CN100492056C - Optical article and manufacturing method thereof - Google Patents
Optical article and manufacturing method thereof Download PDFInfo
- Publication number
- CN100492056C CN100492056C CNB2007100062050A CN200710006205A CN100492056C CN 100492056 C CN100492056 C CN 100492056C CN B2007100062050 A CNB2007100062050 A CN B2007100062050A CN 200710006205 A CN200710006205 A CN 200710006205A CN 100492056 C CN100492056 C CN 100492056C
- Authority
- CN
- China
- Prior art keywords
- layer
- sublayer
- optical
- substrate
- optical article
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Physical Vapour Deposition (AREA)
- Optical Filters (AREA)
Abstract
Description
技术领域 technical field
本发明涉及光学物品及其制造方法,该光学物品在玻璃或塑料制的光学基板上具有抗反射层等功能性薄膜(功能层)。The present invention relates to an optical article having a functional thin film (functional layer) such as an antireflection layer on an optical substrate made of glass or plastic, and a method for producing the same.
背景技术 Background technique
在制造各种光学物品过程中,包含硬涂层、着色层、抗反射层和防污层的各种功能性薄膜(功能层)直接形成于玻璃或树脂制的光学基板上或者在该功能性薄膜与光学基板之间夹有底漆层。另外,在制造眼镜镜片或其它光学物品过程中,抗反射层直接形成于玻璃或树脂制的光学基板上或者在该抗反射层与光学基板之间夹有硬涂层、或者夹有底漆层和硬涂层,从而来抑制光反射和提高透光性。作为抗反射层的一种形态,是将低折射率子层和高折射率子层进行层积而形成的具有多层结构的抗反射层。适合作为构成低折射率子层的材料有SiO2或SiOx等氧化硅、或者MgF2。适合作为构成高折射率子层的材料有ZrO2、Ta2O5、TiO2、CeO2或Y2O3等。抗反射层也可以是包含Al2O3或CeF3等中折射率子层的结构。In the process of manufacturing various optical articles, various functional films (functional layers) including hard coat layers, colored layers, antireflection layers, and antifouling layers are formed directly on optical substrates made of glass or resin or on the functional A primer layer is sandwiched between the film and the optical substrate. In addition, in the process of manufacturing spectacle lenses or other optical articles, an antireflection layer is formed directly on an optical substrate made of glass or resin or a hard coat layer is interposed between the antireflection layer and an optical substrate, or a primer layer is interposed And hard coating, so as to suppress light reflection and improve light transmission. One form of the antireflection layer is an antireflection layer having a multilayer structure formed by laminating a low-refractive-index sublayer and a high-refractive-index sublayer. Suitable materials for constituting the low refractive index sublayer include silicon oxide such as SiO 2 or SiO x , or MgF 2 . Suitable materials for the high refractive index sublayer include ZrO 2 , Ta 2 O 5 , TiO 2 , CeO 2 or Y 2 O 3 . The anti-reflection layer may also be a structure including Al 2 O 3 or CeF 3 sub-layers with a medium refractive index.
在功能性薄膜和多层结构的抗反射层的形成中,常常采用真空蒸镀法,该方法是在真空条件下通过电子枪或电阻加热等方法来加热和蒸发构成薄膜的物质或构成各子层的物质,使之层积在光学基板上。In the formation of functional thin films and anti-reflective layers of multilayer structures, vacuum evaporation is often used, which is to heat and evaporate the substances constituting the thin film or the sublayers by means of electron gun or resistance heating under vacuum conditions. substances to be laminated on optical substrates.
专利文献1公开了一种具有三个室的成膜装置,其中第三室用于在抗反射层上形成防污层。将光学基板放入第一室后,在第二室进行抗反射膜的蒸镀,在第三室,在抗反射膜上形成防污层。
为了保持对光学物品的光学特性影响较大的表面处于良好的状态,提高具有多层结构的抗反射层的耐久性、特别是耐擦伤性是重要的。在图像传感器等半导体光学部件中,作为具有高耐久性和高透光性的物质已知有氮化硅薄膜。In order to keep the surface which greatly affects the optical properties of the optical article in good condition, it is important to improve the durability, especially the scratch resistance, of the antireflection layer having a multilayer structure. In semiconductor optical components such as image sensors, a silicon nitride thin film is known as a substance having high durability and high light transmittance.
专利文献2公开了如下内容:通过在进行硅的真空蒸镀的同时对基板照射氮离子,或者交替地进行硅的真空蒸镀和氮离子的照射,由此来形成氮化硅薄膜。氮化硅层具有优越的透光性,因此,可以采用氮化硅层来作为具有多层结构的抗反射层的子层之一。作为抗反射层,为得到期望的光学效果,必须以规定的厚度形成均质层。但是,稳定地形成氮化硅层很难。于是,在专利文献2公开的方法中,要求精确地控制硅的蒸镀速度和氮离子的照射量。
专利文献1:特开2005-187936号公报Patent Document 1: JP-A-2005-187936
专利文献2:特开平5-214515号公报Patent Document 2: Japanese Unexamined Patent Publication No. 5-214515
另外,至今已有一些抗反射层的光学设计是采用具有上述组成的低折射率层和高折射率层而进行的,这样设计能够得到具有高透射率的光学体系。可是,氮化硅层的折射率不同于具有上述组成的层的折射率。氮化硅层基本上具有高折射率,但是其折射率不同于其它具有高折射率层的折射率,因此,有必要设计新的光学体系。In addition, some optical designs of anti-reflection layers have been carried out by using low-refractive-index layers and high-refractive-index layers having the above-mentioned composition, so that an optical system with high transmittance can be obtained by such design. However, the refractive index of the silicon nitride layer is different from that of the layer having the above composition. The silicon nitride layer basically has a high refractive index, but its refractive index is different from that of other layers with a high refractive index, and therefore, it is necessary to design a new optical system.
另外,采用氮化硅层作为高折射率层时,推测氮化硅层与用作低折射率层的二氧化硅层之间的界面部分会成为SiONx这样的组成状态。控制包含界面部分的层的折射率以及与该折射率相对应的膜厚是很难的。例如,Si3N4具有约2.05的高折射率,但是,如果Si3N4层与SiNxOy和SiO2共同存在时,则折射率处于1.45~2.05的范围。可以认为由氮化硅子层和二氧化硅子层构成的抗反射层的耐久性会得到大幅度提高。但是,很难制造出具有充分的光学特性的抗反射层。Also, when a silicon nitride layer is used as the high refractive index layer, it is presumed that the interface portion between the silicon nitride layer and the silicon dioxide layer serving as the low refractive index layer will be in a composition state of SiONx . It is difficult to control the refractive index of the layer including the interface portion and the film thickness corresponding to the refractive index. For example, Si 3 N 4 has a high refractive index of about 2.05, but if a Si 3 N 4 layer exists together with SiN x O y and SiO 2 , the refractive index is in the range of 1.45 to 2.05. It is considered that the durability of the antireflection layer composed of the silicon nitride sublayer and the silicon dioxide sublayer is greatly improved. However, it is difficult to manufacture an antireflection layer having sufficient optical properties.
另外,为了保持对光学物品的光学特性影响较大的表面处于良好的状态,设计出用于提高耐久性、特别是耐擦伤性的功能性薄膜是非常重要的。在图像传感器等半导体光学部件中,作为具有高耐久性和高透光性的物质已知有氮化硅薄膜。In addition, in order to keep the surface that greatly affects the optical properties of the optical article in good condition, it is very important to design a functional film for improving durability, especially scratch resistance. In semiconductor optical components such as image sensors, a silicon nitride thin film is known as a substance having high durability and high light transmittance.
通常是将二氧化硅薄膜单独或作为多层膜的一部分形成在光学基板上。特别是在光学基板为树脂时,二氧化硅薄膜较弱的耐擦伤性对光学基板的耐久性也产生影响。Silicon dioxide thin films are typically formed on optical substrates alone or as part of a multilayer film. Especially when the optical substrate is a resin, the weak scratch resistance of the silica thin film also affects the durability of the optical substrate.
氮化硅薄膜可提高二氧化硅薄膜的耐擦伤性。专利文献2公开了如下内容:通过在进行硅的真空蒸镀的同时对基板照射氮离子,或者交替地进行硅的真空蒸镀和氮离子的照射,由此来形成氮化硅薄膜。但是,稳定地形成氮化硅薄膜很难。在专利文献2公开的方法中,要求精确地控制硅的蒸镀速度和氮离子的照射量。The silicon nitride film improves the scratch resistance of the silicon dioxide film.
发明内容 Contents of the invention
本发明的一个方面是提供一种包括光学制品的光学物品。该光学物品具有包含经氮化处理的部分的层,所述经氮化处理的部分是所述层的背向光学基板侧的表面,所述层以SiOx为主要成分并且直接形成于光学基板上或者在所述层和所述光学基板之间夹有至少一层其它层。One aspect of the invention is to provide an optical article comprising the optical article. The optical article has a layer comprising a nitriding-treated portion which is the surface of the layer on the side facing away from the optical substrate, the layer having SiOx as a main component and being formed directly on the optical substrate At least one other layer is sandwiched on or between said layer and said optical substrate.
由于所述光学物品包含经氮化处理的部分的层,所述经氮化处理的部分是所述层的背向光学基板侧的表面,因此,若采用这种光学物品,能够使包含经氮化处理的部分的层的耐久性特别是耐擦伤性得到提高。Since the optical article contains a nitrided part of the layer, which is the surface of the layer on the side facing away from the optical substrate, if such an optical article is used, it is possible to make the layer containing the nitrogenated part The durability, especially the scratch resistance of the layer of the chemically treated part is improved.
在这种光学物品中,经氮化处理的部分的主要成分是SisOtNu(s>0,t≧0,u>0)。In this optical article, the main component of the nitrided portion is Si s O t Nu (s>0, t≧0, u>0).
作为这种光学物品的一种形态,其具有抗反射层和直接形成于该抗反射层上的防污层,该抗反射层是直接形成于光学基板上或者在该抗反射层与光学基板之间夹有至少一层其它层。该抗反射层包含2层以上的子层,所述2层以上的子层中,除了该抗反射层的最表层以外,子层中的至少一层为上述包含经氮化处理的部分的层。As a form of such an optical article, it has an antireflection layer and an antifouling layer formed directly on the antireflection layer, and the antireflection layer is formed directly on the optical substrate or between the antireflection layer and the optical substrate. At least one other layer is sandwiched therebetween. The antireflection layer includes two or more sublayers, and among the two or more sublayers, except for the outermost layer of the antireflection layer, at least one of the sublayers is the above-mentioned layer containing the portion subjected to nitriding treatment .
作为这种抗反射层的一种形态,其包含2层以上的低折射率子层和夹在该2层以上的低折射率子层之间的至少一层高折射率子层,并且该2层以上的低折射率子层中的一层为最表层,该2层以上的低折射率子层的其它层中的一层为上述包含经氮化处理的部分的层。As a form of this anti-reflection layer, it comprises two or more low-refractive-index sublayers and at least one high-refractive-index sublayer sandwiched between the two or more low-refractive-index sublayers, and the two One of the low-refractive-index sublayers is the outermost layer, and one of the other layers of the two or more low-refractive-index sublayers is the layer including the nitriding-treated portion.
作为光学物品的一种其它形态,其具有抗反射层,该抗反射层直接形成于光学基板上或者在该抗反射层与光学基板之间夹有至少一层其它层。该抗反射层包含2层以上的子层,在该2层以上的子层中至少最表层为上述包含经氮化处理的部分的层。As another form of the optical article, it has an anti-reflection layer, and the anti-reflection layer is directly formed on the optical substrate or at least one other layer is sandwiched between the anti-reflection layer and the optical substrate. The antireflection layer includes two or more sublayers, and among the two or more sublayers, at least the outermost layer is the layer including the portion subjected to nitriding treatment.
本发明的另一方面是提供一种光学物品的制造方法,该光学物品具有功能层,该功能层直接形成于光学基板上或者在该功能层与光学基板之间夹有至少一层其它层并且该功能层包含至少一层子层。Another aspect of the present invention is to provide a method of manufacturing an optical article, the optical article has a functional layer, the functional layer is directly formed on the optical substrate or at least one other layer is sandwiched between the functional layer and the optical substrate and The functional layer contains at least one sublayer.
这里所说的功能层是指具有特定功能的薄膜,所述薄膜包括抗反射层,光学滤波器如低通滤波器、高通滤波器和带通滤波器等,以及硬质膜等。The functional layer mentioned here refers to a film with specific functions, and the film includes an anti-reflection layer, an optical filter such as a low-pass filter, a high-pass filter and a band-pass filter, etc., and a hard film.
该光学物品的制造方法具有形成功能层的工序。所述形成功能层的工序包括层形成工序和氮化处理工序,所述层形成工序是通过真空蒸镀形成一层子层的工序,所述氮化处理工序是对在所述层形成工序中得到的包含一层子层的表面进行氮化处理的工序。The manufacturing method of this optical article has the process of forming a functional layer. The process of forming a functional layer includes a layer forming process and a nitriding treatment process, the layer forming process is a process of forming a sub-layer by vacuum evaporation, and the nitriding treatment process is the process of forming a layer in the layer forming process The resulting surface including one sublayer is subjected to a nitriding process.
在该光学物品的制造方法中,优选在氮化处理工序中进行(包括)如下工序:将含有氮气的气体导入进行层形成工序的真空室内,并且进行等离子体处理或离子枪处理。In the manufacturing method of the optical article, it is preferable to perform (include) the steps of introducing a gas containing nitrogen gas into a vacuum chamber in which the layer forming step is performed, and performing plasma treatment or ion gun treatment in the nitriding treatment step.
附图说明 Description of drawings
图1是表示成膜为抗反射层的装置的大致结构的示意图。FIG. 1 is a schematic diagram showing a general configuration of an apparatus for forming an antireflection layer.
图2是表示第一实施方式中涉及的镜片的制造方法的流程图。FIG. 2 is a flowchart showing a method of manufacturing a lens according to the first embodiment.
图3是放大表示抗反射层的大致结构的截面图。Fig. 3 is an enlarged cross-sectional view showing a schematic structure of an antireflection layer.
