« UK Patent Application « GB 2 384589 ., A

(43) Date of A Publication 30.07.2003

{(21) Application No 0227537.8
(22) Date of Filing 26.11.2002

(30) Priority Data

(31) 0128243 (32) 26.11.2001 (33)

GB

{71) Applicant(s)
Cognima Ltd
{Incorporated in the United Kingdom)
131-151 Great Titchfield Street, LONDON,
W1W 5BB, United Kingdom

{72) Inventor(s)
Simon Jeremy East

(74) Agent and/or Address for Service
Origin Limited
52 Muswell Hill Road, LONDON, N10 3JR,
United Kingdom

(51) INTCL?
GO6F 17/30

(52) UKCL (Edition V)
G4A AUDB

(56) Documents Cited
EP 1131757 A2
EP 0131191 A1

EP 1130511 A2

(58) Field of Search
UK CL (Edition V) G4A AUDB
INT CL7 GOGF 17/30
Other: ON-LINE: EPODOC, WPI, JAPIO

(54) Abstract Title

Method of replicating data between wireless computing devices

(67) Resource constrained wireless computing devices (e.g. mobile telephones) are given a replication
capability for database records (e.g. to enable backing up contacts, e-mails, photographs etc. onto a remote
sewer). This operates without undue processing burden, using low bandwidth unreliable wireless
connections. This is achieved by not including a time stamp in each database record, but instead time
stamping only a change log record; this approach saves considerable memory space on the wireless device
since there is no need to time stamp every database record, as is usually done in the prior art. The change log
defines what data is to be replicated; it alone has to be sent to a main server which hosts a master copy of the
database and hence has to be kept up to date. Because the change log is compact, far less data has to be sent
for data replication purposes - typically only the field which has changed, how it was be changed and when it
was changed on the wireless computing device. Prior art systems typically send an entire record, even though

that will contain data that has not changed.

V 68G¥8€¢ 99

g

10

15

20

25

30

METHOD OF REPLICATING DATA BETWEEN COMPUTING
DEVICES

FIELD OF THE INVENTION

This invention relates to a method of replicating data between computing
devices, particularly data from resource constrained wireless devices (i.e. devices
with limited processing power and limited battery life) such as mobile telephones
and personal organisers that are synchronising to and from a server over a

witeless network.
DESCRIPTION OF THE PRIOR ART

Data replication between computing devices occurs in many different contexts,
such as synchronising documents, e-mails, contacts and calendar entries across
different computing devices used by the same person. In order for data
replication to be accurate, there must be some system for deciding which of two
or more inconsistent data replication requests should be acted on. Take for
example the situation where, at time 1, 2 user enters a change to his e-mail details
for person X on his mobile telephone. Some time later, at time 2, the user
realises that those changes were in fact wrong. He makes a further change to
those person X email detail, but does so on a PC. At time 3, he synchronises his
PC to a master server, updating the master record of person X’s e-mail to the
correct address. But suppose later still, at time 4, he synchronises his mobile
telephone with the master server — this would potentially over-write the correct
person X email details (entered at time 2) with the incorrect details entered

originally at time 1.

To address this problem, synchronisation systems typically employ time based
arbitration rules, such as giving priority to the latest recorded change (time 2 as
compared to time 1 in the example above). This requires a device to be able to

associate a time stamp with data to indicate when that data was changed on the

"4’5‘4‘ <

10

15

20

25

30

device; this is commonly done for wite-line based devices (as opposed to devices
communicating over a wireless network) by providing a database on a computing
device which stores data of a given type (e.g. a database for all contacts details
for an individual — name, e-mail, telephone, mobile etc; these form a single
contact record. There would typically be another database for e-mail, another for
calendar entries etc.). Whenever anything in a given record is changed (e.g. 2
new e-mail address for an individual), then the device logs that change as part of
the record and time stamps it (again, as an entry forming part of the record) with
the time established by a quartz clock running locally on the device. Changes to
data (e.g. the new e-mail contact details for the individual) are then sent to a
central server; an entire replacement record is usually sent (e.g. all existing
contact details for the individual, plus the new e-mail address, plus the time
stamp) — the central server then updates its master copy of the information and
sends updating information to any devices so that all maintain the same
information. The central server typically applies arbitration rules using the time
stamp to resolve conflicts between competing and inconsistent synchronisation

requests.

Conventional wire based data replication systems are therefore reliant on time
stamps applied to database records. The time stamps are made by a local quartz
clock running on the device into which the changed data was first input. This

device could be a client device, sexrver or peer.

For resource constrained wireless devices, essentially the same approach is used,
although it is normal for the database record itself to be a fixed length record;
this facilitates indexing since the boundaries between records can be readily
determined. However, this results in records including a ‘null’ entry in the time
stamp field to indicate that no change has been made to those records or in
keeping the last time stamp even though it pre-dates a synchronisation to a
server keeping a master database and is hence superfluous. Both approaches
OCCUpY UNNecessary Memory space. Further, when synchronisation takes place, a
synchronisation engine on the device has to analyse all records in a database

(usually in a logical sequence), copying the entirety of any records that has a time

stamp post-dating the last synchronisation time and then sending that to the
sexrver. The process of analysing all database records can be slow on a resource
constrained wireless device, uses up valuable processor capacity and drains

power.

10

15

20

25

30

4 2384589

SUMMARY OF THE PRESENT INVENTION

In accordance with a first aspect of the present invention, there is a method of
replicating data between computing devices, in which a first computing device is
given responsibility for determining whether data received from a wireless,
portable computing device over a wireless network is replicated or not; wherein
the method comprises the steps of the wireless computing device:

(a) running a database with records that do not include a time
stamp field to indicate when a field entry in the database has altered, and

(b) generating and storing time stamps in 2 change log, separate
from the database, the change log including data only for records that have
changed; and

(©) sending those change logs to the first computing device in
order to replicate data in the change log in a database running on the first

computing device.

This approach enables resource constrained wireless, portable computing devices
(e.g. mobile telephones) to provide a data replication capability (e.g. backing up
databases, such as contacts, e-mails, photographs onto a remote device —a server
ot peer storing a master copy of the database) without undue processing burden,
using low bandwidth unreliable wireless connections. It does this by de-coupling
the change log from the database which has been changed; this in turn means
that far less data has to be sent to the remote device — typically only the field
which has changed, how it was be changed and when it was changed on the
wireless computing device. Pror art systems typically send an entire record, even
though that will contain data that has not changed. Further, by not including a
time stamp in the database itself, but instead time stamping only the change log
records, this approach saves considerable memory space on the wireless device
since there is no need to time stamp every database record, as is usually done in
the prior art. Typically, the change log records only changes that have occurred
since the last data replication between the wireless computing device and the first
computing device; prior art systems often waste valuable memory by recording

time stamps that pre-date synchronisations.

