CN102279373A - Uniaxially electrostatic-driven sensor for weak magnetic field measurement - Google Patents
Uniaxially electrostatic-driven sensor for weak magnetic field measurement Download PDFInfo
- Publication number
- CN102279373A CN102279373A CN2011101955158A CN201110195515A CN102279373A CN 102279373 A CN102279373 A CN 102279373A CN 2011101955158 A CN2011101955158 A CN 2011101955158A CN 201110195515 A CN201110195515 A CN 201110195515A CN 102279373 A CN102279373 A CN 102279373A
- Authority
- CN
- China
- Prior art keywords
- sensitive element
- cantilever
- magnetic field
- gmr
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 65
- 238000005259 measurement Methods 0.000 title claims abstract description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 5
- 239000010703 silicon Substances 0.000 claims abstract description 5
- 239000000758 substrate Substances 0.000 claims description 12
- 230000004907 flux Effects 0.000 claims description 9
- 238000013016 damping Methods 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 6
- 239000000696 magnetic material Substances 0.000 claims description 6
- 230000035699 permeability Effects 0.000 claims description 5
- 238000005498 polishing Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 8
- 239000010408 film Substances 0.000 description 15
- 230000000694 effects Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000001259 photo etching Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- QMSMJCWETSAJJT-UHFFFAOYSA-N [Cr].[Fe].[Fe] Chemical compound [Cr].[Fe].[Fe] QMSMJCWETSAJJT-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000005290 antiferromagnetic effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000708 deep reactive-ion etching Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000004304 visual acuity Effects 0.000 description 1
Images
Landscapes
- Measuring Magnetic Variables (AREA)
- Hall/Mr Elements (AREA)
Abstract
本发明提供一种单轴静电驱动的弱磁场测量传感器,包括绝缘基底、一对静电驱动电极、两对输入输出电极、GMR敏感元件、两个相同的磁力线聚集器、微悬臂梁、调制膜。绝缘基底上镀有电极,刻蚀有浅槽。GMR敏感元件和两个磁力线聚集器都固定在绝缘基座表面上,并且三者中轴线成一直线。微悬臂梁采用导电硅片制作,包括基座和悬臂。基座固定在绝缘基底上,基座连接悬臂,悬臂上翘端下表面制备有调制膜;调制膜与GMR敏感元件垂直距离为8~15微米。本发明所提供的弱磁场测量传感器调制深度较大,分辨力较高,结构工艺简单。
The invention provides a single-axis electrostatic drive weak magnetic field measurement sensor, which includes an insulating base, a pair of electrostatic drive electrodes, two pairs of input and output electrodes, a GMR sensitive element, two identical magnetic field line concentrators, a micro-cantilever beam, and a modulation film. Electrodes are plated on the insulating base and shallow grooves are etched. The GMR sensitive element and the two magnetic force line concentrators are all fixed on the surface of the insulating base, and the central axes of the three are in a straight line. The micro-cantilever beam is made of conductive silicon wafer, including the base and the cantilever. The base is fixed on the insulating base, the base is connected to the cantilever, and the lower surface of the upturned end of the cantilever is prepared with a modulation film; the vertical distance between the modulation film and the GMR sensitive element is 8-15 microns. The weak magnetic field measuring sensor provided by the present invention has larger modulation depth, higher resolution and simple structure and process.
Description
技术领域 technical field
本发明涉及传感器技术领域,特别是用于微弱信号的传感器,具体地说,涉及一种用于测量微弱磁场的单轴磁传感器。The invention relates to the technical field of sensors, in particular to sensors for weak signals, and in particular to a single-axis magnetic sensor for measuring weak magnetic fields.