图4是表示成膜为抗反射层和防污层的装置的大致结构的示意图。Fig. 4 is a schematic diagram showing a schematic configuration of an apparatus for forming an antireflection layer and an antifouling layer.
图5是表示第二实施方式中涉及的镜片的制造方法的流程图。FIG. 5 is a flowchart showing a method of manufacturing a lens according to the second embodiment.
图6是放大表示抗反射层和防污层的大致结构的截面图。Fig. 6 is an enlarged cross-sectional view showing a general structure of an antireflection layer and an antifouling layer.
图7是表示成膜为功能性薄膜和防污层的装置的大致结构的示意图。Fig. 7 is a schematic diagram showing a general configuration of an apparatus for forming a functional thin film and an antifouling layer.
图8表示第三实施方式中涉及的镜片的制造方法的流程图。FIG. 8 shows a flowchart of the lens manufacturing method according to the third embodiment.
图9是放大表示功能性薄膜的大致结构的截面图。Fig. 9 is an enlarged cross-sectional view showing a schematic structure of a functional film.
符号说明Symbol Description
1 光学基板(塑料镜片,1a镜片、1b镜片、1c镜片)1 Optical substrate (plastic lens, 1a lens, 1b lens, 1c lens)
2 硬涂层2 hard coat
3 抗反射层(功能层)3 anti-reflection layer (functional layer)
4 防污层4 antifouling layer
10a、10b和10c 光学物品10a, 10b and 10c Optical articles
30 (低折射率)薄膜、31~34 子层、35 最上层(最外层、子层)、39 (含氮化物)部分层30 (low refractive index) thin film, 31~34 sublayer, 35 uppermost layer (outermost layer, sublayer), 39 (nitride-containing) partial layer
40 工件基板(基材)40 workpiece substrate (substrate)
50 成膜装置、52、53和54 真空生成装置(52a 回转泵、52b 罗茨泵、52c 低温泵;53a 回转泵、53b 罗茨泵、53c 低温泵;54a 回转泵、54b 罗茨泵、54c 涡轮分子泵)、55 AR蒸镀源[55a AR蒸镀源(低折射率物质)、55b AR蒸镀源(高折射率物质)]、56 电子枪、57 开闭器、59a 防污层蒸镀源、59b 防污层蒸镀源50 film forming device, 52, 53 and 54 vacuum generating device (52a rotary pump, 52b roots pump, 52c cryopump; 53a rotary pump, 53b roots pump, 53c cryopump; 54a rotary pump, 54b roots pump, 54c turbomolecular pump), 55 AR evaporation source [55a AR evaporation source (low refractive index material), 55b AR evaporation source (high refractive index material)], 56 electron gun, 57 shutter, 59a antifouling layer evaporation source, 59b antifouling layer evaporation source
60 等离子体发生装置(RF线圈)、61 匹配箱、62 高频振荡器、63氧气、64a 氮气、64b 氩气、65 自动压力调节器、66 质量流量控制器、67 补偿板、68 加热器、69 质量流量控制器60 plasma generator (RF coil), 61 matching box, 62 high frequency oscillator, 63 oxygen, 64a nitrogen, 64b argon, 65 automatic pressure regulator, 66 mass flow controller, 67 compensation plate, 68 heater, 69 mass flow controller
70 离子枪、71 DC电源、72 RF电源70 ion gun, 71 DC power supply, 72 RF power supply
80 支撑装置、81 拱形罩80 support device, 81 arch cover
具体实施方式 Detailed ways
(第一实施方式)(first embodiment)
本发明的第一实施方式的一种方式涉及一种光学物品的制造方法,该制造方法包括形成具有多层结构的抗反射层的工序,该抗反射层包含由二氧化硅构成的至少一层子层,并且该抗反射层直接形成于光学基板上或者在该抗反射层与光学基板之间夹有至少一层其它层。形成抗反射层的工序包括层形成工序和氮化处理工序,所述层形成工序是通过真空蒸镀形成由二氧化硅构成的至少一层子层的工序,所述氮化处理工序是对由二氧化硅构成的至少一层子层的表面进行氮化处理的工序。One mode of the first embodiment of the present invention relates to a method of manufacturing an optical article, the manufacturing method including the step of forming an antireflection layer having a multilayer structure, the antireflection layer including at least one layer composed of silicon dioxide sublayer, and the anti-reflection layer is directly formed on the optical substrate or at least one other layer is sandwiched between the anti-reflection layer and the optical substrate. The process of forming the anti-reflection layer includes a layer forming process and a nitriding process, the layer forming process is a process of forming at least one sublayer made of silicon dioxide by vacuum evaporation, and the nitriding process is formed by vacuum evaporation. A process of nitriding the surface of at least one sub-layer composed of silicon dioxide.
在此,本申请中所述的子层是指构成多层结构的抗反射层或功能层的各层。具体来说,子层是指由SiO2或SiOx等氧化硅、或者MgF2等材料构成的低折射率子层,由ZrO2、Ta2O5、TiO2、CeO2或Y2O3等材料构成的高折射率子层,以及由Al2O3或CeF3等材料构成的中折射率子层。Here, the sublayers mentioned in the present application refer to the individual layers constituting the antireflection layer or functional layer of the multilayer structure. Specifically, the sub-layer refers to a low-refractive-index sub-layer composed of SiO 2 or SiO x and other silicon oxides, or MgF 2 and other materials, and is composed of ZrO 2 , Ta 2 O 5 , TiO 2 , CeO 2 A high-refractive-index sublayer made of materials such as Al 2 O 3 or CeF 3 and a medium-refractive index sub-layer made of materials such as Al 2
在本光学物品的制造方法中,对真空蒸镀的由二氧化硅构成的一层或多层子层进行氮化处理,而不是使用氮化硅层作为多层结构中的单独一层子层。即,对由二氧化硅构成的子层的表面进行部分地氮化以获得作为氮化硅所起到的效果。In the manufacturing method of the present optical article, the one or more sublayers composed of silicon dioxide evaporated in vacuum are subjected to nitriding treatment, instead of using the silicon nitride layer as a single sublayer in the multilayer structure . That is, the surface of the sublayer made of silicon dioxide is partially nitrided to obtain the effect of silicon nitride.
在氮化处理工序中,将含有氮气的气体导入进行层形成工序的真空室内,并进行等离子体处理或离子枪处理。该制造方法中的氮化处理的目的是对在层形成工序中制作的由二氧化硅构成的一层子层的表面进行部分地或全部的氮化。因此,无需严格控制膜厚。另外,即使不精确地掌握控制离子电流的时间,也能够容易地将氮化硅引入多层结构的抗反射层中。可以通过引入氮化硅使抗反射层的耐擦伤性得到提高。特别是在等离子体处理中,也无需使用离子源就能在真空蒸镀用的装置中或蒸镀过程中简单地引入氮化硅。In the nitriding treatment process, a gas containing nitrogen gas is introduced into a vacuum chamber in which the layer formation process is performed, and plasma treatment or ion gun treatment is performed. The purpose of the nitriding treatment in this manufacturing method is to partially or completely nitride the surface of a sublayer made of silicon dioxide formed in the layer forming step. Therefore, it is not necessary to strictly control the film thickness. In addition, silicon nitride can be easily introduced into the antireflection layer of the multilayer structure even if the timing of controlling the ion current is not accurately grasped. The scratch resistance of the antireflection layer can be improved by introducing silicon nitride. In particular, in the plasma treatment, silicon nitride can be easily introduced into an apparatus for vacuum evaporation or during the evaporation process without using an ion source.
本发明的第一实施方式的其它方式涉及一种具有抗反射层的光学物品,所述抗反射层直接形成于光学基板上或者在该抗反射层和光学基板之间夹有至少一层其它层。所述抗反射层具有包含由二氧化硅构成的至少一层子层的多层结构,并且由二氧化硅构成的至少一层子层的背向光学基板侧的表面经氮化处理。Other modes of the first embodiment of the present invention relate to an optical article having an antireflection layer formed directly on an optical substrate or with at least one other layer sandwiched between the antireflection layer and the optical substrate . The antireflection layer has a multilayer structure including at least one sublayer composed of silicon dioxide, and the surface of the at least one sublayer composed of silicon dioxide on the side facing away from the optical substrate is nitrided.
另外,本发明的第一实施方式的其它方式中,所述光学物品的抗反射层中的由二氧化硅构成的至少一层子层具有含氮部分层,所述含氮部分层形成于背向光学基板侧的表面上。在此,本申请中所述部分层是指由二氧化硅构成的子层的表层部分。本发明涉及对这种由二氧化硅构成的至少一层子层的表层部分进行氮化处理。即,由二氧化硅构成的至少一层子层是包含经氮化处理的部分的层(表层氮化处理层)。In addition, in another form of the first embodiment of the present invention, at least one sublayer made of silicon dioxide in the antireflection layer of the optical article has a nitrogen-containing partial layer formed on the back surface. on the surface facing the optical substrate side. Here, the partial layer in this application refers to the surface layer part of the sublayer composed of silicon dioxide. The invention relates to the nitriding treatment of the surface portion of such at least one sublayer of silicon dioxide. That is, at least one sublayer made of silicon dioxide is a layer including a nitrided portion (surface layer nitrided layer).
通过对由二氧化硅构成的子层进行氮化处理,在由二氧化硅构成的至少一层子层的背向光学基板侧形成含氮部分层。因此,由于抗反射层的易被擦伤的表面被氮化硅化,从而能够改善其耐擦伤性。Nitrogen-containing sublayers are formed on the side of at least one sublayer composed of silicon dioxide facing away from the optical substrate by nitriding the sublayer composed of silicon dioxide. Therefore, since the scratch-prone surface of the antireflection layer is silicon nitrided, its scratch resistance can be improved.
部分层含有SisOtNu(s、u为正数,t为0以上的数)。对由二氧化硅构成的子层进行氮化处理后,在子层的表面上部分地或全部地形成含氮化硅的区域,因此能够改善耐擦伤性。另外,对由氮化处理所形成的部分层的厚度和/或面积是有限定的,因此,部分层作为子层可保持二氧化硅的光学性能,从而几乎不需要对抗反射层的膜设计进行更改。另外,由于氮化硅的存在,使耐擦伤性得到改善的同时,可以有效利用由二氧化硅构成的子层的特性,即赋予基板和上层之间以密合性。Some layers contain Si s O t Nu (s and u are positive numbers, and t is a number greater than or equal to 0). After nitriding the sublayer made of silicon dioxide, a silicon nitride-containing region is partially or completely formed on the surface of the sublayer, thereby improving scratch resistance. In addition, the thickness and/or area of the partial layer formed by the nitriding treatment is limited, therefore, the partial layer as a sublayer can maintain the optical performance of silicon dioxide, thereby requiring little modification in the film design of the anti-reflection layer. Change. In addition, the scratch resistance is improved due to the presence of silicon nitride, and at the same time, the characteristics of the sublayer composed of silicon dioxide, that is, the adhesion between the substrate and the upper layer can be effectively utilized.
在本发明的第一实施方式所涉及的光学物品中,优选经氮化处理的由二氧化硅构成的至少一层子层为抗反射层中的离光学基板最远的层。另外,在本发明的第一实施方式所涉及的光学物品中,优选含氮部分层中的至少一层为抗反射层的最表层。经氮化处理的由二氧化硅构成的至少一层子层可以是多层结构中的任意一层,所述子层经氮化处理会有助于改善抗反射层的耐擦伤性。考虑到最容易受到擦伤影响的是最上层,也就是形成背向光学基板侧的表面的子层,因此,优选对该子层进行氮化处理。In the optical article according to the first embodiment of the present invention, it is preferable that at least one sublayer made of silicon dioxide subjected to the nitriding treatment is the layer farthest from the optical substrate in the antireflection layer. In addition, in the optical article according to the first embodiment of the present invention, at least one of the nitrogen-containing partial layers is preferably the outermost layer of the antireflection layer. The nitrided at least one sublayer of silicon dioxide may be any layer in the multilayer structure, and the nitriding treatment of said sublayer contributes to improving the scratch resistance of the antireflection layer. Considering that it is the uppermost layer, that is, the sublayer forming the surface on the side facing away from the optical substrate, which is most susceptible to scratches, it is preferable to nitride the sublayer.
