
USOO5966306A

Patent Number:

Date of Patent:

United States Patent
Nodine et al.

5,966,306
Oct. 12, 1999

19 11

45)

54 METHOD FOR VERIFYING PROTOCOL Gerald J. Holzmann, “Design and Validation of Computer
SNEANCE OF AN ELECTRICAL Protocols,” Synopsis, Prentice Hall, 1991, Chapter listing

only, full book available to “Researchers and professionals'.
75 Inventors: Mark H. Nodine; Harold M. Martin;

Anhtu Nguyen, all of Austin, Tex.
Primary Examiner William Grant

73 Assignee: Motorola Inc., Schaumburg, Ill. Assistant Examiner-Carolyn T. Baumgardner
Attorney, Agent, or Firm Susan C. Hill

21 Appl. No.: 08/888,588
22 Filed: Jul. 7, 1997 57 ABSTRACT

6
51 Int. Cl. G06F 19/00; G06G 7/48 A method and technique for verifying bus protocol in the
52 U.S. Cl. 364/468.28; 364/578; 710/8; 710/113 design of integrated circuits. A correctness evaluator
58 Field of Search 364/468.28,578; receives Simulation results from a monitor file and predic

371/2.2.1; 438/14; 370/254; 395/283,831; tion information generated from protocol templates. The
710/8 correctness evaluator operates according to a “clean bus'

56) References Cited theory that an error includes those events not specified by the
U.S. PATENT DOCUMENTS circuit Specification, including spurious transitions. Protocol

templates define the elements within the circuit, and are
4,764,862 8/1988 Barlow et al. 395/200.83
4,825,438 4/1989 Bennett et al. 710/100 provided to a prediction generator which creates a prediction
5,440,697 8/1995 Boegel et al. 395/500 file. The correctness evaluator compares a Simulation moni
5,455,911 10/1995 Johansson 710/44 5,566,347 10/1996 Patrick 395/831 tor file to the prediction file, and outputs a pass or fail result.
5,590,355 12/1996 Shichiku et al. ... 395/800.26 The present invention offers a flexible method to separate
5,623,499 4/1997 Ko et al. 371/2.2.1 protocol-defined timing constraints from implementation
5,663,076 9/1997 Rostoker et al. 438/14
5,699,350 12/1997 Kraslavsky 370/254 dependent timing constraints. The present invention allows
5,758,101 5/1998 Pemberton 395/283 input from a test program to tailor buS Signal change

OTHER PUBLICATIONS

Gerard J. Holzmann, “Basic Spin Manual,” Bell Laborato
ries, Murray Hill, NJ 07974, pp. 1-32.
Oded Maler, Sergio Yovine, “Hardware Timing Verification
Using KRONOS,” Spectre-Verimag, Miniparc-Zirst, 38330
Montbonnot, France, pp. 1-8.

STIMULUS PROVIDERS

DESIGN. SIMULATION

BUS MONITOR

48

a a

predictions and Verify that the test program performs as it is
programmed to perform.

23 Claims, 7 Drawing Sheets

PREDICTION
GENERATOR

56

PREDICTION FILE

CORRECTNESS
EVALUATOR

PASS FAIL

5,966,306 Sheet 1 of 7 Oct. 12, 1999 U.S. Patent

NOII dO
| 3HWMQHWH | CHIVOICEO GI

ZººZAZ.

V? QHVORABX

U.S. Patent Oct. 12, 1999 Sheet 2 of 7 5,966,306

40

- - - - - ----4--

PREDICTION
GENERATOR

54

STIMULUS PROVIDERS

DESIGN SIMULATION

BUS MONITOR

48

V Y. Y Y. Y

PASS FAIL

A77G2

U.S. Patent Oct. 12, 1999 Sheet 3 of 7 5,966,306

SIGNALS

CLOCK

TS

MASTER

ADDR RECOG
SLAVE

ADDRACK

TIME
A77G.3

500 A77G.4
1.X d

MASTER
1,1

0,0
'ADDRESS' = f00

BEGIN: TRUE 508

0,X O 510

'TS = 0 88
'ADDRESS' > ADDRMIN 8)

SLAVE ADDRESS < ADDRMAX

512

514

504 506

1,1

'ADDR ACK = 0
1.1

1,1

'ADDR RECOG' = 0
R 1,1

'ADDR ACK = 1 'ADDR RECOG' = 1 518

U.S. Patent Oct. 12, 1999 Sheet 4 of 7 5,966,306

200
- - - - - - - - - - - - - - - - -

BEGIN: 'PIPEDEPTH' = 0034)
a a a win

0.3/ A TRANSACTION
202 ENDED

TRANS END = 003
&&. 'ADDR ACK = 0

206 8& 'ABORT = 103

DIE "TRANSACTION ENDED 208 A TRANSACTION
WITH PIPEDEPTH = O' rty---- 0,1 STARTED

I'PIPEDEPTH' = 1034)
la a ra

a V V VA VA a sara a wa

204

'ADDR RECOG' = 0

Y Y sa a was

A TRANSACTION 0:3,X
STARTED AND
NONE ENDED 210

'ADDR RECOG' = 0
&& ADDR ACK = 0

& "ABORT = 1
&& TRANS END" = 103

TRANS END" = 0
&&. (ADDR RECOG' =

| ADDRACK = 1
"'ABORT = 0) G3

21 all-'---- A TRANSACTION
I'PIPEDEPTH = 20.34) ENDEANONE

VY VY Y. Y. sa a

1:5,X
216

TRANS END = 003

A TRANSACTION
A TRANSACTION ENDED

STARTED
DIE "TRANSACTION ACCEPTED

WITH PIPEDEPTH FULL"

a wa a un

'ADDR RECOG' = 0
&& 'ADDR ACK = 0

& 'ABORT = 103

220

A77G.A.

U.S. Patent Oct. 12, 1999 Sheet 5 of 7 5,966,306

CREATE AND OUTPUT A
GLOBAL BEGIN NODE

602
IS THERE

AN UNPROCESSED NO

&GENTAIN TES) FILE

O YES - 604
READ DESCRIPTION FOR

AGENT A

606 614
CREATE AN INITIALIZATION READ N

616 NODE I INCORPORATING CODE
FOR INITIALIZING A

608 RENAME N AND Ns
PREDECESSOR REFERENCES

CONNECT GLOBAL BEGIN NODE TO INCLUDE AS NAME
AND END NODES OF

PREDECESSORS OF A TO I
IS

N A BEGIN
NODE?

