
(19) DANMARK

(10) DK/EP 2914115 T3

(12)

Oversættelse af europæisk patentskrift

Patent- og Varemærkestyrelsen

(51) Int.Cl.: A 22 B 3/06 (2006.01) A 22 B 3/00 (2006.01)

(45) Oversættelsen bekendtgjort den: 2021-05-31

(80) Dato for Den Europæiske Patentmyndigheds bekendtgørelse om meddelelse af patentet: **2021-03-03**

(86) Europæisk ansøgning nr.: **13851053.2**

(86) Europæisk indleveringsdag: 2013-11-04

(87) Den europæiske ansøgnings publiceringsdag: **2015-09-09**

(86) International ansøgning nr.: AU2013001271

(87) Internationalt publikationsnr.: WO2014066953

(30) Prioritet: **2012-11-02 US 201213668030**

(84) Designerede stater: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(73) Patenthaver: Wagstaff Food Services PTY Ltd, 15 Moorakyne Avenue, Malvern, VIC 3144, Australien

(72) Opfinder: RALPH, James Henry, 15 Moorakyne Avenue, Malvern, VIC 3144, Australien McLEAN, David William, c/o Advanced Microwave Technology, University of Wollongong, Wollongong, NSW 2500, Australien

(74) Fuldmægtig i Danmark: Patrade A/S, Ceresbyen 75, 8000 Århus C, Danmark

(54) Benævnelse: **EFFEKTIV BEDØVELSE AF DYR**

(56) Fremdragne publikationer:

EP-A1- 0 171 620 WO-A1-2011/137497 JP-A- H09 140 324 US-A- 3 973 290

W. B. Stavinoha ET AL: "THE USE OF MICROWAVE HEATING TO INACTIVATE CHOLINESTERASE IN THE RAT BRAIN PRIOR TO ANALYSIS FOR ACETYLCHOLINE", JOURNAL OF NEUROCHEMISTRY, vol. 20, no. 2, 1 February 1973 (1973-02-01), pages 361-371, XP055429485, NEW YORK, NY, US ISSN: 0022-3042, DOI: 10.1111/j.1471-4159.1973.tb12135.x

DESCRIPTION

Field of the Invention

[0001] This invention relates to a method and an apparatus for stunning of animals to induce unconsciousness and insensibility enabling processing or handling of the animal.

Background

[0002] In slaughtering a live animal in an abattoir for production of meat, hide, and other by-products, the animal is usually restrained and then stunned to induce immediate unconsciousness and insensibility. The slaughter can then be performed without avoidable fear, anxiety, pain, suffering and distress. The stunning can also help avoid difficulties and dangers for persons involved in the processing and handling operations. The "stunning" is commonly carried out either by an mechanical process, such as applying concussion by means of a projectile captive bolt (penetrating or non-penetrating mushroom headed knocker) impacted against the skull of the animal, or by electrical current applied to the animal and passed through the brain, or by inhalation of gases such as carbon dioxide, nitrogen or argon.

[0003] The terms "stun" or "stunning" are frequently used to refer to irreversible processes, i.e. the "stunning" process causes irreversible damage to the animal, particularly the brain. This may not be a difficult or contentious issue with regard to animal welfare concerns because the slaughter, such as by sticking and exsanguination, immediately follows the stunning and is therefore performed on an irreversibly unconscious and insensible animal,

[0004] However, with religious slaughter or ritual slaughter, irreversible stunning is not acceptable. The animal must not be injured or harmed prior to exsanguination. For example, with the Muslim slaughter method or "Halal slaughter", the animal is required to be alive at the time of slaughter. This requirement does not necessarily mean that the animal is not permitted to be first stunned prior to slaughter, as long as there is no injury, e.g. significant damage to the skull, but irreversible stunning may well be unacceptable to comply with the dictated ritual requirements. Likewise with the Jewish or Judaic slaughter method or "Shechita", post-cut stunning of the animal may be permissible, but not irreversible pre-cut stunning that may be deemed unacceptable so that the resulting carcase would not be Kosher.

[0005] There have been some references in the published patent literature to use of microwave radiation stunning of animals for slaughter.

[0006] US 3,973,290 refers to stunning an animal for slaughter by applying microwave energy to penetrate the animal's skull and heat the brain. A microwave beam is proposed to be directed at the animal without restraining it, the energy being applied from the side of the skull.

Such methods of application would create considerable surrounding tissue damage by largely indiscriminate heating and therefore would be an irreversible process, causing harm to the animal, and is likely to be inhumane.

[0007] US 4,616,160 describes a microwave heating apparatus for irradiating the entire head of test animals, particularly rodents. The configuration of the apparatus including the manner of coupling the microwave energy to the animal will heat the entire head of the animal. The specification does not explain whether the purpose is to stun the animal but, if so, many organs and tissues of the head are likely to be damaged and the apparatus would therefore be unacceptable from the point of view of animal welfare.

[0008] DE 4116670 describes and illustrates an apparatus for irradiating a pig with multiple microwave applicators arranged around the head and in a row along the length of the spine, all being spaced from the animal. Use of such an apparatus design will irreversibly damage tissues by cooking affected tissues, which is likely to be inhumane.

[0009] JP 3039615 describes apparatus for slaughtering animals using microwaves to heat the brain causing cerebral death.

[0010] WO2011/137497 describes an animal stunning apparatus and method for inducing rapid unconsciousness and insensibility. The apparatus includes a stunning station in which a live subject animal is located in a confined position and an applicator contacts an application point on the live subject animal's head immediately overlying a frontal portion of the animal's brain and couples microwave radiation to the head. A microwave generator generates microwave energy of a suitable power level and frequency, and a waveguide directs the microwave radiation to the applicator. A switch discontinues the application of microwave radiation effecting heating of the frontal portion of the brain after a period of time sufficient to have raised the temperature of the frontal portion of the brain of the subject animal to thereby induce the unconsciousness and insensibility. The period is sufficient only to rapidly induce insensibility, and is insufficient for the insensibility induced to be irreversible, and insufficient to cause significant heating of deeper brain tissues and including the brain stem. This system is owned by the present applicant and testing and development of this system revealed significant and unexpected difficulties in achieving consistent results for the animal stunning making the system unsatisfactory commercially and/or for animal welfare.

[0011] EP 0 171 620 A describes and illustrates a microwave-heating apparatus for heating the entire head of a rodent.

[0012] The above references to and descriptions of prior proposals or products are not intended to be, and are not to be construed as, statements or admissions of common general knowledge in the art in Australia or elsewhere. None are known to have been ever commercially used.

Object of the invention

[0013] It is an object of the present invention to provide processes and apparatus for stunning of animals to effectively and more consistently induce unconsciousness and insensibility.

[0014] It is a particular preferred object to provide processes and apparatus capable of stunning of animals to induce rapid unconsciousness and insensibility in an effective and controlled manner that the stun is reversible, meaning that the animal can later regain consciousness and sensibility without significant loss of brain mediated function including motor functions, sensory processing, innate and instinctive functioning, learned behaviour, etc. With such reversible animal stunning processes and apparatus, animals for slaughter can be stunned in a manner to enable subsequent processing and handling, including slaughter, whilst the system still remains compliant with certain religious slaughter rituals. The achievement of reversible stunning processes and apparatus may also enable such stunning of animals for other kinds of processing or handling, such as for veterinary inspections or purposes, banding, branding, tagging, inspection recording and re-release, etc. However, the particular processes and apparatus described herein will refer to the primary intended field of application, namely slaughtering of animals for food production, hide recovery and treatment, and other by-product extraction and processing.

Summary of the Invention

[0015] According to the first aspect of the present invention there is provided a method of stunning an animal according to claim 1 for inducing unconsciousness and insensibility enabling processing or handling of the animal, the method including the steps of:

introducing a live subject animal to be processed or handled to a stunning station and locating the animal in a generally confined position,

characterised in that the method further includes:

locating an applicator in an operative position so that the applicator is in contact with an application point on the animal's head immediately overlying the frontal portion of the subject animal's brain, the applicator having peripheral portions which define an opening and which contact the animals head to surround the application point when the applicator is in its operative position, the applicator having a coupling conformation to couple microwave radiation passing through the applicator and emerging from the opening of the applicator when located its operative position at the application point so that the emerging microwave radiation passes to the head and to the frontal portion of the brain of the subject animal,

generating microwave radiation of a suitable power level and frequency and directing that radiation through a waveguide to and through the applicator which is located at an operative end of the waveguide so that the radiation emerging through the opening thereby heats the frontal portion of the brain of the subject animal,

detecting reflected power of microwave radiation in the waveguide and, in response to the level of reflected power, tuning the waveguide so as to reduce the reflected power being detected by changing the impedance of the waveguide and applicator to better match the impedance of the head and thereby increase the transfer of microwave power to the head, and

continuing the application of the microwave radiation and continuing to tune the waveguide to effect the heating for a period of time to raise the temperature of the frontal portion of the brain, the period being sufficient to induce insensibility.

