-03 | 株式会社堀場製作所 | 粒子群特性測定装置、粒子群特性測定方法、粒子群特性測定装置用プログラム、粒子径分布測定装置及び粒子径分布測定方法 |
US11543338B2 (en) | 2019-10-25 | 2023-01-03 | New York University | Holographic characterization of irregular particles |
US11948302B2 (en) | 2020-03-09 | 2024-04-02 | New York University | Automated holographic video microscopy assay |
US11977352B2 (en) * | 2020-03-27 | 2024-05-07 | Intel Corporation | Image processing techniques using digital holographic microscopy |
JP7446008B2 (ja) | 2020-03-31 | 2024-03-08 | 国立研究開発法人産業技術総合研究所 | 粒子の屈折率計測方法 |
EP3922979B1 (en) * | 2020-06-08 | 2023-06-07 | Universität für Bodenkultur Wien | Method for determining a focal length of a particle in a medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0278714A2 (en) * | 1987-02-12 | 1988-08-17 | Holtronic Technologies Limited | Improvements in apparatus for the positional detection of objects |
CN1971253A (zh) * | 2006-10-19 | 2007-05-30 | 上海大学 | 数字全息显微测量装置 |
WO2008092107A1 (en) * | 2007-01-26 | 2008-07-31 | New York University | Holographic microscope system and method for optical trapping and inspection of materials |
WO2009059008A1 (en) * | 2007-10-30 | 2009-05-07 | New York University | Tracking and characterizing particles with holographic video microscopy |
Family Cites Families (160)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3069654A (en) | 1960-03-25 | 1962-12-18 | Paul V C Hough | Method and means for recognizing complex patterns |
US3551018A (en) | 1969-05-01 | 1970-12-29 | Karl A Stetson | Total internal reflection holography |
JPS5596976A (en) | 1979-01-17 | 1980-07-23 | Ricoh Co Ltd | Hologram recorder |
FR2476839A1 (fr) * | 1980-02-25 | 1981-08-28 | Anvar | Procede de determination du diametre d'une particule en suspension dans un fluide par utilisation d'un rayonnement electromagnetique coherent |
JPS58155636A (ja) | 1982-03-12 | 1983-09-16 | Hitachi Ltd | ホログラフイ電子顕微鏡 |
DE3303876A1 (de) | 1983-02-05 | 1984-08-09 | M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München | Holografisches differenzverfahren |
US4540285A (en) | 1983-05-16 | 1985-09-10 | The United States Of America As Represented By The United States Department Of Energy | Photothermal method of determining calorific properties of coal |
US4740079A (en) | 1984-10-29 | 1988-04-26 | Hitachi, Ltd. | Method of and apparatus for detecting foreign substances |
US4986659A (en) | 1988-02-29 | 1991-01-22 | Aerometrics, Inc. | Method for measuring the size and velocity of spherical particles using the phase and intensity of scattered light |
JP2776862B2 (ja) | 1989-01-13 | 1998-07-16 | 株式会社日立製作所 | 反射電子線ホログラフイー装置 |
JPH03251888A (ja) | 1990-02-28 | 1991-11-11 | Shimadzu Corp | ホログラフイカメラ |
JPH03251388A (ja) | 1990-02-28 | 1991-11-08 | Sony Corp | ロボット |
US5095207A (en) | 1991-01-07 | 1992-03-10 | University Of Wisconsin - Milwaukee | Method of three-dimensional atomic imaging |
US5146086A (en) | 1991-03-19 | 1992-09-08 | Chevron Research And Technology Company | Method and apparatus for imaging porous media and method for fabricating novel optical materials |
GB9203239D0 (en) | 1992-02-14 | 1992-04-01 | Imperial College | Holographic imaging |
US5373727A (en) | 1993-04-16 | 1994-12-20 | New Mexico Tech Research Foundation | Miniporopermeameter |
US6797942B2 (en) | 2001-09-13 | 2004-09-28 | University Of Chicago | Apparatus and process for the lateral deflection and separation of flowing particles by a static array of optical tweezers |
US5995153A (en) | 1995-11-02 | 1999-11-30 | Prime Image, Inc. | Video processing system with real time program duration compression and expansion |