ADD I To PREDECESSOR
LIST OF N

622
OUTPUT RENAMED VERSION

OF N

OPEN PROTOCOL TEMPLATE FILE
CORRESPONDING TO AS TYPE

1 IS THERE
AN UNREAD NODE

N IN THE PROTOCOL
TEMPLATE FILE?

A77G. 6

U.S. Patent Oct. 12, 1999 Sheet 6 of 7 5,966,306

START

72 Az7G. Z.
READ PREDICTION FILE

74

INITIALIZE EVALUATION 30
LIST TO CONTAIN ARE
BEGIN NODE FROM THERE REQUIRED N NO
PREDICTION FILE ENTRIES ON THE

76 EVALUATION
LIST?

READ RESET LINE FROM
MONITOR FILE 132 YES 134

O 80 EXIT WITH FAIL EXIT WITH

INITIALIZE MODEL OF STATUS (FAILURE OF PASS STATUS
BUS STATE

78
IS THE O

MONITOR FILE
EMPTY?

NO

READ A LINE FROM
MONITOR FILE

YES

82

"Edit."
CREATE TRANSITION
LIST FOR A CURRENT

TIME STAMP
84

UPDATE MODEL OF
BUS STATE

THERE ANY
UNEWALUATED

ENTRY, E1, IN THE
EVALUATION

LIST?

YES

REQUIRED CONDITION)

90
DOES

THE CONDITION
OF E1 EVALUATE

TO TRUE?

YES

DOES
E1 HAVE CODE
ASSOCIATED?

NO

YES 94

EXECUTE THE CODE
ASSOCIATED WITH E1

96.

REMOVE E1 FROM
EVALUATION LIST

U.S. Patent Oct. 12, 1999 Sheet 7 of 7 5,966,306

(C) A77G.S
IS E1

SUCCESSOR OF AN
OR NODE

NO

YES , 100
REMOVE SIBLINGS OF E1
FROM EVALUATION LIST 12

THERE ANY
101 EXPIRED ENTRY,

E3, IN THE
EVALUATION

LIST?
IS

E1 A DRIVE
NODE?

NO

IS
E3 OPTIONAL NO

102
IS THERE

A TRANSITION, T,
IN THE TRANSITION

LIST CORRESPONDING TO
THE CONDITION

OF E1
IS

THE TRANSITION
LIST EMP)

YES
104

REMOVE T FROM
TRANSITION LIST

EXIT WITH FAIL STATUS
(SPURIOUS TRANSITION)

NO (D) 116

106

IS THERE
AN UNPROCESSED
SUCCESSOR E2

TO E1?

EXIT WITH FAIL
STATUS (FAILURE OF
REQUIRED CONDITION)

108

E2 HAVE ANY
UNFIRED NON OPTIONAL

PREDECESSORS2
110

ADD E2 TO
EVALUATION LIST

5,966,306
1

METHOD FOR VERIFYING PROTOCOL
CONFORMANCE OF AN ELECTRICAL

INTERFACE

FIELD OF THE INVENTION

The present invention relates generally to integrated cir
cuit design and more particularly to the design and manu
facture of integrated circuits having been verified for con
formance to a protocol.

BACKGROUND OF THE INVENTION

There is a continuing trend in the Semiconductor industry
towards higher circuit complexities within chips. These
higher complexities are fueled by the progressive in reduc
tion of feature sizes and the demand for ever more powerful
microprocessors. AS chip complexity increases the buS inter
faces connecting chips to the outside World become more
complicated. Additionally, many chips have an internal bus
allowing communication between the various internal mod
ules. It is important to ensure all the buses in a chip function
correctly, as a Single defect is almost certain to be encoun
tered Sometime during the operation of the chip. For
example, one defect affecting Some corner case of the bus
protocol may result in a non-recoverable error. It is espe
cially important to Verify internal buses prior to the produc
tion of Silicon. Internal buses are Subject to all the problems
of external buses with the additional constraint that they are
by definition not visible from the outside. Therefore, the
facilities for debugging them once the chip has been reduced
to Silicon are limited. Redesigns to fix problems are
extremely costly, as they incur mask costs, fabrication costs,
and delays in business.

Buses are inherently difficult to verify functionally
because they usually contain a large number of Signals.
Many of these signals are bi-directional, So the possibility of
a conflict due to poorly timed Bus Interface Units (BIUs) is
probabilistically quite large. Counting all the address, data,
and control Signals, it is not unusual for a modern bus to
have 100 or more bits of information. Considering the state
space for the bus to be the Cartesian product of the states of
the individual bits that compose it and the internal protocol
State machines of all the agents that connect to it, it is
obvious that trying to Verify a bus by doing a complete State
Space Search is untenable. Even viewing the address and data
buses as representing a single State, the remaining State
Space is still impracticably large. It is therefore necessary to
have a formal methodology for buS protocol Verification that
limits the testing to those States that are realizable within the
protocol Space.
One of the problems faced by the designer of a hardware

chip or board is ensuring that devices attached to a bus
conform to the bus protocol, where a bus is a set of Signals
that must be driven according to a specifiable protocol in
order to achieve a desired result. Commonly, buses are used
for transferring data, and the protocol Specifies how read and
write transactions may occur on the bus. The typical way a
bus interface controller is verified is to create a behavioral
model that exercises all Supported transactions across the
bus. If the operation completed without hanging the bus, it
has passed the first level of test. A second level of test would
then perform data compares of data written to a specific
memory or address space. A third level of test would further
include register read/write operations to check the integrity
of the bus interface controller's registers. This Strategy only
checks to See if the bus is functional and does not verify
compliance to the protocol.

15

25

35

40

45

50

55

60

65

2
Another method includes a bus monitor in the Similation.

The bus monitor deduces what transactions are taking place
on the bus based on Sampling Signals at times of relevance
to the protocol. These deduced transactions can then be
compared against the intended ones to determine correctness
at Some level.
Many design Solutions implement a graph-based

representation, and make predictions based on the relations
described therein. One alternative to using a graph-based
representation for predictions is to do a cycle accurate
prediction based on the test and compare the exact wave
forms with those output by the simulation. These methods
do not address issueS Such as noise detection, optional
transitions, prediction of expected Signal transitions, the
modularity of the protocol, and operation outside of a strict
cycle accurate approach. These methods lack the ability to
check the correct behavior of other bus agents Such as a bus
arbiter or a pipe depth controller. Such agents may appear to
function correctly but may in fact be designed differently
from the Specification. Additionally, the bus interface con
troller logic may deviate from Specification while appearing
to function properly in most cases. If Such misbehavior is not
flagged, the unintended logic feature goes undetected in
design. Other methods use prediction where the bus inter
face controller is verified by predicting register results or
data values at memory address locations. The results are
predicted based on the test program to be executed. These
methods are known as data prediction and data integrity
methods.

