CN102244081B - High-stability amorphous silicon/microcrystalline silicon tandem solar cell and manufacturing method thereof - Google Patents
High-stability amorphous silicon/microcrystalline silicon tandem solar cell and manufacturing method thereof Download PDFInfo
- Publication number
- CN102244081B CN102244081B CN2011101862914A CN201110186291A CN102244081B CN 102244081 B CN102244081 B CN 102244081B CN 2011101862914 A CN2011101862914 A CN 2011101862914A CN 201110186291 A CN201110186291 A CN 201110186291A CN 102244081 B CN102244081 B CN 102244081B
- Authority
- CN
- China
- Prior art keywords
- amorphous silicon
- layer
- silicon
- cell
- microcrystalline silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
一种高稳定性非晶硅/微晶硅叠层太阳电池,由衬底、透明导电膜、p型掺杂窗口层P1、非晶硅/微晶硅过渡区靠近非晶硅的本征层I1、n型掺杂层N1、p型掺杂窗口层P2、微晶硅本征层I2、n型掺杂层N2、ZnO层、金属Al层、EVA层、背板层依次组成叠层结构,其中P1-I1-N1非晶硅电池为顶电池,以P2-I2-N2微晶硅电池为底电池,并采用底电池电流限制结构。本发明优点是:在非晶硅/微晶硅过渡区靠近非晶硅制备的非晶硅材料,其光吸收系数和光敏性与常规非晶硅相近,由于在非晶网络中嵌入纳米硅晶粒,结构致密光衰退减小,并且采用底电池电流限制,匹配度好;该工艺制备过程简单,易于控制,电池的稳定性高。
A highly stable amorphous silicon/microcrystalline silicon stacked solar cell, consisting of a substrate, a transparent conductive film, a p-type doped window layer P 1 , and an amorphous silicon/microcrystalline silicon transition region close to the intrinsic Layer I 1 , n-type doped layer N 1 , p-type doped window layer P 2 , microcrystalline silicon intrinsic layer I 2 , n-type doped layer N 2 , ZnO layer, metal Al layer, EVA layer, backplane The layers are sequentially formed into a laminated structure, wherein the P 1 -I 1 -N 1 amorphous silicon cell is the top cell, the P 2 -I 2 -N 2 microcrystalline silicon cell is the bottom cell, and the bottom cell current limiting structure is adopted. The advantage of the present invention is that the light absorption coefficient and photosensitivity of the amorphous silicon material prepared close to the amorphous silicon in the amorphous silicon/microcrystalline silicon transition region are similar to those of conventional amorphous silicon, because nano silicon crystals are embedded in the amorphous network Particles, compact structure, reduced light decay, and the use of the bottom cell current limit, good matching; the process is simple to prepare, easy to control, and the stability of the battery is high.
Description
技术领域 technical field
本发明涉及硅基薄膜太阳电池制备技术,具体而言是一种高稳定性非晶硅/微晶硅叠层太阳电池及制备方法。 The invention relates to a silicon-based thin-film solar cell preparation technology, in particular to a high-stability amorphous silicon/microcrystalline silicon stacked solar cell and a preparation method.
背景技术 Background technique
太阳能是用之不竭的可再生能源,对环境保护具有十分重要的意义,太阳能的有效利用已经成为人类的共识。太阳能的利用,尤其是光伏发电技术,是最有希望的可再生能源技术。国际上许多国家都把太阳能光伏发电的商业化开发和利用作为重要的发展方向。 Solar energy is an inexhaustible renewable energy source, which is of great significance to environmental protection. The effective use of solar energy has become the consensus of mankind. The use of solar energy, especially photovoltaic power generation technology, is the most promising renewable energy technology. Many countries in the world regard the commercial development and utilization of solar photovoltaic power generation as an important development direction.