US7041510B2 (en) | 1996-04-25 | 2006-05-09 | Bioarray Solutions Ltd. | System and method for programmable illumination pattern generation |
ATE357663T1 (de) | 1996-04-25 | 2007-04-15 | Genicon Sciences Corp | Teilchenförmiges markierungsmittel verwendendes analytassay |
US20040004717A1 (en) | 1996-11-13 | 2004-01-08 | Reed Wayne F. | Automatic mixing and dilution methods and apparatus for online characterization of equilibrium and non-equilibrium properties of solutions containing polymers and/or colloids |
US6480285B1 (en) | 1997-01-28 | 2002-11-12 | Zetetic Institute | Multiple layer confocal interference microscopy using wavenumber domain reflectometry and background amplitude reduction and compensation |
US5939716A (en) | 1997-04-02 | 1999-08-17 | Sandia Corporation | Three-dimensional light trap for reflective particles |
US5880841A (en) | 1997-09-08 | 1999-03-09 | Erim International, Inc. | Method and apparatus for three-dimensional imaging using laser illumination interferometry |
US7133203B2 (en) | 1998-02-03 | 2006-11-07 | Arch Development Corporation | Apparatus for applying optical gradient forces |
US6055106A (en) | 1998-02-03 | 2000-04-25 | Arch Development Corporation | Apparatus for applying optical gradient forces |
GB9810865D0 (en) | 1998-05-20 | 1998-07-22 | Zeneca Ltd | Nucleic acid sequence identification |
US6097488A (en) | 1998-06-22 | 2000-08-01 | Princeton University | Method and apparatus for measuring micro structures, anisotropy and birefringence in polymers using laser scattered light |
JP2001034148A (ja) * | 1999-07-26 | 2001-02-09 | Nippon Telegr & Teleph Corp <Ntt> | 立体映像表示方法および装置 |
US6281994B1 (en) | 1998-12-22 | 2001-08-28 | Nippon Telegraph And Telephone Corporation | Method and apparatus for three-dimensional holographic display suitable for video image display |
JP2000225302A (ja) | 1999-02-04 | 2000-08-15 | Mitsubishi Chemicals Corp | 粒度分布の特徴量の推定方法、粒子の製造方法及びこれらに用いる装置 |
AU4328000A (en) | 1999-03-31 | 2000-10-16 | Verizon Laboratories Inc. | Techniques for performing a data query in a computer system |
US6608716B1 (en) | 1999-05-17 | 2003-08-19 | New Mexico State University Technology Transfer Corporation | Optical enhancement with nanoparticles and microcavities |
DE19954933A1 (de) | 1999-11-10 | 2001-05-17 | Zeiss Carl Jena Gmbh | Anordnung zur Einkopplung einer optischen Pinzette und/oder eines Bearbeitungsstrahles in ein Mikroskop |
AU2254901A (en) | 1999-12-06 | 2001-06-12 | Emory University | Systems and methods for providing functional magnetic resonance imaging data analysis services |
DE60124524T2 (de) | 2000-04-25 | 2007-03-08 | Asml Holding, N.V. | Optisches reduktionssystem mit kontrolle der belichtungspolarisation |
TW531661B (en) | 2000-10-06 | 2003-05-11 | Arch Dev Corp | Method of controllably filling an array of small particles, method of controllably manipulating an array of optical traps, and apparatus for controllably manipulating an array of optical traps |
US20030007894A1 (en) | 2001-04-27 | 2003-01-09 | Genoptix | Methods and apparatus for use of optical forces for identification, characterization and/or sorting of particles |
AU2002307550A1 (en) | 2001-04-25 | 2002-11-05 | New Mexico State University Technology Transfer Corporation | Plasmonic nanophotonics methods, materials, and apparatuses |
EP1399730B1 (fr) | 2001-06-29 | 2012-09-05 | Université Libre de Bruxelles | Procede et dispositif destines a l'obtention par microscopie d'images en trois dimensions d'un echantillon |
US7338168B2 (en) | 2001-07-06 | 2008-03-04 | Palantyr Research, Llc | Particle analyzing system and methodology |
US20030021016A1 (en) | 2001-07-27 | 2003-01-30 | Grier David G. | Parallel scanned laser confocal microscope |
