[go: up one dir, main page]

CN101313013A - 含有配位聚合物的聚合物电解质膜 - Google Patents

含有配位聚合物的聚合物电解质膜 Download PDF

Info

Publication number
CN101313013A
CN101313013A CNA2006800436599A CN200680043659A CN101313013A CN 101313013 A CN101313013 A CN 101313013A CN A2006800436599 A CNA2006800436599 A CN A2006800436599A CN 200680043659 A CN200680043659 A CN 200680043659A CN 101313013 A CN101313013 A CN 101313013A
Authority
CN
China
Prior art keywords
polymer
poly
dielectric film
polymer dielectric
ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800436599A
Other languages
English (en)
Other versions
CN101313013B (zh
Inventor
多米尼克·德·菲格雷多·戈梅斯
苏珊娜·努内斯
克劳斯-维克托·派内曼
斯特凡·卡斯克尔
沃尔克·阿贝茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GKSS Forshungszentrum Geesthacht GmbH
Original Assignee
GKSS Forshungszentrum Geesthacht GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GKSS Forshungszentrum Geesthacht GmbH filed Critical GKSS Forshungszentrum Geesthacht GmbH
Publication of CN101313013A publication Critical patent/CN101313013A/zh
Application granted granted Critical
Publication of CN101313013B publication Critical patent/CN101313013B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2275Heterogeneous membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/02Polythioethers; Polythioether-ethers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明涉及一种聚合物电解质膜,尤其是燃料电池中的聚合物电解质膜,和所述聚合物电解质膜的用途。本发明另外涉及用于制备特别是可传导质子的聚合物电解质膜,优选燃料电池中的聚合物电解质膜的方法。通过包含配位聚合物(金属有机骨架)来进一步改进所述聚合物电解质膜。