10

15

20

25

30

The wireless computing device and the first computing device (which is not
necessatily a portable device, but more usually a large server) share metadata that
defines the proper interpretation of the change log. The wireless computing
device may register new metadata definitions with the first computing device to
define how change logs relating to a new application will be presented by the

wireless computing device.

Another feature is that the change logs are automatically sent by the wireless
computing device to the first computing device without any user intervention.
‘This may be (2) at pre-defined periodic intervals, (b) at pre-defined times or (c)
continuously whenever a change log is created. In any event, because the master
database on the first computing device is kept up to date, the problems that can
atise with a user manually synchronising the same data from several different

devices (as explained in the prior art section) are far less likely to arise.

Multiple change logs can be batched up; these may be sent at times which
depend on the importance of the change log being rapidly processed by the first
computing device, with low priotity change logs being sent at times of lower
network traffic (hence incurring lower charges). Similatly, individual records in a
change log can be sent at times which depend on the importance of the records
being rapidly processed by the first computing device, with low priority records

again being sent at times of lower network traffic.

In a second aspect, there is a wireless, portable computing device programmed to
send data to a first computing device over a witeless network, in order for the
first computing device to replicate that data; wherein the wireless computing
device is programmed to:

() tun a database with records that do not include a time stamp
field to indicate when a field entry in the database has altered, and

(b) generate and store time stamps in a change log, separate from
the database, the change log including data only for records that have changed;

and

(c) send those change logs to the first computing device in order to

replicate data in the change log in a database running on the first computing

device.

10

15

20

25

30

DETAILED DESCRIPTION

The present invention will be described with reference to an implementation
from Cognima Limited of London, United Kingdom. Cognima has developed a
data replication technology that directly addresses the need for Mobile Service
Providers (MSPs) and Network Operators to increase consumer adoption of
data services, encourage greater loyalty from their valuable customers, and

differentiate their services from the competition.

Cognima’s data replication solution addresses these issues by:
* Increasing adoption by making data services compelling and effortless
to use.
* Establishing 2 high bartier to churn by securely backing up subscribers’
personal data on servers controlled by those subsctibers’ MSP.
* Enabling the MSP to create differentiated services by controlling the

customer experience.

1. Overview of uses for the Cognima Data Replication Framework

Cognima’s data replication framework enables 2 Mobile Service Provider to
build compelling services for consumer markets. The MSP hosts a Cognima
Server at its data centre. The server comprises an Oracle database plus
Cognima’s multi-threaded Java communications server, hosted on a standards-
based J2EE application server and carrier-grade Unix hardware. Section 4 and

later sections describe the technical implementation in detail,

The Cognima framework replicates data entered in a mobile phone automatically
(without any user intervention) to other phones via the Cognima Server.
Similarly, data from external systems connected to the Cognima Server is

automatically kept up-to-date on mobile phones.

Mobile subscribers using Cognima-enabled applications experience an always-

available, instant connection to their personal information and friends.

10

15

20

11

Personal information can include the subscriber’s address book,
messages, bank account details, stock prices, pizza orders, calendar,
current traffic on a route to work, or any other personalised content.
The data is always kept securely backed-up on the Cognima Server and
automatically replicated on all relevant client devices.
Always-available means that the personal information is accessible on
whichever device or handset the subscriber is carrying, whether
currently connected to the network or not since the user can always
access personal information stored locally on the device). Users can
also edit and manage their personal data directly on the server via 2 web
interface — the Virtual Phone.

Instant means that subscribers do not have to wait for data to
download from a server; the latest information is on their handsets
even before they know they need it since that data is automatically sent
to the handset (e.g. polling by the handset may occur; this can be
regular periodic — such as every 30 minutes or at pre-defined times
(4pm, 5pm etc). Pushing to the handset may also occur).

Subscribers can share their data across multiple devices and with their
friends since the Cognima Server can replicate this data to any defined

device or defined individual.

Example Cognima Applications

Customer Need Cognima Application

Sarah

Sarah’s phone has been | Whenever Sarah enters data in
stolen, including some | her phone, Cognima
important contact automatically backs it up on a
numbers and messages | central server at the MSP’s
for which she has made data centre. Sarah can buy 2
no manual back-up| new mobile phone, and
copy. retrieve all her contacts and
messages instantly from the

central server, as long as she

remains with the same MSP,
She can also delete her data
from the stolen phone via the

MSP’s portal.

Jill

Jill is out shopping.
Before making an
expensive purchase, she
needs to know if her
salary has been paid into
her bank account.
However, she is in the
basement of a
department store, and
has no network

coverage.

Cognima keeps Jill’s

personalised content
(including her bank account
details) up-to-date
automatically on her mobile
phone by periodically (or at a
predefined time or even
immediately a change occurs)
sending any changed data to
JilI’'s mobile. The latest data is
there on Jill’s phone even
before she knows she needs it.
She can access it instantly,

even if there is no network

coverage.

Matthew

Matthew likes to keep
his friends informed
about his current
availability and ‘mood’.
He also likes to see what
his friends ate up to.
He’s mainly interested in
keeping track of what’s
happening in his social
group, and he wants to
do this at a glance,
without having to go

‘on-line’ or send lots of

Cognima shares Matthew’s
presence profile with his
friends. When he changes his
profile (e.g. selects an icon to
indicate he’s feeling sociable)
the icon updates automatically
in Matthew’s address book
entry on his friends’ phones.
Matthew can see presence
information for all his friends
at a glance on his own phone.
He can even ask his phone to

alert him when a friend is

10

expensive messages.

feeling sociable or bored, so

that he can immediately call.

Laura

Laura has two mobile
phones — one she uses at
work, and a fashion-
phone she takes out in
the evenings. She wants
to keep the same
address book on both
devices, but she hates
entering data twice, and
she’s never figured out
how to use the sync
software that came with
her phone. Swapping
the SIM card over is
cumbersome, and leaves
behind data in the

phone memory.

Cognima automatically keeps
all the data in Laura’s phones
in step. Whenever she edits
data on one handset, it is
immediately (or periodically or
at a predefined time) replicated
onto the Cognima server
which then updates her other
phone as well. She never has
to remember to press a ‘sync
button’ — it just happens. Jill
even shares some of the
contacts in her phone with her
husband, Geoff. When Geoff
enters his mother’s new
mobile number, it 1is
automatically updated in Jill’s

phones as well.

Juha

Juha also has two mobile
devices — a phone and a
wireless-enabled PDA.
He needs to read and
reply to e-mail and SMS
messages on both
devices, but he gets
confused and frustrated,
and loses productivity,
when his Inbox gets out

of sync.

With Cognima, SMS, e-mail
and other types of messages
can be read and sent from any
device, and also using a
‘Viirtnal Phone’ web interface.
Messages are received on all
devices used by the subscriber,
and sent messages appear in
the Outbox on all devices.
Any message read on one
device is instantly marked as

read on all other devices.