背景技术 Background technique
微弱磁场测量在地磁导航、目标探测、地质勘探、生物医学等领域都有广泛应用。现阶段用于微弱磁场测量的传感器类型较多,主要包括磁通门传感器、光泵式磁传感器、质子式磁传感器、光纤磁传感器、巨磁阻抗磁传感器、GMR(Giant Magnetoresistive,巨磁阻)磁传感器等,其中GMR磁传感器是基于微电子工艺制成的,相比其他类型的磁传感器明显具有体积小、功耗低、易批量生产等特点。Weak magnetic field measurement is widely used in geomagnetic navigation, target detection, geological exploration, biomedicine and other fields. At this stage, there are many types of sensors used for weak magnetic field measurement, mainly including fluxgate sensors, optical pump magnetic sensors, proton magnetic sensors, optical fiber magnetic sensors, giant magnetoresistive magnetic sensors, and GMR (Giant Magnetoresistive, giant magnetoresistance) Magnetic sensors, etc. Among them, the GMR magnetic sensor is made based on microelectronics technology. Compared with other types of magnetic sensors, it has the characteristics of small size, low power consumption, and easy mass production.
1988年,法国科学家Albert Fert和德国科学家Peter Grunberg各自领导的实验小组先后独立发现了GMR效应,其中Albert Fert实验小组研究发现在微弱磁场中铁-铬多层薄膜的电阻值急剧变化,并将该现象命名为“GMR效应”,而PeterGrunberg小组在铁-铬-铁三层反铁磁薄膜结构中也发现了类似的实验现象。此后针对GMR效应的研究便如火如荼地展开了,具有GMR效应的新结构不断呈现,而对具有GMR效应的结构也称之为GMR敏感元件。随着研究的不断深入,人们发现GMR敏感元件的磁场灵敏度越高,其噪声特别是1/f噪声也越大,而且其中取决于内部磁结构的1/f磁噪声无法通过常规的电调制方法予以抑制,正是这一点限制了GMR磁传感器分辨力的提高。In 1988, the experimental groups led by French scientist Albert Fert and German scientist Peter Grunberg independently discovered the GMR effect successively. Among them, the experimental group of Albert Fert found that the resistance value of the iron-chromium multilayer film changed sharply in a weak magnetic field, and described this phenomenon Named "GMR effect", and Peter Grunberg's group also found a similar experimental phenomenon in the iron-chromium-iron three-layer antiferromagnetic thin film structure. Since then, the research on the GMR effect has been carried out in full swing, and new structures with the GMR effect have emerged continuously, and the structure with the GMR effect is also called a GMR sensitive element. With the deepening of research, it is found that the higher the magnetic field sensitivity of the GMR sensitive element, the greater the noise, especially the 1/f noise, and the 1/f magnetic noise which depends on the internal magnetic structure cannot pass the conventional electrical modulation method It is this that limits the improvement of the resolution of the GMR magnetic sensor.
近年国外对于如何有效抑制GMR敏感元件的1/f噪声的问题开展了大量研究,其中运用微机械结构驱动磁性薄膜调制被测低频微弱磁场来抑制GMR敏感元件1/f噪声的技术方案最为可行。美国陆军实验室的Alan S.Edelstein等在2003至2007之间陆续取得了4项相关的美国国家专利(专利号:US6670809、US7046002、US7185541、US7195945),这些专利中所述技术方案的共同特点是:首先将磁力线聚集器制备在微机械结构上,然后利用静电驱动方式驱动微机械结构和磁力线聚集器共同高频振动,磁力线聚集器的磁场放大倍数随之周期性地变化,此时处于磁力线聚集器间隙内的GMR敏感元件可探测到一个高频调制后的被测磁场。此类技术方案虽可有效抑制GMR敏感元件的1/f噪声,并明显提高GMR磁传感器的低频磁场分辨力,但其结构相对复杂,制作工艺涉及深度反应离子刻蚀技术和绝缘硅技术,整个过程费时费力,成本很高,此外调制深度也较低(14%左右),不利于进一步提高磁场分辨力。In recent years, a lot of research has been carried out abroad on how to effectively suppress the 1/f noise of GMR sensitive elements. Among them, the technical solution to suppress the 1/f noise of GMR sensitive elements by using micromechanical structures to drive magnetic thin films to modulate the measured low-frequency weak magnetic field is the most feasible. Alan S.Edelstein of U.S. Army Laboratory, etc. successively obtained 4 related U.S. national patents (patent numbers: US6670809, US7046002, US7185541, US7195945) between 2003 and 2007. The common features of the technical solutions described in these patents are : Firstly, the magnetic field line concentrator is prepared on the micro-mechanical structure, and then the micro-mechanical structure and the magnetic field line concentrator are driven to vibrate at high frequency together by means of electrostatic drive, and the magnetic field magnification of the magnetic field line concentrator changes periodically accordingly. At this time, it is in the magnetic field line concentrator The GMR sensitive element in the sensor gap can detect a high-frequency modulated magnetic field to be measured. Although this type of technical solution can effectively suppress the 1/f noise of GMR sensitive elements and significantly improve the low-frequency magnetic field resolution of GMR magnetic sensors, its structure is relatively complicated, and the manufacturing process involves deep reactive ion etching technology and insulating silicon technology. The process is time-consuming and labor-intensive, and the cost is high. In addition, the modulation depth is also low (about 14%), which is not conducive to further improving the magnetic field resolution.