Description

含有配位聚合物的聚合物电解质膜
技术领域
本发明涉及一种聚合物电解质膜,尤其燃料电池中的聚合物电解质膜,和所述聚合物电解质膜的用途。本发明另外涉及用于制备特别是可传导质子的聚合物电解质膜,优选燃料电池中的聚合物电解质膜的方法。
背景技术
燃料电池被认为是创新的排放物少的传统能量获得方法的替代。对于移动应用聚合物电解质膜-燃料电池(PEM)尤其令人感兴趣。质子传导性聚合物膜是这种燃料电池类型的中心元件。
Figure A20068004365900041
是DuPont制造的含有磺酸侧基的全氟化聚合物,它以及Asahi的类似产品仍然是用于此用途的主导市场的膜材料。
对于使用其它聚合物作为燃料电池中的膜材料已经进行了很多研究。然而,这些聚合物几乎只限于磺化材料,而这种材料的质子传导性归因于磺酸基。
出版物(M.Yamabe,K.Akiyama,Y.Akatsuka,M.Kato.Novelphosphonated perfluorocarbon polymers.Eur.Polym.J.36(2000)1035-41)中描述了具有膦酸侧基的全氟化聚合物的合成,以全氟乙烯氧基取代的膦酸作为单体,其随后与四氟乙烯和全氟丙基乙烯基醚共聚合。US-A-6 087 032描述了这类聚合物在燃料电池中的用途。
例如在US-A-5 422 411中描述了其它具有膦酸侧基的聚合物构成的燃料电池膜。US-A-5 679 482描述了用于燃料电池中的其它聚合物。其中涉及含有磺酸和膦酸基团的混合官能化的无氟的苯乙烯共聚物。
聚合物电解质膜燃料电池(PEM燃料电池)由两个电极构成,所述电极通过质子传导性膜(聚合物电解质膜或质子交换膜)互相分离。所述电极由例如碳垫组成,其用铂蒸发淀积并且通过外部的电路互相连接。为了可以实现氢和氧向水的转化,必需润湿所述质子传导性膜。向阳极连续供给燃料氢。向阴极不断提供氧。有两类PEM燃料电池在开发中:低温电池(至约90℃)和高温电池(至约180℃)。
低温电池是60年代开发的。当时,磺化的聚苯乙烯膜被用作电解质。从1969年开始在PEM燃料电池中装配DuPont研制的
Figure A20068004365900051
膜。低温电池对一氧化碳(CO)反应敏感。这种气体会阻断阳极催化剂,从而导致功率下降。必需润湿所述膜,以便可以传导质子。
高温电池对CO和其它杂质反应不敏感。电池内较高的工作温度在家居住房能源方面令人感兴趣,因为可以有效利用产生的热。由于所述膜不用水传导质子,因此不一定要润湿。
关于用于高温电池的膜已经存在对解决方法的建议。US 6,387,230B1中例如建议了一系列用于高温电池的膜,其由聚合物和有机或无机材料(无机-有机复合膜)的复合物构成。
发明内容
本发明的目的是提供质子传导性膜,通过所述膜使得燃料电池可以在较高温度,尤其高于100℃的温度下运行。
通过聚合物电解质膜,尤其是燃料电池中的聚合物电解质膜实现了这个目的,其被这样进一步改进,即所述聚合物电解质膜包含配位聚合物(金属有机骨架)。
本发明建议了一种用于电化学应用的新型质子传导性的或可传导质子的膜,其由聚合物/MOF混合物(MOF:金属有机骨架)构成并且适合用于高温电池。
根据本发明,已知聚合物电解质在较高温度下的质子传导性可以通过混合MOF来明显提高。
为了制备根据本发明的膜,首先将聚合物例如磺化的聚(醚醚酮),即SPEEK溶解在极性有机溶剂中。随后向这种溶液中加入细晶MOF颗粒。浇注之后干燥所制备的复合物膜。
本发明的决定性优点在于下列事实,使用MOF的复合物膜没有已经被用作PEM燃料电池的膜。除此之外,根据本发明的膜在升高温度下的质子传导性高于传统的膜例如
Figure A20068004365900061
通过向膜制备常用的聚合物中加入配位聚合物可以制备具有新特征的聚合物电解质膜。这些特征使得由此制备的膜具有高的透过性和高的选择性。如果向第一种聚合物中加入配位聚合物,该配位聚合物为具有永久多孔性的金属有机骨架结构,在相同厚度下与常用的膜比较可以增加复合材料或相应的复合物膜的气体透过性。这归因于复合材料内部相对大的可利用体积,通过金属有机骨架结构(以下称为MOF)的多孔性引起。
所述配位聚合物优选以晶体形式存在,尤其是晶体簇形式。所述晶体簇的延伸优选为约0.1微米至50微米,尤其优选为0.4微米至10微米。对于复合物膜,延伸优选为0.1微米至1微米,尤其为0.5微米。所述配位聚合物优选是催化活性的。在应用相应的吸附选择性骨架结构时,可以相应增加选择性。对于相应的配位聚合物或金属有机骨架结构(MOF金属有机骨架),计划使用包含由很多低分子配体构成的主链的聚合物,这些配体通过金属配位物并且由此通过配合或离子键聚集在一起。除去配位聚合物的金属中心通常伴随聚合物链降解为低分子产物。
所述膜优选包含共价结合的带负电荷的官能团。也就是说,所述膜包含聚电解质层,其中它的离子基团连接在全氟化的和/或基于烃的聚合物骨架或聚合物上。