US7186985B2 (en) | 2001-07-30 | 2007-03-06 | Dxray, Inc. | Method and apparatus for fabricating mercuric iodide polycrystalline films for digital radiography |
US6519033B1 (en) | 2001-11-19 | 2003-02-11 | Point Source Technologies, Llc | Identification of particles in fluid |
FR2830962B1 (fr) | 2001-10-12 | 2004-01-30 | Inst Nat Rech Inf Automat | Dispositif et methode de traitement d'image pour detection de lesions evolutives |
US6735960B2 (en) | 2001-10-30 | 2004-05-18 | Carnegie Institution Of Washington | Composition and method for hydrogen storage |
US6943924B2 (en) | 2001-12-04 | 2005-09-13 | Ecole Polytechnique Federale De Lausanne (Epfl) | Apparatus and method for digital holographic imaging |
US6737634B2 (en) | 2002-01-16 | 2004-05-18 | The University Of Chicago | Use of multiple optical vortices for pumping, mixing and sorting |
WO2003066191A1 (en) | 2002-02-04 | 2003-08-14 | Colorado School Of Mines | Laminar flow-based separations of colloidal and cellular particles |
GB2385481B (en) | 2002-02-13 | 2004-01-07 | Fairfield Imaging Ltd | Microscopy imaging system and method |
EP1500311B1 (en) | 2002-04-10 | 2011-11-02 | Arryx, Inc. | Apparatus and method to generate and control optical traps to manipulate small particles |
US20040180363A1 (en) | 2002-04-12 | 2004-09-16 | Dymeka Gossett Rooks Pitts Pllc | Configurable dynamic three dimensional array |
US7324282B2 (en) | 2002-05-14 | 2008-01-29 | Arryx, Inc. | Apparatus, system and method for applying optical gradient forces |
CN1668924A (zh) | 2002-05-14 | 2005-09-14 | 艾瑞克斯公司 | 广谱光学传感器 |
US6710874B2 (en) | 2002-07-05 | 2004-03-23 | Rashid Mavliev | Method and apparatus for detecting individual particles in a flowable sample |
US7699767B2 (en) | 2002-07-31 | 2010-04-20 | Arryx, Inc. | Multiple laminar flow-based particle and cellular separation with laser steering |
EP2889879B1 (en) | 2002-07-31 | 2017-09-06 | Premium Genetics (UK) Limited | System and method of sorting materials using holographic laser steering |
US6863406B2 (en) | 2002-08-01 | 2005-03-08 | The University Of Chicago | Apparatus and method for fabricating, sorting, and integrating materials with holographic optical traps |
CA2494231A1 (en) | 2002-08-01 | 2004-04-22 | The Johns Hopkins University | Techniques for identifying molecular structures and treating cell types lining a body lumen using fluorescence |
MY134335A (en) | 2002-09-11 | 2007-12-31 | Jfe Eng Corp | Process for producing gas clathrate and production apparatus |
US7109473B2 (en) | 2002-09-16 | 2006-09-19 | University Of Chicago | Transverse optical accelerator and generalized optical vortices |
EP1545762A2 (en) | 2002-09-27 | 2005-06-29 | Carlsberg A/S | Spatially encoded polymer matrix |
JP4361527B2 (ja) | 2002-12-02 | 2009-11-11 | 東京応化工業株式会社 | 化学増幅型シリコーン系ポジ型ホトレジスト組成物、それを用いた二層レジスト材料及びそれらに用いられるラダー型シリコーン共重合体 |
US7351953B2 (en) | 2003-04-10 | 2008-04-01 | Arryx, Inc. | Apparatus and method to generate and control optical traps to manipulate small particles |
US9815058B2 (en) | 2003-05-08 | 2017-11-14 | The University Court Of The University Of St Andrews | Fractionation of particles |
RU2005139384A (ru) | 2003-05-16 | 2006-05-10 | Юниверсити Оф Чикаго (Us) | Способ и устройство оптического фракционирования |
IL156856A (en) | 2003-07-09 | 2011-11-30 | Joseph Shamir | Method for particle size and concentration measurement |
WO2005027031A2 (en) | 2003-09-12 | 2005-03-24 | Cyvera Corporation | Method and apparatus for labeling using diffraction grating-based encoded optical identification elements |
CN101382619A (zh) | 2003-10-28 | 2009-03-11 | 阿而利克斯公司 | 使用全息光学俘获操纵和处理材料的系统和方法 |