发明内容 Contents of the invention
本发明将提供一种调制深度较大,分辨力较高,结构工艺简单的弱磁场测量传感器。The invention will provide a weak magnetic field measurement sensor with large modulation depth, high resolution and simple structure and process.
本发明的技术方案是:一种单轴静电驱动的弱磁场测量传感器,包括绝缘基底、一对静电驱动电极、两对输入输出电极、GMR敏感元件、两个相同的磁力线聚集器、微悬臂梁、调制膜。所述绝缘基底采用表面抛光的玻璃片,绝缘基底上镀有两对输入输出电极和一对静电驱动电极;绝缘基底中央刻蚀有一浅槽,浅槽一端延伸至绝缘基底边缘;静电驱动电极的某一极镀在浅槽内,并且延伸至绝缘基底边缘,另一极与微悬臂梁电连接。所述GMR敏感元件呈细条状,其上表面中央有一条横向的间隙。每个磁力线聚集器一端开有“凹”形槽,“凹”形槽宽度比GMR敏感元件略宽。GMR敏感元件和两个磁力线聚集器都固定在绝缘基座表面上,并且GMR敏感元件两端分别位于磁力线聚集器的“凹”形槽内,GMR敏感元件和两个磁力线聚集器这三者中轴线成一直线。两对输入输出电极分别与GMR敏感元件的两对输入输出电极连接。微悬臂梁采用导电硅片制作,包括基座和悬臂。基座固定在绝缘基底上,基座连接悬臂,悬臂位于浅槽内镀有静电驱动电极的正上方,悬臂上开有若干阻尼孔;悬臂自由端上翘,上翘端开有两个对准孔,上翘端下表面两个对准孔之间制备有高磁导率软磁材料的调制膜;调制膜正对GMR敏感元件的间隙,调制膜的形状与间隙的表面形状相同,调制膜与GMR敏感元件垂直距离根据实际需要确定,通常在8~15微米。The technical solution of the present invention is: a single-axis electrostatic drive weak magnetic field measurement sensor, including an insulating substrate, a pair of electrostatic drive electrodes, two pairs of input and output electrodes, GMR sensitive elements, two identical magnetic field line concentrators, and a micro-cantilever beam , modulation film. The insulating base adopts a glass sheet with surface polishing, and two pairs of input and output electrodes and a pair of electrostatic driving electrodes are plated on the insulating base; a shallow groove is etched in the center of the insulating base, and one end of the shallow groove extends to the edge of the insulating base; One pole is plated in the shallow groove and extends to the edge of the insulating substrate, and the other pole is electrically connected to the micro-cantilever beam. The GMR sensitive element is in the shape of a thin strip, and there is a transverse gap in the center of its upper surface. Each magnetic flux concentrator has a "concave" groove at one end, and the width of the "concave" groove is slightly wider than that of the GMR sensitive element. Both the GMR sensitive element and the two magnetic force line concentrators are fixed on the surface of the insulating base, and the two ends of the GMR sensitive element are respectively located in the "concave" groove of the magnetic force line concentrator, and the GMR sensitive element and the two magnetic force line concentrators are among the three Axes are aligned. The two pairs of input and output electrodes are respectively connected to the two pairs of input and output electrodes of the GMR sensitive element. The micro-cantilever beam is made of conductive silicon wafer, including the base and the cantilever. The base is fixed on the insulating base, the base is connected to the cantilever, the cantilever is located directly above the electrostatic driving electrode in the shallow groove, and there are a number of damping holes on the cantilever; the free end of the cantilever is upturned, and there are two aligning A modulation film of soft magnetic material with high magnetic permeability is prepared between the two alignment holes on the lower surface of the upturned end; the modulation film is facing the gap of the GMR sensitive element, and the shape of the modulation film is the same as the surface shape of the gap. The vertical distance from the GMR sensitive element is determined according to actual needs, usually 8-15 microns.
