
(12) United States Patent

USO09553823B2

(10) Patent No.: US 9,553,823 B2
Southern et al. (45) Date of Patent: Jan. 24, 2017

(54) PROCESS MIGRATION METHOD, 2008/0256327 A1 10, 2008 Jacobs et al.
COMPUTER SYSTEMAND INTERMEDIATE 2009.0089787 A1 4, 2009 Giles et al.
COMPUTING RESOURCES 2009,0182970 A1* 7, 2009 Battista GO6F 9/5077

711/173
- 0 2012/0011519 A1 1/2012 Ganesh

(71) Applicant: FUJITSU LIMITED, Kawasaki-shi, 2012/0084747 A1 4/2012 Chakradhar et al.
Kanagawa (JP) 2012/0137293 A1 5, 2012 BOZek et al.

2012/0265884 A1 10/2012 Zhang et al.
(72) Inventors: James Alastair Southern, Reading

(GB); Nicholas Wilson, West Drayton FOREIGN PATENT DOCUMENTS
(GB); Serban Georgescu, London
(GB); Peter Chow, Gillingham (GB) CN 102170474 8, 2011

WO WO 2012/142069 A2 10, 2012
(73) Assignee: FUJITSU LIMITED, Kawasaki (JP)

- OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 Extended European Search Report mailed Nov. 21, 2013 in corre
U.S.C. 154(b) by 277 days. sponding European Patent Application No. 13170481.9.

(21) Appl. No.: 14/266,301 * cited by examiner

(22) Filed: Apr. 30, 2014
O O Primary Examiner — Kim T Nguyen 65 P Publication Dat (65) O DO (74) Attorney, Agent, or Firm — Staas & Halsey LLP

US 2014/035913O A1 Dec. 4, 2014

(30) Foreign Application Priority Data (57) ABSTRACT

Jun. 4, 2013 (EP) 13170481 A process migration method comprising

(51) Int. Cl.
H04L 2/9II (2013.01)
G06F 9/48 (2006.01)
G06F 9/50 (2006.01)

(52) U.S. Cl.
CPC H04L 47/70 (2013.01); G06F 9/4856

(2013.01); G06F 9/5077 (2013.01)
(58) Field of Classification Search

CPC H04L 47/70; G06F 9/4856; G06F 9/5077
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2003/O187915 A1
2004/0267782 A1

10/2003 Sun et al.
12/2004 Nakano et al.

Curretssources
Computation sing
(UTentressurces

S200

Intermeciate BSOUSS

executing a computer program on current computing
resources, in a current partition of computations to
parallel processes, each parallel process carrying out at
least one computation;

communicating current partition data to intermediate
computing resources;

using the intermediate computing resources to calculate
new partition data including a new allocation of com
putations to processes for use on changed computing
resources; and

migrating the process execution to the changed computing
resources by communicating the new partition data to
the changed computing resources.

15 Claims, 9 Drawing Sheets

Changed resources

Reggasthanged
roSQUrcos S210

Systemicarties appropriats internetiats
and changed resources S220

--
3tf::iteriidae

38ourcestos available
8. I

2 s namediate resi s
ali(gaid .

Moti, Waitar charged
S260- resouses to be eceive data 3. 3yailable Seni gy. froin get great resorces computation E. "'E. S310

o:ntinues using
Cier880UC88

Cactate re; stic:
S230 and set up changed

resources S290

Kot S330 alocates S320
...

state data s350

Coiputationising
changed resources

S36)

U.S. Patent Jan. 24, 2017 Sheet 1 of 9 US 9,553,823 B2

System. A

Seamless oil-the-fly nigration and Sychronization
of simulatioi from System. A to System 8

Silation

G.

if

Aicatio:
of new
SOCES

parate

New
ReSQCes

3.

XeCut

US 9,553,823 B2

i
partition
data

Sheet 2 of 9

ReSQices
2

interediate

C

data

8

partition

alculating

Jan. 24, 2017

Cie't
Resofces

U.S. Patent

FG.

U.S. Patent Jan. 24, 2017 Sheet 3 of 9 US 9,553,823 B2

Reiated State-of-the-art

Oid eSQuices New Souces
r0,re

Computatio; it Elapsed
Region A tire c

Time

S20 Request new
i8SO C3S

S3O Wait for few
i&SOC8S

S4 New eSotices
Computation allocated
CGiues ii. crocrocrocrocorrorcorrocarcrocorrrrrrrrrrrrrrrrrrrrrrr.W i

Region A
Receive data

SA) Corinunicated from
Region A

SO

SSOs Calculate new
partition and set up

Region 8

S70Y Receive and set up i.
State data

s

S80- Computation in
Region B

U.S. Patent Jan. 24, 2017 Sheet 4 of 9 US 9,553,823 B2

Entdiet

interRediate Syster New FeSO Ces

Coinputation in Elapsed
Region A the

SCO
N

Request new
.8S C&S

iai of 8w
ESO CES

New resources
aio Cated

s intermediate resources
at Catec

Computation
Crities it
Region A Receive data

Communicated from
Region A

s130 s S3

Calculate new
partition and set up

Region B

s X in

Receive and set up
Siate data

E

TA. Computation in
REDUCED Region B

FG. 3 (continued)

U.S. Patent Jan. 24, 2017 Sheet 5 Of 9 US 9,553,823 B2

Process
-

6.

(the <&Xcrocorrrrrrrrrrrrrrr.s

piocesses as s
ite Connect

CeSS f
-
6,

G. 4.

U.S. Patent Jan. 24, 2017 Sheet 6 of 9 US 9,553,823 B2

FG. 5

CUitensive section iO intensive Section

09

Applicatio execution

F.G. S

US 9,553,823 B2 Sheet 8 of 9 Jan. 24, 2017 U.S. Patent

U.S. Patent Jan. 24, 2017 Sheet 9 Of 9 US 9,553,823 B2

Current feSQuices interediate eSOfCeS Changed resources

Computation using
Current resources

S200

Request changed System identifies appropriate intermediate
resources S210 and changed resources S22

Sai
Wait for intermediate

resources to be awaiiable

-S256
W intermediate resources
ulti-abad
Notif Wait for changed

S28WWWWYY WWWWWV WWWWVY WWWWWWVVVV ... FeSO Ces to be
Receive data awaiiaie

Send
Current patition

Corintificated fro
Curfeit FeSotices

S8 Computatio: S3
Continues using
Current Fesources feeeeeeeeeeeeeM.

Calculate new partition
and set up changed

resources S290
Sechen iono
partition
S3).

S23;

Chaiged resources
ac{ated S320

Receive and set up
state data S350

Computation using
changed resources

S38
FG 9

US 9,553,823 B2
1.

PROCESS MIGRATION METHOD,
COMPUTER SYSTEMAND INTERMEDIATE

COMPUTING RESOURCES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of European Applica
tion No. 013170481.9, filed Jun. 4, 2013, the disclosure of
which is incorporated herein by reference.

BACKGROUND

1. Field
The present invention relates to migration of computing

processes, in particular to when the processes are running in
parallel on a distributed computing system with distributed
memory. It also relates to the choice of computing resources
(memory and processing capability) used during migration
and/or after migration.

2. Description of the Related Art
The invention has practical applications in particular in

the area of computer programs which use distributed
memory and exchange information dynamically. Many of
these programs use distributed processing and memory. Such
as an interconnected group of CPUs, each with their own
memory. The group may be divided to correspond to indi
vidual elements, for which some form of computation is
required.
One example of such a distributed parallel application is

a computer program monitoring a sensor network, or a
communications network. Each sensor in a sensor network
can be viewed as an individual element requiring computa
tion, for instance to process sensed values and/or to deter
mine characteristics such as overall processing load. The
computations can be carried out by a computing program
which monitors the sensor network, and can also control the
sensor network.

In a communications network, each entity (such as a
mobile terminal or user equipment (UE), base station or
relay station) can also be viewed as an element requiring
computation, for example to determine an overall load. The
computations can be carried out by a computing program
which monitors and/or controls the communications net
work.
A further example is in monitoring Stock trading, for

instance to analyse the data for illegal trading practices.
Computation may be required to track the transactions of
each trader.
A yet further example is simulation. In many simulations,

an iterative computation or iterative sets of computations are
carried out, each computation corresponding to a single
element in the simulation. Simulation elements may be
linked in that a computation for one element of the simu
lation may require values from other elements of the simu
lation, so that data transfer between processes carrying out
the simulation is considerable. Computer programs carrying
out Such simulations require the workload associated with
the computations to be allocated to Suitable computing
resource, for example within a distributed System.

In these computer programs and other computer programs
with linked computations, there may be a requirement to
migrate processes (while they are executing). For example,
it may be necessary to move the entire execution to a new
computer system or new part of the current computer system
to allow for changes in resource utilization by the computer
program itself or by other computer programs.

10

15

25

30

35

40

45

50

55

60

65

2
As mentioned previously, there are many computer pro

grams with individual elements requiring individual com
putation, some also having potential effect on other elements
of the simulation. Two examples requiring a high level of
communication between elements are use of finite element
and finite Volume methods to simulate material characteris
tics, including those of both fluids and solids.

Taking computational fluid dynamics (CFD) as an
example, this technique uses numerical methods and algo
rithms to solve and analyze problems that involve fluid
flows. There are many approaches to CFD modeling and
other three-dimensional algorithmic modeling, but the same
basic three-stage procedure is almost always followed.

During pre-processing, the geometry (physical bounds) of
the problem is defined; and the volume occupied by the fluid
or other material is divided into discrete cells or nodes (the
mesh). The mesh may be uniform or non uniform and its
division into cells or nodes may be adaptive, to change the
mesh size as appropriate during simulation. The physical
modeling is defined using appropriate equations and bound
ary conditions are defined. In CFD this involves specifying
the fluid behavior and properties at the boundaries of the
problem. For transient problems, the initial conditions are
also defined.

In processing the simulation is started and the equations
are solved iteratively on a per cell/per node basis, as a
steady-state or transient.

Finally a postprocessor is used for the analysis and
visualization of the resulting Solution.
The data for each mesh node or discrete cell can be

viewed as a single element in the simulation.
Another example of a computer simulation is agent mod

eling (also referred to as agent-based modeling) in which
individuals can be viewed as elements of a simulation.
An agent-based model (ABM) (also sometimes related to

the term multi-agent system or multi-agent simulation) is a
computational model for simulating the actions and inter
actions of autonomous agents with a view to assessing their
effects on the system as a whole. In many models, each agent
is an individual (person, animal or other autonomous ele
ment). In order to simulate the individual’s behavior, the
individual is given attributes, such as a moveable position
and rule-based reactions to stimuli, including other individu
als.
A further example of simulation is particle simulation,

which simulates a dynamic system of particles, usually
under the influence of physical forces such as gravity. Each
particle may be viewed as a single element in Such a
simulation.

Computationally intense applications like these are often
carried out on high performance computer systems and thus
an important application for some invention embodiments is
job scheduling and management of Such systems. These high
performance computer (HPC) systems often provide distrib
uted environments in which there is a plurality of processing
units or cores on which processing threads of an executable
can run autonomously in parallel.

There are countless configurations of hardware now in use
for computing resources, with varying processor powers and
amounts of memory, as well as different physical arrange
ments for memory and processor capability and the inter
connect between the two. Many of these different hardware
configurations and a large number of different programming
models are applicable to high performance computing. A
popular approach to high-performance computing currently
is the cluster system, in which a plurality of nodes each
having one or more multicore processors (or "chips') are

US 9,553,823 B2
3

interconnected by a high-speed network. Each node (or
Sometimes each core) is assumed to have its own area of
memory. The cluster system can be programmed by a human
programmer who writes source code, making use of existing
code libraries to carry out generic functions. The Source
code is then compiled to lower-level executable code, for
example code at the ISA (Instruction Set Architecture) level
capable of being executed by processor types having a
specific instruction set, or to assembly language dedicated to
a specific processor. There is often a final stage of assem
bling or (in the case of a virtual machine, interpreting) the
assembly code into executable machine code. The execut
able form of an application (sometimes simply referred to as
an “executable') is run under Supervision of an operating
system (OS).

Applications for computer systems having multiple cores
may be written in a conventional computer language (such
as C/C++ or Fortran), augmented by libraries for allowing
the programmer to take advantage of the parallel processing
abilities of the multiple cores. In this regard, it is usual to
refer to “processes' being run on the cores.

In cluster systems and in other distributed memory sys
tem, migration of an execution can require synchronization
of data.

To assist understanding of the invention to be described,
Some relevant considerations are set out below, using simu
lation as an example.
A “fixed number of processors' model assumes that the

workload to be distributed, the priority of the job (i.e. how
urgently the results are required) and the system on which
the job is running will remain constant over the duration of
the simulation. However, this may not be the case. Some
examples of when the number of processes may change are:
A distributed parallel application may be a computer

program monitoring a sensor network or a communi
cations network. Each processor may be responsible for
processing the data from a certain part of the network—
and be required to do this in real-time. If the volume of
data increases (e.g. during peak periods for the com
munications network) then more resources may be
necessary in order to ensure that the application can
continue to process the data Sufficiently quickly (and
fewer resources required at off-peak periods).

As an alternative example, in an adaptive finite element
simulation the number of mesh nodes may vary by one
or more orders of magnitude over the course of the
simulation. In this case, the number of nodes allocated
to each processor may become very low compared to
the number of halo nodes per processor at Some stage
of the simulation—leading to a very high communica
tion-to-computation ratio. In this case, it may become
faster to run the simulation on a smaller number of
processors (reducing the communication).

Or, changed priorities may make it desirable to allocate
extra resources to a given job on the HPC system or
move the job to an entirely new system. For example,
a real-time disaster warning system may be running at
low priority on a small subset of the available resources
when a Sudden event—e.g. an earthquake perturbs
the system that it is simulating, requiring rapid simu
lation of the consequences using as many resources as
can be made available. Simultaneously, other jobs must
be scaled down to Smaller systems in order to make
way for the high priority job.

10

15

25

30

35

40

45

50

55

60

65

4
Further, a response to a failure in one of n processors

allocated to a job might be to migrate the execution to
run on (n-1) processors (rather than terminating the job
entirely).

Thus execution of the computer program itself may
require a change in resource within the same system or in a
new system, for instance due to development of factors
within the program or to external considerations.

It is therefore desirable to provide a way of migrating
execution of a computer program that can be used flexibly
for different circumstances and that takes into account the
difficulty of migration, and optionally also synchronization.

SUMMARY

Additional aspects and/or advantages will be set forth in
part in the description which follows and, in part, will be
apparent from the description, or may be learned by practice
of the invention.

According to an embodiment of the first aspect of the
present invention there is provided a process migration
method comprising

executing a computer program on current computing
resources, in a current partition of parallel processes to
computations, each parallel process carrying out at least one
computation;

communicating current partition data to intermediate
computing resources;

using the intermediate computing resources to calculate
new partition data including a new allocation of computa
tions to processes for use on changed computing resources;
and

migrating the process execution to the changed computing
resources by communicating the new partition data to the
changed computing resources.

According to this embodiment, three different set of
computing resources are used: current computing resources,
intermediate computing resources and changed computing
resources. There are several advantages to using different
resources which allow a flexible and efficient migration. For
example, the resources for re-partitioning can be chosen
specifically for the task of re-partitioning. Also, the task of
re-partitioning will not take up valuable computing time in
the resources which are allocated to carry out the process
itself. Finally, migration methodology may be simpler if the
partitioning is carried out completely separately from the
process for migration.
Some technical issues in moving a distributed parallel

application to a different number of processes are: identify
ing where it is most appropriate to run the application
following a change in its behavior, re-partitioning the appli
cation data (i.e. determining which data is located on which
process), moving data around to reflect the new partition and
synchronizing the application following the migration so
that the application can continue. Minimizing migration
time, to make Sure that there is as little interruption as
possible to the progress of the application, is highly advan
tageous. This is particularly important on a distributed
memory system (or when the simulation is being moved
from one system to another) since the process of re-parti
tioning the data across the system (and possibly of commu
nicating the data to its new location) can be time consuming.

In some state-of-the-art systems the application has to be
stopped and the data from each process consolidated in one
location and written to file (checkpointing). A new applica
tion is then started from the checkpointed data, resulting in
a delay while the data is consolidated, the output files

US 9,553,823 B2
5

written, the application resubmitted via the queuing system,
the new resources initialized (primarily computing how to
distribute the problem over the available resources) and the
output files read back in to initiate the application.

In unpublished related art developed by the inventors, this
dead time is reduced by allowing the application to continue
running on the system from which it is to be moved until the
system to which it will be moved is available and while that
system carries out the start-up phase. Thus continued com
putation overlaps with communication of information to
allow the execution to continue on the new system (or other
changed computing resources). Hence the time interval
between computation stopping on the old system and re
starting on the new is minimized. Also, rather than check
pointing, the state data is then communicated directly to the
new system, removing the need to read and write files.
The inventors have realized that the problem remaining is

how (and where) best to partition the data. The related art
Suggests that if new resources are to be allocated then these
carry out the partitioning before execution is Switched from
the old resources. This has a major drawback in that this
system cannot immediately begin running the simulation
when it becomes available. This problem is exacerbated
since a massively parallel system may not be able to be used
efficiently to partition an application's data: a single large
memory SMP (symmetric multiprocessor) node is likely to
be more suitable for such a problem than many thin nodes.
Alternatively, if execution of the application is to continue
on a Subset of the existing resources then that execution is
paused while the partitioning is carried out. While the delay
caused by Such a pause is certain to be less than that caused
by checkpointing, it may still be significant.

Invention embodiments allow increased computing
resources to be brought on Stream or removed from use more
quickly than is currently possible. Thus for example any
application for which a Surge in information requires imme
diate processing that cannot be handled by current resources
may benefit from the invention. Equally, efficient use of
computing resources can be furthered by the invention,
because when there is a drop in processing requirement of
one program, computing resources can be efficiently freed
for use by other programs.

After the communication phase, the execution can resume
on the changed resources, so that the execution Switches
from the current resources to the changed resources.

Use of the intermediate computing resources can allow
time overlap between processes which were previously
carried out sequentially. In one embodiment, the calculation
of new partition data overlaps in time with continued
execution using the current computing resources. Addition
ally or alternatively, the calculation of new partition data can
overlap in time with allocation of new resources within the
changed computing resources.
The changed resources may be running other jobs and,

hence, not be available immediately (even if these other jobs
are to be stopped or moved the process of doing this may not
be instantaneous). This is also the case for the intermediate
resources. However, as it is anticipated that the intermediate
resources are smaller (and there may be more potential
locations for them) it is likely that they can be freed sooner
and can begin to prepare for when the changed resources
become available.

Although the method of invention embodiments is suit
able for use with many different configurations of computing
resource, some configurations are particularly suitable for
executing the process and others (with a different configu
ration) may be more Suitable for re-partitioning. In one

10

15

25

30

35

40

45

50

55

60

65

6
embodiment, the current and changed computing resources
comprise distributed memory computing resources and the
intermediate computing resources comprise a shared
memory computing resource. For example, the intermediate
resources may comprise a SMP node.
The SMP node may be a “fat' or large node which will

have a large memory size and probably also contain many
more cores than a standard “thin' node (it may, for example,
be a GPGPU (General-Purpose Graphics Processing Unit) or
more likely a CPU augmented with a GPGPU accelerator.
Thus, the “fat' node may be a CPU with lots of memory, and
a large number of processing cores and it may possibly be
accelerated via a co-processor (e.g. a GPGPU or Intel Xeon
Phi).

In this case “large” is in comparison to the amount of
memory on the “thin' nodes. The SMP node may have ten
times, fifty times or even one hundred times the memory
available in a node of the current and/or changed computing
resources. In one example, how much more memory per
node available in Such a node may depend on the relative
size of the intermediate and current resources. For example,
if the partition data is 100 GB in size and there are 100 nodes
in the current resources then each of these requires 1 GB of
memory to handle the partition data. If, however, only 10
nodes are to be used to re-partition then it will be necessary
for each of these to have at least 10 GB of memory available.
(If only one node was to be used then that would need 100
GB of memory).
Some embodiments of the present invention also provide

a way of selecting the intermediate resources. The interme
diate computing resources may be selected by collecting
available resource information detailing a plurality of con
figurations of computing resources available to execute the
re-partitioning, and selecting a configuration from among
the plurality of configurations detailed in the available
resource information which, based on execution informa
tion, will be suitable for re-partitioning. The execution
information may include information about computing
resources available and their effect on execution rate of the
partitioning.
Some embodiments of the present invention additionally

or alternatively provide an analogous way of selecting the
changed resources, in which the changed computing
resources are selected by collecting available resource infor
mation detailing a plurality of configurations of computing
resources available to execute the process, and selecting a
configuration from among the plurality of configurations
detailed in the available resource information which, based
on execution information, will be suitable for execution.
Again, the execution information may include information
about computing resources available and their effect on
execution rate.

In either or both cases, the configurations may each
include an indication of an amount and/or type of computing
resource available in each of a plurality of categories of
computing resource; and the execution information may be
in the form of application execution Scalability information
including a scalability matrix encoding, for computing
resources in at least one of the plurality of categories, an
indication of how different amounts and/or types of com
puting resource in that category correlate with execution
rate. Effectively, the execution information in the matrix
(and other representations) can be used to demonstrate the
timing implications of using different configurations.
The scalability matrix may include an entry for each pair

of factors from among a plurality of factors comprising each
of the plurality of categories of computing resource and

US 9,553,823 B2
7

execution rate, the entry representing the effect of a propor
tional change along a linear scale representing usage of
different amounts/types of a first factor from the pair of
factors on the amount/type required of a second factor from
the pair of factors, in terms of a proportional change along
a linear scale representing different amounts/types of the
second factor.

Invention embodiments are effective in shared memory
and distributed memory configurations, but are particularly
well suited to distributed memory environments (of which
the intermediate resources may be a part using shared
memory, or may also use distributed memory). In a process
migration method as described previously, each process may
use individual current and changed resources including a
single processing unit executing the computation and a
single region of memory to store process data for the
computation. The memory region may be different to each
processing unit. The processing unit may be a node or a
processor or a core of a multi-core processor in a distributed
memory computing system.

Each process may include one iterative computation (for
example corresponding to one mesh node of a simulation) or
it may include more than one computation (for example so
that each process carries out linked computations for more
than one mesh node of a simulation).

In any case, in the distributed memory system it can be
important to avoid spreading linked computations over more
than one processing unit (for instance over more than one
node in a distributed system) because the amount of com
munication required between a set of linked communica
tions is high.

Migration includes communication of partition data that
indicates the allocation of computations to processes. The
partition data is sent from the current resources to the
intermediate resources. Once the current partition data has
been received, the processes may be divided among the
changed resources. There may be a re-division of compu
tations between processes (re-partitioning) before or after
receipt of the partition data (although the re-partitioning has
no effect if there is migration to a new system, but no change
in the amount of resource available). Both these steps can
overlap with computation in the current resources.

In some embodiments the intermediate computing
resources are also used to provide a mapping of processes to
individual changed resources before migration of the new
partition data. Preferably the mapping is transferred to the
changed resources at the same time as the new partition data.

Preferably, synchronization follows migration/re-parti
tioning. Synchronization can include any communication
that provides synchronization between processes. It could be
communication of time-dependent process data, for example
relating to the migrated computations, the communication
taking place between the current resources and the changed
SOUCS.

Initialization can comprise setting up the new resources
after migration and synchronization, so that the processes
can continue on the changed resources. Initialization/set-up
may include, for example, setting up required data structures
in memory, and calculating the values of any dependent
variables that are not directly communicated.

According to invention embodiments, synchronization
may be required between new group data and current group
data (group data is effectively data in memory belonging to
all the processes in the group of parallel processes). The
synchronization may not be of all the new (migrated) and
current data. For example if only a small percentage of
processes is divided to give more detail in one area of a

10

15

25

30

35

40

45

50

55

60

65

8
simulation, synchronization may take into account only the
area which is being modeled in more detail and potentially
a limited area around the area. Synchronization is carried out
as required.

Preferably synchronization includes communication of
state data, which may take any form required by the com
puter program or application. The term “state data” refers to
the time variable data held by the application in memory for
each process. Thus the cumulative state data for all the
processes makes up the group data. For a mesh-based
simulation it could be the values of each variable at each
mesh point “owned by a particular process (responsible for
a particular process). For a particle-based simulation it could
be the current locations and velocities of each owned
particle.
The synchronization can be carried out as part of the

computer program or as an external process. If the computer
program includes synchronization functionality, this func
tionality may be associated with the computations so that
synchronization is carried out at the end of one instance of
all the computations.
Some invention embodiments include synchronization of

the migrated execution using communication of state data
relating to the migrated computations, the communication
taking place between the current resources and the changed
resources. State data transfer can take place after re-parti
tioning: State data is likely to change during continued
computations and so its transfer advantageously takes place
after re-partitioning and just before the start of execution on
the changed computing resources.

In some specific cases, the synchronization is associated
with a software implemented equation solver running the
computations, preferably either embedded within it or in the
form of a wrapper.

If the computations are iterations of an equation solver
running in a loop, synchronization may be carried out at the
end of one loop, and preferably include running computa
tions for the next loop in both the current computing
resources and the changed computing resources, with com
parison of the results (as an integrity check). Alternatively,
if current resources are no longer to be used, it may be
Sufficient to re-start the execution in the changed resources
with received state data corresponding to a synchronized
position in the iterative computation/simulation loops.
The computations may each correspond to a single ele

ment or a group of elements in the computer program, Such
as sensors or nodes in a sensor network, or entities in a
communications network. As mentioned previously, one of
the preferred computer program types used in progress
migration methods of invention embodiments is a simula
tion program. Thus each element may correspond to a
collection of mesh node of a mesh simulation, one or more
agents of an agent simulation or one or more particles of a
particle simulation.
Moving the execution may simply move the processes to

new resources without change to the allocation of compu
tations to processes. However, in other embodiments, the
allocation of computations between processes may be
changed. Thus if a process previously included two linked,
iterative computations, one of these may be moved to a
different process during migration. Conversely, a process
which previously contained a single computation only might
be amalgamated with another process during migration to
form a single process with two or more linked computations.

Alternatively or additionally, migration may take place at
a time when the overall number of computations in the
executable is changed (for example to add or remove

US 9,553,823 B2
9

elements), thus changing the number of processes. For
example, in simulation, more detail may be required for a
part of a simulation, involving production of a finer mesh at
that position.

Thus, migration may allow an increase or decrease in the
number of processes when the number of computations is
altered and/or by a changed division of computations into
processes.

Selection between increasing and decreasing the number
of processes can be made according to whether computing
resource requirements of the computer program have
increased or decreased. Alternatively the user may specify
the number of processes on which the computer program
runs, both at the start of the execution and/or for the
migration.
The method of invention embodiments is not limited to

increasing/decreasing or maintaining the resources and can
be used to move to a completely new system. The relation
ship between the current computing resources and the
changed computing resources in the invention embodiments
may be any Suitable relationship. For example the changed
resources may be a Sub-set or a Super-set of the current
resources, or the changed resources may be completely new
resources (for example of a different computer system) with
a capacity the same as, more or less than the current
computing resources.

There are three particular cases of interest in which the
method is applied: increasing the available number of pro
cesses (for example on the same system), decreasing the
available number of processes (for example on the same
system) and migrating to a different system (possibly with an
increase or decrease in the resources used, for example a
migration to a system of a different size). All of these
migrations can be automatic, (in which case it is assumed
that there is no need for user intervention for instance by
logging on to the new system) even if migration is to a
different system.
The method of invention embodiments caters for all of

these different migration scenarios. It may include a choice
between the scenarios (which may be part of the decision to
change the resources used). The decision and choice may be
made automatically, for example, according to changing
resource requirements of the computer program or of other
computer programs. Thus a job scheduler could make the
decision and/or choice according to pre-defined rules. Alter
natively user input may be provided to influence or deter
mine the choice, for instance by prioritizing one job in a
system over others. Optionally the choice is made according
to the resource requirements of the computer program.

Thus the method may include initially deciding to change
the resources used, and making a choice between increasing
the resources used; decreasing the resources used; and
moving to different resources, wherein moving to different
resources can include increase, decrease or maintenance of
the resources used. Also the intermediate resources may be
part of the same or a different system from the current
resources and/or changed resources. Hence invention
embodiments can provide full flexibility in all resource
change scenarios.

Invention embodiments may also allow user input if
desired. For example, a user may specify one or more of the
migration itself; the choice of the new and/or intermediate
computing resources; a job priority or other input which
triggers the decision to migrate; the number of processes on
which the computer program runs and/or a performance
target (such as an execution-related performance target) for
the intermediate computing resources and/or changed com

10

15

25

30

35

40

45

50

55

60

65

10
puting resources, the performance target being used in
selection of computing resources.

According to an embodiment of a further aspect of the
invention there is provided a computer system operable to
carry out process migration comprising:

current computing resources, intermediate computing
resources and changed computing resources, all connected
via an interconnect;

the current computing resources being configured to
execute a computer program, in a current partition of parallel
processes to computations, each parallel process carrying
out at least one computation;

the interconnect being configured to communicate current
partition data to intermediate computing resources;

the intermediate computing resources being configured to
calculate new partition data including a new allocation of
computations to processes for use on changed computing
resources; and

the interconnect being further configured to communicate
the new partition to the changed computing resources so that
the changed computing resources can take over the execu
tion.

According to an embodiment of a further aspect of the
invention there are provided intermediate computing
resources within a system comprising the intermediate com
puting resources, current computing resources executing a
computer program, in a current partition of parallel pro
cesses to computations, each parallel process carrying out at
least one computation, and changed computing resources, all
connected via an interconnect, the system being operable to
carry out process migration;

the intermediate computing resources being configured to
receive current partition data from the interconnect, to
calculate new partition data including a new allocation of
computations to processes for use on changed computing
resources; and to communicate the new partition to the
changed computing resources so that the changed computing
resources can take over the execution.

According to an embodiment of a still further aspect of the
present invention there is provided a method of selecting
re-partitioning computing resources for a process migration
method comprising

executing a computer program on current computing
resources, in a current partition of parallel processes to
computations, each parallel process carrying out at least one
computation;

selecting re-partitioning computing resources by collect
ing available resource information detailing a plurality of
configurations of computing resources available to execute
the process, and selecting a configuration from among the
plurality of configurations detailed in the available resource
information which, based on execution information, will be
Suitable for re-partitioning;

communicating current partition data to the re-partition
ing computing resources:

using the re-partitioning computing resources to calculate
new partition data including a new allocation of computa
tions to processes for use on changed computing resources;
and

migrating the process execution to the changed computing
resources by communicating the new partition data to the
changed computing resources.

In this aspect, the re-partitioning computing resources are
not necessarily limited to being different from the current
and changed computing resources. For example, if no 'fat'
SMP node is available, it may be appropriate to use the

US 9,553,823 B2
11

changed computing resources for partitioning. In this case,
communication of partition data may be within the same
system.
The computer system may further include other compo

nents such as a graphical user interface GUI for the user to
input data such as the number of processes required (or data
from which the number of processes may be calculated) and
output means, for example in the form of a screen for
visualization of the results and/or a printer to provide printed
results.

According to a further aspect there is provided a program
which when loaded onto a computing apparatus Such as a
distributed memory computer system configures the com
puting apparatus to carry out the method steps according to
any of the preceding method definitions or any combination
thereof.

Features and sub-features of any of the different aspects of
the invention may be freely combined. For example, pre
ferred embodiments of the computer system may be con
figured to incorporate functionality corresponding to one or
more preferred features of one or more of the methods.
Features of the selection method may be combined with
features and Sub-features of the migration method.
The invention can be implemented in computer hardware,

firmware, software, or in combinations of them. The inven
tion can be implemented as a computer program or computer
program product, i.e., a computer program tangibly embod
ied in an information carrier, e.g., in a machine-readable
storage device or in a propagated signal, for execution by, or
to control the operation of one or more hardware modules.
A computer program can be in the form of a computer

program portion or more than one computer program and
can be written in any form of programming language,
including compiled or interpreted languages, and it can be
deployed in any form, including as a stand-alone program or
as a module, component, Subroutine, or other unit Suitable
for use in a data processing environment. A computer
program can be deployed to be executed on one module or
on multiple modules at one site or distributed across mul
tiple sites and interconnected by a communication network.

Method steps of the invention can be performed by one or
more programmable processors executing a computer pro
gram to perform functions of the invention by operating on
input data and generating output. Each processor may have
Oi Oi O COS.

Processors suitable for the execution of a computer pro
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital or biological computer. Generally, a
processor will receive instructions and data from a read-only
memory or a random access memory or both. The essential
elements of a computer are a processor for executing
instructions coupled to one or more memory devices for
storing instructions and data.
The invention is described in terms of particular embodi

ments. Other embodiments are within the scope of the
following claims. For example, the steps of the invention
can be performed in a different order and still achieve
desirable results.
The apparatus according to preferred embodiments is

described as configured, operable or arranged to carry out
certain functions. This configuration or arrangement could
be by use of hardware or middleware or any other suitable
system. In preferred embodiments, the configuration or
arrangement is by Software.

BRIEF DESCRIPTION OF THE DRAWINGS

These and/or other aspects and advantages will become
apparent and more readily appreciated from the following

10

15

25

30

35

40

45

50

55

60

65

12
description of the embodiments, taken in conjunction with
the accompanying drawings of which:

FIG. 1 is an overview diagram of on-the-fly migration;
FIG. 2 is a schematic diagram of current resources,

intermediate resources and new resources;
FIG. 3 is a time comparison of an invention embodiment

with the related art;
FIG. 4 is a schematic hardware diagram of distributed

execution of a computer program;
FIG. 5 is a scalability matrix:
FIG. 6 shows a change in a scalability matrix over time:
FIG. 7 is a hardware diagram showing nodes of a com

puter system linked by an interconnect;
FIG. 8 is an overview of the blocks of resource in FIG. 7:

and
FIG. 9 is a diagram of communication between the current

computing resources, intermediate computing resources and
changed computing resource.

DETAILED DESCRIPTION

Reference will now be made in detail to the embodiments,
examples of which are illustrated in the accompanying
drawings, wherein like reference numerals refer to the like
elements throughout. The embodiments are described below
to explain the present invention by referring to the figures.

Preferred embodiments of the invention manage the
migration of data during the process of moving a running
simulation between two different systems or between a
different number of processors on the same system. Thus the
application finds many applications in the field of high
performance computing, in particular in job scheduling and
management.

FIG. 1 is an overview diagram showing how embodi
ments of the invention can move a simulation of airflow over
a vehicle from execution on system A to execution on system
B. The movement is referred to as seamless on-the-fly
migration and synchronization. Due to use of the interme
diate computing resources, it is not necessary to completely
stop the simulation process in order to migrate it from
system A to system B.

FIG. 2 is a time-based schematic diagram showing the
movement of execution of an application from current
resources 10 to changed resources 30, using intermediate
resources 20. The three resources are depicted separately but
may be part of the same system. At time T1 execution is in
the current resources. The migration is then triggered. Some
possible triggers are:
The running application realizes that it needs more (or

less or different) resources and sends a request to the
system.

The system monitors the application itself and identifies
that it could run more effectively elsewhere.

User intervention (e.g. changed priorities require move
ment of the application from one set of resources to
another, possibly following an unexpected event).

In response to the trigger, requests are generated for
re-partitioning and for allocation of new resources. The
requests may be made at Substantially the same time. For
example, at time T2 partition data is send to the intermediate
resources and new resources are allocated. At time T3
execution in the current resources stops. At time T4 execu
tion in the changed resources resumes.

Synchronization (including transfer of State data from the
current resources to the new resources) is not shown but can

US 9,553,823 B2
13

take place so that state data from the current resources is
available after partitioning of the new resources and execu
tion can begin.

It is envisaged that for most of its duration the execution
is behaving in a loop fashion, with a similar workflow in
each pass through the loop (e.g. time-stepping or iterations
in a (non-) linear Solver). Migration and synchronization
take place at the end of a loop. The synchronization process
can be automated. The automation could either be embedded
within the equation solver or take the form of a wrapper that
is able to control the behavior of the solver, but is not
necessary a part of it.
A general overview of the algorithm of invention embodi

ments is shown in FIG. 3 (with timings approximately to
scale). FIG. 3 compares the related art process with an
invention embodiment. The novel steps compared to the
related art process are in the shaded box.

In both cases calculation is transferred between old
resources and new resources. Computation starts in region A
at time T=0 in step S10. After a lapsed time J at T-J the
migration starts.

Considering the related art procedure first, calculation
continues in region A in step S10. New resources are
requested in step S20 and there is a delay in step S30 before
new resources are allocated in step S40. Thus new resource
allocation takes time K. In step S50 the new resources
receive data from region A, in the form of a partition, and in
step S60 the new resources compute a new partition. Thus
re-partitioning takes time L. Finally, in step S70 the new
resources receive and set up state date and this synchroni
zation takes time M. Thus time T-K--L--Melapses after the
request for new resources and before computation starts in
region B in step S80.
The related art process provides an overlap between

continued execution and migration and/or synchronization.
In contrast, according to the invention embodiment, over

lap in time of allocation of new resources with migration and
with continued execution becomes possible. Execution starts
at time T=0 for a lapsed time J and there is a request for new
resources in step S100. In this embodiment continued execu
tion in region A (step S90) overlaps with partitioning in the
intermediate system, in which intermediate resources are
allocated (step S110), partition data is received from region
A (step S120) and a new partition is calculated and region B
set up (step S130). There is also overlap with processing in
the new resources, including the delay in step S140 and the
allocation of new resources in step S150. In step S160 the
new state data is received and set up and in step S170
computation resumes in Region B.

In addition to communication of partition data and com
munication of the state data a map to determine where data
is sent may be calculated.
The idea of the synchronization step is to ensure that the

contents of memory on the old and new systems are con
sistent. Since computation continues on the old system while
initializing the new one, it is necessary to synchronies at the
appropriate time (not just send State data at the same time as
partition data). Equally, execution does not begin on the new
system while still running on the old (unless for synchro
nization purposes as explained later). This would duplicate
computation work.

It can be seen from FIG. 3 that the new method cannot be
slower than the related art (since if an intermediate system
did not become available at least as soon as the new system
then the new system could partition as in the related art). In
many cases, since the intermediate system would be much
smaller than either the new or old (current) systems, suitable

5

10

15

25

30

35

40

45

50

55

60

65

14
intermediate resources should be immediately available,
which will result in a time saving compared to the related art
(from the overlapped data partitioning and/or faster parti
tioning on the more Suitable resource).

FIG. 4 shows a schematic diagram illustrating n+1 pro
cesses, of which two processes (60), referred to specifically
as Process 0 and Process n are shown. Each process uses
individual resources including a single processing unit or
element (70) and memory (80). The processing unit (70) is
connected to an input/output unit (90) and all the processes
are interconnected using interconnect (100).

In one specific embodiment, each process is a thread of
work that takes place in a single resource block as shown.
Each process "owns at least one computation and may own
several linked computations. For example in the case of a
simulation, the process can include computation for several
adjacent mesh nodes. It can be advantageous to group
computations for adjacent mesh nodes in this way because
data from adjacent nodes is usually required for the com
putation for a node in question.
Nodes are re-allocated between processes in re-partition

ing. A simple example of re-partitioning is explained below.
Assume a one dimensional problem with a mesh contain

ing 101 nodes uniformly spaced on the interval OsXs 1 (i.e.
each node is 0.01 from its nearest neighbours). The nodes
are numbered sequentially from node 0 at x=0 to node 101
at X=1. The problem is initially run on two processing units.
The mesh is initially split so that process 0 is responsible for
("owns”) all nodes in the region 0sxs0.5 and process 1 owns
all nodes in the region 0.53x51. So, process 0 keeps in
memory information about the values of variables at nodes
0 to 50 and process 1 keeps in memory information about the
values of variables at nodes 51 to 101. For convenience,
process 0 also keeps in memory a copy of the information
about the values of variables at (“halo owns”) node 51 and
process 1 halo owns node 50. This is because these nodes are
nearest neighbours to a node that is owned by the process
and the data is likely to be required to update the data at
these owned nodes.
Now Suppose that the simulation is to be migrated to run

on three processes. The re-partitioning step determines
which parts of the mesh will be owned by each of the new
processes. So, the new process 0 (which may or may not be
on the same processor as the old process 0) may be respon
sible for the region 0sxs0.33 (i.e. nodes 0-33) and halo own
node 34; the new process 1 may be responsible for
0.33<xs0.67 (i.e. nodes 34-67) and halo own nodes 33 and
68; and the new process 2 may be responsible for 0.67<xs1
(i.e. nodes 68-101) and halo own node 67.
The new partition creates more halo owned nodes as it

spreads out computation across more processes. However
spreading out the processes allows use of larger resources
for the same computations. Before re-partitioning, the maxi
mum number of processing units was two, which becomes
three due to the re-partitioning.
As a result of this re-partitioning, the old process 0 must

send the state data for nodes 0-34 to the new process 0 and
the state data for nodes 33-50 to the new process 1; and the
old process 1 must send the state data for nodes 51-68 to the
new process 1 and the state data for nodes 67-101 to the new
process 2.

FIG. 5 shows a scalability matrix which may be used to
select intermediate and/or changed computing resources.
The scalability matrix is a simple, compact and efficient
format for expressing application execution Scalability infor
mation. The scalability matrix includes an entry for each
pairing of execution variables including time (or execution

US 9,553,823 B2
15

rate) and at least one category of computing resource. The
entry represents the impact of changing the amount or type
of one of the pair on the amount or type of the other required
to execute the application. Hence, a non-Zero entry repre
sents some correlation, or a coupling, between one execution
variable and another. At the start of an execution, the
scalability matrix may be obtained by the application. Alter
natively, the scalability matrix can be read from a third party
module, such as a database.
The scalability matrix may represent first order (i.e.

linear) relationships between execution variables, or may be
configured to contain more than one entry per execution
variable pairing in order to represent more complex rela
tionships. In this example, a first order Scalability matrix is
considered. The exemplary first order scalability matrix has
the following properties:

it is square and symmetric;
one entry is always execution time (or execution rate);
all other entries are categories of computing resource (e.g.
RAM, CPU cores, Nodes, etc)

entry (I,J) contains the dependence of execution time or
state variable I of state variable J in the form of a
Scaling coefficient.

The FIG. 5 matrix is an exemplary first order scalability
matrix. The matrix contains the execution time (Time) plus
four state variables: (hard disk drive) HDD performance
Memory size (RAM), the number of cores per CPU socket
(Cores) and the number of nodes (Nodes). HDD, RAM,
Cores, and Nodes are examples of categories of computing
resource. Specifically, they are categories of computing
resource in which a type or amount of that category of
resource can be selected for use in executing the application.
The first row shows how the execution time depends on

the state variables. In the example of FIG. 5, the fact that a
change in HDD performance or available RAM does not
impact on the execution time is represented by a “0” entry.
On the other hand, the execution time is strongly influenced
by the number of cores and number of nodes. A value of “1”
or “-1 represents perfect scalability, wherein the negative
sign indicates decrease. For example, the “-1 value for
Cores shows the fact that a doubling in the number of cores
will halve the execution time.

The second row shows that there is no coupling between
the HDD performance and the rest of the execution variables
while the third row indicates that the amount of available
RAM scales perfectly with the number of nodes, e.g. a
doubling of the number of nodes results in half the needed
RAM.
The entries of the 1st order scalability matrix are a

numerical indication of the linear part of the scalability
curves of the Scaling relationship between two execution
variables. For a more accurate representation of the scaling
relationship (dependence), higher order terms can be added
to the 1st order terms resulting in higher order scalability
matrices.
An additional state variable which may also be, but is not

necessarily included in the scalability matrix, is the Cost
(which may be a financial cost of the service or any other
cost, e.g. power, CO2). Depending on the cost policy of the
execution environment 120, some of the execution variables
may be related to Cost, where the values are received with
the available resource information, e.g. the resource table,
from the execution environment 120. For example, the
number of cores, the number of nodes and the size of the
data stored on the HDD may incur a cost.

5

10

15

25

30

35

40

45

50

55

60

65

16
The scalability matrix serves two main purposes:
provides a list of categories of computing resource for

which the selection of an amount or type of resource
within that category affects the execution of the appli
cation. These are the execution variables whose value
in the Scalability matrix is non-Zero;

guides the configuration selection procedure by providing
quantitative values for the correlations or couplings
between execution time and categories of computing
resource from which a type or amount of that category
of resource is selectable for the execution.

Representing dependencies not only between execution
time and categories of resource, but also between pairs of
categories of resource themselves allows for satisfying per
formance targets of the type “minimize RAM usage' or
“minimize disk usage'.

For a specific application, a scalability matrix can be
created either from benchmarks conducted by the developer
or from previous knowledge related to the particular type of
algorithm that is being used. Moreover, updated Scalability
matrices can be provided when the application enters a
different execution mode.

FIG. 6 illustrates how a scalability matrix can change
during execution of an application. On the left-hand Scal
ability matrix, the number of cores scales perfectly with
execution time, because the application being executed is
processing-intensive at that stage. On the right-hand Scal
ability matrix, the number of cores does not scale with
execution time, but the available hard disk space does
(although the scalability is moderated by a factor of 0.9).
The changed scalability matrix may lead to selection of
changed computing resources.

FIG. 7 is a hardware diagram showing nodes of a com
puter system linked by an interconnect 100 and illustrating
how current resources, changed resources and intermediate
resources can be embodied as different nodes. In the
example depicted here, the changed resources are larger (in
terms of number of nodes) than the current resources,
implying that a decision has been made to increase the
resources used. The current and changed resources have
overlapping resource (nodes). The intermediate resources
are smaller than both the current and the changed resources,
and do not overlap with the current or changed computing
SOUCS.

FIG. 8 is an overview of the blocks of resource in FIG. 7
and the use of the interconnect relationship in migration.

FIG. 9 is a diagram of communication during the migra
tion process. In step S200 computation uses current
resources. In step S210 changed resources are requested (the
request is shown in the current resources, but could be
external). In step S220, the system identifies appropriate
intermediate and changed resources, potentially using a
scalability matrix. In step S230 computation continues in the
current resources. In step S240 there is a delay waiting for
intermediate resources to be available. This delay is in
parallel with the longer delay of step S310 waiting for the
larger changed resources to be available. In step S250,
intermediate resources are allocated and this is notified in
step S260 to the current resources, which send the current
partition to the intermediate resources in step S270. The
intermediate resources receive the data (step S280) along
with details of changed resources. Thus the intermediate
resources also receive information about what changed
resources will be allocated (for example how many nodes,
what type of node, etc) from the system so that they know
how to re-partition the data that they receive from the current
resources. The intermediate resources calculate a new par

US 9,553,823 B2
17

tition and set up the changed resources (S290) as necessary.
This set up may include a mapping of processes to individual
changed resources, such as individual nodes, (defining what
should be sent from where to where). It is also possible that
the intermediate resources may be able to do some other
initialization (e.g. calculation of Some domain-dependent
parameter values) and send this direct to the changed
SOUCS.

In step S300 the intermediate resources sends the new
partition (and mapping) to the changed resources previously
allocated in step S320. The allocation is notified to the
current resources in step S330, which in return send state
data in step S340. The new resources receive and set up the
state date in step S350 and computation resumes using the
changed resources in step S360. A possible synchronization
step of executing one loop of computations simultaneously
in the current and changed resources and comparing the
results is not shown.

Advantageous features of some invention embodiments
a.

a. The flexibility that embodiments give to move execu
tions to any different system (larger, Smaller or the
same size). It is highly advantageous that the invention
embodiments have the option to implement all three of
these cases.

b. The on-the-fly nature of the migration for a distributed
memory system (i.e. the execution does not need to be
stopped, moved and then re-started on the new system).

c. The ability to increase the number of processes (some
recent prior art for fault-tolerance consider on-the-fly
methods to deal with a reduction in the number of
processes, but not an increase).

d. The controlled nature of the change. In fault-tolerant
applications the system copes with an uncontrolled loss
of resources. Some of the invention embodiments allow
the user to specify exactly how many processes the
execution should run on.

e. The scale of the change in resources—i.e. for fault
tolerance usually only a small number of nodes will fail
at any one time, so the idea is to deal with a small
reduction in resources. In embodiments of this inven
tion there is capability to make a very large reduction
in resources—maybe from thousands of nodes to a
single one, due to the migration and synchronisation
procedure.

Some invention embodiments also have specific advan
tages over the related art methodology discussed earlier:

The changed resources can begin running the application
or other program immediately as they become avail
able.

The set-up phase will be completed faster than it would be
if using either the new or old resources.

The need to pause execution if reducing resources on the
same system will be eliminated.

Any of all of these features can lead to the application
completing faster than would otherwise be the case (or, in
the case of real-time data processing, of clearing a backlog
caused by insufficient resources in a more timely fashion).
As set out previously, there are three cases of interest in

altering the resources on which a distributed parallel appli
cation runs: increasing the current resources (where the
current system is a Subset of the changed system), decreas
ing the current resources (where the changed system is a
Subset of the current) and moving to a new system (which
may be of a different size to the current system). In the case
of the related art, each of these cases was required to be
treated separately (since where the partitioning was to be

10

15

25

30

35

40

45

50

55

60

65

18
performed depended on which case was considered). This is
not the case if intermediate resources are used: partitioning
always takes place on the intermediate system, which may
be identified using selection according to execution Scal
ability information. Thus, a further benefit of the invention
embodiments can be seen in the increased simplicity of the
algorithm: the same steps can be taken in all three cases.

Although a few embodiments have been shown and
described, it would be appreciated by those skilled in the art
that changes may be made in these embodiments without
departing from the principles and spirit of the invention, the
Scope of which is defined in the claims and their equivalents.
What is claimed is:
1. A process migration method, comprising
executing a computer program on current computing

resources, in a current partition of computations of the
computer program to parallel processes, each parallel
process carrying out at least one computation;

communicating current partition data including an allo
cation of computations to process to intermediate com
puting resources;

using the intermediate computing resources to calculate
new partition data including a new allocation of com
putations to processes for use on changed computing
resources; and

migrating process execution to the changed computing
resources by communicating the new partition data to
the changed computing resources.

2. A process migration method according to claim 1,
wherein one of calculation of the new partition data overlaps
in time with continued execution using the current comput
ing resources and the calculation of the new partition data
overlaps in time with allocation of new resources within the
changed computing resources.

3. A process migration method according to claim 2,
wherein the current and changed computing resources com
prise distributed memory computing resources and the inter
mediate computing resources comprise a shared memory
computing resource comprising a symmetric multiprocessor
SMP node.

4. A process migration method according to claim 1,
wherein the intermediate computing resources are selected
by collecting available resource information detailing a
plurality of configurations of computing resources available
to execute re-partitioning, and selecting a configuration from
among the plurality of configurations detailed in the avail
able resource information which, based on execution infor
mation, will be suitable for the re-partitioning.

5. A process migration method according to claim 1,
wherein the changed computing resources are selected by
collecting available resource information detailing a plural
ity of configurations of computing resources available to
execute the processes, and selecting a configuration from
among the plurality of configurations detailed in the avail
able resource information which, based on execution infor
mation, will be suitable for execution.

6. A process migration method according to claim 4.
wherein the configurations each include an indication of one
of an amount and type of the computing resource available
in each of a plurality of categories of the computing
resource; and

wherein execution information is in a form of application
execution Scalability information including a scalabil
ity matrix encoding, for computing resources in at least
one of the plurality of categories, an indication of how
different amounts and types of the computing resource
in that category correlate with execution rate; and

US 9,553,823 B2
19

wherein the scalability matrix includes an entry for
each pair of factors from among a plurality of factors
comprising each of the plurality of categories of the
computing resource and the execution rate, an entry
representing an effect of a proportional change along a 5
linear scale representing usage of different amounts and
types of a first factor from pair of factors on the amount
and type required of a second factor from the pair of
factors, in terms of the proportional change along a
linear scale representing different amounts and types of
the second factor.

7. A process migration method according to claim 1,
wherein each process uses individual current and changed
resources including a single processing unit executing the
computation and a single region of memory to store process
data for the computation; and wherein the processing unit is
one of a node, a processor and a core of a multi-core
processor in a distributed memory computing system.

8. A process migration method according to claim 7.
wherein the intermediate computing resources are also used
to provide a mapping of processes to the individual changed
resources before migration of the new partition data and
mapping to the changed resources.

9. A process migration method according to claim 1,
further including synchronization of the migrated process
execution using communication of state data relating to the
migrated computations, the communication taking place
between the current resources and the changed resources:
and

wherein the synchronization is associated with an equa
tion solver running the computations, and the synchro
nization is embedded within the equation solver and in
a form of a wrapper.

10. A process migration method according to claim 1,
wherein the computations are iterations of an equation
Solver running in a loop, and wherein synchronization is
carried out at an end of one loop and includes running the
computations for a next loop in both the current computing
resources and the changed computing resources, with com
parison of results.

11. A process migration method according to claim 1,
further including initially deciding to change resources used,
and making a choice between increasing the resources used;
decreasing the resources used; and moving to different
resources, wherein moving to different resources includes
one of increase, decrease and maintenance of the resources
used.

12. A process migration method according to claim 1,
wherein a user specifies a number of processes on which the
computer program runs and/or a performance target for the
intermediate computing resources and the changed comput
ing resources, the performance target being used in selection
of computing resources.

13. A computer system operable to carry out process
migration, comprising:

current computing resources, intermediate computing
resources and changed computing resources, all con
nected via an interconnect;

15

25

30

35

40

45

50

55

20
the current computing resources being configured to

execute a computer program, in a current partition of
computations of the computer program to parallel pro
cesses, each parallel process carrying out at least one
computation;

the interconnect being configured to communicate current
partition data including an allocation of computations
to processes to the intermediate computing resources;

the intermediate computing resources being configured to
calculate new partition data including a new allocation
of computations to processes for use on the changed
computing resources; and

the interconnect being further configured to communicate
the new partition data to the changed computing
resources allowing the changed computing resources to
take over the execution.

14. Intermediate computing resources within a system
comprising the intermediate computing resources, current
computing resources executing a computer program, in a
current partition of computations of the computer program
to parallel processes, each parallel process carrying out at
least one computation, and changed computing resources, all
connected via an interconnect, the system being operable to
carry out process migration;

the intermediate computing resources comprising
memory and a processor, and being configured to
receive current partition data including an allocation of
computations to processes from the interconnect, to
calculate new partition data including a new allocation
of computations to processes for use on the changed
computing resources; and to communicate the new
partition data to the changed computing resources
allowing the changed computing resources to take over
the execution.

15. A method of selecting re-partitioning computing
resources for a process migration method, the method of
Selecting comprising

executing a computer program on current computing
resources, in a current partition of computations of the
computer program to parallel processes, each parallel
process carrying out at least one computation;

selecting re-partitioning computing resources by collect
ing available resource information detailing a plurality
of configurations of computing resources available to
execute a process, and selecting a configuration from
among the plurality of configurations detailed in avail
able resource information which, based on execution
information, will be suitable for re-partitioning:

communicating current partition data including an allo
cation of computations to process to the re-partitioning
computing resources:

using the re-partitioning computing resources to calculate
new partition data including a new allocation of com
putations to processes for use on changed computing
resources; and

migrating the process execution to the changed computing
resources by communicating the new partition data to
the changed computing resources.