10

15

20

25

11

Messages deleted from a
mobile phone can be stored
and retrieved via the Cognima

Server,

2. Benefits to the Mobile Subscriber

Cognima provides an ideal framework for implementing mass-market consumer

data services based on the following key benefits:

* Friendliness: no user intervention is required. Subscribers never need to press
a ‘sync’ or 'download' button to access their data. System configuration and
secure data transfer are completely transparent to the end user.

¢ Instant availability: the user is always able to interact instantly with local data
(even when off-line), whilst any updates take place silently in the background.
For example, users can read their personalised content whilst on an underground
train. The user experience is separated from the data transport.

* Affordability: The MSP can control when replication takes place, and the
Quality of Service (QoS) delivered. However, because the user experience is
separated from the data transport, lower QoS does not affect the user's
perception of the service. Crucially, this allows the MSP to offer low-cost,
subscription-based services with relatively poor QoS without sacrificing user
experience — e.g. data replication can happen overnight for non-urgent data
services such as bank statements, yet still be satisfactory to users. Overnight data
replication uses otherwise underused bandwidth and is hence far cheaper than
peak time data replication. Urgent data replication (e.g. presence information)
can happen at any time on a periodic or (optionally) continuous (push) basis and
attract a higher charging rate. Furthermore, efficient use of phone memory &
processor power allows Cognima client software to be cost-effectively installed

in even the cheapest mass-market phones.

10

15

20

25

30

12

Benefits to the Mobile Service Provider

Cognima presents a MSP with a means to generate new data revenues, reduce

churn, and to differentiate its services from those of its competitors.

3.1

Increased Usage of Existing Mobile Services

Cognima increases usage of existing mobile services:

3.2

» Messaging and content-based services become much more convenient
and immediate, and will therefore be used more.

e The enhanced immediacy of presence information increases the use of
chat and Instant Messaging, and an alert when free capability will boost
voice calls.

o Effortless management of multiple devices allows users to carry an
appropriate phone on any occasion, and therefore make more calls and

send more messages.

Compelling New Services

Cognima enables rapid introduction of cbrnpel]ing and affordable new mobile

data services.

Cognima delivers a compelling user experience for new services in low-end
phones using only spare network capacity. This is affordable and scalable for
the network operator, allowing the MSP to offer understandable and
predictable pricing for mass-market subscribers.

Most of the application development for new Cognima services takes place
on the server side, allowing the MSP to bring new setvices to market quickly.
Cognima’s client software can be installed as a flash memory upgrade,
endowing today’s mass-market handsets with smart-phone-like capabilities.
New software applications can be downloaded over the air to existing
Cognima-enabled handsets, allowing MSPs to roll out new data services
without waiting for new devices to support them.

Third party application developers can leverage the MSP’s Cognima

infrastructute to develop new applications for the MSP’s network.

10

15

20

25

30

13

3.3 Churn Reduction

Cognima services act as a significant barrier to churn. For example, a subscriber
who stores their personal information securely at their MSP’s Cognima Server
can buy a new phone and immediately retrieve all personal information to their
new device. All this personal information may be lost if they decide to take out a

subscription with a different service provider.

3.4 Differentiation

Today, subscribers have the same basic experience of using mobile data services
on all networks. For example, the experience of using WAP services is defined
by the WAP protocols, the browser in the phone, and the content accessed.
Many MSPs have realised that they must differentiate themselves by giving their
subsctibers a unique user experience, but are hindered from doing so by severe

constraints to customising the services in mobile handsets.

Cognima gives MSPs the ability to implement services on the handset, and
thereby to regain control of their subscribers’ user expetience. Most importantly,
Cognima allows this without sacrificing interoperability; support for industry
standards is achieved through straightforward integration with the Cognima
Server. The net result is that the MSP’s position in the value chain is

strengthened versus the powerful brands of handset manufacturers and content

providers.
4, Cognima data replication framework functional design
4.1 Introduction

This and subsequent sections of the Detailed Description are intended to
desctibe how the Cognima data replication system actually works. It covers the
behaviour of client devices, the Cognima Server and the web client, without
going into details of specific hardware, programming language, software class
design or environment. It does desctibe the basic data structures and algorithms

used.

10

15

14

Terms

Client device A phone, PDA or other machine running the Cognima
client software.

Cognima A server accessible by client devices which runs the

server Cognima server software to replicate data.

Replication The process of copying data from a client device up to the
Cognima Server and then down to other client devices
belonging to the same user.

User A human being who owns and uses at least one Cognima
client device

User data The set of information (contacts, messages, ringtones,
pictures etc) that a user might want to store and manipulate
on a client device.

4.2 Purpose

The objectives of the Cognima software are:

e To allow a user instant access to view and modify an ‘up to date’ copy
of their data on multiple handheld devices capable of wireless data
connectivity.

e To allow a user to view and modify the same data using 2 conventional
web browser.

e To effortlessly provide secure backup of a user’s data.

e To give a user powerful data functionality on a cheap handset by

displacing complicated and expensive processing to a Server.

4.3 Highest level description

Client devices hold a copy of the user’s data in a database on the client device.
The user can access this data whether or not he has a network connection and
therefore always has instant access. When a user changes the data on his device,
the changes are copied to a Change-Log. The client device connects periodically
to a Cognima Server on the wireless network, to send up the changes from the

Change-Log and receive new data. This separates the act of changing data from

10

15

20

25

30

15

the need to connect to the network (i.e. push is not continuous in a preferred
implementation). The Cognima Server updates its own database with data
changes received from the client device, and populates Change-Logs for any
other devices the user owns. When these devices next connect, they will receive
the changes and thus the devices are kept in sync, each with a copy of the same

data.

The Cognima Server contains a web server which allows the user to examine
directly using 2 web browser the copy of the data held in the Cognima Server
database, and make changes to it as he would on a client device. The Cognima
Server also acts as a gateway for the user to communicate with other servers on
the network / internet. For example, the client device can effectively ask the
Cognima Server to send a message as an SMS or an email or a fax by setting a
few flags in a message object and the Cognima Server contains the functionality
to communicate with email servers, SMS servers and fax machines. This can be
extended to servers holding ringtones, banking details, games etc. It is easier and
cheaper to build the software on the Cognima Server to talk to these other

servers, than it would be to build the software on the client device.

5. Lower level concepts
5.1 Data structures
5.11 Ids

Cognima user data is described using the terminology of object databases: classes
and objects. Unfortunately, there is room for confusion with similarly named

OO programming concepts and cate therefore needs to be taken.

All users in a Cognima network are assigned a user id. This id is unique to the
network —ie. provided by a given network operator. All users have 2 Cognima
address which is a combination of their user id and Cognima Server URL. This
is unique in the world. Each device which belongs to a user is assigned a device
id. The device id is unique to the user. This is only 8 bits so a user can have a

maximum of 253 devices (id 254 is reserved for the web, id 255 is spare, id 0 is

10

15

20

25

30

16

invalid). All user data is classified into classes (contacts class, messages class,
bank transactions class etc) and the classes are assigned a class id which is

unique in the world. Class id ‘12’ refers to a contact, for example.

