[go: up one dir, main page]

CN102060984B - Composition for preparing amorphous copolyester - Google Patents

Composition for preparing amorphous copolyester Download PDF

Info

Publication number
CN102060984B
CN102060984B CN201010593531.8A CN201010593531A CN102060984B CN 102060984 B CN102060984 B CN 102060984B CN 201010593531 A CN201010593531 A CN 201010593531A CN 102060984 B CN102060984 B CN 102060984B
Authority
CN
China
Prior art keywords
cyclohexanedimethanol
amorphous copolyester
composition
series
diol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201010593531.8A
Other languages
Chinese (zh)
Other versions
CN102060984A (en
Inventor
范正欣
蔡育勋
洪启源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Priority to CN201010593531.8A priority Critical patent/CN102060984B/en
Publication of CN102060984A publication Critical patent/CN102060984A/en
Application granted granted Critical
Publication of CN102060984B publication Critical patent/CN102060984B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A composition for preparing amorphous copolyester is composed of diacid monomer and diol monomer. Wherein the diacid monomer comprises terephthalic acid (TPA) and the diol monomer comprises Ethylene Glycol (EG). Further, since the diol monomer includes 1, 3/1, 4-cyclohexanedimethanol (1, 3/1, 4-CHDM), when the amount of 1, 3/1, 4-cyclohexanedimethanol added is 20 to 100 mol% based on the diol equivalent, an amorphous polyester can be obtained.

Description

用于制备无定形共聚酯的组合物Compositions for the preparation of amorphous copolyesters

技术领域 technical field

本发明涉及一种无定形共聚酯(amorphous copolyester)及其应用,更具体地,本发明涉及一种具有相当宽广的无定形区域的无定形共聚酯及其应用。  The present invention relates to a kind of amorphous copolyester (amorphous copolyester) and application thereof, more particularly, the present invention relates to a kind of amorphous copolyester with quite broad amorphous region and application thereof. the

背景技术 Background technique

聚对苯二甲酸乙二酯(polyethylene terephthalate,PET)是由二酸(diacid)和二醇(diol)酯化聚合后的热塑性聚酯工程塑料。这种材料因为具有在机械特性和电气特性相当宽广、气体的阻隔力强、透光性佳、硬度、加工容易、价廉等优点,因此广泛应用于许多产业上。但因其分子结构具规则性,容易堆积形成结晶结构,进而影响其透光性、耐冲击性及染色性等。所以在许多高值产业方面处处可见无定形共聚酯的应用研究。  Polyethylene terephthalate (PET) is a thermoplastic polyester engineering plastic that is esterified and polymerized from diacid and diol. This material is widely used in many industries because of its wide range of mechanical and electrical properties, strong gas barrier force, good light transmission, hardness, easy processing, and low price. However, because of its regular molecular structure, it is easy to pile up to form a crystal structure, which in turn affects its light transmission, impact resistance and dyeability. Therefore, the application research of amorphous copolyester can be seen everywhere in many high-value industries. the

目前大多数无定形共聚酯主要以美国伊士曼公司(Eastman Kodak company)合成的1,4-环己烷二甲醇(1,4-cyclohexanedimethanol,缩写为1,4-CHDM)单体聚合的共聚酯高分子(又称为PETG)为主,或是以导入间苯二甲酸(isophthalic acid,IPA)聚合无定形共聚酯;而前者其无定形区相当的狭窄,只存在于1,4-CHDM单体添加量为20~40%。后者则由于导入IPA的缘故造成易脆进而影响其机械及加工性质。  At present, most amorphous copolyesters are mainly polymerized with 1,4-cyclohexanedimethanol (1,4-cyclohexanedimethanol, abbreviated as 1,4-CHDM) monomer synthesized by Eastman Kodak company. Copolyester polymers (also known as PETG) are the main polymers, or amorphous copolyesters are polymerized by introducing isophthalic acid (IPA); the former has a rather narrow amorphous region, which only exists in 1, The addition amount of 4-CHDM monomer is 20-40%. The latter is brittle due to the introduction of IPA, which affects its mechanical and processing properties. the

发明内容 Contents of the invention

本发明提供一种无定形共聚酯,以获得合成简易且无定形区域宽广的材料。  The invention provides an amorphous copolyester to obtain a material with simple synthesis and wide amorphous region. the