GB2408587A (en) | 2003-11-28 | 2005-06-01 | Univ Hertfordshire | Optical particle manipulation systems |
WO2005062018A2 (en) | 2003-12-22 | 2005-07-07 | Versamatrix A/S | Apparatus and methods for analysis and sorting of particles such as polymer beads |
US20070242269A1 (en) | 2004-03-06 | 2007-10-18 | Michael Trainer | Methods and apparatus for determining characteristics of particles |
JP2007537729A (ja) | 2004-04-12 | 2007-12-27 | ザ・レジェンツ・オブ・ザ・ユニバーシティ・オブ・カリフォルニア | 微粒子及び細胞の操作用の光電子ピンセット |
JP2005337730A (ja) | 2004-05-24 | 2005-12-08 | Nara Institute Of Science & Technology | 測定システム |
US20060029634A1 (en) | 2004-08-06 | 2006-02-09 | Berg Michael C | Porous structures |
US7532327B2 (en) | 2004-09-17 | 2009-05-12 | Jmar Research, Inc. | Systems and methods for detecting scattered light from a particle using illumination incident at an angle |
WO2006058187A2 (en) | 2004-11-23 | 2006-06-01 | Robert Eric Betzig | Optical lattice microscopy |
US7473890B2 (en) | 2004-11-23 | 2009-01-06 | New York University | Manipulation of objects in potential energy landscapes |
EP1838866A4 (en) | 2004-12-10 | 2010-04-14 | Arryx Inc | AUTOMATIC EXTRACTION AND PURIFICATION OF SAMPLES USING OPTICAL TWEEZERS |
US7586684B2 (en) | 2005-01-21 | 2009-09-08 | New York University | Solute characterization by optoelectronkinetic potentiometry in an inclined array of optical traps |
US7218112B2 (en) | 2005-05-12 | 2007-05-15 | Siemens Aktiengesellschaft | Combined MR/PET system |
WO2006130728A2 (en) | 2005-05-31 | 2006-12-07 | The Regents Of The University Of California | Single-cell raman spectroscopy for the non-destructive, non-invasive analysis of cells and cellular components |
US7230424B1 (en) | 2005-06-17 | 2007-06-12 | Fonar Corporation | Magnetic resonance imaging |
US20080285099A1 (en) | 2005-07-12 | 2008-11-20 | Arryx, Inc. | Method and apparatus for forming multi-dimensional colloidal structures using holographic optical tweezers |
JP4581946B2 (ja) | 2005-09-29 | 2010-11-17 | セイコーエプソン株式会社 | 画像表示装置 |
US8149416B2 (en) | 2005-10-17 | 2012-04-03 | Arryx, Inc. | Apparatus and method for dynamic cellular probing and diagnostics using holographic optical forcing array |
US9056291B2 (en) | 2005-11-30 | 2015-06-16 | Micronics, Inc. | Microfluidic reactor system |
US7491928B2 (en) | 2005-12-05 | 2009-02-17 | New York University | Extended optical traps by shape-phase holography |
JP5145939B2 (ja) | 2005-12-08 | 2013-02-20 | 日本電気株式会社 | 楽曲における区画を抽出する区画自動抽出システム、区画自動抽出方法および区画自動抽出プログラム |
US20070177774A1 (en) | 2006-01-30 | 2007-08-02 | Nanogate Optoelectronics Robot, Inc. | Fingerprint Recognition System Having Detecting Pore and Method Thereof |
JP2007279475A (ja) | 2006-04-10 | 2007-10-25 | Pulstec Industrial Co Ltd | ホログラム記録装置及びホログラム記録方法 |
US7788067B2 (en) * | 2006-05-12 | 2010-08-31 | Artium Technologies, Inc. | Means and methods for signal validation for sizing spherical objects |
EP1865430A3 (en) * | 2006-06-05 | 2009-09-23 | Cambridge Research & Instrumentation, Inc. | Monte Carlo simulation using GPU units on personal computers |
US7835051B2 (en) | 2006-10-17 | 2010-11-16 | New York University | Volumetric imaging of holographic optical traps |
WO2008127376A2 (en) | 2006-10-17 | 2008-10-23 | The Regents Of The University Of California | Biological cell sorting and characterization using aerosol mass spectrometry |
US8179577B2 (en) | 2006-10-24 | 2012-05-15 | New York University | Three-dimensional holographic ring traps |
US7605919B2 (en) | 2006-10-30 | 2009-10-20 | Brightwell Technologies Inc. | Method and apparatus for analyzing particles in a fluid |