A method referred to as resilient buS System has the
receiving bus interface unit check the validity of certain
pertinent Signals. If any one of the Signals is not valid the
receiving buS unit rejects the request. The resilient bus
System method does not verify the correct behavior of the
rejection logic nor does it identify the Source of the invalid
buS Signals.

Verification methods typically lack a way to verify
whether the bus master device correctly requested a read or
write as indicated by the test program. For example, if the
test program asked for a read but the master requested a
write, most verification programs would not detect this
inconsistency. Additionally, if the master correctly asks for
a read but performs a non-burst instead of an expected burst
operation, these methods would not detect this inconsistency
either.

It is desirable to have a bus verification method that is
applicable to many different buses and is able to predict
future transitions. Additionally, Such a method should not
employ Strict cycle accuracy but be able to allow for
implementation-dependent variances in transition times
where allowed by protocol. It is also critical that a verifi
cation program identify noise on the Specifically, unpre
dicted transitions. Ideally, a verification method would be
modular to comprehend the complexities of a variety of
buses.
The present invention offers a method of verifying bus

protocol conformance employing a prediction Scheme in a
Second Stage correctness evaluator. This methodology pro
vides a way to detect noise on a bus occurring at times other
than when the protocol Specifies the Signal should be
Sampled, to handle all contingencies in a consistent manner,
to determine the correct coverage information, and reduce
the complexity of bus monitoring. The present invention
employs a modular approach to bus protocol verification.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of the system within which one
embodiment of the present invention may be implemented;

5,966,306
3

FIG. 2 illustrates, in block diagram form, the methodol
ogy of one embodiment of the present invention;

FIG. 3 illustrates in timing diagram form, a protocol
according to one embodiment of the present invention;

FIG. 4 illustrates, in labeled directed graph form, the
protocol of FIG. 3;

FIG. 5 illustrates, in labeled directed graph form, a
protocol template according to one embodiment of the
present invention;

FIG. 6 illustrates, in flow diagram form, a prediction
generators according to one embodiment of the present
invention; and

FIGS. 7 & 8 illustrate, in flow chart form, a correctness
evaluator according to one embodiment of the present
invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

The present invention provides an improved method and
technique for Verifying bus protocols in the design of
integrated circuits. The following discussion details one
embodiment of the present invention, which is illustrated in
FIGS. 1-8, and is provided as an exemplar for clarity. The
various methods discussed above may be implemented
within dedicated hardware 15, or within processes imple
mented within a data processing System 13 as shown in FIG.
1. A typical hardware configuration of a WorkStation in
accordance with the present invention is illustrated and
includes a central processing unit (CPU)10, Such as a
conventional microprocessor, and a number of other units
interconnected via system bus 12. The workstation shown in
FIG. 1 includes random access memory (RAM) 14, read
only memory (ROM) 16, and input/output (I/O) adapter 18
for connecting peripheral devices, Such as disk units 20 and
tape units 40, to buS 12. A user interface adapter 22 is used
to connect a keyboard device 24 and a mouse 26 to the
System bus 12. Other user interface devices Such as a touch
Screen device (not shown) may also be coupled to the System
buS 12 through the user interface adapter 22.
A communications adapter 34 is also shown for connect

ing the WorkStation to a data processing network 17. Further,
a display adapter 36 connects the System buS 12 to a display
device 38. The method of the present invention may be
implemented and stored in one or more of the disk units 20,
tape drives 40, ROM 16 and/or RAM 14, or even made
available to System 13 via a network connection through
communications adapter 34 and thereafter processed by
CPU 10. Because the apparatus implementing the present
invention is, for the most part, composed of electronic
components and circuits known to those skilled in the art,
circuit details will not be explained in any greater extent than
that considered necessary as illustrated above, for the under
Standing and appreciation of the underlying concepts of the
present invention and in order not to obfuscate or distract
from the teachings of the present invention.

In general, it is noted that the integrated circuits being
designed for element Sizing are comprised of a plurality of
elements (sometimes millions of elements) including tran
Sistors and logic gates. Each Such transistor or gate has an
inherent signal propagation delay time associated with it,
and that delay is typically measured in nanoSeconds. Timing
constraints within integrated circuits are usually Specified in
nanoSeconds and represent the maximum propagation time
of a signal between two different points in an integrated
circuit. Such timing constraints must be met in order for the
integrated circuit to meet an overall Specification relative to

15

25

35

40

45

50

55

60

65

4
the Speed with which Signal processing must occur to
provide a competitive product in the market place or to be
compatible with other integrated circuits in a larger System.
The Speed of an integrated circuit is proportional to its

Size and its Strength. For example, the size and Strength of
a transistor, is directly related to the width of a transistor gate
for transistor elements. In the design of integrated circuits,
in optimizing the chip, an initial design is chosen and while
the number of elements, inputs and topology of the chip may
remain the Same, the sizes are modified for optimal size So
that customer or user constraints are met but with a mini
mum of total chip size.

Referring to FIG. 2, the methodology of the present
invention is detailed. The method may be used to verify
protocol conformance to an electrical interface in a System,
and is typically used during the design Stage, but may also
be useful for debug once a design has been realized. The
present method implements a computer model of an elec
trical circuit to determine if the electrical interface of the
circuit operates in conformity with a specified protocol. The
results of this verification may result in a design change or
may even result in a Specification change. The electrical
circuit computer model is to imitate the behavior of the
circuit. Any number of types of information may be derived
from the Verification method, including information indicat
ing the amount and degree of comprehension of test cover
age.

In one embodiment of the present invention, the electrical
interface is a bus. A test file 40 is used to specify a number
of agents that act upon the bus during the course of the test.
Typical agents are bus masters (transaction initiators) with a
list of transactions to perform, slaves (transaction
responders) with different characteristics, and data initial
ization agents for Slave memories. Specific agents will differ
from one bus configuration to another. Agents are user
defined, and may exist for any purpose the user finds
convenient, Such as an arbitration unit or central controller.
For example, in one embodiment of the present invention, an
agent is defined to apply all the precharge Signals used on the
buses when they are not being driven. Further, it is possible
to define agents that have no direct effect on the bus. An
initialization agent may be used to define common Sub
routines.