硅基薄膜太阳电池除了具有节省原材料、耗能低、成本低、易于大面积生产的优势外,还有着原材料丰富、无污染等优点。非晶硅太阳电池由于具有光致衰退效应,因而限制了其应用。微晶硅太阳电池的材料有序性得到提高,衰退很小,并且和非晶硅结合可以有效的扩展光谱响应范围,提高电池光电转换效率,降低电池成本。非晶硅/微晶硅叠层太阳电池是由两个单结子电池串连构成,电池总电流受两个子电池电流的最小值限制,顶电池和底电池都可能成为叠层电池电流限制者,为了获得最大的电池功率输出,顶底电池电流必须满足匹配关系。光照后,顶电池和底电池都有一定程度的衰退,非晶硅顶电池的衰退率大于微晶硅底电池,叠层电池整体不再符合电流匹配条件。 In addition to the advantages of saving raw materials, low energy consumption, low cost, and easy large-scale production, silicon-based thin-film solar cells also have the advantages of abundant raw materials and no pollution. Due to the light-induced degradation effect of amorphous silicon solar cells, its application is limited. The material order of microcrystalline silicon solar cells is improved, and the degradation is small, and the combination with amorphous silicon can effectively expand the spectral response range, improve the photoelectric conversion efficiency of the cell, and reduce the cost of the cell. The amorphous silicon/microcrystalline silicon tandem solar cell is composed of two single-junction sub-cells connected in series. The total current of the battery is limited by the minimum value of the current of the two sub-cells. Both the top cell and the bottom cell may become the current limiter of the tandem cell. In order to obtain the maximum battery power output, the top and bottom battery currents must satisfy the matching relationship. After exposure to light, both the top cell and the bottom cell have a certain degree of degradation, the degradation rate of the amorphous silicon top cell is greater than that of the microcrystalline silicon bottom cell, and the laminated cell as a whole no longer meets the current matching conditions.
现有硅基薄膜太阳电池已实现产业化,考虑到进一步提高硅基薄膜电池效率和降低成本,因此减小非晶硅/微晶硅叠层太阳电池的衰退率、提高电池的稳定效率具有很重要的意义。 The existing silicon-based thin-film solar cells have been industrialized. Considering the further improvement of silicon-based thin-film cell efficiency and cost reduction, it is of great significance to reduce the degradation rate of amorphous silicon/microcrystalline silicon stacked solar cells and improve the stable efficiency of cells. Significance.
发明内容 Contents of the invention
本发明的目的是针对上述存在问题,提供一种高稳定性非晶硅/微晶硅叠层太阳电池及制备方法,该方法可以在不添加任何设备、原料的情况下,通过调整生产工艺就可提高电池的稳定性即提高太阳电池的稳定效率、降低电池成本。 The object of the present invention is to address the above existing problems, to provide a highly stable amorphous silicon/microcrystalline silicon stacked solar cell and its preparation method, which can be realized by adjusting the production process without adding any equipment or raw materials. The stability of the battery can be improved, that is, the stable efficiency of the solar battery can be improved, and the cost of the battery can be reduced.
本发明的技术方案: Technical scheme of the present invention:
一种高稳定性非晶硅/微晶硅叠层太阳电池,由衬底、透明导电膜TCO、p型掺杂窗口层P1、非晶硅/微晶硅过渡区靠近非晶硅的本征层I1、n型掺杂层N1、p型掺杂窗口层P2、微晶硅本征层I2、n型掺杂层N2、ZnO层、金属Al层、EVA层和背板层组成并依次组成叠层结构,其中以P1-I1-N1非晶硅电池作为叠层电池的顶电池,以P2-I2-N2微晶硅电池作为叠层电池的底电池且底电池为电流限制结构,以ZnO和Al作为复合背电极。 A high-stability amorphous silicon/microcrystalline silicon stacked solar cell consists of a substrate, a transparent conductive film TCO, a p-type doped window layer P 1 , and an amorphous silicon/microcrystalline silicon transition region close to the amorphous silicon itself. Intrinsic layer I 1 , n-type doped layer N 1 , p-type doped window layer P 2 , microcrystalline silicon intrinsic layer I 2 , n-type doped layer N 2 , ZnO layer, metal Al layer, EVA layer and back The plate layer is composed and sequentially formed a stacked structure, in which the P 1 -I 1 -N 1 amorphous silicon cell is used as the top cell of the stacked cell, and the P 2 -I 2 -N 2 microcrystalline silicon cell is used as the top cell of the stacked cell The bottom cell and the bottom cell are current-limiting structures, and ZnO and Al are used as composite back electrodes.
