[go: up one dir, main page]

CN101465692A - Modulation method and transmission device for single sideband optical signal of optical OFDM system - Google Patents

Modulation method and transmission device for single sideband optical signal of optical OFDM system Download PDF

Info

Publication number
CN101465692A
CN101465692A CNA200910076418XA CN200910076418A CN101465692A CN 101465692 A CN101465692 A CN 101465692A CN A200910076418X A CNA200910076418X A CN A200910076418XA CN 200910076418 A CN200910076418 A CN 200910076418A CN 101465692 A CN101465692 A CN 101465692A
Authority
CN
China
Prior art keywords
optical
modulation
signal
ofdm
modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200910076418XA
Other languages
Chinese (zh)
Other versions
CN101465692B (en
Inventor
乔耀军
宁婧
刘学君
杜晓
纪越峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Posts and Telecommunications
Original Assignee
Beijing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Posts and Telecommunications filed Critical Beijing University of Posts and Telecommunications
Priority to CN200910076418XA priority Critical patent/CN101465692B/en
Publication of CN101465692A publication Critical patent/CN101465692A/en
Application granted granted Critical
Publication of CN101465692B publication Critical patent/CN101465692B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种在光的正交频分复用系统中通过光的I、Q调制来实现单边带光信号的调制方法和光单边带发射装置。此单边带调制方法和发射装置,在只需满足如下条件——输入到光I、Q调制器Q路上的电调制信号

Figure 200910076418.X_AB_0
(t)是I路输入电调制信号g(t)的希尔伯特变换(g(t)为任意实信号)的情况下,仅通过控制一个光的I、Q调制器就能实现光的单边带调制;同时此单边带光信号的调制方法和发射装置,可适用于光的正交频分复用(OFDM)系统中,其特征在于,不仅适用于基带的OFDM系统,还适用于射频调制的OFDM系统。本发明具有结构简单、成本低、信号处理要求低且与现有系统兼容等优点。

Figure 200910076418

The invention discloses a modulation method and an optical single sideband transmitting device for realizing single sideband optical signal through optical I and Q modulation in an optical orthogonal frequency division multiplexing system. This SSB modulation method and transmitting device only need to meet the following conditions—the electrical modulation signal input to the optical I, Q modulator Q road

Figure 200910076418.X_AB_0
In the case where (t) is the Hilbert transform of the I-channel input electrical modulation signal g(t) (g(t) is an arbitrary real signal), the optical Single sideband modulation; simultaneously the modulation method and the transmitting device of this single sideband optical signal can be applied in the orthogonal frequency division multiplexing (OFDM) system of light, it is characterized in that, not only applicable to the OFDM system of baseband, also applicable to For OFDM systems with radio frequency modulation. The invention has the advantages of simple structure, low cost, low signal processing requirement and compatibility with existing systems.

Figure 200910076418

Description

光的OFDM系统中单边带光信号的调制方法和发射装置 Modulation method and transmitting device of single sideband optical signal in optical OFDM system

技术领域 technical field

本发明涉及光的正交频分复用系统中一种新型的通过光的I、Q调制来实现单边带光信号的调制方法和光单边带发射装置,属于光纤通信系统的范畴。The invention relates to a novel modulation method and an optical SSB transmitting device for realizing SSB optical signals through optical I and Q modulation in an optical OFDM system, belonging to the category of optical fiber communication systems.

背景技术 Background technique

自90年代中期开始,Internet商业化的巨大成功促使数据通信业务量一直保持以两位数甚至三位数的速度高速增长,并且随着网络中一些新的数据业务的不断发展和成熟(例如:IPTV业务,视频点播VOD业务等),可以预期这种增长速度还将继续持续下去。不断发展的数据通信业务带来的是对传输容量和传输带宽需求的不断增加。目前对于单信道光传输系统的速率要求已从10Gbit/s提高至40Gbit/s甚至100Gbit/s。众所周知,将传统的10Gbit/s传输系统提高到40Gbit/s或100Gbit/s,将会面临很多挑战:1)在传统10Gbit/s传输系统中,主要采用的是强度调制-直接检测方案(IM-DD),当采用此方案来传输40/100Gbit/s的数据时,其频谱宽度变大,色度色散容忍度变为原来的1/16(1/100),PMD容忍度变为原来的1/4(1/10),系统非线性容忍度也急剧恶化;2)由于速率变高,电子器件的设计开发难度加大,光器件的要求也会提高,这都将使得系统的成本变大;3)由于频谱变宽,原有的DWDM系统不能和此单信道兼容。为了解决这些问题,近年来研究者们逐渐开始研究是否可将无线中存在的技术引入到光通信领域,以解决这些问题,光的正交频分复用(O-OFDM)技术正是基于此目的而提出来的。Since the mid-1990s, the great success of the commercialization of the Internet has prompted the data communication business volume to maintain a double-digit or even triple-digit growth rate, and with the continuous development and maturity of some new data services in the network (for example: IPTV business, video on demand VOD business, etc.), it can be expected that this growth rate will continue. The continuous development of data communication services brings about an increasing demand for transmission capacity and transmission bandwidth. At present, the rate requirement for a single-channel optical transmission system has been increased from 10Gbit/s to 40Gbit/s or even 100Gbit/s. As we all know, increasing the traditional 10Gbit/s transmission system to 40Gbit/s or 100Gbit/s will face many challenges: 1) In the traditional 10Gbit/s transmission system, the intensity modulation-direct detection scheme (IM- DD), when using this scheme to transmit 40/100Gbit/s data, its spectral width becomes larger, the chromatic dispersion tolerance becomes 1/16 (1/100) of the original, and the PMD tolerance becomes the original 1 /4 (1/10), the nonlinear tolerance of the system also deteriorates sharply; 2) As the speed increases, the design and development of electronic devices becomes more difficult, and the requirements for optical devices will also increase, which will increase the cost of the system ; 3) Because the frequency spectrum becomes wider, the original DWDM system cannot be compatible with this single channel. In order to solve these problems, in recent years, researchers have gradually begun to study whether the technology existing in wireless can be introduced into the field of optical communication to solve these problems. Optical Orthogonal Frequency Division Multiplexing (O-OFDM) technology is based on this proposed for the purpose.

OFDM技术是一种多载波调制(MCM)技术,是在无线通讯中被IEEE 802.11G等通讯标准广泛采用的高速传输技术,是目前已知的频谱利用率最高的一种调制技术。它基本原理是:将高速的串行数据流分解成若干并行的低速的子数据流同时传输;且在频域上可描述为:在频域内将给定信道分成许多正交的且相互重叠的子信道,在每个子信道上使用一个子载波进行调制,各子信道载波互相正交,并行传输。OFDM technology is a multi-carrier modulation (MCM) technology. It is a high-speed transmission technology widely adopted by communication standards such as IEEE 802.11G in wireless communication. It is a modulation technology with the highest spectrum utilization rate known so far. Its basic principle is: decompose the high-speed serial data stream into several parallel low-speed sub-data streams for simultaneous transmission; and in the frequency domain, it can be described as: divide a given channel into many orthogonal and overlapping sub-streams in the frequency domain Sub-channels, one sub-carrier is used for modulation on each sub-channel, and the carriers of each sub-channel are orthogonal to each other and transmitted in parallel.

如果将OFDM技术引入到40/100Gbit/s系统中,由于其基本原理和本质特性,将会给高速传输系统带来很多的优点:1)较强的抗色度色散和抗偏振模色散的能力;2)较高的频谱利用率。这两点刚好克服了在传统的10Gbit/s系统中传输100Gbit/s高速数据时所产生的上述主要限制条件,所以光的0FDM技术可望在下一代光通信系统中占据重要地位。If OFDM technology is introduced into the 40/100Gbit/s system, due to its basic principles and essential characteristics, it will bring many advantages to the high-speed transmission system: 1) Strong ability to resist chromatic dispersion and polarization mode dispersion ; 2) Higher spectrum utilization. These two points just overcome the above-mentioned main constraints generated when transmitting 100Gbit/s high-speed data in the traditional 10Gbit/s system, so optical OFDM technology is expected to occupy an important position in the next generation of optical communication systems.