Each agent, whatever its purpose, will have a protocol
template. As illustrated in FIG. 2, protocol templates 50
represents a group of protocol templates, containing proto
col templates for the various agents that are defined in the
system. From protocol templates 50 the template corre
sponding to the protocol associated with a single agent is
instantiated for a given prediction. Test file 40 provides a test
description and includes transactions involving a variety of
agents. Test file 40 is based on an ordered list of instructions
predetermined by the designer. Test file 40 provides infor
mation for a given agent that may be accessed by the
corresponding protocol template of that agent is provided
from protocol templates 50. Both the information from test
file 40 and the template protocol from protocol templates 50
is provided to prediction generator 54.

Test file 40 may implement any of a number of formats.
Test information includes descriptions of each agent, where
descriptions include, but are not limited to, Such parameters
as agent name, agent type, predecessors to the agent, and
initialization information. The test file combines the agents
and defines a Series of events or transactions that will utilize
the bus. In this way, the designer may verify conformity to
the Specified buS protocol and find bugs. The prediction

5,966,306
S

generator 54 uses specific information about the perfor
mance of each agent and the information from test file 40 to
predict what should occur on the bus.

Prediction generator 54, prediction file 56, and correct
ness evaluator 58 are all contained within unit 52. Prediction
generator 54 reads information provided by test file 40 and
in response outputs a prediction file Specific to the test file
information. This is done by instantiating the protocol
templates for each of the bus agents (from protocol tem
plates 50) with the test file 40 information, and composing
a composite prediction graph. Prediction file 56 determines
the expected results of running the transactions Specified in
test file 40. Prediction file 56 in turn becomes an input to
correctness evaluator 58. Correctness evaluator 58 checks
that there is a one-to-one mapping between transitions
present in monitor output file 48 and prediction file 56 (i.e.
that actual results match expected results).

Stimulus providers 42 receive instructions in the form of
information from test file 40. In response, stimulus providers
42 provide the stimulus for the test to be performed by each
agent. The Stimulus provided by Stimulus providers 42 is
provided to the design Simulation 44. Design simulation 44
runs a simulation of the design circuit in response to the
stimulus provided. The form of stimulus depends on the type
of design simulation 44 used. Further, bus monitor 46
monitors signals on the bus in response to the Stimulus
providers. The output of the bus monitor 46 is provided to
monitor file 48. Monitor file 48 stores information as it is
received. The information in monitor file 48 is time stamped
to indicate the time and Sequence of events on the bus. Note
that according to one embodiment of the present invention,
the time Stamp corresponds to a phase of the clock signal.
Monitor file 48 includes a reset line which provides the
initial State of all the Signals provided in the monitor file.
Each line in the monitor file contains a time Stamp for each
Signal change, the name of each Signal, and the updated
value of the signal after the signal change. Monitor file 48
contains this information for each of the Signals. This
information will be used by correctness evaluator 58 to
create a transition list.

Monitor file 48 provides this information to correctness
evaluator 58. Correctness evaluator 58 then compares the
simulated output results from monitor file 48 with those of
prediction file 56. Correctness evaluator 58 then makes a
pass or fail determination based upon the match.

Correctness evaluator 58 tests to a “clean bus model.”
According to a clean bus model, any non-predicted bus State
is considered to be an error. Non-predicted bus States are
often referred to as "spurious transitions”, where a spurious
Signal changes State at Some time other than that specified by
the protocol. Noise may be considered a spurious transition,
as may an unspecified Signal. Note that many verification
techniques do not employ the clean bus model as it is a more
Stringent test than is often thought necessary. The clean bus
model provides a Stringent condition for checking conform
ance to the protocol. Acceptance criterion typically requires
that all predicted to be driven according to the protocol
Specification must be actually driven. Further, acceptance
criterion requires that no signal be driven at a time other than
Specified drive times. The latter criterion is more Strict than
is usually used by hardware designers, who tend to ignore
Signals driven at a time that is not Sampled according to the
protocol.

Violation of the clean buS model may require the designer
to use a guard condition or a qualification on Such signals.
If a qualification is implemented incorrectly, undesirable

15

25

35

40

45

50

55

60

65

6
behavior could result. By alerting the designer to Spurious
transitions, the designer is made aware of potential hazards
in the design. Note that a spurious or unexpected transition
does not always cause a problem. In certain cases where no
hardware is Sampling the line at that time, there may be no
problem, especially if all the data are getting through.
However, any spurious transition constitutes a possible
hazard in the design indicating that all the bus agents that
Sampled the Signal are to be properly qualified So that they
are not looking at that signal when they should not be. When
a spurious transition occurs and it turns out to be harmless,
it is often impractical to fix the design. In these situations, it
is possible to alter the prediction template to allow specific
Spurious transitions without lessening the overall Stringency
of the test in any other area.
AS Stated previously, prediction generator 54 operates on

test file 40 and protocol template 50. Protocol template 50 is
illustrated according to one embodiment of the present
invention in FIG. 5. A prediction or protocol template is
represented as a labeled directed graph in which each node
Specifies a condition to be evaluated. These conditions
typically include partial bus States. Arcs Specify timing
constraints between pairs of nodes. For the present discus
Sion the term "edge' is used to indicate an arc which carries
ordering information. If there is no edge between two nodes
then there is no explicit constraint between them.
To better understand the labeled directed graph, refer to

FIGS. 3-4, which illustrate a simple example to help in
learning how to read Such a graph. FIG. 3 illustrates a simple
buS protocol involving a master and Slave. The master is
defined by two signals, a transaction start signal (TS), and an
address (ADDRESS). The slave is defined by two signals, an
address recognition signal (ADDR RECOG) and an
address acknowledge (ADDR ACK). Additionally, there is
a a clock signal (CLOCK). According to FIG. 3, TS,
ADDR RECOG, and ADDR ACK are active low signals.
In this example, TS is asserted on a second CLOCK edge.
ADDRESS is also driven on the second rising clock edge
coincident with the assertion of TS. According to the pro
tocol illustrated in FIG.3, the slave's ADDR RECOG is to
be asserted one clock after assertion of the master’s TS.
Also, slave's ADDR ACK is to be asserted one clock after
the master’s TS. The behavior illustrated in FIG. 3 indicates
the expected result on the bus.

