
US 20220321400A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0321400 A1

KODEBOYINA et al . (43) Pub . Date : Oct. 6 , 2022

Publication Classification (54) IDENTIFYING AND MARKING FAILED
EGRESS LINKS IN DATA PLANE

(71) Applicant : Barefoot Networks , Inc. , Santa Clara ,
CA (US)

(72) Inventors : Chaitanya KODEBOYINA , Los Altos ,
CA (US) ; John CRUZ , Cupertino , CA
(US) ; Steven LICKING , San Jose , CA
(US) ; Michael E. ATTIG , Sunnyvale ,
CA (US)

(21) Appl . No .: 17 / 723,243

(51) Int . CI .
H04L 41/0654 (2006.01)
H04L 69/22 (2006.01)
H04L 45/745 (2006.01)
H04L 41/0677 (2006.01)
H04L 49/00 (2006.01)
H04L 45/42 (2006.01)
H04L 49/55 (2006.01)
H04L 45/28 (2006.01)
H04L 45/64 (2006.01)

(52) U.S. CI .
CPC H04L 41/0654 (2013.01) ; H04L 69/22

(2013.01) ; H04L 45/745 (2013.01) ; H04L
41/0677 (2013.01) ; H04L 49/3063 (2013.01) ;

H04L 45/42 (2013.01) ; H04L 49/555
(2013.01) ; H04L 45/28 (2013.01) ; H04L 45/64

(2013.01)
(57) ABSTRACT
A method of identifying a failed egress path of a hardware
forwarding element . The method detects an egress link
failure in a data plane of the forwarding element . The
method generates a link failure signal in the data plane
identifying the failed egress link . The method generates a
packet that includes the identification of the egress link
based on the link failure signal . The method sets the status
of the egress link to failed in the data plane based on the
identification of the egress link in the generated packet .

(22) Filed : Apr. 18 , 2022

Related U.S. Application Data
(63) Continuation of application No. 16 / 903,305 , filed on

Jun . 16 , 2020 , now Pat . No. 11,310,099 , which is a
continuation of application No. 16 / 048,202 , filed on
Jul . 27 , 2018 , now abandoned , which is a continu
ation of application No. 15 / 150,015 , filed on May 9 ,
2016 , now Pat . No. 10,063,407 .

(60) Provisional application No. 62 / 292,498 , filed on Feb.
8 , 2016 .

125 130 Ingress
110

Traffic Manager
115

Egress
120

Forwarding Element 105

Ingress / Egress 145

135 PHV PHV 140
Parser
150

MAU
155

Deparser
160

Payload

125

130

Ingress 110

Traffic Manager 115

Egress 120

HE
Patent Application Publication

Forwarding Element 105
Ingress / Egress 145

Oct. 6 , 2022 Sheet 1 of 17

135

PHV

PHV

140

Parser

MAU 155

Deparser 160

150

Payload

US 2022/0321400 A1

Fig . 1

215 I.

B

E

1

U

240

Patent Application Publication

230

245

2

5

F

G

2

250

205

2

210

D

F

?

u

201

255

260

245

Oct. 6 , 2022 Sheet 2 of 17

Failed path

220

B

E

3

3

240

1

2

4

?

G

2

2

205

2

210

D

F D

US 2022/0321400 A1

Fig . 2

202

335

340

315

Patent Application Publication

A

B

E

2

310

305

330

301

?

Oct. 6 , 2022 Sheet 3 of 17

330

Failed port 340

7

B

E

350

345

310

305

320

US 2022/0321400 A1

?
302

Fig . 3

405

n - 1

Patent Application Publication

Fig . 4A

410

415

Oct. 6 , 2022 Sheet 4 of 17

1 | 0 | 1 | 1 | 0 | 1

Link Status Table

US 2022/0321400 A1

Fig . 4B

Patent Application Publication

Forwarding Element 505

545 Ingress Ports

550 Egress Ports

125

130

:

Ingress 110

Traffic Manager

Egress 120
OOO

:

115

515

Packet Generator 510

520 Packet Generator Port

Oct. 6 , 2022 Sheet 5 of 17

525 Identification of failed link

Fig . 5

US 2022/0321400 A1

670

660

Patent Application Publication

611

621

631

601

601

PG

MAC Unit

Ingress Pipeline

Egress Pipeline

670

MAC Unit

612

Failure Feedback Generator 640

622

632

602

602

PG

MAC Unit

Ingress Pipeline

Egress Pipeline

MAC Unit

613

603

623

Queuing and Buffering 645

633

603

PG

MAC Unit

Ingress Pipeline

Egress Pipeline

MAC Unit

614

604

Packet Replicator 650

Oct. 6 , 2022 Sheet 6 of 17

624

634

604

PG

MAC Unit

Ingress Pipeline

Egress Pipeline

MAC Unit

Traffic Manager
115

Fig . 6

US 2022/0321400 A1

Word 0 Word 1 Word 2 Word 3 Word 4

Patent Application Publication

Word N - 3 Word N - 2 Word N - 1

715

705

710

Unit Mem
Unit Mem
Unit Mem
Unit Mem
Unit Mem
Unit Mem

ALU

ALU

Unit Mem
Unit Mem
Unit Mem
Unit Mem
Unit Mem
Unit Mem

720

Unit Mem
Unit Mem
Unit Mem
Unit Mem
Unit Mem
Unit Mem

ALU

ALU

Unit Mem
Unit Mem
Unit Mem
Unit Mem
Unit Mem
Unit Mem

Unit Mem
Unit Mem
Unit Mem
Unit Mem
Unit Mem
Unit Mem

ALU

ALU

Unit Mem
Unit Mem
Unit Mem
Unit Mem
Unit Mem
Unit Mem

Oct. 6 , 2022 Sheet 7 of 17

Unit Mem
Unit Mem
Unit Mem
Unit Mem
Unit Mem
Unit Mem

ALU

ALU

Unit Mem
Unit Mem
Unit Mem
Unit Mem
Unit Mem
Unit Mem

Unit Mem

Unit Unit Mem Mem

Unit Mem
Unit Mem
Unit Mem

ALU

ALU

Unit Mem
Unit Mem
Unit Mem
Unit Mem
Unit Mem
Unit Mem

Unit Mem
Unit Mem
Unit Mem
Unit Mem
Unit Mem
Unit Mem

ALU

ALU

Unit Mem
Unit Mem
Unit Mem
Unit Mem
Unit Mem
Unit Mem

Unit Mem
Unit Mem
Unit Mem
Unit Mem

Unit Mem
Unit Mem

ALU

ALU

Unit Mem
Unit Mem
Unit Mem
Unit Mem
Unit Mem
Unit Mem

Unit Mem
Unit Mem
Unit Mem
Unit Mem
Unit Mem
Unit Mem

ALU

ALU

Unit Mem
Unit Mem
Unit Mem
Unit Mem

Unit Mem
Unit Mem

US 2022/0321400 A1

Fig . 7

700

Patent Application Publication Oct. 6 , 2022 Sheet 8 of 17 US 2022/0321400 A1

800

Start

805
Assign a status bit to each configured egress link
in a link status table stored in dual port memory a

810

Create a match field in a match - action table for
each configured egress path Y

815 For each match field created for a configured
egress path , create an action to (i) determine the
location of the path's status bit in the link status
table , (ii) set the status of the path in the link

status table to failed , and (iii) drop the packet that
matched the match - action after the bit in the link

status table is updated

End

Fig . 8

940

Forwarding Element 505

101 1011

410

Patent Application Publication

910

Link Status Table 230

I

MAU 160

945

...

ALU i

...

Match - Action j

930

Match entry : The failed link ID

PVH

Parser 150

Oct. 6 , 2022 Sheet 9 of 17

Match - Action

Deparser 165

Match - Action 1

m

915

920

Action entry : Determine the location of the status bit ; set the status to failed ; drop the packet

520

Packet Generator 510

905 Packet identifying the failed link

525 Identification of a failed link

925
935

US 2022/0321400 A1

Fig . 9

Patent Application Publication Oct. 6 , 2022 Sheet 10 of 17 US 2022/0321400 A1

1010

1005 1015

PH

1020
1025

1030
PHV

905 Packet
Generator

510 0 Parser 150

Fig . 10

Performed by packet generator

Performed by ingress pipeline parser

Performed by MAU

Start
D

1120

1130

Patent Application Publication

1105

Receive an indication that an egress path has failed

Parse the packet and place the
identification of the failed path in a predetermined register of the PHV

Match the identification of the failed path in the PHV with the match field of the match - action entry that is
preprogrammed to match the path's identification

1110

1125

1135

Forward the PHV to MAU

Generate a packet inside the forwarding element and include an identification of the failed path in the packet header

Based on the preprogrammed action in the match - action table , use the
corresponding ALU to (i) determine the location of the path's status bit in the link

status table , (ii) set the status of the path
in the link status table to failed , and (iii) drop the packet after the bit in the link status table is updated

Oct. 6 , 2022 Sheet 11 of 17

1115

Place the packet in the packet pipeline of the forwarding element

End

US 2022/0321400 A1

1100

Fig . 11

Primary Port Status 1210

Backup Port Status 1215

Patent Application Publication

1220

1225

I 1

1

0

1

1

1

1205

:

:

Oct. 6 , 2022 Sheet 12 of 17

Port Status Table Fig . 12

US 2022/0321400 A1

Patent Application Publication Oct. 6 , 2022 Sheet 13 of 17 US 2022/0321400 A1

1300

/
Start

1305

Assign a backup port to each configured egress
port

1310 Assign an status bit to each configured port and
each backup port in a status table stored in
memory capable of being written by either

hardware or software

1315
For each configured primary egress port create a
match field in a match - action entry to match the

identification of the primary port

1320 For each match field created for a configured port ,
create an action to (i) identify the location of the
status bit of the port in the port status table (ii) set
the status of the port in the port status table to

failed , and (iii) drop the packet that matched the
match - action after the bit in the port status table is

updated

End

Fig . 13

Forwarding Element 1405

1410

0

1

1440

11

Patent Application Publication

1205 Port Status Table

MAU 160

1445

...

