«» UK Patent Application .,GB ,2516007

(13)A

(43)Date of A Publication 14.01.2015
(21) Application No: 1311672.8 (51) INT CL:
HO4N 19/103 (2014.01) HO4N 19/137 (2014.01)
(22) Date of Filing: 28.06.2013 HO4N 19/142 (2014.01)

(71) Applicant(s):
DisplayLink (UK) Limited
(Incorporated in the United Kingdom)
Mount Pleasant House, Mount Pleasant,
CAMBRIDGE, CB3 ORN, United Kingdom

(72) Inventor(s):
Daniel Ellis
Eric Hamaker

(74) Agent and/or Address for Service:
Mathys & Squire LLP
The Shard, 32 London Bridge Street, LONDON,
SE1 9SG, United Kingdom

(56) Documents Cited:
GB 2207829 A US 20120328008 A1
Wiegand T. et al., "Overview of the H.264/AVC Video
Coding Standard", 2003, IEEE Transactions on
Circuits and Systems for Video Technology, vol. 13,
no. 7, pages 560-576, available at http://ip.hhi.de/
imagecom_G1/assets/pdfs/csvt_overview_0305.pdf

(58) Field of Search:
INT CL HO4N
Other: Online: WPI, EPODOC

(54) Title of the Invention: Efficient encoding of display data

Abstract Title: Encoding Display Data Using Display Update Information

(57) The display output of a computer is encoded using a block based video encoder, such as H.264 / MPEG-4. Display

update information (e.g. a list of dirty rectangles) is received (e.g. based on API calls) specifying any changed
display areas (504). This update information may be stored in a cache for subsequent access. Pixel data
associated with any changed areas is also received. For each image block of an output frame to be encoded, the
encoder determines whether the image block intersects one or more of the changed areas (512). A block skip
indication is encoded (516) for each image block not intersecting at least one changed area, and pixel data is
encoded (514) for intersecting blocks. Alternatively, if no display update information is received, each block of the
frame is skip encoded (506). An encoded output frame is then generated including the block skip indications and
encoded pixel data. Such use of the update information (e.g. from OS graphics subsystem or based on API calls)
identifying any changed areas to determine whether the use of a skip macroblock is appropriate is more efficient
that using expensive standard frame analysis/comparison to determine skip macroblocks.

) 502

Process next time instance
"| for encoded video stream

Screen output
changed?

NO

+ 508

Encode a full frame of “skip”
macroblocks

—

Fig. 5

510
S

Receive changed area
information

l ,_JS]Z

Identify macroblocks
intersecting changed area(s)

¢ JSlﬁ.

Encode identified
macroblocks using standard
macroblock encoding

‘ 516
-

Encode all other macroblocks
using “skip” macroblocks

Transmit frame -

vV 100919¢ 99

1/5

OFt

¢l

Joydepy
Aejdsia asn

L

[44*

(44!

it

841

\

|//

J9||0J43U0)
] asn

ian

wailsAsgns
solydedd so

SO

/

o1

/

[AL}

Jardepe Aejdsiq

Qm.mw...\
450
4 > ™
(asn)
Modsued | :
@me%\ 3 w
! (sease Auip)
,M, ssaadwo) : elepels|n
pu— soydedn
17’ ry or7 \ : f jf%m
4 | (sioxd)
W\x 1J9AUOD P ayoey | { e1eq soydess
£17 m /fmom
JaAlQ Aejdsiq aJemyjos ;

WV/ \ fdY
sotyiesn

\.1\.

207

8GL

3/5

~

/f{,wmv

0V

¢ "8

¢
alempiey gsn

7003
S43Al gSN SO

G0E 201A108
9PON J=sN 1dN

B0E Jonup
soydeud
apow
Bsnidan

T€ Jousodwo) SO

445

owleld} ywsued |

syoojqosoew | dpys, duisn
SHD0|qoIdBW JBYIO ||e 3podU]

mwma}

-1

8uipooua yoojqoloew
pJepuels Suisn syoojqosoew
palyiauapl 8podu3

P

(s)ease padueyd 3uidasialul
syo0|gqosoew Ajluap)

T8

—

uoljewiojul

syo0jgoJoew
1S, Jo dweuy |ny e 3poou]

SO
ON

{padueyd

S3A

eale pagueyd aAl209Yy

e

1ndino uaauosg

POS

WIeaJt}s O3PIA PIPOIUD JO}
doUBISUI W} IXdU SSBI04(

N.E\

8G9
909
g9 314
diys diye dys dnts o
- HOG e
diys i din] dns 5
i
A S iy
s Hin aw] dos g
it N
dis s diys diys g
1 by e £y Mmmw‘\

g

10

15

20

25

30

S1-

Efficient encoding of display data

The present invention relates to methods and systems for efficiently encoding
display data, for example for transmission over a general-purpose data
transport such as USB or Wi-Fi.

Conventional computer displays utilise a variety of specialised connections
such as VGA, DVI or HDMI connections, coupled to dedicated video hardware
in order to output a display signal to a display. This need for dedicated

connection hardware can increase the cost and complexity of computers.

Systems have been developed that allow connection of displays over certain
other specialised types of connections. For example, the Thunderbolt
interface combines transport of DisplayPort and PCIl Express communications
over a single connection, to enable a variety of peripheral devices to use a
single port. However, specialised new hardware must be added to the

computer to implement this interface.