可以用作膜,尤其质子传导性聚合物电解质的具体聚合物包括
Figure A20068004365900062
和/或,尤其磺化、膦酸化或掺杂的聚(酰胺酰亚胺)、聚(醚砜)、聚(醚醚酮)、聚(醚酮酮)、聚(醚酰亚胺)、聚(磷腈)、聚(苯氧基苯甲酰基亚苯基)、聚(苯并咪唑)和聚(吡咯)。
因此,所述膜聚合物包含酸传导性(saeureleitfaehige)基团,例如磺酰-羧基(Sulfon-Carboxyl)、膦酰(phosphon)-、磺酰亚胺-或硼酸基团。由此,聚(酰胺酰亚胺)、聚(醚砜)、聚(醚醚酮)、聚(醚酰亚胺)、聚(磷腈)、聚(苯氧基苯甲酰基亚苯基)这些聚合物包含磺酰(Sulfon)、羧基、膦酰或磺酰亚胺基团。聚(苯并咪唑)或聚(吡咯)这些聚合物可以包含磺酰、羧基、膦酰、磺酰亚胺基或硼酸基团。
尤其优选的聚合物材料是磺化的聚(醚醚酮),SPEEK,其包含下面结构的重复单元:
Figure A20068004365900071
SPEEK的优选磺化程度小于70%,尤其小于60%,并且优选小于50%。研究表明,磺化程度约50%的SPEEK膜与
Figure A20068004365900072
相比在直接甲醇燃料电池(DMFC)中具有更好的效率(见Yang B.,Manthiram A.,Sulfonated Poly(ether ether ketone)membranes for direct methanol fuelcells.Electrochemical and Solid-sate Letters 6(2003)A229-A231)。
优选的细孔颗粒是配位聚合物的颗粒,即所谓金属有机骨架(MOF)。所述配位聚合物或MOF由有机连接体和过渡金属或簇组成,其中两个单元构成具有三维开放骨架结构的构件。由分子构成的构件来进行其合成使得可以有针对性地调整其特性,所述特性可以通过金属、化合物或相邻的配体来确定。所产生的空腔的大小和化学环境通过有机单元的长度和官能度来定义。
多孔固体物质的已知物质种类被称为金属有机骨架结构(MetalOrganic Framework=MOF)或配位聚合物。由Alfred Werner发展的配合化合物理论[A.Werner,Z.Anorg.Allg.Chem.3(1893)267]第一次使得理解无机络合物化学的试验结果成为可能。通过将有机的可以形成络合物的分子例如二胺或二酸的分子加入已溶解的盐中来得到稳定的MOF。以金属离子作为配合中心得到的晶格点之间的距离可以通过结构,尤其是有机组分的结构而在宽的范围内调节,并且得到微孔至中孔材料。有机成分的官能团的间距基本上预先确定了孔大小,金属组分的类型决定了可能的催化特性。MOF或配位聚合物可以多种形式变化并且被广泛记载[S.Kitagawa,et al.Angew.Chem.Int.Ed.43(2004)2334]。
从配位聚合物的结构来看,大的内部体积可以用来吸附或冷凝气体和蒸汽。其它应用可能性由MOF的金属成分提供。金属或金属盐的催化特性在化学转化成MOF的过程中仍然保持或者改变。通过易于利用的内表面还可以得到改善的催化作用。MOF通常直至>300℃的是温度稳定性的并且根据晶格间距或孔大小具有0.8-0.2g/cm3的较低的密度。具有催化特性的MOF例如被描写为用于氢甲酰化和氢化作用[Foxund Pesa,US 4,504,684]或环氧化[Mueller,et a1.US 6,624,318 B1]的催化剂。
由于MOF由无机盐和有机化合物例如二胺和二酸组成,因此其与弹性体还有玻璃态聚合物的相容性远远大于与纯无机物质例如沸石和碳分子筛的相容性。至今为止,这些化合物种类还没有被加入聚合物,并且检验相容性或关于气体透过性和选择性的经过改变的特性。
孔大小为0.3nm-1.5nm的MOF是优选的,因为具有较大孔的MOF具有可用于有机改性或官能化的中心,由此有利于质子传送。
优选的二价过渡金属是Zn、Cu、Co、Ni、Cd、Fe、Mo、Rh和Mn。然而,三价Al(铝)和四价或五价V(钒)也是重要的。
优选的用于合成MOF的有机连接体包括:
i)膦酸酯,例如具有下面的结构式:
Figure A20068004365900081
ii)对苯二酸或羧酸酯,其例如具有下面的结构式:
Figure A20068004365900082
iii)二氮杂二环辛烷或氮-供体络合物(Stickstoff-Donorkomplexe),其例如具有下面的结构式:
在孔壁内具有配位点和水分子的MOF是优选的,与具有没有被配体构成的骨架结构阻断的配位点的MOF一样。
多孔配位聚合物或配合物的很小尺寸和有机特性改善与聚合物的界面相容性。优选低的颗粒加载量,以便构成均匀的复合物膜。由此优选的是,颗粒加载量(以颗粒的重量与(聚合物和颗粒的重量)的比x100%)基于聚合物含量计不超过20%,优选小于10,尤其不超过3重量%。
