CA2619021A1 - Integrated ngl recovery and lng liquefaction - Google Patents
Integrated ngl recovery and lng liquefaction Download PDFInfo
- Publication number
- CA2619021A1 CA2619021A1 CA002619021A CA2619021A CA2619021A1 CA 2619021 A1 CA2619021 A1 CA 2619021A1 CA 002619021 A CA002619021 A CA 002619021A CA 2619021 A CA2619021 A CA 2619021A CA 2619021 A1 CA2619021 A1 CA 2619021A1
- Authority
- CA
- Canada
- Prior art keywords
- absorber
- distillation column
- stream
- bottom product
- plant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0235—Heat exchange integration
- F25J1/0237—Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
- F25J1/0239—Purification or treatment step being integrated between two refrigeration cycles of a refrigeration cascade, i.e. first cycle providing feed gas cooling and second cycle providing overhead gas cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0035—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0244—Operation; Control and regulation; Instrumentation
- F25J1/0254—Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature
- F25J1/0255—Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature controlling the composition of the feed or liquefied gas, e.g. to achieve a particular heating value of natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0204—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
- F25J3/0209—Natural gas or substitute natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0233—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0238—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/04—Processes or apparatus using separation by rectification in a dual pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/74—Refluxing the column with at least a part of the partially condensed overhead gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/78—Refluxing the column with a liquid stream originating from an upstream or downstream fractionator column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/02—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
- F25J2205/04—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/08—Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/60—Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2260/00—Coupling of processes or apparatus to other units; Integrated schemes
- F25J2260/20—Integration in an installation for liquefying or solidifying a fluid stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2280/00—Control of the process or apparatus
- F25J2280/02—Control in general, load changes, different modes ("runs"), measurements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/10—Mathematical formulae, modeling, plot or curves; Design methods
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Contemplated plants include a refluxed absorber and a distillation column, wherein the absorber is operated at a higher pressure than the distillation column to thereby produce a cryogenic pressurized lean gas. The lean gas is further compressed to a pressure suitable for liquefaction using energy from feed gas vapor expansion. Desired separation of C2 products is ensured by temperature control of the absorber and distillation column using flow ratios of various streams within the plant, and by dividing the separation process into two portions at different pressures.
Claims (20)
1. A plant for natural gas liquids recovery in which the plant is coupled with an LNG
liquefaction plant, comprising an absorber configured to receive an absorber feed stream and a first and a second reflux stream, and further configured to provide a bottom product stream;
a distillation column configured to receive a first portion of the bottom product stream and a second portion of the bottom product stream at different points, and wherein the distillation column is further configured to operate a pressure that is lower than an operating pressure in the absorber; and a control unit that is configured to control a flow ratio of (a) the feed stream to the second reflux stream and (b) the first portion of the bottom product stream to the second portion of the bottom product stream, wherein the flow ratio is a function of desired ethane recovery in the distillation column bottom product stream.
liquefaction plant, comprising an absorber configured to receive an absorber feed stream and a first and a second reflux stream, and further configured to provide a bottom product stream;
a distillation column configured to receive a first portion of the bottom product stream and a second portion of the bottom product stream at different points, and wherein the distillation column is further configured to operate a pressure that is lower than an operating pressure in the absorber; and a control unit that is configured to control a flow ratio of (a) the feed stream to the second reflux stream and (b) the first portion of the bottom product stream to the second portion of the bottom product stream, wherein the flow ratio is a function of desired ethane recovery in the distillation column bottom product stream.
2. The plant of claim 1 further comprising at least one of a heat exchanger and a reflux condenser that are configured to heat the first portion of the bottom product stream, and still further comprising an expansion device configured to cool the second portion of the bottom product stream.
3. The plant of claim 1 wherein the distillation column is configured to produce a distillation column overhead, and wherein the plant further comprises a compressor that compresses the distillation column overhead to at least absorber pressure.
4. The plant of claim 3 further comprising a cooling device thermally coupled to the distillation column overhead and configured to cool the compressed distillation column overhead.