Systems for connecting a display to a computer over USB are also available.
Such systems generally use a software display driver loaded by the
computer’s operating system, which transmits display data over USB instead
of via the standard display connection. The data is received at a display
adapter connected via a conventional display interface to the display itself.
Some form of compression of the display data is typically used to allow a
reasonable quality image to be transmitted over the limited available
bandwidth provided by USB. This, however, entails significant encoding
overhead at the computer, especially where conventional video codecs are
used. Alternatively, special-purpose video encoding software may be provided
(together with a corresponding decoder in the display adapter) but this adds to
the overall cost and complexity of the system.

The present invention seeks to alleviate some of these problems.

10

15

20

25

30

S0

Accordingly, in a first aspect of the invention, there is provided a method of
encoding display output of a computer using a block-based video encoder, the
method comprising: receiving display update information, the display update
information specifying at least one changed display area; receiving pixel data
associated with the at least one changed display area; for a plurality of image
blocks of an output frame to be encoded, determining whether each image
block intersects one or more of the changed display areas; encoding a block
skip indication for each image block not intersecting at least one changed
display area; encoding received pixel data for each intersecting block; and
generating an encoded output frame including the block skip indications and
encoded pixel data.

This approach can reduce the computational effort involved in encoding an
output frame by avoiding the need to encode pixel data for each block (for
example, this may eliminate the need for loading and comparing pixel data for

such blocks).

The term “block-based video encoder” preferably refers to any encoder using
an encoding algorithm or scheme that subdivides a frame into multiple
regions, segments, slices or tiles that are encoded individually. A block can
thus be any subregion of a frame. Some encoding schemes use multiple
layers of subdivision (e.g. dividing a frame into macroblocks which are
themselves further divided into smaller blocks). The term “block” can refer to
blocks or macroblocks in such a scheme, though in a preferred embodiment,
the blocks correspond to macroblocks, with the described coding decisions

being made at the macroblock level.

The determining and encoding steps are preferably performed for each block
(or macroblock) of the output frame. Where a block skip indication is encoded
for a block, no pixel data is preferably encoded for that block in the frame.

The display update information preferably comprises information specifying
one or more rectangular areas of a display image that are being (or have been
or are to be) modified. The pixel data preferably comprises pixel data for the

10

15

20

25

30

-3-

or each rectangular area, preferably specifying a complete set of pixels for the
or each rectangular area. In preferred embodiments the display update
information comprises a list of dirty rectangles (or a reference to such a list).

Receiving one or both of the display update information and the pixel data
preferably comprises interfacing with a graphics subsystem component of an
operating system, preferably a graphics Application Programming Interface
(AP). Interfacing may comprise intercepting or trapping a call to the API,
preferably via an APl shim. The call may originate from another operating
system component (e.g. a graphics subsystem component) or from an
application program. Received pixel data and/or display update information
may be referenced or contained in, or derived from, the API call or multiple
such calls. Receiving pixel data may comprise reading the pixel data from a
pixel buffer such as a frame buffer.

In a particular example, receiving display update information may comprise
trapping a call to an operating system display update operation, the display
update information preferably referenced or included in one or more

parameter(s) of the call.

Encoding received pixel data for an intersecting block preferably comprises
encoding received pixel data associated with a changed area intersecting the
block, optionally together with further pixel data from a corresponding block in
an earlier output frame. The corresponding block is preferably a block at the
same block position within the earlier frame. The encoded received pixel data
preferably corresponds to a region of the block where the changed area
intersects the block and the further pixel data corresponds to a region of the
block where the changed area does not intersect the block. The earlier output
frame may be an immediately preceding output frame processed or generated
by the encoder.

The further pixel data may be obtained from cached pixel data corresponding
to the earlier frame. The method may comprise storing a copy of pixel data

10

15

20

25

30

-4 -

corresponding to the (current) output frame, and preferably using the stored
pixel data in encoding a subsequent or later frame.

The encoded frame is preferably compliant with a block-based video coding
standard, and is thus preferably decodable by a corresponding standards-
compliant decoder without modification to the decoder.

Preferably, the method comprises outputting the encoded output frame for
transmission to a display over a general-purpose data transmission medium,
wherein the data transmission medium preferably comprises one of: a
Universal Serial Bus (USB); and a wireless local area network (WLAN)

connection.

Advantageously, the method may comprise transmitting the encoded output
frame to a display adapter connected to the computer via the general-purpose
data transmission medium, decoding the encoded output frame at the display
adapter, and outputting a display image based on the decoded output frame
to a display connected to the display adapter. The decoding is preferably
performed by a standards-compliant video decoder corresponding to the
block-based video coding standard used in encoding the output frame. The
decoding preferably comprises, for a block for which the output frame includes
a block skip indication, generating pixel data based on pixel data of a
corresponding block of an earlier decoded frame. The corresponding block is
preferably a block at the same block position within the frame. The earlier
frame may be the immediately preceding frame decoded by the decoder; pixel
data for the earlier frame may be cached at the display adapter.

The method may comprise transmitting a video stream including the encoded
output frame. Preferably the video stream includes a sequence of frames
encoded in the manner set out above, preferably at a predetermined frame
rate.

The blocks are preferably macroblocks, and encoding a block skip indication
preferably comprises encoding a skip macroblock. Alternatively, encoding the

10

15

20

25

30

-5-

block skip indication may include adding other metadata to the frame
indicating that the block was skipped by the encoder and is to be reconstituted

at the decoder.