本发明还提供一种无定形共聚酯,具有宽广的无定形区域,以利各种成型加工应用。  The present invention also provides an amorphous copolyester with a wide amorphous region to facilitate various molding applications. the

本发明还提供以该无定形共聚酯为材料的容器、片状物及薄膜。  The invention also provides containers, sheets and films made of the amorphous copolyester. the

本发明提出一种无定形共聚酯,其是由二酸单体与二醇单体合成的,该无定形共聚酯包括式(1)所示的结构:  The present invention proposes an amorphous copolyester, which is synthesized by a diacid monomer and a diol monomer, and the amorphous copolyester comprises a structure shown in formula (1):

其中,二酸单体包括对苯二甲酸(terephthalic acid,缩写为TPA),而二醇单体包括乙二醇(ethylene glycol,缩写为EG)和1,3/1,4-环己烷二甲醇(1,3/1,4-cyclohexanedimethanol,缩写为1,3/1,4-CHDM),其中1,3/1,4-环己烷二甲醇的加入量为二醇当量的20~100摩尔%。  Among them, the diacid monomer includes terephthalic acid (abbreviated as TPA), and the diol monomer includes ethylene glycol (abbreviated as EG) and 1,3/1,4-cyclohexane di Methanol (1,3/1,4-cyclohexanedimethanol, abbreviated as 1,3/1,4-CHDM), in which the amount of 1,3/1,4-cyclohexanedimethanol added is 20 to 100 equivalents of diol mol %. the

在本发明的实施例之一中,二酸单体与二醇单体的合成反应中还包括加入缩聚催化剂。而且,该缩聚催化剂为25~500ppm,并且为选自锑系、钛系、锗系、锡系、镓系、铝系及其组合中一种或一种以上的金属催化剂。  In one of the embodiments of the present invention, the synthesis reaction of the diacid monomer and the diol monomer further includes adding a polycondensation catalyst. Moreover, the polycondensation catalyst is 25-500 ppm, and is one or more metal catalysts selected from antimony-based, titanium-based, germanium-based, tin-based, gallium-based, aluminum-based and combinations thereof. the

在本发明的实施例之一中,所述无定形共聚酯的本征粘度大于0.5dL/g。  In one of the embodiments of the present invention, the intrinsic viscosity of the amorphous copolyester is greater than 0.5 dL/g. the

本发明还提出一种无定形共聚酯,其是由二酸单体与二醇单体合成的,该无定形共聚酯包括式(2)所示的结构:  The present invention also proposes a kind of amorphous copolyester, which is synthesized by diacid monomer and diol monomer, and this amorphous copolyester comprises the structure shown in formula (2):

其中,二酸单体包括对苯二甲酸(TPA)和5-叔丁基间苯二甲酸(5-tert-butylisophthalic acid,5tBIA);二醇单体包括乙二醇(EG)和1,3/1,4-环己烷二甲醇(1,3/1,4-CHDM),而且以二酸当量计的5tBIA的加入量和以二醇当量计的1,3/1,4-环己烷二甲醇的加入量合计为20~100摩尔%。  Among them, diacid monomers include terephthalic acid (TPA) and 5-tert-butylisophthalic acid (5-tert-butylisophthalic acid, 5tBIA); diol monomers include ethylene glycol (EG) and 1,3 /1,4-cyclohexanedimethanol (1,3/1,4-CHDM), and the amount of 5tBIA added in terms of diacid equivalents and 1,3/1,4-cyclohexane in terms of diol equivalents The added amount of alkanedimethanol is 20-100 mol% in total. the

在本发明的另一实施例中,所述二酸单体与二醇单体的合成反应中还包括加入缩聚催化剂。而且,该缩聚催化剂为25~500ppm,其为选自锑系、钛系、锗系、锡系、镓系、铝系及其组合中一种或一种以上的金属催化剂。  In another embodiment of the present invention, the synthesis reaction of the diacid monomer and the diol monomer further includes adding a polycondensation catalyst. Moreover, the polycondensation catalyst is 25-500 ppm, which is one or more metal catalysts selected from antimony-based, titanium-based, germanium-based, tin-based, gallium-based, aluminum-based and combinations thereof. the