5. The plant of claim 4 wherein the cooled compressed distillation column overhead is the first reflux.
6. The plant of claim 1 wherein the absorber is configured to produce an absorber overhead product that has a temperature of equal or lower than -90 °F
and a pressure of between 500 psig and 700 psig.
and a pressure of between 500 psig and 700 psig.
7. The plant of claim 6 further comprising a compressor that is configured to receive the absorber overhead product and to compress the absorber overhead product to a pressure of at least 800 psig.
8. The plant of claim 7 wherein the compressor is operationally coupled to an expander that expands the absorber feed stream.
9. A method of processing a gas for delivery to an LNG liquefaction plant, comprising:
providing an absorber that receives an absorber feed stream and a first and a second reflux stream, and that produces a bottom product stream;
fluidly coupling the absorber to a distillation column such that a first portion of the bottom product stream and a second portion of the bottom product stream are fed to the distillation column at different points;
operating the distillation column at a pressure that is lower than an operating pressure of the absorber; and controlling a flow ratio of (a) the feed stream to the second reflux stream and (b) the first portion of the bottom product stream to the second portion of the bottom product stream as a function of desired ethane recovery in the distillation column bottom product stream.
providing an absorber that receives an absorber feed stream and a first and a second reflux stream, and that produces a bottom product stream;
fluidly coupling the absorber to a distillation column such that a first portion of the bottom product stream and a second portion of the bottom product stream are fed to the distillation column at different points;
operating the distillation column at a pressure that is lower than an operating pressure of the absorber; and controlling a flow ratio of (a) the feed stream to the second reflux stream and (b) the first portion of the bottom product stream to the second portion of the bottom product stream as a function of desired ethane recovery in the distillation column bottom product stream.
10. The method of claim 9 further comprising a step of feeding a distillation column overhead product to the absorber.
11. The method of claim 10 wlierein the distillation column overhead product is compressed, cooled, and fed to the absorber as the first reflux stream.
12. The method of claim 9 wherein the distillation column is operated at a pressure between 300 psig and 500 psig, and wherein the absorber is operated at a pressure of between 500 psig and 800 psig.
13. The method of claim 9 further comprising a step of separating a cooled feed gas into a liquid portion and a vapor portion, and feeding the liquid portion after at least partial depressurization and warming into the distillation column.
14. The method of claim 13 wherein the vapor portion is split into a first and second stream to thereby form the second reflux stream and the absorber feed stream.
15. The method of claim 9 wherein the absorber produces a cryogenic absorber overhead stream, and further comprising a step of compressing the cryogenic absorber overhead stream to a pressure suitable for liquefaction.
16. The method of claim 15 wherein the step of compressing is driven by expansion of the absorber feed stream.
17. A method of variably recovering C2 from a feed gas to a LNG liquefaction plant comprising:
feeding an expanded and heated liquid portion of a feed gas to a distillation column and feeding a vapor portion of the feed gas to an absorber;
adjusting a flow ratio of an absorber feed to a second reflux to the absorber, and using a first reflux that is provided by a distillation column overhead, product to thereby control an absorber overhead temperature;
adjusting a temperature of an absorber bottom product that is fed to the distillation column to thereby control a distillation column overhead temperature; and operating the absorber at a higher pressure than the distillation column.
feeding an expanded and heated liquid portion of a feed gas to a distillation column and feeding a vapor portion of the feed gas to an absorber;
adjusting a flow ratio of an absorber feed to a second reflux to the absorber, and using a first reflux that is provided by a distillation column overhead, product to thereby control an absorber overhead temperature;
adjusting a temperature of an absorber bottom product that is fed to the distillation column to thereby control a distillation column overhead temperature; and operating the absorber at a higher pressure than the distillation column.
18. The method of claim 17 wherein the step of adjusting the absorber bottom product temperature is performed by heating at least one portion of the absorber bottom product in a heat exchanger.
19. The method of claim 17 wherein the step of adjusting the absorber bottom product temperature is performed by cooling at least another portion of the absorber bottom product using a JT valve.