目前基于OFDM的高速光传输系统主要包括两种实现方案:相干光的OFDM技术(CO-OFDM)和非相干光的OFDM技术(IO-OFDM)。CO-OFDM是指系统的接收端采用的是相干解调,IO-OFDM是指系统的接收端采用的是传统的直接检测。单就抑制色散的效果来看,使用CO-OFDM和IO-OFDM是相似的,但如采用IO-OFDM,在有效抑制色散、偏振模色散的同时,系统的性价比较高,所以是目前一个主要的研究热点。这里主要分析的是IO-OFDM系统。At present, OFDM-based high-speed optical transmission systems mainly include two implementation schemes: coherent optical OFDM technology (CO-OFDM) and incoherent optical OFDM technology (IO-OFDM). CO-OFDM means that the receiving end of the system uses coherent demodulation, and IO-OFDM means that the receiving end of the system uses traditional direct detection. As far as the effect of suppressing dispersion is concerned, the use of CO-OFDM and IO-OFDM is similar, but if IO-OFDM is used, while effectively suppressing dispersion and polarization mode dispersion, the cost performance of the system is relatively high, so it is currently a major research hotspots. The main analysis here is the IO-OFDM system.

正如前所述,在高速光传输系统中色散是一个主要的限制因素,这是由色散的本质所引起的,而且当传输信号的频谱越宽、传输距离越长时,色散对其的影响就越大。所以针对IO-OFDM系统,当传输40bit/s或100Gbit/s时,为了更进一步提高系统抗色散的能力,一般应将双边带的信号转换为单边带的光OFDM信号。在IO-OFDM系统中目前存在的产生单边带的方法主要包括两种:As mentioned earlier, dispersion is a major limiting factor in high-speed optical transmission systems, which is caused by the nature of dispersion, and when the spectrum of the transmitted signal is wider and the transmission distance is longer, the impact of dispersion on it is greater. bigger. Therefore, for the IO-OFDM system, when transmitting 40bit/s or 100Gbit/s, in order to further improve the system's ability to resist dispersion, the double-sideband signal should generally be converted into a single-sideband optical OFDM signal. There are currently two methods for generating SSB in the IO-OFDM system:

1)将基带的OFDM信号首先调制到射频域,然后通过使用光滤波器滤掉一个边带来实现。1) Modulate the baseband OFDM signal into the radio frequency domain first, and then filter out a sideband by using an optical filter.

2)将基带的OFDM信号首先进行一系列的信号处理,然后用处理后的信号调制一个马赫增德尔调制器来实现。2) Perform a series of signal processing on the baseband OFDM signal, and then use the processed signal to modulate a Mach-Zehnder modulator to achieve.

在对现有技术的研究和实践过程中,本发明的发明人发现这两种实现方法存在以下缺点:During the research and practice of the prior art, the inventors of the present invention have found that these two implementation methods have the following disadvantages:

方法1):该技术主要包括两个缺点:一是光滤波器的实现较难,且成本较高;二是如果将基带信号先调到射频域后再调到光域,就会增加对系统带宽的需求,这样的话系统通过采用单边带降低带宽从而来实现较强的抗色散的目的就会相对减弱了。Method 1): This technology mainly includes two disadvantages: first, it is difficult to realize the optical filter, and the cost is high; second, if the baseband signal is first transferred to the radio frequency domain and then transferred to the optical domain, it will increase the system In this case, the purpose of achieving strong anti-dispersion by using SSB to reduce the bandwidth of the system will be relatively weakened.

方法2):该技术虽然避免了使用光滤波器产生单边带,且可以传输基带的OFDM信号降低带宽需求,但是系统需要对原有信号进行较复杂的信号处理,才能得到适合产生单边带光信号的输入电调制信号,尤其在模拟光传输(特别是副载波光传输)情况时原有信号处理更加复杂。这样的话就增加了系统的复杂度,信号处理的难度加大了。Method 2): Although this technology avoids the use of optical filters to generate SSBs, and can transmit baseband OFDM signals to reduce bandwidth requirements, the system needs to perform more complex signal processing on the original signals in order to obtain SSBs suitable for generating SSBs. The input electrical modulation signal of the optical signal, especially in the case of simulating optical transmission (especially subcarrier optical transmission), the original signal processing is more complicated. In this way, the complexity of the system is increased, and the difficulty of signal processing is increased.

为了克服上述缺点,本发明提出了一种在光的正交频分复用系统中通过光的I、Q调制来实现单边带光信号的调制方法。In order to overcome the above disadvantages, the present invention proposes a modulation method for realizing single-sideband optical signals through optical I and Q modulation in an optical OFDM system.

发明内容 Contents of the invention

鉴于现有技术的上述缺点,本发明提供一种在光的正交频分复用系统中通过光的I、Q调制来实现单边带光信号的调制方法和光单边带发射装置,不仅可以降低成本,降低系统信号处理的复杂度,而且可以与现在商用的光I、Q调制系统兼容。In view of the above-mentioned shortcomings of the prior art, the present invention provides a modulation method and an optical SSB transmitting device for realizing SSB optical signals through optical I and Q modulation in an optical OFDM system, which can not only The cost is reduced, the complexity of system signal processing is reduced, and it can be compatible with current commercial optical I and Q modulation systems.

首先简单介绍下光的I、Q调制:光的I、Q调制是一种光的相干调制方法,是通过驱动两个并联的光外调制器(比如马赫曾德尔调制器)来将I路和Q路上的电信号调制到光载波上去的,普遍适用于QPSK(Quadrature Phase-ShiftKeying,四相移相键控),DQPSK(Difference Quadrature Phase-Shift Keying,差分四相移相键控),M-ary QAM(M-ary Quadrature Amplitude Modulation,M进制正交幅度调制)等调制类型的相干解调系统,且目前已有商用的集成模块,使用比较简单。本发明中的光外调制器主要采用的是双臂驱动的马赫增德尔调制器(MZ调制器)。First, a brief introduction to the I and Q modulation of light: the I and Q modulation of light is a coherent modulation method of light, which is to drive two parallel optical external modulators (such as Mach-Zehnder modulators) The electrical signal on the Q circuit is modulated to the optical carrier, which is generally applicable to QPSK (Quadrature Phase-ShiftKeying, four-phase phase-shift keying), DQPSK (Difference Quadrature Phase-Shift Keying, differential quadrature phase-shift keying), M- ary QAM (M-ary Quadrature Amplitude Modulation, M-ary Quadrature Amplitude Modulation, M-ary Quadrature Amplitude Modulation) and other modulation types of coherent demodulation systems, and there are currently commercially available integrated modules, which are relatively simple to use. The optical external modulator in the present invention mainly adopts a double-arm driven Mach-Zehnder modulator (MZ modulator).

根据本发明的一个方面,提供了一种新型的通过光的I、Q调制来实现单边带光信号的调制方法和发射装置,其特征在于,1)所述调制方法和发射装置仅需要一个光的I、Q调制器;2)对于输入到光I、Q调制器的I路和Q路上的电调制信号必须满足:Q路上的信号是I路信号g(t)的希尔伯特变换,g(t)为任意实信号,反之也成立;3)针对I、Q路的输入电调制信号,I、Q路MZ调制器相对应的偏置电压需要满足:I路(传输g(t))MZ调制器上下臂的偏置电压设为:-Vπ/4,Q路(传输

Figure A200910076418D00062
)MZ调制器上下臂的偏置电压设为:-Vπ/2;4)光的I、Q调制器的输出结果满足与 A exp ( 2 πf carrier t ) × [ 1 + g ( t ) + j × g ^ ( t ) ] (fcarrier为光载波)的单边带光信号的形式。According to one aspect of the present invention, a novel modulation method and transmitting device for realizing single-sideband optical signals through optical I and Q modulation are provided, and it is characterized in that, 1) the modulation method and transmitting device only need one Optical I, Q modulators; 2) For the electrical modulation signals input to the I and Q circuits of the optical I and Q modulators, the electrical modulation signals must meet: the signal on the Q circuit is the Hilbert transform of the I signal g(t), g(t) is an arbitrary real signal, and vice versa; 3) For the I and Q input electrical modulation signals, the I and Q MZ modulators correspond to The bias voltage needs to meet: the bias voltage of the upper and lower arms of the I channel (transmission g(t)) of the MZ modulator is set to: -V π /4, and the Q channel (transmission g(t)
Figure A200910076418D00062
) The bias voltage of the upper and lower arms of the MZ modulator is set to: -V π /2; 4) The output results of the optical I and Q modulators meet the requirements of A exp ( 2 πf carrier t ) × [ 1 + g ( t ) + j × g ^ ( t ) ] (f carrier is an optical carrier) in the form of a single sideband optical signal.