除此之外优选的是,颗粒很好地分布在聚合物层上,使得聚合物/颗粒复合物基本上均匀地构成。为此优选的是,很好地搅拌包含颗粒的分散体或溶液,尤其在浇铸膜之前。
由于膜的极好热特性,基于配位聚合物的膜可以作为燃料电池中的电解质膜在超过100℃,尤其超过120℃的温度下使用,而不需要额外地润湿阳极的燃料。用于在燃料电池(fuel cell)中获得能量的操作过程已经充分已知并且对专业技术人员而言是熟知的。
供给阳极的燃料电池介质可以是氢、甲醇(液态或气态甲醇/水混合物)或乙醇(液态或气态甲醇/水混合物)。
燃料电池中较高的工作温度使得可以还原有价值的金属装料(Metallladungen)和简化昂贵的气体调节或净化,同时减少对液体供给的要求,由此可以避免将所述体系置于压力下的要求。
通过本发明提供了在高于100℃的温度下具有高质子传导性,而不需要额外的燃料的液体供给的膜,该燃料被供给阳极。
所述膜起到气体/液体扩散屏障的作用,然而在此过程中可以允许质子通过。通过电解质的质子流必需通过外部电路的电子电荷流来保持平衡,从而该平衡产生电能。
所述膜中的质子移动与膜的水含量连系或结合在一起。由于甲醇和水在偶极矩上的类似特性,甲烷分子与水分子一样由于电渗透力和扩散被运送到阴极。甲醇在阴极降低了燃料电池的效率。通过本发明,提供了对甲醇具有低透过性的膜。
根据本发明的膜结合了在超过100℃的温度下不需要额外燃料润湿的高质子传导性以及适合的甲醇透过性,所述燃料被供给阳极。
通过下面的实施例进一步详细说明本发明。所述实施例应该阐明本发明,而不以任何方式限制本发明的应用范围。
具体实施方式
实施例
实施例1
聚合物合成
制备磺化程度为51%(离子交换能力1.57meq/g)的磺化聚(醚醚酮)(SPEEK),用Wijers M.C.,Supported liquid membranes forremoval of heavy metals:permeability,selectivity and stability.Dissertation,University of Twente,The Netherlands,1996中描述的方法。在90℃的真空中过夜干燥作为Victrex颗粒提供的聚(醚醚酮)。随后将20g聚合物溶解在1升浓硫酸(95%至98%)中并且在室温下搅拌45小时。随后在含K2CO3的冰水中在机械搅拌下沉淀上述聚合物溶液,直至pH值为中性。沉淀的聚合物放置过夜。随后过滤沉淀的聚合物并且用蒸馏水多次清洗,在80℃下干燥12小时。通过元素分析来确定磺化程度,例如如Nolte R.,Ledj eff K.,Bauer M.,Mulhapt R.,Partially sulfonated poly(arylene ether sulfone)-a versatile protonconducting membrane material for modern  energy conversiontechnologies,J.Memb.Sci.83(1993)211-220中描述的。
聚合物净化
将1升水中包含18g聚合物材料的聚合物悬浮液干燥并且搅拌。过滤所述聚合物悬浮液并且用蒸馏水在室温下清洗24小时10次。随后在80℃下干燥聚合物悬浮液12小时。
聚合物膜制备
将2.3g聚合物溶解在33g二甲基亚砜(7重量%)中。将所述溶液浇在60℃的玻璃板上来蒸发液体。所述玻璃板事先用十八烷基三氯硅烷疏水化。浇铸之后,在80℃真空中干燥SPEEK膜12小时。所述膜的最终厚度为83微米。通过将已浇铸的膜室温下在2N的硫酸中浸没24小时,随后在水中两次浸没24小时来保证完全清洗掉残留的硫酸,从而将经过磺化的膜转化为它的酸形式。
实施例2
MOF合成
合成MOF(Cu3(BTC)2(H2O)3.xH2O),如Schlichte K.,Kratzke T.,Kaskel S.,Improved synthesis,thermal stability and catalytic propertiesof the metal-organic framework compound Cu3(BTC)2,Microporousand Mesoporous Materials 73(2004),81-88中描述的。将0.857g(3.6mmol)Cu(NO3)2.3H2O溶解在12ml去离子水中并且与0.42g(2.0mmol)溶解在12ml甲醇中的苯均三酸混合。将所述溶液加入40ml的置于高压锅内的特福隆容器中,在120℃加热12小时。合成温度(120℃)使得Cu2O的形成得到抑制,因为避免了Cu2+离子的还原。通过氮物理吸附和X射线衍射仪来表征MOF。氮物理吸附测量在使用微晶学ASAP 2000仪器的情况下在77K进行。X射线粉末衍射图用STOE衍射仪拍摄,其装配有位置敏感的检测仪(Braun,6°)和使用CuKα射线的过渡模式的锗一次射线单色仪。MOF的X射线粉末衍射图示出反射,所述反射与结晶数据的计算模型(垂直和对角的O-O间距分别为8.25和10.67