图1表示的是用于形成具有多层结构的抗反射层3的成膜装置50的结构示意图,该抗反射层3是通过真空蒸镀在放置于支撑装置80上的基板(工件)40的表面上形成的。支撑装置80具有上方凸出的圆盘形的拱形罩81,在该拱形罩81上同心圆状地排布有多个工件基板(光学基板,具体是镜片基板)40,一边使拱形罩81旋转一边在工件基板40上成膜。成膜装置50具有支撑装置80可通过的三个室CH1、CH2和CH3。各室CH1~CH3能相互密封,且各室CH1~CH3的内压分别由真空生成装置52、53和54控制。What Fig. 1 represented is to be used for forming the film-forming
室CH1为入口或门室,从外部导入支撑装置80后,通过在一定时间内保持室CH1的内部在一定压力以下来进行脱气。室CH1配有真空生成装置52,该真空生成装置52具有回转泵52a、罗茨泵(roots pump)52b和低温泵52c。The chamber CH1 is an entrance or gate chamber, and after being introduced into the
室CH2是成膜为抗反射层(AR层)的第二室。因此,在该室CH2的内部具有AR蒸镀源55a和55b、使该AR蒸镀源55蒸镀的电子枪56以及调整蒸镀量的可开闭的开闭器57。抗反射层具有将二氧化硅为主要成分的低折射率子层和由其它组成构成的高折射率子层进行层积而成的结构,所述由其它组成构成的高折射率子层具有例如TiO2、Nb2O3、Ta2O5、ZrO2中的一种组成或2个以上组成。因此,在室CH2中备有至少两个蒸镀源55a和55b以及用于加热熔融该蒸镀源55a和55b的电子枪56。室CH2通过真空生成装置53保持适当的压力,真空生成装置53具有回转泵53a、罗茨泵53b和低温泵53c。Chamber CH2 is the second chamber for forming an antireflection layer (AR layer). Therefore, AR
另外,用于控制室内氛围气的质量流量控制器66与室CH2连接。氧气供给源63和氮气供给源64a与质量流量控制器66连接,这样可以将室CH2内的氛围气控制为100%氧气或100%氮气,或者适当比例的氧气和氮气的混合气。In addition, a
另外,在室CH2内部具有用于产生高频等离子体的RF线圈60。通过匹配箱61将RF线圈60与高频振荡器62连接,由此,在室CH2内具有规定的输出功率的等离子体以预定的频率得以产生。In addition, an
另外,在室CH2内部具有离子枪70。该离子枪70与DC电源71和RF电源72连接,能够对放置于支撑装置80上的工件基板40照射规定能量的离子。通过质量流量控制器69,氧气供给源63和氮气供给源64a与离子枪70连接,从而离子枪70能够对工件基板40照射氧离子或氮离子。In addition, an
室CH3为取出用室。将放置有一面具有抗反射层的工件基板40的支撑装置80从室CH2移动到室CH3,然后翻转工件基板40,再次返回室CH2。接着,在工件基板40的另一面形成抗反射层后,支撑装置80返回室CH3,然后使室CH3的压力恢复到大气压,取出支撑装置80。通过具有回转泵54a、罗茨泵54b和涡轮分子泵54c的真空生成装置54,使室CH3保持在适当的压力。将从室CH3中连同支撑装置80一同取出的工件基板40放入恒温恒湿槽(图中未表示)中,使之在适当的湿度和温度的氛围气中退火。进而,通过在室内放置规定的时间,来老化该工件基板40。The chamber CH3 is a chamber for taking out. The
通过使用室CH2配备的等离子体发生装置(RF线圈)60或离子枪70,成膜装置50能够对以二氧化硅为主要成分的低折射率子层进行氮化处理。使用自动压力调节器65将室CH2内的氛围气调整为氮气氛围气或氮气和氧气的混合氛围气,然后,由RF线圈60产生等离子体,由此对由二氧化硅构成的子层照射氮离子,从而能够使该子层得到氮化。室CH2内的氛围气也可以是氮气-氩气或者氮气-氧气-氩气。另外,通过使用离子枪70对工件基板40照射氮离子,能够氮化由二氧化硅构成的子层的表面。By using the plasma generator (RF coil) 60 or the
采用真空蒸镀形成由氮化硅构成的子层是非常困难的。但是,通过对氧化硅进行等离子体处理或离子枪处理,从而在表面上形成氮化物却是比较容易的。在这种情况下,在表面上形成了除Si3N4以外的氮和硅的化合物如SisOtNu(s、u为正整数,t为0以上的整数)等与SiO2的混合物。即,含氮化物部分层以全部地或部分地覆盖由二氧化硅构成的子层的表面的状态来形成,因此覆盖部分的耐久性得到提高。另外,由于含氮化物部分层只是形成于由二氧化硅构成的子层的最表层,因此,对抗反射层的膜设计几乎没有影响。It is very difficult to form a sublayer composed of silicon nitride by vacuum evaporation. However, it is relatively easy to form nitrides on the surface by plasma treatment or ion gun treatment of silicon oxide. In this case, nitrogen and silicon compounds other than Si 3 N 4 such as Si s O t Nu (s, u are positive integers, t is an integer greater than 0) and SiO 2 are formed on the surface. mixture. That is, since the nitride-containing partial layer is formed in a state of covering the surface of the sublayer made of silicon dioxide entirely or partially, the durability of the covered portion is improved. In addition, since the nitride-containing partial layer is formed only on the outermost layer of the sublayer made of silicon dioxide, it hardly affects the film design of the antireflection layer.
图2中,对在成膜装置50中在工件基板40上形成具有多层结构的抗反射层过程以流程图的方式表示。另外,图3表示的是包含抗反射层3的本实施方式的光学物品10a的膜结构(层结构)的截面图。In FIG. 2 , the process of forming an anti-reflection layer having a multi-layer structure on the
作为抗反射层3的例子,其包括形成于基材1上的由氧化硅构成的第1子层31,由氧化锆构成的第2子层32,由氧化硅构成的第3子层33,由氧化锆构成的第4子层34,由氧化硅构成的第5子层35。As an example of the
当光学基板(基材)1为塑料时,在步骤11中,在形成抗反射层3之前,先在光学基板1上形成硬涂层2。为了提高硬涂层2和基板1之间的密合性,有时还要在硬涂层2和基板1之间形成底漆层。硬涂层2赋予塑料镜片1耐擦伤性。同时由于硬涂层2存在于塑料镜片1和抗反射层3之间,从而使抗反射层3与塑料镜片1之间具有良好的密合性,并具有防止抗反射层3从塑料镜片1上剥离的功能。因此,即使是对塑料镜片1的密合性不是很高的抗反射层3,也能够由于硬涂层2的存在而使塑料镜片1和抗反射层3之间的密合性得到改善。When the optical substrate (substrate) 1 is plastic, in
作为硬涂层2的形成方法,通常采用以下方法:将可形成硬涂层2的固化型组合物涂布于塑料镜片1的表面上,并使涂膜固化。塑料镜片1为热塑性树脂时,优选采用紫外线等电磁波或者电子束等电离辐射来固化涂膜,而不是采用热固化来固化涂膜。As a method for forming the
例如,含有无机微粒子的热固化型组合物。该组合物包含通过紫外线照射生成硅烷醇基团的硅酮化合物和以有机聚硅氧烷为主要成分的光固化型硅酮组合物,所述聚有机硅氧烷具有与硅烷醇基团发生缩合反应的卤原子和氨基等反应基。另外,该含有无机微粒子的固化型组合物含有Mitsubishi Rayon Co.,Ltd.制造的UK-6074等丙烯酸类紫外线固化型单体组合物以及SiO2或TiO2等粒径为1nm~100nm的无机微粒子。另外,该含有无机微粒子的固化型组合物是通过将光固化型硅组合物、丙烯酸类紫外线固化型单体组合物以及无机微粒子分散在硅烷化合物或有机硅烷偶合剂中得到的,所述硅烷化合物或硅烷偶合剂具有乙烯基、烯丙基、丙烯酰氧基或甲基丙烯酰氧基等聚合性基团以及甲氧基等水解性基团。For example, a thermosetting composition containing inorganic fine particles. The composition comprises a silicone compound that generates silanol groups by ultraviolet irradiation and a photocurable silicone composition mainly composed of organopolysiloxane that has the ability to condense with silanol groups. Reactive halogen atoms and reactive groups such as amino groups. In addition, the curable composition containing inorganic fine particles contains an acrylic ultraviolet curable monomer composition such as UK-6074 manufactured by Mitsubishi Rayon Co., Ltd. and inorganic fine particles such as SiO2 or TiO2 with a particle diameter of 1 nm to 100 nm. . In addition, the curable composition containing inorganic fine particles is obtained by dispersing a photocurable silicon composition, an acrylic ultraviolet curable monomer composition, and inorganic fine particles in a silane compound or an organosilane coupling agent, and the silane compound Alternatively, the silane coupling agent has a polymerizable group such as a vinyl group, an allyl group, an acryloxy group, or a methacryloxy group, and a hydrolyzable group such as a methoxy group.
作为硬涂层2的涂膜的形成方法,可采用浸渍法、旋转涂布法、喷涂法、流涂(flow)法或刮刀法等方法。另外,为了提高密合性,在形成涂膜前,优选使用电晕放电或微波等的高压放电等对塑料镜片1的表面进行表面处理。采用加热、紫外线或电子束等方法固化所形成的涂膜,从而得到硬涂层2。As a method for forming the coating film of the
将形成有硬涂层2的基板1作为工件基板40固定在支撑装置80上,并输送到成膜装置50中。在成膜装置50中,首先,将支撑装置80导入室CH1中,进行脱气,然后再将支撑装置80移至室CH2中,进行步骤12的等离子体处理。在工序13,形成由氧化硅构成的第1子层31(层形成工序),然后,在工序14,采用等离子体处理或离子枪处理对子层31的表面进行氮化(氮化处理工序)。这样,在由氧化硅构成的子层31的表面(背向基板1的面)上形成覆盖其全部或部分表面的含氮化物部分层39。这时,可以使用含氮气的任意组成的气体为导入气体,例如,可以举出100%氮气、氮气和氧气的混合气体、氮气和氩气的混合气体、或者氮气和氧气和氩气的混合气体等气体。The
在步骤15形成由氧化锆构成的第2子层32后,在步骤16中形成由氧化硅构成的第3子层33。然后在步骤17中,与步骤14同样地操作对表面进行氮化。在步骤15和步骤16中,相继形成高折射率的第2子层32和低折射率的第3子层33。之后,通过步骤17的氮化处理,能够对后形成的低折射率的第3子层33的表面进行氮化处理。即,通过连续进行步骤16的层形成工序和步骤17的氮化处理工序,能够对由层形成工序所形成的子层表面进行氮化处理。若将步骤15和步骤16合为一个层形成工序,则在步骤17中可以对氮化处理前形成的子层表面进行氮化。After forming the
在步骤18形成由氧化锆构成的第4子层34之后,在步骤19形成由氧化硅构成的第5子层35。在步骤20中,与步骤14同样地操作对表面进行氮化。这样,在光学物品的一面上形成具有5层结构的抗反射层3,所以,在步骤21,翻转基板40并固定在支撑装置80上,重复步骤12~20从而形成具有多层结构的抗反射层3。在基板40的两面形成抗反射层3时,在步骤22取出基板1(工件基板40)。After forming the
这里,共有三层氧化硅子层31、33和35,可以只对其中的最上层子层35进行氮化处理,或者也可以对包含最上层子层35的任意两层进行氮化处理。由于在上述氮化处理中只是对氧化硅子层的极薄的表面进行氮化,因此,对作为抗反射层3的性能几乎没有影响。Here, there are three
(实施例1—1)(Embodiment 1-1)
以下依照图2所示的制造方法,对制造作为光学物品的塑料眼镜镜片的几个实施例加以说明。在以下各实施例和比较例中,使用眼镜用塑料镜片基材(Seiko Epson Co.制造,商品名:Seiko Supper Sovereign)作为光学基材1。在步骤11,在光学基材1的两面上形成硬涂层2。在以后的工序中,以形成有硬涂层2的光学基材1为工件基板40,在其上形成抗反射层3。Hereinafter, according to the manufacturing method shown in FIG. 2 , several embodiments of manufacturing plastic spectacle lenses as optical articles will be described. In each of the following Examples and Comparative Examples, a plastic lens substrate for eyeglasses (manufactured by Seiko Epson Co., trade name: Seiko Supper Sovereign) was used as the
将工件基板40凹面向下地固定在支撑装置80的拱形罩81上,然后输送到成膜装置50中。在步骤12,在室CH1中脱气后,在室CH2中导入100%氩气,一边控制气体压力为4.0×10-2Pa,一边使用高频等离子体发生装置所产生的等离子体对工件基板40进行处理。在频率为13.56MHz、功率为400W的等离子体产生的条件下,进行1分钟的等离子体处理。该处理的目的在于清洁基板表面,从而使基板1和抗反射层3之间的密合性提高。The
接着进行步骤13~20,交替地进行SiO2子层31、33和35与ZrO2子层32和34的蒸镀,从而形成了由这些子层构成的抗反射层3。调整各层的膜厚,以使第1子层(SiO2)31的膜厚为0.09λ、第2子层(ZrO2)32的膜厚为0.16λ、第3子层(SiO2)33的膜厚为0.05λ、第4子层(ZrO2)34的膜厚为0.27λ、第5子层(SiO2)35的膜厚为0.27λ。
该抗反射层3的最上层35为SiO2层。在步骤14、17和20的氮化处理中使用等离子体发生装置60。因此,在蒸镀SiO2层之后,将氮气和氧气以7:3的比例导入室内,在控制气体压力为4.0×10-2Pa的同时,使用高频等离子体发生装置来产生等离子体。在频率为13.56MHz、功率为600W的等离子体产生的条件下,进行5分钟的等离子体处理。这样,在第1子层31、第3子层33和第5子层35的SiO2层表面上形成含氮化物部分层39。即,第1子层31、第3子层33和第5子层35为包含经氮化处理的部分的层(表层氮化处理层)。The
然后,在步骤21,将支撑装置80移至室CH3中,并从该室中取出支撑装置80,翻转镜片凸面向下地固定在支撑装置80的拱形罩81上,再进行与上述同样的处理。然后,在步骤22,从室CH3中取出工件基板40。这样,制造出在工件基板40(镜片基材1)的两面上具有抗反射层3的塑料镜片(样品S1—1)。即在具有硬涂层2的基材1的反面也具有抗反射层3。在样品S1—1中,抗反射层3的二氧化硅子层31、33和35的表面经氮化处理,即背向基材1的表面经氮化处理。Then, in
(实施例1—2)(Embodiment 1-2)
在实施例1—2中,不进行步骤14和17,其它与实施例1—1相同,制造出具有由5层结构构成的抗反射层3的塑料镜片(样品S1—2)。因此,在该实施例1—2的样品S1—2中,包含在抗反射层3中的二氧化硅子层31、33和35中,只是对最外层(第5层)子层35(即,在背向光学基板1一侧的面形成的抗反射层3的子层35)进行了氮化处理,形成含氮化物部分层39。In Example 1-2, steps 14 and 17 were not carried out, and the others were the same as in Example 1-1, and a plastic lens (sample S1-2) having an
(实施例1—3)(Embodiment 1-3)
在实施例1—3中,不进行步骤14,其它与实施例1—1相同,制造出具有由5层结构构成的抗反射层3的塑料镜片(样品S1—3)。因此,在该实施例1—3的样品S1—3中,包含在抗反射层3中的二氧化硅子层31、33和35中,只是对第3子层33和第5子层35进行了氮化处理,形成了含氮化物部分层39。In Example 1-3, step 14 was not carried out, and the others were the same as in Example 1-1, and a plastic lens (sample S1-3) having an
(实施例1—4)(Embodiment 1-4)
在实施例1—4中,不进行步骤17,其它与实施例1—1相同,制造出具有由5层结构构成的抗反射层3的塑料镜片(样品S1—4)。因此,在该实施例1—4的样品S1—4中,包含在抗反射层3中的二氧化硅子层31、33和35中,只是对第1子层31和第5子层35进行了氮化处理,形成了含氮化物部分层39。In Example 1-4, step 17 was not carried out, and the others were the same as in Example 1-1, and a plastic lens (sample S1-4) having an
(实施例1—5)(Embodiment 1-5)
在实施例1—5中,进行步骤12~20,对包含在抗反射层3中的全部的二氧化硅子层31、33和35进行氮化处理。但是,在步骤14、17和20的氮化处理中,使用离子枪70来替代等离子体发生装置60。因此,将氮气64a和氧气63以7∶3的比例导入离子枪70中,控制流量为35SCCM,并对子层31、33和35照射离子。在控制处理时的室内压力为4×10-3Pa的同时,在频率为13.56MHz、RF功率为450W、加速电压为500V、抑制电压为300V的离子照射的条件下,进行5分钟的离子照射。其它与实施例1—1相同。In Examples 1-5, steps 12-20 are carried out, and all the
因此,在该实施例1—5的样品S1—5中,对包含在抗反射层3中的全部的二氧化硅子层31、33和35进行氮化处理,形成含氮化物部分层39。Therefore, in the sample S1-5 of this embodiment 1-5, all of the
(实施例1—6)(Embodiment 1-6)
在实施例1—6中,制造出具有由7层结构构成的抗反射层3的镜片。因此,增加了蒸镀第6子层的工序、蒸镀二氧化硅来作为最外层的第7子层的工序、以及对该最外层的二氧化硅进行氮化处理的工序。另外,在形成高折射率子层时,使用TiO2来替代ZrO2。其它与实施例1—1相同。In Examples 1-6, a lens having an
