CN100364171C - Planar dual-frequency monopole antenna - Google Patents
Planar dual-frequency monopole antenna Download PDFInfo
- Publication number
- CN100364171C CN100364171C CNB031049052A CN03104905A CN100364171C CN 100364171 C CN100364171 C CN 100364171C CN B031049052 A CNB031049052 A CN B031049052A CN 03104905 A CN03104905 A CN 03104905A CN 100364171 C CN100364171 C CN 100364171C
- Authority
- CN
- China
- Prior art keywords
- microstrip line
- grounding metal
- longitudinal axis
- radiation body
- frequency radiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Details Of Aerials (AREA)
Abstract
Description
技术领域technical field
本发明属于天线,特别是一种平面式双频单极天线。The invention belongs to antennas, in particular to a planar double-frequency monopole antenna.
背景技术Background technique
传统使用用一般电视机上平行排列的天线称之谓勒谢尔(Lecher)线。如图1所示,这种天线在其上平行排列的辐射金属管14,如铜管极为靠近时,将感应出彼此呈逆向流动的电流,造成辐射出方向相反的电磁场,因相互抵消而不产生辐射。Traditionally, the antennas arranged in parallel on a general TV set are called Lecher (Lecher) lines. As shown in Figure 1, when the
因此,为了令天线在狭小空间中仍能有效地辐射电波,如图2所示,传统上系将勒谢尔(Lecher)线的前端分别朝相反方向弯折90°,以令其上电流朝同一方向流动,从而形成现今所谓的偶极(dipole)天线。偶极天线系利用平衡式(Balanced)架构的传输线作为馈入线24,平衡式架构传输线的两讯号线终端242分别向相反方向延伸相同长度,各讯号线终端242的长度约为共振波长(λ)的四分之一,故其总长度约为共振波长的二分之一。如此,偶极天线即可利用两段分别为四分之一波长的讯号线终端242作为辐射体,故此种天线又可称为半波长偶极天线,其一般均为单频设计。Therefore, in order to allow the antenna to effectively radiate radio waves in a small space, as shown in Figure 2, traditionally, the front ends of the Lecher wires are bent 90° in opposite directions so that the current on them is directed toward the flow in the same direction, thus forming what is now called a dipole (dipole) antenna. The dipole antenna uses a balanced transmission line as the
传统上为令此种天线更轻薄短小,已有业者将此种偶极天线制作于印刷电路板上,以制成微带式单极天线。Traditionally, in order to make this kind of antenna lighter, thinner and shorter, the industry has fabricated this kind of dipole antenna on a printed circuit board to make a microstrip monopole antenna.
如图3、图4所示,微带式单极天线包括介电质基板37、印制于介电质基板37一侧面以一端作为讯号馈入端341的微带线34及印制于介电质基板37另一侧面对应于微带线34位置的接地金属面38。微带线34的另一端系向对应于接地金属面38以外位置延伸出呈倒L状的辐射体342,形成所谓的单极天线(mono pole)。单极天线系利用接地金属面38所产生的映射原理(Imagetheory),映射此一非平衡(Unbalanced)式架构的微带线34及倒L状辐射体342,以形成等效于双极天线的辐射体架构,此种单极天线一般亦为单频设计。As shown in Figures 3 and 4, the microstrip monopole antenna includes a
近年来,由于移动通讯产品的市场需求大增,使得无线通讯的发展更为快速,在众多无线通讯标准中,最引人注目的为美国电子电机工程师协会(以下简称:IEEE)802.11无线区域网路(Wireless Local Area Network)协定,IEEE 802.11协定系制定于1997年间,该协定不仅提供了无线通讯上许多前所未有的功能,还提供了可令各种不同厂牌无线产品得以相互沟通的解决方案。该协定的制定无疑为无线通讯的发展开启了一个新里程碑。In recent years, due to the great increase in the market demand for mobile communication products, the development of wireless communication has become more rapid. Among the many wireless communication standards, the most eye-catching one is the Institute of Electrical and Electronics Engineers (hereinafter referred to as: IEEE) 802.11 WLAN Wireless Local Area Network protocol, IEEE 802.11 protocol was formulated in 1997. This protocol not only provides many unprecedented functions in wireless communication, but also provides solutions that enable wireless products of various brands to communicate with each other. The formulation of the agreement undoubtedly opened a new milestone for the development of wireless communication.