WO2008127410A2 (en) | 2006-11-07 | 2008-10-23 | New York University | Holographic microfabrication and characterization system for soft matter and biological systems |
US20080150532A1 (en) | 2006-12-21 | 2008-06-26 | General Electric Company | Method and apparatus for measuring t1 relaxation |
JP5088507B2 (ja) | 2006-12-27 | 2012-12-05 | 日本電気株式会社 | 同一性判定装置、同一性判定方法および同一性判定用プログラム |
US8331019B2 (en) | 2007-01-26 | 2012-12-11 | New York University | Holographic microscopy of holographically trapped three-dimensional nanorod structures |
WO2008142560A2 (en) | 2007-05-24 | 2008-11-27 | Simone Arca | Method for the production of binary clathrate hydrates of hydrogen |
JP5273042B2 (ja) | 2007-05-25 | 2013-08-28 | 日本電気株式会社 | 画像音響区間群対応付け装置と方法およびプログラム |
JP2009002276A (ja) | 2007-06-22 | 2009-01-08 | Nippon Soken Inc | 粒子状物質の捕集量検出方法及び捕集量検出装置と排ガス浄化装置 |
JP4424396B2 (ja) | 2007-09-03 | 2010-03-03 | ソニー株式会社 | データ処理装置および方法、並びにデータ処理プログラムおよびデータ処理プログラムが記録された記録媒体 |
US7782459B2 (en) | 2007-09-24 | 2010-08-24 | Process Metrix | Laser-based apparatus and method for measuring agglomerate concentration and mean agglomerate size |
WO2009065079A2 (en) | 2007-11-14 | 2009-05-22 | The Regents Of The University Of California | Longitudinal registration of anatomy in magnetic resonance imaging |
US8665504B2 (en) | 2007-11-22 | 2014-03-04 | National University Corporation Kyoto Institute Of Technology | Digital holography device and phase plate array |
EP2257057B1 (en) | 2008-03-19 | 2019-05-08 | National University Corporation Hokkaido University | Dynamic image search device and dynamic image search program |
US7908300B2 (en) | 2008-04-02 | 2011-03-15 | Honeywell International Inc. | Guided entry system for individuals for annotating process deviations |
JP2011525967A (ja) | 2008-06-05 | 2011-09-29 | ジ アドミニストレイターズ オブ ザ チューレン エデュケイショナル ファンド | ポリマー合成中の機能進化をモニタリングする方法及び装置 |
US7929132B2 (en) | 2008-07-11 | 2011-04-19 | University Of Utah Research Foundation | Transmission microscopy using light emitted from nanoparticles |
GB0813907D0 (en) | 2008-07-30 | 2008-09-03 | Univ Durham | Sub-micron 3d holographic lithpgraphy |
US9618369B2 (en) | 2008-08-26 | 2017-04-11 | The University Court Of The University Of Glasgow | Uses of electromagnetic interference patterns |
DE102008044828B3 (de) | 2008-08-28 | 2010-04-15 | Siemens Aktiengesellschaft | Verwendung eines Magnetresonanz-Sequenzmodells zur formalen Beschreibung einer Messsequenz |
US20100055031A1 (en) | 2008-08-28 | 2010-03-04 | Dong June Ahn | Ice nanorods for hydrogen storage |
WO2010101671A1 (en) | 2009-01-16 | 2010-09-10 | New York University | Automated real-time particle characterization and three-dimensional velocimetry with holographic video microscopy |
US8885174B2 (en) | 2009-02-24 | 2014-11-11 | Lyncee Tec S.A. | Monitoring energy and matter fluxes by use of electromagnetic radiations |
WO2011049937A1 (en) | 2009-10-19 | 2011-04-28 | Massachusetts Institute Of Technology | Kinetically efficient substrate for lipoic acid ligase |
US8763623B2 (en) | 2009-11-06 | 2014-07-01 | Massachusetts Institute Of Technology | Methods for handling solids in microfluidic systems |
EP2507615A2 (en) | 2009-12-22 | 2012-10-10 | New York University | Sorting colloidal particles into multiple channels with optical forces: prismatic optical fractionation |
US8437059B2 (en) | 2010-01-21 | 2013-05-07 | Technion Research & Development Foundation Limited | Method for reconstructing a holographic projection |
US8405395B2 (en) | 2010-04-15 | 2013-03-26 | The General Hospital Corporation | Method for simultaneous multi-slice magnetic resonance imaging |