在这些形成高折射率子层的工序中,采用离子加速器蒸镀(ion assistdeposition)来进行TiO2的蒸镀。关于此时的离子照射条件,将流量控制为35SCCM的100%氧气导入离子枪70中,调整频率为13.56MHz、RF功率为450W、加速电压为500V、抑制电压为300V。处理时的室内压力为4×10-3Pa。这时,第1子层(SiO2)的膜厚为0.08λ、第2子层(TiO2)的膜厚为0.07λ、第3子层(SiO2)的膜厚为0.10λ、第4子层(TiO2)的膜厚为0.18λ、第5子层(SiO2)的膜厚为0.07λ、第6子层(TiO2)的膜厚为0.14λ、第7子层(SiO2)的膜厚为0.26λ。In these steps of forming the high refractive index sublayer, TiO 2 is deposited by ion accelerator deposition (ion assist deposition). Regarding the ion irradiation conditions at this time, 100% oxygen with a flow rate of 35 SCCM was introduced into the
因此,在该实施例1—6的样品S1—6中,对包含在抗反射层3中的全部的二氧化硅子层进行氮化处理,形成含氮化物部分层39。Therefore, in the sample S1-6 of this embodiment 1-6, the nitride-containing
(比较例1—1)(Comparative example 1-1)
在比较例1—1中,不进行步骤14、17和20,制造出具有与实施例1—1相同组成的且未进行氮化处理的塑料镜片(样品SR1—1),即该塑料镜片具有由低折射率的SiO2子层和高折射率的ZrO2子层构成的5层结构的抗反射层3。其它与实施例1—1相同。因此,在该比较例1—1的样品SR1—1中,对包含在抗反射层3中的全部的二氧化硅子层31、33和35未进行氮化处理。In Comparative Example 1-1, steps 14, 17, and 20 were not carried out, and a plastic lens (sample SR1-1) having the same composition as that of Example 1-1 without nitriding treatment was produced, that is, the plastic lens had The
(比较例1—2)(Comparative example 1-2)
在比较例1—2中,制造出具有与实施例1—6相同组成的且未进行氮化处理的塑料镜片(样品SR1—2),即该塑料镜片具有由低折射率的SiO2子层和高折射率的TiO2子层构成的7层结构的抗反射层3。其它与实施例1—6相同。因此,在该比较例1—2的样品SR1—2中,对包含在抗反射层3中的全部的二氧化硅子层未进行氮化处理。In Comparative Example 1-2, a plastic lens (sample SR1-2) having the same composition as Example 1-6 without nitriding treatment was produced, that is, the plastic lens had a SiO2 sublayer with a low refractive index The
(评价)(evaluate)
采用以下方法对实施例1—1~1—6以及比较例1—1和1—2制造的样品S1—1~S1—6、SR1—1和SR1—2的耐擦伤性进行了评价。其评价结果汇总示于表1中。缠在夹具上的钢丝棉(#0000)在负重2kg的状态下,在各样品S1—1~S1—6、SR1—1和SR1—2的抗反射层3的最外表面上往复50次。将由此产生的擦伤程度与标准样品比较,以A、B、C和D这四个级别进行了评价。其中,A表示最佳,B、C、D顺次表示劣化。The scratch resistance of samples S1-1 to S1-6, SR1-1 and SR1-2 produced in Examples 1-1 to 1-6 and Comparative Examples 1-1 and 1-2 were evaluated by the following method. The evaluation results are summarized in Table 1. Steel wool (#0000) wrapped around the jig reciprocated 50 times on the outermost surface of the
表1Table 1
在实施例1—1~1—6的样品S1—1~S1—6中,对至少一层二氧化硅子层进行了氮化处理。对这些样品S1—1~S1—6的耐擦伤性试验的评价为良好(A)。另一方面,对未进行氮化处理的比较例1—1和比较例1—2的样品SR1—1和SR1—2的耐擦伤性试验的评价为不良(D)。In samples S1-1 to S1-6 of Examples 1-1 to 1-6, at least one silicon dioxide sublayer was subjected to nitriding treatment. The evaluation of the scratch resistance test of these samples S1-1 to S1-6 was good (A). On the other hand, the evaluation of the scratch resistance test of samples SR1-1 and SR1-2 of Comparative Example 1-1 and Comparative Example 1-2 which were not subjected to nitriding treatment was poor (D).
若综合评价,则实施例的样品S1—1~S1—6作为制品全部为◎(优良)。比较例的样品SR1—1~SR1—2全部为×(不合格)。结果可知,通过氮化处理至少一层二氧化硅子层,就可以改善耐擦伤性。When comprehensively evaluated, all samples S1-1 to S1-6 of Examples were ⊚ (excellent) as products. All samples SR1-1 to SR1-2 of the comparative example were x (failure). The results show that scratch resistance can be improved by nitriding at least one silicon dioxide sublayer.
另外,尽管在表1(评价结果)中未明确表明,但是与全部的二氧化硅子层均进行了氮化处理的实施例1—1、1—5和1—6的样品相比,仅对最上层和包含最上层的任意两层进行氮化处理的实施例1—2、1—3和1—4的样品的耐擦伤性略差,尽管其耐擦伤性级别同样为良好(A)。但是,其中的差别是处于完全允许的范围内的。In addition, although not clearly shown in Table 1 (Evaluation Results), compared with the samples of Examples 1-1, 1-5, and 1-6 in which all silicon dioxide sublayers were nitrided, only the The samples of Examples 1-2, 1-3 and 1-4 in which the uppermost layer and any two layers containing the uppermost layer were nitrided had slightly poorer scratch resistance, although their scratch resistance grades were also good (A ). However, the difference is within a completely permissible range.
另外,上述第一实施方式(实施例)涉及在具有硬涂层的塑料眼镜镜片上形成有抗反射层的光学物品。对于具有玻璃基材的光学物品,可以在基材上形成抗反射层而没有硬涂层夹在基材和抗反射层之间,对于这种玻璃基材的光学物品也可以适用上述实施方式所公开的制造方法。另外,对于该光学物品,并非限定于眼镜镜片,而是包括图像显示装置的光学元件、棱镜、光纤、信息记录介质用元件、滤光器等光学制品,对于这些光学物品也可以适用上述实施方式所公开的制造方法。In addition, the first embodiment (example) described above relates to an optical article in which an antireflection layer is formed on a plastic spectacle lens having a hard coat layer. For an optical article with a glass substrate, an antireflection layer can be formed on the substrate without a hard coating interposed between the substrate and the antireflection layer, and the above-mentioned embodiments can also be applied to an optical article with a glass substrate. Published method of manufacture. In addition, the optical article is not limited to spectacle lenses, but includes optical elements such as optical elements of image display devices, prisms, optical fibers, elements for information recording media, and optical filters, and the above-described embodiments can also be applied to these optical articles. The disclosed manufacturing method.
(第二实施方式)(second embodiment)
在像眼镜片这种日常使用的光学物品上,常常形成一层具有防水性等防污功能的层(防污层)。作为防污层的目的之一是抑制因表面受到油脂等的污染而造成光学性能的降低。最适合作为形成防污层的组成是含氟硅烷化合物。由含氟硅烷化合物形成的防污层具有高防水性能和高防污性能。另外,在抗反射层的最上层采用氧化硅时,由含氟硅烷化合物形成的防污层具有与抗反射层的表面之间的密合性高以及耐久性高的优点。这可能是因为通过抗反射层表面的氧原子,使抗反射层和防污层之间形成了硅氧烷键造成的。A layer (anti-fouling layer) having an anti-fouling function such as water resistance is often formed on optical articles used in daily life such as spectacle lenses. One of the purposes of the antifouling layer is to suppress the decrease in optical performance due to contamination of the surface with grease or the like. The most suitable composition for forming an antifouling layer is a fluorine-containing silane compound. The antifouling layer formed from the fluorine-containing silane compound has high waterproof performance and high antifouling performance. In addition, when silicon oxide is used as the uppermost layer of the antireflection layer, the antifouling layer formed of a fluorine-containing silane compound has the advantages of high adhesion to the surface of the antireflection layer and high durability. This may be due to the formation of siloxane bonds between the antireflection layer and the antifouling layer through the oxygen atoms on the surface of the antireflection layer.
另一方面,若替代氧化硅层,以氮化硅层为抗反射层的最上层,则难以形成硅氧烷键,防污层的耐久性容易降低。因此,若氮化硅层存在于抗反射层的最上层,则阻碍了抗反射层的最上层与形成于该氮化硅层上的防污层的反应,从而产生防污层的耐久性降低的问题。On the other hand, if a silicon nitride layer is used as the uppermost layer of the antireflection layer instead of the silicon oxide layer, it is difficult to form a siloxane bond, and the durability of the antifouling layer tends to decrease. Therefore, if the silicon nitride layer exists in the uppermost layer of the antireflection layer, the reaction of the uppermost layer of the antireflection layer and the antifouling layer formed on the silicon nitride layer is hindered, thereby reducing the durability of the antifouling layer. The problem.
本发明的第二实施方式的一种方式涉及光学物品的制造方法,所述制造方法包括形成抗反射层和防污层的工序,所述抗反射层直接形成于光学基板上或所述抗反射层与所述基板之间夹有至少一层其它层,并且所述抗反射层具有包含2层以上的低折射率子层和至少一层高折射率子层的多层结构。形成抗反射层和防污层的工序包含如下工序:形成第1低折射率子层的第1工序、氮化处理第1低折射率子层表面的氮化处理工序、在第1低折射率子层的背向于光学基板的表面上形成第2低折射率子层,且在二者之间至少夹有一层高折射率子层的第2工序、以及在第2低折射率子层的背向于光学基板的表面上直接形成防污层的工序。One form of the second embodiment of the present invention relates to a manufacturing method of an optical article, the manufacturing method including the steps of forming an antireflection layer and an antifouling layer, the antireflection layer is directly formed on an optical substrate or the antireflection layer At least one other layer is sandwiched between the layer and the substrate, and the antireflection layer has a multilayer structure including two or more low-refractive-index sublayers and at least one high-refractive-index sublayer. The process of forming the anti-reflection layer and the anti-fouling layer includes the following processes: the first process of forming the first low refractive index sub-layer, the nitriding treatment process of the surface of the first low refractive index sub-layer, and the first low refractive index sub-layer. The second process of forming the second low refractive index sublayer on the surface of the sublayer facing away from the optical substrate, and at least one high refractive index sublayer is sandwiched between the two, and the second low refractive index sublayer The process of directly forming an antifouling layer on the surface facing away from the optical substrate.
这里所述子层与第一实施方式中记载的相同。在该光学物品的制造方法中,对由二氧化硅等构成的低折射率子层进行氮化处理,而不是使用氮化硅来作为多层结构的单独一层子层。即,对低折射率子层的表面进行部分氮化,由此获得膜强度提高的效果。该制造方法中,由于能够在保持以二氧化硅作为低折射率子层的抗反射层的层结构的状态下,具有由氮化带来的优点,所以可以选择例如不对层积有防污层的第2低折射率子层进行氮化,因此,在抗反射层上层积有防污层的体系中,防污层的耐久性也得到确保。The sublayers described here are the same as described in the first embodiment. In the manufacturing method of the optical article, nitriding treatment is performed on the low-refractive index sublayer made of silicon dioxide or the like, instead of using silicon nitride as a single sublayer of the multilayer structure. That is, the surface of the low-refractive index sublayer is partially nitrided, whereby the effect of improving the film strength is obtained. In this manufacturing method, since the layer structure of the anti-reflection layer with silicon dioxide as the low refractive index sub-layer can be maintained, there are advantages brought by nitriding, so it is possible to choose, for example, not to laminate an anti-fouling layer. The second low-refractive-index sublayer is nitrided, and therefore, the durability of the anti-fouling layer is also ensured in the system in which the anti-fouling layer is laminated on the anti-reflection layer.
因此,在第1工序和第2工序中,优选由二氧化硅形成第1低折射率子层和第2低折射率子层。Therefore, in the first step and the second step, it is preferable to form the first low-refractive index sublayer and the second low-refractive index sublayer from silicon dioxide.