An instance of a class is an object, which is assigned an object id unique to the
user, e.g. a contacts class object might be the contact for “John Smith”. The
object id is generated by concatenating the device id of the device which created
the object with a monotonic increasing count which increases over the life of the
device. So each device can create a maximum of 16777215 objects (if we
encountered this limit we could reset the device id). Classes are defined by the
properties which constitute them. A class is essentially an array of properties.
Each property in the class has a property id which is unique to the class (and is
actually just the array position of the property in the property array, starting from

ZEro0).
5.1.2 Creating objects

An object is created on a device. It is assigned an object id and saved to the
device database. A copy is also saved into a Change-Log. When the device next
connects to the Cognima Server the entry in the Change-Log is sent up. The
Cognima Server saves the object to its database (recording the system time), does
any class specific processing that may be required (such as generating and
sending an email) and adds entries to Change-Logs for any other devices that the
user may own which have declared interest in the class. (The entries should be

for the correct version of the class on the device).

An object may also be created on the web portal. The object id is generated
(using device id of 254 as desctibed above) and processed identically to the
device. There is no Change-Log for the web portal, it gets selections directly

from the Cognima Server database.

An object may also be created by a server application (e.g. 2 messaging module

might receive an email from which it creates a message object). The object id is

10

15

20

25

30

17

generated (using device id of 254 as described above) and processed identically

to the device,
5.1.3 Updating objects

One or more properties of an existing object are modified on a device. The
changes are saved to the device database. Each changed property is used to
generate an entry in the device Change-Log. These are sent up to the Cognima

Server.

If the time of the update is later than the ‘last changed’ time for the property in
the Cognima Server database then the Cognima Server saves the changes to its
database (recording the new ‘last changed’ time for the property), does any
required class specific processing and adds entries to Change-Logs for other
devices which belong to the user, have declared the class and have a version of
the class which contains the property. The update is also placed on the Change-
Log for the device that originated the change. This may seem strange but is
required to cope with the following scenario:

<A user has 2 devices A and B. He updates property 7 on A offline at Spm and updates it on
B offline at 6pm. He connects to the network with A Jirst. The value of 7 on A gets put in the
Change-Log to be sent to B. Later B connects. Its value of 7 is more recent 5o the value of 7 on

B is sent 10 A, but B gets A's value. Replicating the value of 7 back to B fixes this.

If an update is received by the Cognima Server for an object which is marked as
deleted and the update is later than the deletion, then this is interpreted as an un-
deletion. The object is undeleted, updated and then a refresh of the object in
placed on the Change-Logs for all appropriate devices. Updates from the web

portal or server applications work in the same way.
5.14 Deleting objects

An object is deleted on the device. It is removed from the device database and
an entry is put on the Change-Log listing the class id and object id. The entry is
sent up to the Cognima Server.

10

15

18

If the time of the deletion is later than the last updated time of the object, then
the Cognima Server matks the object as deleted in its database, does any class
specific processing and adds the entry to other devices that belong to the user

and have declared the class.

If the time of deletion is earlier than the last updated time then this indicates that
the deletion is invalid and a refresh of the object is put on the Change-Log for

the device which originated the deletion.

The deleted object is viewable in the web portal a manner that makes its deleted
status clear. The user can select the object for un-deletion. The deletion mark is
removed from the object in the Cognima Server database and entries to refresh
the object are placed on the Change-Logs for all devices that belong to the user

and have declared the class.

5.1.5 Property types
Each property has a type. There are currently 9 permitted property types:

Type name Type Type description
value

KcogTypeRef 0 4 byte object id of another
object

KcogTypelnt 1 signed 4 byte integer value

KcogTypeUlnt 2 unsigned 4 byte integer value

KcogTypeFloat 3 signed 4 byte floating value

KcogTypeStr 4 a CogString (a 4 byte unsigned
integer holding the number of
characters in the string, followed
by the character bytes)

KcogTypeTime 5 unsigned 4 byte integer value
indicating the number of
seconds since midnight 1st Jan
1990

10

15

20

25

19

KcogTypeTypedStr 6 unsigned 4 byte integer value
followed by a CogString
KcogTypeBlob 7 a stream of bytes preceded by a

4 byte unsigned integer which

holds the number of bytes

KcogTypeArray 8 a blob structure which can hold

an array of any kind of data

A CogString is a character count followed by the characters. If the string is
ASCII then the space taken up by the string will be (4 + char count) bytes. If the
string is Unicode then the space taken up will be (4 + (char count * 2)) bytes.

A CogTypedString is a CogString preceded by a type (4 byte unsigned integer).
The only use of a typed string so far is 2 Contact Point. The type identifies the
type of contact point (e.g. email address, home phone) and the string holds the
address (e.g. bob@xxx.yyy, 0+233556677).

A CogBlob is a length in bytes followed by that number of bytes. It can be used
to store any binary data.

A CogArray is passed around as a 4 byte unsigned integer ‘type’ followed by two
blobs. The ‘type’ indicates the type of elements held in the array. The first blob is
an index blob: it holds a sequence of offsets (4 byte unsigned integers) into the
second blob. The second blob is the data blob which holds the elements of the
array as a sequence of binary lumps. Elements can be extracted from the data
blob by counting along the index blob to get the offset of the start of the
element in the data blob. This is the stream structure of the CogArray as it is
passed around. Inside a particular system it may appear as a conventional vector
(i.e. already parsed).

The only implemented example of a CogArray is the MessageAddress. Each
element of the MessageAddress is an AddressPair. An AddressPair is a contact

id (object id of a contact object) followed by a Contact Point.

5.1.6 Smart property parameters
Some of the properties can be made “smart”. This means they can be

parameterised for a specific device to sculpt the data in the property for the

10

15

20

25

30

20

characteristics of the device. In practice the parameters are two 4 byte unsigned
integers, one is a smart type and the other is a max size. For example, the
property which holds the body text of a message might be parameterised to
smart type kCogPlainText and max size 100 on a cheap phone with limited
memory, but parameterised to be smart type kCogRichText and max size 1000

on a PDA with more memory.

The parameters are stored by the Cognima Server when the application is added
to the device. When new objects or updates for that class are placed in the
Cognima Server Change-Log for that device they are processed according to the
smart parameters. This might involve, for example, truncating text, converting

Unicode text to narrow text or converting image formats.

It is important for data integrity that the object held in the Cognima Server
database be a copy of the object as it was generated. Even if you see a cut down
version on a device you can effectively manipulate the complete version on the

Cognima Server.

5.1.7 Class versions

We have the concept of a class version which is defined by a 4 byte unsigned
integer. A new class version may add properties to the end of the old class, but it
may not change or remove existing properties, or insert new properties between
existing properties. This should allow interoperability between versions. Class

definitions with different smart property parameters are not different versions.