FIG. 4 illustrates the corresponding labeled directed graph
defining the master and slave portions of the protocol
illustrated in FIG. 3. A node in the graph is illustrated as a
rectangular box or an oval, and each node corresponds to an
event which may occur during the Simulation. A node can be
either required or optional. For clarity, in FIG. 4, required
nodes are illustrated as rectangular boxes, while optional
nodes are illustrated as ovals. If the condition must eventu
ally evaluate to true for the protocol to be correct, the node
is required.
When a node's condition evaluates to TRUE it is consid

ered to have fired. A node may be tagged an AND node or
an OR node. For clarity, an AND node is illustrated with a
Solid outline, while an OR node is illustrated with a dashed
outline. With reference to an AND node, once the node is
evaluated to true, all of its required Successor will eventually
fire, and as many of its optional Successors as desired will
also fire. In the case of an OR node, Successors of an OR
node are considered to be optional. An OR node will
Sequentially check Successors until a first Successor fires. At
this point, it is not necessary to check the other Successors.
Successors of an OR node are put into a predetermined
evaluation order. The evaluation order is Specified by plac

5,966,306
7

ing numeric tags on edges between OR node and its Suc
ceSSors. The tag indicates the ordered position of each
Successor. Note that typically all Successors to an OR are
considered optional.

Returning to FIG. 4, at node 500, labeled BEGIN, the
condition is by definition TRUE. Node 500 is a required,
AND, Sample node. A required node, in a labeled directed
graph, is one that must be Satisfied. Alternate to a required
node is an optional node which may be Satisfied or may not.
Adrive node indicates that the condition defined in the node
is to be driven on the bus. For clarity, drive nodes are
illustrated with italicized text. Alternate to a drive node is a
Sample only node. For clarity, a Sample only node is illus
trated with plain text. Note that in one embodiment, a Sample
only node does not need to Sample the bus. A directed arc
connects node 500 to node 502, and indicates the processing
flow. Node 502 is a required and drive node.
The arc connecting node 500 to node 502 is labeled “1,X.”

The label indicates a minimum, maximum timing constraint
for satisfaction of the condition described by node 502
relative to when node 500 fired. The position to the left of
the comma indicates the minimum timing constraint for
node 502 with respect to node 500; for this arc the minimum
timing constraint is 1. The position to the right indicates the
maximum timing constraint for node 502 with respect to
node 500, for this arc the maximum timing constraint is
described by X, which is discussed below.

According to node 502, TS must be equal to zero for node
502 to verify true. Only TS=0 will satisfy the condition of
node 502. The minimum timing constraint of the label
constrains the condition of TS=0 to occur no Sooner than one
clock cycle after the satisfaction of node 500. In other words,
there is a one clock cycle delay between the Satisfaction of
node 500 and the assertion of the TS signal (remember that
TS is an active low signal) to satisfy node 502. The X of the
label is the maximum timing constraint and indicates that
there is no upper limit to the allowable delay after Satisfac
tion of node 500 for TS assertion.

Node 502 and node 504 also have a connecting arc which
is labeled 0,0. Likewise, node 502 has a connecting arc to
node 506 labeled 1,1. Again, the labels on the arc indicate
minimum, maximum timing constraints after Satisfaction of
node 502 within which the connected node must be satisfied.
Node 504 has a condition of ADDRESS=100, which corre
sponds to the signals driven in FIG. 3. The minimum,
maximum timing constraints indicate that the ADDRESS
Signals are to be driven concurrently with the TS Signal.
Further, node 506 has a condition of TS=1, which is to occur
a minimum of one clock cycle after TS assertion, and a
maximum of one clock cycle after TS is negated after the
assertion. The labeled directed graph of FIG. 4 is used to
embody the protocol defined in FIG. 3.

The slave protocol is also given in FIG. 4. Node 508 is a
required, AND, Sample node which in this case is always
validated as true. Node 508 is connected to node 510 by an
arc labeled 0.X. This label indicates that the condition
specified in node 510 may occur concurrently with the
satisfaction of node 508 or any time thereafter. Node 510 is
satisfied when TS is asserted and the ADDRESS signal is
between an address minimum and an address maximum
value. The minimum address value (ADDR MIN) together
with the maximum address value (ADDR MAX) define the
range of values for which the Slave is programmed to
respond.
Node 510 is then connected to each of nodes 512 and 516

by arcs labeled 1,1. Node 512 represents the condition where

15

25

35

40

45

50

55

60

65

8
the address recognition signal (ADDR RECOG) is
asserted. Node 516 represents the condition where address
acknowledge signal (ADDR ACK) is asserted. Each of
nodes 512 and 516 are to be satisfied one clock cycle after
TS is asserted. The protocol embodied in FIG. 4 is consistent
with the time defined protocol of FIG. 3.
Node 512 is then connected to node 514 by an arc labeled

1.1. Node 516 is connected to node 518 by an arc labeled
1,1. The labels on both of these arcs indicate that they are to
occur one clock cycle after their predecessor node. The
condition of node 514 requires that ADDR RECOG be
negated. Note that ADDR RECOG must be asserted in
node 512 prior to being negated in node 514 for node 514 to
be satisfied. Node 514 is a Successor to node 512, and node
512 is considered a predecessor to node 514. A similar
relationship exists between node 516 and 518. Node 518
represents the condition where ADDR ACK is negated.
Again, the ADDR ACK negation of node 518 is only
Satisfied after ADDR ACK is asserted in node 516.
The protocol illustrated in FIG. 4 is used to verify

protocol conformity on the bus. Here the master is a first
agent and the Slave is a Second agent. Each agent has a
protocol that is specified for the bus. The protocol illustrated
in FIG. 4 is not the only protocol associated with the agents,
but is exemplary the translation from timing diagrams and
constraints to a labeled directed graph embodiment of the
protocol.

FIG. 5 illustrates one embodiment of protocol template
50. FIG. 5 represents an agent that drives a bus signal,
PIPEDEPTH, to count the number of transactions that are
currently in progreSS on a pipelined bus. To facilitate com
prehension of the labeled directed graph, the following
conventions are used and will be further defined hereinbe
low. Rectangular shaped nodes are “required” nodes. Oval
nodes are “optional” nodes. Octagonal nodes provide the
code associated with its connected node. Both required and
optional nodes may be “AND” nodes, and are indicated by
a single line outlining the node. Both required and optional
nodes may be “OR” nodes, and are indicated by dashed lines
outlining the node. A “drive' node is indicated by italicized
text inside the node. If the text is not italicized the node is
a “sample' node. Arrows directed from one node to another
are called "arcs' and indicate the direction of processing
flow. Comments are provided outside of Some nodes to
provide the reader with information for clarity and under
standing. The convention provided in FIG. 5 is considered to
be readily understandable to one of ordinary skill in the art,
however alternate embodiments may be used to illustrate the
labeled directed graph implementation.