The encoded output frame, video stream and/or video decoder are preferably
encoded or operate in accordance with a block-based video coding standard
that preferably supports specifying a block or macroblock as a skip block or
skip macroblock, to indicate that the block/macroblock was skipped by the
encoder (i.e. no pixel data is included in the frame for the block/macroblock)
and should be reconstituted at the decoder from another source, e.g. a
corresponding block/macroblock of an earlier frame. The video coding
standard is preferably an MPEG video coding standard, preferably an MPEG-
4 video coding standard, more preferably an MPEG-4 Part 10 / Advanced
Video Coding or H.264 video coding standard.

In a further aspect of the invention, which may optionally incorporate any of
the elements or preferred features of the above aspect, there is provided a
method of encoding display output of a computer using a block-based video
encoder, comprising generating a sequence of encoded frames representing
the display output at respective time instances, the generating comprising, for
each time instance: determining whether display update information has been
received; if no display update information has been received, generating an
output frame comprising a block skip indication for each block of a set of
blocks of the output frame; if display update information has been received,
encoding an output frame based on the display update information; and
outputting the output frame as part of the sequence of encoded frames.

This approach enables efficient encoding of a video signal corresponding to a
computer’s display output. The time instances are preferably regularly spaced
in time, or in other words, the sequence of encoded frames preferably forms a
video signal with a predetermined frame rate.

The display update information preferably specifies at least one changed
display area; and encoding an output frame based on the display update

10

15

20

25

30

-6-

information comprises encoding a skip indication for each block of a set of
blocks of the output frame that does not intersect at least one of the specified
changed display areas. Encoding the output frame preferably comprises
encoding pixel data for each block that intersects at least one of the specified

changed display areas.

More generally, the step of encoding an output frame based on the display
update information may comprise performing any method as set out above in
relation to the first aspect of the invention.

In further aspects, the invention provides a display output encoder having
means (for example in the form of a processor with associated memory) for
performing any method as set out herein, and a computer program or
computer program product comprising software code adapted, when executed
on a data processing apparatus, to perform any method as set out herein.

In a further aspect of the invention, there is provided a system for encoding
display output of a computer using a block-based video encoder, the system
comprising: a first component adapted to intercept calls to a graphics API of
an operating system of the computer, and to store display update information
obtained based on the API calls in a cache, the display update information
comprising changed area information; and a second component adapted to
access the cache and encode a sequence of video frames of a video signal at
a predetermined frame rate based on display update information stored in the
cache, wherein the encoding comprises selectively encoding pixel data and
block skip indications for image blocks in dependence on the changed area
information. The first and second components are preferably software
components. The first and second components are preferably adapted to
operate asynchronously with respect to each other. The first component may
comprise a graphics APl shim. The second component is preferably adapted
to perform encoding using a method as set out with regard to any of the above

aspects of the invention.

10

15

20

25

30

-7 -

More generally, the invention also provides a computer program and a
computer program product for carrying out any of the methods described
herein and/or for embodying any of the apparatus features described herein,
and a computer readable medium having stored thereon a program for
carrying out any of the methods described herein and/or for embodying any of
the apparatus features described herein.

The invention also provides a signal embodying a computer program for
carrying out any of the methods described herein and/or for embodying any of
the apparatus features described herein, a method of transmitting such a
signal, and a computer product having an operating system which supports a
computer program for carrying out any of the methods described herein
and/or for embodying any of the apparatus features described herein.

The invention extends to methods and/or apparatus substantially as herein

described with reference to the accompanying drawings.

Any feature in one aspect of the invention may be applied to other aspects of
the invention, in any appropriate combination. In particular, method aspects

may be applied to apparatus aspects, and vice versa.

Furthermore, features implemented in hardware may generally be
implemented in software, and vice versa. Any reference to software and

hardware features herein should be construed accordingly.

Preferred features of the present invention will now be described, purely by

way of example, with reference to the accompanying drawings, in which:-

Figure 1 illustrates in overview a display system for providing display
output over a USB connection;

Figure 2 illustrates operation of a USB display interface driver,;

Figure 3 illustrates a software / hardware stack for transmission of
display data over USB;

10

15

20

25

30

-8-

Figure 4 illustrates the processing of display updates in relation to a
regular frame rate used by a video encoder;

Figure 5 illustrates an encoding process used by a video encoder;

Figures 6A and 6B provide schematic representations of an output
image and a corresponding encoded frame; and

Figure 6C illustrates encoding of a macroblock.

Overview

In a conventional PC, dedicated display adapter hardware provides an
interface to a display. The display adapter may be integrated into a
motherboard or provided as an expansion card (e.g. PCl-Express). Display
adapters commonly provide a basic VGA-compatible feature set, together with
more advanced functionality, such as hardware-accelerated 3D rendering and
media encoding/decoding. The connection from the display adapter to the
display is via specialised output connectors and cables, such as those based
on the VGA (HD15), DVI, HDMI, or DisplayPort standards.

Firmware and software components that run prior to operating system boot,
(e.g. BIOS/UEFI boot code and OS loader software) may generate screen
output by writing directly to a frame buffer of the display adapter, which may
be memory-mapped into the processor's address space. Additionally,
software interfaces may be available in the form of BIOS routines or UEFI

GOP drivers to simplify output to the screen during the boot stage.

Once the operating system has been started, the operating system typically
runs a display driver, which may be generic (based on display standards such
as VGA) or may be hardware specific (e.g. NVIDIA GeForce or AMD Catalyst
driver software). The display driver provides access to the display hardware,
including advanced functionality such as 3D rendering where available.