在本发明的另一实施例中,所述无定形共聚酯的本征粘度大于0.5dL/g。  In another embodiment of the present invention, the intrinsic viscosity of the amorphous copolyester is greater than 0.5 dL/g. the

本发明还提出一种容器,其包括以上述两种无定形共聚酯之一作为材料。而且,上述容器可以是食品容器、化妆品容器或者药品容器。  The present invention also proposes a container comprising one of the above two amorphous copolyesters as a material. Also, the above-mentioned container may be a food container, a cosmetic container, or a medicine container. the

本发明还提出一种片状物,其包括以上述两种无定形共聚酯作为材料。而且,上述片状物可为板材或片材。  The present invention also proposes a sheet, which includes the above two amorphous copolyesters as materials. Also, the above-mentioned sheet-like object may be a plate or a sheet. the

本发明还提出一种薄膜,其包括以上述两种无定形共聚酯作为材料。而且,上述薄膜可为包装材料或收缩膜。  The present invention also proposes a film comprising the above two amorphous copolyesters as materials. Also, the above-mentioned film may be a packaging material or a shrink film. the

本发明因采用1,3/1,4环己烷二甲醇(1,3/1,4-CHDM)作为合成无定形共聚酯的单体之一,因此能获得具有相当宽广的无定形区域之共聚酯。此外,本发明除上述1,3/1,4环己烷二甲醇之外,还可再加入5-叔丁基间苯二甲酸(5tBIA)单体来制备无定形共聚酯,也因而得到有效防止玻璃转化温度下降的效果。而且本发明的无定形共聚酯能广泛应用于各种产业上,尤其适合制作容器、薄膜与片状物。  Because the present invention adopts 1,3/1,4-cyclohexanedimethanol (1,3/1,4-CHDM) as one of the monomers for synthesizing amorphous copolyester, it can obtain a rather wide amorphous region of copolyester. In addition, in addition to the above-mentioned 1,3/1,4 cyclohexane dimethanol, the present invention can also add 5-tert-butyl isophthalic acid (5tBIA) monomer to prepare amorphous copolyester, and thus obtain Effectively prevents the glass transition temperature from dropping. Moreover, the amorphous copolyester of the present invention can be widely used in various industries, and is especially suitable for making containers, films and sheets. the

附图说明 Description of drawings

图1是依照本发明第一实施例的无定形共聚酯之1,3/1,4-环己烷二甲醇(1,3/1,4-CHDM)加入量与熔化温度的关系曲线图。  Fig. 1 is a graph showing the relationship between the amount of 1,3/1,4-cyclohexanedimethanol (1,3/1,4-CHDM) added and the melting temperature of the amorphous copolyester according to the first embodiment of the present invention . the

具体实施方式 Detailed ways

为了使本发明的上述特征和优点能更明显易懂,下文特举优选实施例,并配合所附图式,作详细说明如下。  In order to make the above-mentioned features and advantages of the present invention more comprehensible, preferred embodiments will be described in detail below together with the accompanying drawings. the

第一实施例:  First embodiment:

第一实施例的无定形共聚酯是由一种二酸单体与两种二醇单体合成的,其结构式如下式(1)所示:  The amorphous copolyester of the first embodiment is synthesized by a kind of diacid monomer and two kinds of diol monomers, and its structural formula is as shown in formula (1):

其中,二酸单体包括对苯二甲酸(terephthalic acid,缩写为TPA),而二醇单体包括乙二醇(ethylene glycol,缩写为EG)和1,3/1,4-环己烷二甲醇(1,3/1,4-cyclohexanedimethanol,缩写为1,3/1,4-CHDM),其中1,3/1,4-环己烷二甲醇的加入量为二醇当量的20~100摩尔%。此外,上述二酸单体与二醇单体一般需经两阶段酯化、缩聚而合成,且在反应过程中需加入缩聚催化剂, 其含量约25~500ppm不等。而在此采用的缩聚催化剂例如为选自锑系、钛系、锗系、锡系、镓系、铝系及其组合中一种或一种以上的金属催化剂;优选为醋酸锑与钛锑合金催化剂。至于式(1)中的A和C则是根据二酸单体及二醇单体的添加量而定。  Among them, the diacid monomer includes terephthalic acid (abbreviated as TPA), and the diol monomer includes ethylene glycol (abbreviated as EG) and 1,3/1,4-cyclohexane di Methanol (1,3/1,4-cyclohexanedimethanol, abbreviated as 1,3/1,4-CHDM), in which the amount of 1,3/1,4-cyclohexanedimethanol added is 20 to 100 equivalents of diol mol %. In addition, the above-mentioned diacid monomers and diol monomers generally need to be synthesized through two-stage esterification and polycondensation, and a polycondensation catalyst needs to be added during the reaction process, and its content varies from about 25 to 500 ppm. The polycondensation catalyst used here is, for example, one or more metal catalysts selected from antimony series, titanium series, germanium series, tin series, gallium series, aluminum series and combinations thereof; preferably antimony acetate and titanium antimony alloy catalyst. As for A and C in the formula (1), it depends on the addition amount of the diacid monomer and the diol monomer. the