5.2 Passing user data around

Cognima utilises the idea of class metadata to minimise the data that needs to
be copied around between databases. Class metadata is essentially an array of
property metadata. Property metadata is a property id, a property type, a smart

type and a max size.

10

15

20

25

30

21

User data is transferred as a stream with no formatting information other than a
class id. This stream is parsed by looking up the class metadata. So if a stream is
received for class 6 and the class metadata for class 6 says that propetty 0 is a
KcogTypeUlnt and property 1 is a KcogTypeStr, then you know that the first 4
bytes of the stream should be interpreted as an unsigned integer, the next 4 bytes
should be interpreted as an unsigned integer holding the number of characters n
in the succeeding string, the next n (times 2 if Unicode) bytes hold the characters

in the string etc.

Client devices declare to the Cognima Server the classes that they support. This
enables the device to subsequently send up only raw user data (with a header
containing class id, object id and a few other things) and hence minimises
bandwidth requirements. This can be contrasted with, for example, XML reliant

systems that ate far more bandwidth hungry.

The client device class declarations also contain the smart property parameters so
that the Cognima Server can sculpt the data for the device. It is worth
emphasising that the meaning of a property is hard coded into an application. The
class metadata states that property 2 in class 7 is a stting with max length 30
characters. It is the code in the application that interprets property 2 in class 7 as

the name of a football team.

521 Data replication issues in more depth
Data is held in Objects that are created on client devices and the server these
devices connect to (known as the Cognima Server). These objects and any
changes made to them are replicated between the client devices and the Cognima
Server.
The design of the replication process allows:
® A set of objects to be defined that will be replicated so that the same set
of objects will be held on a Cognima Server and all the client devices
that are logged on to that server for a given user. New objects created
on any device or the server will be replicated to all other devices.

Changes in any property of an object will be replicated to all devices.

10

15

20

25

30

22

¢ Only the minimum data to be transmitted across the network for a
given update since only changes in data are sent from clients to the
Cognima Server or vice versa.

o A key part of the design was to not require times of modification to be
kept for each property of an object on the client device as updating
these on constrained client devices is slow and keeping a last modified
time for each property in an object would take a lot of space.

¢ On the Cognima Server storing modification times for all properties of
an object is fine as the server has enough storage space and processing

power to deal with this.
5.2.2 Metadata

In order for the system to work it needs a clear idea of what properties are
defined for a given class of objects. This is done by providing the programmer

with a few C++ compiler mactos that allow definition of the class metadata.

The definition of the properties to be used in a class result in 2 Class Metadata
definition. This definition tells the CRE (Cognima recognition engine) what type
a given property is and allows it to pack and unpack an object or a property for
transmission over a data link. In order for the CRE system to work all clients and
the server must have the same class metadata definition. Thus the following

occurs:

¢ When a new Metadata definition is declared on a client device it is sent
to the Cognima Server and from there the Cognima Server will send it
to all other clients.

e When a new Metadata definition is declared on a Cognima Server the
definition is sent to all client devices.

o When a new client device logs on to a Cognima Server for the first time
all of the metadata definitions are sent to that device before any objects
are sent.

o TIn all of the above cases a future optimisation may be made so that the
Cognima Server only sends the metadata definition to clients who

access the class (and the specific properties) the metadata refers to.

10

15

20

25

30

23

5.2.3 ChangeLog

The purpose of the ChangeLog is to record any changes that have occurred since
the client device last connected to the Cognima Server (or the Cognima Server to
the client device). Using Cognima APIs, applications connect to the CRE and
can cause objects to be created or deleted, or a property in an object to be
changed. These changes are added to a Change-Log on the local device as they
are made together with the time the change was made. Objects are given unique

identifiers when they are created so that a given object can always be identified.

In the same way, creation and deletion of objects and changes to object
properties by applications running on the Cognima Server result in the changes
being added to all the Change-Logs of all the client devices registered to that user

on the Cognima Server. The time of changes are recorded for each object or

property.

ChangeLogs can be built in two ways:
® As the new objects are created and properties are changed (this is
normally the case for client devices)
® Or they can be built on demand when they are needed by using the last
modified times of objects and properties if these are stored on the
system (in some circumstances, this method may be used on the

Cognima Server instead of the above method).
5.2.4 Replication

When 2 client device has items in its ChangeLog to send it will connect to the
Cognima Server (and likewise for the Cognima Server connecting to the client
device). By default, the items in the Changelog are sent in the order in which
they were added to the ChangeLog, however they may be re-prioritised
immediately before sending to provide for premium services, urgent data and so
on. Items transferred are:

* A metadata definition including the type of each property of a given

class of objects.

10

15

20

25

30

24

e A new object that has been created - with the contents of the properties
of that object.
¢ A property has been changed - with the new value of the property.

e An object has been deleted.

In all the above cases the appropriate IDs are sent to identify the object, class
and properties involved. All ChangeLog items are marked with the time the item
was added to the ChangeLog. These times ate always local machine times and are

resolved into GMT by the Time Management approach described in Section 6.2.

When a client device receives ChangeLog items from a Cognima Server:

e When a client device receives a new object message from a Cognima
Server it adds this new object to its local database.

e When a client device receives an object deletion message from a
Cognima Server it marks the object as deleted in its local database.

e When a client device receives a property change it is always assumed
that the Cognima Server is authoritative on the current state of the
database and so the change is always made to the value of the property

held in the local database.

A Cognima Server receives ChangeLog items from a client device:

e When a Cognima Sexver receives a new object from a client device it is
added to the Cognima Server database and also added to all the
Change-Logs of the client devices registered to that user, apart from the
Change-Log of the machine that sent the new object in the first place.

e When a Cognima Server receives an object deletion from a client device
the object is marked for deletion and an object deletion message is
added to all the Change-Logs of the devices registered to that user apart
from the Change-Log of the machine that sent the object deledon in
the first place.

e When a Cognima Server receives a property change it compares the
time of the change to the current time held for that property on the

Cognima Server. If the time of the property change is later than that

10

15

20

25

30

25

held on the Cognima Server the property value is changed in the server
database and this change is also added all the Change-Logs of the client
devices registered to that user — including the one of the machine that
sent in property change (in case another object update has been sent to
that machine in the meantime). If the property change was not later
than the one held on the Cognima Server no change is made as the
stored property value is more recent — but the value is added to the list
of old property values on the Cognima Server so that a user can retrieve
it later if required. When times are compared the Time Management

approach described in Section 6.2.below is used.