EP2378307A1 (en) | 2010-04-15 | 2011-10-19 | Commissariat à l'Énergie Atomique et aux Énergies Alternatives | Method and apparatus for compensating for B1 inhomogeneity in magnetic resonance imaging by nonselective three-dimensional tailored RF pulses |
US9176152B2 (en) | 2010-05-25 | 2015-11-03 | Arryx, Inc | Methods and apparatuses for detection of positional freedom of particles in biological and chemical analyses and applications in immunodiagnostics |
US9519129B2 (en) | 2010-11-05 | 2016-12-13 | New York University | Method and system for measuring porosity of particles |
JP6039570B2 (ja) | 2010-11-12 | 2016-12-07 | ユニヴェルシテ・リブレ・ドゥ・ブリュッセル | 透明粒子の特性を決定する光学的方法 |
WO2012082776A2 (en) | 2010-12-14 | 2012-06-21 | The Regents Of The University Of California | Method and device for holographic opto-fluidic microscopy |
US8723518B2 (en) | 2011-03-18 | 2014-05-13 | Nicole SEIBERLICH | Nuclear magnetic resonance (NMR) fingerprinting |
US8653818B2 (en) | 2011-04-08 | 2014-02-18 | Siemens Aktiengesellschaft | Parallel transmission RF pulse design with local SAR constraints |
US9267891B2 (en) | 2011-06-06 | 2016-02-23 | The Regents Of The University Of California | Multiplex fluorescent particle detection using spatially distributed excitation |
US9371467B2 (en) | 2011-07-11 | 2016-06-21 | Toray Industries, Inc. | Forming material, paint material composition and production method for forming material |
TWI708052B (zh) | 2011-08-29 | 2020-10-21 | 美商安美基公司 | 用於非破壞性檢測-流體中未溶解粒子之方法及裝置 |
US20140170735A1 (en) | 2011-09-25 | 2014-06-19 | Elizabeth A. Holmes | Systems and methods for multi-analysis |
WO2013065480A1 (ja) | 2011-11-01 | 2013-05-10 | 株式会社 日立メディコ | 磁気共鳴イメージング装置およびアンテナ装置 |
JP2015505984A (ja) | 2011-12-02 | 2015-02-26 | シー・エス・アイ・アールCsir | ホログラム処理方法およびシステム |
RU2605525C2 (ru) | 2012-02-09 | 2016-12-20 | Конинклейке Филипс Н.В. | Устройство обнаружения данных для использования в комбинации с устройством mri |
US9188529B2 (en) | 2012-02-24 | 2015-11-17 | New York University | Holographic microrefractometer for determining refractive index of a medium |
US9625551B2 (en) | 2012-04-16 | 2017-04-18 | Ali Caglar Ozen | Magnetic resonance apparatus and data acquisition method with decoupling between transmit and receive coils |
AU2014216060A1 (en) | 2013-02-18 | 2015-08-20 | Theranos Ip Company, Llc | Systems and methods for collecting and transmitting assay results |
US20170209864A1 (en) | 2013-03-15 | 2017-07-27 | Gpb Scientific, Llc | Methods and systems for processing particles |
US10670682B2 (en) | 2013-11-15 | 2020-06-02 | New York University | Parallel transmission by spin dynamic fingerprinting |
US9816948B2 (en) | 2014-04-18 | 2017-11-14 | University Of Georgia Research Foundation, Inc. | Computerized tomography detection of microbial damage of plant tissues |
US10261154B2 (en) | 2014-04-21 | 2019-04-16 | Case Western Reserve University | Nuclear magnetic resonance (NMR) fingerprinting tissue classification and image segmentation |
US9897675B2 (en) | 2014-05-28 | 2018-02-20 | Case Western Reserve University | Magnetic resonance fingerprinting (MRF) with simultaneous multivolume acquisition |
WO2015200512A1 (en) | 2014-06-25 | 2015-12-30 | New York University | In-line particle characterization |
US10422845B2 (en) | 2014-10-24 | 2019-09-24 | The General Hospital Corporation | Systems and methods for steady-state magnetic resonance fingerprinting |
US11085864B2 (en) | 2014-11-12 | 2021-08-10 | New York University | Colloidal fingerprints for soft materials using total holographic characterization |
US20160291105A1 (en) | 2015-02-24 | 2016-10-06 | New York University | Multi-parametric pet-mr imaging and multi-modality joint image reconstruction |