然而,在2000年8月间,IEEE为令802.11协定能成为美国电子电机工程师协会(IEEE)/美国国家标准协会(ANSI)及国际标准组织(ISO)/国际电子技术公会(IEC)间的联合标准,乃对其作了更进一步修订,其修订内容中增加了两项重要的内容,即IEEE802.11a协定及IEEE802.11b协定,根据该两项协定的规定,在扩展的标准实体层中,其工作频带必须分别设置在50亿赫兹(5GHz)及24亿赫兹(24GHz),故当无线通讯产品欲同时使用该两种无线通讯协定时,前述传统天线即无法满足此一需求,而必须根据频带上的要求,安装多个天线。然而,此举不仅增加了零件成本、安装程序,更需在无线通讯产品上腾出较多的空间以安装天线,致使无线通讯产品的体积始终无法轻易缩小以符合轻薄短小设计的趋势。However, in August 2000, IEEE made the 802.11 protocol a joint agreement between the Institute of Electrical and Electronics Engineers (IEEE)/American National Standards Institute (ANSI) and the International Organization for Standardization (ISO)/International Electrotechnical Council (IEC). The standard has been further revised, and two important contents have been added to the revised content, namely the IEEE802.11a agreement and the IEEE802.11b agreement. According to the provisions of the two agreements, in the extended standard entity layer, Its operating frequency bands must be set at 5 billion hertz (5GHz) and 2.4 billion hertz (24GHz) respectively. Therefore, when wireless communication products want to use the two wireless communication protocols at the same time, the aforementioned traditional antennas cannot meet this requirement, and must be based on According to the requirements of the frequency band, install multiple antennas. However, this not only increases the cost of components and installation procedures, but also requires more space on wireless communication products to install antennas, so that the size of wireless communication products cannot be easily reduced to meet the trend of thin, light and small designs.
发明内容Contents of the invention
本发明的目的是提供一种可接收不同频段讯号、长度短、体积小的平面式双频单极天线。The object of the present invention is to provide a planar dual-frequency monopole antenna capable of receiving signals of different frequency bands, short in length and small in size.
本发明包括一个介电质基板;一个微带线,印制于介电质基板一表面,以该微电线的一端作为讯号馈入端,该微电线的与该讯号馈入端相对的一端形成为微电线的另一端;一个接地金属面,印制于介电质基板与微带线所在表面相对的另一表面,且该接地金属面的位置与微带线的位置相对;一个低频辐射体,该低频辐射体由微带线的另一端在微带线所在表面向与接地金属面相对的位置以外的方向延伸,该延伸方向形成为微带线的纵向轴方向,并且该低频辐射体在延伸预定长度后向微带线的纵向轴的一侧方向延伸,且在向纵向轴一侧延伸预定长度后,在微带线所在表面向与接地金属面相对的位置方向继续延伸至邻近与接地金属面相对的位置;及一个高频辐射体,该高频辐射体在微带线所在表面由微带线的所述另一端向与接地金属面相对的位置以外的方向延伸,并在微带线延伸预定长度后向微带线的纵向轴的另一侧方向延设为一个平面,使得高频辐射及低频辐射体分别位于微带线纵向轴的两侧。The invention comprises a dielectric substrate; a microstrip line printed on a surface of the dielectric substrate, one end of the micro wire is used as a signal feed-in end, and the end of the micro wire opposite to the signal feed-in end forms a It is the other end of the micro-wire; a grounded metal surface is printed on the opposite surface of the dielectric substrate and the surface where the microstrip line is located, and the position of the grounded metal surface is opposite to the position of the microstrip line; a low-frequency radiator , the low-frequency radiator extends from the other end of the microstrip line to a direction other than the position opposite to the ground metal surface on the surface where the microstrip line is located, the extension direction is formed as the longitudinal axis direction of the microstrip line, and the low-frequency radiator is in the After extending for a predetermined length, it extends toward one side of the longitudinal axis of the microstrip line, and after extending a predetermined length toward one side of the longitudinal axis, it continues to extend toward the position opposite to the grounding metal surface on the surface where the microstrip line is located until it is adjacent to and grounding The position opposite to the metal surface; and a high-frequency radiator, the high-frequency radiator extends from the other end of the microstrip line to a direction other than the position opposite to the grounded metal surface on the surface where the microstrip line is located, and extends on the surface of the microstrip line After the line is extended for a predetermined length, it is extended to the other side of the longitudinal axis of the microstrip line to form a plane, so that the high-frequency radiation and the low-frequency radiator are respectively located on both sides of the longitudinal axis of the microstrip line.