本发明的有益效果是:采用调制膜在GMR敏感元件正上方振动的调制方式,可以使调制膜的振动幅度相对较大,因此得到的调制深度较大(仿真实验证明大于40%),通过调制膜的调制使微弱直流磁场在GMR敏感元件处为高频交变磁场,抑制了GMR元件的1/f噪声,通过采用磁力线聚集器使微弱磁场在GMR敏感元件处得到了放大,从而磁传感器测量分辨力得到大幅度提高(仿真实验证明提高了两个数量级);微悬臂梁结构简单,制造方便,有效降低传感器的制作成本。The beneficial effects of the present invention are: adopting the modulation method that the modulation film vibrates directly above the GMR sensitive element can make the vibration amplitude of the modulation film relatively large, so the modulation depth obtained is relatively large (the simulation experiment proves that it is greater than 40%). The modulation of the membrane makes the weak DC magnetic field a high-frequency alternating magnetic field at the GMR sensitive element, which suppresses the 1/f noise of the GMR element, and the weak magnetic field is amplified at the GMR sensitive element by using a magnetic force line concentrator, so that the magnetic sensor can measure The resolving power is greatly improved (the simulation experiment proves that the improvement is two orders of magnitude); the structure of the micro-cantilever beam is simple, the manufacture is convenient, and the manufacturing cost of the sensor is effectively reduced.
附图说明 Description of drawings
图1是本发明某一具体实施方式提供的单轴静电驱动弱磁场测量传感器的结构示意图;Fig. 1 is a schematic structural view of a single-axis electrostatic drive weak magnetic field measurement sensor provided by a specific embodiment of the present invention;
图2是本发明某一具体实施方式中的绝缘基底示意图;Fig. 2 is a schematic diagram of an insulating substrate in a specific embodiment of the present invention;
图3是本发明某一具体实施方式中的条形磁力线聚集器与GMR敏感元件的组装结构示意图;Fig. 3 is a schematic diagram of the assembly structure of the strip-shaped magnetic field line concentrator and the GMR sensitive element in a specific embodiment of the present invention;
图4(a)是本发明某一具体实施方式中微悬臂梁的俯视图;Fig. 4 (a) is the top view of the micro-cantilever beam in a certain embodiment of the present invention;
图4(b)是本发明某一具体实施方式中微悬臂梁的仰视图;Fig. 4 (b) is the bottom view of the micro-cantilever beam in a certain embodiment of the present invention;
图4(c)是本发明某一具体实施方式中微悬臂梁的侧视图。Fig. 4(c) is a side view of the micro-cantilever in a specific embodiment of the present invention.
1-基座,2-悬臂,3-调制膜,4-台阶一,5-阻尼孔,6-台阶二,7-对准孔,8-绝缘基底,9-浅槽,11-a和11-b-静电驱动电极对,12-a和12-b-输入输出电极对一,13-a和13-b-输入输出电极对二,14-GMR敏感元件,15-磁力线聚集器,16-间隙,17-微悬臂梁。1-base, 2-cantilever, 3-modulating membrane, 4-
具体实施方式 Detailed ways
下面结合附图对本发明作进一步说明。The present invention will be further described below in conjunction with accompanying drawing.