Embodiments of the invention provide a system enabling display output to be
transmitted from a computer to a display device without the need for special-
purpose display adapter hardware and connections. Instead, the display

10

15

20

25

30

-9.-

signal can be carried over a general-purpose data connection. This may be a
data bus used for attaching peripherals to a PC, such as USB or IEEE1394, a
short-range wireless interface such as a Bluetooth, Infrared or Near-Field
Communication (NFC) connection, or a connection used for remote

communication, such as an Ethernet LAN or Wireless LAN.

In the embodiments described below, the data transport connection is a
Universal Serial Bus (USB), but it will be understood that, in principle, the

invention may be adapted to any data transport mechanism or medium.

Furthermore, the invention more generally provides efficient encoding from an
asynchronous programmatic graphics subsystem to a synchronous
compressed video stream, and can be applied in any context where such a
compressed video stream is to be generated, whether for transmission or

storage.

An embodiment is illustrated in overview in Figure 1, and includes a
computing device 100, such as a desktop or laptop PC, which is connected to
a display 140 via a USB display adapter 120.

The computer 100 comprises a conventional USB controller 108 and
associated USB ports. One of the USB ports 110 connects to a USB port 122
in the USB display adapter 120, e.g. via a standard USB cable 112. The USB
display adapter connects to the display 140 via a conventional display port
124 and display cable 126 (e.g. VGA, DVI or HDMI). Instead of connecting via
cables, the USB display adapter 120 may be in the form of a dongle that
connects directly to either the computer or to the display (with a cable
providing the other connection leg). Wireless display interfaces may also be
used.

Display output is generated by software running on computer 100. The
environment in which that software is running is controlled by an operating
system 102, which generates display output, for example in the form of the
familiar windowed desktop environment, via a graphics subsystem 104.

10

15

20

25

30

- 10 -

Graphics subsystem 104 may conventionally include a variety of components
including, for example, a window manager, display compositor, and display

driver.

A software interface layer 106 provides for the capture of display data and its
transport over the USB interface to the USB display adapter. This interface
layer is referred to herein as the USB Display Interface, UDI. The UDI 106
preferably operates transparently by intercepting display output from the OS
graphics subsystem 104, so that no modification of the OS software is
required to enable use of the UDI. In a preferred embodiment, the UDI 106 is
in the form of a display driver which interfaces with the graphics subsystem in
a similar manner to an ordinary graphics driver, but which implements
functionality for compression of display data and transport of the compressed
data over USB.

In particular, the UDI 106 performs the following functions:
¢ Integrates into the OS graphics subsystem
¢ Initialisation and control of the USB display
o Collecting pixel data, encoding that data and transmitting it over USB
e Scaling image data to match output to available resolutions of the
attached display

The UDI 106 accesses the USB hardware (i.e., USB Controller 108 and port
110) by way of the operating system’s USB driver stack.

The USB display adapter 120 receives, decompresses and buffers the display
data, performs any necessary format conversion and outputs a display signal
to the display 140 over the conventional display connection comprising
connector 124 and cable 126 (e.g. a VGA, DVI or HDMI link).

The USB display adapter 120 includes a processor, a video decoder and a
video output controller. The processor handles actions such as mode queries,
mode setting, blanking and the like, while the video decoder handles the

10

15

20

25

30

- 11 -

compressed video stream received from the computer. The video decoder
decompresses the video into a memory framebuffer that is rasterised out to
the display by the video output controller.

In an alternative embodiment, a wireless local area network (WLAN)
connection is used instead of USB for connecting the computer to the display
adapter, for example based on a Wi-Fi WLAN standard (i.e. one of the IEEE
802.11 WLAN standards, such as 802.11g or 802.11n). A Wi-Fi Direct
connection could also be used. In such embodiments, the computer 100 and
display adapter 120 are provided with WLAN interfaces and transceivers,
either for direct communication, or for indirect communication via a wireless
router/access point (alternatively communication could combine wired and

wireless communication via a router/switch).

The operation of the UDI will be described in more detail below. Though
largely described in the context of versions of the Microsoft Windows
operating system and associated display driver architectures (especially
versions of Windows using the Windows Driver Foundation, e.g. Windows
2000 and later), it will be understood that the same basic principles can be
adapted for use in other operating system environments and driver
architectures. Furthermore, the UDI may take other forms during operational
stages of the computer when the operating system is not running or the OS
graphics subsystem has not yet been established, for example during boot. As
an example, the UDI could be in the form of a Unified Extensible Firmware
Interface (UEF1) Graphics Output Protocol (GOP) driver used during the early
stages of computer startup.

Operation of the USB Display Interface

The USB Display Interface (UDI) 106 provides a software interface to allow
operation of the system without dedicated video hardware and without
dedicated video connectors. The UDI cannot rely on any hardware to perform
the rasterisation of the in-memory framebuffer and so this functionality is
implemented in software (running on the system CPU).

10

15

20

25

30

-12-

The operation of the UDI involves a capture, compress and transport pipeline
for obtaining and processing display data and outputting it over the USB
connection. Capture of display data is preferably implemented through a
standard graphics APl available within the operating system.

A UDI software driver implementing a standard graphics API is illustrated in
Figure 2. In this approach, a software display driver 208 takes the place of a
conventional display driver and associated display hardware. Graphics data,
e.g. in the form of pixel data 202 and associated metadata 204 is received by
the driver 208 via the standard graphics APl 206 and stored in a cache 210.