US9933351B2 (en) | 2015-03-06 | 2018-04-03 | Scanit Technologies, Inc. | Personal airborne particle monitor with quantum dots |
US10598750B2 (en) | 2015-04-02 | 2020-03-24 | The General Hospital Corporation | 3D balanced EPI magnetic resonance fingerprinting |
WO2017040158A1 (en) | 2015-08-28 | 2017-03-09 | Schlumberger Technology Corporation | Microrheology of fluids used at wellsite |
KR102579248B1 (ko) | 2015-09-18 | 2023-09-15 | 뉴욕 유니버시티 | 정밀 슬러리 내 대형 불순물 입자의 홀로그래픽 검출 및 특성화 |
US11385157B2 (en) | 2016-02-08 | 2022-07-12 | New York University | Holographic characterization of protein aggregates |
KR20170141029A (ko) | 2016-06-14 | 2017-12-22 | 조선대학교산학협력단 | 형태학적 셀파라미터 기반 적혈구 검사 방법 및 이에 사용되는 디지털 홀로그래픽 현미경 |
EP3968278A1 (en) | 2016-11-22 | 2022-03-16 | Hyperfine, Inc. | Systems and methods for automated detection in magnetic resonance images |
EP3575773A1 (en) | 2018-05-28 | 2019-12-04 | Universität für Bodenkultur Wien | A method for determining a three-dimensional particle distribution in a medium |
US11543338B2 (en) | 2019-10-25 | 2023-01-03 | New York University | Holographic characterization of irregular particles |
EP3922979B1 (en) | 2020-06-08 | 2023-06-07 | Universität für Bodenkultur Wien | Method for determining a focal length of a particle in a medium |
EP3922977B1 (en) | 2020-06-08 | 2024-08-07 | Universität für Bodenkultur Wien | Method for determining a property of a particle in a medium |
-
2010
- 2010-01-14 WO PCT/US2010/021045 patent/WO2010101671A1/en active Application Filing
- 2010-01-14 JP JP2011546331A patent/JP5269207B2/ja active Active
- 2010-01-14 EP EP10749072.4A patent/EP2387708B1/en active Active
- 2010-01-14 US US13/254,403 patent/US9316578B2/en active Active
- 2010-01-14 CN CN201080009712XA patent/CN102365543A/zh active Pending
-
2016
- 2016-04-04 US US15/090,519 patent/US9719911B2/en active Active - Reinstated
-
2017
- 2017-07-31 US US15/665,126 patent/US10634604B2/en active Active
-
2020
- 2020-04-24 US US16/858,399 patent/US11892390B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0278714A2 (en) * | 1987-02-12 | 1988-08-17 | Holtronic Technologies Limited | Improvements in apparatus for the positional detection of objects |
CN1971253A (zh) * | 2006-10-19 | 2007-05-30 | 上海大学 | 数字全息显微测量装置 |
WO2008092107A1 (en) * | 2007-01-26 | 2008-07-31 | New York University | Holographic microscope system and method for optical trapping and inspection of materials |
WO2009059008A1 (en) * | 2007-10-30 | 2009-05-07 | New York University | Tracking and characterizing particles with holographic video microscopy |
Non-Patent Citations (2)
Title |
---|
SANG-HYUK LEE ET AL.: "Characterizing and tracking single colloidal particles with video holographic microscopy", 《OPTICS EXPRESS》 * |
X-H PAN ET AL.: "Three-dimensional particle image tracking for dilute particle-liquid flows in a pipe", 《MEASUREMENT SCIENCE AND TECHNOLOGY》 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105144675A (zh) * | 2013-03-15 | 2015-12-09 | 耶鲁大学 | 用于处理具有传感器相关噪声的成像数据的技术 |
CN105144675B (zh) * | 2013-03-15 | 2018-09-14 | 耶鲁大学 | 用于处理具有传感器相关噪声的成像数据的技术 |
CN107003228A (zh) * | 2014-10-09 | 2017-08-01 | 巴黎城市物理化工高等学院 | 用于光学检测流体样品中的纳米粒子的方法和设备 |
CN104567682A (zh) * | 2015-01-14 | 2015-04-29 | 天津大学 | 液态环境下微粒三维位置纳米级分辨力测量方法 |
CN104567682B (zh) * | 2015-01-14 | 2017-08-08 | 天津大学 | 液态环境下微粒三维位置纳米级分辨力测量方法 |
CN104634793A (zh) * | 2015-02-04 | 2015-05-20 | 南京理工大学 | 共轴数字全息显微成像装置及检测玻璃亚表面缺陷的方法 |
CN104697906A (zh) * | 2015-03-18 | 2015-06-10 | 东南大学 | 一种基于近场散射的颗粒粒度测量装置及方法 |
CN108351288A (zh) * | 2015-09-18 | 2018-07-31 | 纽约大学 | 精密浆料中大杂质颗粒的全息检测和表征 |