根据本发明的另一个方面,提供了一种新型的通过光的I、Q调制来实现单边带光信号的调制方法和发射装置,可适用于光的正交频分复用(OFDM)系统中,其特征在于,不仅适用于基带的OFDM系统,还适用于射频调制的OFDM系统。According to another aspect of the present invention, a novel modulation method and transmitting device for realizing single-sideband optical signals through optical I and Q modulation are provided, which can be applied to optical Orthogonal Frequency Division Multiplexing (OFDM) systems Among them, it is characterized in that it is not only applicable to baseband OFDM systems, but also applicable to radio frequency modulated OFDM systems.

本发明通过光的I、Q调制器来实现单边带光信号具有如下显著优点:The present invention realizes the single sideband optical signal through the optical I, Q modulator and has the following significant advantages:

1)本发明可以避免使用光的滤波器,降低成本;1) The present invention can avoid the use of optical filters and reduce costs;

2)本发明无需对原有信号进行过多的处理就可以作为光外调制器的电调制信号产生单边带光信号,从而降低了信号处理的难度;2) The present invention can be used as an electrical modulation signal of an optical external modulator to generate a single sideband optical signal without performing too much processing on the original signal, thereby reducing the difficulty of signal processing;

3)本发明采用的光的I、Q调制器正好可以与目前存在许多调制系统兼容;3) The optical I and Q modulators used in the present invention can be compatible with many modulation systems at present;

4)本发明在接收端可采用简单的直接检测或者自差检测。4) The present invention can adopt simple direct detection or self-difference detection at the receiving end.

附图说明 Description of drawings

为了更清楚地说明本发明所提出的技术,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technology proposed by the present invention more clearly, the accompanying drawings that need to be used in the embodiments of the present invention will be briefly introduced below. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. Ordinary technicians can also obtain other drawings based on these drawings without paying creative labor.

图1是本发明产生单边带光信号的发射装置结构图;Fig. 1 is a structural diagram of a transmitting device for generating single sideband optical signals in the present invention;

图2是本发明实施例一的发射机端的系统流程示意图;FIG. 2 is a schematic diagram of a system flow at the transmitter end according to Embodiment 1 of the present invention;

图3是本发明中电域正交频分复用信号产生的基本示意图;Fig. 3 is the basic schematic diagram that electric domain OFDM signal produces among the present invention;

图4是本发明实施例一的产生单边带光信号调制示意图;FIG. 4 is a schematic diagram of generating a single sideband optical signal modulation according to Embodiment 1 of the present invention;

图5~图7分别是本发明实施例一中电域基带信号频谱示意图、光域信号双边带频谱示意图和单边带示意图;Figures 5 to 7 are schematic diagrams of the frequency spectrum of the electrical domain baseband signal, the schematic diagram of the double sideband spectrum of the optical domain signal, and the schematic diagram of the single sideband in Embodiment 1 of the present invention;

图8是本发明实施例二的发射机端的系统流程示意图;FIG. 8 is a schematic diagram of a system flow diagram at the transmitter end according to Embodiment 2 of the present invention;

图9是本发明实施例二的产生单边带光信号调制示意图;FIG. 9 is a schematic diagram of generating a single sideband optical signal modulation according to Embodiment 2 of the present invention;

图10~图13分别是本发明实施例二中电域基带信号、射频信号频谱示意图、光域信号双边带频谱示意图和单边带示意图;Figures 10 to 13 are respectively schematic diagrams of electric domain baseband signal and radio frequency signal spectrum, optical domain signal double sideband spectrum and single sideband spectrum in Embodiment 2 of the present invention;

具体实施方式 Detailed ways

下面将结合本发明中的附图,对本发明光单边带发射装置和基于OFDM系统的两个实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions of the two embodiments of the optical SSB transmitting device and the OFDM-based system of the present invention with reference to the drawings in the present invention. Apparently, the described embodiments are only some of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.

图1示出了本发明产生单边带光信号的发射装置结构图。Fig. 1 shows a structural diagram of a transmitting device for generating a single sideband optical signal according to the present invention.

此装置主要利用的是光的I、Q调制器102,它主要包括两个并行的光外调制器107、108,一个激光器109和一个耦合器119。光外调制器107、108这里采用的是双臂驱动的马赫曾德尔调制器(MZ调制器);激光器109用于产生光载波;耦合器119用于将两个MZ调制器输出的光信号耦合到一起。下面具体介绍一下如何通过102产生一个单边带的光的OFDM信号。This device mainly uses the optical I, Q modulator 102, which mainly includes two parallel optical external modulators 107, 108, a laser 109 and a coupler 119. The optical external modulators 107 and 108 are dual-arm driven Mach-Zehnder modulators (MZ modulators); the laser 109 is used to generate an optical carrier; the coupler 119 is used to couple the optical signals output by the two MZ modulators together. The following specifically introduces how to generate a single sideband optical OFDM signal through 102 .

根据John G.Proakis编著的《Digital Communications》中关于单边带信号的基本理论,我们知道对于任意一个实的信号g(t)来说,通过求其希尔伯特变换(

Figure A200910076418D00071
信号),就可得到其对应的单边带信号:
Figure A200910076418D00072
根据这一基本理论Leonard R.Kahn 1961年在Proceedings of the IRE上提出了“Compatible SingleSideband”理论,其中指出 g ^ ( t ) = H ( g ( t ) ) = H ( 1 + g ( t ) ) ,
Figure A200910076418D00074
仍然是一个单边带的信号。所以本发明就是通过光的I、Q调制使输入的信号g(t)和
Figure A200910076418D00081
转换成上述单边带的形式 A exp ( 2 πf carrier t ) × [ 1 + g ( t ) + j × g ^ ( t ) ] (fcarrier为光载波),从而产生单边带的光信号。具体原理如下:According to the basic theory of single sideband signals in "Digital Communications" edited by John G. Proakis, we know that for any real signal g(t), by finding its Hilbert transform (
Figure A200910076418D00071
signal), the corresponding SSB signal can be obtained:
Figure A200910076418D00072
According to this basic theory, Leonard R. Kahn proposed the "Compatible SingleSideband" theory in Proceedings of the IRE in 1961, which pointed out g ^ ( t ) = h ( g ( t ) ) = h ( 1 + g ( t ) ) , Right now
Figure A200910076418D00074
Still a SSB signal. Therefore, the present invention is to make the input signal g(t) and
Figure A200910076418D00081
Converted to the above SSB form A exp ( 2 πf carrier t ) × [ 1 + g ( t ) + j × g ^ ( t ) ] (f carrier is an optical carrier), thereby generating a single sideband optical signal. The specific principles are as follows:

根据I路和Q路上的双臂驱动MZ调制器的基本调制公式是:The basic modulation formula for driving the MZ modulator with dual arms on the I and Q roads is:

EE. outout == EE. inin 22 ×× expexp [[ jπjπ ×× (( VV upup __ inin ++ VV DCDC __ upup VV ππ )) ]] ++ EE. inin 22 ×× expexp [[ jπjπ ×× (( -- VV lowlow __ inin ++ VV DCDC __ lowlow VV ππ )) ]] -- -- -- (( 11 ))

这里Ein和Eout分别是MZ调制器的输入光和输出光的场强;Vπ是MZ调制器的半波电压;Vup_in和Vlow_in分别是MZ调制器的上下臂上的输入电调制信号;VDC_up和VDC_low分别是MZ调制器的上下臂上的偏置电压。令:Here E in and E out are the field strength of the input light and output light of the MZ modulator, respectively; V π is the half-wave voltage of the MZ modulator; V up_in and V low_in are the input electrical modulation on the upper and lower arms of the MZ modulator, respectively Signals; V DC_up and V DC_low are the bias voltages on the upper and lower arms of the MZ modulator, respectively. make:

φφ 11 == VV upup __ inin ++ VV DCDC __ upup VV ππ -- -- -- (( 22 ))

φφ 22 == VV lowlow __ inin ++ VV DCDC __ lowlow VV ππ -- -- -- (( 33 ))

将(2)(3)代入(1)中得:Substitute (2)(3) into (1) to get:

EE. outout == EE. inin 22 ×× expexp [[ jπjπ ×× φφ 11 ]] ++ EE. inin 22 ×× expexp [[ -- jπjπ ×× φφ 22 ]]

== EE. inin ×× expexp (( jπjπ ×× φφ 11 -- φφ 22 22 )) ×× coscos (( ππ ×× φφ 11 ×× φφ 22 22 ))

== EE. inin ×× expexp (( jπjπ ×× VV upup __ inin -- VV lowlow __ inin ++ VV DCDC __ upup -- VV DCDC __ lowlow 22 VV ππ )) -- -- -- (( 44 ))

×× coscos (( ππ ×× VV upup __ inin ++ VV lowlow __ inin ++ VV DCDC __ upup -- VV DCDC __ lowlow 22 VV ππ ))

激光器109是用于产生光载波Em=Aexp(j2πfcarriert),A为光载波振幅,fcarrier为载波频率。110是分路器,将109产生的光载波分为两路111和112,且都等于EinThe laser 109 is used to generate the optical carrier E m =Aexp(j2πf carrier t), where A is the amplitude of the optical carrier, and f carrier is the carrier frequency. 110 is a splitter, which divides the optical carrier generated by 109 into two paths 111 and 112, both of which are equal to E in .

偏置电压产生器113和116分别产生调制I路和Q路MZ调制器时所需要的偏置电压。这里113产生-Vπ/4的电压,并将其分为114、115两路,作为I路MZ调制器的上下臂驱动电压;同理,116产生-Vπ/2的电压,且分为117、118两路作为Q路MZ调制器的上下臂驱动电压。Bias voltage generators 113 and 116 respectively generate bias voltages required for modulating the I-way and Q-way MZ modulators. Here 113 generates a voltage of -V π /4, and divides it into two circuits 114 and 115 as the driving voltage of the upper and lower arms of the I-way MZ modulator; similarly, 116 generates a voltage of -V π /2, and divides it into The two circuits 117 and 118 are used as the upper and lower arm driving voltages of the Q-channel MZ modulator.

根据上面的叙述,可以得到I路MZ调制器的各个分量的不同值为:According to the above narration, the different values of each component of the I-way MZ modulator can be obtained as:

Vup_in_I=Vlow_in_I=xVπg(t)       (5)V up_in_I = V low_in_I = xV π g(t) (5)

VDC_up_I=VDC_low_I=-Vπ/4           (6)V DC_up_I = V DC_low_I = -V π /4 (6)

VV upup __ inin __ QQ == VV lowlow __ inin __ QQ == xx 22 22 VV ππ gg ^^ (( tt )) -- -- -- (( 77 ))

VDC_up_Q=VDC_low_Q=-Vπ/2            (8)V DC_up_Q = V DC_low_Q = -V π /2 (8)

x为小于1的实数,这里乘以x是为了使这两个输入电调制信号足够小,从而减小调制信号失真。x is a real number less than 1, multiplied by x here is to make the two input electrical modulation signals sufficiently small, thereby reducing distortion of the modulation signal.

将(5)和(6)、(7)和(8)分别代入(4)中可以得到:Substituting (5) and (6), (7) and (8) into (4) respectively, we can get:

EE. outout __ II == EE. inin ×× coscos (( ππ ×× xx VV ππ gg (( tt )) -- VV ππ // 44 VV ππ ))

== 22 22 ×× EE. inin ×× [[ coscos (( ππ ×× xgx g (( tt )) )) ++ sinsin (( ππ ×× xgx g (( tt )) )) ]] -- -- -- (( 99 ))

≈≈ 22 22 ×× EE. inin ×× [[ 11 ++ ππ ×× xgx g (( tt )) )) ]]

EE. outout __ QQ == EE. inin ×× coscos (( ππ ×× xx 22 22 VV ππ gg ^^ (( tt )) -- VV ππ // 22 VV ππ ))

== EE. inin ×× sinsin (( ππ ×× xx 22 22 gg ^^ (( tt )) )) -- -- -- (( 1010 ))

≈≈ 22 22 ×× EE. inin ×× ππ ×× xx gg ^^ (( tt ))

这里因为π×xg(t)<<1,所以cos(π×xg(t))≈1,sin(π×xg(t))≈π×xg(t), sin ( &pi; &times; x 2 2 g ^ ( t ) ) &ap; &pi; &times; x 2 2 g ^ ( t ) . 得到Eout_I和Eout_Q后输入到耦合器119。Here because π×xg(t)<<1, so cos(π×xg(t))≈1, sin(π×xg(t))≈π×xg(t), sin ( &pi; &times; x 2 2 g ^ ( t ) ) &ap; &pi; &times; x 2 2 g ^ ( t ) . After E out_I and E out_Q are obtained, they are input to the coupler 119 .

耦合器119的作用是将I、Q路输出的光信号耦合到一起完成光的I、Q调制。其基本调制公式如下,我们取耦合器的输出端1即El_out 120:The function of the coupler 119 is to couple the optical signals output by the I and Q channels together to complete optical I and Q modulation. The basic modulation formula is as follows, we take the output terminal 1 of the coupler, namely E l_out 120:

EE. 11 __ outout EE. 22 __ outout == 11 22 jj 11 22 jj 11 22 11 22 EE. outout __ II EE. outout __ QQ -- -- -- (( 1111 ))

将(9)和(10)代入到(11)得:Substitute (9) and (10) into (11) to get:

E 1 _ out = 1 2 &times; E out 1 + j &times; 1 2 &times; E out 2                        (12) E. 1 _ out = 1 2 &times; E. out 1 + j &times; 1 2 &times; E. out 2 (12)

== 11 22 EE. inin &times;&times; [[ 11 ++ &pi;&pi; &times;&times; xgx g (( tt )) ++ jj &times;&times; &pi;&pi; &times;&times; xx gg ^^ (( tt )) ]]

El-out120符合上面的叙述单边带形式: A exp ( 2 &pi; f carrier t ) &times; [ 1 + g ( t ) + j &times; g ^ ( t ) ] . 所以通过本发明光的I、Q调制方法产生一个单边带光信号El-out120。E l-out 120 conforms to the SSB form described above: A exp ( 2 &pi; f carrier t ) &times; [ 1 + g ( t ) + j &times; g ^ ( t ) ] . Therefore, a single sideband optical signal E l-out 120 is generated by the optical I, Q modulation method of the present invention.

本发明实施例一适用于基带数字OFDM信号的光单边带调制方式;本发明实施例二适用于射频调制的OFDM信号的光单边带调制方式。The first embodiment of the present invention is applicable to the optical single sideband modulation mode of the baseband digital OFDM signal; the second embodiment of the present invention is applicable to the optical single sideband modulation mode of the radio frequency modulated OFDM signal.

实施例一、参见图2详细说明,图2为本实施例的发射机端的系统流程示意图。Embodiment 1, please refer to FIG. 2 for details. FIG. 2 is a schematic flowchart of a system at the transmitter end of this embodiment.

步骤201:系统开始,首先输入需要在光传输系统传输的数字序列{an}。Step 201: The system starts, first input the number sequence {a n } that needs to be transmitted in the optical transmission system.

步骤202:根据OFDM的基本原理,对输入的{an}进行处理,得到基带的OFDM信号m(t)和其希尔伯特变换信号

Figure A200910076418D00104
Step 202: According to the basic principle of OFDM, process the input {a n } to obtain the baseband OFDM signal m(t) and its Hilbert transform signal
Figure A200910076418D00104

参见图3,图3为OFDM信号产生的基本示意图。具体介绍了如何产生m(t)和

Figure A200910076418D00105
信号。Referring to FIG. 3, FIG. 3 is a basic schematic diagram of OFDM signal generation. How to generate m(t) and
Figure A200910076418D00105
Signal.

针对步骤201产生的{an},串/并变换器301首先对其进行串并变换,将原有的串行比特数据流变换成并行比特数据流,然后进入到信号映射模块302。For the {a n } generated in step 201, the serial/parallel converter 301 first performs a serial-to-parallel conversion to convert the original serial bit data stream into a parallel bit data stream, and then enters the signal mapping module 302 .