Metadata 204 includes change information providing information about what
areas on the screen have been changed in the current screen update. Such
change information is also known as “dirty area” information or “dirty
rectangles”, and typically defines one or more rectangular areas of the screen
which have been modified. Other forms of metadata may include the
resolution and format of the pixel data, the refresh rate and rotation of the
screen, and the like.

The cache 210 supplies pixel data and metadata to a pipeline comprising a
conversion component 212, a compression component 214 and a USB
transport component 216.

The conversion component 212 converts the graphics data into a format
suitable for transport over USB (this may, for example, include performing any
necessary scaling). The compression component 214 compresses the data
using a suitable video encoder in order to reduce the data volume to be
transported.

The conversion and compression components operate to encode only those
parts of the display that have changed since the last frame transmitted to the
display (e.g. only the parts affected by the Graphics API call currently being
handled). Those parts are identified based on the dirty area information

10

15

20

25

30

- 13-

forming part of the graphics metadata 204. The output of the compression
component then only includes compressed data for the changed areas of the
frame, as will be described in more detail below.

The compression component outputs compressed information in the form of a
series of display frames to the USB transport component 216, which
packetizes the compressed data into transfer units of a size and format
appropriate to the bus and display adapter, and outputs the packetized data to
the display adapter 120 over the USB link. This involves interfacing with a
standard USB interface (e.g. a USB driver provided by the OS).

The compression component 214 is preferably in the form of a video encoder
which performs encoding using a block-based coding algorithm such as H.264
(also known as MPEG-4 Part 10 or AVC, Advanced Video Coding). Other
block-based video codecs may be used. The encoded data stream is received
by the display adapter 120 where it is decoded by a corresponding video

decoder and output to the display.

The UDI may be included in (or installed during) a standard OS installation.
Alternatively an existing computer (with installed OS) may be configured to
use the UDI by installing the relevant UDI software driver(s).

The UDI may comprise multiple driver components, depending on the OS
environment. Figure 3 illustrates a software/hardware stack used to generate
display output and transmit the display output over USB in a Windows OS
environment. The stack includes the OS compositor 310 which composites
the display screen (e.g. by combining output generated by multiple application
windows and OS interface components) and outputs updates to a UDI User
mode graphics driver 308. The UDI User mode graphics driver passes display
data to a UDI User Mode Service 306, which includes the video encoder and
USB transport functionality (i.e. the convert/compress/transport pipeline of Fig.
2). The UDI User Mode Service outputs data via the OS USB drivers 304 to
the USB hardware 302 for onward transmission.

10

15

20

25

30

- 14 -

Other software architectures could be used, depending on requirements and
OS environment. For example, the UDI could be implemented in part or wholly
as a kernel mode display driver.

Encoding of the display output

The UDI receives display data in the form of occasional partial screen updates
from the OS graphics subsystem. These updates are generated in response
to actual changes (e.g. an application drawing to an application window)
rather than on a periodic basis.

From these updates, the UDI generates an encoded video stream suitable for
decoding and display by the remote display adapter.

Typical video codecs such as H.264 require a regular stream in time of frame
updates (i.e. defining frame updates at a regular frame rate) — even if nothing
has changed. Each frame will be compressed using either intra-frame
compression, using data only from within the current frame (referred to as “I”
frames), or inter-frame compression, using differences from previously
encoded frames, e.g. “P” frames (predicted frames) or “B” frames
(bidirectionally predicted fames). Inter-frame compression is typically based
on motion prediction, in which a block of pixel data is encoded by way of one
or more motion vectors together with an encoding of the associated prediction
error (i.e. the difference between the actual block and the predicted block as
produced by the motion vector).

The difference between the irregular screen updates received from the OS
graphics subsystem (usually in response to calls made to the OS graphics
API), and the regular stream of frames of the encoded output is illustrated in
Figure 4, in which progression of time is represented by the central arrow, and
the line marks below the arrow represent a regular sequence of time points
410 for which encoded output is to be generated (corresponding to the frame
rate of the output signal).

10

15

20

25

30

-15-

The display output of a general-purpose computer (e.g. a windowed desktop
environment provided by a general-purpose OS), when being used for typical
computing tasks such as word processing, web browsing and the like, tends
to change slowly compared to the frame rate of the compressed video stream.
Also, any changes that occur are often limited to only a part of the screen
output (e.g. an active window). In the example depicted in Figure 4, the OS
graphics subsystem generates a series of screen updates 402, 404 at a
slower rate than the frame rate of the encoded video stream 410.
Furthermore, each update only affects a region 406, 408 within the respective

output image.

One approach to encoding such a graphical output for transmission using
standard codecs would be to use a series of P-frames, each referencing the
previous frame generated. In the Figure 4 example, P-frames would be
generated at each line mark below the arrow. Each P frame would be
encoded in the usual way, to consist of a set of macroblocks predicted from
the previous frame, for example by calculating the difference between each
macroblock and the corresponding macroblock of the previous frame at the
same location, and compressing the residuals in the normal way (that is,
applying a frequency-domain transform e.g. DCT, and quantising and
variable-length encoding the frequency-domain coefficients). Thus, a
substantial amount of computational work is required even where there is little
or no change in the image.