图1是本发明某一具体实施方式提供的单轴静电驱动弱磁场测量传感器的结构示意图。如图所示,本具体实施方式包括绝缘基底8、一对静电驱动电极11-a和11-b、两对输入输出电极12-a和12-b、13-a和13-b,GMR敏感元件14、两个相同的磁力线聚集器15、微悬臂梁17、调制膜3(见图4)。所述绝缘基底8采用表面抛光的玻璃片,玻璃片上镀有两对输入输出电极12-a和12-b、13-a和13-b,一对静电驱动电极11-a和11-b;绝缘基底8中央刻蚀有一浅槽9,浅槽一端延伸至绝缘基底边缘;静电驱动电极的11-b极镀在浅槽9内,静电驱动电极的11-a极与微悬臂梁17电连接。所述GMR敏感元件14呈细条状,其上表面中央有一条横向的间隙16(见图3);每个磁力线聚集器15一端开有“凹”形槽,“凹”形槽宽度比GMR敏感元件14略宽(见图3);GMR敏感元件14和两个磁力线聚集器15都固定(如采用环氧树脂胶粘接)在绝缘基座8表面上,并且GMR敏感元件14两端分别位于一个磁力线聚集器15的“凹”形槽内,GMR敏感元件14和两个磁力线聚集器15这三者中轴线成一直线(见图3)。两对输入输出电极分别与GMR敏感元件14的两对输入输出电极连接。微悬臂梁17的基座1固定(如用环氧气树脂胶粘接或低温键合)在绝缘基底8上,基座1连接悬臂2,悬臂2在浅槽9的正上方;悬臂2上开有若干阻尼孔5(见图4(b));悬臂2自由端上翘(见图4(a)),即远离基座的一端上翘;上翘端开有两个对准孔7,上翘端下表面两个对准孔7之间制备有高磁导率软磁材料制备的调制膜3(见图4(c));调制膜3位于GMR敏感元件14的间隙16的正上方,调制膜3的形状与间隙16的表面形状相同,调制膜3与GMR敏感元件14垂直距离根据需要通常在8~15微米。Fig. 1 is a schematic structural view of a single-axis electrostatically driven weak magnetic field measurement sensor provided by a specific embodiment of the present invention. As shown in the figure, this specific embodiment includes an
图2是本发明某一具体实施方式中的绝缘基底示意图。如图所示:绝缘基底8采用抛光玻璃片制成,其外形不限于图2所示的长方形;绝缘基底8中央光刻腐蚀有浅槽9,形状不限于图2所示的“T”字形,浅槽9内能够容纳静电驱动电极的11-b极即满足要求,腐蚀液选用稀氢氟酸等玻璃腐蚀液,腐蚀深度根据所需静电力大小来确定,所需静电力越大腐蚀深度越浅;静电驱动电极的11-a极由两个小电极组成;输入输出电极对12-a和12-b、13-a和13-b的形状和具体位置皆不限图2所示,满足与GMR敏感元件14能够电连接即可;绝缘基底8上所有电极对采用先溅射(或真空蒸发、电镀等)导电膜层(金、铝、铜等),再光刻腐蚀的工艺制备成型。Fig. 2 is a schematic diagram of an insulating substrate in a specific embodiment of the present invention. As shown in the figure: the
图3是本发明某一具体实施方式中的磁力线聚集器与GMR敏感元件的组装结构示意图。如图所示:GMR敏感元件14采用市售产品(如NVE的AA002-02),GMR敏感元件14呈细条形,上表面中央有一条横向的间隙16;磁力线聚集器15由高磁导率软磁材料制成(如NiFe、CoZrNb等),其形状为长方形(或梯形等),一端开有“凹”形槽;GMR敏感元件14位于两个磁力线聚集器15之间,GMR敏感元件14两端嵌在两个磁力线聚集器15的“凹”形槽内,并且这三者中轴线成一直线。Fig. 3 is a schematic diagram of the assembly structure of the magnetic field line concentrator and the GMR sensitive element in a specific embodiment of the present invention. As shown in the figure: the GMR
图4(a)~图4(c)是本发明某一具体实施方式中微悬臂梁的俯视图、仰视图及侧视图。如图所示:微悬臂梁17由硅片通过微机械加工工艺制成,包括基座1、悬臂2。基座1不仅限于“凹”形,满足支撑悬臂2的任意形状皆可,基座1与悬臂2相连;悬臂2沿长度方向开有若干个阻尼孔5,阻尼孔数目可为3~5个;悬臂2自由端上翘,上翘端处有台阶6,悬臂2上翘端开有两个对准孔7;悬臂2上翘端下表面两个对准孔7之间制备有调制膜3;调制膜3由高磁导率软磁材料制成(如NiFe、CoZrNb等),沿悬臂2中轴线方向呈长方形,制备方法是先在悬臂2上翘端下表面电镀(或真空蒸发、溅射等)一层高磁导率软磁材料膜,再通过光刻腐蚀工艺成型。Fig. 4(a) to Fig. 4(c) are the top view, bottom view and side view of the micro-cantilever beam in a specific embodiment of the present invention. As shown in the figure: the
使用时,将一对静电驱动电极与外部的激励电路相连接,使悬臂梁工作在谐振状态;一对输入输出电极与外部恒定电压源(或电流源)连接,一对输入输出电极与外部检测电路连接,根据外部检测电路的测量值可以得到弱磁场的大小。When in use, connect a pair of electrostatic drive electrodes to an external excitation circuit to make the cantilever work in a resonant state; a pair of input and output electrodes are connected to an external constant voltage source (or current source), and a pair of input and output electrodes are connected to an external detection Circuit connection, the size of the weak magnetic field can be obtained according to the measured value of the external detection circuit.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110195515 CN102279373B (en) | 2011-07-13 | 2011-07-13 | Uniaxially electrostatic-driven sensor for weak magnetic field measurement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110195515 CN102279373B (en) | 2011-07-13 | 2011-07-13 | Uniaxially electrostatic-driven sensor for weak magnetic field measurement |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102279373A true CN102279373A (en) | 2011-12-14 |