20. The method of claim 17 wherein the step of adjusting the flow ratio of the absorber feed to the second reflux to the absorber is a function of desired C2 recovery.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US67351805P | 2005-04-20 | 2005-04-20 | |
US60/673,518 | 2005-04-20 | ||
PCT/US2006/009103 WO2006115597A2 (en) | 2005-04-20 | 2006-03-14 | Integrated ngl recovery and lng liquefaction |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2619021A1 true CA2619021A1 (en) | 2007-11-02 |
CA2619021C CA2619021C (en) | 2010-11-23 |
Family
ID=37215177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2619021A Expired - Fee Related CA2619021C (en) | 2005-04-20 | 2006-03-14 | Integrated ngl recovery and lng liquefaction |
Country Status (5)
Country | Link |
---|---|
US (1) | US20080271480A1 (en) |
AU (1) | AU2006240459B2 (en) |
CA (1) | CA2619021C (en) |
EA (1) | EA013357B1 (en) |
WO (1) | WO2006115597A2 (en) |
Families Citing this family (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070157663A1 (en) * | 2005-07-07 | 2007-07-12 | Fluor Technologies Corporation | Configurations and methods of integrated NGL recovery and LNG liquefaction |
US20070012072A1 (en) * | 2005-07-12 | 2007-01-18 | Wesley Qualls | Lng facility with integrated ngl extraction technology for enhanced ngl recovery and product flexibility |
US20100000254A1 (en) * | 2007-03-13 | 2010-01-07 | Masataka Hiraide | Method of producing gas hydrate |
MX336113B (en) * | 2007-08-14 | 2016-01-08 | Fluor Tech Corp | Configurations and methods for improved natural gas liquids recovery. |
RU2488759C2 (en) * | 2008-02-20 | 2013-07-27 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Method and device for cooling and separation of hydrocarbon flow |
US9151537B2 (en) | 2008-12-19 | 2015-10-06 | Kanfa Aragon As | Method and system for producing liquefied natural gas (LNG) |
US9074814B2 (en) * | 2010-03-31 | 2015-07-07 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US9052136B2 (en) * | 2010-03-31 | 2015-06-09 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
EA022672B1 (en) * | 2009-02-17 | 2016-02-29 | Ортлофф Инджинирс, Лтд. | Hydrocarbon gas processing |
US9933207B2 (en) * | 2009-02-17 | 2018-04-03 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US9939195B2 (en) * | 2009-02-17 | 2018-04-10 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing including a single equipment item processing assembly |
US9052137B2 (en) | 2009-02-17 | 2015-06-09 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US9080811B2 (en) * | 2009-02-17 | 2015-07-14 | Ortloff Engineers, Ltd | Hydrocarbon gas processing |
US8881549B2 (en) * | 2009-02-17 | 2014-11-11 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US20100287982A1 (en) | 2009-05-15 | 2010-11-18 | Ortloff Engineers, Ltd. | Liquefied Natural Gas and Hydrocarbon Gas Processing |
CA2764636C (en) * | 2009-06-11 | 2018-12-04 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing including a single equipment item processing assembly |
AR076506A1 (en) * | 2009-06-11 | 2011-06-15 | Sme Products Lp | HYDROCARBON GAS PROCESSING |
US9021832B2 (en) | 2010-01-14 | 2015-05-05 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US9057558B2 (en) * | 2010-03-31 | 2015-06-16 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing including a single equipment item processing assembly |
US9068774B2 (en) * | 2010-03-31 | 2015-06-30 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
CN102933273B (en) | 2010-06-03 | 2015-05-13 | 奥特洛夫工程有限公司 | Hydrocarbon gas processing |
US10451344B2 (en) | 2010-12-23 | 2019-10-22 | Fluor Technologies Corporation | Ethane recovery and ethane rejection methods and configurations |