此外,上述1,3/1,4-环己烷二甲醇可购自陶氏化学国际有限公司(Dow Chemical Company)提供的UNOXOLTM34Diol,其成分组成如下:  In addition, the above-mentioned 1,3/1,4-cyclohexanedimethanol can be purchased from UNOXOL TM 34Diol provided by Dow Chemical International Co., Ltd. (Dow Chemical Company), and its composition is as follows:

UNOXOLTM34Diol成分表:  UNOXOL TM 34Diol ingredient list:

关于第一实施例中以式(1)表示的无定形共聚酯,其合成途径如下:  About the amorphous copolyester represented by formula (1) in the first embodiment, its synthesis route is as follows:

下表一则是以不同单体组成比例所合成之无定形共聚酯所得到的本征粘度(intrinsic viscosity)及其热性质,其中T代表对苯二甲酸(TPA)、E代表乙二醇(EG)、C代表1,3/1,4-环己烷二甲醇(1,3/1,4-CHDM)。而且以「PETG1.3/1.4」代表用对苯二甲酸、乙二醇与1,3/1,4-环己烷二甲醇合成的无定形共聚酯。  The following table 1 shows the intrinsic viscosity (intrinsic viscosity) and thermal properties of amorphous copolyesters synthesized with different monomer composition ratios, where T stands for terephthalic acid (TPA) and E stands for ethylene glycol (EG), C represents 1,3/1,4-cyclohexanedimethanol (1,3/1,4-CHDM). And "PETG 1.3/1.4 " represents an amorphous copolyester synthesized with terephthalic acid, ethylene glycol and 1,3/1,4-cyclohexanedimethanol.

表一  Table I

表一中的本征粘度是利用四氯乙烷(tetrachloroethane)与酚(phenol)重量 比40∶60混合的溶液,在25℃下以乌氏粘度计(Ubbelohde viscometer)进行测试所得到的值。从表一可知,第一实施例的无定形共聚酯在不同组成下的本征粘度(intrinsic viscosity)均大于0.5dL/g。  The intrinsic viscosity in Table 1 is the value obtained by using a solution mixed with tetrachloroethane (tetrachloroethane) and phenol (phenol) in a weight ratio of 40:60 at 25°C with an Ubbelohde viscometer (Ubbelohde viscometer). It can be seen from Table 1 that the intrinsic viscosity (intrinsic viscosity) of the amorphous copolyester in the first embodiment is greater than 0.5 dL/g under different compositions. the

有关温度方面的量测则是利用微差式量热计,以每分钟20℃速率分析其热性质,如表一中的熔化温度(Tm)。从表一可知,当1,3/1,4-环己烷二甲醇的摩尔%(以C表示)为20时的Tm为196℃,之后再增加1,3/1,4-环己烷二甲醇的量就无法测出其熔解温度;也就是说,1,3/1,4-环己烷二甲醇的加入量为二醇当量的20摩尔%以上,即可合成本发明第一实施例的非结晶状态的共聚酯。  For temperature measurement, a differential calorimeter was used to analyze its thermal properties at a rate of 20° C. per minute, such as the melting temperature (T m ) in Table 1. It can be seen from Table 1 that when the mole % of 1,3/1,4-cyclohexanedimethanol (expressed as C) is 20, the T m is 196°C, and then increase 1,3/1,4-cyclohexane The amount of alkane dimethanol just can't measure its melting temperature; Examples of non-crystalline copolyesters.