CN108351288B (zh) * | 2015-09-18 | 2021-04-27 | 纽约大学 | 精密浆料中大杂质颗粒的全息检测和表征 |
CN109154563A (zh) * | 2016-05-30 | 2019-01-04 | 生物梅里埃有限公司 | 用于获取样本中所存在的粒子的装置和方法 |
CN107993273A (zh) * | 2017-12-01 | 2018-05-04 | 中国科学院长春光学精密机械与物理研究所 | 一种单粒子Mie散射特性的计算机绘图器及绘图方法 |
CN108254295A (zh) * | 2018-01-15 | 2018-07-06 | 南京大学 | 一种定位与表征球形微粒的方法及其装置 |
CN108254295B (zh) * | 2018-01-15 | 2020-07-24 | 南京大学 | 一种定位与表征球形微粒的方法及其装置 |
CN109297874A (zh) * | 2018-11-30 | 2019-02-01 | 浙江大学 | 一种用于测量运动颗粒粒径的全息实时测量方法及装置 |
CN109297874B (zh) * | 2018-11-30 | 2023-09-22 | 浙江大学 | 一种用于测量运动颗粒粒径的全息实时测量方法及装置 |
CN110057294A (zh) * | 2019-03-26 | 2019-07-26 | 天津大学 | 光镊系统微粒轴向纳米级位移测量方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2387708B1 (en) | 2019-05-01 |
US20120135535A1 (en) | 2012-05-31 |
US11892390B2 (en) | 2024-02-06 |
US9719911B2 (en) | 2017-08-01 |
EP2387708A1 (en) | 2011-11-23 |
US9316578B2 (en) | 2016-04-19 |
EP2387708A4 (en) | 2018-03-21 |
US10634604B2 (en) | 2020-04-28 |
JP5269207B2 (ja) | 2013-08-21 |
US20160216195A1 (en) | 2016-07-28 |
WO2010101671A1 (en) | 2010-09-10 |
US20180011001A1 (en) | 2018-01-11 |
US20200319086A1 (en) | 2020-10-08 |
JP2012515351A (ja) | 2012-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11892390B2 (en) | Automated real-time particle characterization and three-dimensional velocimetry with holographic video microscopy | |
Cheong et al. | Flow visualization and flow cytometry with holographic video microscopy | |
EP2866099B1 (en) | Tracking and characterizing particles with holographic video microscopy | |
Fung et al. | Imaging multiple colloidal particles by fitting electromagnetic scattering solutions to digital holograms | |
EP2638435B1 (en) | Optical method for characterising transparent particles | |
Martin et al. | In-line holographic microscopy with model-based analysis | |
US11948302B2 (en) | Automated holographic video microscopy assay | |
CN109190558A (zh) | 一种微粒实时三维动态行为的监测方法 | |
Ooms et al. | Digital holographic microscopy applied to measurement of a flow in a T-shaped micromixer | |
Kapfenberger et al. | Accurate holographic imaging of colloidal particle pairs by Rayleigh-Sommerfeld reconstruction | |
Martin | Precision Measurements of Colloidal Dynamics with Holographic Microscopy | |
US20240027958A1 (en) | Method and arrangement for holographic nanoparticle tracking analysis (h-nta) in a digital holographic microscope | |
Altman | Probing the Structure and Dynamics of Colloidal Materials with Holographic Microscopy and Effective Medium Theory | |
Alexander | Generative Models for Digital Holographic Microscopy | |
Rodriguez et al. | Optical label-free microscopy characterization of dielectric nanoparticles | |
Cheong et al. | Flow visualization and flow cytometry with holographic video microscopy | |
Barrio-Zhang et al. | Sub-micron weak phase particle characterization using the reconstructed volume intensities from in-line digital holography microscopy | |
Wang | Holographic Characterization of Mutable Colloidal Systems | |
Krishnatreya | Precision measurements of colloidal interactions and dynamics | |
Eldeeb | Automated 3D Particle Field Extraction and Tracking System Using Digital in-line Holography | |
WO2024186257A1 (en) | Interferometric microscopy | |
Martinez-Marrades | 3D Microscopy by Holographic Localization of Brownian Metallic Nanoparticles | |
Hannel | Closing the Loop: Holographic Feedback for Soft-Matter Processes | |
Marrades | 3D microscopy by holographic localization of Brownian metallic nanoparticles | |
Abrahamsson | Three dimensional tracking of multiple objects using digital holographic microscopy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120229 |