信号映射模块302的目的是根据实际系统各个子载波所采用的调制方式,对并行数据流完成相应的调制映射,形成调制信息序列输入到反傅立叶变换器303。The purpose of the signal mapping module 302 is to complete the corresponding modulation mapping for the parallel data stream according to the modulation method adopted by each subcarrier in the actual system, and form a modulation information sequence to input to the inverse Fourier transformer 303 .

反傅立叶变换器303得到数字域的OFDM已调信号的时域抽样序列,然后经过并/串换器304。The inverse Fourier transformer 303 obtains the time-domain sampling sequence of the OFDM modulated signal in the digital domain, and then passes through the parallel/serial converter 304 .

并/串换器304将并行输入的OFDM已调信号变为串行输出信号{mn}。The parallel/serial converter 304 converts the parallel input OFDM modulated signal into a serial output signal {m n }.

然后将{mn}分为两路,一路输入到数/模变换器(D/A)305中的,一路进入希尔伯特变换器307中。Then {m n } is divided into two paths, one path is input to the digital/analog converter (D/A) 305, and the other path is entered into the Hilbert transformer 307.

数/模变换器305是将数字信号{mn}变换成模拟信号306m(t),306m(t)作为后面步骤203的一个输入信号用来驱动光I、Q调制器的I路MZ调制器。The digital/analog converter 305 is to convert the digital signal {m n } into an analog signal 306m(t), and 306m(t) is used as an input signal of the following step 203 to drive the I-way MZ modulator of the optical I and Q modulators .

希尔伯特变换器307包括一个数字的希尔伯特变换器307和一个数/模变换器308。相对于模拟信号,对数字信号进行希尔伯特变换要简单容易的多,用现有的数字信号处理芯片就能完成,所以这里在OFDM信号还是数字信号时,就对其进行希尔伯特变换,然后再对其进行D/A,变换成模拟信号( H [ m ( t ) ] = m ^ ( t ) )。

Figure A200910076418D00108
也作为后面步骤203的一个输入信号用来驱动光I、Q调制器的Q路MZ调制器。The Hilbert transformer 307 includes a digital Hilbert transformer 307 and a digital/analog converter 308 . Compared with analog signals, it is much simpler and easier to perform Hilbert transform on digital signals, and it can be completed with existing digital signal processing chips. Therefore, when OFDM signals are still digital signals, Hilbert transform is performed on them. Transform, and then perform D/A on it to convert it into an analog signal ( h [ m ( t ) ] = m ^ ( t ) ).
Figure A200910076418D00108
It is also used as an input signal in step 203 to drive the Q-way MZ modulator of the optical I and Q modulators.

步骤203:由步骤202产生的m(t)和

Figure A200910076418D00111
信号分别驱动光的I、Q调制器的I路和Q路,从而产生一个单边带光的基带OFDM信号。参见图4,图4为产生单边带光的基带OFDM信号调制示意图。Step 203: m(t) and
Figure A200910076418D00111
The signals drive the I and Q channels of the optical I and Q modulators respectively, thereby generating a single-sideband optical baseband OFDM signal. Referring to FIG. 4, FIG. 4 is a schematic diagram of baseband OFDM signal modulation for generating single sideband light.

由于m(t)和

Figure A200910076418D00112
都是实信号,所以它们可以分别相当于图1单边带光信号发射装置中的两个输入信号100g(t)和
Figure A200910076418D00113
所以通过调制光的I、Q调制器即可实现图4中的单边带调制方法。Since m(t) and
Figure A200910076418D00112
are real signals, so they can be respectively equivalent to the two input signals 100g(t) and
Figure A200910076418D00113
Therefore, the SSB modulation method in Fig. 4 can be realized by modulating the light I and Q modulators.

光的I、Q调制器401中的激光器404、I路和Q路上的MZ调制器402和403、I路和Q路上MZ调制器的偏置电压模块405和406以及光耦合器407分别相当于图1中的激光器109、I路和Q路上的MZ调制器107和108、I路和Q路上MZ调制器的偏置电压模块113和116以及光耦合器119,且这些相对应模块的初始值设定的都是相同的。唯一不同的就是I、Q路上的输入电调制信号,但306、309和100、101的意义是相同的。所以具体的原理这里不再赘述,耦合器输出端408同图1中的120一样,是一个单边带光的基带OFDM信号。The laser 404 in the optical I and Q modulator 401, the MZ modulators 402 and 403 on the I road and the Q road, the bias voltage modules 405 and 406 of the MZ modulator on the I road and the Q road, and the optical coupler 407 are respectively equivalent to The laser 109 in Fig. 1, the MZ modulator 107 and 108 on the I road and the Q road, the bias voltage module 113 and 116 of the MZ modulator and the optical coupler 119 on the I road and the Q road, and the initial value of these corresponding modules The settings are the same. The only difference is the input electric modulation signal on the I and Q circuits, but the meanings of 306, 309 and 100, 101 are the same. Therefore, the specific principle will not be repeated here. The output terminal 408 of the coupler is the same as 120 in FIG. 1 , which is a single sideband optical baseband OFDM signal.

图5、图6和图7分别描述了此实施例中电域基带信号频谱示意图、光域信号双边带频谱示意图和单边带示意图。从这三个图中可以直观的看出当电信号是基带时,光单边信号相对于双边带信号的频谱分布来。FIG. 5 , FIG. 6 and FIG. 7 respectively describe a schematic diagram of a frequency spectrum of an electrical domain baseband signal, a schematic diagram of a double sideband spectrum of an optical domain signal, and a schematic diagram of a single sideband signal in this embodiment. From these three figures, it can be seen intuitively that when the electrical signal is baseband, the spectrum distribution of the optical single-side signal relative to the double-sideband signal comes.

步骤204:将产生的单边带光的OFDM信号El_out输入到光纤中。Step 204: Input the generated SSB optical OFDM signal E l_out into the optical fiber.

本发明实施例通过光的I、Q调制方法,产生单边带的光的基带OFDM信号,此种单边带光信号调制方法简单,系统抗色散能力强,且增加了系统的传输距离。The embodiment of the present invention generates a single-sideband optical baseband OFDM signal through an optical I and Q modulation method. The single-sideband optical signal modulation method is simple, the system has strong anti-dispersion ability, and increases the transmission distance of the system.

实际应用中,还存在一种将射频域的OFDM信号调制到光载波上进行单边带传输,以下实施例二则详细说明实际应用流程。In practical applications, there is also a method of modulating an OFDM signal in the radio frequency domain onto an optical carrier for single sideband transmission. The following embodiment 2 will describe the actual application process in detail.

实施例二、参见图8详细说明,图8为本实施例的发射机端的系统流程示意图。Embodiment 2, refer to FIG. 8 for details. FIG. 8 is a schematic flowchart of a system at the transmitter end of this embodiment.

步骤801:系统开始,首先输入需要在光传输系统传输的数字序列{an}。Step 801: The system starts, first input the number sequence {a n } that needs to be transmitted in the optical transmission system.

步骤802:根据正交频分复用(OFDM)的基本原理,对输入的{an}进行处理,得到基带的OFDM信号m(t)和其希尔伯特变换信号

Figure A200910076418D00114
Step 802: According to the basic principle of Orthogonal Frequency Division Multiplexing (OFDM), process the input {a n } to obtain the baseband OFDM signal m(t) and its Hilbert transform signal
Figure A200910076418D00114

参见图2,图2为OFDM信号产生的基本示意图。具体的产生步骤和方法同实施例一中步骤202相同,这里不再赘述。经过步骤802仍然产生m(t)信号306和

Figure A200910076418D00115
信号309。Referring to FIG. 2, FIG. 2 is a basic schematic diagram of OFDM signal generation. The specific generation steps and method are the same as step 202 in the first embodiment, and will not be repeated here. After step 802 still produces m(t) signal 306 and
Figure A200910076418D00115
Signal 309.

步骤803:将基带的OFDM信号调制到射频域。Step 803: Modulate the baseband OFDM signal into the radio frequency domain.

将基带信号调制成射频信号,传统的方法就是对原有的信号乘以一个射频载波Acos(2πfRFt)即可(A为载波的振幅,fRF为射频频率)。这里为了以后较容易产生单边带的光信号,将m(t)信号306和

Figure A200910076418D00121
信号309并行输入到图9的模块901中进行射频调制,具体方法参考图9。To modulate the baseband signal into a radio frequency signal, the traditional method is to multiply the original signal by a radio frequency carrier Acos(2πf RF t) (A is the amplitude of the carrier, and f RF is the radio frequency frequency). Here, in order to generate SSB optical signals more easily in the future, the m(t) signal 306 and
Figure A200910076418D00121
The signal 309 is input in parallel to the module 901 in FIG. 9 for radio frequency modulation. Refer to FIG. 9 for the specific method.