此外,将表一的1,3/1,4-环己烷二甲醇(1,3/1,4-CHDM)加入量与熔解温度(Tm)的关系作成曲线图,则可更清楚看出本发明的无定形共聚酯聚有宽广的无定形区域(如图1)。  In addition, the relationship between the addition amount of 1,3/1,4-cyclohexanedimethanol (1,3/1,4-CHDM) and the melting temperature (T m ) in Table 1 can be seen more clearly The amorphous copolyesters of the present invention have broad amorphous regions (as shown in Figure 1).

第二实施例:  The second embodiment:

第二实施例的无定形共聚酯是由两种二酸单体与两种二醇单体合成的,其结构式如下式(2)所示:  The amorphous copolyester of the second embodiment is synthesized by two kinds of diacid monomers and two kinds of diol monomers, and its structural formula is as shown in formula (2):

其中,二酸单体包括对苯二甲酸(TPA)和5-叔丁基间苯二甲酸(5tBIA)、二醇单体包括乙二醇(EG)和1,3/1,4-环己烷二甲醇(1,3/1,4-CHDM),其中以二酸当量计的5tBIA的加入量和以二醇当量计的1,3/1,4-环己烷二甲醇的加入量合计为20~100摩尔%,且如果上述二酸单体与二醇单体是经两阶段酯化、缩聚而合成的,则在反应过程中需加入缩聚催化剂,其含量约25~500ppm不等。而在此采用的缩聚催化剂例如为选自锑系、钛系、锗系、锡系、镓系、铝系及其组合中一种或一种以上的金属催化剂;优选为醋酸锑与钛锑合金催化剂。而且,式(2)中的A、B、C和D是根据二酸单体及二醇单体的添加量而定。而上述1,3/1,4-环己烷二甲醇同样是购自陶氏化学国际有限公司(Dow Chemical Company)提供的UNOXOLTM34Diol。  Among them, diacid monomers include terephthalic acid (TPA) and 5-tert-butylisophthalic acid (5tBIA), diol monomers include ethylene glycol (EG) and 1,3/1,4-cyclohexane Alkane dimethanol (1,3/1,4-CHDM), wherein the addition of 5tBIA in terms of diacid equivalents and the addition of 1,3/1,4-cyclohexanedimethanol in terms of diol equivalents are total It is 20-100 mol%, and if the above-mentioned diacid monomer and diol monomer are synthesized through two-stage esterification and polycondensation, a polycondensation catalyst needs to be added during the reaction process, and its content is about 25-500ppm. The polycondensation catalyst used here is, for example, one or more metal catalysts selected from antimony series, titanium series, germanium series, tin series, gallium series, aluminum series and combinations thereof; preferably antimony acetate and titanium antimony alloy catalyst. In addition, A, B, C, and D in formula (2) are determined according to the addition amount of a diacid monomer and a diol monomer. The aforementioned 1,3/1,4-cyclohexanedimethanol was also purchased from UNOXOL 34Diol provided by Dow Chemical International Co., Ltd. (Dow Chemical Company).

关于第二实施例中以式(2)表示的无定形共聚酯之合成途径如下:  About the synthetic approach of the amorphous copolyester represented by formula (2) in the second embodiment is as follows:

下表二是以不同单体组成比例所合成的无定形共聚酯所得到的本征粘度及其热性质,其中T代表对苯二甲酸(TPA)、tBI代表5-叔丁基间苯二甲酸(5tBIA)、E代表乙二醇(EG)、C代表1,3/1,4-环己烷二甲醇(1,3/1,4-CHDM)。而且以「PETG1.3/1.4B」代表用以上四种单体合成的无定形共聚酯。而表二中的本征粘度与熔解温度(Tm)是用和第一实施例相同的方式测得。  Table 2 below shows the intrinsic viscosity and thermal properties of amorphous copolyesters synthesized with different monomer composition ratios, where T stands for terephthalic acid (TPA), and tBI stands for 5-tert-butylisophthalic acid Formic acid (5tBIA), E represents ethylene glycol (EG), and C represents 1,3/1,4-cyclohexanedimethanol (1,3/1,4-CHDM). And "PETG 1.3/1.4 B" represents the amorphous copolyester synthesized with the above four monomers. The intrinsic viscosity and melting temperature (T m ) in Table 2 are measured in the same manner as in the first embodiment.