Referring again to FIG. 5, node 200 is a required, OR,
drive node. Node 200 has two Successors, node 202 and
node 204. Node 202 is connected to node 200 by an arc
labeled 0:3.X. As node 200 is in OR node, it is necessary to
give Successors a chronological indication of when they will
be evaluated. Providing an evaluation order to Successors of
an OR node allows deterministic evaluation. The evaluation
order is specified by putting numeric tags on the edges, with
the lower numbered tags evaluated before the higher num
bered tags. The tag in FIG. 5 is coupled with the label on the
arc. In this case, node 202 is given an evaluation order of 0
and node 204 is given an evaluation order of 1. The
evaluation order is the number to the left of the colon in the
label attached to the arc. The number to the right of the colon
indicates the minimum, maximum timing constraints, as
described above.
Node 200 is a drive node, meaning that the agent being

simulated by node 200 is actually driving a signal on the bus.

5,966,306
9

Node 200 is driving signal PIPEDEPTH. According to the
syntax used in this example, PIPEDEPTH is to be asserted
at a time that is either the third or fourth phase of a four
phased clock, as indicated by the number following the “G”
symbol. Note that all of the signals considered herein,
excepting PIPEDEPTH, are active low. In one embodiment
illustrated in FIG. 5, PIPEDEPTH is a 2-bit counter. In this
case, both Successors of node 200, nodes 202 and 204, have
a minimum timing constraint of 3 clocks with a maximum
timing constraint that is unspecified. Node 204 represents a
condition where a transaction is started on the bus. The
transition start is indicated by assertion of the ADDR
RECOG and ADDR ACK signals and the negation of the
ABORT signal. Each of the conditions specified in node 204
is Sampled at a third phase of the clock.
Node 202 represents a condition where a transaction is

ended on the bus. The transaction ending is indicated by the
assertion of the TRANS END signal. According to this
example, if a transaction is ended with the TRANS END
Signal assertion, as defined in node 202, prior to a transaction
start, as defined in node 204, then the code associated with
node 206 will be executed. Node 206 contains code to
execute in case node 202 fires before node 204. According
to one embodiment of the present invention, each node has
the possibility of having code associated with it. Code is
executed at the time its associated node is fired (i.e. evalu
ates to true). A typical purpose for implementing code
execution is to latch bus signals at an early part of a
transaction and then use the Signals at a later part of the
transaction.

When node 204 fires prior to node 202, the condition
represented by node 202 will no longer be evaluated. In this
case, a transaction has started and the protocol will not
continue to look for a transaction to end at node 204. Note
that node 202 and node 204 are optional, AND, sample
nodes. Node 204 is connected to node 208 by an arc labeled
0.1. Note that there is no evaluation ordering given as node
204 is an AND node, indicating that all of its successors
must evaluate to true. In this case, node 204 has a Single
successor node 208. Node 208 is a required, OR, drive node.
208 represents the condition where PIPEDEPTH is driven to
1. Node 208 has an arc directed to node 210 and an arc
directed to node 212. Node 208 also has an arc connected
from node 216 directed toward node 208. PIPEDEPTH
indicates the number of transactions that are active on the
bus. At node 208, PIPEDEPTH is driven to 1, indicating that
a transaction has started as defined in node 204.
Node 208 is an OR node where nodes 210 and node 212

are each assigned an evaluation order. Nodes 210 and 212
are Sequentially evaluated according to the evaluation order
until either one evaluates to true. Node 210 represents the
condition of a Second transaction Start while the first trans
action is active (i.e. before the first transaction ends, a
second transaction starts). Node 210 is satisfied on ADDR
RECOG assertion, ADDR ACK assertion, ABORT
negation, and TRANS END negation. Note, to satisfy node
210, each of the four conditions must occur at a time that is
at least 3 clock cycles after satisfaction of node 208. There
is no maximum timing constraint on the conditions of node
210.
Node 212 represents a condition where a first transaction

has ended and no new transaction has started. Node 212 is
Satisfied on TRANS END assertion and either ADDR
negation, ADDR ACK negation, or ABORT assertion. If a
transaction ends and no new transaction is started, as defined
in node 212, then the arc directed from node 212 to node 200
indicates a return to node 200. If a second transaction starts

15

25

35

40

45

50

55

60

65

10
before the first transaction has ended, as indicated by node
210, then node 212 will no longer be evaluated. Node 210
is connected to node 214 by an arc labeled 0,1. Again, the
label indicates a minimum, maximum timing constraint.
Node 214 is a required, OR, drive node, where PIPEDEPTH
is driven to a value of 2. Node 214 is connected to each of
nodes 218 and 216 by directed arcs. Again, as node 214 is
an OR node, nodes 218 and 216 are each given an evaluation
order.
Node 218 corresponds to an additional transaction start.

Node 216 corresponds to a transaction end. If node 216 fires
prior to node 218, process flow is directed back to node 208.
According to the protocol illustrated in FIG. 5, the maxi
mum depth for PIPEDEPTH is 2, as node 218 fires on the
start of a new transaction and runs the code of node 220 in
response. The code in node is run when the pipeline is full,
and therefore according to the protocol specified in FIG. 5,
the pipeline has a depth of 2, the first transaction of node 204
plus the Second transaction of node 210. If a transaction is
Started at node 218, the pipeline is already at its maximum
(PIPEDEPTH=2) and an error should result. The error is
indicated by node 220, which contains the code associated
with node 218. Note that node 218 and node 220 are
connected by a directed arc, without any label. Therefore,
there are no constraints between firing of node 218 and
execution of node 220. In other words, when node 218 is
evaluated as TRUE, node 220 code is executed automati
cally.

Prediction generator 54 receives information from test file
40 and protocol template 50 and creates a prediction file 56.
FIG. 6 provides a flow chart describing the operation of
prediction generator 54. The designer is able to Select a test
to perform, the test having an associated test file 40. Once
prediction generator 54 processing Starts, process flow pro
ceeds to block 600, which creates a global BEGIN node to
serve as the entry point for prediction file 56. Process flow
then proceeds to decision block 602 to determine if there is
any unprocessed agent, A, in test file 40. The agents included
in test file 40 are selected as needed to perform the selected
test. The agents included in test file 40 are listed in a
processing order or evaluation order. If there is no unproc
essed agent in test file 40, the process ends. In this case, all
of the agents have been incorporated into the prediction and
prediction generator 54 needs no further information from
protocol templates file 50. If there is an unprocessed agent
in test file 40, process flow proceeds to block 604, where the
description of A is read from test file 40. Each agent is
defined by a template, where information is provided to
prediction generator 54 regarding the agent. Information in
test file 40 may include agent name, agent type,
predecessors, and initialization code.