When a device first connects to a Cognima Server it will be sent all class
metadata definitions and then all the objects in the database for that user. The
Deletion messages generally just mark an Object for deletion. Actual removal of
the object from the database may occur later on once all objects referring to that

object have also been deleted.
5.2.5 Optimisations

An optimised version of the above replication protocol allows for aggregation of
the entries in the ChangeLog. If a ChangeLog (in the Cognima Server or on 2
client device) has not yet been replicated, and a subsequent entry is added, then
existing entries can be scanned to potentially reduce the number of entries that
need to be replicated during the next connection: .
* if the new entry is an update to a property that is already scheduled for
update then only the later entry need be retained
* if the new entry is an object deletion then all property updates for that
object can be removed from the Changel.og
* if the new entry is an ‘undelete’ command and the original deletion is
still in the ChangeLog then the two entries can both be removed from

the ChangeLog

10

15

20

25

30

26

6. Core algorithms

6.1 Handling endian-ness

Operating systems are fundamentally little endian or big endian which is a choice
of the byte order in which numbers and strings are stored. If two computers
which have different endian-ness have to communicate then one of the
computers will have to switch the endian-ness of its data packets. In the
Cognima environment the Cognima client software uses the same endian-ness as
the host client device. The Cognima Server has to determine the endian-ness of
the client device (it uses a reference value in the first packet of data from the
client) and then convert the subsequent incoming data if necessary to maintain
consistent endian-ness in the Cognima Server. The Cognima Server also has to

convert any outgoing data it sends back to the client device.
6.2 Synchronising system times

Different devices will inevitably have slightly different system times. Changes
that are sent from client devices to the Cognima Server are stamped with the
device system time at the time of the change. It is up to the Cognima Sexver to
resolve the times on different devices so that it can judge the order in which

changes took place and record the correct update.

The logon of a device contains the current device time. The Cognima Server
should be able to compensate for the latency of the network and compare the
login time with its own system time. This will give it 2 delta between the device
time and the Cognima Server time. This delta can be applied to further times

sent up by the device in that session.

The Cognima Server can compare deltas in successive sessions from a device to
determine clock ‘creep’ on the device or changes of time zone: it cannot be
assumed that all the client devices in the system have clocks that are well
synchronised to each other:

e Clock times drift on devices depending on the device’s clock accuracy.

e Some users like to set clocks 5 minutes early for example.

10

15

20

25

27

® Some users will make changes to clocks to account for daylight saving

rather than adjusting the locale settings (and some OSes may not

provide locale features anyway forcing the user to change the clock
directly).

To get round this problem, the server will be responsible for adjusting times

used by the client device to GMT when comparisons are made on the Server,

and from GMT to the equivalent time for the client device when messages are

sent from the Cognima Server to the client device.

The client device will tag all the items in the ChangeLog with times obtained
from the local clock — as far as the client device is concerned it only ever deals in
time based on the client device’s own clock.
Each time the client device connects to the Cognima Server it sends its view of
the current time as given by the clock on the client device. From this the Server
can work out:
® What the delta to GMT is
® If there has been any drift in the mobile device clock since the last time
it logged on since the server keeps a record of the last delta to GMT
and when the last connection was made and therefore can compare
these. If there is drift the server can adjust all times sent by the mobile

device pro-rata.

For example the table below shows a pattern of events with a client device
connecting to a Cognima Server. The Client device’s time is 5 minutes slower
that the Cognima Server and is loosing a minute every hour (an extreme case to
show the point). Also to show the point we will assume that from 09:00 to 12:00
the user is on a plane and out of contact with the Cognima Server so it does not

connect during this time:

Action Client Cognima Server
Device Time time (GMT)
Client device connects to 09:00 09:05
Cognima Server

10

15

20

25

28

A change is made to property A 10:00 X

A change is made to property B 11:00 Y
Client device connects to 12:00 12:08
Cognima Server

In order to wotk out if the property changes were made before or after the time
stored on the Cognima Server the times X and Y need to be worked out. From
the information above the Cognima Server knows that when the client last
connected it was around 3 hours ago and at that point the time difference was 5
minutes whereas now it is 8 minutes. Thus, assuming the clock drift happens
linearly, the Cognima Server can wotk out that the device is 5 minutes behind

GMT and that the clock is drifting back a minute every hour.

From this is it possible to work out that the time the client device knows as
10:00 for the property A change needs to have 5 minutes added to it for the
initial drift, plus one minute for the extra drift that occurred in the hour tll that

property was changed.

Likewise Property B needs to be adjusted to 11:07 — the 5 minutes initial drift
plus 2 minutes since two hours elapsed from 09:00 to 11:00 when the property

was changed.

In practice the delta to the time between the client device time and GMT may be

minutes, but the drift will be in the order of fractions of seconds per hour.

6.2.1 Time Adjustments

As well as the delta to GMT and any drift in the client device clock, users can
also change the time on the client device. They may do this to reset the time to
the correct local time (we can give the user the option to have this happen
automatically but some users may want to keep their own control of their client
device time — e.g. they like to have the clock set 5 minutes fast). They may also

make adjustments to reflect a change of local time (ie. daylight savings or

10

15

20

25

29

changing timezone). The goal is that the user can change the clock on the device

to any time that suits the user and the device simply takes account of this.

When the user makes a change to the client device time most operating systems
will report this change (for systems that don’t do this the time can be polled say
every minute to check for such a change). On detecting a change in time the
client device will work out the delta between the new time and the time as it was
before the change. For example this may be a change of plus one hour as a user
moves timezone. The client device stores this time difference as the Adjust Time
which it saves for the next connection to the Cognima Server. The client device
also goes through every entry in the ChangeLog and updates all times in the log
by Adjust Time. This ensures that the entries in the ChangeLog are always

relative to the local time on the client device.

Several such adjustments could be made between connections to the Cognima
Server — each time the amount of the time change is summed with the Adjust
Time and the Changel.og updated so that the times in the log are all relative to

the local time on the client device.

When the client device next connects to the Cognima Server the client device
sends at logon the stored Adjust Time ~ i.e. the amount by which the client
device clock has been adjusted backwards or forwards since the last connection.

The Cognima Server can then remove this amount from the time from the delta

to GMT and drift calculation.

6.2.2 GMT to Client Device

The same set of calculations can be made in reverse to convert the GMT times
of changes made on the Cognima Server to the correct local time for a given

client device.

10

15

20

25

30

30

6.3 Adding an application

An application will use one or more classes to hold user data. The definition of
the class is hard coded into the application. The version of the class is co-

ordinated by releases of the application.

Say that a statistics application uses a Footballer class to hold data about
footballers. When the application starts on a client device for the first time, it
inquires from the device what version of the Footballer class the device already
holds. If the version on the device is the same as the version that the application

has been hard coded to use then nothing more need be done.

If the device holds a newer version of the Footballer class, then the application
needs to be robust enough to cope with more properties than it expected. (This
situation would arise if you had a class being used by multiple apps and for some
reason you installed an older version of one of the apps. This should be rare:

ideally interdependent apps should be upgraded together.)

If the device holds an older version of the Footballer class (or no version at all)
then the application’s version of the Footballer class should replace it. The new
version is sent up to the Cognima Server. The Cognima Server therefore

maintains a list of versions of classes used on all devices.