所述衬底为玻璃衬底或者透明塑料衬底。 The substrate is a glass substrate or a transparent plastic substrate.
所述背板层为玻璃或塑料。 The backplane layer is glass or plastic.
所述底电池电流限制结构通过采用PECVD法制备的非晶硅顶电池的电流密度大于微晶硅底电池的电流密度5~20%而形成的。 The current limiting structure of the bottom cell is formed by using the PECVD method to prepare the current density of the amorphous silicon top cell which is 5-20% higher than that of the microcrystalline silicon bottom cell.
一种所述高稳定性非晶硅/微晶硅叠层太阳电池的制备方法,步骤如下: A method for preparing the highly stable amorphous silicon/microcrystalline silicon stacked solar cell, the steps are as follows:
1)在激光刻划出图形的透明导电膜衬底上,采用PECVD法制备非晶硅P1-I1-N1顶电池,其中在非晶硅/微晶硅过渡区靠近非晶硅一侧制备I1层; 1) Amorphous silicon P 1 -I 1 -N 1 top cells are prepared by PECVD on a transparent conductive film substrate with patterns drawn by laser, in which the amorphous silicon/microcrystalline silicon transition region is close to the amorphous silicon- Side preparation I 1 layer;
2)采用PECVD法在非晶硅P1-I1-N1顶电池上制备P2-I2-N2微晶硅底电池,得到叠层电池,用激光刻划隔离出10~150子电池; 2) Prepare a P 2 -I 2 -N 2 microcrystalline silicon bottom cell on an amorphous silicon P 1 -I 1 -N 1 top cell by PECVD method to obtain a stacked cell, and isolate 10~150 cells by laser scribing Battery;
3)用PVD法或者MOCVD法制备ZnO和Al复合背电极,并用激光刻划隔离; 3) Prepare ZnO and Al composite back electrode by PVD method or MOCVD method, and use laser marking to isolate;
4)制作电池绝缘边并焊接引线,层压封装电池即可。 4) Make the insulating side of the battery and weld the leads, and then laminate the battery.
所述采用PECVD法制备非晶硅I1层的工艺参数为:辉光激发频率13.56~100MHz、反应气体压强0.1~10 Torr、辉光功率密度10~1000mW/cm2、氢稀释硅烷浓度SC<15%、沉积温度100~300℃、I1层厚度100~50nm。 The process parameters for preparing the amorphous silicon I1 layer by the PECVD method are: glow excitation frequency 13.56-100 MHz, reaction gas pressure 0.1-10 Torr, glow power density 10-1000 mW/cm 2 , hydrogen-diluted silane concentration SC< 15%, deposition temperature 100~300℃, I 1 layer thickness 100~50nm.
所述采用PECVD法制备微晶硅I2层的工艺参数为:辉光激发频率13.56~100MHz、反应气体压强0.1~10 Torr、辉光功率密度10~1000mW/ cm2、沉积温度100~300℃、氢稀释硅烷浓度SC<10%、I2层厚度为500~3000nm。
The process parameters for preparing the microcrystalline silicon I2 layer by PECVD method are: glow excitation frequency 13.56~100MHz, reaction gas pressure 0.1~10 Torr,
本发明有益效果是: The beneficial effects of the present invention are:
在非晶硅/微晶硅过渡区靠近非晶硅一侧制备的非晶硅材料,其光吸收系数和光敏性与常规非晶硅相近,由于在非晶网络中嵌入纳米硅晶粒,其电子迁移率有较大提高、悬挂键更少,光衰退减小,稳定性大大提高。采用底电池电流限制结构可以改善光致衰退后的电流匹配,提高非晶硅/微晶硅叠层太阳电池的稳定效率。仅改变部分工艺步骤,就可移植到现有的硅基薄膜电池生产线上,整个工艺制备过程简单,易于控制,电池的稳定性高。 The light absorption coefficient and photosensitivity of the amorphous silicon material prepared on the side of the amorphous silicon/microcrystalline silicon transition region close to the amorphous silicon are similar to those of conventional amorphous silicon. The electron mobility is greatly improved, the dangling bonds are less, the light decay is reduced, and the stability is greatly improved. The use of the current limiting structure of the bottom cell can improve the current matching after light-induced degradation, and improve the stable efficiency of the amorphous silicon/microcrystalline silicon stacked solar cell. Only by changing some process steps, it can be transplanted to the existing silicon-based thin film battery production line. The whole process is simple and easy to control, and the battery has high stability.