[0016] For compliance with ritual slaughter criteria, the switch can be operable to discontinue the application of microwave radiation immediately after a period which is sufficient only to rapidly induce insensibility, and insufficient (i) for the insensibility induced to be irreversible, and (ii) to cause significant heating of deeper brain tissues and including the brain stem.

[0017] Preferably the application point is medially located on the head of the subject animal above a line extending between the animal's eyes so as to be located at the closest external point to the central and frontal portion of the brain. Preferably the frontal portion of the brain of the subject animal is heated to satisfy at least one of the conditions: the temperature increases by an amount in the range of about 5°C to about 10°C, and the temperature increases to about 43°C.

[0018] In a particular preferred embodiment, a period of time during which application of the microwave radiation is continued and during which the tuning is continually performed is terminated after a period for an effective power transfer defined as sufficient to achieve an effective syncope of the animal, the effective power transfer being determined as a function of power transferred to the animal and excluding reflected power. In this embodiment the method preferably includes the steps of measuring continually the power of microwave radiation being reflected, and determining from the power generated by the microwave generator and from the measured reflected power the actual power being transferred from the applicator.

[0019] In one possible method according to this preferred embodiment, the effective power transfer is reached by applying microwave power for a predetermined time period which is started only after the power being transferred through the applicator is determined to have reached a predetermined level. In an alternative method, the effective power transfer is reached by applying microwave power for a time period sufficient for the sum of the determined power levels being transferred through the applicator for a plurality of time increments reaches a predetermined sum.

[0020] The detection of microwave radiation reflected in the waveguide is preferably performed using a directional coupler associated with the waveguide and operable to measure the complex reflection coefficient of the load thereby enabling determination in real time of the power being transferred through the applicator.

[0021] For enabling monitoring of the effective power transfer and visual assessment of an effective syncope, the method preferably further includes the step of visually displaying during the stunning operation the microwave power being generated by the microwave generator, the microwave power being detected as reflected within the waveguide and arising from the degree of the impedance matching with the head, and the power determined from the generated and reflected power as being transferred through the applicator throughout the stunning operation thereby.

[0022] The method also preferably further includes the step of continually logging during the stunning operation the microwave power being generated by the microwave generator, the microwave power being detected as reflected within the waveguide and arising from the degree of the impedance matching with the head, and the power determined from the generated and reflected power as being transferred through the applicator throughout the stunning operation so as to provide a stored record of parameters of the stunning operation for subsequent analysis for regulatory compliance, process research, and operation management purposes.

[0023] According to a second aspect of the invention there is provided an animal stunning apparatus according to claim 9 for inducing substantially immediate unconsciousness and insensibility enabling processing or handling of a subject animal, the apparatus including:

a stunning station to which a live subject animal to be processed or handled is introduced, the stunning station being arranged to locate the subject animal in a confined position,

a microwave generator for generating and radiating microwave energy of a suitable power level and frequency,

a waveguide coupled to the generator so as to receive microwave radiation and direct the microwave radiation to an operative end of the waveguide,

characterised in that the apparatus further includes

an applicator located so as to contact an application point on the live subject animal's head immediately overlying a frontal portion of the animal's brain, the applicator having peripheral portions which define an opening and which contact the animal's head to surround the application point when the applicator is in an operative position, the applicator having a coupling conformation to couple microwave radiation passing therethrough and emerging from the opening of the applicator when located in its operative position at the application point so that the emerging radiation passes to the head and to the frontal portion of the brain of the subject animal when in the confined position at the stunning station,

the applicator being located at the operative end of the waveguide so that the radiation emerging through the opening thereby heats the frontal portion of the brain of the subject animal beneath the application point which the applicator contacts in use, and

a switch operable so as to discontinue the application of microwave radiation effecting heating

of the frontal portion of the brain after a period of time sufficient to have raised the temperature of the frontal portion of the brain of the subject animal to thereby induce the unconsciousness and insensibility, and

wherein the apparatus further includes an auto-tuner operatively associated with the waveguide and which detects reflected power of microwave radiation in the waveguide resulting from the degree of the impedance matching between the applicator and the head and which continually tunes the waveguide to reduce the reflected power and increase the transfer of the microwave power to the head.

[0024] Preferably the auto-tuner is operable in an iterative manner to continually tune the waveguide during the application of microwave radiation so as to continually improve or maintain impedance matching while the impedance of the head changes due to heating.

[0025] Preferably the peripheral portions of the applicator are yieldable so as to conform in shape to the shape of the animal's head at the application point upon relative operative positioning of the applicator at the application point. The peripheral portions of the applicator are preferably flexible so as to yield and conform to the surface shape of the animal's head at the application point, the flexible peripheral portions of the applicator being impermeable to microwave radiation.

[0026] In one possible construction the peripheral portions of the applicator defining the opening are composed of metallic braid so as to be flexible to conform to the surface shape, so as to be impermeable to microwave radiation, and so as to be resilient to substantially return to an initial state after the removal of the applicator from the application point.

[0027] Alternatively or in addition to a yieldable peripheral portion at the opening, the waveguide or applicator may include a movable joint enabling limited movement of the applicator to improve contact of the peripheral portions of the applicator defining the opening for different relative positions and conformations of the animal's head and to limit microwave leakage at the application point. In this construction, the moveable joint may enable limited movement of the applicator about two orthogonal axes which are generally parallel to the surface of the animal's head at the application point where the applicant's head is presented for contact with the applicator.

[0028] The apparatus may further include a head detector switch mounted by the applicator and operable to switch its state only upon achievement of positive sealing contact of the applicator with the animal's head at the application point. The switch may be operable to changes its state only upon deformation of the flexible peripheral portions of the applicator defining the opening being flexed to an extent achieved when close contact of the applicator with the surface of the animal's head at the application point has been achieved, the switch being connected in a circuit preventing commencement of application of microwaves to the animal's head until the switch has changed its state indicative of effective sealing contact of the

applicator with the animal's head.

Brief description of the drawings

[0029] Possible and preferred features of the present invention will now be described with particular reference to the accompanying drawings. However it is to be understood that the features illustrated in and described with reference to the drawings are not to be construed as limiting on the scope of the invention. In the drawings:

Figure 1 is an illustration of a cattle head with the application point for the microwave radiation indicated.

Figure 2 schematically illustrates in side view an animal stunning station with stunning apparatus according to one embodiment of the invention.

Figure 3 schematically illustrates in side view an animal stunning station with stunning apparatus according to a second embodiment of the invention.

Figure 4 is a detailed side view of the outlet end of a microwave applicator which is applied to the animal head,

Figure 5 is a view of a graphical display at the control station enabling viewing of parameters to ensure effective stunning.

[0030] The illustrated apparatus of Figure 2 is mostly the same as that described and illustrated in the applicant's specification WO2011/137497 and reference may be made to that specification for more detail than described here. In summary however, the apparatus includes an animal stunning station 10 which includes an enclosure 11 or crush. The animal is introduced into the enclosure through entrance 12 and confined therein between the entrance 12, which has a door which closes behind the animal. An opening 20 at the head end 17 of the enclosure 11 enables the animal to place its head 50 through the opening. The stunning station 10 includes head positioning means 25 to locate and present the animal's head 50 in a defined position to the microwave applicator 60. The applicator point 51 where the microwave radiation is to be applied by the applicator 60 is, as shown in Figure 1, medially located on the head above a line extending between the animal's eyes so as to be located at the external point closest to the central frontal portion of the brain.

[0031] The embodiment of Figure 3 will include the same or similar elements to locate, restrain, and support the animal, but to simplify the drawing these are not illustrated.

[0032] The stunning station in the illustrated apparatus of Figures 2 and 3 locates the animal in the confined position so that the applicator 60 can contact the application point 51 immediately overlying a frontal portion of the animal's brain. The applicator 60 has a coupling conformation

61 to couple microwave radiation therethrough to the head 50 and of the animal. A microwave generator 75 generates and radiates microwave energy of a suitable power level and frequency. Waveguide 76 is coupled to the generator so as to receive and direct the microwave radiation to the applicator 60 located at an operative end 77 of the waveguide. Switching means 78 (schematically shown in Figure 2 and being part of the controller 40 in Figure 30) is operable to discontinue the application of microwave radiation effecting the heating of the frontal portion of the brain after a period of time sufficient to raise the temperature of the frontal portion of the brain of the animal to thereby induce unconsciousness and insensibility or syncope,

[0033] If the animal is to be stunned for ritual slaughter requiring the animal to be live, or if the animal is to be held insensible for a time, e.g. for performing veterinary tests or processes, after which the animal is to be returned to its normal sensible and conscious condition by allowing the temperature of the front portion of the brain to return to normal, the switching means 78 is operable to discontinue the application of microwave radiation immediately after a period which is:

- sufficient only to rapidly induce insensibility and
- insufficient
 - 1. (i) for the insensibility induced to be irreversible, and
 - 2. (ii) to cause significant heating of the brain tissues and including the brain stem.

[0034] Figures 2 and 3 schematically illustrates the waveguide 76 provided with an associated auto-tuner 90 to improve the tuning efficiency and effectiveness between different animals being processed and to enable adjustment of the tuning as the dielectric properties of the animal heads change with temperature. As our research has discovered, animal heads have different impedances, with numerous variables affecting that property, such as animal breed, age, sex, physical features of individual animals such as different tissue thicknesses and compositions (bone, muscle, fat, hide, etc.) and different shapes of head and different surface features and surface materials (fur, wool, hair), different temperatures (at the start and during microwave application), moisture content. Tuning of the impedance of the waveguide and applicator to each animal head as it is presented has been conceived and found to be beneficial.

[0035] The auto-tuner 90 in Fig 2 includes a directional coupler 91 mounted to and operatively associated with the waveguide 76. The directional coupler 91 associated with the waveguide is operable to measure the complex reflection coefficient of the load 50 thereby enabling determination in real time of the power being transferred through the applicator 60. For example the coupler samples the standing wave in the waveguide, e.g. by providing probes 92 at spaced points lengthwise of the waveguide, optimally at 60° intervals of the guide wavelength. The coupler 91 provides data signals to the processor 94 which can be constructed or programmed to analyse the signals from the coupler 91 and to determine forward and reflected power levels. A target reflected power level may be programmed for the

apparatus to achieve by tuning of the waveguide. Effectively the coupler 91 and associated processor 94 are determining the impedance by determining the complex reflection co-efficient of the microwave load (i.e. the head 50).

[0036] The apparatus also includes a tuner 96 associated with the waveguide 76 and which is responsive to the processor 94, The tuner may for example comprise moveable members 97 having associated drives 98 so that, in response to command signals from the processor 94, the drives 98 move the respective positions of the members 97 within the waveguide 76, thereby altering the impedance characteristics of the waveguide. The direction and extent of the movements of the members 97 are controlled by the processor so as to adjust the impedance of the waveguide in a manner to reduce the reflected power towards the programmed target and which will indicate improved effective coupling of the microwaves to the head 50,

[0037] Each animal head 50 has a different impedance, e.g. due to differences in the sizes and composition of the heads, and due to the positions of the heads in relation to the applicator 60, As soon as power is applied, the auto-tuner 90 begins analysing the impedance and adjusting the tuner 96 so as to improve the impedance matching between the waveguide 76 and applicator 60 and the load, i.e. the head 50. As the application of microwave radiation to the head 50 occurs and warming of the head and frontal brain tissues begins, the impedance of the head 50 will change, Therefore the auto-tuner 90 is operative to continually monitor the reflected power and to automatically adjust the tuner 96 and maintain or improve the power coupling to the head 50. Thus by automatically impedance matching between the waveguide and applicator and the head at the commencement of the stunning operation, and by continually monitoring and auto-tuning of the waveguide in an iterative manner to maintain impedance matching, the rate of heating of the animal head 50 and particularly of the frontal brain region can be increase, thus decreasing the duration of the heating time necessary to induce unconsciousness and insensibility.

[0038] Referring to the embodiment of Figure 3, the same reference numerals are used for the same components as Figure 2. However in this embodiment a supervisory controller 40 is incorporated to significantly improve the effectiveness of the animal stunning operations, A function of the controller 40 is to terminate the period of time during which application of the microwave radiation is continued and during which the tuning is continually performed by the auto-tuner 90 after there has been an effective power transfer defined as sufficient to achieve an effective syncope of the animal. In particular, the effective power transfer is determined by as a function of power transferred to the animal and excluding reflected power, The data from the directional coupler 91 and the processor 94 enable the power of microwave radiation being reflected to be measured continually, and from the power generated by the microwave generator 75 and from the measured reflected power the actual power being transferred from the applicator 60 can be determined by the processor 94 or by the controller 40 which receives data continually from the auto-tuner 90.

[0039] As shown in Figure 5, a graphical display 45 is provided at the control station where the

controller 40 is located, the display enabling viewing of parameters to ensure effective stunning. In Figure 5 the display is a plot generated in real time of power as a function of time. There are three superimposed plots:

- * forward power "Pf" representing the microwave power detected by the directional coupler 91 being generated and transferred by the waveguide,
- * reflected power "Pr" representing the microwave power detected by the directional coupler 91 being reflected within the waveguide, primarily arising from impedance mismatch with the load, and
- * transferred power "Pe" which substantially equates to the power being absorbed by the load (if there is little leakage of microwave power at the application point) and which can be computed as the difference between the forward or generated power and the reflected power.

[0040] It can be seen that the reflected power Pr falls to zero only after a period of time as the auto-tuner proceeds to match the impedances of the waveguide and applicator with the load (animal's head). The time taken to fall to zero is desirably minimised but without prejudice to the achievement of an effective stun, so the period of effective application of microwave power is not solely a function of time that the generator is operating. The curve Pe is more significant in determining effectiveness.

[0041] In order for the process and apparatus to ensure the effective power transfer defined as sufficient to achieve an effective syncope of the animal is reached, the controller in one embodiment applies microwave power for a predetermined time period which is started only after the power being transferred through the applicator 60 is determined to have reached a predetermined level. This is shown in Figure 5 by the level marked "Pmin" which can be the power level that the Pe measure must reach before the timer starts.

[0042] In an alternative possible embodiment, in order for the process and apparatus to ensure the effective power transfer defined as sufficient to achieve an effective syncope of the animal is reached, the controller 40 applies microwave power for a time period sufficient for the sum of the determined power levels Pe being transferred through the applicator 60 for a plurality of time increments dt reaches a predetermined sum. Effectively the controller is computing in real time an integral representing the area under the plot of the Pe level which can provide a more accurate measure of power absorbed by the load 50 than, say, the crude power generated by the microwave generator 75 or the forward power Pf. When a predetermined sum or value of the integral is reached, the application of power is stopped.

[0043] By visually displaying during the stunning operation the microwave power Pf being generated by the microwave generator 75, the microwave power Pr being detected as reflected within the waveguide 76 and arising from the degree of the impedance matching with the head 50, and the power Pe determined from the generated and reflected power as being

transferred through the applicator 60 throughout the stunning operation, monitoring of the effective power transfer and visual assessment of an effective syncope are possible,

[0044] The system in Figure 3 includes a memory or storage 48 in which the controller 40 continually logs during the stunning operation (1) the microwave power Pf being generated by the microwave generator 75 and transmitting through the waveguide 76, (2) the microwave power Pr being detected as reflected within the waveguide 76 and arising from the degree of the impedance matching with the head 50, and (3) the power Pe determined from the generated and reflected power as being transferred through the applicator 60 throughout the stunning operation so as to provide a stored record of parameters of the stunning operation for subsequent analysis for regulatory compliance, process research, and operation management purposes.

[0045] Other data will also be recorded and stored in a functioning installation such as individual animal identification associated with the respective log of a stun performed. Data display and logging can also include for example the complex reflection coefficient displayed in various formats, including magnitude, phase, return loss, VSWR, polar display, as well as measurements of incident, reflected and absorbed power. Much other process data and apparatus operational data will also be stored, together with operator information and recordable comments for later regulatory compliance assessment, system maintenance and operation review, process refinement and development, etc. These functions are known for industrial control systems such as SCADA (supervisory control and data acquisition) systems. Such SCADA systems have HMI (human machine interfaces) which present processed data to a human operator and through which the operator monitors and controls the stunning processes,

[0046] Auto-tuners suitable for use in the apparatus of the present invention may be composed of a "Homer Analyzer" (an automatic impedance and power measurement system) such as the Homer Autotuner Stolpa, Model STHT v2,3, from S-TEAM Lab, Slovak Republic, which is operatively coupled to a motorised tuner such as one obtained from, or analogous to those made by, Muegge GmbH (Reichelsheim, Germany).

[0047] In Figures 2 and 3, the applicator 60 is illustrated without detail of its construction and configuration. However it has an opening 62 through which the microwave radiation from the waveguide 76 is coupled to the animal's head 50 at the application point 51. There are peripheral portions of the applicator defining the opening 62 which contact the animal's head so as to surround the application point 51 when the applicator 60 is in its operative position. The configuration of the opening 62 is chosen with consideration to providing impedance matching between the impedance of the applicator 60 and the tissues at the application point 51. The area bounded by the peripheral portions 63 are composed of shielding material, typically metal, to provide power transfer to the animal tissues without microwave leakage.

[0048] In WO2011/137497, Figure 4, the peripheral portions 63 are composed of shielding material and are configured so as to project slightly beyond the opening 62 so that they press

into the surface tissues of the animal, typically by about 1-2mm, with the aim of achieving good coupling and microwave energy transfer without leakage and also to resist transverse movement of the applicator 60 if the animal attempts to move its head particularly generally in the plane of the opening 62. However the considerable variability of animal head conformations has been found to enable microwave leakage even with a firm pressure of the applicator against the animal heads.

[0049] The applicator 60 shown in the present Figure 4 comprises peripheral portions 63 surrounding the opening 62 of the applicator 60 which are yieldable so as to conform in shape to the shape of the animal's head at the application point upon relative operative positioning of the applicator 60 at the application point. In the illustrated embodiment, the peripheral portions 63 of the applicator are flexible so as to yield and conform to the surface shape of the animal's head at the application point, the flexible peripheral portions of the applicator being impermeable to microwave radiation.

[0050] In the embodiment of Figure 4, the peripheral portions 63 of the applicator 60 defining the opening 62 are composed of metallic braid so as to be flexible to conform to the surface shape, so as to be impermeable to microwave radiation, and so as to be resilient to substantially return to an initial state after the removal of the applicator from the application point. The braid 64 may be wound around a resilient core such as a resilient rubber or polymer tube, like a pressure hose used for example in pneumatic or hydraulic applications. Other constructions of the peripheral portions 63 of the applicator 60 are possible, such as a flexible metallic foil skirt, or a mesh which is flexible or deformable and surrounds the opening 62.

[0051] In addition to, or as an alternative to, the flexible peripheral portions 63 surrounding the opening 62, the waveguide 76 or applicator 60 can include a movable joint 66 enabling limited movement of the applicator to improve contact of the peripheral portions 63 of the applicator defining the opening 62 for different relative positions and conformations of the animal's head and to limit microwave leakage at the application point. As illustrated in Figure 4, for example, the moveable joint 66 can be constructed and operable to enable limited movement of the applicator about two orthogonal axes X and Y which in use are generally parallel to the surface of the animal's head at the application point where the applicant's head is presented for contact with the applicator, The particular joint 66 shown resembles a concertina formation of a section of the passage of the waveguide or applicator, but other joint constructions are possible.

[0052] The apparatus in Figures 3 and 4 shows the provision of a head detector switch 68 mounted near, e.g. mounted by, the applicator 60 and operable to switch its state only upon achievement of positive contact of the applicator 60 with the animal's head 50 at the application point 51. Initially the switch 68 can function to stop operation of the mechanism used to relatively raise the animal's head to the applicator 60 before the stunning operation. However the switch 68 can also serve to switch its state only upon achievement of positive sealing contact of the applicator with the animal's head sufficient to minimise or prevent microwave leakage at the application point, In particular, the switch 68 can be positioned so

that its extremity 69 which is pressed to change the state of the switch requires deformation of the flexible peripheral portions 63 of the applicator 60 defining the opening 62 to an extent achieved when close contact of the applicator with the surface of the animal's head at the application point has been achieved. The switch 68 is connected in a circuit of the controller 40 which prevents commencement of application of microwaves to the animal's head until the switch has changed its state indicative of effective sealing contact of the applicator with the animal's head,

[0053] A further enhancement of the apparatus to help ensure sealing of the applicator 60 to the surface of the animal's head 50 at the application point 51 so as the minimise the leakage of microwave radiation at that point is the provision of a light sensor 67 illustrated schematically in Figure 4 located within or close to the opening 62 and operative to detect any significant light entering the opening around the peripheral portion 63. Such light entry would indicate that a suitable seal of the applicator against the animal's head against microwave leakage may not be achieved. The controller 40 can be connected to the light sensor 67 similarly to the head detector switch 68 to prevent microwave application if there is likely to be a microwave leakage as indicated by the light detection.

[0054] As shown in Figure 2, the stunning station 10 includes a microwave shielding 80 surrounding at least the position of the animal head 50 when the animal is in its confined position. The shielding 80 forms a Faraday cage for limiting or preventing leakage of microwave radiation, The animal's head 50 in use extends through the opening 20 which constitutes an opening into the Faraday cage. The head end 17, particularly the panels 21, 22 effectively form part of the Faraday cage, In Figure 3 the shielding 80 forming the Faraday cage surrounds the entire stunning station 10 and includes the access door 12 which has an associated system safety switch 81 which must be closed (indicating complete closure of the Faraday cage) before the controller can activate the stunning cycle. An emergency stop switch 82 is located inside the Faraday cage for use if a person is ever inadvertently inside the cage when microwave generation starts or is about to be started. Other safety features can include warning lights on the generator and on the cage which brightly flash to alert operators when microwaves are being generated, A microwave radiation detector outside the cage can shut down the generator if it detects radiation indicating the Faraday cage is leaking. An exhaust shown in Figure 3 extends from the vicinity of the location of the animal head to extract steam and dust away from the applicator. A quartz window can be installed inside the waveguide between the auto-tuner and the applicator to protect the auto-tuner and magnetron from dust and unlikely plasma formation. Water cooling systems are associated with the generator and the auto-tuner. An arc detector can be installed inside the waveguide to shut off the generator if it detects plasma or arc formation.

[0055] An operator stationed at the controller 40 can receive all system data and information enabling monitoring and control of the stunning operations. The system monitoring includes verification that the animal has been loaded into the cage and applicator positioned so the head proximity switch has switched state, and the Faraday cage door switch indicates door closure. The operator can then perform a visual inspection to ensure no personnel are in the

cage and the animal head is correctly positioned. The information about each animal presented can be used by the operator to set the stun parameters, particularly the time and/or power of microwave application, This can be an "effective" time which the controller then adjusts automatically as described earlier to allow for auto-tuner delay in impedance matching. The apparatus may also include an automatic timer control (not shown) to start and terminate the application of microwave radiation to the animal head depending on programmed criteria. For example, the knocking box may include an animal weight sensor, the output of which is fed to the timer control which is taken into account in determining the necessary period for the application of microwaves according to an algorithm or formula.

[0056] The microwave generator 75 may be generally conventional in construction and operation. The frequency of the microwave radiation generated and transmitted through the associated waveguide may be any suitable value, Tests involving the application of microwave radiation to cattle and sheep heads have utilised microwave generators operating at frequencies commercially utilised in Australia, namely 922 MHz and 2.45 GHz. These tests demonstrated that with the lower frequency 922 MHz there is better penetration of the energy and less unwanted heating of tissues at the surface and in surrounding tissues, so such a lower frequency is preferred. Other countries use different microwave frequencies, e.g. 896 MHz in UK and 915 MHz in US. These would be effective also. The optimum frequency or frequency range can be determined empirically and is believed to be in the range 500 MHz - 1 GHz.

[0057] WO2011/137497 describes considerations regarding the power requirements of the microwave generator and aspects of the modes of microwave radiation being generated and used, and reference may be made to that specification for more such data,

[0058] Preferably the temperature rise of the frontal portion of the brain to induce reversible unconsciousness and insensibility is in the range of about 5°C to less than about 10°C. For example, tests with live (anaesthetised) sheep showed frontal brain heating to about 43°C produced electroencephalogram (EEG) traces similar to those observed with electric stunning now widely used in abattoirs, thus indicating that that temperature would achieve unconsciousness and insensibility. However heating to about 50°C or more would start to produce protein denaturation and hence permanent tissue damage.

[0059] Upon the application of the microwave energy and achievement of the required degree of heating, the generation of microwave energy is preferably switched off (or otherwise stopped from application to the animal) so as to prevent further heating particularly if the stun is to be deemed reversible. Timely discontinuance of the application of microwave energy limits or prevents heating of deeper tissues, particularly the brain stem, to any significant extent, particularly heating to cause irreversible effects. In particular, heating of the mid and deep brain tissues and particularly the brain stem area (which controls cardiac and respiratory functions) to the same extent as the frontal portion is undesirable, because it may cause immediate effects, such as heart failure which may then lead to the stun and subsequent slaughter being deemed non-compliant with the religious ritual slaughter criteria, the animal

carcase being rejected as unacceptable for the intended consumption by the relevant religious group, with consequent devaluation of the carcase and its meat. In the case of sheep, brain stem heating should be limited to maintain the brain stem temperature to less than about 43°C,

[0060] Confinement of the major heating effect to the frontal portion of the animal brain in the process and apparatus of the present invention is required to render the induced insensibility reversible. The frontal portion of the brain is involved in cognitive, perception, sensory, and consciousness brain functioning or processes so that warming of this portion of the brain by the extent indicated leads to unconsciousness and insensibility but without causing irreversible damage to the brain tissues and brain functioning if the elevated temperature does not exceed 50°C.

[0061] However although particularly developed and described herein in relation to reversible stunning for ritual slaughter, the apparatus and method may be useful for other processes requiring reversible insensibility. Examples may include veterinary procedures in which temporary insensibility is required or useful. To avoid the animal regaining consciousness the microwave radiation may be applied in pulses or intermittently to maintain unconsciousness without permanent damage or other undesired effects. Analogously the apparatus and method may be useful for other animal processes or treatments or inspections, e.g. docking, tagging, branding, and inspections generally.

[0062] Because the stunning using the apparatus and process can produce insensibility or unconsciousness in a manner without excessive stress and pain, the invention can be extended for use as a permanent or irreversible stunning or killing system. By increasing the power or duration of the application of microwaves, the increased heating effect and/or deeper brain heating can enable a useful alternative to current irreversible electrical or percussive stunning of animals for slaughter.

[0063] It will be seen that the process and apparatus according to the preferred embodiments described herein, including those described in relation to the drawings, can enable stunning of animals, particularly animals for slaughter, so as to rapidly induce unconsciousness and insensibility enabling further processing or handling, including slaughter in a manner compliant with religious ritual criteria or handling for temporary, such as veterinary, processes because the stun is reversible. The stun also is carried out in a way that complies with good animal welfare handling practices. Indeed, the present inventive method and apparatus are potentially capable of being better than current practices, particularly relating to animal welfare outcomes. For example success rates for rapid and reliable stunning may be better, there may be less risk of operator error, and there may be less stress to animals. The present invention provides a combination of processes and constructions and operations of apparatus that individually and cumulatively enhance substantially the effective microwave coupling and energy transfer to the animal's head, so that stun time can be minimised with great benefits in animal welfare, worker health and safety, process monitoring and recording for regulatory and commercial purposes,

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US3973290A [0006]
- <u>US4616160A [0007]</u>
- DE4116670 [0008]
- JP3039615B [0009]
- <u>VVO2011137497A [0010] [0030] [0048] [0057]</u>
- EP0171620A [0011]

PATENTKRAV

10

15

20

25

30

1. Fremgangsmåde til bedøvelse af et dyr til fremkaldelse af bevidstløshed og følelsesløshed, der muliggør behandling eller håndtering af dyret, metoden inklusive trinnene: indføring af et levende pågældende dyr, der skal behandles eller håndteres, i

en bedøvelsesstation (10) og lokalisering af dyret i en generel snæver positi-

on, kendetegnet ved, at fremgangsmåden yderligere inkluderer:

lokalisering af en applikator (60) i en operativ position, således at applikatoren er i kontakt med et påføringspunkt (51) på dyrets hoved (50) umiddelbart over den forreste del af det pågældende dyrs hjerne, idet applikatoren har perifere dele (63) som definerer en åbning (62), og som berører dyrenes hoved for at omgive påføringspunktet (51), når applikatoren er i sin operative position, hvor applikatoren har en koblingstilpasning (61) til at koble mikrobølgestråling, der passerer gennem applikatoren og kommer ud fra åbningen (62) af applikatoren, når den er placeret i sin operative position på påføringspunktet, således at den nye mikrobølgestråling passerer til hovedet og til den forreste del af hjernen hos det pågældende dyr,

generering af mikrobølgestråling med et passende effektniveau og frekvens og dirigere denne stråling gennem en bølgeleder (76) til og gennem applikatoren, som er placeret ved en operativ ende (77) af bølgelederen, således at strålingen, der kommer ud gennem åbningen, derved opvarmer den forreste del af hjernen hos det pågældende dyr, detektering af reflekteret effekt af mikrobølgestråling i bølgelederen og, som reaktion på niveauet af reflekteret effekt, justering af bølgelederen for at reducere den reflekterede effekt, der detekteres ved at ændre impedansen for bølgelederen og applikatoren for bedre at matche impedansen af hovedet og derved øge overførslen af mikrobølgeeffekt til hovedet, og fortsætte applikationen af mikrobølgestrålingen og fortsætte med at indstille bølgelederen til at påvirke opvarmningen i en tidsperiode for at hæve temperaturen på den forreste del af hjernen, idet perioden er tilstrækkelig til fremkaldelse af følelsesløshed.

2. Fremgangsmåde ifølge krav 1, hvor en tidsperiode, hvorunder påføring af mikrobølgestrålingen fortsættes, og hvorunder justeringen kontinuerligt udføres, afsluttes efter en periode for en effektiv effektoverførsel defineret som tilstrækkelig til en effektiv synkope af dyret, den effektive effektoverførsel bestemmes som en funktion af effekt overført til dyret eksklusiv reflekteret effekt.

3. Fremgangsmåde ifølge krav 2 og yderligere omfattende trinnene af kontinuerlig måling af effekten af den reflekterede mikrobølgestråling, og bestemmelse af den effekt, der genereres af mikrobølgegeneratoren (75), og ud fra den målte reflekterede effekt den faktiske effekt, som overføres fra applikatoren (60).

5

10

15

35

- 4. Fremgangsmåde ifølge krav 3, hvor den effektive effektoverførsel nås ved at påføre mikrobølgeeffekt i en forudbestemt tidsperiode, der først startes efter de af 6. juni 2018 55269 ændrede krav 1-15, effekten overført gennem applikatoren (60) bestemmes til at have nået et forudbestemt niveau.
 - 5. Fremgangsmåde ifølge krav 3, hvor den effektive effektoverførsel nås ved at anvende mikrobølgeeffekt i en tidsperiode, der er tilstrækkelig til, at summen af de bestemte effektniveauer, der overføres gennem applikatoren (60) i et antal tidsintervaller, når en forudbestemt sum.
- 6. Fremgangsmåde ifølge ethvert af kravene 3 til 5, hvor påvisning af mikrobølgestråling, der reflekteres i bølgelederen (76), udføres ved anvendelse af en retningskobler (91), der er knyttet til bølgelederen, og som anvendes til at måle den komplekse refleksionskoefficient for belastningen, hvorved det bliver muligt at bestemme i realtid af kraften, der overføres gennem applikatoren (60).
- 7. Fremgangsmåde ifølge krav 1 og yderligere omfattende trinnet med visuel visning under bedøvelsesoperationen af mikrobølgeeffekten, der genereres af mikrobølgegeneratoren (75), hvor mikrobølgeeffekten detekteres som reflekteret i bølgelederen og som opstår fra graden af impedanstilpasning med hovedet, og den effekt der bestemmes ud fra den genererede og reflekterede effekt, som overføres gennem applikatoren under bedøvelsesoperation, hvorved det bliver muligt at overvåge den effektive effektoverførsel og visuel evaluering af en effektiv synkope.
 - 8. Fremgangsmåde ifølge krav 1 og yderligere omfattende trinnet med kontinuerlig registrering under bedøvelsesoperationen af mikrobølgekraften, der genereres af mikrobølgegeneratoren (75), idet mikrobølgeeffekten detekteres som reflekteret i bølge-

lederen (76) og som opstår fra graden af impedanstilpasningen med hovedet (50) og effekten bestemt fra den genererede og reflekterede effekt som overført gennem applikatoren (60) under bedøvelsesoperationen for at tilvejebringe en lagret registrering af parametre for bedøvelsesoperationen til efterfølgende analyse for lovgivningsmæssig overholdelse, procesundersøgelser og driftsledelsesformål.

9. Et apparat til bedøvelse af dyr til fremkaldelse af i det væsentlige øjeblikkelig bevidstløshed og følelsesløshed, der muliggør behandling eller håndtering af et pågældende dyr, hvor apparatet omfatter:

10

15

en bedøvelsesstation (10), hvortil et levende pågældende dyr, der skal behandles eller håndteres indføres, bedøvelsesstationen er indrettet til at lokalisere det pågældende dyr i en snæver position,

en mikrobølgegenerator (75) til generering og udstråling af mikrobølgeenergi med et passende effektniveau og frekvens,

en bølgeleder (76) koblet til generatoren for at modtage mikrobølgestråling og lede mikrobølgestrålingen til en operativ ende af bølgelederen,

kendetegnet ved, at apparatet yderligere omfatter

20

en applikator (60), der er placeret således, at den kommer i kontakt med et påføringspunkt (51) på det levende pågældende dyrs hoved (50), der straks ligger over en forreste del af dyrets hjerne, idet applikatoren har perifere dele (63), som definerer en åbning (62) og som kommer i kontakt med dyrets hoved for at omgive påføringspunktet (51), når applikatoren er i en operativ position, hvor applikatoren har en koblingstilpasning (61) til at forbinde mikrobølgestråling, der passerer derigennem og kommer ud fra åbningen (62) på applikatoren, placeret i sin operative position på påføringspunktet, således at den nye stråling passerer til hovedet og til den forreste del af hjernen hos det pågældende dyr, når det er i den lukkede position ved bedøvelsesstationen,

25

hvor applikatoren er placeret ved den operative ende af bølgelederen, således at strålingen, der fremkommer gennem åbningen, derved opvarmer den forreste del af hjernen hos det pågældende dyr under påføringspunktet, som applikatoren kontakter i brug, og en afbryder (78) der kan betjenes for at afbryde påføringen af mikrobølgestråling, der bevirker opvarmning af den forreste del

30

af hjernen efter en tidsperiode, der er tilstrækkelig til at have hævet temperaturen af den forreste del af hjernen hos det pågældende dyr til derved at inducere bevidstløshed og følelsesløshed, og

hvor apparatet yderligere omfatter en auto-tuner (90), der er operativt forbundet med bølgelederen (76), og som detekterer reflekteret effekt af mikrobølgestråling i bølgelederen, der skyldes graden af impedanstilpasning mellem applikatoren (60) og hovedet (50) og som kontinuerligt justerer bølgelederen for at reducere den reflekterede effekt og øge overførslen af mikrobølgeeffekten til hovedet.

10

10. Apparat ifølge krav 9, hvor auto-tuneren (80) kan betjenes på en iterativ måde til kontinuerligt at justere bølgelederen under påføring af mikrobølgestråling for kontinuerligt at forbedre eller opretholde impedanstilpasning, mens impedansen af hovedet (50) ændres på grund af opvarmning.

15

11. Apparat ifølge krav 9 eller 10, hvor applikatorens perifere dele (63) er fleksible for at tilpasse sig formen til dyrets hoved ved påføringspunktet ved relativ operativ placering af applikatoren ved påføringsstedet.

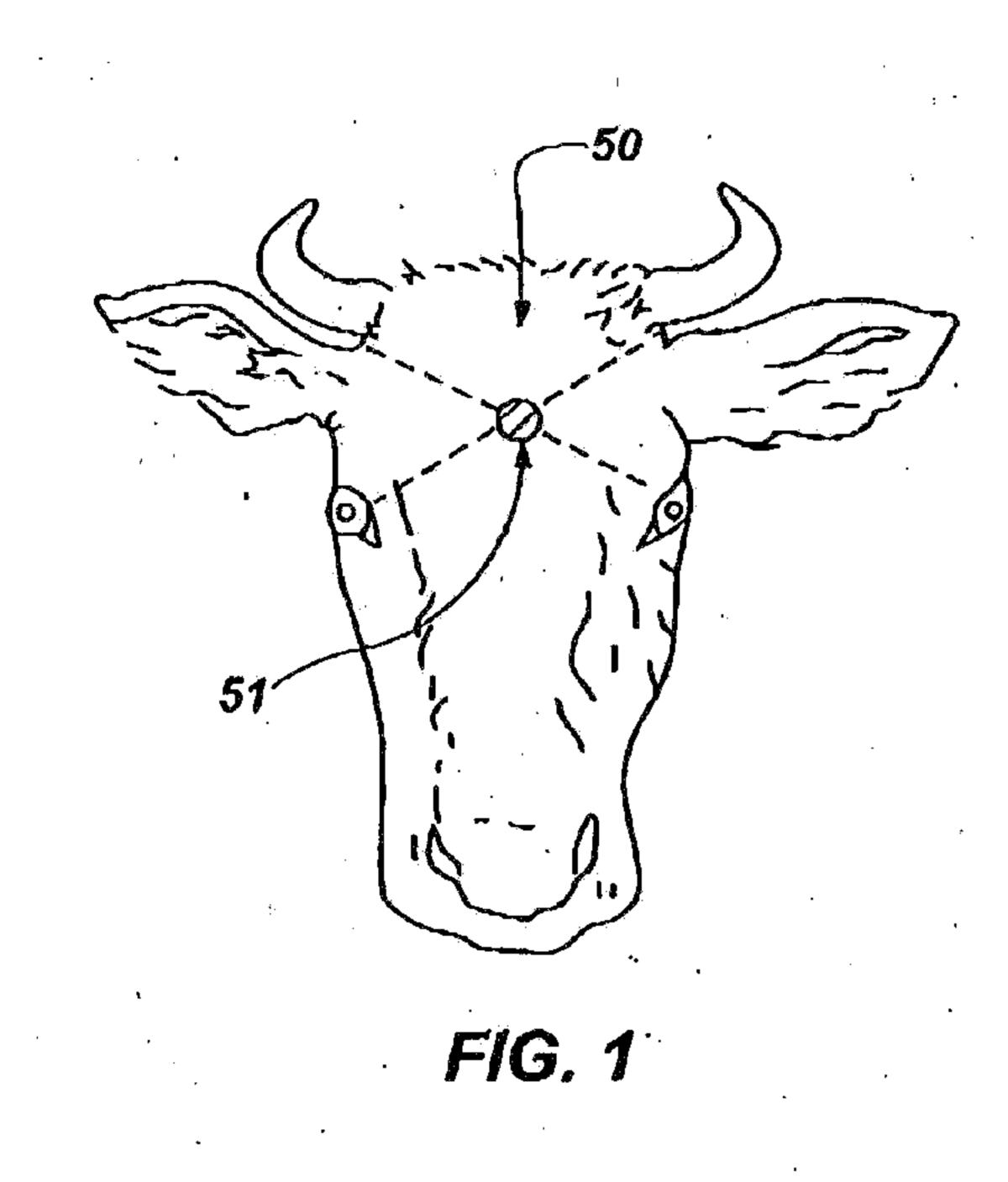
20

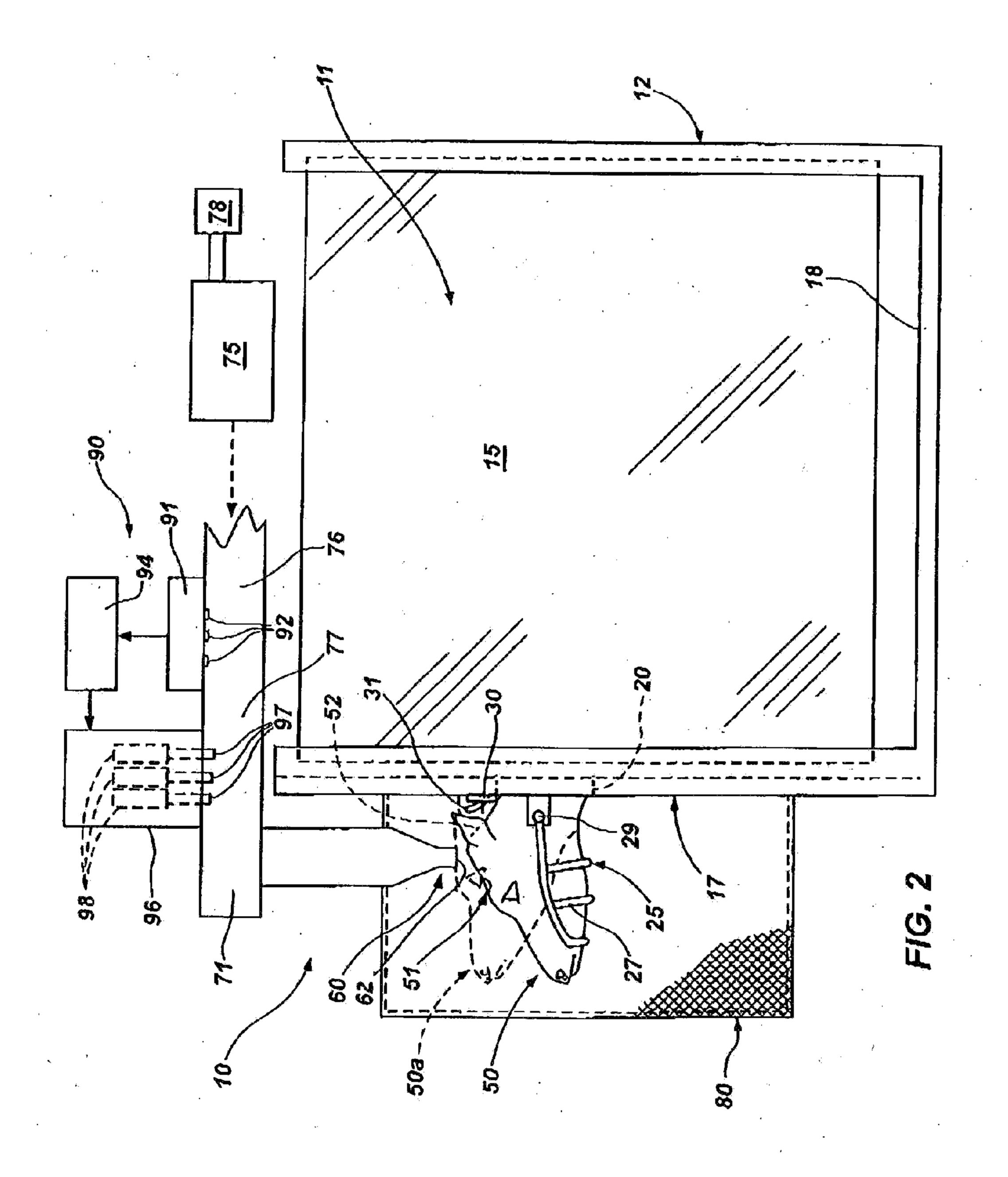
12. Apparat ifølge krav 11, hvor applikatorens (60) perifere dele er fleksible for at give efter og tilpasse sig overfladeformen af dyrets hoved (50) ved påføringspunktet (51), de fleksible perifere dele (53) af applikatoren er uigennemtrængelig for mikrobølgestråling.

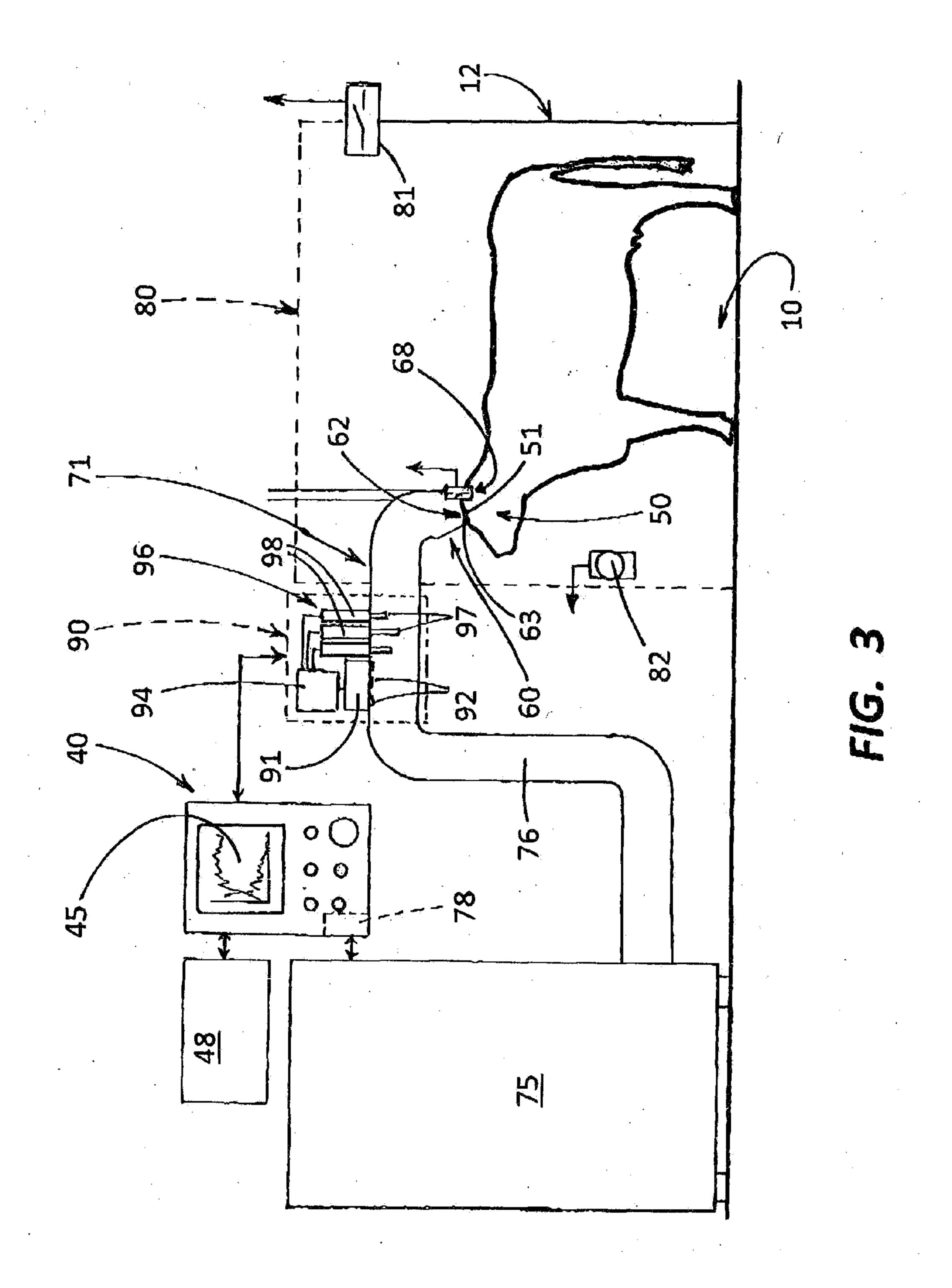
25

13. Apparat ifølge krav 12, hvor applikatorens (60) perifere dele (63), der definerer åbningen (62), er sammensat af metallisk fletning for at være fleksibel til at tilpasse sig overfladeformen, således at den er uigennemtrængelig for mikrobølgestråling, og således at den er elastisk for i det væsentlige at vende tilbage til en indledende tilstand efter fjernelse af applikatoren fra påføringspunktet.

30


14. Apparat ifølge ethvert af kravene 11 til 13, hvor bølgelederen (76) eller applikatoren (60) omfatter en bevægelig samling (66) eller sektion, der muliggør begrænset bevægelse af applikatoren for at forbedre kontakten mellem applikatorens perifere dele (63) og definerer åbningen (62) for forskellige relative positioner og tilpasninger


af dyrets hoved (50) samt for at begrænse mikrobølgelækage ved påføringspunktet (51).