ALU i

1430

Match - Actionj
Match entry : The failed port ID

Oct. 6 , 2022 Sheet 14 of 17

Parser
PVH

150

Match - Action

Deparser 165

Match - Action 1

m

Packet Generator 510

1415

1420

Action entry : Determine the location of the port status bit ; set the status to failed ; drop the packet

1405

520

1425 1435

Packet identifying the failed port

1490 Identification of a failed port

US 2022/0321400 A1

Fig . 14

Forwarding Element 1405

1510

1

1540

Patent Application Publication

1205 Port Status Table

MAU 160

1545

...

ALU i

Packet with failed egress port 1505

1590

1510

Match - Action j
Match entry The failed primary

Oct. 6 , 2022 Sheet 15 of 17

Parser
PVH

port ID

150

Match - Action

Deparser 165

Match - Action 1

n

Packet Generator 510

1525

1520

Action entry : Determine the location of the status bit ; If status is failed , set the egress port to the backup port

1530 1535

US 2022/0321400 A1

Fig . 15

Performed by packet generator

Performed by ingress pipeline parser

Performed by MAU

Start

1620

1630

Patent Application Publication

1605

Receive an indication that an egress

Parse the packet and place the
identification of the failed port in a predetermined register of the PHV

port has failed

Match the identification of the failed port in the PHV with the match field of the match - action entry that is
preprogrammed to match the port's identification

1610

1625

1635

Forward the PHV to MAU

Generate a packet inside the forwarding element and include an identification of the failed port in the packet header

Based on the preprogrammed action in the match - action table , use the
corresponding ALU to (i) determine the location of the port's status bit in the port

status table , (ii) set the status of the port
in the port status table to failed , and (iii) drop the packet after the bit in the port status table is updated

Oct. 6 , 2022 Sheet 16 of 17

1615

Place the packet in the packet pipeline of the forwarding element

End

US 2022/0321400 A1

1600

Fig . 16

1745

1735

1720

1750

Patent Application Publication

1700

Storage

System Memory

Ternary Content Addressable Memory (TCAM)

Output Devices

1705

Oct. 6 , 2022 Sheet 17 of 17

ROM

Processing Unit (s)
Input Devices

Network

1730

1710

1725

1740

US 2022/0321400 A1

Fig . 17

US 2022/0321400 A1 Oct. 6. 2022
1

IDENTIFYING AND MARKING FAILED
EGRESS LINKS IN DATA PLANE

CLAIM OF BENEFIT TO PRIOR
APPLICATIONS

a

[0001] This application is a continuation application of
U.S. patent application Ser . No. 16 / 903,305 , filed Jun . 16 ,
2020 , now U.S. Pat . No. 11,310,099 , which is a continuation
application of U.S. patent application Ser . No. 16 / 048,202 ,
filed Jul . 27 , 2018 , which is a continuation application of
U.S. patent application Ser . No. 15 / 150,015 , filed May 9 ,
2016. U.S. patent application Ser . Nos . 15 / 150,015 , 16/048 ,
202 and 16 / 903,305 claim the benefit of U.S. Provisional
Patent Application 62 / 292,498 , filed Feb. 8 , 2016. The entire
specifications of which are hereby incorporated herein by
reference in their entirety .

a

BACKGROUND
a [0002] A forwarding element such as a switch or a router

can often send packets to a destination through several
different egress paths . The forwarding elements utilize dif
ferent algorithms to identify the best path to send the packets
to optimize network congestion as well as transmission time .
[0003] Once one of these egress paths fails , the forwarding
element has to get notified that the path has failed and mark
the path as failed in order to avoid forwarding packets on the
failed path . A path may fail due to a port or a wire failure
inside the forwarding element or due to a path failure several
hops away between the forwarding element and packet
destination .
[0004] A typical solution to keep track of the failed paths
is using software in the control plane of the forwarding
element to keep track of the status of the configured paths
and mark a path as failed as soon as the path becomes
unavailable . Utilizing software to keep track of and update
the list of failed paths is , however , slow . Depending on the
load of the processor that is executing the software , marking
a path as failed by software may take several milliseconds .
Such a delay is not desirable and can cause significant delays
in a high - speed forwarding element .

[0007] The forwarding element also includes a packet
generator that is capable of generating packets inside the
forwarding element and placing them in the packet pipeline .
The packet generator receives the identification of failed
paths or ports . For instance , when a port or a wire inside the
forwarding element fails , some embodiments generate an
interrupt that provides the identification of the failed port (or
path) . The packet generator in some embodiments also
utilizes mechanisms such as keep alive to determine failed
paths that are several hops away . Once the packet generator
receives the identification of a failed link (i.e. , a failed port
or a failed path) , the packet generator generates a packet that
includes the identification of the failed link in a predeter
mined location in the packet header . The packet goes
through the MAU pipeline and matches a predefined match
field . The action corresponding to the match field causes an
action unit in the forwarding element to use the failed link
identification and compute an index to the status bit of the
failed link in a data structure and to set the status bit to off
(i.e. , to indicate that the link has failed) .
[0008] Some embodiments utilize a process to mark an
egress link (i.e. , a path or a port) as failed by performing a
set of operations that are done by dedicated hardware and
firmware in the data plane of the forwarding element . The
process receives an indication that an egress link (i.e. , a path
or a port) of the forwarding element has failed . The process
then generates a packet inside the forwarding element and
includes an identification of the failed link (i.e. , the failed
path or port) in a predetermined field of the packet header .
[0009] The process then places the packet in the packet
pipeline of the forwarding element . The process then parses
the packet and places the identification of the failed link in
a register of the PHV and forwards the PHV to the MAU .
The process matches the identification of the failed link in
the PHV with the match field of a match - action entry that is
preprogrammed to match the link's identification . Each
match field has a corresponding action .
[0010] Once the identification of the failed link matches a
match field , the process uses an arithmetic logic unit (ALU)
to perform the corresponding action of the match - action
entry . The process determines the location of the link's
status bit in a data structure (e.g. , a link status table or a port
status table) that keeps track of live and failed links . The
process sets the bit at the determined location to off (or
failed) . The data structure is stored in a dual port memory
that is capable of being written directly by hardware . Once
the status bit of the failed link is updated , the packet is no
longer needed and is dropped .
[0011] The preceding Summary is intended to serve as a
brief introduction to some embodiments of the invention . It
is not meant to be an introduction or overview of all
inventive subject matter disclosed in this document . The
Detailed Description that follows and the Drawings that are
referred to in the Detailed Description will further describe
the embodiments described in the Summary as well as other
embodiments . Accordingly , to understand all the embodi
ments described by this document , a full review of the
Summary , Detailed Description and the Drawings is needed .
Moreover , the claimed subject matters are not to be limited
by the illustrative details in the Summary , Detailed Descrip
tion and the Drawing .

BRIEF SUMMARY

[0005] Some embodiments provide a hardware forwarding
element (e.g. , a hardware switch or a hardware router) with
a novel packet - processing pipeline that quickly marks a
failed egress path by performing a set of hardware and
firmware operations in the data plane . The forwarding
element in some embodiments includes an ingress pipeline ,
a traffic manager , and an egress pipeline . Each one of the
ingress and egress pipelines includes a pipeline with a
parser , a match - action unit (MAU) , and a deparser .
[0006] The parser receives the packets coming into the
pipeline and produces a packet header vector (PHV) as its
output . The PHV provides the input data to the match tables
of the MAU . The MAU includes a set of match - action
stages . Each of these stages matches a particular set of
header fields included in the PHV against a match table and
takes an action based on the result of the match . The output
PHV is then handed to the deparser , which reassembles the
packet by putting back together the output PHV and the
payload of the packet that the deparser receives directly
from the parser .