另外,在该制造方法中,在第1工序,通过真空蒸镀来形成第1低折射率子层,在氮化处理工序,将含氮气的气体导入进行第1工序的真空室内,通过对该气体进行等离子体处理或离子枪处理,从而可以对由二氧化硅等形成的低折射率子层的表面部分地或全部地进行氮化。因此,不需要为引入经氮化的层而对膜厚加以严格控制,即使没有控制离子电流或高精度地掌握时间,也可以容易地将氮化膜引入到多层结构的抗反射层中,从而能够提高抗反射层的耐擦伤性。特别是在等离子体处理中,不需要离子源就可以在真空蒸镀用的装置中或蒸镀过程中简单地引入氮化硅。In addition, in this manufacturing method, in the first step, the first low-refractive-index sublayer is formed by vacuum evaporation, and in the nitriding treatment step, a gas containing nitrogen gas is introduced into a vacuum chamber in which the first step is performed, and by this The gas is subjected to plasma treatment or ion gun treatment so that the surface of the low-refractive index sublayer formed of silicon dioxide or the like can be partially or completely nitrided. Therefore, it is not necessary to strictly control the film thickness for the introduction of the nitrided layer, and the nitrided film can be easily introduced into the antireflection layer of the multilayer structure even without controlling the ion current or grasping the time with high precision, Thereby, the scratch resistance of the antireflection layer can be improved. In particular, in plasma treatment, silicon nitride can be easily introduced into an apparatus for vacuum evaporation or during the evaporation process without requiring an ion source.
本发明的第二实施方式的其它方式涉及具有抗反射层和防污层的光学物品,所述抗反射层直接形成于光学基板上或在光学基板与抗反射层之间夹有至少一层其它层。该抗反射层包括第1低折射率子层和第2低折射率子层,第1低折射率子层的背向光学基板的表面经氮化处理,在第1低折射率子层的背向光学基板的表面上形成第2低折射率子层,且第1低折射率子层与第2低折射率子层之间夹有至少一层高折射率子层,进而在第2低折射率子层的背向光学基板的表面上直接层积防污层。Other forms of the second embodiment of the present invention relate to an optical article having an antireflection layer formed directly on an optical substrate or with at least one other layer interposed between the optical substrate and the antireflection layer, and an antifouling layer. layer. The antireflection layer includes a first low-refractive index sublayer and a second low-refractive-index sublayer, the surface of the first low-refractive index sublayer facing away from the optical substrate is subjected to nitriding treatment, and on the back of the first low-refractive index sublayer Forming the 2nd low refractive index sublayer on the surface of the optical substrate, and at least one high refractive index sublayer is sandwiched between the 1st low refractive index sublayer and the 2nd low refractive index sublayer, and then in the 2nd low refractive index sublayer The antifouling layer is directly laminated on the surface of the sublayer facing away from the optical substrate.
另外,本发明的第二实施方式的其它方式中的光学物品具有抗反射层和防污层,所述抗反射层直接形成于光学基板上或者在光学基板与所述抗反射层之间夹有至少一层其它层。该抗反射层包括第1低折射率子层和第2低折射率子层,第1低折射率子层在背向光学基板一侧具有含氮部分层,在第1低折射率子层的背向光学基板的表面上形成第2低折射率子层,且第1低折射率子层与第2低折射率子层之间夹有至少一层高折射率子层,进而在第2低折射率子层的背向光学基板的表面上直接层积防污层。这里所述部分层与第一实施方式中记载的相同。In addition, the optical article in another aspect of the second embodiment of the present invention has an antireflection layer formed directly on the optical substrate or an antireflection layer interposed between the optical substrate and the antireflection layer, and an antifouling layer. at least one other layer. The antireflection layer includes a first low-refractive index sublayer and a second low-refractive-index sublayer, the first low-refractive index sublayer has a nitrogen-containing partial layer on the side facing away from the optical substrate, and in the first low-refractive index sublayer The second low-refractive-index sublayer is formed on the surface facing away from the optical substrate, and at least one high-refractive-index sublayer is sandwiched between the first low-refractive-index sublayer and the second low-refractive-index sublayer. The antifouling layer is directly laminated on the surface of the refractive index sublayer facing away from the optical substrate. The partial layers here are the same as those described in the first embodiment.
即,上述光学物品具有抗反射层和直接形成于该抗反射层上的防污层,所述抗反射层直接形成于光学基板上或者在光学基板与所述抗反射层之间夹有至少一层其它层,该抗反射层包含2层以上的子层,在这2层以上的子层中,除了该抗反射层的最表层之外,至少一层为表层经氮化处理的层,即该表层氮化处理层就是以SiOx为主要成分的层并且是包含该层的背向光学基板的表面经氮化处理的部分的层。抗反射层的一种形态为包含2层以上的低折射率子层,这些2层以上的低折射率子层中的一层为最表层,在这些2层以上的低折射率子层的其它层中至少一层为表层经氮化处理的层,最表层的低折射率子层形成于其它的低折射率子层的背向光学基板一侧的表面上,并且在其它的低折射率子层与最表层的低折射率子层之间夹有至少一层高折射率子层。That is, the above-mentioned optical article has an anti-reflection layer formed directly on the optical substrate or an anti-reflection layer interposed between the optical substrate and the anti-reflection layer, and an anti-fouling layer formed directly on the anti-reflection layer. Layer other layers, the anti-reflection layer includes more than two sub-layers, and among the more than two sub-layers, except for the outermost layer of the anti-reflection layer, at least one layer is a surface layer that has undergone nitriding treatment, that is The surface nitrided layer is a layer mainly composed of SiOx and is a layer including a nitrided portion of the surface of the layer facing away from the optical substrate. One form of the anti-reflection layer is to include two or more low-refractive index sub-layers, one of these two or more low-refractive-index sub-layers is the outermost layer, and the other of these two or more low-refractive index sub-layers At least one layer in the layer is a surface layer with nitriding treatment, and the outermost low-refractive index sub-layer is formed on the surface of the other low-refractive-index sub-layers facing away from the optical substrate, and on the other low-refractive index sub-layers At least one high-refractive-index sub-layer is sandwiched between the layer and the outermost low-refractive-index sub-layer.
通过对第1低折射率子层的氮化处理,至少一层子层在背向光学基板的一侧形成含氮部分层,由于易被擦伤的表面得到氮化,从而能够改善表面的耐擦伤性。另外,由于未对层积有防污层的第2低折射率子层进行氮化,因此,可以保持第2低折射率子层与防污层的密合性,从而能够提高防污层的耐久性。Through the nitriding treatment of the first low refractive index sub-layer, at least one sub-layer forms a nitrogen-containing partial layer on the side facing away from the optical substrate, and since the surface that is easily scratched is nitrided, the surface resistance can be improved. Abrasion. In addition, since the second low-refractive index sublayer on which the anti-fouling layer is laminated is not nitrided, the adhesion between the second low-refractive index sub-layer and the anti-fouling layer can be maintained, thereby improving the durability of the anti-fouling layer. durability.
优选第1和第2低折射率子层由二氧化硅形成。在这种情况下,部分层含有SisOtNu(s、u为正整数,t为0以上的整数)。在氮化处理了由二氧化硅形成的子层时,在子层表面上部分地或全部地形成了含氮化硅的区域,从而能够改善耐擦伤性。另外,由于氮化处理所形成的部分层的厚度和/或面积是有限定的,所以二氧化硅作为子层的光学性能得到了保持。因此,几乎不需要对抗反射层的膜设计进行更改。另外,氮化硅能够使耐擦伤性得到改善,同时也可以有效地利用由二氧化硅所形成的子层的特性,即赋予基板和上层之间的密合性。另外,由于未对层积有防污层的最上层的氧化硅进行氮化,因此,在保持防污层的耐久性的同时,能够提高耐擦伤性。Preferably, the first and second low-refractive index sublayers are formed of silicon dioxide. In this case, the partial layer contains Si s O t Nu (s and u are positive integers, and t is an integer of 0 or greater). When the sublayer formed of silicon dioxide is nitridated, a silicon nitride-containing region is partially or entirely formed on the surface of the sublayer, whereby scratch resistance can be improved. In addition, since the thickness and/or area of the partial layer formed by the nitriding treatment is limited, the optical properties of silicon dioxide as a sublayer are maintained. Therefore, there is little need to change the film design of the anti-reflection layer. In addition, silicon nitride can improve scratch resistance, and at the same time can effectively utilize the characteristics of the sublayer formed of silicon dioxide, that is, impart adhesion between the substrate and the upper layer. In addition, since the silicon oxide in the uppermost layer on which the antifouling layer is laminated is not nitrided, scratch resistance can be improved while maintaining the durability of the antifouling layer.
适合形成防污层的组成为含氟硅烷化合物。适于防污层的含氟硅烷化合物的一实例为下述通式(1)表示的化合物。Compositions suitable for forming the antifouling layer are fluorine-containing silane compounds. An example of the fluorine-containing silane compound suitable for the antifouling layer is a compound represented by the following general formula (1).
化合物1
在通式(1)中,Rf1表示全氟烷基,X表示氢原子、溴原子或碘原子,Y表示氢原子或低级烷基,Z表示氟原子或三氟甲基,R1表示羟基或水解性基团,R2表示氢原子或一价烃基。a、b、c、d和e为0或1以上的整数,a+b+c+d+e至少为1以上,对于通式中由a、b、c、d和e括起来的各重复单元的存在顺序没有限定。f表示0、1或2,g表示1、2或3,h表示1以上的整数。In the general formula (1), Rf 1 represents a perfluoroalkyl group, X represents a hydrogen atom, a bromine atom or an iodine atom, Y represents a hydrogen atom or a lower alkyl group, Z represents a fluorine atom or a trifluoromethyl group, and R 1 represents a hydroxyl group Or a hydrolyzable group, R 2 represents a hydrogen atom or a monovalent hydrocarbon group. a, b, c, d and e are integers of 0 or more than 1, and a+b+c+d+e is at least 1 or more, for each repetition enclosed by a, b, c, d and e in the general formula The order in which the cells exist is not limited. f represents 0, 1 or 2, g represents 1, 2 or 3, and h represents an integer of 1 or more.
适于防污层的含氟硅烷化合物的另一实例为下述通式(2)表示的化合物。Another example of the fluorine-containing silane compound suitable for the antifouling layer is a compound represented by the following general formula (2).
化合物2
在通式(2)中,Rf2包含由式:—(CkF2k)O—(式中k为1~6的整数)表示的单元,并表示具有无分支的直链全氟聚烷基醚结构的二价基团。R3表示碳原子数为1~8的一价烃基,X表示水解性基团或卤原子。P表示0、1或2,n表示1~5的整数,m和r表示2或3。In the general formula (2), Rf 2 includes units represented by the formula: —(C k F 2k )O—(where k is an integer of 1 to 6), and represents a linear perfluoropolyalkylene having no branch Divalent group of base ether structure. R 3 represents a monovalent hydrocarbon group having 1 to 8 carbon atoms, and X represents a hydrolyzable group or a halogen atom. P represents 0, 1 or 2, n represents an integer of 1 to 5, and m and r represent 2 or 3.