CN102279373B CN102279373B (en) | 2013-06-12 |
Family
ID=45104929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110195515 Active CN102279373B (en) | 2011-07-13 | 2011-07-13 | Uniaxially electrostatic-driven sensor for weak magnetic field measurement |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102279373B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103116143A (en) * | 2013-01-22 | 2013-05-22 | 中国人民解放军国防科学技术大学 | Integrated high-accuracy triaxial magnetic sensor |
CN103116144A (en) * | 2013-01-22 | 2013-05-22 | 中国人民解放军国防科学技术大学 | Z-direction magnetic field sensor with magnetic orbit structure |
CN106443525A (en) * | 2016-11-17 | 2017-02-22 | 中国科学院上海微系统与信息技术研究所 | Torsion-type micro mechanical magnetic field sensor and preparation method thereof |
CN106646278A (en) * | 2016-12-09 | 2017-05-10 | 中国人民解放军国防科学技术大学 | Low-noise MEMS pre-amplification device utilizing high-resolution magnetic field detection |
CN107894577A (en) * | 2017-10-27 | 2018-04-10 | 中国人民解放军国防科技大学 | Weak magnetic sensor for inhibiting 1/f noise by regulating and controlling magnetic moment by electric field and application method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003107025A1 (en) * | 2002-06-14 | 2003-12-24 | Honeywell International Inc. | Dual axis magnetic sensor |
US6670809B1 (en) * | 2000-08-18 | 2003-12-30 | The United States Of America As Represented By The Secretary Of The Army | Magnetic sensor with modulating flux concentrator having minimized air resistance for 1/f noise reduction |
CN101755210A (en) * | 2007-07-20 | 2010-06-23 | 皇家飞利浦电子股份有限公司 | Magnetic sensor device |
WO2010122919A1 (en) * | 2009-04-22 | 2010-10-28 | アルプス電気株式会社 | Magnetic sensor |
-
2011
- 2011-07-13 CN CN 201110195515 patent/CN102279373B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6670809B1 (en) * | 2000-08-18 | 2003-12-30 | The United States Of America As Represented By The Secretary Of The Army | Magnetic sensor with modulating flux concentrator having minimized air resistance for 1/f noise reduction |
WO2003107025A1 (en) * | 2002-06-14 | 2003-12-24 | Honeywell International Inc. | Dual axis magnetic sensor |
CN101755210A (en) * | 2007-07-20 | 2010-06-23 | 皇家飞利浦电子股份有限公司 | Magnetic sensor device |
WO2010122919A1 (en) * | 2009-04-22 | 2010-10-28 | アルプス電気株式会社 | Magnetic sensor |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103116143A (en) * | 2013-01-22 | 2013-05-22 | 中国人民解放军国防科学技术大学 | Integrated high-accuracy triaxial magnetic sensor |
CN103116144A (en) * | 2013-01-22 | 2013-05-22 | 中国人民解放军国防科学技术大学 | Z-direction magnetic field sensor with magnetic orbit structure |
CN103116143B (en) * | 2013-01-22 | 2015-01-14 | 中国人民解放军国防科学技术大学 | Integrated high-accuracy triaxial magnetic sensor |
CN103116144B (en) * | 2013-01-22 | 2015-01-14 | 中国人民解放军国防科学技术大学 | Z-direction magnetic field sensor with magnetic orbit structure |
CN106443525A (en) * | 2016-11-17 | 2017-02-22 | 中国科学院上海微系统与信息技术研究所 | Torsion-type micro mechanical magnetic field sensor and preparation method thereof |
CN106646278A (en) * | 2016-12-09 | 2017-05-10 | 中国人民解放军国防科学技术大学 | Low-noise MEMS pre-amplification device utilizing high-resolution magnetic field detection |