US 2022/0321400 A1 Oct. 6. 2022
2

BRIEF DESCRIPTION OF THE DRAWINGS DETAILED DESCRIPTION

a

[0012] The novel features of the invention are set forth in
the appended claims . However , for purposes of explanation ,
several embodiments of the invention are set forth in the
following figures .
[0013] FIG . 1 conceptually illustrates a block diagram of
a hardware forwarding element and a block diagram of an
ingress / egress pipeline of the hardware forwarding element
in some embodiments .
[0014] FIG . 2 illustrates ECMP routing for forwarding
packets from a forwarding element to a destination over
several different paths .
[0015] FIG . 3 illustrates link aggregation as another
example of forwarding packets from a forwarding element
to a destination over several different paths .
[0016] FIG . 4A conceptually illustrates a logical view of a
vector that shows the status of the egress links of a forward
ing element in some embodiments .
[0017] FIG . 4B conceptually illustrates an implementation
of the logical vector of FIG . 4A .
[0018] FIG . 5 conceptually illustrates a block diagram of
a hardware forwarding element that is capable of marking
failed links by performing a set of hardware operations in the
data plane in some embodiments .
[0019] FIG . 6 conceptually illustrates a portion of a hard
ware forwarding element used for detecting a port failure
and reporting the failure to the packet generator in some
embodiments .
[0020] FIG . 7 conceptually illustrates a grid of unit memo
ries in some embodiments .
[0021] FIG . 8 conceptually illustrates a process for assign
ing status bits to a forwarding element's egress links and
programming match - action entries to set the status of a
failed link to failed .
[0022] FIG . 9 conceptually illustrates the steps that the
hardware forwarding element of FIG . 5 takes to mark a
failed link in data plane in some embodiments .
[0023] FIG . 10 conceptually illustrates a process that a
forwarding element performs in data plane in order set the
status of a failed link to failed in some embodiments .
[0024] FIG . 11 conceptually illustrates a process that a
forwarding element performs in the data plane in order to set
the status of a failed link to failed in some embodiments .
[0025] FIG . 12 conceptually illustrates a port status table
of some embodiments maintained in dual port memory that
is writable by hardware .
[0026] FIG . 13 conceptually illustrates a process for
assigning backup egress ports for a forwarding element and
programming match - action entries to set the status of a
failed port to failed .
[0027] FIG . 14 conceptually illustrates the steps a hard
ware forwarding element takes to mark a failed port in the
data plane in some embodiments .
[0028] FIG . 15 conceptually illustrates the steps a hard
ware forwarding element takes to replace a failed primary
egress port with a backup port in the data plane in some
embodiments .
[0029] FIG . 16 conceptually illustrates a process that a
forwarding element performs in the data plane in order to set
the status of a failed port to failed in some embodiments .
[0030] FIG . 17 conceptually illustrates an electronic sys
tem with which some embodiments of the invention are
implemented .

[0031] In the following detailed description of the inven
tion , numerous details , examples , and embodiments of the
invention are set forth and described . However , it will be
clear and apparent to one skilled in the art that the invention
is not limited to the embodiments set forth and that the
invention may be practiced without some of the specific
details and examples discussed .
[0032] Software defined networks (SDNs) decouple the
data and control planes . The data plane , which is also
referred to as forwarding plane or user plane , is the part of
the network that carries data packets (i.e. , user packets)
traffic . In contrast , the control plane in a network controls
signaling traffic and routing .
[0033] In a forwarding element (e.g. , a hardware switch or
a hardware router) , the data plane is the part of the archi
tecture that decides what to do with the packets that arrive
at the ingress interface . The data plane of a forwarding
element is implemented by hardware and firmware while the
control plane is implemented in software to provide for a
more flexible management of network components from a
central location . Keeping track of failed paths by the soft
ware in the control plane could , however , be time consuming
and slow .
[0034] Some embodiments provide a hardware forwarding
element with a novel packet - processing pipeline that quickly
marks a failed egress link by performing a set of hardware
operations in the data plane . In the following discussions ,
the term link is used to refer to a path or a port . The hardware
forwarding element of some embodiments includes , among
other elements , an ingress pipeline and an egress pipeline .
Each of these pipelines includes a parser , a match - action unit
(MAU) , and a deparser .
[0035] FIG . 1 conceptually illustrates a block diagram of
a hardware forwarding element 105 and a block diagram of
an ingress or egress pipeline 145 of the hardware forwarding
element in some embodiments . As shown , the forwarding
element 105 includes an ingress pipeline (or data path) 110 ,
a traffic manager 115 , and an egress pipeline 120 .
[0036] The traffic manager 115 has several components
such as a queuing and buffering system , a packet replicator ,
and a port failure feedback generator . These components are
described further below . The ingress pipeline 110 receives
packets 125 from a set of channels (e.g. , through a set of I / O
modules) , parses each packet header into a packet header
vector (PHV) , sends the PHV through a set of match and
action stages which may modify the PHV , deparses the
packet headers back from the PHV into packet format , and
queues the packet in a centralized data buffer (i.e. , a data
buffer provided by the traffic manager 115) . Each one of
these operations is described in more detail below by
reference to the pipeline 145. The block diagram of both the
ingress pipeline 110 and the egress pipeline 120 is similar to
the pipeline 145 .
[0037] In some embodiments , the traffic manager 115
receives the packets that are processed by the ingress
pipeline and provides a large shared buffer (storage) that
accommodates the queuing delays due to oversubscription
of the output channels of the ingress deparser . In some
embodiments , the data buffer stores packet data , while
pointers to that data are kept in different queues per channel .
Each channel in turn requests data from the common data
buffer using a configurable queuing policy . When pointers to

a

a

US 2022/0321400 A1 Oct. 6. 2022
3

a

MAU 155 , the PHV that the MAU outputs might include the
same header data as the PHV that the MAU received from
the parser , or the output PHV might contain different data
than the input PHV .
[0043] The output PHV is then handed to the deparser 160 .
The deparser 160 reassembles the packet by putting back
together the output PHV (that might or might not have been
modified) that the deparser receives from the MAU 155 and
the payload of the packet that the deparser receives directly
from the parser 150. The deparser then sends the packets 140
out of the ingress / egress pipeline (to the traffic manager 115
or out of the forwarding element , depending on whether it is
the deparser for the ingress pipeline or the egress pipeline) .

I. Identifying and Marking Failed Links in Data
Plane

(0044) Forwarding a packet from a forwarding element to
a destination that is several hops away can often be done
over several different paths . Once a path is determined to
have failed , an alternative path with the same cost (or a path
with the least possible cost) is selected to replace the failed
path . One such example is equal - cost multi - path (ECMP)
routing . Another example is link aggregation (LAG) .

packets reach the head of the queues , the packets are read out
of the data buffer of the traffic manager 115 into the egress
pipeline 120 .
[0038] The egress pipeline 120 receives the packets from
the traffic manager 115. The parser in egress pipeline sepa
rates the packet payload from the packet headers , stores the
packets headers in a PHV , sends the PHV through a set of
match and action stages , deparses the packet headers back
from the PHV into packet format , and sends the packets 130
to an appropriate output port of the forwarding element 105
to be driven off the forwarding element (e.g. , through one of
the output channels) . An output packet may be the same
packet as the corresponding input packet (i.e. , with identical
packet headers) , or it may have different packet headers
compared to the input packet based on the actions that are
applied to the packet headers in the ingress and egress
pipelines (e.g. , different header field values for certain
header fields and / or different sets of header fields) .
[0039] It should be understood that the illustrated blocks
in forwarding element 105 are exemplary only . The ingress ,
traffic manager , and egress blocks are simplified for ease of
description . For example , although the figure shows only
one entry point to the ingress parser and one exit point from
the egress deparser , in some embodiments the input signals
are received by many different input channels (e.g. , 64
channels) and the output signals are sent out of the forward
ing element from different output channels (e.g. , 64 chan
nels) . Additionally , although for the illustrated forwarding
element only one parser interface is shown for the ingress /
egress pipeline 145 , some embodiments employ numerous
parser blocks (e.g. , 16 parser blocks) that feed a match
action unit (MAU) in each pipeline .
[0040] FIG . 1 also shows a block diagram 145 of an
interface of the hardware forwarding element 105. Each one
of the ingress 110 and egress 120 pipelines use an interface
similar to the interface 145. The interface includes a pipeline
with three different units , namely a parser unit 150 , an MAU
155 , and a deparser unit 160. The parser 150 of some
embodiments receives the incoming packets and produces a
packet header vector (PHV) as its output . In other words , the
parser 150 separates the packet headers from the packet
payload by extracting different fields of packet headers and
storing them in the PHV .
[0041] In some embodiments the PHV includes a set of
different size registers or containers . For instance , in some
embodiments the PHV includes sixty - four 8 - bit registers ,
ninety - six 16 - bit registers , and sixty - four 32 - bit registers
(for a total of 224 registers containing 4096 bits) . Other
embodiments may have any different numbers of registers of
different sizes . In some embodiments , the parser 150 stores
each extracted packet header in a particular subset of one or
more registers of the PHV . For example , the parser might
store a first header field in one 16 - bit register and a second
header field in a combination of an 8 - bit register and a 32 - bit
register (e.g. , if the header field is 36 bits long) .
[0042] The PHV provides the input data to the match
tables of the MAU . In some embodiments the MAU 155
includes a set of match - action stages (e.g. , 32 match - action
stages) . Each of these stages matches a particular set of
header fields against a match table and takes an action based
on the result of the match (e.g. , assigning the packet to an
output port and queue , dropping the packet , modifying one
or more of the header fields , etc.) . Based on the actions taken
on different header data during the different stages of the