Figure A20068004365900111
(埃))比较。铜原子可以实现同样的几何图形,然而,相应的Cu-Cu间距分别为11.3和16.0
Figure A20068004365900112
(埃)。观察具有比微孔体积为0.41cm3/g和Horvath-Kawazoe(HK)孔大小为10.7
Figure A20068004365900113
(埃)的圆柱模型的微孔网的I类等温线。通过TG/DTA检查热稳定性。所述网的分解在350℃下,如已经在Schlichte K.,Kratzke T.,Kaskel S.,Improvedsynthesis,thermal stability and catalytic properties of the metal-organicframework compound Cu3(BTC)2,Microporous and MesoporousMaterials 73(2004),81-88中描述的进行。
实施例3
复合物膜制备
将2.3g聚合物溶解在33g二甲基亚砜(7重量%)中。随后向聚合物溶液中加入0.12g MOF(5重量%,表示为MOF的重量/(聚合物和MOF的重量)x100%)。将所述溶液搅拌6小时并且浇在60℃的玻璃板上来除去溶剂。所述玻璃板事先用十八烷基三氯甲硅烷疏水化。浇铸之后,将包含5%MOF的SPEEK膜在真空炉中80℃干燥10小时。所述膜的最终厚度为96微米。通过将已浇铸的膜室温下在2N的硫酸中浸没24小时,随后在水中两次浸浴24小时来保证完全清洗掉残留的硫酸,从而将经过磺化的复合物膜转化为它的酸形式。
实施例4
质子传导性测量
质子传导性通过频率范围在10至106Hz的交流阻抗谱在信号振幅≤100mV的情况下测量,并且得自零相位移(高频侧)时的阻抗值。样品的质子传导性在40℃至140℃延伸的温度下,在100%相对湿度时测定。阻抗测量对5个膜叠成的一摞(类似的累积厚度为约500微米)实施。应用抗锈的密闭钢室控制相对湿度,所述钢室由两个圆柱形内腔组成,两个圆柱形内腔通过管彼此连接并且保持不同的温度。冷的内腔包含水,而热的内腔容纳待检验的膜。相对湿度通常由冷和热腔室的温度下饱和水蒸气压力之间的比来计算。
Figure A20068004365900121
膜制备
将35g 5重量%的
Figure A20068004365900122
溶液(DuPont)浇在60℃的玻璃板上来蒸发溶剂。所述玻璃板事先用十八烷基三氯甲硅烷疏水化。浇铸之后,将
Figure A20068004365900123
膜在真空炉中80℃干燥12小时。所述膜的最终厚度为41微米。
用MOF制备的复合物膜在所有温度范围下比简单的膜具有更高的质子传导性值,因为MOF可以在它们的空腔内存储水。与其它金属有机骨架结构相比,所述其它金属有机骨架的配位点大多数被容纳配体的骨架结构阻断了,而Cu3(BTC)2(主孔大小为10.7
Figure A20068004365900131
(埃))的优点是,路易斯酸配位点和水分子(每孔12个水分子)在孔壁内侧。Cu2+离子通过弱键连接,并且剩余的配位点通过弱连接的水分子来填充,这些水分子指向孔内部。由于它们弱的氢键结构,有利于质子运送的分离和结合过程。
实施例5
膜对水和甲醇的透过性
水和甲醇通过所述膜的透过性通过在55℃下利用膜直径为47mm的Milipore电池进行的全蒸发来测量。从进料侧加入1.5M甲醇溶液。渗透侧抽空。在1至3小时的时间间隔之后,在浸入液氮的收集器中收集渗透物。称量渗透物并且通过气相色谱确定组成。测量之前将膜样品浸入进料溶液中。表1示出结果。
表1
Figure A20068004365900132
含有5重量%MOF的SPEEK膜的甲醇透过性高于单一膜,但是低于
Figure A20068004365900133
115(见Gaowen Z.and Zhentao Z.,Organic/inorganiccomposite membranes for application in DMFC,J.Memb.Sci.(2005))。
图1示出三种膜SPEEK、SPEEK+5%MOF和
Figure A20068004365900134
115的质子传导性,依赖于SPEEK膜的温度,在40℃至140℃下,100%相对湿度下测量。由图1可看出,含有5重量%MOF的SPEEK膜比其它两种膜在40℃至140℃的温度范围内具有明显或显著更高的质子传导性(倍数1.5至超过2)。例如含有5重量%MOF的SPEEK膜在120℃时的质子传导性为约5.010-2S/cm。