图9中主要包括两大部分,第一个部分901是完成将基带的OFDM信号调制到射频域,第二个部分902就是进行光的I、Q调制,产生单边带光信号。Figure 9 mainly includes two parts, the first part 901 is to complete the modulation of the baseband OFDM signal to the radio frequency domain, and the second part 902 is to perform optical I and Q modulation to generate a single sideband optical signal.

这里介绍第一部分901,对m(t)信号306通过乘法器905与射频载波产生器903相乘得到:m(t)×cos(2πfRFt)成为射频信号908;对

Figure A200910076418D00122
信号309通过乘法器906与射频载波产生器904相乘得到:m(t)×sin(2πfRFt)成为射频信号810。且将908和910分别输入到第二部分902完成步骤804的任务。The first part 901 is introduced here, and the m(t) signal 306 is multiplied by the multiplier 905 and the radio frequency carrier generator 903 to obtain: m(t)×cos(2πf RF t) becomes the radio frequency signal 908;
Figure A200910076418D00122
The signal 309 is multiplied by the multiplier 906 and the radio frequency carrier generator 904 to obtain: m(t)×sin(2πf RF t) becomes the radio frequency signal 810 . And input 908 and 910 respectively into the second part 902 to complete the task of step 804 .

步骤804:将调制后的射频OFDM信号输入到光的I、Q调制器中产生单边带光信号。具体的方法主要参考图9中的902模块。Step 804: Input the modulated radio frequency OFDM signal into an optical I, Q modulator to generate a single sideband optical signal. The specific method mainly refers to module 902 in FIG. 9 .

首先输入到902的是步骤803产生的m(t)×cos(2πfRFt)信号908和m(t)×sin(2πfRFt)信号910。根据《通信原理》,我们知道:First input to 902 are m(t)×cos(2πf RF t) signal 908 and m(t)×sin(2πf RF t) signal 910 generated in step 803 . According to "Communication Principles", we know:

H[m(t)×cos(2πfRFt)]=m(t)×sin(2fRFt)           (13)H[m(t)×cos(2πf RF t)]=m(t)×sin(2f RF t) (13)

即908的希尔伯特变换是910。这样908和910就相当于图1单边带光信号发射装置中的100和101信号,所以通过调制光的I、Q调制器即可实现模块902中的单边带调制方法。That is, the Hilbert transform of 908 is 910. In this way, 908 and 910 are equivalent to the signals 100 and 101 in the SSB optical signal transmitting device in FIG. 1 , so the SSB modulation method in the module 902 can be realized by modulating the light I and Q modulators.

模块902中的激光器904、I路和Q路上的MZ调制器912和913、I路和Q路上MZ调制器的偏置电压模块914和915以及光耦合器918分别相当于图1中的激光器109、I路和Q路上的MZ调制器107和108、I路和Q路上MZ调制器的偏置电压模块113和116以及光耦合器119,且这些相对应模块的初始值设定的都是相同的。唯一不同的就是I、Q路上的输入电调制信号,但908、910和100、101的意义是相同的。所以具体的原理过程这里不再赘述,耦合器输出端920同图1中的120一样,是一个单边带光的射频域OFDM信号。The laser 904 in the module 902, the MZ modulators 912 and 913 on the I and Q routes, the bias voltage modules 914 and 915 of the MZ modulators on the I and Q routes, and the optical coupler 918 are respectively equivalent to the laser 109 in FIG. 1 , the MZ modulators 107 and 108 on the I and Q routes, the bias voltage modules 113 and 116 of the MZ modulators on the I and Q routes, and the optocoupler 119, and the initial values of these corresponding modules are set to be the same of. The only difference is the input electrical modulation signal on the I and Q circuits, but the meanings of 908, 910 and 100, 101 are the same. Therefore, the specific principle and process will not be repeated here. The output terminal 920 of the coupler is the same as 120 in FIG. 1 , which is a single sideband optical RF domain OFDM signal.

图10、图11、图12和图13分别描述了此实施例中电域基带信号频谱示意图、射频信号频谱示意图、光域信号双边带频谱示意图和单边带示意图。从这三个图中可以直观的看出当电信号是频带时,光单边信号相对于双边带信号的频谱分布来。FIG. 10 , FIG. 11 , FIG. 12 and FIG. 13 respectively describe a schematic diagram of a spectrum of an electrical domain baseband signal, a schematic diagram of a spectrum of a radio frequency signal, a schematic diagram of a double sideband spectrum of an optical domain signal, and a schematic diagram of a single sideband in this embodiment. From these three figures, it can be seen intuitively that when the electrical signal is a frequency band, the spectrum distribution of the optical unilateral signal is relative to that of the double-sided band signal.

步骤805:将产生的单边带光的OFDM信号输入到光纤中。Step 805: Input the generated SSB optical OFDM signal into the optical fiber.

以上对本发明所述的通过光的I、Q调制来产生单边带光信号的方法和发射装置进行了详细的介绍,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制,在不背离本发明所述方法的精神和权利要求范围的情况下对它进行的各种显而易见的改变都在本发明的保护范围之内。The method and transmitting device for generating single sideband optical signals through optical I and Q modulation of the present invention have been described in detail above, and the descriptions of the above embodiments are only used to help understand the method of the present invention and its core idea; At the same time, for those of ordinary skill in the art, according to the idea of the present invention, there will be changes in the specific implementation and application scope. In summary, the content of this specification should not be construed as limiting the present invention. Various obvious changes made to the method without departing from the spirit of the method described in the present invention and the scope of the claims are within the protection scope of the present invention.

Claims (8)