2

A. Forwarding the Packets using ECMP
[0045] ECMP is a routing strategy that selects the next hop
for forwarding a packet to the final destination in such a way
to minimize the overall cost (e.g. , the required time or the
network congestion) for forwarding the packet to the final
destination . FIG . 2 illustrates ECMP routing for forwarding
packets from a forwarding element 205 to a destination 210
over several different paths through several hops 240-260
that can also be forwarding elements . The figure is shown in
two stages 201 and 202. The cost of sending a packet
through each path is written next to the path .
[0046] As shown , there are several paths such as A - B - E - G ,
A - C - E - G , and A - D - F - G between source A 205 and destina
tion G 210 that cost 6 units . Each one of these paths is , e.g. ,
a separate open system interconnection (OSI) Layer 3 (L3)
path where packets can be sent through . In stage 201 the path
A - B - E - G (as shown by arrow 215) is utilized to send packets
for one or more flows between source A 205 and destination
G 210. As shown , multiple paths can be on the same OSI
Layer 2 (L2) port of a forwarding element . For instance , in
FIG . 2 , both paths A - C - E - G and A - C - G are on port 230 of
forwarding element 205 .
[0047] In stage 202 , the path between hops B 240 and E
245 fails . According to ECMP strategy , another route
between the source 205 and the destination 210 is selected
to keep the transmission cost at a minimum . As shown ,
forwarding element A 205 selects the path A - C - E - G 220 to
replace path 215 .

a
B. Forwarding the Packets using LAG

[0048] FIG . 3 illustrates LAG as another example of
forwarding packets from a forwarding element to a desti
nation over several different paths . LAG combines multiple
network connections in parallel to provide throughput and
redundancy . The figure is shown in two stages 301 and 302 .
The cost of sending a packet through a path is written next
to each path . As shown , there are several paths between
forwarding element A 305 and hop B 330 (which could be
another forwarding element) that have equal cost . These

US 2022/0321400 A1 Oct. 6. 2022
4

paths , e.g. , use OSI Layer 2 (L2) ports on forwarding
element 305 that are on one logical channel bundle . These
paths provide parallelism to increase throughput as well as
redundancy .
[0049] As shown in stage 301 , the path A - B - D - E 315 ,
which passes through path 335 between port 340 of for
warding element 305 and hop 330 is used to pass packets for
one or more flows from forwarding element A 305 to
destination E 310. In stage 302 port 340 fails . As a result ,
link 335 becomes inaccessible . As shown , another path 320
(which includes the link 345 between port 350 of forwarding
element 305 and hop 330) is selected to replace the failed
path 315 .
[0050] In addition to the examples of ECMP and LAG , it
is possible that several tunnels go through the same egress
port of the forwarding element . Even if the port remains
functional , one of the tunnels may fail several hops away
downstream . Similar to the examples of FIGS . 2 and 3 , the
failed path has to be replaced with another path despite the
fact that the egress port is still operational .

[0055] The read operation is performed by (1) presenting
the address to read to all map RAMs , (2) the map RAM with
the data to be read signals that its associated unit (e.g. ,
SRAM S1) holds the most up to date data , (3) the unit
SRAM S1 is read at the corresponding address . Since the
write operation cannot be performed with the same unit
where the data currently resides (because the single port of
SRAM S1 is occupied by a read) , the write is performed by
(1) querying the map RAMs to determine which unit SRAM
is not busy and has the specified address available for write
operation , (2) writing the data to the free SRAM (e.g. SRAM
S2) , (3) updating the map RAM associated with unit SRAM
S2 to indicate unit SRAM S2 has the most up to date version
of the data , and (4) updating the map RAM associated with
unit SRAM S1 to indicate the address in SRAM S1 is now
available for write operations (since the data in SRAM S1 is
now stale) .
[0056] As shown , table 410 includes several groups of live
link vectors . Each group is being used by one application (or
one user) . For instance , group 415 includes several live link
vectors (e.g. , 128 bits each) . Group 415 maintains the status
of the links used by one application that utilizes a forwarding
element such as forwarding element 105 in FIG . 1 .
[0057] Once a link such as path 215 in FIG . 2 or port 340
in FIG . 3 fails , a typical solution in prior art forwarding
elements is for software in control plane to mark the link as
failed and select an alternative link to replace the failed link .
Utilizing software to mark a link as failed and determine a
replacement link is , however , time consuming and slow . For
instance , marking the link as failed by software may take
several milliseconds . Accordingly , some embodiments pro
vide a technique to quickly mark a failed link by performing
a set of hardware operations in the data link (e.g. , in the
order of a few microseconds) and route packets to an
alternative link without software involvement .

C. Link Status Table

[0051] Some embodiments maintain the status of each
egress link of a forwarding element in a data structure that
includes a flag (e.g. , one bit) per link . The value of the bit
indicates whether the corresponding link is up or down . For
instance in some embodiments a value of 1 indicates that the
corresponding link is operational and a value of 0 indicates
that the corresponding link is down . In other embodiments ,
a value of 0 may be used to indicate that a link is operational
and a value of 1 to indicate a link is down .
[0052] FIG . 4A conceptually illustrates a logical view of a
data structure (e.g. a vector) that shows the status of the
egress links of a forwarding element in some embodiments .
As shown , vector 405 is an array of n bits . Each bit
corresponds to a configured egress link (i.e. , a port or a path)
of the forwarding element . The status of each link is
represented by the value of the corresponding bit . When a
link is up and operational , the corresponding bit is set to on
(e.g. , is set to 1) to indicate that the link is live . On the other
hand , when a link is down , the corresponding bit is set to off
(e.g. , is set to 0) to indicate that that link has failed and is not
available . Vector 405 in some embodiments is stored in
memory as a group of one or more words .
[0053] FIG . 4B conceptually illustrates an implementation
of the logical vector 405 of FIG . 4A . As shown , some
embodiments utilize a link status table in an area of memory
410 (referred to herein as the live link vector table) for
storing the status of the links . The memory used to store
table 410 in some embodiments is a dual port memory that
is capable of being read and written by hardware . The dual
port memory is also capable of being written by software . In
contrast , a random access memory (RAM) is read by hard
ware but is written only by software . For instance the
software writes into a buffer , which is in turn transferred into
the RAM .
[0054] The dual port memory used to store the live link
vector table 410 in some embodiments is implemented from
single port static random - access memory (SRAM) units .
These embodiments utilize a map RAM (e.g. , a small SRAM
of 1024 entries by 11 bits) for each unit SRAM . The map
RAM stores whether the corresponding unit SRAM has the
most up to date data for a memory address . Simultaneous
read and write operations are performed as follows .