CN106646278B (en) * | 2016-12-09 | 2019-05-24 | 中国人民解放军国防科学技术大学 | A kind of low noise MEMS preamplifier part using high resolution detection of magnetic field |
CN107894577A (en) * | 2017-10-27 | 2018-04-10 | 中国人民解放军国防科技大学 | Weak magnetic sensor for inhibiting 1/f noise by regulating and controlling magnetic moment by electric field and application method thereof |
CN107894577B (en) * | 2017-10-27 | 2019-11-29 | 中国人民解放军国防科技大学 | Weak magnetic sensor for inhibiting 1/f noise by regulating and controlling magnetic moment by electric field and application method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102279373B (en) | 2013-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102353913B (en) | Measuring transducer driven by monoaxial piezoelectricity for low-intensity magnetic field | |
CN103323794B (en) | GMR-MEMS integrated weak magnetic sensor adopting plane micro-coil | |
WO2020200076A1 (en) | Magnetoresistive inertial sensor chip | |
CN109307850B (en) | Magnetic sensor for suppressing low-frequency noise by utilizing magnetic flux electric control and application method thereof | |
CN103116144B (en) | Z-direction magnetic field sensor with magnetic orbit structure | |
CN107894576B (en) | Integrated low-power-consumption three-axis magnetic field sensor with high Z-direction resolution | |
CN101533075A (en) | MEMS horizontal resonant mode gauss meter | |
CN102279373B (en) | Uniaxially electrostatic-driven sensor for weak magnetic field measurement | |
CN102914394A (en) | MEMS (Micro Electro Mechanical System) giant magneto-resistance type high pressure sensor | |
CN111624525B (en) | An Integrated Triaxial Magnetic Sensor Using Magnetic Stress Control to Suppress Magnetic Noise | |
CN103116143A (en) | Integrated high-accuracy triaxial magnetic sensor | |
CN108039404B (en) | Cantilever beam type magnetic sensor, preparation method and use method thereof | |
CN101515026A (en) | Resonance micro electromechanical system magnetic field sensor and measuring method thereof | |
CN101294824B (en) | Electromagnetic micro-torsional pendulum resonant vibration type sensor based on micro-electronic mechanical skill | |
CN103105592A (en) | Single-chip three-shaft magnetic field sensor and production method | |
CN102427111A (en) | Flexible layered magnetoelectric element | |
CN101907690A (en) | Miniaturized Amorphous Soft Magnetic Alloy Core Solenoid Fluxgate Sensor | |
CN106569155A (en) | Cantilever beam interdigital capacitance magnetic field sensing probe based on super magnetic induced shrinkage or elongation film | |
CN107449410A (en) | Microthrust test device is detected in electromagnetic drive type tunnel magnetoresistive face | |
CN110068318A (en) | A kind of tunnel magnetoresistive microthrust test device based on snakelike hot-wire coil | |
CN105572610B (en) | MEMS lattice coils and preparation method thereof | |
CN202853815U (en) | MEMS colossal magneto-resistance type height pressure transducer | |
CN106443525B (en) | Torsion type micromachined magnetic field sensor and preparation method thereof | |
CN102928132A (en) | Tunnel reluctance pressure transducer | |
CN104614690A (en) | Micro-array type fluxgate sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |