I*I Innovation, Sciences et Innovation, Science and CA 2854022 C 2023/05/23

Développement économique Canada Economic Development Canada
Office de la Propriété Intellectuelle du Canada Canadian Intellectual Property Office (1 1)(21) 2 854 022
12y BREVET CANADIEN
CANADIAN PATENT
13 C
(22) Date de dépdt/Filing Date: 2014/06/11 (51) Cl.Int./Int.Cl. GO6F 16/93(2019.01),
(41) Mise a la disp. pub./Open to Public Insp.: 2015/12/11 GO6F 16/907 (2019.01)

Al . (72) Inventeurs/Inventors:
(45) Date de délivrance/lssue Date: 2023/05/23 CARBAJALES, SEBASTIAN, CA:

SCHWARZE, SASCHA, DE;
DANG, KHOI, US;
WATSON, THOMAS J., US;
DANG, DAO-QUYNH, US

(73) Propriétaire/Owner:
IBM CANADA LIMITED - IBM CANADA LIMITEE, CA

(74) Agent: CHAN, BILL W.K.

(54) Titre : CORRELATION D'ARTEFACTS ENTRE DOMAINES
(54) Title: ARTIFACT CORRELATION BETWEEN DOMAINS

104

NETWORK
102

(57) Abrégé/Abstract:

An illustrative embodiment of a computer-implemented method for correlating artifacts between a versioned domain and an un-
versioned domain, generates metadata having attributes of both of the versioned domain and the un-versioned domains, for an
artifact in a set of artifacts; creates an instance using a specific version of a versioned artifact definition, wherein the instance
comprises a first part directly created from the versioned artifact definition and a second part created from an un-versioned artifact
definition; specifies linkages between a respective representation of the artifact in the versioned domain and the un-versioned
domain; provides a set of facades through which a selected one of author, execute and update instances of the artifact is
performed using either the versioned domain or the un-versioned domain; and correlates all versions of the artifact definition to a
single un-versioned definition.

C an a dg http:vopic.ge.ca » Ottawa-Hull K1A 0C9 - aup.:/eipo.ge.ca OPIC

OPIC - CIPO 191

CA 02854022 2014-06-11

ABSTRACT

An illustrative embodiment of a computer-implemented method for correlating artifacts
between a versioned domain and an un-versioned domain, generates metadata having attributes
of both of the versioned domain and the un-versioned domains, for an artifact in a set of
artifacts; creates an instance using a specific version of a versioned artifact definition, wherein
the instance comprises a first part directly created from the versioned artifact definition and a
second part created from an un-versioned artifact definition; specifies linkages between a
respective representation of the artifact in the versioned domain and the un-versioned domain;
provides a set of facades through which a selected one of author, execute and update instances
of the artifact is performed using either the versioned domain or the un-versioned domain; and

correlates all versions of the artifact definition to a single un-versioned definition.

CA9-2014-0031CA1 4]

CA 02854022 2014-06-11

ARTIFACT CORRELATION BETWEEN DOMAINS
BACKGROUND

1. Technical Field:

[0001] This disclosure rel:ites generally to business process management and case
management in a data processing system and more specifically to correlating artifacts defined
and instantiated in a versioned domain to an un-versioned domain in the data processing

system.

2. Description of the Related Art:

[0002] Organizations produce content, or information, and often do this through some type of
process, in which the process is formally defined and executed by a system, or implicit through
human interactions between employees and with clients and/or partners. Content and processes
are key to a business of an organization therefore software systems are used to formalize these
processes as well as enable the cataloging and collection of information vital to the operation of
an organization.

[0003] Therefore, there is a requirement to architect the process and data definitions to enable
use in building applications, both internal and external, required for the organization to conduct
business successfully. This is not only true for documentation and processes, but also any type
of artifact, or metadata, that defines what constitutes core concepts of the organization. There
are two choices on how metadata is captured in software systems: versioned and un-versioned.
[0004] The versioned approach captures a relationship and chronology, or evolution, of a
particular artifact. This approach is useful when each particular version is important to the
operation of the system and must be accessible independent of other variations of the same
metadata (i.e. versions). Processes are an example. These processes generally define well-
structured flows, or relationship between activities. Processes are also often short lived and
multiple instances of the same process may be executed concurrently. As a result, the
respective definition may benefit from a versioned approach enabling multiple instances to
continue to execute without the risk of failing due to an unexpected or incompatible change. At

the same time, new versions can improve the process and allow new instances to immediately

CA9-2014-0031CA1 1

CA 02854022 2014-06-11

benefit from the improvement without the risk of affecting instances already in progress. For
example, the process that deals with an insurance claim may evolve over time. As the new
version is defined, the new version can be rolled out while instances of the older versions
continue to run to completion. The versioned approach allows for this flexibility.

[0005] The un-versioned approach basically states there is only one version of the metadata,
and that version of the metadata evolves over time. Content, or information, may be better
suited to this approach. A document, once created, will typically be long lived. For example, an
insurance policy definition may only include a few attributes when first defined, but as the
business of the insurance company grows a need to enhance the information captured by the
policy occurs while, at the same time, older policies must remain accessible and processed by
newer systems that work with the old policies. Unlike process definitions, document definitions
typically benefit from a single version that continues to evolve with the business. This is
especially true with regard to information mining. When a document definition has several
versions, the document becomes harder to search for and federate instances that correlate to
what is essentially a single document definition. Therefore, having only one document
definition be a common link between all documents in the system is an important attribute.
[0006] Depending upon the nature of the concept, there will be limitations with either
approach for some aspect of what is being defined. Consider data generated by a process. The
process itself, which is expected to evolve rapidly, can typically only be implemented with a
versioned approach due to the speed at which the process evolves and an associated
requirement to maintain several instances running concurrently. However, the information
associated with the process, or properties, is typically better suited to use of the un-versioned
approach. Using the example of the insurance claim process, documents and data may be
produced that must live long after the process has completed (and several new versions of the
process have already been deployed), but the information must also be searchable and relatable
to the single claims process that created the information. In general terms, this can be thought
of as two sides of the same coin. Metadata of an organization might, in some instance, need to
behave or be accessed as versioned (the process to resolve a claim) and, in other cases, as un-

versioned (the data associated with the claim in progress or resolved).

CA9-2014-0031CA1 2

CA 02854022 2014-06-11

SUMMARY

[0007] According to one embodiment, a computer-implemented method for correlating
artifacts between a versioned domain and an un-versioned domain, generates metadata having
attributes of both of the versioned domain and the un-versioned domains, for an artifact in a set
of artifacts wherein the metadata is associated with the set of artifacts used in the versioned
domain and the un-versioned domain; creates an instance using a specific version of a
versioned artifact definition, wherein the instance comprises a first part directly created from
the versioned artifact definition and a second part created from an un-versioned artifact
definition; specifying linkages between a respective representation of the artifact in the
versioned domain and the un-versioned domain, wherein a specified linkage defines a
relationship between multiple versions of an artifact in the versioned domain to a single un-
versioned representation of a same artifact in the un-versioned domain; in response to
providing a set of facades used to perform a selected one of author, execute and update
instances of the artifact from either the versioned domain or the un-versioned domain, receive
the selected one of author, execute and update instances of the artifact from either the versioned
domain or the un-versioned domain, wherein the selected one of author, execute and update
instances of the artifact is performed using a set of rules; and correlates all versions of the
artifact definition to a single un-versioned definition wherein the artifact definition of the single

un-versioned definition is also correlated to all versions of the artifact definition.

CA9-2014-0031CA1 3

CA 02854022 2014-06-11

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0008] For a more complete understanding of this disclosure, reference is now made to the
following brief description, taken in conjunction with the accompanying drawings and detailed
description, wherein like reference numerals represent like parts.

[0009] Figure 1 is a block diagram of an exemplary network data processing system operable
for various embodiments of the disclosure;

[0010] Figure 2 is a block diagram of an exemplary data processing system operable for
various embodiments of the disclosure;

[0011] Figure 3 is a block diagram of a versioned system operable for various embodiments
of the disclosure;

[0012] Figure 4 is a flowchart of a process of creating a new version in a versioned system
operable for various embodiments of the disclosure;

[0013] Figure 5 a block diagram of an un-versioned system operable for various
embodiments of the disclosure in accordance with one embodiment of the disclosure;

[0014] Figure 6 is a flowchart of a process of changing a definition in an un-versioned
system operable for various embodiments of the disclosure;

[0015] Figure 7 a block diagram of a hybrid system operable for various embodiments of the
disclosure;

[0016] Figure 8 is a block diagram of a hybrid system operable for various embodiments of
the disclosure;

[0017] Figure 9 is a flow chart of creating a new definition version in an un-versioned system
portion a hybrid system operable for various embodiments of the disclosure

[0018] Figure 10 is a flow chart of changing properties on the instance part created from a
versioned definition in a hybrid system operable for various embodiments of the disclosure;
[0019] Figure 11 is a flow chart of changing properties on the instance part created from an
un-versioned definition in a hybrid system operable for various embodiments of the disclosure;
and

[0020] Figure 12 a flow chart of a process for correlating artifacts between a versioned
domain and an un-versioned domain in a hybrid system operable for various embodiments of
the disclosure.

CA9-2014-0031CA1 4

CA 02854022 2014-06-11

DETAILED DESCRIPTION

[0021] Although an illustrative implementation of one or more embodiments is provided
below, the disclosed systems and/or methods may be implemented using any number of
techniques. This disclosure should in no way be limited to the illustrative implementations,
drawings, and techniques illustrated below, including the exemplary designs and
implementations illustrated and described herein, but may be modified within the scope of the
appended claims along with their full scope of equivalents.

[0022] As will be appreciated by one skilled in the art, aspects of the present disclosure may
be embodied in which the present invention may be a system, a method, and/or a computer
program product. The computer program product may include a computer readable storage
medium (or media) having computer readable program instructions thereon for causing a
processor to carry out aspects of the present invention.

[0023] The computer readable storage medium can be a tangible device that can retain and
store instructions for use by an instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an electronic storage device, a magnetic
storage device, an optical storage device, an electromagnetic storage device, a semiconductor
storage device, or any suitable combination of the foregoing. A non-exhaustive list of more
specific examples of the computer readable storage medium includes the following: a portable
computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM),
an erasable programmable read-only memory (EPROM or Flash memory), a static random
access memory (SRAM), a portable compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a mechanically encoded device such as
punch-cards or raised structures in a groove having instructions recorded thereon, and any
suitable combination of the foregoing. A computer readable storage medium, as used herein, is
not to be construed as being transitory signals per se, such as radio waves or other freely
propagating electromagnetic waves, electromagnetic waves propagating through a waveguide
or other transmission media (e.g., light pulses passing through a fiber-optic cable), or electrical
signals transmitted through a wire.

[0024] Computer readable program instructions described herein can be downloaded to

respective computing/processing devices from a computer readable storage medium or to an

CA9-2014-0031CA1 5

CA 02854022 2014-06-11

external computer or external storage device via a network, for example, the Internet, a local
area network, a wide area network and/or a wireless network. The network may comprise
copper transmission cables, optical transmission fibers, wireless transmission, routers,
firewalls, switches, gateway computers and/or edge servers. A network adapter card or
network interface in each computing/processing device receives computer readable program
instructions from the network and forwards the computer readable program instructions for
storage in a computer readable storage medium within the respective computing/processing
device.

[0025] Computer readable program instructions for carrying out operations of the present
invention may be assembler instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions, microcode, firmware instructions, state-
setting data, or either source code or object code written in any combination of one or more
programming languages, including an object oriented programming language such as
Smalltalk, C++ or the like, and conventional procedural programming languages, such as the
"C" programming language or similar programming languages. The computer readable
program instructions may execute entirely on the user's computer, partly on the user's
computer, as a stand-alone software package, partly on the user's computer and partly on a
remote computer or entirely on the remote computer or server. In the latter scenario, the remote
computer may be connected to the user's computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using an Internet Service Provider). In
some embodiments, electronic circuitry including, for example, programmable logic circuitry,
field-programmable gate arrays (FPGA), or programmable logic arrays (PLA) may execute the
computer readable program instructions by utilizing state information of the computer readable
program instructions to personalize the electronic circuitry, in order to perform aspects of the
present invention.

[0026] Aspects of the present invention are described herein with reference to flowchart
illustrations and/or block diagrams of methods, apparatus (systems), and computer program
products according to embodiments of the invention. It will be understood that each block of

the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart

CA9-2014-0031CA1 6

CA 02854022 2014-06-11

illustrations and/or block diagrams, can be implemented by computer readable program
instructions.

[0027] These computer readable program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions, which execute via the processor of
the computer or other programmable data processing apparatus, create means for implementing
the functions/acts specified in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored in a computer readable storage
medium that can direct a computer, a programmable data processing apparatus, and/or other
devices to function in a particular manner, such that the computer readable storage medium
having instructions stored therein comprises an article of manufacture including instructions
which implement aspects of the function/act specified in the flowchart and/or block diagram
block or blocks.

[0028] The computer readable program instructions may also be loaded onto a computer,
other programmable data processing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable apparatus or other device to
produce a computer implemented process, such that the instructions which execute on the
computer, other programmable apparatus, or other device implement the functions/acts
specified in the flowchart and/or block diagram block or blocks.

[0029] The flowchart and block diagrams in the Figures illustrate the architecture,
functionality, and operation of possible implementations of systems, methods, and computer
program products according to various embodiments of the present invention. In this regard,
each block in the flowchart or block diagrams may represent a module, segment, or portion of
instructions, which comprises one or more executable instructions for implementing the
specified logical function(s). In some alternative implementations, the functions noted in the
block may occur out of the order noted in the figures. For example, two blocks shown in
succession may, in fact, be executed substantially concurrently, or the blocks may sometimes
be executed in the reverse order, depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart illustration, and combinations of

blocks in the block diagrams and/or flowchart illustration, can be implemented by special

CA9-2014-0031CAl 7

CA 02854022 2014-06-11

purpose hardware-based systems that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer instructions.

[0030] With reference now to the figures and in particular with reference to Figures 1-2,
exemplary diagrams of data processing environments are provided in which illustrative
embodiments may be implemented. It should be appreciated that Figures 1-2 are only
exemplary and are not intended to assert or imply any limitation with regard to the
environments in which different embodiments may be implemented. Many modifications to
the depicted environments may be made.

[0031] Figure 1 depicts a pictorial representation of a network of data processing systems in
which illustrative embodiments may be implemented. Network data processing system 100 is a
network of computers in which the illustrative embodiments may be implemented. Network
data processing system 100 contains network 102, which is the medium used to provide
communications links between various devices and computers connected together within
network data processing system 100. Network 102 may include connections, such as wire,
wireless communication links, or fiber optic cables.

[0032] In the depicted example, server 104 and server 106 connect to network 102 along with
storage unit 108. In addition, clients 110, 112, and 114 connect to network 102. Clients 110,
112, and 114 may be, for example, personal computers or network computers. In the depicted
example, server 104 provides data, such as boot files, operating system images, and
applications to clients 110, 112, and 114. Clients 110, 112, and 114 are clients to server 104
and have access through network 102 to hybrid system 116 containing data structures, rules and
definitions applicable to versioned domains and un-versioned domains further described using
this example. Network data processing system 100 may include additional servers, clients, and
other devices not shown.

[0033] In the depicted example, network data processing system 100 is the Internet with
network 102 representing a worldwide collection of networks and gateways that use the
Transmission Control Protocol/Internet Protocol (TCP/IP) suite of protocols to communicate
with one another. At the heart of the Internet is a backbone of high-speed data communication
lines between major nodes or host computers, consisting of thousands of commercial,
governmental, educational and other computer systems that route data and messages. Of
course, network data processing system 100 also may be implemented as a number of different

CA9-2014-0031CA1 8

CA 02854022 2014-06-11

types of networks, such as for example, an intranet, a local area network (LAN), or a wide area
network (WAN). Figure 1 is intended as an example, and not as an architectural limitation for
the different illustrative embodiments.

[0034] With reference to Figure 2 a block diagram of an exemplary data processing system
operable for various embodiments of the disclosure is presented. In this illustrative example,
data processing system 200 includes communications fabric 202, which provides
communications between processor unit 204, memory 206, persistent storage 208,
communications unit 210, input/output (I/0) unit 212, and display 214.

[0035] Processor unit 204 serves to execute instructions for software that may be loaded into
memory 206. Processor unit 204 may be a set of one or more processors or may be a multi-
processor core, depending on the particular implementation. Further, processor unit 204 may
be implemented using one or more heterogeneous processor systems in which a main processor is
present with secondary processors on a single chip. As another illustrative example, processor
unit 204 may be a symmetric multi-processor system containing multiple processors of the same
type.

[0036] Memory 206 and persistent storage 208 are examples of storage devices 216. A
storage device is any piece of hardware that is capable of storing information, such as, for
example without limitation, data, program code in functional form, and/or other suitable
information either on a temporary basis and/or a permanent basis. Memory 206, in these
examples, may be, for example, a random access memory or any other suitable volatile or non-
volatile storage device. Persistent storage 208 may take various forms depending on the
particular implementation. For example, persistent storage 208 may contain one or more
components or devices. For example, persistent storage 208 may be a hard drive, a flash
memory, a rewritable optical disk, a rewritable magnetic tape, or some combination of the
above. The media used by persistent storage 208 also may be removable. For example, a
removable hard drive may be used for persistent storage 208.

[0037] Communications unit 210, in these examples, provides for communications with other
data processing systems or devices. In these examples, communications unit 210 is a network
interface card. Communications unit 210 may provide communications through the use of

either or both physical and wireless communications links.

CA9-2014-0031CA1 9

CA 02854022 2014-06-11

[0038] Input/output unit 212 allows for input and output of data with other devices that may be
connected to data processing system 200. For example, input/output unit 212 may provide a
connection for user input through a keyboard, a mouse, and/or some other suitable input device.
Further, input/output unit 212 may send output to a printer. Display 214 provides a mechanism
to display information to a user.

[0039] Instructions in a computer executable form or computer readable form for the operating
system, applications and/or programs may be located in storage devices 216, which are in
communication with processor unit 204 through communications fabric 202. In these
illustrative examples the instructions are in a functional form on persistent storage 208. These
instructions may be loaded into memory 206 for execution by processor unit 204. The
processes of the different embodiments may be performed by processor unit 204 using
computer-implemented instructions, which may be located in a memory, such as memory 206.
[0040] These instructions are referred to as program code, computer usable program code, or
computer readable program code that may be read and executed by a processor in processor
unit 204. The program code in the different embodiments may be embodied on different
physical or tangible computer readable storage media, such as memory 206 or persistent
storage 208.

[0041] Program code 218 is located in a functional form on computer readable storage media
220 that is may be selectively removable and may be loaded onto or transferred to data
processing system 200 for execution by processor unit 204. Program code 218 and computer
readable storage media 220 form computer program product 222 in these examples. In one
example, computer readable storage media 220 may be in a tangible form, such as, for
example, an optical or magnetic disc that is inserted or placed into a drive or other device that
is part of persistent storage 208 for transfer onto a storage device, such as a hard drive that is
part of persistent storage 208. In a tangible form, computer readable storage media 220 also
may take the form of a persistent storage, such as a hard drive, a thumb drive, or a flash
memory that is connected to data processing system 200. The tangible form of computer
readable storage media 220 is also referred to as computer recordable storage media or a
computer readable data storage device. In some instances, computer readable storage media

220 may not be removable. Using the current example, program code 218 comprises computer-

CA9-2014-0031CAl 10

CA 02854022 2014-06-11

implemented instructions in an implementation of an embodiment of hybrid system 116 of
Figure 1.

[0042] Alternatively, program code 218 may be transferred to data processing system 200 from
computer readable storage media 220 through a communications link to communications unit
210 and/or through a connection to input/output unit 212. The communications link and/or the
connection may be physical or wireless in the illustrative examples.

[0043] In some illustrative embodiments, program code 218 may be downloaded over a
network to persistent storage 208 from another device or data processing system for use within
data processing system 200. For instance, program code stored in a computer readable data
storage device in a server data processing system may be downloaded over a network from the
server to data processing system 200. The data processing system providing program code 218
may be a server computer, a client computer, or some other device capable of storing and
transmitting program code 218.

[0044] Using data processing system 200 of Figure 2 as an example, a computer-
implemented process for correlating artifacts between a versioned domain and an un-versioned
domain is presented. Processor unit 204 generates metadata having attributes of both of the
versioned domain and the un-versioned domains, for an artifact in a set of artifacts wherein the
metadata is associated with the set of artifacts used in the versioned domain and the un-
versioned domain. Processor unit 204 creates an instance using a specific version of a
versioned artifact definition, wherein the instance comprises a first part directly created from
the versioned artifact definition and a second part created from an un-versioned artifact
definition.

[0045] Processor unit 204 specifies linkages between a respective representation of the
artifact in the versioned domain and the un-versioned domain, wherein a specified linkage
defines a relationship between multiple versions of an artifact in the versioned domain to a
single un-versioned representation of a same artifact in the un-versioned domain. Processor unit
204 further in response to providing a set of facades used to perform a selected one of author,
execute and update instances of the artifact from either the versioned domain or the un-
versioned domain, receives the selected one of author, execute and update instances of the
artifact from either the versioned domain or the un-versioned domain, wherein the selected one

of author, execute and update instances of the artifact is performed using a set of rules.

CA9-2014-0031CA1 11

CA 02854022 2014-06-11

Processor unit 204 correlates all versions of the artifact definition to a single un-versioned
definition wherein the artifact definition of the single un-versioned definition is also correlated
to all versions of the artifact definition.

[0046] With reference to Figure 3 a block diagram of a versioned system operable for various
embodiments of the disclosure is presented. Figure 3 illustrates as an example a portion of
hybrid system 116 of Figure 1 in the form of versioned system 300 comprising definition
versions and associated instances of two different artifacts.

[0047] An example of a proposed system to handle a combination of versioned and un-
versioned usage is described by U.S. patent application publication US2012/0254828, in which
an implementation depends upon creation of a single aggregation model maintaining a union of
all data models for each version that can potentially be deployed to the system. This single
aggregation model in turn is used during deployment and runtime to adapt the behavior of the
system based on a device version being served. At runtime, the system operates on a single
version of the data but understands how to work with the single version of the data using the
aggregated model. The system as disclosed does not however maintain a relationship to an un-
versioned instance of the same data. The aggregate model is therefore only a way to generically
work with all versions deployed to the system.

[0048] In contrast with the cited patent application publication an embodiment of the
disclosure defines a way to correlate versions of a model/instance data to one un-versioned
model/instance data using unique identifiers. An embodiment of the disclosure does not use a
third model to maintain this relationship. The implied relationships are defined between the un-
versioned and versioned domains, each consisting of both artifact definitions (representative of
design or development time) and instance data (representative of runtime). These domains are
maintained concurrently by the system. An embodiment of the disclosure also defines rules
applicable to modifying the definition at design time, as well manipulating instance data at
runtime, on either domain.

[0049] At design (development) time a correlation operation is performed on the model
definitions (versioned and un-versioned) to ensure all definitions on the versioned domain are
compatible with the corresponding definition in the un-versioned domain. In other words,

ensuring the instance data corresponding to each domain can be represented the same way. An

CA9-2014-0031CA1 12

CA 02854022 2014-06-11

embodiment of the disclosure defines the rules for applying changes to the un-versioned
definition based on a corresponding change to a versioned definition.

[0050] At runtime, an embodiment of the disclosure defines a method to correlate versioned
and un-versioned instance data, backed by the corresponding versioned and un-versioned
definitions, both coexisting side by side for the purpose of reading and writing the versioned
and un-versioned instance data. That is, an embodiment of the disclosure defines both a facade
for reading and writing the versioned instance data as well as another facade for reading and
writing the un-versioned instance data. In addition, an embodiment of the disclosure defines the
rules for how updates applied to the versioned data are propagated to the un-versioned data, and
vice versa. Finally, an embodiment of the disclosure defines how constraints are defined and
applied when the versioned or un-versioned instance data is updated.

]0051] Cases are defined as a collection of information and activities. The respective
activities are captured in a process definition and the information as documents in, and
properties of, a case folder.

[0052] Processes are versioned, for the reasons stated previously. Processes need to evolve
quickly and without breaking existing instances. Therefore isolation through versions enables
an application to progress without difficulty. On the other hand, the information related to a
case is long lived. All instances of this information are associated to a single definition of its
structure in the form of a folder or document class.

[0053] Embodiments of the disclosure achieve a unified model having both versioned and un-
versioned attributes. A versioned system is able to capture the evolution of a definition of an
artifact through time. The versioned system typically captures the chronological order of these
versions. As a result, the versioned system inherently provides the necessary element to
compare and merge changes from one version to another as a means to evolve the definitions,
but more importantly, as a way to migrate instances associated with a particular prior definition
into the structure of another later definition. Although the versioned system typically captures
the chronological order of the versions the merging of attributes may also be performed without
consideration for a chronological order of the versions because the compare and merge of
changes from one version to another is not dependent upon chronological order.

[0054] Aside from metadata, as outlined above, versioned systems also provide isolation for
instances of the definition of the artifact. That is, a system can instantiate a particular version of

CA9-2014-0031CAl 13

CA 02854022 2014-06-11

the artifact and have the particular version of the instantiated artifact coexists with instances of
other versions of the same artifact. This isolation enables, for example, two versions of the
same claim process to run in the same system without interfering with each other. New versions
can be authored and executed, again, without risk to the existing instances in the system due to
the separation provided through isolation.

[0055] In the abbreviations of Figure 3, DID represents a definition identifier, V represents a
version identifier, while /ID represents an instance identifier. The storage devices, for example
storage unit 108 of Figure 1, containing versioned definitions 302 and versioned instances 304
are shown as separate units however the definition versions and associated instances may be
readily stored on the same storage device, for example a relational database.

[0056] Versioned definitions associated with a first definition identifier, including versions 1
through 3, are shown as identifiers DID 1 V1 306, DID 1 V2 308 and DID 1, V3 310. In a
similar manner definitions associated with a second definition identifier also including multiple
versions 1 through 3, are shown as identifiers DID 2 V1 312, DID 2 V2 314 and DID 2, V3
316. A

[0057] Instances in the example are defined as instance identifiers [ID 1 318, IID 2 320, IID 3
322, and IID 4 324. An instance is created from a specific definition version. In the current
example, the instances associated with identifiers 11D 1 318, IID 2 320, IID 3 322 are created
using the specific definition versions associated with identifiers DID 1 V2 308, DID 1 V3 310
and DID 1 V2 308 respectively while the instance associated with identifier IID 4 324 is
created using the specific definition version associated with identifier DID 2 V3 316. The
association between a particular definition version and an instance created using the respective
definition version is depicted in the figure using a dashed line.

[0058] With reference to Figure 4 a flowchart of a process of creating a new version in a
versioned system operable for various embodiments of the disclosure is presented. Figure 4
illustrates in a high level view a process using a portion of hybrid system 116 of Figure 1 in the
form of versioned system 300 of Figure 3.

[0059] When creating a new version the following operations depicted in process 400 are
required to create the new version of the definition of the artifact. Having a capability to create
new versions implies the system also has a capability to maintain the relationship between

versions.

CA9-2014-0031CAl 14

CA 02854022 2014-06-11

[0060] Process 400 begins (step 402) and uses a latest version » of the versioned system, such
as versioned system 300 of Figure 3 step (404). Changes to version n of the versioned
definition are received (step 406). The changes received are applied to the latest version n of
the versioned system to create version n+/ of the versioned definition (step 408). The output
generated is in the form of version n+1 of the versioned definition (step 410) and process
terminates thereafter (step 412).

[0061] Ultimately, a versioned system enables instance migration. Instance migration requires
comparison of two versions, a source version such as version »n and a target version, such as
version n+1 to determine how to morph the data to adapt an instance of the source version for
execution using the new (target) definition version. Instance migration is typically difficult and
sometimes impossible, depending on a type of change between versions.

[0062] With reference to Figure 5 a block diagram of an un-versioned system operable for
various embodiments of the disclosure is presented. Figure 5 illustrates in an example a portion
of hybrid system 116 of Figure 1 in the form of un-versioned system 500 comprising un-
versioned definitions and associated instances of two different artifacts.

[0063] Therefore although versioning enables frequent deployment and evolution, without
affecting execution, versioning is lacking in what is needed to maintain a federated view of the
data captured by the collection of instances that spawn from the various versions. In contrast,
un-versioned systems are much simpler. In an un-versioned system there is only one definition
of an artifact. The definition evolves over time by virtue of introducing changes into the
definition. However, there is also no concept of a checkpoint, or version, which would allow a
user to see a progression of the artifact over time. In an un-versioned system, all instances of an
artifact are associated with a single definition. Un-versioned system 500 illustrates the structure
of an un-versioned system.

[0064] In the abbreviations of Figure 5, DID represents a definition identifier, while 1ID
represents an instance identifier. The storage devices, for example storage unit 108 of Figure 1,
containing un-versioned definitions 502 and instances 504 are shown as separate units however
the definition versions and associated instances may be readily stored on the same storage
device, for example a relational database.

[0065] Similar to the naming conventions shown in Figure 3 un-versioned definitions

associated with a first definition and a second definition of un-versioned definitions 502 are

CA9-2014-0031CA1 15

CA 02854022 2014-06-11

shown as identifiers DID 1 506 and DID 2 508. However in this case there is no version
included in the definition identifier.

[0066] Instances in the example of un-versioned instances 504 are defined as instance
identifiers 1ID 1 510, 1ID 2 512, IID 3 514, and IID 4 516. An instance is created from a
specific definition. In the current example, the instances associated with identifiers I1ID 1 510,
IID 2 512, 1ID 3 514 of un-versioned system 500 are created using the specific definition
associated with identifier DID 1 506, while the instance associated with identifier IID 4 516 is
created using the specific definition associated with identifier DID 2 508. The association
between a particular definition version and an instance created using the respective definition
version is depicted in the figure using a dashed line.

[0067] With reference to Figure 6 a flowchart of a process of changing a definition in an un-
versioned system operable for various embodiments of the disclosure is presented. Figure 6
illustrates in a high level view a process of the evolution of an un-versioned artifact definition
using a portion of hybrid system 116 of Figure 1 in the form of un-versioned system 500 of
Figure 5.

[0068] When changing an artifact definition the following operations depicted in process 600
are required to create the changed definition of the artifact. Having a capability to change the
un-versioned definition implies the system also has a capability to maintain the changes in the
updated definition.

[0069] Process 600 begins (step 602) and uses a un-versioned definition of the artifact in the
un-versioned system, such as un-versioned system 500 of Figure 5 step (604). Changes to un-
versioned artifact definition are received (step 606). The changes received are applied to the un-
versioned artifact definition of the un-versioned system and saved to the same record as the
original un-versioned artifact definition (step 608). The output generated is in the form of an
updated artifact definition of the originating un-versioned artifact definition (step 610) and
process 600 terminates thereafter (step 612).

[0070] There is simplicity in that the un-versioned system does not need to manage the
relationships among artifact versions. There is also simplicity in that all instances are backed by
the same definition so there is no need for an explicit instance migration, of sorts. However,

this simplicity comes at a cost.

CA9-2014-0031CA1 16

CA 02854022 2014-06-11

[0071] The un-versioned system imposes restrictions on the types of updates that can be made
to an artifact definition. Restrictions are needed because all existing instances must be
compatible with corresponding update(s). The restrictions could be considered an implicit
forced instance migration of all instances where the migration must always succeed and, as a
result, limiting possible updates to be made. Unlike a versioned system where definitions can
readily be changed, an un-versioned system has strict rules with regard to definition changes
permitted. However when the rules are not followed user intervention is required to fix broken
or incompatible instances.

[0072] Embodiments of the disclosure implement a method to use both the versioned and un-
versioned approaches to define a hybrid system, for example, hybrid system 700 described in
Figure 7, that exhibits advantages of both properties. This is accomplished by establishing
relationships between the versioned and un-versioned definitions, and rules governing how
those relationships are used and evolve as an artifact matures.

[0073] With reference to Figure 7 a block diagram of a hybrid system operable for various
embodiments of the disclosure is presented. Figure 7 illustrates as an example hybrid system
116 of Figure 1 in the form of hybrid system 700 comprising artifact definitions in versioned
and un-versioned forms and associated corresponding instances of two different artifacts.

[0074] Versioned definitions 302 and instances 304 are shown as separate units however the
definition versions and associated instances may be readily stored on the same storage device
as un-versioned definitions 502 and instances 504, for example a relational database.

[0075] As in versioned system 300 of Figure 3, artifact definitions associated with a first
versioned definition identifier, including versions 1 through 3, are shown as identifiers DID 1
V1 306, DID 1 V2 308 and DID 1, V3 310. In a similar manner versioned artifact definitions
associated with a second versioned definition identifier also including multiple versions 1
through 3, are shown as identifiers DID 2 V1 312, DID 2 V2 314 and DID 2 V3 316.

[0076] As previously stated an instance is created from a specific definition version. Instances
in the example are defined as instance identifiers 1ID 1 318, 1ID 2 320, IID 3 322, and IID 4
324. The instances associated with identifiers 11D 1 318, 1ID 2 320, IID 3 322 of the example
are created using the specific definition versions associated with identifiers DID 1 V2 308, DID
1 V3 310 and DID 1, V2 308 respectively while the instance associated with identifier 1ID 4
324 is created using the specific definition version associated with identifier DID 2 V3 316.
CA9-2014-0031CA1 17

CA 02854022 2014-06-11

[0077] Similar to the naming conventions shown in Figure 3 un-versioned definitions
associated with a first definition and a second definition of un-versioned definitions 502 are
shown as identifiers DID 1 506 and DID 2 508. However in the case of un-versioned system
500 there is no version included in the definition identifier.

[0078] Similar to the versioned portion of the system an instance is created from a specific
definition, but a particular version is not. Instances, in the example, un-versioned instances 504
are defined as instances associated with identifiers IID 1 510, 1ID 2 512, 1ID 3 514, and 11D 4
516. The instances associated with identifiers IID 1 510, 11D 2 512, 1ID 3 514 of un-versioned
system 500 are created using the specific definition associated with identifier DID 1 506, while
the instance associated with identifier IID 4 516 is created using the specific definition
associated with identifier DID 2 508.

[0079] Artifact definitions associated with identifiers DID 1 V1 306, DID 1 V2 308 and DID
1, V3 310 of versioned definitions 302 have a relationship identified with and are correlated
with un-versioned definition DID 1 506. In a similar manner artifact definitions associated with
identifiers DID 2 V1 312, DID 2 V2 314 and DID 2 V3 316 have a relationship identified with
and are correlated with un-versioned definition DID 2 508.

[0080] Instance identifiers of instances 304 associated with versioned artifact definitions 302
associated with identifiers 1ID 1 318, IID 2 320, IID 3 322, and IID 4 324 also have
relationships identified with and are correlated with un-versioned instances. In the current
example, instance identifiers 1ID 1 318, 1D 2 320, I1ID 3 322, and 11D 4 324 of the versioned
portion of hybrid system 700 are correlated with instances 504, associated with un-versioned
artifact definitions 502 associated with identifiers 1ID 1 510, IID 2 512, 1ID 3 514, and IID 4
516 of the corresponding un-versioned portion of hybrid system 700.

[0081] As evident in the current example, correlation between a versioned and an un-
versioned domain is maintained on two levels of correlation, a first at the artifact level
(definitions) and a second at the attribute level (instances). This correlation is captured by
associations of the artifacts through the use of unique identifiers and is applicable to both
definitions and instances.

[0082] Artifact to artifact relationships and correlation between related artifacts in both
domains is achieved using a simple unique identifier (UID) which includes an invariant
component, or fragment, shared by all versions of a particular definition as well as a

CA9-2014-0031CAl 18

CA 02854022 2014-06-11

corresponding un-versioned definition. The UID is expressed in the following form when used
in the versioned domain as: <common UID>_<version ID> and expressed when used in the
versioned domain as: <common UID>.

[0083] The system can use the <common UID> fragment to easily identify all versions of the
same artifact as well as the associated single un-versioned definition. The UID is immutable
throughout the life of the artifact and is assigned when the artifact is first created and never
changed. As shown in the example, DID is used to identify the article definition of a versioned
definition as well as a respective corresponding un-versioned definition.

[0084] With reference to Figure 8 a block diagram of a hybrid system operable for various
embodiments of the disclosure is presented. Figure 8 illustrates as an example hybrid system
116 of Figure 1 in the form of hybrid system 800 comprising artifact definitions in versioned
and un-versioned forms and associated corresponding instances of two different versions of an
artifact including attribute-to-attribute relationships. In the example of hybrid system 800 the
resulting relationships from various versions of an artifact to the single un-versioned definition
are shown. In the abbreviations of Figure 8, DID represents a definition identifier; V represents
a definition identifier; while AID represents an attribute identifier and values 4, B, C represent
immutable facet values.

[0085] Hybrid system 800 illustrates a definitions portion of hybrid system 700 of Figure 7
comprising versioned definitions 302 having a relationship identified with and are correlated
with un-versioned definition 502.

[0086] Attribute to attribute relationship and correlation are performed once the relationship
between a versioned and un-versioned artifact has been established, by applying the same
principle used with artifact relationships to the attributes of the object. As in previous
identification in artifact-to-artifact relationships and correlation, attributes are now identified by
UID. The UID in this case now includes fragments generated from facets of the attribute that,
when changed, make the instance data associated with the attribute incompatible with existing
instances in the un-versioned domain. Therefore, these facets are considered immutable for the
life of the definition. When these facets are changed in the versioned domain the change causes
the system to identify the attribute as a new addition to a respective parent definition (as
opposed to an update of an existing definition). The UID is shared by the versioned attributes
and the un-versioned attributes in its entirety. The format of the UID is expressed as

CA9-2014-0031CAl 19

CA 02854022 2014-06-11

<UID> <immutable facet 1 value> <..> <immutable facet n value>. The <UID> fragment
may be assigned by the system, or may be a value of an immutable facet.

[0087] For example, attributel has four facets comprised of 4, B C and D. Of the four facets,
changing two (B and C) causes the existing data associated with the attributes to be
incompatible. As a result, the UID for attribute] may be expressed as: <UID>_<value of
B> <value of C>. This expression ensures when either facet B or facet C are changed in the
new version of the artifact, the corresponding un-versioned artifact receives a new attribute
identified by <UID> <value of B> <value of C*>.

[0088] By further example, a case property includes several facets, some of which may be:
name, type, display name, cardinality and description. Each of these facets can be updated in
the versioned domain without the risk of breaking existing instances for reason previously
stated. However, the same change must also be applied to the un-versioned definition. As a
result, the change cannot morph the property definitions to the extent that existing instance data
is no longer compatible. For example, propertyl is defined using the following facet values:
Name: propertyl, Display name: Propertyl, Type: String, Cardinality: Multi value and
Description: This is property 1. Changing either the display name or description has no bearing
on the data. No matter what these attributes are, the list of string values can continue to be
described by the property definition.

[0089] However, in the example, changing the facet value of fype or cardinality of the
property will create an incompatibility in the un-versioned definition. When the facet value of
type is changed from string to integer, for example, the system can no longer guarantee all
existing string instance data can be represented as an integer. Likewise, when the facet value of
cardinality is changed, it is impossible to convert a list into a single value without data loss or
unnatural morphing. As a result, fype and cardinality are considered immutable and must be
used in generating the properties UID.

[0090] Resulting UIDs for the example may be defined as follows, assuming the <UID>
component is the property name, in a first case prior to the change as: propertyl string multi
and in the second case after the change, wherein the type, cardinality or both are changed:
propertyl _integer multi, or propertyl string single, or propertyl integer single.

[0091] In the example of hybrid system 800, the resulting relationships from various versions

of an artifact definition identified as DID 1 V1 306 and DID 1 V2 308 to the single un-
CA9-2014-0031CA1l 20

CA 02854022 2014-06-11

versioned definition DID 1 506 are shown. The correlation between versioned and un-
versioned artifact definitions further comprises attribute relationships.

[0092] With regard to definition DID 1 V1 306 attribute identifier AID1 A B 802 is related
to a changed value indicated in DID 1 V2 308 and attribute identifier AIDI A’ B 806 as
shown using the dotted line. The relationship attribute identifier AID1_A B 802 and attribute
identifier AID1_A’ B 806 occurs due to the evolution from version to version as a result of
changing the value of an immutable property A (to A’), which results in the creation of a new
property AID1_A’ B 806 in un-versioned definition DID 1 506. The identification is used to
maintain data compatibility as the versions evolve.

[0093] Further AID1 A B 802 AID2 B C 804 are related to AID1 A B 802 AID2 B C
804 in DID 1 506 of un-versioned definition DID 1 502.

[0094] With regard to definition DID 1 V2 308 attribute identifier AID2 B C 804 and
changed value indicated in attribute identifier AID1_A’ B 806 are related to AID2_B_C 804
and changed value indicated in attribute identifier AID1_A’ B 806 respectively in DID 1 506
of un-versioned definitions 502.

[0095] With regard to instance creation, an instance is always created from a specific version
of the versioned artifact definition, but the instance is formed having has two parts: one part
directly created from the versioned artifact definition and the other part created from the un-
versioned artifact definition. It is possible to lookup one part using the other part because both
parts share a common ID attribute.

[0096] An instance can be migrated from one versioned definition to another version. In this
case only the instance part created from the versioned definition needs to be migrated in the
same way as described earlier for a versioned system.

[0097] Evolution of the artifact definition occurs and requires certain rules to be enforced to
ensure compatibility of all un-versioned instances. The definition of validation rules, applied on
the instance as data is updated is used to provide the basis of enforcement. An update of the
artifact definition is propagated through the system as a new version of the definition is created
and the corresponding un-versioned definition is also updated.

[0098] Attributes of an artifact definition may have validation rules defined, for example, a

rule may express a numeric attribute does not permit negative values. Validation rules are only

CA9-2014-0031CALl 21

CA 02854022 2014-06-11

defined on the versioned artifact definition as they may evolve over time. Enforcement for
instances is described in a further section.

[0099] With reference to Figure 9 a flow chart of creating a new definition version in an un-
versioned system portion a hybrid system operable for various embodiments of the disclosure is
presented. Process 900 illustrates as an example a process used in hybrid system 116 of Figure
1 in the form of a portion of hybrid system 800 of Figure 8 comprising an un-versioned system
in which a definition is created.

[00100] Process 900 begins (step 902) and receives a latest version n of the versioned
definition (step 904) and mapped un-versioned definition for version / to » of the versioned
definition (step 906). Changes to version n of the versioned definition are also received (step
908).

[00101] Process 900 creates version n+ 1 of the versioned definition (step 910).

[00102] Updates to the artifact definition are only done in the versioned domain. When a user
changes a latest version » of a definition a new version n+/ is created with the changes. Deltas
can be additions, removals and changes. For each of the deltas a corresponding mapping to the
un-versioned artifact definition must be made.

[00103] Removal of an attribute causes no change on the un-versioned artifact definition
because the attribute is still used by earlier versions of the versioned definition and is,
therefore, still needed. Addition of an attribute causes an attribute to also be added to the un-
versioned definition having the same facets. One exception is a rare case in which a property
with the same facets previously existed on a versioned definition lower than version n.
Therefore the re-introduction of an attribute causes no change in the un-versioned artifact
definition.

[00104] A change of an attribute may be synchronized to un-versioned definition depending on
what has changed: when only validation rules of an attribute are changed, no update is made to
the un-versioned artifact definition because attribute changes are exclusively kept in the
versioned artifact definition; when a facet is changed and that change can be applied to the un-
versioned artifact definition in a compatible way then the attribute in the un-versioned
definition is changed. This mainly applies to data irrelevant changes, for example a change of a
display name or description is acceptable where the un-versioned artifact definition only knows
the latest definition; and when a facet is changed and that change cannot be applied to the un-

CA9-2014-0031CA1 22

CA 02854022 2014-06-11

versioned artifact definition in a compatible way then a new attribute is added to the un-
versioned definition following the rules as defined in associated validation rules. This mainly
applies to data relevant changes, for example a change of the type of an attribute from a number
to a date that cannot be transformed.

[00105] Process 900 maps changes to the un-versioned definition of the versioned definition
(step 912). Process 900 creates version n+1 of the versioned definition (step 914) and also
creates mapped un-versioned definition for versions 1 to n+1 of the versioned definition (step
916) with process 900 terminating thereafter (step 918).

[00106] With reference to Figure 10 a flow chart of changing properties on the instance part
created from a versioned definition in a hybrid system operable for various embodiments of the
disclosure is presented. Process 1000 illustrates as an example a process used in hybrid system
116 of Figure 1 in the form of a portion of hybrid system 800 of Figure 8 comprising an
versioned system in which properties are changed in the instance part of the versioned
definition.

[00107] Process 1000 begins (step 1002) and receives an instance created from version n of the
versioned definition (step 1004) and receives an instance created from the un-versioned
definition (step 1006). Process 1000 also receives changes to properties of the instance part
created from the versioned definition (step 1008).

[00108] Process 1000 validates changes against version n of the versioned definition (step
1010). Responsive to a failure of the validation process 1000 rolls back the changes (step 1022)
and terminates thereafter (step 1024). Responsive to a success of the validation process 1000
saves an instance part created from the versioned definition (step 1012). Process 1000 looks up
the instance part created from the un-versioned definition (step 1014). Process 1000 maps
changes to the instance part created from the un-versioned definition (step 1016).

[00109] Process 1000 creates updated instance from version »n of the versioned definition (step
1018). Process 1000 also creates updated instance from un-versioned definition (step 1020).
Process 1000 terminates thereafter (step 1024).

[00110] Updating instance data is performed using one of two facades: a fagade for a versioned
domain and a fagade for a corresponding un-versioned domain. Depending on the domain upon
which a client is operating, the client may attempt to interact with the instance of the artifact
with a view of a respective versioned or un-versioned definition.

CA9-2014-0031CA1 23

CA 02854022 2014-06-11

[00111] The versioned facade has access to only those attributes defined on the specific
version of the versioned definition. Also, the versioned facade is directly aware of the
validation rules defined for attributes of the specific definition version. Updates on the
versioned facade can be directly validated against the definition version. When the updates are
determined to be valid the corresponding attributes of the un-versioned facade are located and
saved in the same transaction to keep the versioned as well as the un-versioned instances of the
definition synchronized.

[00112] The versioned facade is mainly used to interact with the components of the definition
that evolve quickly. For example, short-lived activities only see attributes with validation rules
defined for the respective definition version, while the data on the longer-lived content is
maintained in synchronization.

[00113] With reference to Figure 11 a flow chart of changing properties on the instance part
created from an un-versioned definition in a hybrid system operable for various embodiments
of the disclosure is presented. Process 1100 illustrates as an example a process used in hybrid
system 116 of Figure 1 in the form of a portion of hybrid system 800 of Figure 8 comprising
an un-versioned system in which properties are changed in the instance part of the un-versioned
definition.

[00114] Process 1100 begins (step 1102) and receives an instance created from version n of the
versioned definition (step 1104) and receives an instance created from the un-versioned
definition (step 1106). Process 1100 also receives changes to properties of the instance part
created from the un-versioned definition (step 1108). Process 1100 looks up the instance part
created from the versioned definition (step 1110). Process 1100 maps changes to the instance
part created from the versioned definition (step 1112).

[00115] Process 1100 validates changes against version n of the versioned definition (step
1114). Responsive to a failure of the validation process 1100 rolls back the changes (step 1122)
and terminates thereafter (step 1124). Responsive to a success of the validation process 1100
saves an instance part created from the un-versioned definition (step 1116).

[00116] Process 1100 creates updated instance from version #n of the versioned definition (step
1118). Process 1100 also creates updated instance from the un-versioned definition (step 1120).

Process 1100 terminates thereafter (step 1124).

CA9-2014-0031CAl 24

CA 02854022 2014-06-11

[00117] Using the un-versioned fagade effectively exposes the attributes defined in all versions
of the versioned definition because the attributes defined in all versions of the versioned
definition are all mapped to corresponding attributes in the un-versioned definition. The un-
versioned definition, however, has no knowledge of the validation rules. When changes are
made through the un-versioned facade the corresponding versioned facade is looked up. By
mapping the changes made through the un-versioned facade to the corresponding versioned
facade, the corresponding validation rules can be checked, as defined by the specific versioned
definition. On failure the whole update is rolled back, otherwise both the updates to the
versioned instance as well as the un-versioned instance are saved in one transaction

[00118] The un-versioned facade is mainly used by longer living parts of the definition,
including the content. A user focusing on the content can therefore use the un-versioned facade
to view all attributes enabling the user to see attributes only defined for a few versions of the
versioned definition. On update of an instance, the synchronization back to the versioned
instance part, including validation of the changes against the versioned definition, enforces only
valid changes are applied to the instance as defined by the version of a respective definition.
[00119] With reference to Figure 12 a flow chart of a process for correlating artifacts between
a versioned domain and an un-versioned domain in a hybrid system operable for various
embodiments of the disclosure is presented. Process 1200 illustrates as an example a process
used in hybrid system 116 of Figure 1 in the form of a portion of hybrid system 800 of Figure
8.

[00120] Process 1200 begins (step 1202) and generates metadata having attributes of both of
the versioned domain and the un-versioned domains, for an artifact in a set of artifacts wherein
the metadata is associated with the set of artifacts used in the versioned domain and the un-
versioned domain (step 1204). Process 1200 creates an instance using a specific version of a
versioned artifact definition, wherein the instance comprises a first part directly created from
the versioned artifact definition and a second part created from an un-versioned artifact
definition (step 1206). Process 1200 specifies linkages between a respective representation of
the artifact in the versioned domain and the un-versioned domain, wherein a specified linkage
defines a relationship between multiple versions of an artifact in the versioned domain to a
single un-versioned representation of a same artifact in the un-versioned domain (step 1208).

Process 1200 in response to providing a set of facades used to perform a selected one of author,

CA9-2014-0031CA1 25

CA 02854022 2014-06-11

execute and update instances of the artifact from either the versioned domain or the un-
versioned domain, receives the selected one of author, execute and update instances of the
artifact from either the versioned domain or the un-versioned domain, wherein the selected one
of author, execute and update instances of the artifact is performed using a set of rules (step
1210). Process 1200 correlates all versions of the artifact definition to a single un-versioned
definition wherein the artifact definition of the single un-versioned definition is also correlated
to all versions of the artifact definition (step 1212) and terminates thereafter (step 1214).
[00121] Thus is presented in an illustrative embodiment a computer-implemented method for
correlating artifacts between a versioned domain and an un-versioned domain. The computer-
implemented method generates metadata having attributes of both of the versioned domain and
the un-versioned domains, for an artifact in a set of artifacts wherein the metadata is associated
with the set of artifacts used in the versioned domain and the un-versioned domain and creates
an instance using a specific version of a versioned artifact definition, wherein the instance
comprises a first part directly created from the versioned artifact definition and a second part
created from an un-versioned artifact definition.

[00122] The method further specifies linkages between a respective representation of the
artifact in the versioned domain and the un-versioned domain, wherein a specified linkage
defines a relationship between multiple versions of an artifact in the versioned domain to a
single un-versioned representation of a same artifact in the un-versioned domain.

[00123] A set of facades is provided for use to perform a selected one of author, execute and
update instances of the artifact from either the versioned domain or the un-versioned domain,
wherein the selected one of author, execute and update instances of the artifact is performed
using a set of rules. All versions of the artifact definition are correlated to a single un-versioned
definition wherein the artifact definition of the single un-versioned definition is also correlated
to all versions of the artifact definition.

[00124] An illustrative embodiment provides a mechanism to architect metadata that has the
attributes of both the versioned and un-versioned worlds. Furthermore, the illustrative
embodiment specifies the linkages between the two sides, the rules required to author, execute
and update instances of the artifacts from both the versioned or un-versioned views.

[00125] Illustrative embodiments do not define how to capture versions of an artifact, or how
to define the single version of another. Those concepts are well understood and applied often in

CA9-2014-0031CAl 26

CA 02854022 2014-06-11

software systems today. Rather, the illustrative embodiment proposes how to link the two if the
same artifact were represented in both domains and need to be accessed in both forms.

[00126] Illustrative embodiments define the relationship between the multiple versions of an
artifact to the single un-versioned representation of the same, and exploit these relationships to
make both sides work as one. Assuming that two systems capture the artifact definition itself
(versioned and un-versioned), the illustrative embodiment describes a method to: correlate all
versions of an artifact definition to its single un-versioned representation, and vice versa;
correlate the attributes, or properties, definition of a particular artifact definition version to the
same in the un-versioned representation, and the reverse; define editing semantic such as add,
update and delete for the versioned artifact definition and the transformation to the editing
semantic that is applied to the corresponding un-versioned artifact definition; define how read
and update operations are performed on an instance of the artifact depending on whether these
operations are executed on the versioned or un-versioned facade defined; define how data
updates are synchronized between instances of the versioned and un-versioned artifact as one,
or the other, is updated; and define how attribute, or property, validation rules are defined and
evaluated when an artifact instance is updated through either the versioned or un-versioned
facade.

[00127] The illustrative embodiment typically takes the best attributes of the versioned and un-
versioned domains and provides a mechanism to exploit either one, as needed, in a single
solution referred herein as a hybrid system. For a system that uses a versioned approach,
federating information is much more difficult as all versions need to be consolidated into a
common concept. For a system that uses an un-versioned approach, evolution is difficult
because artifacts must always be backwards compatible and ensure existing instances are still
valid with regards to updates in the metadata.

[00128] Using the hybrid approach proposed by the illustrative embodiment enables a
definition of a system that can behave as versioned (evolution of a process) and un-versioned
(consolidation of historical process data) typically without much more additional effort.

[00129] In another illustrated embodiment a method for correlating artifacts defined and
instantiated in a versioned domain to an un-versioned domain, creates a correlation between
related artifacts in a versioned domain and a un-versioned domain, using unique identifiers

(UID) which include an invariant component, shared by all versions of a definition as well as

CA9-2014-0031CAl 27

CA 02854022 2014-06-11

an un-versioned definition, wherein the UID is expressed in a first form as Versioned:
<common UID> <version ID> and a second form as Un-versioned: <common UID> wherein a
system uses the <common UID> fragment to identify all versions of a same artifact as well as
an associated single un-versioned definition and wherein the UID is immutable throughout a
life of an associated artifact; generates from facets of an attribute that, when changed, make the
instance data associated with the attribute incompatible with existing instances in the un-
versioned domain, wherein the specific facets are considered immutable for a life of the
definition and when these are changed in the versioned domain the changes cause the system to
identify the attribute as a brand new addition to a parent definition, wherein the UID is shared
by both versioned attributes and un-versioned attributes in entirety and is expressed in a format
of <UID> <immutable facet 1 value> <..> <immutable facet n value>; creates an instance
using a specific version of a versioned artifact definition, wherein the instance comprises a first
part directly created from the versioned artifact definition and a second part created from an un-
versioned artifact definition; updates the artifact definition in the versioned domain, wherein a
user change to a latest version n of the artifact definition creates a new version n+1 including
the user change, wherein the user change is one of an addition, a removal and a modify and for
each user change a corresponding mapping to the un-versioned artifact definition is made to
synchronize the un-versioned artifact definition wherein: in response to a change in a validation
rule in a set of validation rules associated with the attributes of the artifact definition, no update
is made to the un-versioned artifact definition; in response to a facet change that can be applied
to the un-versioned artifact definition in a compatible way the attribute in the un-versioned
definition is also changed; and in response to a facet change that cannot be applied to the un-
versioned artifact definition in a compatible way, a new attribute is added to the un-versioned
definition using the set of predefined validation rules associated with the attributes of the
versioned artifact definition; selects one of a versioned facade and an un-versioned facade to
update instance data; in response to selecting the versioned facade accessing only those
attributes defined on a specific version of the versioned definition and the set of validation rules
defined for attributes of that specific version of the versioned definition; validates updates on
that facade directly against the specific version of the versioned definition; in response to the
updates being valid, corresponding attributes of the un-versioned facade are looked up and then
saved in the same transaction to maintain synchronization between the versioned instances and

CA9-2014-0031CAl 28

CA 02854022 2014-06-11

the un-versioned instances of the definition; in response to selecting the un-versioned facade
exposing the attributes defined in all versions of the versioned definition as mapped to the
corresponding attributes in the un-versioned definition; in response to changes made through
the un-versioned facade, performs a lookup in the corresponding versioned facade, wherein the
changes are mapped to that corresponding versioned facade, the corresponding validation rules
are checked, as defined by the specific versioned definition; in response to a successful update,
saves the updates to the versioned instances as well as the un-versioned instances in a single
transaction; and in response to a failure to update, the update is rolled back.

[00130] The flowchart and block diagrams in the figures illustrate the architecture,
functionality, and operation of possible implementations of systems, methods, and computer
program products according to various embodiments of the present invention. In this regard,
each block in the flowchart or block diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions for implementing a specified
logical function. It should also be noted that, in some alternative implementations, the functions
noted in the block might occur out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially concurrently, or the blocks may
sometimes be executed in the reverse order, depending upon the functionality involved. It will
also be noted that each block of the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer instructions.

[00131] The corresponding structures, materials, acts, and equivalents of all means or step plus
function elements in the claims below are intended to include any structure, material, or act for
performing the function in combination with other claimed elements as specifically claimed.
The description of the present invention has been presented for purposes of illustration and
description, but is not intended to be exhaustive or limited to the invention in the form
disclosed. Many modifications and variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the invention. The embodiment was chosen
and described in order to best explain the principles of the invention and the practical

application, and to enable others of ordinary skill in the art to understand the invention for

CA9-2014-0031CA1 29

CA 02854022 2014-06-11

various embodiments with various modifications as are suited to the particular use
contemplated.

[00132] The invention can take the form of an entirely hardware embodiment, an entirely
software embodiment or an embodiment containing both hardware and software elements. In a
preferred embodiment, the invention is implemented in software, which includes but is not
limited to firmware, resident software, microcode, and other software media that may be
recognized by one skilled in the art.

[00133] It is important to note that while the present invention has been described in the
context of a fully functioning data processing system, those of ordinary skill in the art will
appreciate that the processes of the present invention are capable of being distributed in the
form of a computer readable data storage device having computer executable instructions
stored thereon in a variety of forms. Examples of computer readable data storage devices
include recordable-type media, such as a floppy disk, a hard disk drive, a RAM, CD-ROMs,
DVD-ROMs. The computer executable instructions may take the form of coded formats that
are decoded for actual use in a particular data processing system.

[00134] A data processing system suitable for storing and/or executing computer executable
instructions comprising program code will include one or more processors coupled directly or
indirectly to memory elements through a system bus. The memory elements can include local
memory employed during actual execution of the program code, bulk storage, and cache
memories which provide temporary storage of at least some program code in order to reduce
the number of times code must be retrieved from bulk storage during execution.

[00135} Input/output or 1/O devices (including but not limited to keyboards, displays, pointing
devices, etc.) can be coupled to the system either directly or through intervening 1/0
controllers.

[00136] Network adapters may also be coupled to the system to enable the data processing
system to become coupled to other data processing systems or remote printers or storage
devices through intervening private or public networks. Modems, cable modems, and Ethernet

cards are just a few of the currently available types of network adapters.

CA9-2014-0031CA1 30

CA 02854022

CLAIMS

What is claimed is:

1. A computer-implemented method executable on a computer having a processor, memory
and storage for correlating artifacts between a versioned domain and an un-versioned domain,

comprising:

generating on the computer metadata having attributes of both of the versioned domain and
the un-versioned domains, for an artifact in a set of artifacts, wherein the metadata is associated

with the set of artifacts used in the versioned domain and the un-versioned domain;

creating on the computer an instance of the artifact using a specific version of a versioned
artifact definition for the artifact as stored in storage, wherein the instance comprises a first part
directly created from the versioned artifact definition and a second part created from an un-

versioned artifact definition for the artifact;

specifying on the computer linkages between a respective representation of the artifact in
the versioned domain and the un-versioned domain, wherein a specified linkage defines a
relationship between multiple versions of an artifact in the versioned domain to a single un-

versioned representation of a same artifact in the un-versioned domain;

in response to providing a set of facades used to perform a selected one of author, execute
and update on the computer instances of the artifact from either the versioned domain or the un-
versioned domain, receiving the selected one of author, execute and update instances of the artifact
from either the versioned domain or the un-versioned domain, wherein the selected one of author,
execute and update instances of the artifact is performed using a set of predefined validation rules

as stored in storage; and

correlating on the computer all versions of the artifact definition to a single un-versioned
definition, wherein the artifact definition of the single un-versioned definition is also correlated to
all versions of the artifact definition, wherein in response to providing a set of facades used to

perform a selected one of author, execute and update instances of the artifact further comprises:

31
CA920140031CA1

Date Recue/Date Received 2022-08-22

CA 02854022

receiving a selection of one of a versioned facade and an un-versioned facade to

update instance data;

in response to receiving the selection of the versioned facade, accessing from
storage only those attributes defined on a specific version of the versioned definition and
the set of predefined validation rules for attributes of that specific version of the versioned

definition;

validating updates on the versioned facade directly against the specific version of

the versioned definition;

in response to the updates being valid, corresponding attributes of the un-versioned
facade are looked up and then saved to storage in the same transaction to maintain
synchronization between the versioned instances and the un-versioned instances of the

definition;

in response to receiving the selection of the un-versioned facade, exposing the
attributes defined in all versions of the versioned definition as mapped to the corresponding

attributes in the un-versioned definition;

in response to changes made through the un-versioned facade, performing a lookup
in the corresponding versioned facade, wherein the changes are mapped to that
corresponding versioned facade, and corresponding validation rules in the set of predefined

validation rules are checked, as defined by the specific versioned definition;

in response to a successful update, saving to storage the changes to the versioned

instances as well as the un-versioned instances in a single transaction; and
in response to a failure to update, rolling the changes back.

2. The method of claim 1, wherein generating metadata further comprises:

32
CA920140031CA1

Date Recue/Date Received 2022-08-22

CA 02854022

assigning a unique identifier (UID) to the artifact which includes an invariant component,
shared by all versions of the versioned definition as well as the un-versioned definition, wherein
the UID is expressed in a first form as Versioned: <common UID> <version ID> and a second
form as Un-versioned: <common UID>, wherein a system uses the <common UID> fragment to
identify all versions of a same artifact as well as an associated single un-versioned definition and

wherein the UID is immutable throughout a life of an associated artifact; and

generating fragments from facets of an attribute that, when changed, make instance data
associated with the attribute incompatible with existing instances in the un-versioned domain,
wherein specific facets are considered immutable for a life of the definition and when these specific
facets are changed in the versioned domain the changes cause the system to identify the attribute
as a brand new addition to a parent definition, wherein the UID is shared by both versioned
attributes and un-versioned attributes in entirety and is expressed in a format of

<UID> <immutable facet 1 value> <...> <immutable facet n value>.

3. The method of claim 1, further comprising:

updating the artifact definition in the versioned domain, wherein a user change to a latest
version n of the artifact definition creates a new version n+1 including the user change, wherein
the user change is one of an addition, a removal and a modify and for each user change a
corresponding mapping to the un-versioned artifact definition is made to synchronize the un-

versioned artifact definition wherein:

in response to a change in a validation rule in the set of predefined validation rules
associated with the attributes of the artifact definition, making no update to the un-versioned

artifact definition;

in response to a facet change that can be applied to the un-versioned artifact definition in a

compatible way, changing the attribute in the un-versioned definition; and

33
CA920140031CA1

Date Recue/Date Received 2022-08-22

CA 02854022

in response to a facet change that cannot be applied to the un-versioned artifact definition
in a compatible way, adding a new attribute to the un-versioned definition using the set of

predefined validation rules associated with the attributes of the versioned artifact definition.

4. The method of claim 1, wherein the set of predefined validation rules comprise one or more
predefined validation rules associated with the attributes of the artifact definition and wherein the
one or more rules in the set of predefined validation rules validate changes received against a
particular version of the versioned definition using the one or more predefined validation rules in
the versioned definition, whether the instance updated is an un-versioned instance or a versioned

instance.

5. The method of claim 1, wherein the correlating further comprises a first level of correlation
at an artifact level and a second level of correlation at an attribute level, wherein the correlation

associates artifacts using unique identifiers as applicable to definitions and instances.

6. The method of claim 1, wherein a look up of one of the first part and the second part may
be performed using a remaining one of the first part and the second part which also shares an
invariant component, shared by all versions of the versioned definition as well as the un-versioned

definition.

7. A computer program product for correlating artifacts between a versioned domain and an
un-versioned domain, the computer program product comprising a computer readable memory
storing computer executable instructions thereon that when executed by a computer perform the

following steps:

generate metadata having attributes of both of the versioned domain and the un-versioned
domains, for an artifact in a set of artifacts, wherein the metadata is associated with the set of

artifacts used in the versioned domain and the un-versioned domain;

create an instance of the artifact using a specific version of a versioned artifact definition

for the artifact as stored in storage, wherein the instance comprises a first part directly created from

34
CA920140031CA1

Date Recue/Date Received 2022-08-22

CA 02854022

the versioned artifact definition and a second part created from an un-versioned artifact definition

for the artifact;

specify linkages between a respective representation of the artifact in the versioned domain
and the un-versioned domain, wherein a specified linkage defines a relationship between multiple
versions of an artifact in the versioned domain to a single un-versioned representation of a same

artifact in the un-versioned domain;

in response to providing a set of facades used to perform a selected one of author, execute
and update instances of the artifact from either the versioned domain or the un-versioned domain,
receive the selected one of author, execute and update instances of the artifact from either the
versioned domain or the un-versioned domain, wherein the selected one of author, execute and

update instances of the artifact is performed using a set of predefined validation rules; and

correlate all versions of the artifact definition to a single un-versioned definition, wherein
the artifact definition of the single un-versioned definition is also correlated to all versions of the
artifact definition, wherein in response to providing a set of facades used to perform a selected one

of author, execute and update instances of the artifact further comprises:

receive a selection of one of a versioned facade and an un-versioned facade to

update instance data;

in response to receiving a selection of the versioned facade, accessing from storage
only those attributes defined on a specific version of the versioned definition and the set of

predefined validation rules for attributes of that specific version of the versioned definition;

validate updates on the versioned facade directly against the specific version of the

versioned definition;

in response to the updates being valid, look up corresponding attributes of the un-
versioned facade and save to storage in a same transaction to maintain synchronization

between the versioned instances and the un-versioned instances of the definition;

35
CA920140031CA1

Date Recue/Date Received 2022-08-22

CA 02854022

in response to receiving a selection of the un-versioned facade, expose the attributes
defined in all versions of the versioned definition as mapped to the corresponding attributes

in the un-versioned definition;

in response to changes made through the un-versioned facade, lookup
corresponding attributes in the corresponding versioned facade, wherein the changes are
mapped to that corresponding versioned facade, and corresponding validation rules in the
set of predefined validation rules are checked, as defined by the specific versioned

definition;

in response to a successful update, save to storage the changes to the versioned

instances as well as the un-versioned instances in a single transaction; and
in response to a failure to update, roll back the changes.

8. The computer program product of claim 7, wherein the computer executable instructions
cause the computer to generate metadata further comprises program instructions executable by the

processor unit to cause the processor unit to:

assign a unique identifier (UID) to the artifact which includes an invariant component,
shared by all versions of the versioned definition as well as the un-versioned definition, wherein
the UID is expressed in a first form as Versioned: <common UID> <version ID> and a second
form as Un-versioned: <common UID>, wherein a system uses the <common UID> fragment to
identify all versions of a same artifact as well as an associated single un-versioned definition and

wherein the UID is immutable throughout a life of an associated artifact; and

generate fragments from facets of an attribute that, when changed, make instance data
associated with the attribute incompatible with existing instances in the un-versioned domain,
wherein specific facets are considered immutable for a life of the definition and when these specific
facets are changed in the versioned domain the changes cause the system to identify the attribute

as a brand new addition to a parent definition, wherein the UID is shared by both versioned

36
CA920140031CA1

Date Recue/Date Received 2022-08-22

CA 02854022

attributes and un-versioned attributes in entirety and is expressed in a format of

<UID>_ <immutable facet 1 value> <...> <immutable facet n value>.

9. The computer program product of claim 7, further comprising computer executable

instructions which cause the computer to:

update the artifact definition in the versioned domain, wherein a user change to a latest
version n of the artifact definition creates a new version n+1 including the user change, wherein
the user change is one of an addition, a removal and a modify and for each user change making a
corresponding mapping to the un-versioned artifact definition to synchronize the un-versioned

artifact definition wherein:

in response to a change in a validation rule in the set of predefined validation rules
associated with the attributes of the artifact definition, make no update to the un-versioned artifact

definition;

in response to a facet change that can be applied to the un-versioned artifact definition in a

compatible way, change the attribute in the un-versioned definition; and

in response to a facet change that cannot be applied to the un-versioned artifact definition
in a compatible way, add a new attribute to the un-versioned definition using the set of predefined

validation rules associated with the attributes of the versioned artifact definition.

10. The computer program product of claim 7, wherein the set of predefined validation rules
comprise one or more predefined validation rules associated with the attributes of the artifact
definition and wherein the one or more rules in the set of predefined validation rules validate
changes received against a particular version of the versioned definition using the one or more
predefined validation rules in the versioned definition, whether the instance updated is an un-

versioned instance or a versioned instance.

11. The computer program product of claim 7, wherein the computer executable instructions

cause the computer to correlate at a first level of correlation at an artifact level and at a second

37
CA920140031CA1

Date Recue/Date Received 2022-08-22

CA 02854022

level of correlation at an attribute level, wherein the correlation associates artifacts using unique

identifiers as applicable to definitions and instances.

12. The computer program product of claim 7, further comprising computer executable
instructions which cause the computer to look up one of the first part and the second part using a
remaining one of the first part and the second part which also shares an invariant component,

shared by all versions of the versioned definition as well as the un-versioned definition.

13. An apparatus for correlating artifacts between a versioned domain and an un-versioned

domain, comprising:

a bus;

a memory connected to the bus, having program instructions embodied therewith;

a storage;

a processor unit, wherein the processor unit executes the program instructions to cause the

apparatus to:

generate metadata having attributes of both of the versioned domain and the un-versioned
domains, for an artifact in a set of artifacts, wherein the metadata is associated with the set of

artifacts used in the versioned domain and the un-versioned domain;

create an instance of the artifact using a specific version of a versioned artifact definition
for the artifact as stored in storage, wherein the instance comprises a first part directly created from
the versioned artifact definition and a second part created from an un-versioned artifact definition

for the artifact;

specify linkages between a respective representation of the artifact in the versioned domain
and the un-versioned domain, wherein a specified linkage defines a relationship between multiple
versions of an artifact in the versioned domain to a single un-versioned representation of a same

artifact in the un-versioned domain;

38
CA920140031CA1

Date Recue/Date Received 2022-08-22

CA 02854022

in response to providing a set of facades used to perform a selected one of author, execute
and update instances of the artifact from either the versioned domain or the un-versioned domain,
receive the selected one of author, execute and update instances of the artifact from either the
versioned domain or the un-versioned domain, wherein the selected one of author, execute and

update instances of the artifact is performed using a set of predefined validation rules; and

correlate all versions of the artifact definition to a single un-versioned definition, wherein
the artifact definition of the single un-versioned definition is also correlated to all versions of the
artifact definition, wherein in response to providing a set of facades used perform a selected one

of author, to execute and update instances of the artifact further comprises:

receive a selection of one of a versioned facade and an un-versioned facade to

update instance data;

in response to receiving the selection of the versioned facade access from storage
only those attributes defined on a specific version of the versioned definition and the set of

predefined validation rules for attributes of that specific version of the versioned definition;

validate updates on the versioned facade directly against the specific version of the

versioned definition;

in response to the updates being valid, looked up corresponding attributes of the
un-versioned facade and save to storage in a same transaction to maintain synchronization

between the versioned instances and the un-versioned instances of the definition;

in response to receiving selection of the un-versioned facade, expose the attributes
defined in all versions of the versioned definition as mapped to the corresponding attributes

in the un-versioned definition;

in response to changes made through the un-versioned facade, perform a lookup of
the attributes in the corresponding versioned facade, wherein the changes are mapped to
that corresponding versioned facade, and corresponding validation rules in the set of

predefined validation rules are checked, as defined by the specific versioned definition;

39
CA920140031CA1

Date Recue/Date Received 2022-08-22

CA 02854022

in response to a successful update, save to storage the changes to the versioned

instances as well as the un-versioned instances in a single transaction; and
in response to a failure to update, roll back the changes.