附图说明 Description of drawings
附图为该非晶硅/微晶硅叠层太阳电池的结构示意图。 The accompanying drawing is a schematic structural view of the amorphous silicon/microcrystalline silicon laminated solar cell.
图中:1.衬底 2. 透明导电膜TCO 3. p型掺杂窗口层 In the figure: 1. Substrate 2. Transparent conductive film TCO 3. P-type doped window layer
4. 非晶硅/微晶硅过渡区靠近非晶硅的本征层 5. n型掺杂层 4. The amorphous silicon/microcrystalline silicon transition region is close to the intrinsic layer of amorphous silicon 5. n-type doped layer
6. p型掺杂窗口层 7.微晶硅本征层 8. n型掺杂层 9. ZnO层 6. p-type doped window layer 7. microcrystalline silicon intrinsic layer 8. n-type doped layer 9. ZnO layer
10. 金属Al层 11. EVA层 12. 背板层。
10.
具体实施方式 Detailed ways
下面结合附图和具体实施例对本发明技术方案作进一步说明。 The technical solution of the present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
一种非晶硅/微晶硅叠层太阳电池,结构如附图所示,由衬底1、透明导电膜TCO 2、p型掺杂窗口层P1 3、非晶硅/微晶硅过渡区靠近非晶硅的本征层I1 4、n型掺杂层N1 5、p型掺杂窗口层P2 6、微晶硅本征层I2 7、n型掺杂层N2 8、ZnO层9、金属Al层10、EVA层11和背板层12组成并依次组成叠层结构,其中以P1-I1-N1非晶硅电池作为叠层电池的顶电池,以P2-I2-N2微晶硅电池作为叠层电池的底电池且底电池为电流限制结构,以ZnO和Al作为复合背电极。
An amorphous silicon/microcrystalline silicon stacked solar cell, the structure of which is shown in the accompanying drawings, consists of a substrate 1, a transparent conductive film TCO 2, a p-type doped window layer P 1 3, and an amorphous silicon/microcrystalline silicon transition Intrinsic layer I 1 4 close to amorphous silicon, n-type doped layer N 1 5, p-type doped window layer P 2 6, microcrystalline silicon intrinsic layer I 2 7, n-type doped layer N 2 8 , ZnO layer 9,
制备步骤: Preparation steps:
1)在激光刻划出图形的透明导电膜衬底上采用PECVD法制备非晶硅P1-I1-N1顶电池,其中在非晶硅/微晶硅过渡区靠近非晶硅一侧制备I1层; 1) Amorphous silicon P 1 -I 1 -N 1 top cells are prepared by PECVD method on a transparent conductive film substrate with patterns drawn by laser, in which the amorphous silicon/microcrystalline silicon transition region is close to the amorphous silicon side Prepare I 1 layer;
2)采用PECVD法在非晶硅P1-I1-N1顶电池上制备P2-I2-N2微晶硅底电池,得到叠层电池,用激光刻划隔离出60个子电池; 2) Prepare a P 2 -I 2 -N 2 microcrystalline silicon bottom cell on an amorphous silicon P 1 -I 1 -N 1 top cell by PECVD method to obtain a stacked cell, and isolate 60 sub-cells by laser scribing;
3)用PVD法或者MOCVD法制备ZnO和Al复合背电极,并用激光刻划隔离; 3) Prepare ZnO and Al composite back electrode by PVD method or MOCVD method, and use laser marking to isolate;
4)制作电池绝缘边并焊接引线,层压封装电池即可。 4) Make the insulating side of the battery and weld the leads, and then laminate the battery.