1、一种新型的通过光的I、Q调制来实现单边带光信号的调制方法和发射装置,其特征在于:1. A novel modulating method and transmitting device for realizing a single sideband optical signal through optical I and Q modulation, characterized in that: 仅需要一个光的I、Q调制器即可。光的I、Q调制器即是通过驱动两个并联的光外调制器(这里用到的是双臂驱动的MZ调制器),从而将I路和Q路上的电信号调制到光载波上去的。Only one optical I, Q modulator is needed. The optical I, Q modulator is to modulate the electrical signals on the I and Q circuits to the optical carrier by driving two parallel optical external modulators (the dual-arm driven MZ modulator is used here). . 2、根据权利要求1所述的一种新型的通过光的I、Q调制来实现单边带光信号的调制方法和发射装置,其特征在于:2. According to claim 1, a novel modulating method and transmitting device for realizing single sideband optical signal through optical I, Q modulation, is characterized in that: 针对输入的任意实信号g(t)和其希尔伯特变换将其分别作为光I、Q调制器的I路和Q路上的输入电调制信号,通过调制光载波可转化为类似于 Aexp ( 2 &pi; f carrier t ) &times; [ 1 + g ( t ) + j &times; g ^ ( t ) ] 的单边带光信号形式(fcarrier为光载波),从而产生光单边带调制。For any input real signal g(t) and its Hilbert transform They are respectively used as the input electrical modulation signals of the I and Q circuits of the optical I and Q modulators, and can be converted into similar signals by modulating the optical carrier Aexp ( 2 &pi; f carrier t ) &times; [ 1 + g ( t ) + j &times; g ^ ( t ) ] The SSB optical signal form (f carrier is the optical carrier), thus generating optical SSB modulation. 3、根据权利要求1、2所述的一种新型的通过光的I、Q调制来实现单边带光信号的调制方法和发射装置,针对I、Q路的输入电调制信号,I、Q路MZ调制器相对应的偏置电压,其特征在于:3. According to claim 1 and claim 2, a novel modulation method and transmitting device for realizing single sideband optical signals through optical I and Q modulation, for the input electrical modulation signals of I and Q circuits, I and Q The bias voltage corresponding to the MZ modulator of the road is characterized in that: I路MZ调制器上下臂的偏置电压设为:-Vπ/4The bias voltage of the upper and lower arms of the I-way MZ modulator is set to: -V π /4 Q路MZ调制器上下臂的偏置电压设为:-Vπ/2。The bias voltage of the upper and lower arms of the Q-way MZ modulator is set to: -V π /2. 4、根据权利要求1-3所述的一种新型的通过光的I、Q调制来实现单边带光信号的调制方法和发射装置,可适用于光的正交频分复用(OFDM)系统中,其特征在于:4. According to claims 1-3, a novel modulation method and transmitting device for realizing single-sideband optical signals through optical I and Q modulation, applicable to optical orthogonal frequency division multiplexing (OFDM) The system is characterized by: 不仅适用于基带的OFDM系统,还适用于射频调制的OFDM系统;Not only applicable to baseband OFDM system, but also applicable to OFDM system of radio frequency modulation; 在产生数字OFDM信号后,就对其进行希尔伯特变换。After the digital OFDM signal is generated, it is subjected to Hilbert transformation. 5、根据权利要求4所述的通过光的I、Q调制来实现单边带光的OFDM信号的调制方法,其特征在于,所述在产生数字OFDM信号后,就对其进行希尔伯特变换具体步骤为:5. The modulation method for realizing the OFDM signal of single sideband light through the I and Q modulation of light according to claim 4, characterized in that, after the digital OFDM signal is generated, the Hilbert method is performed on it. The specific steps of transformation are: 步骤1:将产生的数字基带OFDM信号{mn}分为两路;Step 1: Divide the generated digital baseband OFDM signal {m n } into two paths; 步骤2:一路进行数/模变换(D/A)得到基带OFDM信号m(t);Step 2: perform digital/analog conversion (D/A) all the way to obtain the baseband OFDM signal m(t); 步骤3:另一路先进行数字域的希尔伯特变换,再进行数/模变换得到
Figure A200910076418C00023
( H [ m ( t ) ] = m ^ ( t ) ) .
Step 3: The other way first performs the Hilbert transform in the digital domain, and then performs the digital/analog conversion to obtain
Figure A200910076418C00023
( h [ m ( t ) ] = m ^ ( t ) ) .
6、根据权利要求2、4、5所述的通过光的I、Q调制来实现单边带光的OFDM信号的调制方法,所述基带OFDM系统输入到光I、Q调制器中的电调制信号,其特征在于:6. According to claim 2, 4, and 5, the modulation method for realizing single-sideband optical OFDM signal through optical I, Q modulation, the electrical modulation of the baseband OFDM system input to the optical I, Q modulator signal, characterized by: 输入到光I、Q调制器中的I路和Q路输入电调制信号分别是:xm(t),
Figure A200910076418C00031
(x为小于1的实数)。这里乘以x是为了使这两个输入电调制信号足够小,从而减小调制信号失真。
The I-way and Q-way input electrical modulation signals input to the optical I and Q modulators are respectively: xm(t),
Figure A200910076418C00031
(x is a real number less than 1). The purpose of multiplying by x here is to make the two input electrical modulation signals small enough to reduce the distortion of the modulation signal.
7、根据权利要求2-5所述的通过光的I、Q调制来实现单边带光的OFDM信号的调制方法,所述射频调制的OFDM系统输入到光I、Q调制器中的电调制信号,其特征在于:7. According to claim 2-5, the method for modulating the OFDM signal of single-sideband light through optical I and Q modulation, the electrical modulation of the RF-modulated OFDM system input to the optical I and Q modulator signal, characterized by: 首先将得到的基带OFDM信号m(t)及其希尔伯特变换
Figure A200910076418C00032
分别乘以射频载波,调制到射频域,然后再分别作为光的I、Q调制器的输入电调制信号即,I路:xm(t)×cos(2πfRFt);Q路:
Figure A200910076418C00033
(x为小于1的实数)。这里乘以x是为了使这两个输入电调制信号足够小,从而减小调制信号失真。
First, the obtained baseband OFDM signal m(t) and its Hilbert transform
Figure A200910076418C00032
Multiplied by the RF carrier, modulated into the RF domain, and then used as the input electrical modulation signals of the optical I and Q modulators respectively, that is, the I path: xm(t)×cos(2πf RF t); the Q path:
Figure A200910076418C00033
(x is a real number less than 1). The purpose of multiplying by x here is to make the two input electrical modulation signals small enough to reduce the distortion of the modulation signal.
8、根据权利要求1-7所述的通过光的I、Q调制来实现单边带光的OFDM信号的调制方法,针对I、Q路的输入OFDM电调制信号,I、Q路MZ调制器相对应的偏置电压,其特征在于:8. According to claim 1-7, the modulation method for realizing the OFDM signal of single sideband light through optical I, Q modulation, for the input OFDM electrical modulation signal of I, Q path, I, Q path MZ modulator The corresponding bias voltage is characterized by: I路MZ调制器上下臂的偏置电压设为:-Vπ/4The bias voltage of the upper and lower arms of the I-way MZ modulator is set to: -V π /4 Q路MZ调制器上下臂的偏置电压设为:-Vπ/2。The bias voltage of the upper and lower arms of the Q-way MZ modulator is set to: -V π /2.
CN200910076418XA 2009-01-07 2009-01-07 Modulation method and transmission device for single sideband optical signal of optical OFDM system Expired - Fee Related CN101465692B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910076418XA CN101465692B (en) 2009-01-07 2009-01-07 Modulation method and transmission device for single sideband optical signal of optical OFDM system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910076418XA CN101465692B (en) 2009-01-07 2009-01-07 Modulation method and transmission device for single sideband optical signal of optical OFDM system

Publications (2)

Publication Number Publication Date
CN101465692A true CN101465692A (en) 2009-06-24
CN101465692B CN101465692B (en) 2013-08-21

Family

ID=40806074

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910076418XA Expired - Fee Related CN101465692B (en) 2009-01-07 2009-01-07 Modulation method and transmission device for single sideband optical signal of optical OFDM system

Country Status (1)

Country Link
CN (1) CN101465692B (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158450A (en) * 2010-02-12 2011-08-17 财团法人工业技术研究院 Signal transmission system and method
CN102607618A (en) * 2012-02-21 2012-07-25 南京航空航天大学 Optical fiber sensing method, optical fiber sensing device and using method of optical fiber sensing device
CN101800606B (en) * 2010-02-05 2012-08-22 上海交通大学 Optical single-side band modulating device
CN102664860A (en) * 2012-05-22 2012-09-12 哈尔滨工业大学 Modulation and demodulation method and device for single sideband multi-carrier transmission signal
CN103067075A (en) * 2012-12-20 2013-04-24 南京航空航天大学 Light single side band modulation method, light single side band modulator, optical device measuring equipment, and optical device measuring method
CN103095379A (en) * 2012-11-30 2013-05-08 北京邮电大学 Method for realizing high linearity microwave photon link based on dual drive dual-parallel mach-zehnder modulator (DPMZM)
CN104081694A (en) * 2012-02-07 2014-10-01 瑞典爱立信有限公司 Photonic RF generator
CN104468450A (en) * 2014-12-09 2015-03-25 东北大学 Polarization multiplexing DD-OFDM-PON system and signal transmission method
WO2015067140A3 (en) * 2013-11-07 2015-07-09 Huawei Technologies Co., Ltd. Method and apparatus for directly detected optical transmission systems based on carrierless amplitude-phase modulation
CN106100750A (en) * 2016-06-22 2016-11-09 复旦大学 Use 2 × 2 MIMO fiber radio integration method and systems of light independent sideband modulation based on I/Q manipulator
CN106154592A (en) * 2016-08-31 2016-11-23 武汉光迅科技股份有限公司 The autobias control method of MZI type IQ electrooptic modulator in parallel and device thereof
US9520951B2 (en) 2012-06-14 2016-12-13 Huawei Technologies Co., Ltd. Signal transmission method, transmitter, and signal transmission system
WO2017070949A1 (en) * 2015-10-30 2017-05-04 华为技术有限公司 Signal processing device and method in optical communication systems
WO2018023547A1 (en) * 2016-08-04 2018-02-08 华为技术有限公司 Single sideband modulation device
CN107947930A (en) * 2017-12-29 2018-04-20 中南大学 The modulation compensated system of continuous variable quantum key distribution and its implementation
CN108259090A (en) * 2018-01-17 2018-07-06 清华大学 A kind of radio frequency random waveform photogenerated method and system based on digital logical operation
CN108566250A (en) * 2018-03-02 2018-09-21 北京大学 A kind of modulator approach, demodulation method and system biasing single sideband singal based on multicarrier orthogonal
CN109039467A (en) * 2018-06-26 2018-12-18 天津师范大学 The permanent envelope light ofdm signal modulation demodulation system of standard and its modulation-demo-demodulation method based on I/Q modulator
WO2020015109A1 (en) * 2018-07-19 2020-01-23 中国科学院西安光学精密机械研究所 Multi-modulation-format compatible high-speed laser signal generation system and method
CN111200464A (en) * 2018-11-16 2020-05-26 上海交通大学 SSB signal generation method based on alignment of signal and carrier phase of double MZM