15. Apparat ifølge ethvert af kravene 9 til 14 og yderligere omfattende en hoveddetektorafbryder (68) monteret ved applikatoren (60) og som kan skifte dets tilstand kun ved opnåelse af positiv tætningskontakt af applikatoren med dyrets hoved (50) på påføringspunktet (51).

5

DRAWINGS

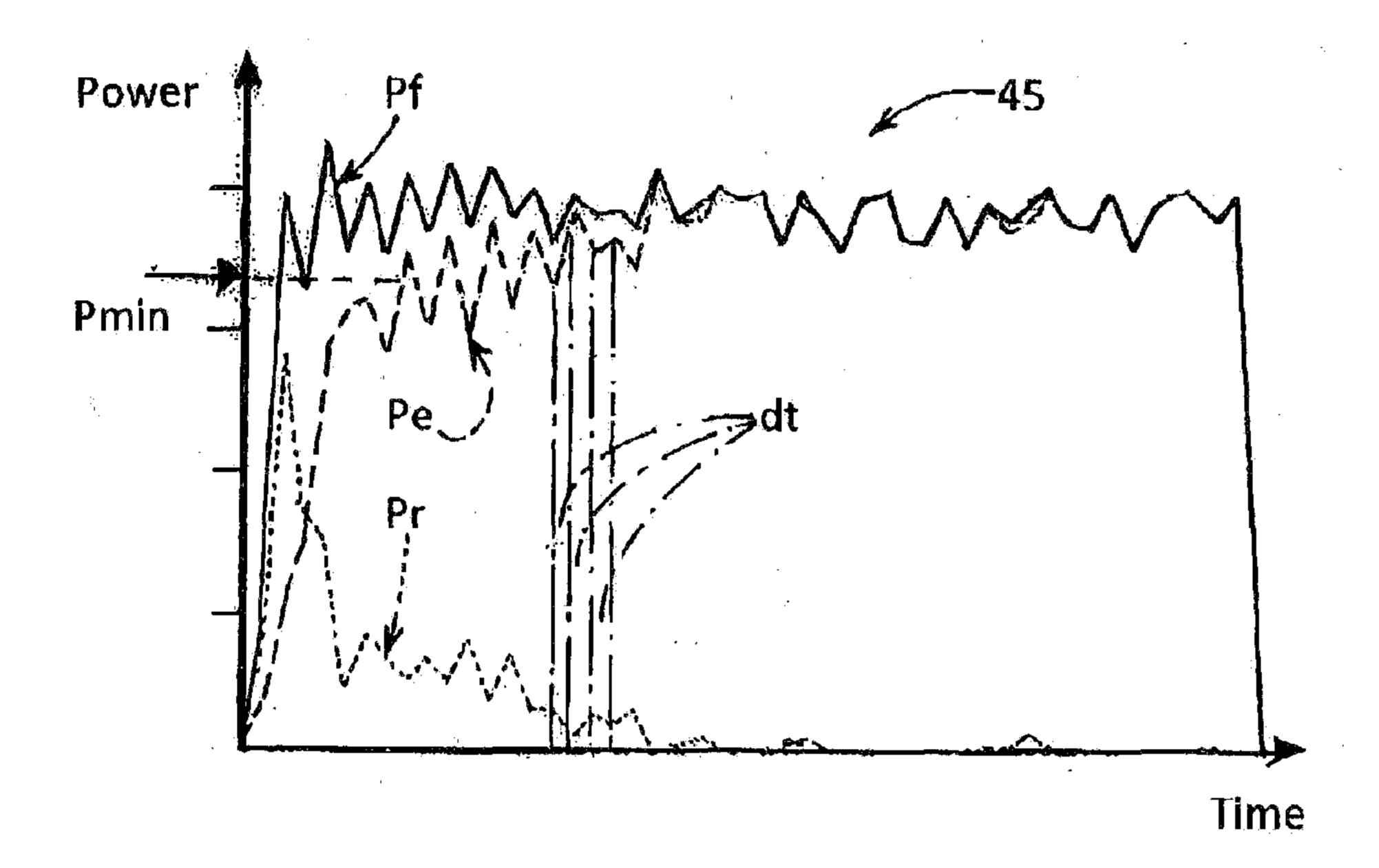


FIG. 5

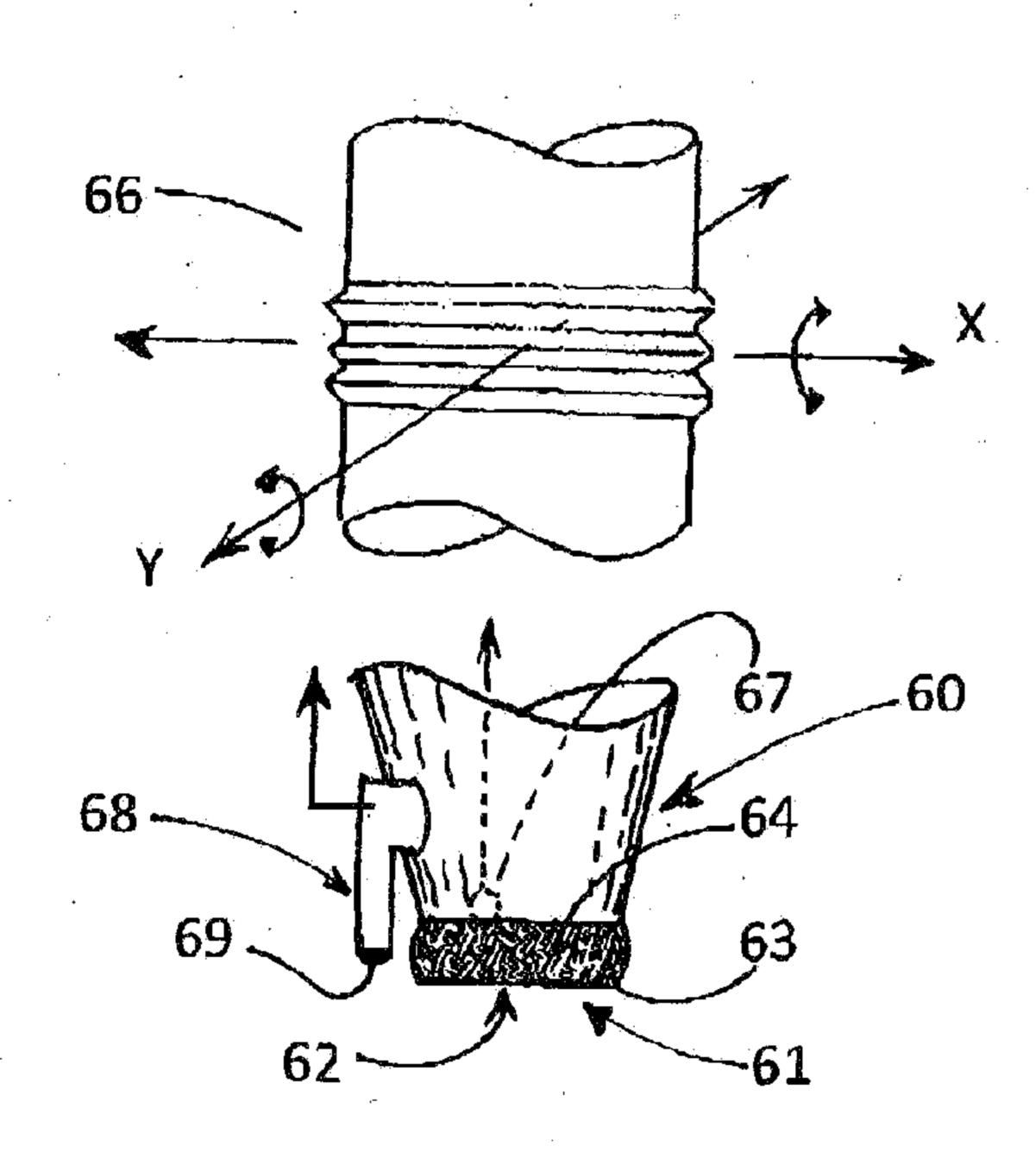


FIG. 4