Specifically, at block 606, an initialization node, I, is
created which incorporates the code necessary for initial
ization of agent, A. Initialization code is contained in test file
40 for agent, A. Initialization code typically Specifies the
characteristics of A assigning values to those variables
needed by prediction generator 54 to implement agent, A in
a labeled directed graph. As an example, consider the bus
master of FIGS. 3 and 4. The variables for A, the bus master,
contain information to Specify a set of transactions that A
will initiate, possibly including timing information.

Flow continues to block 608 where END nodes of pre
decessors to agent, A, are connected to initialization node, I.
The labeled directed graph generated by prediction genera
tor is pieced together from the test file 40 information
defining each agent. A BEGIN node is specified for each
agent in a labeled directed graph. The BEGIN node serves

5,966,306
11

as the entry point for the graph. Refer to blocks 500 and 508
of FIG. 4. Each agent type that that is a potential predecessor
for another agent will also have an END node specified.
When the labeled directed graph is created, arcs are placed
from the END node of a predecessor agent to the initializa
tion node of a Successor agent according to predecessor
information in test file 40. In other words, the information
regarding agent, A, will include a list of A's predecessors.
From this list, prediction generator 54 places arcs from the
END node of agents on the list to the initialization node of
agent, A. At step 608 END nodes of A's predecessors are
connected to the initialization node, I, for this agent. The
initialization node Subsequently has an arc placed between it
and the BEGIN node of its agent. Step 608 positions agent,
A, in the labeled directed graph.

Process flow continues to block 610, where a template file
for A is opened in the protocol templates file 50. The
template file is determined by the agent type information in
test file 40 for agent, A. Process flow then continues to
decision block 612 to determine if there is an unread node,
N, in the protocol template file. In one embodiment of the
present invention, there is a protocol template file for each
type of agent in the System to be evaluated. If there is no
unread node at decision block 612, process flow returns to
decision block 602. Note that decision block 612 imple
ments a recursive loop for renaming Specific nodes associ
ated with A. On the first pass through the process illustrated
in FIG. 6, there will be at least one unread node, as the nodes
contained in the protocol template define A. Once all of the
nodes that define A have been read and renamed, there will
be no unread nodes and proceSS flow will continue to
decision block 602 to proceSS a next unprocessed agent. The
process continues for all the nodes of all the agents. Note
that the same protocol template file may be processed more
than once if ore than one agent are defined in test file 40 with
the same agent type. Note Some protocol template file may
be processed more than once if there are more than one agent
defined in If there is an unread node in the protocol template
file, process flow continues to block 614 to read N from the
protocol template file. At block 616, the names of N and N’s
predecessor references are renamed to include A's name by
embedding. Process flow then continues to decision block
618 which checks to see if N is the BEGIN node for this
agent. If it is not, then process control continues to block
622. If N is the BEGIN node then the initialization node I is
added to the predecessor list of N. Finally, at block 622
predictor generator 54 outputs a renamed version of node N.
Process flow then returns to decision block 612. The sig
nificance of renaming nodes is to distinguish a specific agent
from other Similar agents. For example, any bus master that
is to have a protocol as defined in FIG. 3 will have the same
nodes as described in FIG. 4. AS each new agent in the
System is processed by prediction generator 54, there is a
label attached which distinguishes that agent.

FIGS. 7 and 8 illustrate a flow diagram describing opera
tions of a correctness evaluator 58 from FIG. 2, according to
one embodiment of the present invention. It is first necessary
to define what conditions constitute a correct Simulation.
According to the present embodiment, the correctness cri
terion is Stringent as it uses the clean bus model. A correct
implementation of a protocol is defined as one in which all
required nodes fire within the imposed timing constraints of
their incoming edges and no bus signals change State unless
there is a drive node corresponding to Such a State change.

Referring again to FIG. 2, monitor file 48 contains a
distinguished “reset' line that specifies the initial state of all
the Signals comprising the bus. Each Subsequent line in

15

25

35

40

45

50

55

60

65

12
monitor file 48 contains a time Stamp and a list of pairs,
where the first element in each pair is the name of a given
buS Signal and the Second element is a new value of the given
buS Signal at the time of the time Stamp. Correctness
evaluator 58 initializes its own internal model of the state of
the bus according to values Specified in the reset line of
monitor file 48.

Referring to the flow chart of FIGS. 7 and 8, when process
flow starts, correctness evaluator 58 reads prediction file 56
at block 72. Prediction generator 54 creates prediction file 56
from the information in test file 40 and protocol templates
50. Flow continues then to block 74 where correctness
evaluator 58 initializes an evaluation list to contain the
global BEGIN node from prediction file 56. Note that
prediction file 56 contains a global BEGIN node which
specifies the entry point to the chart. In box 76, the reset line
is read from monitor file 48. Correctness evaluator 58 has a
model of the bus and an internal model of the bus state.
Process flow then continues to block 80, where the internal
model is initialized. From box 80 process flow continues to
decision box. 78, where correctness evaluator 58 determines
if monitor file 48 is empty. If monitor file 48 is not empty,
then correctness evaluator 58 reads a line from monitor file
48 at block 82. Correctness evaluator 58 then creates a
transition list for a current time Stamp, which is specified in
the line read from monitor file 48. Process flow continues to
block 86, where the transition list is created. At block 84, the
model of the bus State is updated according to the informa
tion read from the line of monitor file 48. A line of monitor
file 48 contains information at a given timestamp for every
signal described in test file 40.

Process flow then continues to decision block 88 to
determine if there is an unevaluated entry in the evaluation
list. If there is an unevaluated entry, E1, then decision block
90 determines if the condition of E1 evaluates to TRUE. If
the condition of E1 does not evaluate to true, proceSS flow
returns to decision block 88. If the condition of E1 does
evaluate to true, then process flow continues to decision
block 92 to determine if E1 has code associated with it. If E1
has code, the code is executed in block 94. If E1 has no
asSociated code, process flow continues to box 96.
Additionally, once the code associated with E1 is executed,
process flow continues to block 96. At block 96, E1 is
removed from the evaluation list.