表二  Table II

从表二可知,其中的本征粘度均大于0.5dL/g。而当1,3/1,4-环己烷二甲醇的摩尔%(以C表示)为10、5-叔丁基间苯二甲酸的摩尔%(以tBI表示)为10时,就已经无法测出Tm;也就是说,当C和tBI的总和大于等于20摩尔% 时,即可合成本发明第二实施例之无定形共聚酯。  It can be seen from Table 2 that the intrinsic viscosity is greater than 0.5dL/g. And when 1,3/1, the mol% (expressed in C) of 4-cyclohexanedimethanol is 10, the mol% (expressed in tBI) of 5-tert-butyl isophthalic acid is 10, just can't Measure T m ; that is, when the sum of C and tBI is greater than or equal to 20 mole %, the amorphous copolyester of the second embodiment of the present invention can be synthesized.

至于表二中的玻璃转换温度(Tg),也可利用微差式量热计以每分钟20℃速率分析得到。从表二可知,当C和tBI的总和大于等于20摩尔%,无定形共聚酯之玻璃转换温度并不会降低。  As for the glass transition temperature (T g ) in Table 2, it can also be obtained by using a differential calorimeter at a rate of 20° C. per minute. It can be seen from Table 2 that when the sum of C and tBI is greater than or equal to 20 mol%, the glass transition temperature of the amorphous copolyester will not decrease.

由于上述第一与第二实施例的无定形共聚酯都可以用传统的成型方法进行加工,因此可广泛应用于容器、片状物、薄膜材料等。  Since the above-mentioned amorphous copolyesters of the first and second embodiments can be processed by conventional molding methods, they can be widely used in containers, sheets, film materials and the like. the

以容器来说,本发明的无定形共聚酯能改善传统聚酯容器的韧性,尤其适合制造大容量厚度厚的透明容器,且因其高透明度、不易破碎、易于表面加工等优点,并在高1,3/1,4-环己烷二甲醇含量下更具有耐化性与耐γ射线等优点,因此可应用于食品、药品或化妆品等容器领域。甚至可在本发明的无定形共聚酯中添加各种添加剂,如脱模剂、染料等,根据不同应用领域的要求采用不同的改质配方。  In terms of containers, the amorphous copolyester of the present invention can improve the toughness of traditional polyester containers, and is especially suitable for the manufacture of large-capacity, thick transparent containers, and because of its high transparency, unbreakable, easy surface processing, etc., it is also used in The high content of 1,3/1,4-cyclohexanedimethanol has the advantages of chemical resistance and γ-ray resistance, so it can be used in the fields of containers for food, medicine or cosmetics. Various additives can even be added to the amorphous copolyester of the present invention, such as release agents, dyes, etc., and different modification formulas can be used according to the requirements of different application fields. the

以片状物(sheet)来说,因为本发明的无定形共聚酯聚具有韧性较佳、透明度高、不易破碎等优点,所以也可应用在制作板材或片材。  Taking sheets as an example, because the amorphous copolyester of the present invention has the advantages of better toughness, high transparency, and not easy to break, it can also be used to make boards or sheets. the

以薄膜来说,因为本发明的无定形共聚酯具有高吸塑力、高透明度、高光泽、低雾度、易于印刷、不易脱落及储存时自然收缩率低等优点,所以可广泛应用在制作如包装材料或收缩膜等片状物。  In terms of film, because the amorphous copolyester of the present invention has the advantages of high plastic absorption, high transparency, high gloss, low haze, easy to print, not easy to fall off and low natural shrinkage during storage, it can be widely used in Production of sheets such as packaging material or shrink film. the

综上所述,本发明因为用1,3/1,4环己烷二甲醇(1,3/1,4-CHDM)作为合成无定形共聚酯的单体之一,因此能获得具有相当宽广的无定形区域之共聚酯。同时,本发明还可再加入5-叔丁基间苯二甲酸(5tBIA)单体来制备无定形共聚酯,所以还可得到有效防止玻璃转化温度下降的效果。而本发明的无定形共聚酯因为本身在材料方面具有多项优点,因此可用于制作各种容器或是如包装材料或收缩膜等的片状物。  In summary, the present invention can obtain a compound with considerable A copolyester with broad amorphous domains. At the same time, the present invention can also add 5-tert-butylisophthalic acid (5tBIA) monomer to prepare amorphous copolyester, so the effect of effectively preventing the glass transition temperature from falling can also be obtained. The amorphous copolyester of the present invention can be used to make various containers or sheets such as packaging materials or shrink films because it has many advantages in terms of materials. the