The web portal pages will be the equivalent of the hard-coded device application.
The web can extract objects from the database according to the latest version of
the class, and if there are more properties than it was hard coded to expect it can

ignore them. Therefore the web does not need to declare class versions.

6.4 Change-Log optimisation

The Cognima Server maintains Change-Logs for all devices listing changes that
will be sent to the devices when the devices next connect. There will be

optimisations that can be made to the Change-Logs, for example:

10

15

20

25

30

31

® If >2 updates to the same property are queued in the Change-Log then
only the last need be kept.

¢ If a deletion is queued for an object then any updates ahead in the
queue may be removed.

* If an update is queued for an object then any delete ahead in the queue
should be removed.

* If a device registers a new application there could potentially be very
many objects to send down to it (e.g. message history). The Change-
Log should only have a sensible number of objects added to it (e.g. the

20 most recent messages).

7. Ghosting, resurrection, pinning and withdrawal

The space available on a client device to hold user data will typically be orders of
magnitude less than the space available on the server. The device needs to hold a
subset of data and the user should have to do as little work as possible to

maintain this subset. Ghosting and withdrawal are tools to aid this.

A class definition may include flagging certain properties as ‘ghostable’. This
means that if the object is ghosted those properties will be nulled, freeing room
on the client device. Ghosting is done automatically on the device. The decision
about which objects to ghost is made by following 2 ‘ghosting rule’ and applying
the rule whenever an object is created or updated. The rule defines the maximum
number of a selection of objects. When the maximum is exceeded the objects in

the selection at the bottom of a sort order are ghosted.

For example, the class might be messages, the selection might be messages in the
inbox, the sort order might be by date/time and the maximum number might be
50. If there are 50 messages in the inbox and 2 new message arrives, the oldest
message in the inbox is ghosted. Ghosting may remove the message body but

leave enough header information for the message to be recognised.

10

15

20

25

30

32

Withdrawal (also known in the past as auto-deletion and removal) is similar to

ghosting but works by removing the entire object, not just part of it.

Neither ghosting nor withdrawal are notified to the Cognima Server. They are
purely local to the client device. Therefore different devices may have different
numbers of objects. The data on the devices is still fundamentally in sync, but

the devices hold different data subsets.

If the user wants to resurrect a ghost then a request is passed from the client to
the Cognima Server for the object to be resurrected. A refresh of the object is

sent down to the device and the object is put back to normal.

Individual objects can be pinned. A pinned object is never ghosted or removed.
Pinning can be chosen by the user, or it can happen automatically. For example,

an object that is resurrected is.automatically pinned.

8. User replication — sharing objects

There are many applications for which we envisage it will be useful for users to
be able to share objects. The general way that this will work is: A user needs to
know the Cognima address of users that he may want to share objects with. It is
mote appropriate to discuss the retrieval of these addresses in detail in the

Cognima Server architecture. Here we assume that such a list is available.

A set of one or more Cognima addresses is attached to the object which is to be
shared. The object can be set to read-only (so the people you share it with
cannot modify it). When the Cognima Server receives the new object (or receives

an update to it) from the web or a client device it replicates it as normal.

Tt also looks up the list of ‘sharees’ Cognima addresses. It marks the object with
an originator id (i.e. the Cognima address of the object owner + the object id)
and sends it to the sharees. The sharee users may exist on the same Cognima

Server ot be on different Cognima Servers. The Cognima Server of the sharee

10

15

20

25

30

33

receives the object. If it is 2 new object it assigns a new object id (keeping note of
the originator id). If it is an update it finds the object using the originator id.
If the sharee is allowed to update the object, the update can be replicated back to

the object owner using the originator id.

9. Displaying data

Conventional small devices like PDA tend to have simple filing systems that
allow applications to read and write data to some kind of storage that will keep
the data when the application is not running, Generally these programs will tend
to read in the available set of data and then provide a user interface to display the
data on the screen. This has some disadvantages:

* Reading in the data when the program starts takes time

® The application needs to store all or some of the data in memory
meaning it is now occupying mote memory on the client device

* Allowing more than one application to access the same set of data
becomes non-trivial

* Similar code to read and manipulate the data appears in several
applications that run on the device.

The Cognima approach is different:

¢ Data is stored in an Object Database that can be accessed by several
applications

* A Cognima application does not read in all the data it deals with from a
database. Instead it creates a selection — a subset of the data which it is
currently interested in. In general this selection matches the data that is
currently being displayed on the devices screen. Thus only the data
currently being used by the application is held in memory — saving a lot
of memory space.

* All of the work of storing, sorting and indexing the data is done by the
Object Database and so this functionality does not need to be repeated
in each application.

® When changes need to be made to data in an application, the

application never directly updates its own display of the data. Changes

10

15

20

25

30

34

will update the properties in an object or create or delete an object. A
change to the data could be made by another application or an update
received from a Cognima Server due to the data being changed on
another machine.

e When an application sets up a selection it gives a list of criteria by
which data is either included or excluded from the selection — because
of this the Cognima Replication Engine can tell which applications to
notify when a object is created, deleted or updated.

e When an update needs to be sent to the application, code in the
application linked to the selection that contains this data is called and in
this way the application can respond to the changes that have been
made.

e When selections are set up, the application can also specify how the
data is sorted and if only a small window on the sorted list of data is
required (known as a view).

This approach is similar to the screen re-paint approach used to redraw graphics
screens on Windowing systems. When an area of the screen needs repainting the

application that is responsible for that bit of screen is called to repaint the screen.

9.1 Example

A client device may have a contacts application running on it — this device
replicates data with a Cognima Server connected to other client devices also
running contacts applications. A class of object is defined for a Contact that
contains names and phone numbers and these are replicated to all the devices of

a given user.

An application on one device may have a display that shows all contacts by
beginning letter — for example the interface allows the user to press a D button
to show all the names beginning with D. This application will set up a selection

that contains objects:

o Where the class is defined as Contacts

e Where the name begins with the selected letter (e.g. D)

10

15

20

25

35

When the selection is defined the application also defines code to be called by
the CRE when objects are added, deleted or updated.
When the selection is first set up this code will be called back with the first set of

objects that fulfil the above criteria.

If the application was asked to create a new contact with a name beginning with
D the application would create the object but do nothing else. The CRE would
detect the new object and call back the selection code to notify it of the new

object.

Likewise is a new Contact object was created on another device and was
replicated to the client device — if the name of that Contact began with D the

application would be notified.

9.2 Sorting

Data in selections generally needs to be sorted — often so that when displayed
users can see data in a logical format. When a selection is defined the sorting
order can be specified: the properties to sort on, in what order and what sorting

algorithms to use.

9.3 Views

There may be many items of data in a selection. Commonly when the data is
being displayed it may not all fit on the screen and so the user will need to scroll
up and down the data. A view provides this functionality by specifying the
number of items of data the selection wants to deal with and the number of the
first item of data out of the complete list of data the application wants to appear

in the selection.