a

D. Detecting and Marking a Failed Link
[0058] FIG . 5 conceptually illustrates a block diagram of
a hardware forwarding element 505 that is capable of
marking failed links by performing a set of hardware opera
tions in the data plane in some embodiments . As shown , in
addition to ingress pipeline 110 , traffic manager 115 , and
egress pipeline 120 , the forwarding element includes a
packet generator 510. The packet generator is capable of
generating packets internally in the forwarding element and
sending the packets through the packet pipeline . As shown ,
the ingress packets 125 are received at the ingress pipeline
110 through a set of ingress ports 545 while packets 515 that
are generated by the packet generator are received at the
ingress pipeline at a separate port 520 .
[0059] As shown , packet generator 510 receives the iden
tification 525 of failed links . For instance , when a forward
ing element's port fails , some embodiments generate an
interrupt that provides the identification of the failed port .
The interrupt is used to provide the identification of the
failed port to the packet generator . As another example , the
packet generator may receive an identification of a failed
path (such as path 215 in FIG . 2) when a portion of the path
that is several hops away fails . For instance , the packet
generator receives a hardware signal when the failure of a
keep alive signal indicates a portion of an egress path has
failed .
[0060] FIG . 6 conceptually illustrates a portion of a hard
ware forwarding element used for detecting a port failure

a

US 2022/0321400 A1 Oct. 6. 2022
5

a

and reporting the failure to the packet generator in some
embodiments . The figure shows traffic manager 115 , several
ingress pipelines 621-624 (each pipeline similar to pipeline
110 in FIG . 5) , several egress pipelines 631-634 (each
pipeline similar to pipeline 120 in FIG . 5) , and several
packet generators 611-614 (each packet generator similar to
packet generator 510 in FIG . 5) . Each packet generator
611-614 is associated with one ingress pipeline 621-624 . For
instance , packet generator 611 is associated with ingress
pipeline 621 .
[0061] The figure also shows several media access control
(MAC) units 601-604 to monitor ingress and egress ports . In
some embodiments , one MAC unit is utilized for monitoring
both the ingress and the egress ports of a pipeline . For
instance , the blocks labeled MAC unit 601 next to the
ingress pipeline 621 and the egress pipeline 631 are one
MAC unit which are shown in FIG . 6 as two separate blocks
for clarity . In other embodiments , separate MAC units are
utilized to monitor the ingress and egress ports of each
pipeline . Once an egress port fails , the corresponding MAC
unit 601-604 informs traffic manager 115 using a hardware
signal (as conceptually shown by arrow 660) .
[0062] As shown , traffic manager 115 has several compo
nents : a queuing and buffering system 645 , a packet repli
cator 650 , and a failure feedback generator 640. As
described above , the queuing and buffering system provides
a large shared buffer that accommodates the queuing delays
due to oversubscription of the output channels of the ingress
deparser . Port failure feedback generator 640 receives a
hardware signal from the MAC unit that detects a port
failure .

[0063] In the example of FIG . 6 , MAC unit 601 detects
that the egress port (not shown) being monitored by the
MAC unit has failed . MAC unit 601 sends a signal 660 to
the port failure feedback generator 640. The port failure
feedback generator 640 in turn generates a hardware signal
(as conceptually shown by arrow 670) to the packet gen
erator 611 connected to the ingress pipeline 621 and egress
pipeline 631 that are associated with the failed port . The
hardware signal includes the identification of the failed port .
For instance the port failure feedback generator in some
embodiments identifies the failed port based on which MAC
unit has reported the failure . In other embodiments , the
signal from a MAC unit (e.g. , a MAC unit that monitors
several ports) to the failure feedback generator includes an
identification of the failed port (e.g. , in the form of an n bit
of information that uniquely identifies the failed port) . The
failure feedback generator then sends a signal to the packet
generator and includes the identification of the failed port
(e.g. , in the form of an m bit of information that uniquely
identifies the failed port) .
[0064] The packet generator 611 then generates a packet
670 that is placed in ingress pipeline 621. As described
below , the packet 670 cause the status bit corresponding the
failed port to be set to off . All actions of detecting that a port
has failed by a MAC unit (such as MAC unit 601) , sending
a signal from the MAC unit to the traffic manager 115 ,
sending a signal from the traffic manager to a packet
generator (such as packet generator 611) , generating a
packet (such as packet 670) by the packet generator , and
setting the status bit of the failed port to off are done by
hardware and firmware in the data plane of the forwarding
element without using the control plane or software .

[0065] Referring back to FIG . 5 , the figure shows one of
the ingress pipeline , egress pipeline , and packet generators
of FIG . 6. Once the packet generator 510 receives the
identification of a failed link , the packet generator generates
a packet 515 that includes the identification of the failed link
in a predetermined location in the packet header . The packet
goes through the MAU match - action stages and matches a
predefined match field . The action corresponding to the
match field causes a preprogrammed action unit in the
forwarding element to use the failed link identification and
compute an index to the status bit of the failed link in the live
link vector table and to set the bit to off (i.e. , to indicate that
the link has failed) .
[0066] The hardware forwarding element of some
embodiments processes network packets according to a
series of match - action tables that specify when to perform
certain operations on the packets . The match - action tables
include match entries that specify sets of match conditions
that can be met by packets , and corresponding action entries
that specify operations to perform on packets that meet the
match conditions .
[0067] As an example , the match entry of a match - action
table might match on the identification of a failed link . The
corresponding action entry might specify that the status bit
of the link in the live link vector table has to be set to off .
As another example , a match - action table might match on
the destination address of an ingress packet and specify an
output port to which to send the packet . Different destination
addresses (i.e. , different match entries) correspond to output
actions to different ports (i.e. , different action entries) of the
forwarding element .
[0068] In some embodiments , the forwarding element
includes a set of unit memories (e.g. , SRAM and / or ternary
content - addressable memory (TCAM)) . The unit memories
implement a match - action table by having a first set of the
unit memories store the match entries and a second set of the
unit memories store the action entries . That is , for a par
ticular match entry and the corresponding action entry , the
match entry is stored in a first unit memory and the action
entry is stored in a second unit memory .
[0069] Some embodiments arrange the unit memories in a
grid of rows and columns , with horizontal and vertical
routing resources that connects the unit memories to arith
metic logic units (ALUS) , also referred to as action units ,
that read the data from the unit memories in order to perform
the match and action operations . In some such embodiments ,
a first pool of unit memories within a grid (e.g. , a set of one
or more columns of the grid) are utilized for the match
entries , and a second pool of unit memories within the grid
are utilized for the action entries . Some embodiments assign
other functions of the forwarding element to unit memories
within the grid as well , including statistics , meters , state ,
ternary indirection , etc. In some embodiments , the match
memories are segregated (assigned to a specific set of
columns , such as those closest to the ALUS) while the
remaining memories in the grid are used for implementing
memories for other functions (statistics , meters , etc.) .
[0070] Each match entry of some embodiments includes
two portions : the set of match conditions for a packet to
meet , and an address of the action entry to read when the set
of match conditions is met by a packet . The address , in some
embodiments , specifies both a memory page that indicates a
unit memory within the grid of unit memories , and a location
within that memory page .

a

a

US 2022/0321400 A1 Oct. 6. 2022
6

a

2

a

a

a

[0071] FIG . 7 conceptually illustrates a grid 700 of unit
memories in some embodiments . Specifically , this example
shows 96 unit memories arranged in 16 logical rows , with
each row associated with an arithmetic logic unit (ALU)
715. The 16 logical rows are divided into two separate grids
705 and 710 of eight rows , having six columns in each of the
two separate grids . It should be understood that the arrange
ment of memories shown in FIG . 7 is only one of many
examples of the possible arrangements of unit memories to
implement match - action tables in a forwarding element , and
that the inventive concepts described herein are applicable to
many such arrangements .
[0072] These unit memories , in some embodiments , each
have a number of memory locations , or “ words ” that can be
read by the ALUs . The wiring that allows ALUs to read from
several different rows is described in detail in the U.S.
Provisional Application 62 / 108,409 , filed Jan. 27 , 2015 ,
which is incorporated herein by reference . As shown for one
of the unit memories 720 , each memory includes N loca
tions , from Word 0 to Word N - 1 . In some embodiments ,
these locations each have a fixed width based on the specific
unit memories used in the grid 700 , such as 64 bits , 128 bits ,
256 bits , etc. The ALUS 715 in some embodiments read one
memory location per unit memory in a given clock cycle .
[0073] In some embodiments , each of the unit memories
has a designated function . For instance , a first unit memory
might store match entries , while a second unit memory
stores the action entries that correspond to the match entries
of the first unit memory . In addition , the unit memories may
store other data for a match - action based forwarding ele
ment , including meters (used to measure data flow rates) and
statistics (e.g. , counters for counting packets , bytes , etc.) .
[0074] Referring back to FIG . 5 , the match - action table of
the MAU includes a match entry to match the identification
of each egress link . Matching the link identification and
performing of the corresponding action (if there is a match)
is performed by one of the ALUs . The corresponding action
entry causes the ALU to use the failed link identification
included in the packet and compute an index to the status bit
of the failed link in the live link vector table . The action also
causes the ALU to set the bit to off (i.e. , to indicate that the
link has failed) . After the live link vector table is updated ,
the packet is not needed and is dropped without being sent
out from one of the egress ports 550 .
[0075] FIG . 8 conceptually illustrates a process 800 for
assigning status bits to a forwarding element's egress links
and programming match - action entries to set the status of a
failed link to failed . Process 800 in some embodiments is
performed when the hardware forwarding element is
deployed and an initial set of egress links are nfigured
The process is also performed each time a new link is
configured in order to update the match - action table .
[0076] As shown , the process assigns (at 805) a status bit
in the link status table (e.g. , the live link vector table 410 in
FIG . 4) for each configured egress link of the forwarding
element . As described above , the link status table in some
embodiments is stored in dual port memory that is capable
of being written by either hardware or software . The process
also optionally sets the status of all links to operational (e.g. ,
sets the status bits to 1) .
[0077] For each configured egress link , the process creates
(at 810) a match field in a match - action table of the MAU to
match the identification of the link . Next , for each config
ured egress link , the process creates (at 815) the correspond