图4是表示通过真空蒸镀在放置于支撑装置80上的基板(工件)40的表面上形成多层结构的抗反射层的成膜装置50的结构示意图。4 is a schematic diagram showing the structure of a
在室CH3的功能上,图4所示的成膜装置50不同于图1所示的成膜装置50。在图4所示的成膜装置50中,室CH3除了具有作为出口室的功能外,还具有在室内通过蒸镀含氟硅烷化合物来形成防污层的功能。因此,在室CH3内部设置有浸渍了含氟硅烷化合物的防污层蒸镀源59a、加热器(卤素灯)68、用于通过调整开度来控制含氟硅烷化合物的排出量的补偿板67。通过配有回转泵54a、罗茨泵54b和涡轮分子泵54c的真空生成装置54使室CH3保持在适当的压力。将从室CH3中连同支撑装置80一同取出的工件基板40放入恒温恒湿槽(图中未表示)中,使该工件基板40在适当的湿度和温度的氛围气中退火。进而,通过在室内放置规定的时间来老化该工件基板40。其它的结构和作用与第一实施方式的成膜装置50相同,因此,在图中以相同符号标出,略去对其的重复说明。The
图5是表示在该成膜装置50中,在工件基板40上形成具有多层结构的抗反射层的过程的流程图。另外,图6是表示包含了抗反射层3和防污层4的本实施方式的光学物品10b的膜结构的截面图。作为抗反射层3的例子,其包括形成于基材上的由氧化硅构成的第1子层31,由氧化锆构成的第2子层32,由氧化硅构成的第3子层33,由氧化锆构成的第4子层34,由氧化硅构成的第5子层35。FIG. 5 is a flowchart showing a process of forming an antireflection layer having a multilayer structure on the
当光学基板(基材)1为塑料时,在步骤101,与图2所示的制造方法相同,在形成抗反射层3之前,先在光学基板1上形成硬涂层2。When the optical substrate (substrate) 1 is made of plastic, in
将形成有硬涂层2的基板1作为工件基板40固定在支撑装置80上,输送到成膜装置50中。在成膜装置50中,首先,将支撑装置80导入室CH1中,进行脱气,然后再将支撑装置80移至室CH2中,进行步骤102的等离子体处理。在步骤103,形成由氧化硅构成的第1层子层31(层形成工序(第1工序)),然后,在步骤104,采用等离子体处理或离子枪处理对子层31的表面进行氮化(氮化处理工序)。这样,在由氧化硅构成的子层31的表面(背向基板1的面)上形成覆盖其全部或部分表面的含氮化物部分层39。这时,可以使用含氮气的任意组成的气体为导入气体,例如,可以举出100%氮气、氮气和氧气的混合气体、氮气和氩气的混合气体、或者氮气和氧气和氩气的混合气体等气体。The
在步骤105形成由氧化锆构成的第2层子层32后,在步骤106中形成由氧化硅构成的第3层子层33(层形成工序(第1工序)),然后在步骤107中,进行与步骤104同样的表面氮化(氮化处理工序)。After forming the
在步骤108形成由氧化锆构成的第4层子层34后,在步骤109形成由氧化硅构成的第5层子层35(层形成工序(第2工序))。第5层子层35为抗反射层3的最上层。因此,在层形成工序(第2工序)之后,在步骤110,将支撑装置80移至室CH3中,在由氧化硅构成的第5层子层35上直接形成由含氟硅烷化合物构成的防污层4。这样,在光学物品的一面上形成具有5层结构的抗反射层3和防污层4。在步骤111,翻转基板40并固定在支撑装置80上,重复步骤102~110。当在基板40的两面形成抗反射层3和防污层4时,在步骤112取出基板40。After forming the
这里,共有3层氧化硅子层31、33和35,除了最上层子层35可以氮化处理外,也可以对低折射率子层31和33中的一层或两层都进行氮化处理。当最上层子层35为第2层低折射率子层时,不对其进行氮化处理。另外,由于在上述氮化处理中只是对氧化硅子层的极薄的表面进行氮化,因此,对作为抗反射层3的性能几乎没有影响。Here, there are three
(实施例2—1)(Embodiment 2-1)
以下依照图5所示的制造方法,对制造作为光学物品的塑料眼镜镜片的几个实施例加以说明。在以下各实施例和比较例中,使用眼镜用塑料镜片基材(Seiko Epson Co.制造,商品名:Seiko Supper Sovereign)作为光学基材1。在步骤101中,在光学基材1的两面上形成硬涂层2。以形成有硬涂层2的光学基材1为工件基板40,在其上形成抗反射层3。Hereinafter, according to the manufacturing method shown in FIG. 5 , several examples of manufacturing plastic spectacle lenses as optical articles will be described. In each of the following Examples and Comparative Examples, a plastic lens substrate for eyeglasses (manufactured by Seiko Epson Co., trade name: Seiko Supper Sovereign) was used as the
将工件基板40凹面向下地固定在支撑装置80的拱形罩81上,然后输送到成膜装置50中。在工序102中,在室CH1中脱气后,在室CH2中导入100%氩气,一边控制气体压力为4.0×10-2Pa,一边通过高频等离子体发生装置所产生的等离子体对工件基板40进行处理。在频率为13.56MHz、功率为400W的等离子体产生的条件下,进行1分钟的等离子体处理。该处理的目的在于清洁基板表面,从而使基板1和抗反射层3之间的密合性得到提高。The
接着进行步骤103~110,交替地进行SiO2子层31、33和35与ZrO2子层32和34的蒸镀,从而形成了由这些子层构成的抗反射层3。调整各层的膜厚,以使第1子层(SiO2)31的膜厚为0.09λ、第2子层(ZrO2)32的膜厚为0.16λ、第3子层(SiO2)33的膜厚为0.05λ、第4子层(ZrO2)34的膜厚为0.27λ、第5子层(SiO2)35的膜厚为0.27λ。
该抗反射层3的最上层35为SiO2层。在步骤104和107的氮化处理中使用等离子体发生装置60。因此,在蒸镀SiO2层之后,将氮气和氧气以7∶3的比例导入室CH2中,在控制气体压力为4.0×10-2Pa的同时,采用高频等离子体发生装置来产生等离子体。在频率为13.56MHz、功率为600W的等离子体产生的条件下,进行5分钟的等离子体处理。这样,在第1子层31和第3子层33的SiO2层表面上形成含氮化物部分层39。即,第1子层31和第3子层33为包含经氮化处理的部分的子层(表层氮化处理层)。The
然后,将支撑装置80移至室CH3中,形成防污层4(步骤110)。使用Shin-Etsu Chemical Co.,Ltd.制造的含氟有机硅化合物(商品名:KY-130,为上述通式(2)表示的化合物)来作为蒸镀源59a。用氟类溶剂(Sumitomo 3M,Ltd.制造,商品名:Novec HFE-7200)稀释该KY-130,制备固体成分浓度为3%的溶液,将1g该溶液浸渍到多孔质陶瓷颗粒(pellet)中并干燥该颗粒,以干燥后的颗粒为蒸镀源59a并固定在室CH3中。在成膜过程中,使用卤素灯作为加热器68,加热作为蒸镀源59a的颗粒到600℃,使含氟有机硅化合物蒸镀。蒸镀时间为3分钟。Then, the
防污层4形成后,从该室中取出支撑装置80,翻转镜片凸面向下地固定在支撑装置80的拱形罩81上,再进行与上述同样的处理。这样,制造出在工件基板40(镜片基材1)的两面上具有抗反射层3和防污层4的塑料镜片(样品S2—1),即在形成有硬涂层2的基材1的另一面上也具有抗反射层3和防污层4。在样品S2—1中,抗反射层3的二氧化硅子层31和33作为第1低折射率子层,其表面经氮化处理,即背向基材1的表面经氮化处理。另外,子层35作为第2低折射率子层,在其上直接形成防污层4。After the
(实施例2—2)(Embodiment 2-2)
在实施例2—2中,不进行步骤107,其它与实施例2—1相同,制造出具有5层结构的抗反射层3的塑料镜片(样品S2—2)。因此,在该实施例2—2的样品S2—2中,包含在抗反射层3中的二氧化硅子层31、33和35中,只是对最内层(第1子层)31(即,抗反射层3的形成光学基板1的表面的子层31)进行了氮化处理,形成含氮化物部分层39。In Example 2-2,
(实施例2—3)(Embodiment 2-3)
在实施例2—3中,不进行步骤104,其它与实施例2—1相同,制造出具有5层构成的抗反射层3的塑料镜片(样品S2—3)。因此,在该实施例2—3的样品S2—3中,包含在抗反射层3中的二氧化硅子层31、33和35中,只是对第3子层33进行了氮化处理,形成含氮化物部分层39。In Example 2-3,
(实施例2—4)(Embodiment 2-4)
在实施例2—4中,进行步骤102~110,对包含在抗反射层3中的二氧化硅子层31和33进行氮化处理。但是,对于步骤104和107的氮化处理,采用离子枪70来替代等离子体发生装置60。因此,将氮气64a和氧气63以7:3的比例导入离子枪70中,并控制流量为35SCCM,对子层31和33进行离子照射。在保持处理时的室内压力为4×10-3Pa的同时,在频率为13.56MHz、RF功率为450W、加速电压500V、抑制电压300V的离子照射的条件下,进行5分钟的离子照射。其它与实施例2—1相同。In Embodiment 2-4,
因此,在该实施例2—4的样品S2—4中,抗反射层3的二氧化硅子层31和33作为第1低折射率子层,其表面经氮化处理,即背向基材1的表面经氮化处理,形成含氮化物部分层39。另外,子层35作为第2低折射率子层,在其上直接形成防污层4。Therefore, in the sample S2-4 of the embodiment 2-4, the
(实施例2—5)(Embodiment 2-5)
在实施例2—5中,进行与实施例2—1同样的步骤102~110,对包含在抗反射层3中的二氧化硅子层31和33进行氮化处理。但是,在步骤110中,使用Daikin Industries,Ltd.制造的含氟有机硅化合物(商品名:OPTOOL DSX,为上述通式(1)表示的化合物)来作为用于形成防污层4的蒸镀源59a。因此,用氟类溶剂(Daikin Industries,Ltd.制造,商品名:DEMNAM SOLVENT)稀释该OPTOOL DSX,制备固体成分浓度为3%的溶液,将1g该溶液浸渍到多孔质陶瓷颗粒(pellet)中并干燥该颗粒,以干燥后的颗粒为蒸镀源59a并固定在室CH3中。In Example 2-5, the
因此,在该实施例2—5的样品S2—5中,抗反射层3的二氧化硅子层31和33作为第1低折射率子层,其表面经氮化处理,即背向基材1的表面经氮化处理,形成含氮化物部分层39。另外,子层35作为第2低折射率子层,在其上直接形成防污层4。Therefore, in the sample S2-5 of the embodiment 2-5, the
(实施例2—6)(Embodiment 2-6)
在实施例2—6中,制造出具有7层结构的抗反射层的镜片。因此,增加了氮化处理第5二氧化硅子层的工序、蒸镀第6子层的工序、蒸镀作为最外层的第7二氧化硅子层的工序,在步骤110,在第7二氧化硅子层的表面形成防污层4。另外,在形成高折射率子层时,使用TiO2来替代ZrO2。其它与实施例2—1相同。在形成这些高折射率子层的工序中,采用离子加速器蒸镀来进行TiO2的蒸镀。关于此时的照射条件,将控制流量为35SCCM的100%氧气导入离子枪70中,调整频率为13.56MHz、RF功率为450W、加速电压为500V、抑制电压为300V。处理时的室内压力为4×10-3Pa。这时,第1子层(SiO2)的膜厚为0.08λ、第2子层(TiO2)的膜厚为0.07λ、第3子层(SiO2)的膜厚为0.10λ、第4子层(TiO2)的膜厚为0.18λ、第5子层(SiO2)的膜厚为0.07λ、第6子层(TiO2)的膜厚为0.14λ、第7子层(SiO2)的膜厚为0.26λ。In Examples 2-6, lenses having an antireflection layer of a 7-layer structure were produced. Therefore, the process of nitriding the 5th silicon dioxide sublayer, the process of evaporating the 6th sublayer, and the process of evaporating the 7th silicon dioxide sublayer as the outermost layer are added. In
因此,在该实施例2—6的样品S2—6中,对包含在抗反射层3中的除最表层的二氧化硅子层外的全部的二氧化硅子层进行氮化处理,形成含氮化物部分层39。Therefore, in the sample S2-6 of this embodiment 2-6, all the silicon dioxide sublayers included in the
(实施例2—7)(Embodiment 2-7)
在实施例2—7中,省去对相当于第1低折射率子层的层31和33进行氮化处理的步骤104和107,而是对相当于第2低折射率子层的层35进行氮化,然后形成防污层4,通过这种制造方法,制造出具有与实施例2—1相同的组成,即具有抗反射层3和防污层4的塑料镜片(样品S2—7),所述抗反射层具有由SiO2的低折射率子层和ZrO2的高折射率子层构成的5层结构。其它与实施例2—1相同。In Embodiment 2-7,
(实施例2—8)(Embodiment 2-8)
在实施例2—8中,制造出具有与实施例2—6相同组成的塑料镜片(样品S2—8),即,具有由SiO2的低折射率子层和TiO2的高折射率子层构成的7层结构的抗反射层3,并且只对相当于第2低折射率子层的抗反射层3的最上层子层进行氮化处理,并在该经氮化处理的最上层子层上形成防污层4。其它与实施例2—6相同。In Examples 2-8, a plastic lens (sample S2-8) was fabricated with the same composition as in Example 2-6, i.e., with a low-refractive-index sublayer of SiO2 and a high-refractive-index sublayer of TiO2 The
(比较例2—1)(Comparative example 2-1)
在比较例2—1中,不进行步骤104和107,制造出具有与实施例2—1相同组成的塑料镜片(样品SR2—1),即其具有由SiO2的低折射率子层和ZrO2的高折射率子层构成的5层结构的抗反射层3和防污层4,并且未进行氮化处理。其它与实施例2—1相同。因此,在该比较例2—1的样品SR2—1中,对包含在抗反射层3中的全部的二氧化硅子层31、33和35未进行氮化处理。In Comparative Example 2-1,
(比较例2—2)(comparative example 2-2)
在比较例2—2中,制造出具有与实施例2—6相同组成的塑料镜片(样品SR2—2),即其具有由SiO2的低折射率子层和TiO2的高折射率子层构成的7层结构的抗反射层3,并且未进行氮化处理。其它与实施例2—6相同。因此,在该比较例2—2的样品SR2—2中,对包含在抗反射层3中的全部的二氧化硅子层未进行氮化处理。In Comparative Example 2-2, a plastic lens (sample SR2-2) having the same composition as in Example 2-6 was produced, that is, it had a low-refractive-index sublayer of SiO2 and a high-refractive-index sublayer of TiO2 The
(评价)(evaluate)
采用以下方法对实施例2—1~2—8以及比较例2—1~2—2制造的样品S2—1~S2—8、SR2—1~SR2—2的耐擦伤性以及防污层4的耐久性进行了评价。其评价结果汇总示出于表2(a)和表2(b)。Scratch resistance and antifouling layer of samples S2-1 to S2-8, SR2-1 to SR2-2 manufactured in Examples 2-1 to 2-8 and Comparative Examples 2-1 to 2-2 using the following
为了评价耐擦伤性,缠在夹具上的钢丝棉(#0000)在负重2kg的状态下,在各样品S2—1~S2—8、SR2—1~SR2—2的抗反射层3的最外表面上往复50次。将由此产生的擦伤程度与标准样品比较,以A、B、C和D这四个级别评价耐擦伤性。其中,A表示最佳,B、C、D顺次表示劣化。In order to evaluate the scratch resistance, steel wool (#0000) wrapped around a jig was loaded with a load of 2 kg.
为了评价防污层4的耐久性,将负重200g的棉布在镜片的凸面上往返5000次进行加速处理。通过接触角和油性油墨的拭取性评价该加速处理前后的防污性能。对于接触角的测定,使用接触角仪(Kyowa ScienceCo.,Ltd.制造,型号“CA-D Type”)通过液滴法测定纯水的接触角。对于油性油墨的拭取性,用黑色油性记号笔(Zebra Co.,Ltd.制造,商品名:High Mackee Care)在镜片的凸面上画条约4cm的直线并放置5分钟。然后,用擦拭纸(Nippon Paper Crecia Co.,Ltd.制造,商品名:K-Dry)擦拭该记号部位,根据以下基准判断油性油墨的拭取性。In order to evaluate the durability of the
○:擦拭10次以下能完全去除。◯: Completely removed by wiping 10 times or less.
△:擦拭11次~20次能完全去除。△: Completely removed by wiping 11 to 20 times.
×:擦拭20次后还残留未去除部分。×: Unremoved parts remained after wiping off 20 times.
以下表2(a)和表2(b)是对在第二实施方式中由实施例和比较例中得到的镜片的评价结果的汇总。Table 2(a) and Table 2(b) below are a summary of evaluation results of lenses obtained in Examples and Comparative Examples in the second embodiment.