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2321808B (en) * 1997-01-24 1999-03-17 Plessey Telecomm Single sideband modulators
EP1684448A1 (en) * 2005-01-20 2006-07-26 Siemens Aktiengesellschaft An apparatus and method for generating an optical single sideband signal

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800606B (en) * 2010-02-05 2012-08-22 上海交通大学 Optical single-side band modulating device
CN102158450A (en) * 2010-02-12 2011-08-17 财团法人工业技术研究院 Signal transmission system and method
CN104081694A (en) * 2012-02-07 2014-10-01 瑞典爱立信有限公司 Photonic RF generator
CN102607618A (en) * 2012-02-21 2012-07-25 南京航空航天大学 Optical fiber sensing method, optical fiber sensing device and using method of optical fiber sensing device
CN102664860A (en) * 2012-05-22 2012-09-12 哈尔滨工业大学 Modulation and demodulation method and device for single sideband multi-carrier transmission signal
US9520951B2 (en) 2012-06-14 2016-12-13 Huawei Technologies Co., Ltd. Signal transmission method, transmitter, and signal transmission system
CN103095379A (en) * 2012-11-30 2013-05-08 北京邮电大学 Method for realizing high linearity microwave photon link based on dual drive dual-parallel mach-zehnder modulator (DPMZM)
CN103067075A (en) * 2012-12-20 2013-04-24 南京航空航天大学 Light single side band modulation method, light single side band modulator, optical device measuring equipment, and optical device measuring method
CN103067075B (en) * 2012-12-20 2016-01-06 南京航空航天大学 Optical device measurement mechanism, method of measurement
WO2015067140A3 (en) * 2013-11-07 2015-07-09 Huawei Technologies Co., Ltd. Method and apparatus for directly detected optical transmission systems based on carrierless amplitude-phase modulation
US9374260B2 (en) 2013-11-07 2016-06-21 Futurewei Technologies, Inc. Method and apparatus for directly detected optical transmission systems based on carrierless amplitude-phase modulation
CN104468450A (en) * 2014-12-09 2015-03-25 东北大学 Polarization multiplexing DD-OFDM-PON system and signal transmission method
WO2017070949A1 (en) * 2015-10-30 2017-05-04 华为技术有限公司 Signal processing device and method in optical communication systems
CN108141284B (en) * 2015-10-30 2020-02-14 华为技术有限公司 Apparatus and method for processing signal in optical communication system
CN108141284A (en) * 2015-10-30 2018-06-08 华为技术有限公司 The device and method that signal is handled in optical communication system
CN106100750A (en) * 2016-06-22 2016-11-09 复旦大学 Use 2 × 2 MIMO fiber radio integration method and systems of light independent sideband modulation based on I/Q manipulator
CN106100750B (en) * 2016-06-22 2018-11-02 复旦大学 Using 2 × 2 MIMO fiber radio integration method and systems of the light independent sideband modulation based on I/Q modulators
WO2018023547A1 (en) * 2016-08-04 2018-02-08 华为技术有限公司 Single sideband modulation device
CN109478933A (en) * 2016-08-04 2019-03-15 华为技术有限公司 A kind of single-side band modulating device
CN106154592B (en) * 2016-08-31 2019-12-10 武汉光迅科技股份有限公司 automatic bias control method and device for parallel MZI type IQ electro-optic modulator
CN106154592A (en) * 2016-08-31 2016-11-23 武汉光迅科技股份有限公司 The autobias control method of MZI type IQ electrooptic modulator in parallel and device thereof
CN107947930A (en) * 2017-12-29 2018-04-20 中南大学 The modulation compensated system of continuous variable quantum key distribution and its implementation
CN107947930B (en) * 2017-12-29 2020-08-07 中南大学 Continuous variable quantum key distribution modulation compensation system and implementation method thereof
CN108259090B (en) * 2018-01-17 2020-06-02 清华大学 A method and system for generating radio frequency arbitrary waveform light based on digital logic operation
CN108259090A (en) * 2018-01-17 2018-07-06 清华大学 A kind of radio frequency random waveform photogenerated method and system based on digital logical operation
CN108566250A (en) * 2018-03-02 2018-09-21 北京大学 A kind of modulator approach, demodulation method and system biasing single sideband singal based on multicarrier orthogonal
CN108566250B (en) * 2018-03-02 2021-03-12 北京大学 Modulation and demodulation method and system based on carrier quadrature bias single sideband signal
CN109039467A (en) * 2018-06-26 2018-12-18 天津师范大学 The permanent envelope light ofdm signal modulation demodulation system of standard and its modulation-demo-demodulation method based on I/Q modulator
WO2020015109A1 (en) * 2018-07-19 2020-01-23 中国科学院西安光学精密机械研究所 Multi-modulation-format compatible high-speed laser signal generation system and method
US11128382B2 (en) 2018-07-19 2021-09-21 Xi'an Institute Of Optics And Precision Mechanics, Chinese Academy Of Sciences Multi-modulation-format compatible high-speed laser signal generation system and method
CN111200464A (en) * 2018-11-16 2020-05-26 上海交通大学 SSB signal generation method based on alignment of signal and carrier phase of double MZM

Also Published As

Publication number Publication date
CN101465692B (en) 2013-08-21

Similar Documents

Publication Publication Date Title
CN101465692B (en) Modulation method and transmission device for single sideband optical signal of optical OFDM system
CN102687475B (en) For method and the optic network parts of deal with data in optic network parts
CN101582721B (en) Multicarrier generating device, optical transmitter and multicarrier generating method
US9281980B2 (en) Receiving apparatus and method, sending apparatus and method, front-end circuit, modulator, and transceiving system
EP2528251A1 (en) Optical communication system, optical transmitter, optical receiver and optical transponder
CN110178321B (en) Signal transmitting method and device, transmitter and signal transmission system
TW201019029A (en) Photoelectric modulator of frequency doubling electrical signal
CN102098105A (en) Self-adaptively modulated optical fiber communication method and system
Xiao et al. OFDM vector signal generation based on optical carrier suppression
CN103873424A (en) System, device and modulation/demodulation method suitable for OFDMA-OPN (Orthogonal Frequency Division Multiple Access Optical Passive Network)
CN103297214A (en) Multi-carrier multiplexing optical wireless link system and digital pre-distortion method thereof
CN106788767B (en) A QPSK to BPSK all-optical modulation format conversion method based on phase sensitive amplification
US9166721B2 (en) Reconfigurable optical transmitter
CN105610754A (en) High-speed OOFDM (Optical Orthogonal Frequency Division Multiplexing) signal transmitting system and method based on multilevel modulation
CN101867435A (en) An all-optical OFDM symbol generator
CN101692626A (en) Method and device for generating and receiving optical OFDM-MSK signals
CN101562482B (en) Fiber wireless communication system and method for generating downlink multi-service millimeter wave
CN108965188A (en) The method and system of optical millimeter wave section ofdm signal PAPR are reduced using DFT spread spectrum
CN102014092A (en) Cascade-mode-based quaternary minimum-shift keying ( MSK) modulation method and device
CN207053517U (en) A kind of optical signal launch end and millimeter wave light carrier radio communication system
CN112804007B (en) Dual-signal modulation and demodulation method and device for radio-over-fiber communication system
Ishimura et al. Power-fading-free IF-over-fiber transmission with DEMZM using simple chirp control for high-capacity mobile fronthaul links
CN113517933B (en) Optical signal transmission method and device
CN102025682A (en) All-optical OFDM (orthogonal frequency division multiplexing) system transmitter device, OFDM system and method for processing signals
Lin et al. 35-Gb/s 32-QAM radio-over-fiber system employing single-sideband single-carrier modulation at 60 GHz

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130821

Termination date: 20160107