Claims (15)

1.一种聚合物电解质膜,尤其是燃料电池中的聚合物电解质膜,其特征在于,所述聚合物电解质膜包含配位聚合物(金属有机骨架)。
2.根据权利要求1的聚合物电解质膜,其特征在于,所述聚合物电解质膜具有共价结合的带负电官能团和/或聚合物电解质层,其中优选它们的离子基团结合在全氟化的和/或基于烃的聚合物骨架或聚合物上。
3.根据权利要求1或2的聚合物电解质膜,其特征在于,所述膜聚合物包括Nafion
Figure A2006800436590002C1
和/或,尤其磺化、膦酸化或掺杂的聚(酰胺酰亚胺)和/或聚(醚砜)和/或聚(醚醚酮)和/或聚(醚酮酮)和/或聚(醚酰亚胺)和/或聚(苯氧基苯甲酰基亚苯基)和/或聚(苯并咪唑)和/或聚(吡咯)。
4.根据权利要求1~3中任一项的聚合物电解质膜,其特征在于,所述膜聚合物是磺化的聚(醚醚酮),SPEEK。
5.根据权利要求4的聚合物电解质膜,其特征在于,SPEEK的磺化程度小于70%,尤其小于60%,并且优选小于50%。
6.根据权利要求1~5中任一项的聚合物电解质膜,其特征在于,所述配位聚合物的单位晶格尺寸为0.3至15nm。
7.根据权利要求1~6中任一项的聚合物电解质膜,其特征在于,所述配位聚合物包含具有至少一个膦酸酯和/或羧酸酯基团和/或氮-供体络合物的有机连接体。
8.根据权利要求1~7中任一项的聚合物电解质膜,其特征在于,所述配位聚合物在孔壁的内侧具有配位点和水分子。
9.根据权利要求1~8中任一项的聚合物电解质膜,其特征在于,所述配位聚合物构建有未被MOF配体占据的配位点。
10.根据权利要求1~9中任一项的聚合物电解质膜,其特征在于,所述配位聚合物以小于20重量%,尤其小于10重量%,优选小于3重量%的加载量包含于膜聚合物中。
11.根据权利要求1~10中任一项的聚合物电解质膜在燃料电池中的用途。
12.一种用于制备特别是可传导质子的聚合物电解质膜,优选燃料电池中的聚合物电解质膜的方法,所述方法包括下列步骤:
a)将聚合物溶解在优选极性的有机溶剂中,
b)将配位聚合物(金属有机骨架)溶解或悬浮在来自步骤a)的聚合物溶液中,
c)将来自步骤b)的溶液或悬浮液浇注成薄膜,和
d)干燥来自步骤c)的薄膜。
13.根据权利要求12的方法,其特征在于,将Nafion
Figure A2006800436590003C1
和/或,尤其磺化、膦酸化或掺杂的聚(酰胺酰亚胺)和/或聚(醚砜)和/或聚(醚醚酮)和/或聚(醚酮酮)和/或聚(醚酰亚胺)和/或聚(苯氧基苯甲酰基亚苯基)和/或聚(苯并咪唑)和/或聚(吡咯)作为膜聚合物溶解在有机溶剂中。
14.根据权利要求12或13的方法,其特征在于,溶解作为膜聚合物的磺化聚(醚醚酮),SPEEK。
15.根据权利要求14的方法,其特征在于,SPEEK的磺化程度小于70%,尤其小于60%,并且优选小于50%。
CN2006800436599A 2005-11-25 2006-09-09 含有配位聚合物的聚合物电解质膜 Expired - Fee Related CN101313013B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102005056564.6 2005-11-25
DE102005056564A DE102005056564B4 (de) 2005-11-25 2005-11-25 Polymerelektrolytmembran mit Koordinationspolymer, Verfahren zu seiner Herstellung sowie Verwendung in einer Brennstoffzelle
PCT/EP2006/008799 WO2007059815A1 (de) 2005-11-25 2006-09-09 Polymerelektrolytmembran mit koordinationspolymer