Views are important because they allow an application to limit the amount of
data it stores locally to be limited to just the amount needed to display on the

screen this reducing unnecessary duplication of data.

10

15

20

25

30

36

9.4 Efficiency

Cognima has made some efficiency optimisations in how the data is transferred
between the Cognima server and client application — when multiple data changes
are made the data is sent in blocks and then the application informed that the
changes are complete so that the application only needs to update its user

interface once.

9.5 Example

As an example we will define a selection called ContactSelection. This is the code
that the framework will call back whenever a change is made to any of the
selected objects. In the Cognima framework this is implemented as an object
which you derive from the COdbSelect templated class - specifiying the type of
object you want to have in the selection as the template argument.
class CContactSelect : public COdbSelect<CContact>
{ .
public:

CContactSelect(COdb *aOdb);

void ObjectAdded(CContact *aObject);

void ObjectUpdated(CContact *aObject);

void ObjectRemoved(const TOdbObjectld aObjectld);
private:

bool ListContacts();

b

The methods ObjectAdded(), ObjectUpdated() and ObjectRemoved)) ate called
by the framework whenever respectively an object is added, updated or removed.
When you implement the Selection class you don’t need to implement all these
methods if you do not want to take instance action on any of these events - in
some cases you may set up a selection to keep a list of a certain set of objects but
only check that list on some other event and so the above methods would not be

required.

10

15

20

25

30

37

We have defined one extra private method called ListContacts() - this will list all

the current contacts held by the selection.
Here is the implementation of this class:
CContactSelect::CContactSelect(COdb *aOdb)
: COdbSelect<CContact>(aOdb)

{

}

void CContactSelect::ObjectAdded(CTestContact *aContact)

{
OdbLog(OdbLogApp,L"New contact added: " << aContact->GetName());

ListContacts();

}

void CContactSelect::ObjectUpdated(CTestContact *aContact)

{
OdbLog(OdbLogApp,L"Contact updated: " << aContact->GetName());

ListContacts();

}

void CContactSelect::ObjectRemoved(const TOdbObjectld aObjectId)

{
OdbLog(OdbLogApp,L"Contact deleted - Id: " << aObjectld);

ListContacts();

}

void CContactSelect::ListContacts()

{
OdbLog(OdbLogApp,L"Contacts list:");

for (unsigned long Index=0; Index<iResult.size(); Index++)

{

10

15

38

CTestContact *Contact=iResult[Index];
OdbLog(OdbLogApp,Contact->GetName() << ", "
<< Contact->GetPhone() << ", "

<< Contact->GetEmail();

The constructor simply calls the default COdbSelect constructor. The
ObjectAdded(), Updated() and Removed() methods print out what change was
made and then call ListContacts() to show what the current contents of the list
1s.

The ListContacts() shows how the current list of object held by the selection can
be accessed. The current list of pointers to objects is held in a container class
called iResult - this can then be accessed by normal container class integrators. In

this case we simply go through the list and print all the objects in the list.

10

15

20

25

30

39

CLAIMS

1. A method of replicating data from computing devices, in which a first
computing device is given responsibility for determining whether data received
from a wireless computing device over a wireless network is replicated or not;
wherein the method comprises the steps of the wireless, portable computing
device:

(a) running a database with records that do not include a time
stamp field to indicate when a field entry in the database has altered, and

(®)] generating and storing time stamps in a change log, separate
from the database, the change log including data only for records that have
changed; and

(© sending those change logs to the first computing device in
order to replicate data in the change log in a database running on the first

computing device.

2. The method of Claim 1 in which the change log only records changes

to the field of a given record that has changed and not the entire record.

3. The method of Claim 1 comprising the step of the change log
recording only changes that have occurred since the last data replication between

the wireless computing device and the first computing device.

4. The method of Claim 1 comprising the step of the change log being
populated with data identifying the data that has been changed, how it was

changed and when it was changed on the wieless computing device.

5. The method of Claim 1 comprising the step of the wireless computing
device and the first computing device sharing metadata that defines the proper

interpretation of the change log.

6. The method of Claim 5 comprising the step of the wireless computing

device registering new metadata definitions with the first computing device to

10

15

20

25

30

40

define how change logs relating to 2 new application will be presented by the

wireless computing device.

7. The method of Claim 1 comprising the step of the change log being
automatically sent by the wireless computing device to the first computing device

without any user intervention.

8. The method of Claim 1 comprising the step of the wireless computing
device sending the change log automatically (a) at pre-defined periodic intervals,

(b) at pre-defined times or (c) continuously whenever a change log is created.

9. The method of Claim 1 comprising the step of the wireless computing

device batching up multiple change logs.

10. The method of Claim 9 comprising the step of the wireless computing
device sending batched change logs at times which depend on the importance of
the change log being rapidly processed by the first computing device, with low

priority change logs being sent at times of lower network traffic.

11. The method of Claim 1 compsising the step of the wireless computing
device sending records in a change Jog at times which depend on the importance
of the records being rapidly processed by the first computing device, with low

priortity records being sent at times of lower network traffic.

12. A wireless, portable computing device programmed to send data to a
first computing device over a wireless network, in order for the first computing
device to replicate that data; wherein the device is programmed to:

(a) run a database with records that do not include a time stamp
field to indicate when a field entry in the database has altered, and

(b) generate and store time stamps in a change log, separate from
the database, the change log including data only for records that have changed;

and

10

41

(©) send those change logs to the first computing device in order to

replicate data in the change log in a database running on the first computing

device.

IS ¥ J

Patentlu‘

: é i
s Ofbce 2 {
< N3 Y tl’
5 S et
“ar., T\U’S) INVESTOR IN PEOPLE
Application No: GB 0227537.8 Examiner: Ben James
Claims searched: 1-12 Date of search: 27 May 2003
Patents Act 1977 : Search Report under Section 17
Documents considered to be relevant:
Category | Relevant | Identity of document and passage or figure of particular relevance
to claims
XY [X %3?:12 EP 1131757 A2 (ERICSSON) Whole doc. esp. figure 3C
& X: ; 32'12 WO 00/29998 A2 (ERICSSON) Whole doc. esp. figure 3C
X,P XZSL 14, 7,1 WO 02/17134 Al (ERICSSON) Whole doc.
Y 2 EP 1130511 A2 (FUSIONONE) System overview on p5
Categories:
X Document indicating lack of novelty or inventive step A Document indicating technological background and/or state of the art.
Y Document indicating lack of inventive step if combined P Document published on or after the declared priority date but before the
with one or more other documents of same category. filing date of this invention.
& Member of the same patent family E Patent document published on or after, but with priority date earlier
than, the filing date of this application.
Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKCV:

G4A

Worldwide search of patent documents classified in the following areas of the IPC”:

GOG6F

The following online and other databases have been used in the preparation of this search report :

ON-LINE: EPODOC, WPI, JAPIO

An Executive Agency of the Department of Trade and Industry