表2(a)Table 2(a)
表2(b)Table 2(b)
在实施例2—1~2—8的样品S2—1~S2—8中,至少一层二氧化硅子层经氮化处理,对这些样品的耐擦伤性试验的评价为良好(A)或合格(B)。另一方面,对未进行氮化处理的比较例2—1和比较例2—2的样品SR2—1和SR2—2的耐擦伤性试验的评价为不良(D)。结果可知,通过氮化处理至少一层二氧化硅子层,就可以改善耐擦伤性。另外,与除了最表层外的全部的二氧化硅子层被氮化处理的实施例的样品相比,仅对一层二氧化硅子层进行氮化处理的实施例2—2和2—3的样品的耐擦伤性的级别的评价较低,为B,但是该级别是处于完全可允许的范围内的。In samples S2-1 to S2-8 of Examples 2-1 to 2-8, at least one silicon dioxide sublayer was subjected to nitriding treatment, and the scratch resistance test of these samples was evaluated as good (A) or pass (B). On the other hand, the evaluation of the scratch resistance test of samples SR2-1 and SR2-2 of Comparative Example 2-1 and Comparative Example 2-2 not subjected to nitriding treatment was poor (D). The results show that scratch resistance can be improved by nitriding at least one silicon dioxide sublayer. In addition, compared with the samples of Examples in which all silicon dioxide sublayers except the outermost layer were nitrided, the samples of Examples 2-2 and 2-3 in which only one silicon dioxide sublayer was nitrided The evaluation of the level of scratch resistance was lower at B, but the level was within a completely allowable range.
关于防污层的耐久性,未对抗反射层3的最上层低折射率子层进行氮化处理的实施例2—1~2—6的样品S2—1~S2—6,以及比较例2—1和2—2的样品SR2—1和SR2—2,在加速处理前后其拭取性能不变,具有足够的耐久性。另一方面,对抗反射层3的最上层低折射率子层进行氮化处理的实施例2—7和2—8的样品S2—7和S2—8中,其加速处理前的拭取性能充分,而加速处理后的拭取性能降低。由此可知,通过对抗反射层3的最上层低折射率子层35不进行氮化处理,可以大幅度提高防污层4的耐久性。With regard to the durability of the antifouling layer, samples S2-1 to S2-6 of Examples 2-1 to 2-6 that were not subjected to nitriding treatment on the uppermost low-refractive index sublayer of the
若综合评价,则实施例的样品S2—1~S2—8作为制品全部为◎(优良)或○(良好)。比较例的样品SR2—1~SR2—2全部为×(不合格)。结果可知,通过氮化处理至少一层二氧化硅子层,就可以改善耐擦伤性。另外可知,通过不氮化处理抗反射层3的最上层低折射率子层,也可以改善拭取性能。When comprehensively evaluated, all samples S2-1 to S2-8 of Examples were ⊚ (excellent) or ◯ (good) as products. All samples SR2-1 to SR2-2 of the comparative example were x (failure). The results show that scratch resistance can be improved by nitriding at least one silicon dioxide sublayer. In addition, it can be seen that the wiping performance can also be improved by not nitriding the uppermost low-refractive index sublayer of the
另外,上述第二实施方式(实施例)涉及光学物品,所述光学物品在具有硬涂层的塑料眼镜镜片上形成有抗反射层和防污层,但是对于具有玻璃基材的光学物品,可以在基材上形成抗反射层而没有硬涂层夹在基材和抗反射层之间。另外,对于该光学物品,并非限定于眼镜镜片,而是包括图像显示装置的光学元件、棱镜、光纤、信息记录介质用元件、滤光器等光学制品,对于这些光学物品也可以适用上述实施方式所公开的制造方法。In addition, the above-mentioned second embodiment (example) relates to an optical article having an antireflection layer and an antifouling layer formed on a plastic spectacle lens having a hard coat layer, but for an optical article having a glass substrate, it may be The antireflective layer is formed on the substrate without a hard coat layer interposed between the substrate and the antireflective layer. In addition, the optical article is not limited to spectacle lenses, but includes optical elements such as optical elements of image display devices, prisms, optical fibers, elements for information recording media, and optical filters, and the above-described embodiments can also be applied to these optical articles. The disclosed manufacturing method.
(第三实施方式)(third embodiment)
本发明的第三实施方式中说明的发明之一(第一发明)涉及在光学基板上具有一层以上薄膜的光学物品的制造方法,所述第一发明的特征是,在所述薄膜内,最表层的薄膜为低折射率薄膜,并且对所述低折射率薄膜的表面进行氮化处理。One of the inventions described in the third embodiment of the present invention (the first invention) relates to a method of manufacturing an optical article having one or more thin films on an optical substrate, and the first invention is characterized in that, in the thin film, The outermost film is a low-refractive-index film, and the surface of the low-refractive-index film is subjected to nitriding treatment.
依据上述第一发明,通过对形成于光学基板上的最表层的低折射率薄膜的表面进行氮化处理,可使薄膜的耐久性特别是耐擦伤性得到提高。According to the above-mentioned first invention, by nitriding the surface of the outermost low-refractive-index thin film formed on the optical substrate, the durability of the thin film, especially the scratch resistance can be improved.
本发明的第三实施方式中说明的发明之二(第二发明)的特征是,在上述第一发明中,通过真空蒸镀形成所述低折射率薄膜后,进行所述氮化处理,所述氮化处理中,将含有氮气的气体导入进行所述真空蒸镀的真空室内,进行等离子体处理或离子枪处理。Invention 2 (the second invention) described in the third embodiment of the present invention is characterized in that, in the above-mentioned first invention, the nitriding treatment is performed after forming the low-refractive-index thin film by vacuum deposition, so that In the nitriding treatment, a gas containing nitrogen is introduced into the vacuum chamber where the vacuum evaporation is performed, and plasma treatment or ion gun treatment is performed.
依据上述第二发明,在光学基板上形成低折射率薄膜后,将含有氮气的气体导入真空室内,通过等离子体处理或离子枪处理,可以氮化所述低折射率薄膜的表面。从而使薄膜的耐久性特别是耐擦伤性得到提高。According to the above-mentioned second invention, after the low-refractive-index film is formed on the optical substrate, the gas containing nitrogen gas is introduced into the vacuum chamber, and the surface of the low-refractive-index film can be nitrided by plasma treatment or ion gun treatment. The durability, especially the scratch resistance, of the film is thereby improved.
本发明的第三实施方式中说明的发明之三(第三发明)的特征是,在上述第一发明或上述第二发明中,形成以二氧化硅为主要成分的所述低折射率薄膜。The third invention (the third invention) described in the third embodiment of the present invention is characterized in that, in the above-mentioned first invention or the above-mentioned second invention, the low-refractive-index thin film containing silicon dioxide as a main component is formed.
依照上述第三发明,通过对以二氧化硅为主要成分的低折射率薄膜进行氮化处理,可使光学物品的耐久性特别是耐擦伤性得到提高。According to the above-mentioned third invention, by nitriding the low-refractive-index thin film mainly composed of silicon dioxide, the durability of the optical article, especially the scratch resistance can be improved.
本发明的第三实施方式中说明的发明之四(第四发明)涉及在光学基板上具有一层以上薄膜的光学物品,所述第四发明的特征是,在所述薄膜内,形成最表层的薄膜为低折射率薄膜,所述低折射率薄膜在背向于所述光学基板的表面上具有含氮部分层。本申请书中这里所述部分层是指低折射率薄膜的表层部分。本发明涉及氮化处理该表层部分。The fourth invention (the fourth invention) described in the third embodiment of the present invention relates to an optical article having one or more thin films on an optical substrate, and the fourth invention is characterized in that the outermost layer is formed in the thin film The film is a low-refractive-index film having a nitrogen-containing partial layer on the surface facing away from the optical substrate. The partial layer mentioned here in this application refers to the surface layer part of the low refractive index film. The present invention relates to nitriding treatment of the surface portion.
依据上述第四发明,由于在最表层的低折射率薄膜的表面上形成含氮部分层,从而可使光学物品的耐久性特别是耐擦伤性得到提高。According to the above-mentioned fourth invention, since the nitrogen-containing partial layer is formed on the surface of the outermost low-refractive index film, the durability of the optical article, especially the scratch resistance can be improved.
本发明的第三实施方式中说明的发明之五(第五发明)的特征是,在上述第四发明中,形成以二氧化硅为主要成分的所述低折射率薄膜。The fifth invention (fifth invention) described in the third embodiment of the present invention is characterized in that, in the above-mentioned fourth invention, the low-refractive-index thin film containing silicon dioxide as a main component is formed.
依据上述第五发明,通过对以二氧化硅为主要成分的薄膜进行氮化处理,可使光学物品的耐久性特别是耐擦伤性得到提高。According to the above-mentioned fifth invention, the durability, especially the scratch resistance, of the optical article can be improved by nitriding the thin film mainly composed of silicon dioxide.
在第三实施方式中,由于对由二氧化硅等构成的低折射率薄膜进行氮化处理,即对低折射率薄膜的表面全部或部分地进行氮化,形成含氮部分层,因此可以改善易被擦伤表面的耐擦伤性。在这种情况下,部分层含有SisOtNu(s、u为正整数,t为0以上的整数)。In the third embodiment, since the low-refractive index film made of silicon dioxide or the like is nitrided, that is, the surface of the low-refractive index film is all or partially nitrided to form a nitrogen-containing partial layer, it is possible to improve Scratch resistance for surfaces prone to marring. In this case, the partial layer contains Si s O t Nu (s and u are positive integers, and t is an integer of 0 or greater).
另外,在上述制造方法中,将含有氮气的气体导入真空室内,进行等离子体处理或离子枪处理,由此可对二氧化硅等低折射率薄膜的表面部分地或全部地进行氮化。因此,无需为引入经氮化的层而进行精确的膜厚控制,即使不控制离子电流或精确地掌握时间,也能够容易地引入氮化膜,从而可提高抗反射层的耐擦伤性。特别是在等离子体处理中,也无需使用离子源就能在真空蒸镀用的装置中或蒸镀过程中简单地引入氮化硅。In addition, in the above-mentioned production method, a gas containing nitrogen gas is introduced into a vacuum chamber, and plasma treatment or ion gun treatment is performed, whereby the surface of a low-refractive index film such as silicon dioxide can be partially or completely nitrided. Therefore, precise film thickness control is not required for introducing the nitrided layer, and the nitrided film can be easily introduced without controlling the ion current or precisely timing, thereby improving the scratch resistance of the antireflection layer. In particular, in the plasma treatment, silicon nitride can be easily introduced into an apparatus for vacuum evaporation or during the evaporation process without using an ion source.
上述由二氧化硅等构成的低折射率薄膜可形成各种功能性薄膜的一部分,例如形成抗反射膜的一部分。对于由二氧化硅构成的低折射率薄膜,由于在所形成的部分层中存在SiO2和SisOtNu(s、u为正整数,t为0以上的整数)的混合物,因此,部分层的折射率处于1.45~2.05的范围,但是,因其厚度和/或面积是有限定的,因此,对抗反射膜的膜设计造成的影响极少。The aforementioned low-refractive-index film made of silicon dioxide or the like can form a part of various functional films, for example, a part of an antireflection film. For the low refractive index film made of silicon dioxide, since there is a mixture of SiO and Si s O t Nu (s, u are positive integers, and t is an integer greater than 0) in the formed part of the layer, therefore, The refractive index of some layers is in the range of 1.45 to 2.05, but since the thickness and/or area are limited, the influence of the film design of the anti-reflection film is minimal.
另外,可以在功能性薄膜的最上层形成防污膜。在这种情况下,优选在低折射率薄膜的含氮部分层上再形成低折射率薄膜。这样,通过不对层积有防污层的最上层的氧化硅进行氮化,可保持防污层的耐久性,同时可提高耐擦伤性。In addition, an antifouling film can be formed on the uppermost layer of the functional film. In this case, it is preferable to further form a low-refractive-index film on the nitrogen-containing partial layer of the low-refractive-index film. In this way, by not nitriding the silicon oxide of the uppermost layer on which the antifouling layer is laminated, the durability of the antifouling layer can be maintained and the scratch resistance can be improved.
适合形成防污层的组成的物质为含氟硅烷化合物,适于防污层的含氟硅烷化合物的一实例为上述通式(1)表示的化合物。A substance suitable for forming the composition of the antifouling layer is a fluorine-containing silane compound, and an example of the fluorine-containing silane compound suitable for the antifouling layer is a compound represented by the above-mentioned general formula (1).
适于防污层的含氟硅烷化合物的另一实例为上述通式(2)表示的化合物。Another example of the fluorine-containing silane compound suitable for the antifouling layer is a compound represented by the above-mentioned general formula (2).