Publications (2)

Publication Number Publication Date
CN101313013A true CN101313013A (zh) 2008-11-26
CN101313013B CN101313013B (zh) 2012-06-27

Family

ID=37114502

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800436599A Expired - Fee Related CN101313013B (zh) 2005-11-25 2006-09-09 含有配位聚合物的聚合物电解质膜

Country Status (11)

Country Link
US (1) US8124660B2 (zh)
EP (1) EP1954747B1 (zh)
JP (1) JP2009517806A (zh)
KR (1) KR101169752B1 (zh)
CN (1) CN101313013B (zh)
AT (1) ATE439396T1 (zh)
CA (1) CA2639940A1 (zh)
DE (2) DE102005056564B4 (zh)
DK (1) DK1954747T3 (zh)
ES (1) ES2329409T3 (zh)
WO (1) WO2007059815A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103772607A (zh) * 2014-01-26 2014-05-07 郑州大学 含磷交联凝胶聚合物电解质及其现场热聚合制备方法、应用
CN103846024A (zh) * 2014-03-13 2014-06-11 天津大学 磺化聚醚醚酮/磺化铬有机骨架杂化膜及制备和应用
CN104037432A (zh) * 2014-04-17 2014-09-10 天津大学 高分子-改性金属有机框架材料复合膜及其制备和应用
CN105789668A (zh) * 2016-03-03 2016-07-20 中国科学院化学研究所 金属有机骨架材料/聚合物复合质子交换膜的制备方法
CN110698707A (zh) * 2019-09-02 2020-01-17 湖北工程学院 磷酸硼配位铜均苯三甲酸配合物的复合质子交换膜及其制备方法和应用
CN114426694A (zh) * 2020-09-28 2022-05-03 中国石油化工股份有限公司 一种改性共聚物膜材料及其制备方法和应用
CN116344879A (zh) * 2023-05-30 2023-06-27 佛山科学技术学院 一种金属有机骨架的纳米复合膜及其制备方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100928718B1 (ko) * 2007-10-09 2009-11-27 성균관대학교산학협력단 유기 용매 건조법에 의한 균일하게 황산기가 부착된peek 전해질 막의 제조 방법
US8309661B2 (en) * 2009-02-27 2012-11-13 Uop Llc Block coordination copolymers
US8884087B2 (en) * 2009-02-27 2014-11-11 Uop Llc Block coordination copolymers
US8324323B2 (en) * 2009-02-27 2012-12-04 Uop Llc Block coordination copolymers
US20120189922A1 (en) * 2009-07-16 2012-07-26 Thomas Justus Schmidt Method for operating a fuel cell, and a corresponding fuel cell
US9101886B2 (en) * 2009-11-10 2015-08-11 Daimler Ag Composite proton conducting membrane with low degradation and membrane electrode assembly for fuel cells
US8425662B2 (en) 2010-04-02 2013-04-23 Battelle Memorial Institute Methods for associating or dissociating guest materials with a metal organic framework, systems for associating or dissociating guest materials within a series of metal organic frameworks, and gas separation assemblies
KR101669215B1 (ko) 2010-09-27 2016-10-26 삼성전자주식회사 리튬 전지용 전해질막, 이를 이용한 리튬 전지 및 그 제조방법
WO2012138418A1 (en) 2011-04-04 2012-10-11 Georgia Tech Research Corporation Zeolite ddr nanocrystals
US8821616B2 (en) 2011-04-04 2014-09-02 Georgia Tech Research Corporation Zeolite DDR nanoparticles
WO2012138419A1 (en) 2011-04-04 2012-10-11 Georgia Tech Research Corporation Mof nanocrystals
US9192913B2 (en) 2011-09-05 2015-11-24 Kuraray Co., Ltd. Adsorbent
US10535474B2 (en) 2012-04-23 2020-01-14 Kyoto University Porous coordination polymer-ionic liquid composite
US9375678B2 (en) 2012-05-25 2016-06-28 Georgia Tech Research Corporation Metal-organic framework supported on porous polymer
US9994501B2 (en) 2013-05-07 2018-06-12 Georgia Tech Research Corporation High efficiency, high performance metal-organic framework (MOF) membranes in hollow fibers and tubular modules
US9687791B2 (en) 2013-05-07 2017-06-27 Georgia Tech Research Corporation Flow processing and characterization of metal-organic framework (MOF) membranes in hollow fiber and tubular modules
KR102461717B1 (ko) * 2015-05-12 2022-11-01 삼성전자주식회사 에너지 저장장치용 전해질막, 이를 포함하는 에너지 저장장치, 및 상기 에너지 저장장치용 전해질막의 제조방법
US10118976B2 (en) * 2016-01-04 2018-11-06 California Institute Of Technology Anion-coordinating polymer electrolytes and related compositions, methods and systems
EP3239155A1 (en) 2016-04-29 2017-11-01 University of Limerick Crystal form comprising lithium ions, pharmaceutical compositions thereof, methods for preparation and their uses for the treatment of depressive disease
KR101841667B1 (ko) 2016-07-29 2018-03-23 주식회사 엘지화학 유기금속 복합체용 다방향성 리간드
WO2018021882A1 (ko) 2016-07-29 2018-02-01 주식회사 엘지화학 다방향성 리간드에 기반한 유기금속 복합체
CN111313063A (zh) * 2018-12-11 2020-06-19 中国科学院大连化学物理研究所 一种有机-mof复合碱性聚合物电解质膜的制备方法及该膜
EP3783633A1 (en) * 2019-08-23 2021-02-24 Technische Universität Berlin Supercapacitors comprising phosphonate and arsonate metal organic frameworks (mofs) as active electrode materials
KR102281352B1 (ko) * 2019-11-13 2021-07-23 한국생산기술연구원 레독스 흐름전지용 하이브리드 분리막, 레독스 흐름전지 및 그의 제조방법
DE102019217497A1 (de) 2019-11-13 2021-05-20 Robert Bosch Gmbh Brennstoffzellensystem und Verfahren zur Reinigung eines Rückführstroms einer Brennstoffzelle
JP7486661B2 (ja) * 2020-08-20 2024-05-17 エルジー エナジー ソリューション リミテッド 固体電解質膜及びそれを含む全固体電池
CN114373971B (zh) * 2021-12-30 2022-11-11 上海应用技术大学 一种全氟磺酸树脂与Ce-MOF共混的质子交换膜的制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4504684A (en) * 1982-01-06 1985-03-12 The Standard Oil Company Metal coordination polymers as hydroformylation and hydrogenation catalysts
DE3407148A1 (de) 1984-02-28 1985-08-29 Basf Ag, 6700 Ludwigshafen Membrane aus vinylpolymeren und deren verwendung
US5176724A (en) * 1987-11-10 1993-01-05 Matsushita Electric Industrial Co., Ltd. Permselective composite membrane having improved gas permeability and selectivity
US5422411A (en) * 1993-09-21 1995-06-06 Ballard Power Systems Inc. Trifluorostyrene and substituted trifluorostyrene copolymeric compositions and ion-exchange membranes formed therefrom
US5468574A (en) * 1994-05-23 1995-11-21 Dais Corporation Fuel cell incorporating novel ion-conducting membrane
US6059943A (en) * 1997-07-30 2000-05-09 Lynntech, Inc. Composite membrane suitable for use in electrochemical devices
US6087032A (en) * 1998-08-13 2000-07-11 Asahi Glass Company Ltd. Solid polymer electrolyte type fuel cell
DE19919881A1 (de) * 1999-04-30 2000-11-02 Univ Stuttgart Organisch-Anorganische Komposites und Kompositmembranen aus Ionomeren oder Ionomerblends und aus Schicht- oder Gerätsilicaten
DE10021106A1 (de) * 2000-05-02 2001-11-08 Univ Stuttgart Polymere Membranen
KR100376379B1 (ko) * 2000-07-18 2003-03-15 한국화학연구원 유기 혼합물 분리용 상호 침투 다가 이온 착물 복합막과이의 제조방법
US6624318B1 (en) * 2002-05-30 2003-09-23 Basf Aktiengesellschaft Process for the epoxidation of an organic compound with oxygen or an oxygen-delivering compounds using catalysts containing metal-organic frame-work materials
US6893564B2 (en) * 2002-05-30 2005-05-17 Basf Aktiengesellschaft Shaped bodies containing metal-organic frameworks
DE10309135A1 (de) * 2003-02-28 2004-09-09 Basf Ag Verfahren zur Herstellung eines zum Protonenaustausch befähigten Polymersystems auf der Basis von Polyaryletherketonen
JP4766829B2 (ja) * 2003-08-07 2011-09-07 株式会社豊田中央研究所 固体高分子電解質膜及び固体高分子型燃料電池
JP2005075870A (ja) * 2003-08-29 2005-03-24 Kyoto Univ アニオン部位を規則的に有する配位高分子
JP2007075719A (ja) * 2005-09-14 2007-03-29 Seiko Epson Corp 膜の製造方法、デバイスの製造方法、燃料電池の製造方法、デバイス、電気光学装置、燃料電池及び電子機器