ing action to (i) determine the location of the link's status bit
in the link status table based on the link identification in a
predetermined field of the packet header , (ii) set the status of
the link in the link status table to failed (e.g. , to set the bit
to 0) , and (iii) drop the packet after the bit in the link status
table is updated . The process then ends .
[0078] Process 800 in some embodiments utilizes a pro
gramming language that is designed to program packet
forwarding data planes in order to program the match - action
table . For instance , some embodiments utilize a program
ming language such as P4 , which is used for programming
protocol - independent packet processors . P4 language works
in conjunction with protocols such as OpenFlow and is
designed to program the match - action tables .
[0079] FIG . 9 conceptually illustrates the steps hardware
forwarding element 505 of FIG . 5 takes to mark a failed link
in data plane in some embodiments . The figure shows the
ingress pipeline of the forwarding element . As shown ,
packet generator 510 receives the identification 525 of a
failed egress link (i.e. a failed egress path or port) . The
packet generator generates a packet 905 that includes the
identification of the failed link (or the failed port) in a
predetermined field of the packet header . In other words , the
packet includes a specific signature for the failed link that is
used to match a preprogrammed match field of a match
action table in the MAU . The packet is then placed into the
packet pipeline of the forwarding element through the
packet generator port 520. The parser 150 then parses the
packet header and creates a PHV . One of the registers or
containers in the PHV includes the identification of the
failed link .
[0080] FIG . 10 conceptually illustrates generation of a
PHV by a parser from a packet that is generated by a packet
generator in some embodiments . As shown , the packet
generator 510 generates a packet 905 that includes the
identification of the failed link in a predetermined field 1005
of the packet header 1010. In this example , other fields of the
packet header do not include relevant information .
[0081] When a packet is received by the parser 150 , the
parser parses the packet headers into the PHV 1025. How
ever , not every header field of each packet header is needed
by the MAU stages of the upcoming ingress or egress
pipeline to which the parser sends the PHV . For instance ,
some of the packet header fields will (i) not be matched
against by any of the match entries of the match tables in the
pipeline and (ii) not be modified by any possible action entry
that could be performed in the pipeline . Thus , as the parser
150 extracts each packet header from a packet , the parser
determines which of the header fields of the packet header
might be processed by at least one of the match - action stages
of the MAU .
[0082] The illustrated example shows that a packet header
1015 of the packet 905 includes several participating header
fields 1005-1010 that the MAU is configured (e.g. , by a
configurator module of the control plane) to potentially
process . At the same time , the packet header 1015 also
includes several other non - participating header fields 1020
that the MAU is not configured to process . In some embodi
ments , when the parser 150 extracts a particular packet
header from a packet , the parser must extract the entire
contiguous packet header at once (i.e. , the parser cannot
leave certain fields of a packet header in the payload while
placing the other fields of the packet header in the PHV) .
Because the different participating header fields of the

US 2022/0321400 A1 Oct. 6. 2022
7

packet header are often not placed next to each other in the
packet header (as illustrated in the figure) , the parser of some
embodiments separates these participating header fields
from nonparticipating fields during extraction of the packet
header .
[0083] For example , the MAU might be configured to
process only a particular set of header fields in a UDP packet
header , which may not be the first two header fields of the
packet header (i.e. , the source and destination ports) . In such
a case , the parser locates the particular header fields in the
set , pulls these fields out of the packet header , and stores the
header fields in the PHV . However , the other nonparticipat
ing header fields that are also extracted from the packet have
to be dealt with as well . Therefore , in some embodiments ,
the parser looks at each header field in the packet header and
determines whether the identified header field might be
processed by the MAU or will definitely not be processed by
the MAU .
[0084] If the parser 150 determines that the header field is
one of the participating header fields , the parser stores the
header field in the PHV 1025 (i.e. , in a particular set of
registers or containers of the PHV 1025 designated for that
header field) . On the other hand , if the parser determines that
the identified header field is not supposed to be processed by
the MAU , the parser stores the header field in a separate
structure (not shown) that is subsequently sent directly to the
deparser of the pipeline without getting processed .
[0085] The parser of some embodiments determines
which fields of each packet header may be processed and
which fields will not be processed by the MAU , based on the
information the parser receives from the packet itself (e.g. ,
by one or more particular packet header of the packet) , and
based on the configuration data that is received , for example ,
from a compiler in the control plane . In some embodiments ,
the compiler receives the data required for configuring the
pipeline (e.g. , through a programing language code such as
the above - mentioned P4 language) , generates a set of con
figuration data , and distributes the generated data to a
configurator module (also in the control plane) . The con
figurator module then distributes the configuration data to
both parser and MAU of the pipeline in the forwarding
element (e.g. , at run - time or during setup time) . For the
packet 905 that is generated by the packet generator 510 for
the purpose of identifying a failed link , the relevant infor
mation 1005 is in a predetermined field of the packet header
1015. This information is extracted by the parser 150 and is
placed in a predetermined register (or container) 1030 of the
PHV 1025 .
[0086] Referring back to FIG . 9 , the PHV passes through
the pipeline of match and action stages 915-925 . One of
these match - action stages 920 is preprogrammed (e.g. , as
described above by reference to process 800) to match the
identification of the failed link included in the PHV . The
match entry 930 matches the identification of the failed link .
The corresponding action entry 935 includes instructions for
an ALU 945 (as described above by reference to FIGS . 7 and
8) to (i) determine the location of the link's status bit in the
link status table 230 based on the link identification in a
predetermined field of the packet header , (ii) set the status of
the link in the link status table to failed (e.g. , to set the bit
to 0) , and (iii) drop the packet after the bit in the link status
table is updated .
[0087] Depending on the particular implementation of the
link status table , the action entry causes the ALU to utilize

the identification of the link to calculate an index to the link
status table 230. For instance , for the link status table 410
shown in FIG . 4B , the ALU may calculate a pointer to the
particular link vector group 415 as well as an offset to the
location of the status bit that corresponds to the failed link .
[0088] The ALU in some embodiments is capable of
performing operations such as writing into map RAM
memory used to store the link status table 140. The ALU ,
therefore , sets (as shown by the dashed arrow 940 in FIG . 9)
the status bit 910 that corresponds to the failed link to failed
(e.g. , to 0) . The ALU then drops the packet , as there is not
need for the packet to be sent out of an egress port .
[0089] FIG . 11 conceptually illustrates a process 1100 that
a forwarding element performs in the data plane in order to
set the status of a failed link to failed in some embodiments .
As shown , different portions of the process are performed by
the packet generator , the ingress pipeline parser , and the
MAU of the forwarding element .
[0090] The process receives (at 1105) an indication (e.g. ,
as shown by 525 in FIGS . 5 and 9) that an egress link of the
forwarding element has failed . The process then generates
(at 1110) a packet inside the forwarding element (e.g. , packet
905 generated by the packet generator 510 in FIG . 9) . The
process includes an identification (or signature) of the failed
link in the packet header . For instance , the process places the
identification in the field 1005 of the packet header 1015 as
shown in FIG . 10 .
[0091] The process then places (at 1115) the packet in the
packet pipeline of the forwarding element . For instance , the
process places packet 905 through the packet pipeline of the
forwarding element as shown in FIG . 9. The process then
parses (at 1120) the packet and places the identification of
the failed link in a predetermined register (or container) of
the PHV . For instance , the process generates the PHV 1025
and places the identification of the failed link in a register
1030 of the PHV . The process then forwards (at 1125) the
PHV to the MAU .
[0092] Next , the process matches (at 1130) the identifica
tion of the failed link in the PHV with the match field of the
match - action entry that is preprogrammed to match the
link's identification . For instance , the process matches the
identification of the failed link with the match field 930 as
shown in FIG . 9 .
[0093] As described above , each match field has a corre
sponding action . Once the identification of the failed link
matches a match field , the process uses (at 1135) the action
that is preprogrammed for the corresponding ALU to deter
mine the location of the link's status bit in the link status
table . For instance , for the link status table 410 shown in
FIG . 4B , the process may calculate a pointer to the particular
link vector group 415 as well as an offset to the location of
the status bit that corresponds to the failed link .
[0094] The process also sets the bit at the determined
location to fail . For example , the process sets the status bit
910 to 0 as shown in FIG.9 . Once the status bit of the failed
link is updated in the link status table , the packet is no longer
needed and is dropped . The process then ends .