在该实施例中,采用玻璃衬底,玻璃背板层,对非晶硅顶电池本征层I1时采用辉光激发频率40.68MHz,反应气体压强1.2 Torr,氢稀释硅烷浓度7%,辉光功率密度80mW/ cm2,处理样品温度180℃,薄膜厚度260nm。非晶硅顶电池的QE积分电流密度为8.23mA/cm2, 微晶硅底电池的QE积分电流密度为7.39mA/cm2。 In this embodiment, a glass substrate and a glass back plate layer are used. When the intrinsic layer I of the amorphous silicon top cell is 1 , the glow excitation frequency is 40.68 MHz, the reaction gas pressure is 1.2 Torr, the concentration of hydrogen-diluted silane is 7%, and the glow excitation frequency is 1.2 Torr. The optical power density is 80mW/cm 2 , the processing sample temperature is 180°C, and the film thickness is 260nm. The QE integral current density of the amorphous silicon top cell is 8.23mA/cm 2 , and the QE integral current density of the microcrystalline silicon bottom cell is 7.39mA/cm 2 .
该实施例制备的非晶硅/微晶硅叠层太阳电池,电池尺寸为0.79m2,电池的效率为7.16%,衰退率小于10%。 The amorphous silicon/microcrystalline silicon stacked solar cell prepared in this embodiment has a cell size of 0.79 m 2 , a cell efficiency of 7.16%, and a decay rate of less than 10%.
本发明的意义是在于沉积完pin型非晶硅顶电池时,通过调整氢稀释硅烷浓度,在非晶硅/微晶硅过渡区靠近非晶硅一侧沉积本征层I1,此处制备的非晶硅材料结构致密、光致衰退率小。采用微晶硅底电池电流限制,既非晶硅顶电池的电流大于微晶硅底电池电流,形成底电池电流限制结构,这样光致衰退后顶底电池的电流能够匹配,提高了电池的稳定性。 The significance of the present invention is that when the pin-type amorphous silicon top cell is deposited, the intrinsic layer I1 is deposited on the side of the amorphous silicon/microcrystalline silicon transition region close to the amorphous silicon by adjusting the hydrogen-diluted silane concentration. The amorphous silicon material has a compact structure and a small light-induced degradation rate. The current limit of the microcrystalline silicon bottom cell is used. The current of the amorphous silicon top cell is greater than the current of the microcrystalline silicon bottom cell, forming a current limiting structure of the bottom cell, so that the current of the top and bottom cells can be matched after light-induced degradation, and the stability of the battery is improved. sex.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011101862914A CN102244081B (en) | 2011-07-05 | 2011-07-05 | High-stability amorphous silicon/microcrystalline silicon tandem solar cell and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011101862914A CN102244081B (en) | 2011-07-05 | 2011-07-05 | High-stability amorphous silicon/microcrystalline silicon tandem solar cell and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102244081A CN102244081A (en) | 2011-11-16 |
CN102244081B true CN102244081B (en) | 2012-11-07 |
Family
ID=44962041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011101862914A Expired - Fee Related CN102244081B (en) | 2011-07-05 | 2011-07-05 | High-stability amorphous silicon/microcrystalline silicon tandem solar cell and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102244081B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018174263A (en) * | 2017-03-31 | 2018-11-08 | 株式会社カネカ | Photoelectric conversion device |
CN111554762B (en) * | 2020-05-05 | 2024-12-20 | 河南工业职业技术学院 | Amorphous silicon/microcrystalline silicon laminated solar cell and manufacturing method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5677236A (en) * | 1995-02-24 | 1997-10-14 | Mitsui Toatsu Chemicals, Inc. | Process for forming a thin microcrystalline silicon semiconductor film |
CN1893120A (en) * | 2005-06-30 | 2007-01-10 | 三洋电机株式会社 | Stacked photovoltaic device |
CN201708163U (en) * | 2010-03-12 | 2011-01-12 | 河南阿格斯新能源有限公司 | Thin-film solar cell film system and thin-film solar cell |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110088760A1 (en) * | 2009-10-20 | 2011-04-21 | Applied Materials, Inc. | Methods of forming an amorphous silicon layer for thin film solar cell application |
-
2011