Some codecs, including H.264, provide a special macroblock type referred to
as a “skip” macroblock. This allows a frame to include a skip indication instead
of a fully coded macroblock. The decoder processes such a skip macroblock
by generating content for the macroblock from other macroblocks or frames,
e.g. by copying the macroblock from the previous frame or by interpolating
motion vectors from other macroblocks. However, substantial analysis still has
to be performed by the encoder at each output time point (frame), e.g. by
comparing macroblocks, in order to determine when use of a skip macroblock
is likely to be appropriate.

10

15

20

25

30

- 16 -

Embodiments of the invention provide a video encoder which uses knowledge
from the OS graphics subsystem on changed areas of the display (instead of
frame analysis and comparison) to generate skip macroblocks for the

encoded video stream.

If the encoder knows from the OS graphics subsystem that the display output
has not changed at all, then it can programmatically generate a frame full of
skips without having to do any memory fetches or block comparisons at all.
Similarly if the OS graphics subsystem indicates that just a small portion of the
screen has been updated, the encoder can programmatically send skip
macroblocks for areas that have no intersection with the partial screen update
reported from the OS graphic subsystem instead of having to fetch the data
from memory and perform comparisons and calculations as would normally

happen.

The encoding process is illustrated in Figure 5.

The process starts in step 502 at the processing of the next time instance for

the encoded video stream (i.e. the next frame to be output).

In step 504, a determination is made whether the screen output has changed.
If no change has occurred, then the encoder encodes a full frame of “skip”
macroblocks (step 506). The generated frame is then transmitted in step 508.

If in step 504 it is determined that there has been a change in the screen
output produced by the OS graphics subsystem, then the encoder receives
the changed area information in step 510 (typically defining one or more
rectangular areas). In step 512, the encoder determines which macroblocks of
the output image intersect the changed area or areas. In step 514, the
encoder encodes the identified intersecting macroblocks using standard
macroblock encoding. In step 516, the remaining, non-intersecting
macroblocks are encoded as “skip” macroblocks. The generated frame is then

transmitted in step 508.

10

15

20

25

30

-17 -

After transmission of the frame, the process returns to step 502 to process the

next time instance (frame).

An example of how the encoding process is applied is illustrated in Figures 6A
and 6B. Figure 6A schematically illustrates an output image 602 generated by
the OS graphics subsystem. The encoder divides the image 602 into a
plurality of macroblocks a-1 to d-4 for the purpose of encoding. The particular
number of macroblocks is chosen merely for illustrative purposes, and the
image may be divided into any appropriate number of blocks or macroblocks,

depending on the codec used and the output resolution.

The encoder receives changed area information from the graphics subsystem
specifying that a rectangular area 604 has been modified during the last OS
display update. The encoder then determines that the changed area 604
intersects macroblocks b-2, b-3, ¢c-2 and c-3, and encodes those macroblocks
in the normal way (e.g. using motion prediction and/or difference encoding to
generate predicted macroblocks, or by generating intra-coded
macroblocks).The remaining non-intersecting macroblocks a-1 to a-4, b-1, b-
4, c-1, c-4 and d-1 to d-4 are not intersected by the changed area 604, and
thus the encoder generates “skip” macroblocks for these without performing

any analysis or comparison of the pixel data.

The resulting encoded frame is shown in Figure 6B, with the skipped
macroblocks marked “skip” and the normal encoded macroblocks marked
“‘MB”. The result is a fully encoded frame containing data for all macroblocks,
which is thus compliant with the video codec used (in this example H.264).

Fig. 6C shows a more detailed view of macroblock c-3. To encode the
macroblock, the encoder combines the new pixel data 606 from the part of the
changed area 604 that intersects macroblock c-3 with pixel data 608 from an
earlier version of macroblock c-3, in a previously encoded frame. The new
pixel data 606 is received as part of the graphics data 202, 204 obtained
during the API call that caused the update (see Fig. 2). The encoder
preferably maintains a copy of the previous frame (e.g. the immediately

10

15

20

25

30

- 18 -

preceding frame) in memory and sources pixel data 608 from this cached
frame. The combined pixel data then forms the macroblock that is encoded,

e.g. using standard H.264 encoding algorithms as described above.

The video decoder in the USB display adapter 120 (Fig.1) receives the frame,
and decodes any normally encoded macroblocks (here b-2, b-3, ¢c-2 and c-3)
using the appropriate decoding techniques (e.g. decoding the DCT
coefficients, performing an inverse DCT and performing motion prediction as
appropriate). The video decoder then retrieves cached versions of the “skip”
macroblocks from the previously displayed frame to produce the complete
frame, which is then output to the display.

Obtaining graphics data via the OS Graphics API

As described with reference to Figure 2, the UDI driver 208 receives both pixel
data 202 for one or more updated screen areas and metadata 204 specifying
which region or regions have changed. These are referred to as “dirty areas”
or “dirty rectangles”.

In general terms, this metadata may be obtained from a relevant operating
system component handling the screen update or from an application program
causing the screen update.

In a preferred embodiment, as depicted in Figure 2, the information is
obtained through the operating system’s graphics API, for example by

trapping or implementing relevant API operations.

The OS graphics APl is the means by which applications render to the screen.
Typically this will be one application that composites the windows of other
applications onto the desktop or it may be a graphics driver AP| through which
applications cooperatively draw directly to the screen. It may be a 2D ora 3D
API but in either case the application is using the API to execute drawing
primitives into a display framebuffer. Operating at this API level, the UDI driver
208 is able to monitor the API primitives in use in order to track areas of

10

15

20

25

30

-19-

change and also access the framebuffer in order to collect the pixel data of
the change.