II . Identifying a Failed Egress Port and Selecting a
Backup Port in Data Plane

[0095] Some embodiments assign a backup port to each
egress port . These embodiments , in data plane perform the
followings : identify that a primary egress port has failed ,
mark the failed port , and redirect the packets that were

US 2022/0321400 A1 Oct. 6. 2022
8

destined to egress from the failed port to the backup port .
Identifying the failed port , marking the failed port , and
redirected the packets to the backup port are all done in data
plane using hardware and firmware without using the control
plane and software .
[0096] As described above by reference to FIG . 6 , some
embodiments detect a failed port by a MAC unit and send a
signal to the traffic manager . The traffic manager sends a
signal to the packet generator on the pipeline that corre
sponds to the failed port . The packet generator then gener
ates a packet to mark the failed port in the link status table .
The embodiments that utilize backup ports maintain a data
structure (referred to herein as port status table) to keep track
of the primary and backup ports .
[0097] FIG . 12 conceptually illustrates a port status table
of some embodiments maintained in dual port memory that
is writable by hardware . As shown , some embodiments
utilize an area of memory 1205 (referred to herein as the port
status table) for storing the status of the port pairs . The
memory used to store table 1205 in some embodiments is a
dual port memory that is capable of being read and written
by hardware .
[0098] As shown , table 1205 identifies the status 1210 of
each primary port and the status 1215 of each backup port .
Each port is associated with a flag (e.g. , a bit in the table) .
In the example of FIG . 12 , the status 1220 of a primary port
is marked as failed (i.e. , set to 0) while the status 1225 of the
corresponding backup port is on (i.e. , set to 1) .
[0099] Once a port fails , a typical solution in prior art
forwarding elements is for software in control plane to mark
the port as failed and select an alternative port to replace the
failed port . Utilizing software to mark a port as failed and
determine a replacement port is , however , time consuming
and slow . Accordingly , some embodiments provide a tech
nique to quickly mark a failed port by performing a set of
hardware and firmware operations in the data path and route
packets to a backup port without software involvement .
[0100] FIG . 13 conceptually illustrates a process 1300 for
assigning backup egress ports for a forwarding element and
programming match - action entries to set the status of a
failed port to failed . Process 1300 in some embodiments is
performed when the hardware forwarding element is
deployed and an initial set of egress ports are configured .
The process is also performed each time a new port is
configured in order to update the match - action table .
[0101] As shown , the process assigns (at 1305) a backup
port to each configured egress port . The process then assigns
(at 1310) a status bit in a status table (e.g. , the port status
table 1205 in FIG . 12) to each configured primary port and
each configured backup port . The status table is stored in
memory that is capable of being written by either hardware
or software . The process also optionally sets the status of all
ports to operational (e.g. , sets the status bits to 1) .
[0102] For each configured primary port , the process cre
ates (at 1315) a match field in a match - action entry to match
the identification of the primary port . For each match field
created for a configured port , the process creates (at 1320)
an action to (i) identify the location of the status bit of the
port in the port status table (ii) set the status of the port in
the port status table to failed , and (iii) drop the packet that
matched the match - action after the bit in the port status table
is updated . The process then ends .
[0103] Process 1300 in some embodiments utilizes a pro
gramming language that is designed to program packet

forwarding data planes in order to program the match - action
table . For instance , some embodiments utilize a program
ming language such as P4 , which is used for programming
protocol - independent packet processors . P4 language works
in conjunction with protocols such as OpenFlow and is
designed to program the match - action tables .
[0104] FIG . 14 conceptually illustrates the steps a hard
ware forwarding element 1405 takes to mark a failed port in
data plane in some embodiments . The figure shows the
ingress pipeline of the forwarding element . As shown ,
packet generator 510 receives an identification 1490 of a
failed egress port . The packet generator generates a packet
1405 that includes the identification of the failed port in a
predetermined field of the packet header . In other words , the
packet includes a specific signature for the failed port that is
used to match a preprogrammed match field of a match
action table in the MAU . The packet is then placed into the
packet pipeline of the forwarding element through the
packet generator port 520. The parser 150 then parses the
packet header and creates a PHV . One of the registers or
containers in the PHV includes the identification of the
failed port . For instance , parser includes the identification of
the failed port in a register such as register 1030 of PHV as
shown in FIG . 10 .
[0105] The PHV passes through the pipeline of match and
action stages 1415-1425 . One of these match - action stages
1420 is preprogrammed (e.g. , as described above by refer
ence to process 1300) to match the identification of the failed
port included in the PHV . The match entry 1430 matches the
identification of the failed port . The corresponding action
entry 1435 includes instructions for an ALU 1445 (as
described above by reference to FIGS . 7 and 13) to (i)
determine the location of the port's status bit in the port
status table based on the port identification in a predeter
mined field of the packet header , (ii) set the status of the port
in the port status table to failed (e.g. , to set the bit to 0) , and
(iii) drop the packet after the bit in the port status table is
updated .
[0106] Depending on the particular implementation of the
port status table , the action entry causes the ALU to utilize
the identification of the port to calculate an index to the port
status table 1410. The ALU in some embodiments is capable
of performing operations such as writing into map RAM
memory used to store the port status table 1410. The ALU ,
therefore , sets (as shown by the dashed arrow 1440) the
status bit 1410 that corresponds to the failed port to failed
(e.g. , to 0) . The ALU then drops the packet , as there is not
need for the packet to be sent out of an egress port .
[0107] Once a primary egress port is marked as failed ,
packets that specify the failed egress port as their destination
port are modified to use the backup port . This process is
done in the data plane without using the control plane and
software . FIG . 15 conceptually illustrates the steps a hard
ware forwarding element 1405 takes to replace a failed
primary egress port with a backup port in data plane in some
embodiments . As shown , a packet 1505 is received through
an ingress port 1590. Packet 1505 is a data packet (also
referred to as a user packet) that is received from outside of
the forwarding element 1405. The packet is parsed by parser
150. The parser places the header fields that might be
processed by at least one of the match - action stages 1525
1530 in the PHV .
[0108] In the example of FIG . 15 , the egress port identified
in the packet 1505 has failed and the associated status bit

a

US 2022/0321400 A1 Oct. 6. 2022
9

1510 in the port status table 1205 has been set to off . The
PHV passes through the pipeline of match and action stages
1525-1530 . One of these match - action stages 1520 is pre
programmed to match the identification of the egress port
included in the PHV . The match entry 1510 matches the
identification of the egress port . The corresponding action
entry 1535 includes instructions for an ALU 1545 to (i)
determine the location of the port's status bit in the port
status table based on the port identification in a predeter
mined field of the packet header , (ii) check whether the port
status is set to failed (e.g. , to 0) , and (iii) if the port has
failed , set the egress port of the packet to the back up port
corresponding to the failed port . The packet then proceeds
through the ingress and egress pipeline and sent out of the
backup egress port .
[0109] FIG . 16 conceptually illustrates a process 1600 that
a forwarding element performs in the data plane in order to
set the status of a failed port to failed in some embodiments .
As shown different portions of the process are performed by
the packet generator , the parser , and the MAU of the
forwarding element .
[0110] The process receives (at 1605) an indication (e.g. ,
as shown by 525 in FIGS . 5 and 14) that an egress port of
the forwarding element has failed . The process then gener
ates (at 1610) a packet inside the forwarding element (e.g. ,
packet 1405 generated by the packet generator 510 in FIG .
14) . The process includes an identification (or signature) of
the failed port in the packet header . For instance , the process
places the identification in the field 1005 of the packet
header 1015 as shown in FIG . 10 .
[0111] The process then places (at 1615) the packet in the
packet pipeline of the forwarding element . For instance , the
process places packet 1405 through the packet pipeline of
the forwarding element as shown in FIG . 14. The process
then parses (at 1620) the packet and places the identification
of the failed port in a predetermined register (or container)
of the PHV . For instance , the process generates the PHV
1025 and places the identification of the failed port in a
register 1030 of the PHV . The process then forwards (at
1625) the PHV to the MAU .
[0112] Next , the process matches (at 1630) the identifica
tion of the failed port in the PHV with the match field of the
match - action entry that is preprogrammed to match the
port's identification . For instance , the process matches the
identification of the failed port with the match field 1430 as
shown in FIG . 14 .
[0113] As described above , each match field has a corre
sponding action . Once the identification of the failed port
matches a match field , the process uses (at 1635) the action
that is preprogrammed for the corresponding ALU to deter
mine the location of the port's status bit in the port status
table . For instance , for the port status table 1205 shown in
FIG . 12 , the process may calculate an offset to the location
of the status bit that corresponds to the failed port .
[0114] The process also sets the bit at the determined
location to fail . For example , the process sets the status bit
1410 to 0 as shown in FIG . 14. Once the status bit of the
failed port is updated in the port status table , the packet is no
longer needed and is dropped . The process then ends .