图7表示用于形成各种功能性薄膜的成膜装置50的结构示意图,所述功能性薄膜是通过真空蒸镀在放置于支撑装置80上的基板(工件)40的表面上形成的。支撑装置80与图1所示的支撑装置相同。成膜装置50具有支撑装置80可通过内部的三个室CH1、CH2和CH3。各室CH1~CH3能相互密封。且各室CH1~CH3的内压分别由真空生成装置52、53和54控制。室CH1为入口或门室。室CH2是成膜为各种功能性薄膜的第二室。另外,用于控制室内氛围气的质量流量控制器66与室CH2连接。氧气供给源63、氩气供给源64b和氮气供给源(图中未表示)与质量流量控制器66连接,这样可以将室CH2内的氛围气控制为100%氧气、100%氩气或100%氮气,或者适当比例的这些气体的混合气。7 shows a schematic structural view of a
室CH3是用于通过蒸镀含氟硅烷化合物来形成防污层的室。因此,在室CH3内部具有浸渍了含氟硅烷化合物的防污层蒸镀源59b、加热器(卤素灯)68、用于通过调整开度来控制含氟硅烷化合物的排出量的补偿板67。通过配有回转泵54a、罗茨泵54b和涡轮分子泵54c的真空生成装置54,使室CH3保持在适当的压力。在形成防污层的情况下,将从室CH3中连同支撑装置80一同取出的工件基板40放入恒温恒湿槽(图中未表示)中,使其在适当的湿度和温度的氛围气中退火。进而,通过在室内放置规定时间,来老化该工件基板40。对于在室CH3中不形成防污层的情况,无需上述的退火和老化。其它的结构和作用与第一实施方式的成膜装置50相同,因此,在图中以相同符号标出,略去对其的重复说明。The chamber CH3 is a chamber for forming an antifouling layer by vapor-depositing a fluorine-containing silane compound. Therefore, inside the chamber CH3 there are an antifouling layer
图8表示的是,在成膜装置50中,以在工件基板40上形成功能性薄膜的过程为例,形成单层低折射率薄膜的过程的流程图。另外,图9是表示本实施方式的光学物品10c的膜结构的截面图。FIG. 8 shows a flow chart of the process of forming a single-layer low-refractive index film in the
当光学基板(基材)1为塑料时,在步骤151中,在形成低折射率薄膜30之前,先在光学基板1上形成硬涂层2。该硬涂层2的形成与上述实施方式相同。When the optical substrate (base material) 1 is plastic, in step 151 , before forming the low-
将形成有硬涂层2的基板1作为工件基板40固定在支撑装置80上,输送到成膜装置50中。在成膜装置50中,首先,将支撑装置80导入室CH1中,进行脱气,然后再将支撑装置80移至室CH2中,在步骤152进行等离子体处理。该处理的目的是清洁表面,从而使基板1上的硬涂层2与低折射率薄膜30的密合性提高。The
在步骤153中,形成作为低折射率薄膜的二氧化硅薄膜后,在步骤154,采用等离子体处理或离子枪处理来氮化表面,这样,在二氧化硅薄膜30的表面(背向基板1的面)上形成覆盖其全部或部分表面的含氮化物部分层39。即,二氧化硅薄膜30为包含经氮化处理的部分的层(表面氮化处理层)。这时,使用含氮气的任意组成的气体为导入气体,例如,可以举出100%氮气、氮气和氧气的混合气体、氮气和氩气的混合气体、或者氮气和氧气和氩气的混合气体等气体。In step 153, after forming a silicon dioxide film as a low-refractive index film, in step 154, use plasma treatment or ion gun treatment to nitride the surface, so that on the surface of the silicon dioxide film 30 (facing away from the
由此,在光学物品的一面上形成功能性薄膜,因此,在步骤155,翻转基板40并固定在支撑装置80上,重复步骤152~154。当在基板40的两面形成功能性薄膜时,在步骤156取出基板40。Thus, a functional thin film is formed on one side of the optical article. Therefore, in step 155, the
(实施例3—1)(Embodiment 3-1)
以下依照图8所示的制造方法,对制造作为光学物品的塑料眼镜镜片的几个实施例加以说明。在以下各实施例和比较例中,使用眼镜用塑料镜片基材(Seiko Epson Co.制造,商品名:Seiko Supper Sovereign)作为光学基材1。在步骤151中,使用在该基材1的两面上形成有硬涂层2的工件基板40,并在其上形成作为低折射率薄膜的二氧化硅薄膜30。Hereinafter, according to the manufacturing method shown in FIG. 8 , several examples of manufacturing plastic spectacle lenses as optical articles will be described. In each of the following Examples and Comparative Examples, a plastic lens substrate for eyeglasses (manufactured by Seiko Epson Co., trade name: Seiko Supper Sovereign) was used as the
将工件基板40凹面向下地固定在支撑装置80的拱形罩81上,然后输送到成膜装置50中。在室CH1中脱气后,在室CH2中进行步骤152,导入100%氩气,一边控制气体压力为4.0×10-2Pa,一边采用高频等离子体发生装置所产生的等离子体对工件基板40进行处理。在频率为13.56MHz、功率为400W的等离子体产生的条件下,进行1分钟的等离子体处理。该处理的目的在于清洁基板表面,从而使基板1和低折射率薄膜30的密合性提高。The
接着,进行步骤153,进行二氧化硅薄膜30的蒸镀,该二氧化硅薄膜30膜厚为90nm,作为硬质膜和抗反射膜,该膜厚显示出良好的性能。Next, step 153 is performed to vapor-deposit the silicon dioxide
在步骤154的氮化处理中,使用等离子体发生装置60。因此,在蒸镀二氧化硅薄膜后,将氮气和氧气以7:3的比例导入室CH2中,在控:制气体压力为4.0×10-2Pa的同时,采用高频等离子体发生装置来产生等离子体。在频率为13.56MHz、功率为600W的等离子体产生的条件下,进行5分钟的等离子体处理。这样,在二氧化硅薄膜30的表面上形成含氮化物部分层39。In the nitriding treatment in step 154, the
然后,将移至室CH3中的支撑装置80从室中取出,翻转镜片凸面向下地固定在支撑装置80的拱形罩81上,再进行与上述同样的处理。(样品S3—1)Then, the
(实施例3—2)(Embodiment 3-2)
在实施例3—2中,在实施例3—1的氮化处理后,再次进行二氧化硅薄膜的蒸镀。这对于在经氮化的二氧化硅薄膜30上形成防污层是有效的,所述经氮化的二氧化硅薄膜30是防污层的基层(准备层)。氮化处理后形成的二氧化硅薄膜(基层)的膜厚只要最低(至少)为5nm,防污层就显示出良好的耐久性。In Example 3-2, after the nitriding treatment in Example 3-1, the silicon dioxide thin film was vapor-deposited again. This is effective for forming an antifouling layer on the nitrided
然后,将支撑装置80移至室CH3中,形成防污层4。使用Shin-EtsuChemical Co.,Ltd.制造的含氟有机硅化合物(商品名:KY-130,为上述通式(2)表示的化合物)来作为蒸镀源59b。用氟类溶剂(Sumitomo 3M,Ltd.制造,商品名:Novec HFE-7200)稀释该KY-130,制备固体成分浓度为3%的溶液,将1g该溶液浸渍到多孔质陶瓷颗粒(pellet)中并干燥该颗粒,以干燥后的颗粒为蒸镀源59b并固定在室CH3中。在成膜过程中,使用卤素灯作为加热器68,加热作为蒸镀源59b的颗粒到600℃,使含氟有机硅化合物蒸镀。蒸镀时间为3分钟。Then, the
然后,将室CH3中的支撑装置80从室中取出,翻转镜片凸面向下地固定在支撑装置80的拱形罩81上,再次进行与上述同样的处理。(样品S3—2)Then, the
(比较例3—1)(Comparative example 3-1)
在比较例3—1中,制造出未进行实施例3—1中的氮化处理的塑料镜片(样品SR3—1)。In Comparative Example 3-1, a plastic lens (sample SR3-1) not subjected to the nitriding treatment in Example 3-1 was manufactured.
(比较例3—2)(Comparative example 3-2)
在比较例3—2中,制造出未进行实施例3—2中的氮化处理的塑料镜片(样品SR3—2)。In Comparative Example 3-2, a plastic lens (sample SR3-2) not subjected to the nitriding treatment in Example 3-2 was manufactured.
(评价)(evaluate)
采用以下方法对实施例3—1、3—2以及比较例3—1、3—2制造的样品S3—1、S3—2、SR3—1和SR3—2的耐擦伤性进行了评价。其评价结果汇总示于表3中。The scratch resistance of samples S3-1, S3-2, SR3-1 and SR3-2 produced in Examples 3-1 and 3-2 and Comparative Examples 3-1 and 3-2 were evaluated by the following method. The evaluation results are summarized in Table 3.
为了评价耐擦伤性,缠在夹具上的钢丝棉(#0000)在负重2kg的状态下,在各样品S3—1、S3—2、SR3—1和SR3—2最外表面上往复50次。将由此产生的擦伤程度与标准样品比较,以A、B、C和D这四个级别评价耐擦伤性。其中,A表示最佳,B、C、D顺次表示劣化。In order to evaluate the scratch resistance, the steel wool (#0000) wrapped on the jig was reciprocated 50 times on the outermost surface of each sample S3-1, S3-2, SR3-1 and SR3-2 under a load of 2 kg. . The degree of scratch thus produced was compared with the standard sample, and the scratch resistance was evaluated in four grades of A, B, C and D. Among them, A represents the best, and B, C, and D represent the deterioration in sequence.
表3table 3
在实施例3—1和3—2的样品S3—1和S3—2中,二氧化硅薄膜经氮化处理,因此,对样品S3—1和S3—2的耐擦伤性试验的评价为良好(A)。另一方面,对未进行氮化处理的比较例3—1和比较例3—2的样品SR3—1和SR3—2的耐擦伤性试验的评价为不合格(D)。结果可知,通过氮化处理二氧化硅薄膜可改善耐擦伤性。In the samples S3-1 and S3-2 of Examples 3-1 and 3-2, the silicon dioxide film was nitrided, therefore, the evaluation of the scratch resistance test of the samples S3-1 and S3-2 was Good (A). On the other hand, the evaluation of the scratch resistance test of the samples SR3-1 and SR3-2 of Comparative Example 3-1 and Comparative Example 3-2 which were not subjected to nitriding treatment was unacceptable (D). As a result, it was found that the scratch resistance can be improved by nitriding the silicon dioxide thin film.
若综合评价,则实施例的样品S3—1和S3—2作为制品全部为◎(优良)。比较例的样品SR3—1和SR3—2全部为×(不合格)。When comprehensively evaluated, samples S3-1 and S3-2 of the examples were all ⊚ (excellent) as products. Samples SR3-1 and SR3-2 of the comparative example were all x (failure).
另外,上述第三实施方式(实施例)涉及在具有硬涂层的塑料眼镜镜片上形成有功能性薄膜的光学物品。对于具有玻璃基材的光学物品,也可以在基材上形成抗反射层而不在基材和抗反射层之间夹有硬涂层。本发明的第三实施方式涉及在最表层形成表面经氮化处理的二氧化硅薄膜的结构,但是,在该最表层上形成具有抗反射功能的2层以上的薄膜时,也可获得与本实施方式同样的效果。另外,对于该光学物品,并非限定于眼镜镜片,而是包括图像显示装置的光学元件、棱镜、光纤、信息记录介质用元件、滤光器等光学制品,对于这些光学物品也可以适用上述实施方式所公开的制造方法。In addition, the third embodiment (example) described above relates to an optical article in which a functional thin film is formed on a plastic spectacle lens having a hard coat layer. For optical articles having a glass substrate, it is also possible to form an antireflective layer on the substrate without a hard coat layer interposed between the substrate and the antireflective layer. The third embodiment of the present invention relates to a structure in which a silicon dioxide thin film whose surface has been nitrided is formed on the outermost layer. Embodiments have the same effect. In addition, the optical article is not limited to spectacle lenses, but includes optical elements such as optical elements of image display devices, prisms, optical fibers, elements for information recording media, and optical filters, and the above-described embodiments can also be applied to these optical articles. The disclosed manufacturing method.
Claims (7)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006024161 | 2006-02-01 | ||
JP2006024170 | 2006-02-01 | ||
JP2006024161 | 2006-02-01 | ||
JP2006024162 | 2006-02-01 | ||
JP2006275295 | 2006-10-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101013166A CN101013166A (en) | 2007-08-08 |
CN100492056C true CN100492056C (en) | 2009-05-27 |
Family
ID=38700797
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007100062050A Expired - Fee Related CN100492056C (en) | 2006-02-01 | 2007-01-30 | Optical article and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100492056C (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104020517A (en) * | 2014-05-21 | 2014-09-03 | 利达光电股份有限公司 | Superhard reflection-eliminating waterproof oil resistant film |
CN106680905A (en) * | 2015-11-05 | 2017-05-17 | 大金工业株式会社 | Article with surface treatment layer |
CN111218648A (en) * | 2019-10-30 | 2020-06-02 | 河南镀邦光电股份有限公司 | Ultrahigh-adhesion composite board color film and coating process thereof |
CN115449768B (en) * | 2022-09-30 | 2024-06-21 | 深圳市激埃特光电有限公司 | Coating system for optical lens processing |
-
2007
- 2007-01-30 CN CNB2007100062050A patent/CN100492056C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101013166A (en) | 2007-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5135753B2 (en) | Optical article | |
JP5588135B2 (en) | Method for manufacturing optical article | |
US9733397B2 (en) | Anti-reflection coat and optical device | |
CN102346266B (en) | Optical article and manufacturing method thereof | |
JP4462273B2 (en) | Optical article and manufacturing method thereof | |
JP5622468B2 (en) | Lens manufacturing method and lens | |
CN101726767A (en) | Optical article and method for manufacturing the same | |
JP2012128135A (en) | Optical article and method for manufacturing the same | |
CN109384399A (en) | The preparation method of glassware with optical coating and coating easy to clean | |
JP3387204B2 (en) | Polarizing plate, method for manufacturing polarizing plate, and liquid crystal display device | |
CN100492056C (en) | Optical article and manufacturing method thereof | |
JP5867794B2 (en) | Spectacle lens manufacturing method and optical article manufacturing method | |
JP2000121804A (en) | Antireflection film | |
JP2010231174A (en) | Optical article and manufacturing method thereof | |
JP2010140008A (en) | Optical article and method for manufacturing the same | |
JP2005256061A (en) | Laminate | |
JPH07104102A (en) | Water repellant reflection preventive film for glass-made optical parts and production thereof | |
JP2010072635A (en) | Optical article and method for manufacturing the same | |
JP2004255635A (en) | Transparent laminated film, antireflection film, polarizing plate using the same, and liquid crystal display device | |
JP2006276568A (en) | Optical member | |
JPH09113702A (en) | Optical product and its production | |
JPH0990102A (en) | Optical product with coating film and its production | |
JP2009093068A (en) | Method for producing scratch-resistant article | |
JPH0968601A (en) | Optical product having coating film and its production | |
JPH11183705A (en) | Optical member having reflection preventing film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1105024 Country of ref document: HK |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: GR Ref document number: 1105024 Country of ref document: HK |
|
ASS | Succession or assignment of patent right |
Owner name: HOYA OPTICAL MANUFACTURING PHILIPPINES CORP. Free format text: FORMER OWNER: SEIKO EPSON CORP. Effective date: 20130913 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20130913 Address after: Philippines province of Cavite Patentee after: SEIKO EPSON CORP. Address before: Tokyo, Japan Patentee before: Seiko Epson Corp. |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090527 Termination date: 20180130 |
|
CF01 | Termination of patent right due to non-payment of annual fee |