The UDI driver 208 may operate in a number of different ways to achieve this.
In a first approach, the UDI driver may operate as a graphics driver
implementing the graphics API (or relevant parts thereof). In this case the UDI
driver 208 executes the API primitives itself and maintains the framebuffer
itself. It can then track the changes and derive the dirty rectangle information
as well as the associated pixel data which can be cached for access by the
encode/transport pipeline.

In a second approach, the UDI driver 208 may implement a shim which
observes the graphics API or a relevant part thereof (i.e. it intercepts or traps
calls to the API). A shim may typically be implemented as a small library that
transparently intercepts API calls and handles or redirects the operations. In
this case the UDI driver monitors the API primitives but leaves the execution
of the primitives to the underlying graphics driver (by routing the call to the
graphics driver after any needed information has been extracted). In this
approach, the dirty rectangle information (204) can either be derived from API
calls or may in some cases be provided in the API call by the calling process.
In this second approach, the UDI driver can obtain the required pixel data
(202) by requesting the framebuffer contents from the underlying graphics

driver.

In one such example, the UDI driver may trap a call to a relevant display
update operation provided by the operating system graphics subsystem,
where the call includes the dirty rectangle information.

In a particular embodiment, the operating system is a Microsoft Windows
operating system, and the APl call being trapped is the
IDXGISwapChain1::Presentl method. This method includes as one of its
parameters a pointer to a DXGI_PRESENT_PARAMETERS data structure for
storing information describing updated rectangles and scroll information.

10

15

20

25

30

-20 -

Specifically, this data structure includes a list of dirty rectangles (i.e.
rectangular screen areas that have been updated by the calling process),
along with information specifying a scrolling rectangle in the case that an area
of the screen has been scrolled. The scrolling rectangle information (which is
normally used by the operating system to optimise presentation of the
updated display) is essentially a special type of dirty rectangle, and can thus
be treated as another dirty rectangle by the UDI encoder.

The UDI traps the call to the Present1 method and extracts the dirty rectangle
information from the call parameters. This information is then stored in the
cache 210 for later (asynchronous) processing by the UDI driver’s encoder /
USB transport pipeline. If required, the UDI may then invoke the original OS
Present1 method so that the OS can process the call and perform the display
update (e.g. where a conventional display is in use in parallel with the USB
display connected via the USB display interface of the present invention, for

example in a mirrored dual-screen setup).

It will be understood that the present invention has been described above
purely by way of example, and modification of detail can be made within the

scope of the invention.

For example, although a system is described above in which a display output
is transmitted over USB, the described approach is applicable to any software
driven display device that might be connected by any generic bearer such as
other wired or wireless peripheral connection standards, as well as wired or
wireless local or wide area networks, or mobile data networks. In such
systems, the USB-specific components described above (e.g. hardware USB
controller and interconnects and USB driver stack) may be replaced with
appropriate hardware and software (driver) components specific to the
particular data transport used.

Furthermore, the encoding methods described may also be used to generate
video data for storage instead of transmission. For example, the encoding
methods could be employed by a screen capture application that records the

10

221 -

computer’s display output over time in a video file. Video data is preferably
stored using a standards-compliant video file format that can be decoded by a

standards-compliant decoder.

Though the embodiments described above describe the encoding as being
performed on a macroblock basis, the described approaches may be applied
to any block-based or tile-based video codec. In other words, any video codec
that encodes picture data for a frame in portions, where a portion is a subset
of a frame, can be used with the described approach, provided that the video
codec supports inclusion of metadata enabling the encoder to indicate in
some way that a particular portion or block of pixel data has been skipped in

the encoding.

_02.

CLAIMS

1. A method of encoding display output of a computer using a block-
based video encoder, the method comprising:

receiving display update information, the display update information
specifying at least one changed display area;

receiving pixel data associated with the at least one changed display
area;

for a plurality of image blocks of an output frame to be encoded,
determining whether each image block intersects one or more of the changed
display areas;

encoding a block skip indication for each image block not intersecting
at least one changed display area,;

encoding received pixel data for each intersecting block; and

generating an encoded output frame including the block skip

indications and encoded pixel data.

2. A method according to claim 1, wherein the display update information
comprises information specifying one or more rectangular areas of a display
image that are being modified; preferably wherein the pixel data comprises
pixel data for the or each rectangular area.

3. A method according to 1 or 2, wherein the display update information

comprises a list of dirty rectangles.

4. A method according to any of the preceding claims, wherein receiving
one or both of the display update information and the pixel data comprises
interfacing with a graphics subsystem component of an operating system,
preferably a graphics Application Programming Interface (API).

5. A method according to any of the preceding claims, wherein receiving
display update information comprises trapping a call to an operating system
display update operation, the display update information preferably referenced

or included in one or more parameter(s) of the call.

-23.

6. A method according to any of the preceding claims, wherein encoding
received pixel data for an intersecting block comprises encoding received
pixel data associated with a changed area intersecting the block, optionally
together with further pixel data from a corresponding block in an earlier output

frame.

7. A method according to claim 6, wherein the encoded received pixel
data corresponds to a region of the block where the changed area intersects
the block and the further pixel data corresponds to a region of the block where
the changed area does not intersect the block.

8. A method according to any of the preceding claims, comprising storing
a copy of pixel data corresponding to the output frame, and preferably using
the stored pixel data in encoding a subsequent frame.