- 2011-07-05 CN CN2011101862914A patent/CN102244081B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5677236A (en) * | 1995-02-24 | 1997-10-14 | Mitsui Toatsu Chemicals, Inc. | Process for forming a thin microcrystalline silicon semiconductor film |
CN1893120A (en) * | 2005-06-30 | 2007-01-10 | 三洋电机株式会社 | Stacked photovoltaic device |
CN201708163U (en) * | 2010-03-12 | 2011-01-12 | 河南阿格斯新能源有限公司 | Thin-film solar cell film system and thin-film solar cell |
Non-Patent Citations (3)
Title |
---|
B.Rech et al.Amorphous and microcrystalline silicon solar cells prepared at high deposition rates using RF (13.56MHz) plasma excitation frequencies.《Solar Energy Materials & Solar Cells》.2011,全文. |
B.Rech et al.Amorphous and microcrystalline silicon solar cells prepared at high deposition rates using RF (13.56MHz) plasma excitation frequencies.《Solar Energy Materials & * |
Solar Cells》.2011,全文. * |
Also Published As
Publication number | Publication date |
---|---|
CN102244081A (en) | 2011-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102157577B (en) | Nanometer silicon/monocrystalline silicon heterojunction radial nanowire solar cell and preparation method thereof | |
CN203481251U (en) | Thin film solar cell | |
CN102208477B (en) | Amorphous silicon/microcrystalline silicon laminated solar cell and preparation method thereof | |
CN103700714A (en) | High-efficiency PID (Potential Included Degradation) Free solar single crystal silicon cell passivation antireflection film | |
CN101556971A (en) | Back reflector for silicon-based thin film solar cell and preparation method thereof | |
CN102280500B (en) | Silicon quantum dot solar energy cell based on a heterojunction structure and preparation method thereof | |
CN103296145A (en) | Photonic crystal back reflector provided with adjustable forbidden band and applied to silicon-based thin-film solar cell | |
CN101510568A (en) | Amorphous silicon/dye-sensitized laminated thin film solar cell and preparation method thereof | |
CN102983215A (en) | Method for preparing silicon thin-film solar cells with silicon nano-wire structures | |
CN102916060B (en) | Silicon-based thin-film solar cell and preparation method thereof | |
CN103872167B (en) | Silicon-based thin-film solar battery and preparation method thereof | |
CN101257052A (en) | Window material for silicon-based thin film solar cell and preparation method thereof | |
CN104681654B (en) | A kind of double n-layer structure non-crystal silicon solar cells and preparation method thereof | |
CN101771097A (en) | Silicon substrate heterojunction solar cell with band gap being controllable | |
CN101431128B (en) | A kind of preparation method of amorphous silicon laminated solar cell | |
CN102244081B (en) | High-stability amorphous silicon/microcrystalline silicon tandem solar cell and manufacturing method thereof | |
CN101540345B (en) | Nanometer silica film three-layer stacked solar cell and preparation method thereof | |
CN202423352U (en) | Silicon-based dual-junction laminated solar cell | |
CN201699034U (en) | Silicon-based heterojunction solar battery | |
CN103280466B (en) | Based on the high reverse--bias height suede degree back electrode of AlOx/Ag/ZnO structure | |
CN102938430B (en) | Comprise the silica-based many knot stacked solar cell, cascade solar cells of flexible substrate and the manufacture method thereof in intermediate layer | |
CN102433545A (en) | Suede-structured ZnO film prepared by alternative growth technology and application thereof | |
CN101814554A (en) | Structural design method of film solar cell | |
CN101707219B (en) | Solar cell with intrinsic isolation structure and production method thereof | |
CN112366232B (en) | Heterojunction solar cell and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121107 Termination date: 20150705 |
|
EXPY | Termination of patent right or utility model |