execute any of the control , virtualization , or operating
system applications described above . The electronic system
1700 may be a computer (e.g. , a desktop computer , personal
computer , tablet computer , server computer , mainframe , a
blade computer etc.) , phone , PDA , or any other sort of
electronic device . Such an electronic system includes vari
ous types of computer readable media and interfaces for
various other types of computer readable media . Electronic
system 1700 includes a bus 1705 , processing unit (s) 1710 ,
system memory 1720 , read - only memory (ROM) 1730 ,
permanent storage device 1735 , input devices 1740 , output
devices 1745 , and TCAM 1750 .
[0116] The bus 1705 collectively represents all system ,
peripheral , and chipset buses that communicatively connect
the numerous internal devices of the electronic system 1700 .
For instance , the bus 1705 communicatively connects the
processing unit (s) 1710 with the read - only memory 1730 ,
the system memory 1720 , and the permanent storage device
1735 .
[0117] From these various memory units , the processing
unit (s) 1710 retrieve instructions to execute and data to
process in order to execute the processes of the invention .
The processing unit (s) may be a single processor or a
multi - core processor in different embodiments .
[0118] The read - only - memory 1730 stores static data and
instructions that are needed by the processing unit (s) 1710
and other modules of the electronic system . The permanent
storage device 1735 , on the other hand , is a read - and - write
memory device . This device is a non - volatile memory unit
that stores instructions and data even when the electronic
system 1700 is off . Some embodiments of the invention use
a mass - storage device (such as a magnetic or optical disk
and its corresponding disk drive) as the permanent storage
device 1735 .
[0119] Other embodiments use a removable storage device
(such as a floppy disk , flash drive , etc.) as the permanent
storage device . Like the permanent storage device 1735 , the
system memory 1720 is a read - and - write memory device .
However , unlike storage device 1735 , the system memory is
a volatile read - and - write memory , such a random access
memory . The system memory stores some of the instructions
and data that the processor needs at runtime . In some
embodiments , the invention's processes are stored in the
system memory 1720 , the permanent storage device 1735 ,
and / or the read - only memory 1730. From these various
memory units , the processing unit (s) 1710 retrieve instruc
tions to execute and data to process in order to execute the
processes of some embodiments .
[0120] The bus 1705 also connects to the input and output
devices 1740 and 1745. The input devices enable the user to
communicate information and select commands to the elec
tronic system . The input devices 1740 include alphanumeric
keyboards and pointing devices (also called " cursor control
devices ”) . The output devices 1745 display images gener
ated by the electronic system . The output devices include
printers and display devices , such as cathode ray tubes
(CRT) or liquid crystal displays (LCD) . Some embodiments
include devices such as a touchscreen that function as both
input and output devices .
[0121] Finally , as shown in FIG . 17 , bus 1705 also couples
electronic system 1700 to a network 1725 through a network
adapter (not shown) . In this manner , the computer can be a
part of a network of computers (such as a local area network
(“ LAN ”) , a wide area network (“ WAN ”) , or an Intranet , or

III . Computer System
[0115] FIG . 17 conceptually illustrates an electronic sys
tem 1700 with which some embodiments of the invention
are implemented . The electronic system 1700 can be used to

US 2022/0321400 A1 Oct. 6. 2022
10

a network of networks , such as the Internet . Any or all
components of electronic system 1700 may be used in
conjunction with the invention .
[0122] Some embodiments include electronic compo
nents , such as microprocessors , storage and memory that
store computer program instructions in a machine - readable
or computer - readable medium (alternatively referred to as
computer - readable storage media , machine - readable media ,
or machine - readable storage media) . Some examples of such
computer - readable media include RAM , ROM , read - only
compact discs (CD - ROM) , recordable compact discs (CD
R) , rewritable compact discs (CD - RW) , read - only digital
versatile discs (e.g. , DVD - ROM , dual - layer DVD - ROM) , a
variety of recordable / rewritable DVDs (e.g. , DVD - RAM ,
DVD - RW , DVD + RW , etc.) , flash memory (e.g. , SD cards ,
mini - SD cards , micro - SD cards , etc.) , magnetic and / or solid
state hard drives , read - only and recordable Blu - Ray® discs ,
ultra density optical discs , any other optical or magnetic
media , and floppy disks . The computer - readable media may
store a computer program that is executable by at least one
processing unit and includes sets of instructions for per
forming various operations . Examples of computer pro
grams or computer code include machine code , such as is
produced by a compiler , and files including higher - level
code that are executed by a computer , an electronic com
ponent , or a microprocessor using an interpreter .
[0123] While the above discussion primarily refers to
microprocessor or multi - core processors that execute soft
ware , some embodiments are performed by one or more
integrated circuits , such as application specific integrated
circuits (ASICs) or field programmable gate arrays (FP
GAs) . In some embodiments , such integrated circuits
execute instructions that are stored on the circuit itself .

[0124] As used in this specification , the terms “ computer ” ,
“ server ” , “ processor ” , and “ memory ” all refer to electronic
or other technological devices . These terms exclude people
or groups of people . For the purposes of the specification ,
the terms display or displaying means displaying on an
electronic device . As used in this specification , the terms
" computer readable medium , " " computer readable media , ”
and “ machine readable medium ” are entirely restricted to
tangible , physical objects that store information in a form
that is readable by a computer . These terms exclude any
wireless signals , wired download signals , and any other
ephemeral or transitory signals .
[0125] While the invention has been described with ref
erence to numerous specific details , one of ordinary skill in
the art will recognize that the invention can be embodied in
other specific forms without departing from the spirit of the
invention . In addition , a number of the figures (including
FIGS . 8 , 11 , 13 , and 16) conceptually illustrate processes .
The specific operations of these processes may not be
performed in the exact order shown and described . The
specific operations may not be performed in one continuous
series of operations , and different specific operations may be
performed in different embodiments . Furthermore , the pro
cess could be implemented using several sub - processes , or
as part of a larger macro process .
[0126] In view of the foregoing , one of ordinary skill in
the art would understand that the invention is not to be
limited by the foregoing illustrative details , but rather is to
be defined by the appended claims .

1-15 . (canceled)
16. An apparatus comprising :
circuitry to receive packets , wherein the packets comprise

header fields and wherein the packets are associated
with a flow and stored in a queue ;

ingress packet processing pipeline circuitry to :
determine congestion associated with the queue ,
process received packets to generate packet byte count

information and packet count information , and
cause storage of the packet byte count information and

packet count information ; and
a traffic manager coupled to the ingress packet processing

circuitry .
17. The apparatus of claim 16 , comprising an egress

packet processing circuitry .
18. The apparatus of claim 17 , comprising one or more

egress ports , wherein the egress packet processing circuitry
is to select an egress port of the one or more egress ports for
packet transmission based on a link aggregation group
(LAG)

19. The apparatus of claim 16 , comprising one or more
ingress ports and one or more egress ports .

20. The apparatus of claim 16 , comprising at least one
port that is bi - directional for packet ingress and / or packet
egress .

21. The apparatus of claim 16 , comprising at least one
memory to store at least one of the received packets .

22. The apparatus of claim 16 , comprising a switch ,
wherein the switch comprises the circuitry to receive packets
and the ingress packet processing pipeline circuitry .
23. At least one non - transitory computer - readable

medium comprising instructions stored thereon , that if
executed by at least one processor , cause the at least one
processor to :

configure ingress packet processing pipeline circuitry of a
switch to :
determine congestion associated with a queue ,
process received packets to generate packet byte count

information and packet count information , and
cause storage of the packet byte count information and

packet count information .
24. The non - transitory computer - readable medium of

claim 23 , comprising instructions stored thereon , that if
executed by at least one processor , cause the at least one
processor to :

configure circuitry of a switch to
receive packets and store received packets in a queue ,

wherein the packets comprise header fields and
wherein the packets are associated with a flow .

25. The non - transitory computer - readable medium of
claim 23 , comprising instructions stored thereon , that if
executed by at least one processor , cause the at least one
processor to :

configure egress packet processing circuitry of the switch
to select an egress port of the one or more egress ports
for packet transmission based on a link aggregation
group (LAG) .

26. The non - transitory computer - readable medium of
claim 23 , wherein the switch comprises one or more ingress
ports and one or more egress ports .

27. The non - transitory computer - readable medium of
claim 23 , wherein the switch comprises at least one port that
is bi - directional for packet ingress and / or packet egress .

a

US 2022/0321400 A1 Oct. 6 , 2022
11

28. The non - transitory computer - readable medium of
claim 23 , wherein the switch comprises at least one memory
to store at least one of the received packets .

29. The non - transitory computer - readable medium of
claim 23 , wherein the switch comprises

a traffic manager coupled to the ingress packet processing
circuitry .

30. A method comprising :
storing received packets in a queue , wherein the packets

comprise header fields and wherein the packets are
associated with a flow ;

ingress packet processing pipeline circuitry performing :
determining congestion associated with the queue ,
processing received packets to generate packet byte

count information and packet count information , and
causing storage of the packet byte count information

and packet count information .
31. The method of claim 30 , comprising :
egress packet processing circuitry selecting an egress port

for packet transmission based on a link aggregation
group (LAG) .

32. The method of claim 30 , comprising :
performing traffic management of the received packets

using a traffic manager .
* * *