14. The apparatus of claim 13, wherein the processor unit executes the program instructions to

cause the apparatus to generate metadata further causes the apparatus to:

assign a unique identifier (UID) to the artifact which includes an invariant component,
shared by all versions of the versioned definition as well as the un-versioned definition, wherein
the UID is expressed in a first form as Versioned: <common UID> <version ID> and a second
form as Un-versioned: <common UID>, wherein a system uses the <common UID> fragment to
identify all versions of a same artifact as well as an associated single un-versioned definition and

wherein the UID is immutable throughout a life of an associated artifact; and

generate fragments from facets of an attribute that, when changed, make instance data
associated with the attribute incompatible with existing instances in the un-versioned domain,
wherein specific facets are considered immutable for a life of the definition and when these specific
facets are changed in the versioned domain the changes cause the system to identify the attribute
as a brand new addition to a parent definition, wherein the UID is shared by both versioned
attributes and un-versioned attributes in entirety and is expressed in a format of

<UID>_ <immutable facet 1 value> <...> <immutable facet n value>.

15. The apparatus of claim 13, wherein the processor unit executes the program instructions to

further cause the apparatus to:

update the artifact definition in the versioned domain, wherein a user change to a latest
version n of the artifact definition creates a new version n+1 including the user change, wherein
the user change is one of an addition, a removal and a modify and for each user change a
corresponding mapping to the un-versioned artifact definition is made to synchronize the un-

versioned artifact definition wherein:

40
CA920140031CA1

Date Recue/Date Received 2022-08-22

CA 02854022

in response to a change in a validation rule in the set of predefined validation rules
associated with the attributes of the artifact definition, make no update to the un-versioned artifact

definition;

in response to a facet change that can be applied to the un-versioned artifact definition in a

compatible, way change the attribute in the un-versioned definition; and

in response to a facet change that cannot be applied to the un-versioned artifact definition
in a compatible way, add a new attribute to the un-versioned definition using the set of predefined

validation rules associated with the attributes of the versioned artifact definition.

16. The apparatus of claim 13, wherein the set of predefined validation rules comprise one or
more predefined validation rules associated with the attributes of the artifact definition and wherein
the one or more rules in the set of predefined validation rules validate changes received against a
particular version of the versioned definition using the one or more predefined validation rules in
the versioned definition, whether the instance updated is an un-versioned instance or a versioned

instance.

17. The apparatus of claim 13, wherein the processor unit executes the program instructions to
cause the apparatus to correlate further causes the apparatus to correlate at a first level of
correlation at an artifact level and at a second level of correlation at an attribute level, wherein the

correlation associates artifacts using unique identifiers as applicable to definitions and instances.

41
CA920140031CA1

Date Recue/Date Received 2022-08-22

CA 02854022 2014-06-11

FIG. 1

CA920140031CA1
Page 1 of 12

SERVER

Storage
108

CLIENT

Hybrid System
116

CA 02854022 2014-06-11

FIG. 2

CA920140031CA1
Page 2 of 12

STORAGE DEVICES 216

PROCESSOR PERSISTENT
ONIT MEQ"O%RY STORAGE
204 == 208
/ 202
- >
COMMUNICATIONS INPUT/OUTPUT DISPLAY
UNIT UNIT 214
210 212 —

DATA PROCESSING SYSTEM 200

Zomputer Readable Storage
Medium 220

Program Code

218 /]

COMPUTER PROGRAM PRODUCT
222

N\ Hybrid

System

CA 02854022 2014-06-11

FIG. 3

CA920140031CA1
Page 3 0f 12

Y
 m
[DD 1v1 306

' DD2V1312| [DID 1V2 308
DID2V2 314 | [DID 13310
DID2V3316 |----

Cm >

~_

Versioned system

CA 02854022 2014-06-11

FIG. 4

CA920140031CA1
Page 4 of 12

Start
402

Latest
version n of
the versioned
definition
404

Changes to version
n of the versioned
definition
406

v

Create version n+1
of the versioned
definition
408

Version n+1
of the
versioned
definition
410

End
412

S
(o]
(@)

CA 02854022 2014-06-11

FIG. 5

CA920140031CA1
Page 5 of 12

/—\
=

1
n

~N_

S S e IiD 1 510
e 7 D2512
4. { iD3514

Un-versioned system

500

CA 02854022 2014-06-11

FIG. 6

CA920140031CA1
Page 6 of 12

Definition
604

(o2}
[
o

Changes to the
definition
606

v

Save definition with
changes as the
same record
608

Updated
definition
610

End
612

CA 02854022 2014-06-11

FIG. 7

CA920140031CA1
Page 7 of 12

TN
S 04

DID 1,V1 306 [t] D1318
—DD2,vi312| [DID1V2308 =17 - ip2320
—[DD2veaia] [DID1V330 NI T iDag2 |
r Lw ____________ " ———
 DID2V3316 | B T R R R iD4324 |

'\
[3
|
]

~ ID4516 ¢
ID3514 |«

Hybrid system
700

CA 02854022 2014-06-11

FIG. 8

CAS20140031CA1
Page 8 of 12

502

DID 1 V1 306 5o 1'5.0.6

AID1_A_B 802 o
AID2_B_C 804 AID1_A_B 802
-p{AID2_B_C 804
|w] AID1_A"_B 806 |

DID 1 V2 308 U/\

[ADT_A_B 208 | |

CA 02854022 2014-06-11

FIG. 9

CA920140031CA1
Page 9 of 12
 Start
902
Latest un“\f:rzri)oe:ed
version n of

the versioned definition for
versions 1ton 900

degr(w)l;non of the versioned
definition
906
End
918
Yy
Changes to version [
n of the versioned Mapped
definition unversioned
998 Version n+1 definition for
| of the versions 1 to n+1
versioned of the versioned
definition definition
914 916
Create version n+1 i T
of the versioned
definition
910 Map changes to
the unversioned

definition of the
versioned
definition
912

?

Start
1002

CA 02854022 2014-06-11

FIG. 10

CA920140031CA1
Page 10 of 12

Instance Instance
created from created from
version n of the 1000
the versioned unversioned
definition definition
1004 1006
J
Rollback End
1022 1024
I
Changes to l
properties of the e e
instance part Updated '
created from the instance Update instanced
versioned definition created from created from the
1008 version n of un-versioned
the versioned definition
definition 1020
1018

ggainst version n
of the versioned
definition
1010

Save instance part
created from the
versioned definition
1012

i

:

Look up instance
part created from

the unversioned
definition
1014

Map changes to the
instance part
created from the
unversioned
definition
1016

Start
1102

Instance
created from
version n of
the versioned

definition

1104

CA 02854022 2014-06-11

FIG. 11

CA920140031CA1
Page 11 of 12

Instance
created from
the
unversioned
definition
1106

|

Rollback
1122

Changes to
properties of the
instance part created
from the unversioned
definition

1108

y

1100

End
1124

[
Updated
instance

created from
version n of
the versioned
definition
1118

Updated instance
created from the
un-versioned
definition
1120

Look up instance
part created from
the versioned
definition
1110

v

Map changes to the
instance part
created from the
versioned definition
1112

i

Validate changes
against version
of the versioned
definition
1114

Save instance part

created from the un-

versioned definition
1116

CA 02854022 2014-06-11

FIG. 12

Start
1 292

Generate metadata having
attributes of both of the versioned
domain and the un-versioned
domains, for an artifact in a set of
artifacts wherein the metadata is
associated with the set of artifacts
used in the versioned domain and
the un-versioned domain
1204

Create an instance using a
specific version of a versioned
artifact definition, wherein the
instance comprises a first part

directly created from the
versioned artifact definition and
a second part created from an
un-versioned artifact definition
1206

CA920140031CA1
Page 12 of 12

Specify linkages between a respective

representation of the artifact in the
versioned domain and the un-

versioned domain, wherein a specified
linkage defines a relationship between
multiple versions of an artifact in the

versioned domain to a single un-
versioned representation of a same
artifact in the un-versioned domain
1208

End

1214
K

Correlate all versions of the
artifact definition to a single
un-versioned definition
wherein the artifact definition
of the single un-versioned
definition is also correlated to
all versions of the artifact
definition.

1212
A

In response to providing a set of
facades used to perform a selected
one of author, execute and update
instances of the artifact from either

the versioned domain or the un-

versioned domain, receive the
selected one of author, execute
and update instances of the artifact
from either the versioned domain
or the un-versioned domain,
wherein the selected one of author,
execute and update instances of
the artifact is performed using a set
of rules
1210

104

CLIENT

114

Storage
108

CLIENT

	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - CLAIMS
	Page 34 - CLAIMS
	Page 35 - CLAIMS
	Page 36 - CLAIMS
	Page 37 - CLAIMS
	Page 38 - CLAIMS
	Page 39 - CLAIMS
	Page 40 - CLAIMS
	Page 41 - CLAIMS
	Page 42 - CLAIMS
	Page 43 - CLAIMS
	Page 44 - DRAWINGS
	Page 45 - DRAWINGS
	Page 46 - DRAWINGS
	Page 47 - DRAWINGS
	Page 48 - DRAWINGS
	Page 49 - DRAWINGS
	Page 50 - DRAWINGS
	Page 51 - DRAWINGS
	Page 52 - DRAWINGS
	Page 53 - DRAWINGS
	Page 54 - DRAWINGS
	Page 55 - DRAWINGS
	Page 56 - REPRESENTATIVE_DRAWING