9. A method according to any of the preceding claims, wherein the
encoded frame is compliant with a block-based video coding standard.

10. A method according to any of the preceding claims, comprising
outputting the encoded output frame for transmission to a display over a
general-purpose data transmission medium, wherein the data transmission
medium preferably comprises one of: a Universal Serial Bus (USB); and a

wireless local area network (WLAN) connection.

11. A method according to claim 10, comprising transmitting the encoded
output frame to a display adapter connected to the computer via the general-
purpose data transmission medium, decoding the encoded output frame at the
display adapter, and outputting a display image based on the decoded output

frame to a display connected to the display adapter.

12. A method according to claim 11, wherein the decoding is performed by
a standards-compliant video decoder corresponding to the block-based video
coding standard used in encoding the output frame.

-4

13. A method according to claim 11 or 12, wherein the decoding
comprises, for a block for which the output frame includes a block skip
indication, generating pixel data based on pixel data of a corresponding block

of an earlier decoded frame.

14. A method according to any of the preceding claims, comprising

transmitting a video stream including the encoded output frame.

15. A method according to any of the preceding claims, wherein the blocks

are macroblocks.

16. A method according to claim 15, wherein encoding a block skip

indication comprises encoding a skip macroblock.

17. A method according to any of the preceding claims, wherein the
encoded output frame, video stream and/or video decoder are encoded or
operate in accordance with a block-based video coding standard.

18. A method according to claim 17, wherein the video coding standard is
an MPEG video coding standard, preferably an MPEG-4 video coding
standard, more preferably an MPEG-4 Part 10 / Advanced Video Coding or
H.264 video coding standard.

19. A method of encoding display output of a computer using a block-
based video encoder, comprising generating a sequence of encoded frames
representing the display output at respective time instances, the generating
comprising, for each time instance:

determining whether display update information has been received,;

if no display update information has been received, generating an
output frame comprising a block skip indication for each block of a set of
blocks of the output frame;

if display update information has been received, encoding an output

frame based on the display update information; and

_25.-

outputting the output frame as part of the sequence of encoded frames.

20. A method according to claim 19, wherein the display update
information specifies at least one changed display area; and wherein
encoding an output frame based on the display update information comprises
encoding a skip indication for each block of a set of blocks of the output frame
that does not intersect at least one of the specified changed display areas.

21. A method according to claim 20, wherein encoding the output frame
comprises encoding pixel data for each block that intersects at least one of
the specified changed display areas.

22. A method according to any of claims 19 to 21, wherein the step of
encoding an output frame based on the display update information comprises
performing a method as claimed in any of claims 1 to 18.

23. Adisplay output encoder having means for performing a method as set
out in any of the preceding claims.

24. A computer program or computer program product comprising software
code adapted, when executed on a data processing apparatus, to perform a
method as set out in any of claims 1 to 22.

25. A system for encoding display output of a computer using a block-
based video encoder, the system comprising:

a first component adapted to intercept calls to a graphics API of an
operating system of the computer, and to store display update information
obtained based on the API calls in a cache, the display update information
comprising changed area information; and

a second component adapted to access the cache and encode a
sequence of video frames of a video signal at a predetermined frame rate
based on display update information stored in the cache, wherein the
encoding comprises selectively encoding pixel data and block skip indications
for image blocks in dependence on the changed area information.

-26 -

26. A system according to claim 25, wherein the first and second

components are software components.

27. A system according to claim 25 or 26, wherein the first and second
components are adapted to operate asynchronously with respect to each
other.

28. A system according to any of claims 25 to 27, wherein the first
component comprises a graphics API shim.

29. A system according to any of claims 25 to 28, wherein the second
component is adapted to perform encoding using a method as set out in any
of claims 1 to 22.

30. An encoder or encoding method substantially as described herein with

reference to and/or as illustrated in the accompanying drawings.

27

5 \f{x‘ .“
A
g T

Intellectual
Property
Office

Application No: GB1311672.8 Examiner: Mr Iwan Thomas
Claims searched: 1,19 & 25 Date of search: 8 January 2014

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category |Relevant | Identity of document and passage or figure of particular relevance
to claims
A - Wiegand T. et al., "Overview of the H.264/AVC Video Coding
Standard", 2003, IEEE Transactions on Circuits and Systems for Video
Technology, vol. 13, no. 7, pages 560-576, available at
http://ip.hhi.de/imagecom_G1/assets/pdfs/csvt_overview_0305.pdf
see especially page 570
A - US 2012/0328008 Al
(UCHIDA)
A - GB 2207829 A
(BRITISH TELECOMMUNICATIONS) See pages 1-3
Categories:
X Document indicating lack of novelty or inventive A Document indicating technological background and/or state
step of the art.
Y Document indicating lack of inventive step if P Document published on or after the declared priority date but
combined with one or more other documents of before the filing date of this invention.
same category.
& Member of the same patent family E Patent document published on or after, but with priority date
earlier than, the filing date of this application.
Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKc® :

Worldwide search of patent documents classified in the following areas of the IPC
[HO4N |
The following online and other databases have been used in the preparation of this search report

[Online: WPI, EPODOC |

International Classification:

Subclass Subgroup Valid From
HO4N 0019/103 01/01/2014
HO4N 0019/137 01/01/2014
HO4N 0019/142 01/01/2014

Intellectual Property Office is an operating name of the Patent Office www.ipo.gov.uk

	Front Page
	Drawings
	Description
	Claims
	Search Report