US20140026615A1 (en) * | 2012-07-26 | 2014-01-30 | Fluor Technologies Corporation | Configurations and methods for deep feed gas hydrocarbon dewpointing |
US20140075987A1 (en) | 2012-09-20 | 2014-03-20 | Fluor Technologies Corporation | Configurations and methods for ngl recovery for high nitrogen content feed gases |
US9803917B2 (en) | 2012-12-28 | 2017-10-31 | Linde Engineering North America, Inc. | Integrated process for NGL (natural gas liquids recovery) and LNG (liquefaction of natural gas) |
MX2016003093A (en) | 2013-09-11 | 2016-05-26 | Ortloff Engineers Ltd | Hydrocarbon gas processing. |
JP6591983B2 (en) | 2013-09-11 | 2019-10-16 | オートロフ・エンジニアーズ・リミテッド | Hydrocarbon gas treatment |
US9790147B2 (en) | 2013-09-11 | 2017-10-17 | Ortloff Engineers, Ltd. | Hydrocarbon processing |
CA2935851C (en) | 2014-01-02 | 2022-05-03 | Fluor Technologies Corporation | Systems and methods for flexible propane recovery |
US9939194B2 (en) * | 2014-10-21 | 2018-04-10 | Kellogg Brown & Root Llc | Isolated power networks within an all-electric LNG plant and methods for operating same |
FR3042983B1 (en) * | 2015-11-03 | 2017-10-27 | Air Liquide | REFLUX OF DEMETHANIZATION COLUMNS |
US10006701B2 (en) * | 2016-01-05 | 2018-06-26 | Fluor Technologies Corporation | Ethane recovery or ethane rejection operation |
US10330382B2 (en) | 2016-05-18 | 2019-06-25 | Fluor Technologies Corporation | Systems and methods for LNG production with propane and ethane recovery |
US10533794B2 (en) | 2016-08-26 | 2020-01-14 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US10551119B2 (en) | 2016-08-26 | 2020-02-04 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US10551118B2 (en) | 2016-08-26 | 2020-02-04 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US11402155B2 (en) * | 2016-09-06 | 2022-08-02 | Lummus Technology Inc. | Pretreatment of natural gas prior to liquefaction |
US11725879B2 (en) | 2016-09-09 | 2023-08-15 | Fluor Technologies Corporation | Methods and configuration for retrofitting NGL plant for high ethane recovery |
FR3056223B1 (en) * | 2016-09-20 | 2020-05-01 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | PROCESS FOR THE PURIFICATION OF NATURAL LIQUEFIED GAS |
RU2640976C1 (en) | 2017-05-05 | 2018-01-12 | Компания "Сахалин Энерджи Инвестмент Компани Лтд." | Method for controlling liquefaction of natural gas |
US11543180B2 (en) | 2017-06-01 | 2023-01-03 | Uop Llc | Hydrocarbon gas processing |
US11428465B2 (en) | 2017-06-01 | 2022-08-30 | Uop Llc | Hydrocarbon gas processing |
AU2018328192B2 (en) * | 2017-09-06 | 2023-08-24 | Linde Engineering North America, Inc. | Methods for providing refrigeration in natural gas liquids recovery plants |
US11112175B2 (en) | 2017-10-20 | 2021-09-07 | Fluor Technologies Corporation | Phase implementation of natural gas liquid recovery plants |
RU2685101C1 (en) * | 2018-09-03 | 2019-04-16 | Андрей Владиславович Курочкин | Apparatus for low-temperature separation with dephlegmation of ltsd for extraction of hydrocarbons c2+ from natural gas (versions) |
US12098882B2 (en) | 2018-12-13 | 2024-09-24 | Fluor Technologies Corporation | Heavy hydrocarbon and BTEX removal from pipeline gas to LNG liquefaction |
US12215922B2 (en) | 2019-05-23 | 2025-02-04 | Fluor Technologies Corporation | Integrated heavy hydrocarbon and BTEX removal in LNG liquefaction for lean gases |
RU2726329C1 (en) * | 2019-01-09 | 2020-07-13 | Андрей Владиславович Курочкин | Low-temperature dephlegmation technology with rectification installation of natural gas deethanization channels (versions) |
RU2726328C1 (en) * | 2019-01-09 | 2020-07-13 | Андрей Владиславович Курочкин | Deethanization unit for natural gas using ltdf (versions) |
RU2725989C1 (en) * | 2019-02-01 | 2020-07-08 | Андрей Владиславович Курочкин | Apparatus for low-temperature dephlegmation with rectification of integrated production of non-waste field gas treatment (versions) |
US11561043B2 (en) * | 2019-05-23 | 2023-01-24 | Bcck Holding Company | System and method for small scale LNG production |
EP3980483A4 (en) * | 2019-06-05 | 2023-06-21 | ConocoPhillips Company | Two-stage heavies removal in lng processing |
US10894929B1 (en) | 2019-10-02 | 2021-01-19 | Saudi Arabian Oil Company | Natural gas liquids recovery process |
RU2758754C1 (en) * | 2021-03-10 | 2021-11-01 | Андрей Владиславович Курочкин | Method for reconstruction of low-temperature gas separation unit to increase in yield of gas condensate (options) |
TW202309456A (en) | 2021-05-14 | 2023-03-01 | 美商圖表能源與化學有限公司 | Side draw reflux heavy hydrocarbon removal system and method |
AU2023334591A1 (en) * | 2022-09-02 | 2025-03-20 | Honeywell Lng Llc | Liquefaction of natural gas feeds containing hydrogen |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3224947A (en) * | 1961-06-19 | 1965-12-21 | Phillips Petroleum Co | Apparatus for controlling vapor-liquid flow ratios within a fractionation column |
US4157904A (en) * | 1976-08-09 | 1979-06-12 | The Ortloff Corporation | Hydrocarbon gas processing |
US4251249A (en) * | 1977-01-19 | 1981-02-17 | The Randall Corporation | Low temperature process for separating propane and heavier hydrocarbons from a natural gas stream |
FR2571129B1 (en) * | 1984-09-28 | 1988-01-29 | Technip Cie | PROCESS AND PLANT FOR CRYOGENIC FRACTIONATION OF GASEOUS LOADS |
US4617039A (en) * | 1984-11-19 | 1986-10-14 | Pro-Quip Corporation | Separating hydrocarbon gases |
US4596588A (en) * | 1985-04-12 | 1986-06-24 | Gulsby Engineering Inc. | Selected methods of reflux-hydrocarbon gas separation process |
US4960702A (en) * | 1985-09-06 | 1990-10-02 | Codon | Methods for recovery of tissue plasminogen activator |
US5275005A (en) * | 1992-12-01 | 1994-01-04 | Elcor Corporation | Gas processing |
US5685170A (en) * | 1995-11-03 | 1997-11-11 | Mcdermott Engineers & Constructors (Canada) Ltd. | Propane recovery process |
US5799507A (en) * | 1996-10-25 | 1998-09-01 | Elcor Corporation | Hydrocarbon gas processing |
US5890378A (en) * | 1997-04-21 | 1999-04-06 | Elcor Corporation | Hydrocarbon gas processing |
US5992175A (en) * | 1997-12-08 | 1999-11-30 | Ipsi Llc | Enhanced NGL recovery processes |
US6116050A (en) * | 1998-12-04 | 2000-09-12 | Ipsi Llc | Propane recovery methods |
US6401486B1 (en) * | 2000-05-18 | 2002-06-11 | Rong-Jwyn Lee | Enhanced NGL recovery utilizing refrigeration and reflux from LNG plants |
AU2001271587B2 (en) * | 2000-08-11 | 2004-09-02 | Fluor Technologies Corporation | High propane recovery process and configurations |
US6526777B1 (en) * | 2001-04-20 | 2003-03-04 | Elcor Corporation | LNG production in cryogenic natural gas processing plants |
US6742358B2 (en) * | 2001-06-08 | 2004-06-01 | Elkcorp | Natural gas liquefaction |
EP1412682A1 (en) * | 2001-06-29 | 2004-04-28 | ExxonMobil Upstream Research Company | Process for recovering ethane and heavier hydrocarbons from a methane-rich pressurized liquid mixture |
WO2003095913A1 (en) * | 2002-05-08 | 2003-11-20 | Fluor Corporation | Configuration and process for ngl recovery using a subcooled absorption reflux process |
US7051553B2 (en) * | 2002-05-20 | 2006-05-30 | Floor Technologies Corporation | Twin reflux process and configurations for improved natural gas liquids recovery |