Process flow continues to decision block 98, where it is
determined if E1 is a Successor of an OR node. If E1 is a
Successor to an OR node, then the Siblings of E1 are
removed from the evaluation list at block 100. According to
one embodiment of the present invention, when an OR node
fires, all of its Successors are placed in the evaluation list for
further evaluation, but as Soon the first of these Successors
fires, all of its Siblings are removed from the evaluation list.
Note that in one embodiment of the present invention, all
Successors of an OR node are considered optional.
Additionally, all successors of an OR node are added to the
evaluation list regardless of whether all the predecessors
have been fired. If E1 is not a Successor of an OR node,
process flow continues to decision box 101. If E1 is the
Successor of an OR node and the Siblings are removed from
the evaluation list at block 100, then process flow continues
to decision block 101. At decision block 101, it is deter
mined if E1 is a drive node. If E1 is not a drive node, then
process flow continues to decision block 106. If E1 is a drive
node, process flow continues to decision block 102 to
determine if there is a signal transition, T, in the transition
list corresponding to the condition of E1. If there is no signal
transition, T, then process flow continues to decision block

5,966,306
13

106. However, if there is a signal transition T, then T is
removed from the transition list in block 104 and process
flow continues to block 106.
At decision block 106 it is determined if there is an

unprocessed Successor, E2, to E1 that has not been processed
since E1 was fired. If there is Such an E2, then decision block
108 determines if E2 has any unfired predecessors that are
not optional nodes. If there are no unprocessed Successors to
E1, then process flow returns to decision block 88. As
discussed previously, Successors of an OR node are added to
an evaluation list regardless of whether predecessors have
fired. If there are no unfired non-optional predecessors, then
E2 is added to the evaluation list in block 110. If there are
unfired non-optional predecessors, proceSS flow returns to
decision block 106 to determine if there are other unproc
essed Successors to E1. If E2 has no unfired non-optional
predecessors, then E2 is added to the evaluation list in block
110 and process flow returns to decision block 106. When all
Successors to E1 have been processed, control flow returns
from decision block 106 to decision block 88.

Returning to decision block 88, if there are no unevalu
ated entries in the evaluation list, process flow continues to
decision block 112 to determine if there is an expired entry,
E3, in the evaluation list. If there are no expired entries then
process flow continues to decision block 118. If there is an
expired entry, decision block 114 determines if it is optional.
If E3 is not optional, correction evaluator 58 will exit with
a FAIL status at block 116. An exit at this point indicates a
failure of a required condition. If E3 is optional, process flow
continues to decision box 118 to determine if the transition
list is empty. If the transition list is empty at decision block
118, process flow returns to block 78. If the transition list is
not empty at decision block 118, then process flow continues
to block 120, where correction evaluator 58 exits with FAIL
Status. An exit at this point indicates a spurious transition,
i.e. an unspecified State or transition occurred on the bus.

Returning again to decision block 78 of FIG.7, if monitor
file 48 is empty, process flow continues to decision block
130 to determine if there are required entries on the evalu
ation list. If there are such entries, correction evaluator 58
will exit with a FAIL status at block 132. An exit at this point
indicates a failure of a required condition. Returning to
decision block 130 if there are no required entries on the
evaluation list, correction evaluator 58 will exit with a PASS
status at block 134.

The present invention offers a method for verifying bus
protocols which uses a strict condition for checking con
formance to the protocol. The method provides that all
Signals predicted to be driven according to the protocol
Specification are driven and that no signals are driven at a
time when they are not specified to be driven. The present
invention offers a method of recognizing when a guard
condition or qualification is needed for the Signals available
on the bus. This feature offers circuit designers a method to
detect potential hazards in their design. In one embodiment,
the present invention offers a method of Storing State and
timing history information, adding valuable information for
debug and analysis. By Storing Status information about the
electrical interface and information about when transactions
Start, the circuit designer is provided a flexible verification
tool.

The present invention allows for protocol coverage analy
sis computation automatically and insures that the test plan
has covered all the relevant aspects of the protocol.
Additionally, the present invention offers a flexible method
to Separate protocol-defined timing and constraints from

15

25

35

40

45

50

55

60

65

14
implementation-dependent timing constraints. This is
advantageous as the amount of delay incurred by access to
an external memory device is often variable. The present
invention offers a modular method of protocol Specification.
Protocol templates for different types of agents are used to
Specify the conditions of any number of that type of agent in
the System.
The present invention offers a method of detecting noise

on the bus which occurs at times other than when the
protocol Says the Signals are to be sampled. This allows
detection of possible hardware hazards based Solely on
improperly driven Signals. According to one embodiment of
the present invention, optional transitions are handled in a
consistent manner.

Note that while one embodiment of the present invention
uses a prediction file generated according to a specific test
file 40, prediction file 56 could also be a general test file. An
advantage of the present invention is that it allows input
from a test program to tailor bus signal change predictions
and Verify that the test program performs as it is pro
grammed to perform. The present invention allows design
ers to create flexible test programs and behavior models
which target the creation of Specific bus conditions.
We claim:
1. A method for verifying conformance of a protocol for

an electrical interface, the electrical interface having a
plurality of Signals, the method comprising the Steps of:

Selecting a test to be performed;
providing one of an electrical circuit having the electrical

interface and a computer model of the electrical circuit
having the electrical interface;

applying electrical stimulus to the one of the electrical
circuit and the computer model of the electrical circuit;

providing a monitor to monitor the plurality of Signals,
detecting a transition of at least one of the plurality of

Signals;
in response to Said Step of detecting, Storing State and

timing information of the at least one of the plurality of
Signals;

Storing a plurality of protocol constraints within a proto
col template;

deriving a prediction file from the test to be performed and
the protocol template, the prediction file including the
plurality of protocol constraints;

comparing the State and timing information of the at least
one of the plurality of Signals to the plurality of
protocol constraints, and

in response to Said Step of comparing, determining if the
one of the electrical circuit and the computer model of
the electrical circuit conform to the protocol for the
electrical interface,

wherein the Step of Storing a plurality of protocol constraints
within a protocol

template further comprises the Step of
representing the plurality of protocol constraints within

a directed graph having a plurality of nodes,
wherein each one of the plurality of nodes has a first attribute
characterization of OPTIONAL/REQUIRED,
and wherein at least one of the plurality of protocol con
Straints Specifies a timing range.

2. A method as in claim 1, further comprising the Step of:
determining a first agent required by the test to be

performed; and
extracting initialization information for the first agent

from the test to be performed.