虽然本发明已以优选实施例揭露如上,然其并非用以限定本发明,任何技术领域中的技术人员,在不脱离本发明之精神和范围内,当可作些许之更动与润饰,因此本发明之保护范围当以权利要求书所界定的范围为准。  Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Those skilled in the art may make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention shall be determined by the scope defined in the claims. the

Claims (8)

1.一种用于制备无定形共聚酯的组合物,包括二酸单体与二醇单体,其特征在于:1. A composition for preparing amorphous copolyesters, comprising diacid monomers and diol monomers, characterized in that: 该二酸单体包括对苯二甲酸(TPA),对苯二甲酸的加入量为100摩尔%;The diacid monomer comprises terephthalic acid (TPA), and the addition amount of terephthalic acid is 100 mole %; 该二醇单体包括乙二醇(EG)与1,3/1,4-环己烷二甲醇(1,3/1,4-CHDM)的混合物,乙二醇(EG)与1,3/1,4-环己烷二甲醇(1,3/1,4-CHDM)的加入量合计为100摩尔%,其中1,3/1,4-环己烷二甲醇的混合物的加入量为二醇当量的20~100摩尔%,1,3/1,4-环己烷二甲醇的混合物由顺1,3-环己烷二甲醇32.8%、反1,3-环己烷二甲醇24%、顺1,4-环己烷二甲醇13%以及反1,4-环己烷二甲醇30.2%组成,上述1,3/1,4-环己烷二甲醇的混合物为陶氏化学国际有限公司提供的UNOXOLTM 34D iol,The diol monomer includes a mixture of ethylene glycol (EG) and 1,3/1,4-cyclohexanedimethanol (1,3/1,4-CHDM), ethylene glycol (EG) and 1,3 The addition of 1,4-cyclohexanedimethanol (1,3/1,4-CHDM) is 100 mole % in total, and the addition of the mixture of 1,3/1,4-cyclohexanedimethanol is 20-100 mole % of the diol equivalent, the mixture of 1,3/1,4-cyclohexanedimethanol consists of cis 1,3-cyclohexanedimethanol 32.8%, trans 1,3-cyclohexanedimethanol 24 %, cis 1,4-cyclohexanedimethanol 13% and trans 1,4-cyclohexanedimethanol 30.2%, the above mixture of 1,3/1,4-cyclohexanedimethanol is Dow Chemical International UNOXOL TM 34D iol from Ltd., 其中所述组合物还包括缩聚催化剂,该缩聚催化剂为25~500ppm,该缩聚催化剂为选自锑系、钛系、锗系、锡系、镓系、铝系及其组合中一种以上的金属催化剂,Wherein the composition also includes a polycondensation catalyst, the polycondensation catalyst is 25-500ppm, the polycondensation catalyst is selected from antimony series, titanium series, germanium series, tin series, gallium series, aluminum series and the combination of more than one metal catalyst, 所述无定形共聚酯的结构式如下式(1)所示:The structural formula of described amorphous copolyester is as shown in formula (1): 式(1)中的A和C是根据二酸单体及二醇单体的添加量而定。 A and C in formula (1) are determined according to the addition amount of diacid monomer and diol monomer. 2.根据权利要求1的用于制备无定形共聚酯的组合物,其特征在于:所制备出的无定形共聚酯的本征粘度大于0.5dL/g。2. The composition for preparing amorphous copolyester according to claim 1, characterized in that: the prepared amorphous copolyester has an intrinsic viscosity greater than 0.5 dL/g. 3.一种容器,其特征在于:3. A container, characterized in that: 使用权利要求1或2所述的用于制备无定形共聚酯的组合物所制备出的无定形共聚酯为材料。The amorphous copolyester prepared by using the composition for preparing amorphous copolyester according to claim 1 or 2 is a material. 4.根据权利要求3的容器,其为食品容器、化妆品容器或药品容器。4. The container according to claim 3, which is a food container, a cosmetic container or a medicine container. 5.一种薄膜,其特征在于:5. A thin film, characterized in that: 使用权利要求1或2所述的用于制备无定形共聚酯的组合物所制备出的无定形共聚酯为材料。The amorphous copolyester prepared by using the composition for preparing amorphous copolyester according to claim 1 or 2 is a material. 6.根据权利要求5的薄膜,其为包装材料或收缩膜。6. The film according to claim 5, which is a packaging material or a shrink film. 7.一种片状物,其特征在于:7. A sheet, characterized in that: 使用权利要求1或2所述的用于制备无定形共聚酯的组合物所制备出的无定形共聚酯为材料。The amorphous copolyester prepared by using the composition for preparing amorphous copolyester according to claim 1 or 2 is a material. 8.根据权利要求7的片状物,其为板材或片材。8. The sheet according to claim 7, which is a plate or a sheet.
CN201010593531.8A 2006-12-29 2006-12-29 Composition for preparing amorphous copolyester Active CN102060984B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010593531.8A CN102060984B (en) 2006-12-29 2006-12-29 Composition for preparing amorphous copolyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010593531.8A CN102060984B (en) 2006-12-29 2006-12-29 Composition for preparing amorphous copolyester