其中:所述微带线的所述另一端至低、高频辐射体自由端的长度分别等于所欲设计的双频段中各频段波长的四分之一长度。Wherein: the lengths from the other end of the microstrip line to the free ends of the low and high frequency radiators are respectively equal to a quarter of the wavelength of each frequency band in the dual frequency bands to be designed.
由于本发明包括一个介电质基板;一个微带线,印制于介电质基板一表面,以微带线的一端作为讯号馈入端,该微电线的与该讯号馈入端相对的一端形成为微电线的另一端;一个接地金属面,印制于介电质基板与微带线所在表面相对的另一表面,且该接地金属面的位置与微带线的位置相对;一个低频辐射体,由微带线的所述另一端在微带线所在表面向与接地金属面相对的位置以外的方向延伸,该延伸方向形成为微带线的纵向轴方向,并在延伸预定长度后向微带线的纵向轴的一侧方向延伸,且在向纵向轴一侧延伸预定长度后,在微带线所在表面向与接地金属面相对位置的方向继续延伸至邻近与接地金属面相对的位置;及一个高频辐射体,该高频辐射体在微带线所在表面由微带线的所述另一端向与接地金属面相对的位置以外的方向延伸,并在微带线延伸预定长度后向微带线的纵向轴的另一侧方向延设为一个平面,使得高频辐射体及低频辐射体分别位于微带线纵向轴的两侧。本发明操作于IEEE802.11a协定及IEEE802.11b协定所规定两频段时,由接地金属面以外的微带线由纵向轴向一侧延低、高频辐射体,以分别用以接收美国电子电机工程师协会IEEE802.11a协定及IEEE802.11b协定所规定的双频带讯号,其量测结果显示,确可分别用以接收双频带讯号。不仅可接收不同频段讯号,而且长度短、体积小,从而达到本发明的目的。Since the present invention includes a dielectric substrate; a microstrip line is printed on a surface of the dielectric substrate, and one end of the microstrip line is used as a signal feed-in end, and the end of the micro-wire opposite to the signal feed-in end Formed as the other end of the micro-wire; a grounded metal surface, printed on the other surface of the dielectric substrate opposite to the surface where the microstrip line is located, and the position of the grounded metal surface is opposite to the position of the microstrip line; a low-frequency radiation The other end of the microstrip line extends in a direction other than the position opposite to the ground metal surface from the other end of the microstrip line, the extension direction is formed as the longitudinal axis direction of the microstrip line, and after extending a predetermined length The direction of one side of the longitudinal axis of the microstrip line extends, and after extending a predetermined length to one side of the longitudinal axis, the surface where the microstrip line is located continues to extend in the direction opposite to the grounded metal surface to a position adjacent to the position opposite to the grounded metal surface ; and a high-frequency radiator, which extends from the other end of the microstrip line to a direction other than the position opposite to the grounded metal surface on the surface where the microstrip line is located, and after the microstrip line extends a predetermined length The direction extending to the other side of the longitudinal axis of the microstrip line is defined as a plane, so that the high-frequency radiator and the low-frequency radiator are respectively located on both sides of the longitudinal axis of the microstrip line. When the present invention operates in the two frequency bands stipulated in the IEEE802.11a agreement and the IEEE802.11b agreement, the microstrip line other than the grounding metal surface is extended from one side of the longitudinal axis to the lower and high-frequency radiators to respectively receive American electronic motors The measurement results of dual-band signals stipulated in the IEEE802.11a protocol and IEEE802.11b protocol of the Institute of Engineers show that they can indeed be used to receive dual-band signals respectively. Not only can it receive signals of different frequency bands, but it is also short in length and small in size, thereby achieving the purpose of the present invention.
附图说明Description of drawings
图1、为传统勒谢尔线结构示意正视图。Figure 1 is a schematic front view of a traditional Lecher line structure.
图2、为传统偶极天线结构示意正视图。Fig. 2 is a schematic front view of a traditional dipole antenna structure.
图3、为传统微带式单极天线结构示意立体图。FIG. 3 is a schematic perspective view of the structure of a traditional microstrip monopole antenna.
图4、为传统微带式单极天线结构示意剖视图。Fig. 4 is a schematic cross-sectional view of the structure of a traditional microstrip monopole antenna.
图5、为本发明实施例一结构示意立体图。Fig. 5 is a schematic perspective view of the structure of
图6、为本发明实施例二结构示意立体图。Fig. 6 is a schematic perspective view of the second embodiment of the present invention.
图7、为本发明实施例一量测结果示意图。FIG. 7 is a schematic diagram of measurement results of
图8、为本发明实施例二量测结果示意图。FIG. 8 is a schematic diagram of measurement results of Example 2 of the present invention.
具体实施方式Detailed ways
实施例一Embodiment one
如图5所示,本发明包括介电质基板57、印制于介电质基板57一侧面以一端作为讯号馈入端541的微带线54及印制于介电质基板57另一侧面对应于微带线54的接地金属面58。As shown in Figure 5, the present invention includes a
微带线54的另一端向对应于接地金属面58以外位置方向延伸,并在延伸预定长度后,由其纵向轴向两侧分别延设低频辐射体542及为平面的高频辐射体543。The other end of the microstrip line 54 extends in a direction corresponding to a position other than the ground metal surface 58 , and after extending for a predetermined length, a low-frequency radiator 542 and a planar high-frequency radiator 543 are respectively extended from both sides of the longitudinal axis.
低频辐射体542在延伸预定长度后,向对应于接地金属面58方向继续延伸至对应于邻近接地金属面58的位置。After extending for a predetermined length, the low frequency radiator 542 continues to extend in a direction corresponding to the grounded metal plane 58 to a position corresponding to the adjacent grounded metal plane 58 .
为平面的高频辐射体543可增加高频共振频宽。The planar high-frequency radiator 543 can increase the high-frequency resonance bandwidth.
如此,低、高频辐射体542、543分别用以接收不同频段的讯号。In this way, the low and high frequency radiators 542 and 543 are respectively used to receive signals of different frequency bands.
实施例二Embodiment two
如图6所示,本发明包括介电质基板67、印制于介电质基板67一侧面以一端作为讯号馈入端641输入阻抗固定为50欧姆(Ω)的微带线64及印制于介电质基板67另一侧面对应于微带线64的接地金属面68。As shown in Figure 6, the present invention includes a
微带线64的另一端向对应于接地金属面68以外位置方向延伸,并在延伸预定长度后,由其纵向轴向同侧分别延设低频辐射体642及为平面的高频辐射体643。The other end of the
低频辐射体642在延伸预定长度后,向对应于接地金属面68方向继续延伸至对应于邻近接地金属面68的位置并保持一定间隔。After extending for a predetermined length, the
为平面的高频辐射体643可增加高频共振频宽,其与低频辐射体642保持一定间隔。The high-
如此,低、高频辐射体642、643分别用以接收不同频段的讯号。In this way, the low and
本发明实施例一(二)中,由于低、高频辐射体542、543(或642、643)系分别用以接收不同频段的讯号,故由对应于接地金属面58(或68)以外的微带线54(或64)延伸至低、高频辐射体542、543(或642、643)自由端的长度应分别与天线所欲设计的不同共振频率间具有一定的比例关系。In Embodiment 1 (2) of the present invention, since the low and high frequency radiators 542, 543 (or 642, 643) are used to receive signals of different frequency bands respectively, so by corresponding to the grounding metal surface 58 (or 68) other than The length of the microstrip line 54 (or 64) extending to the free ends of the low and high frequency radiators 542, 543 (or 642, 643) should have a certain proportional relationship with the different resonant frequencies to be designed for the antenna.
本发明由接地金属面58(或68)以外的微带线54(或64)延伸至低、高频辐射体542、543(或642、643)自由端的长度以约分别等于所欲设计的双频段中各频段波长的四分之一长度为最佳,以不同长度的低、高频辐射体分别用以接收美国电子电机工程师协会IEEE802.11a协定及IEEE802.11b协定所规定的双频带讯号。The present invention extends from the microstrip line 54 (or 64) other than the grounding metal plane 58 (or 68) to the length of the free ends of the low and high frequency radiators 542, 543 (or 642, 643) to be approximately equal to the two pairs of intended design respectively. A quarter of the wavelength of each frequency band in the frequency band is the best, and the low and high frequency radiators of different lengths are used to receive the dual-band signals stipulated in the IEEE802.11a agreement and the IEEE802.11b agreement.
如图5所示,实施例一中微带线54、低频辐射体542、高频辐射体543及接地金属面58印制至厚度约为0.8mm且介电系数约为4.3~4.7的平板状介电质基板57上,微带线54及低频辐射体542的宽度约为1mm;低频辐射体542的长度约为18mm。高频辐射体543的面积约为80mm2。As shown in Figure 5, in the first embodiment, the microstrip line 54, the low-frequency radiator 542, the high-frequency radiator 543, and the ground metal surface 58 are printed to a flat plate shape with a thickness of about 0.8mm and a dielectric coefficient of about 4.3-4.7. On the
如图7所示,本发明实施例一操作于IEEE802.11a协定及IEEE802.11b协定所规定24~25亿赫兹(2.4~2.5GHz)及51.5~58.5亿赫兹(5.15~5.85GHz)两频段时,实测其回返损失(Return Loss)的量测结果为:As shown in Figure 7,
△1:24亿赫兹(2.4GHz);-14.2750分贝(dB);△1: 2.4 billion hertz (2.4GHz); -14.2750 decibels (dB);
△2:25亿赫兹(2.5GHz);-15.601分贝(dB);△2: 2.5 billion hertz (2.5GHz); -15.601 decibels (dB);
△3:51.5亿赫兹(5.15GHz);-11.887分贝(dB);△3: 5.15 billion hertz (5.15GHz); -11.887 decibels (dB);
△4:53.5亿赫兹(5.35GHz);-20.362分贝(dB);△4: 5.35 billion hertz (5.35GHz); -20.362 decibels (dB);
△5:58.5亿赫兹(5.85GHz);-12.599分贝(dB);△5: 5.85 billion hertz (5.85GHz); -12.599 decibels (dB);
即都优于11分贝(dB)。因此,由该等量测结果显示,本发明平面式双频单极天线,确可分别用以接收双频带讯号。That is, both are better than 11 decibels (dB). Therefore, the measurement results show that the planar dual-band monopole antenna of the present invention can indeed be used to receive dual-band signals respectively.
如图6所示,实施例二中微带线64、低频辐射体642、高频辐射体64 3及接地金属面68印制至厚度约为0.8mm且介电系数约为4.3~4.7的平板状介电质基板67上,微带线64及低频辐射体642的宽度约为1mm;低频辐射体642的长度约为17mm;高频辐射体643的面积约为77mm2。As shown in Figure 6, the
如图8所示,本发明实施例二操作于IEEE802.11a协定及IEEE802.11b协定所规定2.32亿赫兹(0.232GHz)、24~25亿赫兹(2.4~2.5GHz)及51.5~58.5亿赫兹(5.15~5.85GHz)两频段时,实测其回返损失(Return Loss)的量测结果为:As shown in Figure 8, Embodiment 2 of the present invention operates at 232 million hertz (0.232 GHz), 2.4-2.5 billion hertz (2.4-2.5 GHz) and 5.15-5.85 billion hertz ( 5.15~5.85GHz) two frequency bands, the measured return loss (Return Loss) measurement results are:
△1:24亿赫兹(2.4GHz);-11.841分贝(dB);△1: 2.4 billion hertz (2.4GHz); -11.841 decibels (dB);
△2:25亿赫兹(2.5GHz);-16.220分贝(dB);△2: 2.5 billion hertz (2.5GHz); -16.220 decibels (dB);
△3:51.5亿赫兹(5.15GHz);-25.878分贝(dB);△3: 5.15 billion hertz (5.15GHz); -25.878 decibels (dB);
△4:58.5亿赫兹(5.85GHz);-17.554分贝(dB);△4: 5.85 billion hertz (5.85GHz); -17.554 decibels (dB);
△5:2.32亿赫兹(0.2 32GHz);-0.16870分贝(dB);△5: 232 million hertz (0.2 32GHz); -0.16870 decibels (dB);
即都优于11分贝(dB)。因此,由该等量测结果显示,本发明平面式双频单极天线,确可分别用以接收双频带讯号。That is, both are better than 11 decibels (dB). Therefore, the measurement results show that the planar dual-band monopole antenna of the present invention can indeed be used to receive dual-band signals respectively.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031049052A CN100364171C (en) | 2003-02-28 | 2003-02-28 | Planar dual-frequency monopole antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031049052A CN100364171C (en) | 2003-02-28 | 2003-02-28 | Planar dual-frequency monopole antenna |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1525595A CN1525595A (en) | 2004-09-01 |
CN100364171C true CN100364171C (en) | 2008-01-23 |
Family
ID=34282439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB031049052A Expired - Fee Related CN100364171C (en) | 2003-02-28 | 2003-02-28 | Planar dual-frequency monopole antenna |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100364171C (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101170221B (en) * | 2006-10-25 | 2011-11-09 | 鸿富锦精密工业(深圳)有限公司 | MIMO antenna |
CN101170218B (en) * | 2006-10-26 | 2012-05-09 | 连展科技电子(昆山)有限公司 | Coupling multi-frequency antenna |
CN108511898A (en) * | 2018-03-28 | 2018-09-07 | 中国计量大学 | A kind of integrated bluetooth broad-band antenna of micro-strip |
JP7041580B2 (en) * | 2018-04-24 | 2022-03-24 | 京セラ株式会社 | Antennas, module boards and modules |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5926139A (en) * | 1997-07-02 | 1999-07-20 | Lucent Technologies Inc. | Planar dual frequency band antenna |
-
2003
- 2003-02-28 CN CNB031049052A patent/CN100364171C/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5926139A (en) * | 1997-07-02 | 1999-07-20 | Lucent Technologies Inc. | Planar dual frequency band antenna |
Non-Patent Citations (1)
Title |
---|
Dual-band F-Shaped Monopole Antenna for2.4/5.2GHzWLAN Application. Shih-Huang Yeh,Kin-Lu Wong.IEEE Antennas and Propagation Society International Symposium,Vol.4 . 2002 * |
Also Published As
Publication number | Publication date |
---|---|
CN1525595A (en) | 2004-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6496148B2 (en) | Antenna with a conductive layer and a two-band transmitter including the antenna | |
US20040017315A1 (en) | Dual-band antenna apparatus | |
AU4892800A (en) | An antenna with stacked resonant structures and a multi- frequency radiocommunications system including it | |
US6801168B1 (en) | Planar double L-shaped antenna of dual frequency | |
US6822610B2 (en) | Planar monopole antenna of dual frequency | |
CN110676575A (en) | Miniaturized high-gain dual-frequency WIFI antenna | |
CN111541018B (en) | High-gain steep filtering fusion duplex integrated antenna | |
US6850192B2 (en) | Planar L-shaped antenna of dual frequency | |
CN104919655B (en) | Multi-input/output antenna and wireless device | |
US6853335B1 (en) | Miniature monopole antenna for dual-frequency printed circuit board | |
CN101378144A (en) | Radio apparatus and antenna thereof | |
CN1264250C (en) | Dual Band Monopole Antenna | |
TWI245454B (en) | Low sidelobes dual band and broadband flat endfire antenna | |
CN100364171C (en) | Planar dual-frequency monopole antenna | |
TWM599482U (en) | Multi-band antenna apparatus | |
CN100379083C (en) | Plane type double-L-shaped double-frequency antenna | |
CN103840255B (en) | Printing type broadband monopole antenna module | |
CN114094327B (en) | Antenna structure and terminal | |
CN100382390C (en) | dual frequency antenna | |
CN101388488A (en) | Planar dual-frequency antenna | |
US6480156B2 (en) | Inverted-F dipole antenna | |
TWI467853B (en) | Dual band antenna and wireless communication device using the same | |
TWI231067B (en) | Planar dual-band monopole antenna | |
CN100394644C (en) | Planar dual-band L-shaped antenna | |
TWI232613B (en) | Planar dual L-type double-frequency antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080123 Termination date: 20100228 |