US7069744B2 (en) * | 2002-12-19 | 2006-07-04 | Abb Lummus Global Inc. | Lean reflux-high hydrocarbon recovery process |
US6662589B1 (en) * | 2003-04-16 | 2003-12-16 | Air Products And Chemicals, Inc. | Integrated high pressure NGL recovery in the production of liquefied natural gas |
US7204100B2 (en) * | 2004-05-04 | 2007-04-17 | Ortloff Engineers, Ltd. | Natural gas liquefaction |
MX336113B (en) * | 2007-08-14 | 2016-01-08 | Fluor Tech Corp | Configurations and methods for improved natural gas liquids recovery. |
-
2006
- 2006-03-14 WO PCT/US2006/009103 patent/WO2006115597A2/en active Application Filing
- 2006-03-14 EA EA200800893A patent/EA013357B1/en not_active IP Right Cessation
- 2006-03-14 CA CA2619021A patent/CA2619021C/en not_active Expired - Fee Related
- 2006-03-14 US US10/574,671 patent/US20080271480A1/en not_active Abandoned
- 2006-03-14 AU AU2006240459A patent/AU2006240459B2/en not_active Ceased
Also Published As
Publication number | Publication date |
---|---|
WO2006115597A2 (en) | 2006-11-02 |
AU2006240459B2 (en) | 2010-07-22 |
EA013357B1 (en) | 2010-04-30 |
CA2619021C (en) | 2010-11-23 |
WO2006115597B1 (en) | 2008-05-15 |
EA200800893A1 (en) | 2009-02-27 |
AU2006240459A1 (en) | 2006-11-02 |
US20080271480A1 (en) | 2008-11-06 |
WO2006115597A3 (en) | 2008-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2619021A1 (en) | Integrated ngl recovery and lng liquefaction | |
CA2614404A1 (en) | Configurations and methods of integrated ngl recovery and lng liquefaction | |
CA2616450C (en) | Ngl recovery methods and configurations | |
JP5710137B2 (en) | Nitrogen removal by isobaric open frozen natural gas liquid recovery | |
AU2007229546B2 (en) | Method and apparatus for liquefying a hydrocarbon stream | |
US8635885B2 (en) | Configurations and methods of heating value control in LNG liquefaction plant | |
CA2614414A1 (en) | Ngl recovery methods and configurations | |
CA2682684A1 (en) | Configurations and methods for offshore lng regasification and heating value conditioning | |
WO2008116727A3 (en) | Process and apparatus for the separation of air by cryogenic distillation | |
CN111527361B (en) | Method and equipment for producing air product based on cryogenic rectification | |
CA2440142A1 (en) | Cryogenic process utilizing high pressure absorber column | |
KR940000841A (en) | Liquefaction method | |
AU2016407529A1 (en) | Systems and methods for LNG production with propane and ethane recovery | |
AU2004220136A1 (en) | Residue recycle-high ethane recovery process | |
US6986266B2 (en) | Process and apparatus for LNG enriching in methane | |
US20110197630A1 (en) | Process and Apparatus for the Separation of Air by Cryogenic Distillation | |
CN105452790B (en) | Method and apparatus for producing gaseous compressed nitrogen | |
CN106595221A (en) | Oxygen production system and oxygen production method | |
CN102901322A (en) | Method and device for extracting pressurised oxygen and pressurised nitrogen by cryogenic decomposition of air | |
US9296966B2 (en) | Propane recovery methods and configurations | |
CN105008836B (en) | Use the separation air method and system of supplement kind of refrigeration cycle | |
EP1726900A1 (en) | Process and apparatus for the separation of air by cryogenic distillation | |
RU2015126528A (en) | METHOD AND DEVICE FOR PRODUCING COMPRESSED GAS PRODUCT BY MEANS OF LOW-TEMPERATURE AIR SEPARATION | |
RU2012108588A (en) | METHOD AND DEVICE FOR PRODUCING GAS-COMPRESSED OXYGEN PRODUCT BY LOW-TEMPERATURE AIR SEPARATION | |
RU2460952C2 (en) | Method of air separation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKLA | Lapsed |
Effective date: 20210315 |