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103772607A (zh) * 2014-01-26 2014-05-07 郑州大学 含磷交联凝胶聚合物电解质及其现场热聚合制备方法、应用
CN103772607B (zh) * 2014-01-26 2016-01-13 郑州大学 含磷交联凝胶聚合物电解质及其现场热聚合制备方法、应用
CN103846024A (zh) * 2014-03-13 2014-06-11 天津大学 磺化聚醚醚酮/磺化铬有机骨架杂化膜及制备和应用
CN104037432A (zh) * 2014-04-17 2014-09-10 天津大学 高分子-改性金属有机框架材料复合膜及其制备和应用
CN105789668A (zh) * 2016-03-03 2016-07-20 中国科学院化学研究所 金属有机骨架材料/聚合物复合质子交换膜的制备方法
CN105789668B (zh) * 2016-03-03 2018-09-25 中国科学院化学研究所 金属有机骨架材料/聚合物复合质子交换膜的制备方法
CN110698707A (zh) * 2019-09-02 2020-01-17 湖北工程学院 磷酸硼配位铜均苯三甲酸配合物的复合质子交换膜及其制备方法和应用
CN114426694A (zh) * 2020-09-28 2022-05-03 中国石油化工股份有限公司 一种改性共聚物膜材料及其制备方法和应用
CN116344879A (zh) * 2023-05-30 2023-06-27 佛山科学技术学院 一种金属有机骨架的纳米复合膜及其制备方法
CN116344879B (zh) * 2023-05-30 2023-08-08 佛山科学技术学院 一种金属有机骨架的纳米复合膜及其制备方法

Also Published As

Publication number Publication date
WO2007059815A1 (de) 2007-05-31
CN101313013B (zh) 2012-06-27
ES2329409T3 (es) 2009-11-25
DE102005056564A1 (de) 2007-05-31
JP2009517806A (ja) 2009-04-30
DK1954747T3 (da) 2009-12-07
CA2639940A1 (en) 2007-05-31
EP1954747A1 (de) 2008-08-13
DE502006004552D1 (de) 2009-09-24
EP1954747B1 (de) 2009-08-12
DE102005056564B4 (de) 2009-11-12
US20080261101A1 (en) 2008-10-23
KR20080093020A (ko) 2008-10-17
US8124660B2 (en) 2012-02-28
ATE439396T1 (de) 2009-08-15
KR101169752B1 (ko) 2012-08-03

Similar Documents

Publication Publication Date Title
CN101313013B (zh) 含有配位聚合物的聚合物电解质膜
Pal et al. Superprotonic conductivity of MOFs and other crystalline platforms beyond 10− 1 S cm− 1
Zhang et al. Adjust the arrangement of imidazole on the metal-organic framework to obtain hybrid proton exchange membrane with long-term stable high proton conductivity
Huang et al. Spindle-like MOFs-derived porous carbon filled sulfonated poly (ether ether ketone): A high performance proton exchange membrane for direct methanol fuel cells
KR20180083848A (ko) 산소 환원 반응 촉매
Xu et al. Construction of new transport channels by blending POM-based inorganic-organic complex into sulfonated poly (ether ketone sulfone) for proton exchange membrane fuel cells
Sun et al. Molecular sieve as an effective barrier for methanol crossover in direct methanol fuel cells
von Kraemer et al. Gas diffusion electrodes and membrane electrode assemblies based on a sulfonated polysulfone for high-temperature PEMFC
Xu et al. High alkaline stability and long-term durability of imidazole functionalized poly (ether ether ketone) by incorporating graphene oxide/metal-organic framework complex
CN101628979A (zh) 用于全钒液流电池的质子交换膜的磺化含芴聚芳醚砜及其制备方法和应用
Wang et al. High performance proton exchange membranes with double proton conduction pathways by introducing MOF impregnated with protic ionic liquid into SPEEK
Li et al. Mixed matrix anion exchange membrane containing covalent organic frameworks: Ultra-low IEC but medium conductivity
Ryu et al. Dual-sulfonated MOF/polysulfone composite membranes boosting performance for proton exchange membrane fuel cells
Sharma et al. Devising ultra-robust mixed-matrix membrane separators using functionalized MOF–poly (phenylene oxide) for high-performance vanadium redox flow batteries
Wong et al. Tuning the functionality of metal–organic frameworks (MOFs) for fuel cells and hydrogen storage applications
Ju et al. Construction of effective transmission channels by anchoring metal‐organic framework on side‐chain sulfonated poly (arylene ether ketone sulfone) for fuel cells
Fathima et al. SPEEK polymeric membranes for fuel cell application and their characterization: A review
JP4925294B2 (ja) 四価金属酸性三リン酸塩
Salcedo-Abraira et al. Ion-Exchanged UPG-1 as Potential Electrolyte for Fuel Cells
JP4245991B2 (ja) 固体高分子電解質、それを用いた膜、触媒電極層、膜/電極接合体及び燃料電池
Krishnan et al. Preparation and characterization of proton-conducting sulfonated poly (ether ether ketone)/phosphatoantimonic acid composite membranes
Wu et al. Two novel lanthanide metal–organic frameworks based on tetraphenylethylene for ultra-high proton conduction
CN110563980B (zh) 羧基化ZIFs与磺化芳族聚合物的复合质子交换膜及其制备方法和应用
CN113782760B (zh) Mof材料及其制备方法、质子交换膜及其制备方法以及燃料电池
Pimu et al. Impact of exposed crystal facets on oxygen reduction reaction activity in zeolitic imidazole frameworks

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120627

Termination date: 20120909