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNA2006101725418A Division CN101210067A (en) 2006-12-29 2006-12-29 Amorphous copolyester and its application

Publications (2)

Publication Number Publication Date
CN102060984A CN102060984A (en) 2011-05-18
CN102060984B true CN102060984B (en) 2015-01-07

Family

ID=43996501

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010593531.8A Active CN102060984B (en) 2006-12-29 2006-12-29 Composition for preparing amorphous copolyester

Country Status (1)

Country Link
CN (1) CN102060984B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10767041B2 (en) * 2015-11-24 2020-09-08 Eastman Chemical Company Polymer compositions and substrates for high temperature transparent conductive film applications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1121727A (en) * 1993-04-27 1996-05-01 伊斯曼化学公司 Copolyester of cyclohexanedimethanol and process for producing such polyester
US6025069A (en) * 1998-06-19 2000-02-15 Eastman Chemical Company Thermoplastic article having high-relief surface
CN1285881A (en) * 1997-11-06 2001-02-28 伊斯曼化学公司 Copolyester binder fibers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1121727A (en) * 1993-04-27 1996-05-01 伊斯曼化学公司 Copolyester of cyclohexanedimethanol and process for producing such polyester
CN1285881A (en) * 1997-11-06 2001-02-28 伊斯曼化学公司 Copolyester binder fibers
US6025069A (en) * 1998-06-19 2000-02-15 Eastman Chemical Company Thermoplastic article having high-relief surface

Also Published As

Publication number Publication date
CN102060984A (en) 2011-05-18

Similar Documents

Publication Publication Date Title
JP6034350B2 (en) Polyester containing isosorbide
JP5989676B2 (en) Polyester resin composition and method for producing the same
JP2004514518A (en) Low melt viscosity amorphous copolyester with improved lipid resistance
EP0918064B1 (en) A transparent thick copolyester sheet
US7687594B2 (en) Random amorphous copolymer and manufacturing method thereof
TW449613B (en) Thermoplastic resin compositions containing non-crystalline polyimide
KR20190064304A (en) Polyester resin with improved heat resistance
JPH04500982A (en) Modified poly(ethylene 2,6-naphthalene dicarboxylate) with improved processability
CN101210067A (en) Amorphous copolyester and its application
CN101469057B (en) Random amorphous copolyester and its preparation method and application
JP2008189809A (en) Polyester resin composition
CN102060984B (en) Composition for preparing amorphous copolyester
US20230365745A1 (en) Heat shrinkable films, and method of manufacturing the same
TW201510062A (en) Polyester resin composition
TWI326692B (en) Amorphous copolyester and use thereof
JP4362674B2 (en) polyester
JP3365450B2 (en) Method for producing high polymerization degree polyester
JP2002173539A (en) Heat-resistant polyester sheet
TWI720195B (en) Polyester resin composition
JP2002047361A (en) Heat-resistant polyester sheet and molded article from the same
JP4570915B2 (en) Polyester resin composition and molded product comprising the same
JP4596094B2 (en) Polyester and its molded products
JPH0214238A (en) Polyester composition, polyester stretched sheet made from the same, and polyester hollow container
JPH0597982A (en) Aromatic polyester resin
JP2002121369A (en) Polyester resin composition and molded product made thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant