
(19) United States
(12) Reissued Patent

Rothrock et al.
(10) Patent Number:
(45) Date of Reissued Patent:

USOORE38457E

US RE38,457 E
Mar. 9, 2004

(54) DEFERRED SYCHRONIZATION OF
DISTRIBUTED OBJECTS

(75) Inventors: Lewis V. Rothrock, Beaverton, OR
(US); Tyler R. Thessin, Portland, OR
(US)

(73) Assignee: Intel Corporation, Santa Clara, CA
(US)

(21) Appl. No.: 08/844,281
(22) Filed: Apr. 18, 1997

Related U.S. Patent Documents
Reissue of:
(64) Patent No.: 5,408,470

Issued: Apr. 18, 1995
Appl. No.: 08/137,320
Filed: Oct. 14, 1993

(51) Int. Cl." .. H04Q 11/04
(52) U.S. Cl. 370/261; 370/263; 379/202;

345/330; 707/512
(58) Field of Search 370/260, 261,

370/262, 263,265,498, 259; 379/202,
203, 204, 207; 395/2005, 200.51; 345/330;

707/512,530

(56) References Cited

U.S. PATENT DOCUMENTS

4,475,189 A * 10/1984 Herr et al. 370/261
4,509,167 A * 4/1985 Bantel et al. 370/261
5,195,086 A * 3/1993 Baumgartner et al. 370/264
5,195,089 A * 3/1993 Sindhu et al. 370/461
5,220,657 A * 6/1993 Bly et al. 711/152
5,313.459 A * 5/1994 Matern 370/267
5,761,739 A * 6/1998 Elko et al. 395/200.51

OTHER PUBLICATIONS

Claudio Nascimento and Jean Dollimore “Behavior main
tenance of migrating objects in a distributed object-oriented

60

602

C3AN
RECIRES DEFERFE

ARSRATCN

S
Bft AREAY
BLCKE}

YS

609

RESPONSE
FROMARBiAOR

YES

RECEIWINDEXP8so
OR OBJECT

environment”, Journal of Object-Oriented Programming, 5,
(1992):25-33.*

* cited by examiner

Primary Examiner Douglas W. Olms
ASSistant Examiner Shick Hom
(74) Attorney, Agent, or Firm-Blakely, Sokoloff, Taylor &
Zafman LLP

(57) ABSTRACT

A method and apparatus is disclosed for data communica
tion between agents, Such as those in an electronic confer
encing System. In an electronic conferencing a System
wherein data is shared between a plurality of participants
during an electronic conference users, a method is disclosed
for maintaining consistency of the data among the partici
pants during the electronic conference users. The method of
the present invention comprises the following steps: a) each
participant in the electronic conferencing System user
maintains a local copy of the shared data for the electronic
conference during the electronic conference; b) one of the
participants users commences to perform modifications to
an associated local copy of the shared data; c) Subsequent to
the step of commencing modifications, a participant user
requests an indeX for the modifications from an arbitrator
participant user, wherein the modifications to the associ
ated local copy of the shared data may continue to be
performed; d) the arbitrator participant user responds to
the participant user requesting the index for the modifica
tions; and e) a participant user modifies the associated
local copy of the shared data according to the indeX received
from the arbitrator participant user and transfers the local
modifications to remote participants users. In One
embodiment, the users are participants of an electronic
conference, and the Shared data are the "meeting’ data of
the electronic conference.

26 Claims, 25 Drawing Sheets

E. S
OBJ

834

i:TE y
ecT

NO

50s

SEN REQUESTT
ARBTRATORFC

POSION.INDEX of OCT

808

PERFORMCHANGE
CCALLY ONLY

807

UATE LOCALISLAYEMETENG
STRUCTURE TO MAKs

SYNCHRONOJS

BRACASTBExcKechASES
To other PARTIcipants

PERFORM CURRENT OPERATor
WHNORMAL COMMUNICAON

INCATECHANES
ASBOCKE

820

US RE38,457 E Sheet 1 of 25 Mar. 9, 2004 U.S. Patent

BI OHRIQ OIH OZ
(HOLVH LIBHw)

U.S. Patent Mar. 9, 2004 Sheet 2 of 25 US RE38,457 E

DISPLAY

121 MAN READ ONLY MASS STORAGE
MEMORY MEMORY DEVICE

104 O6 107

KEYBOARD BUS 101

22

PROCESSOR :
O2

a

CURSOR
CONTROL ---------------------

123

HARD
COPY
DEVICE

124

COMMUNICATION
DEVICE

125

FIGURE 1b.

U.S. Patent Mar. 9, 2004 Sheet 3 of 25 US RE38,457 E

OVERALL STRUCTURE OF A SINGLE AGENT

COMMAND RESULTS
ANNOATION &
PAGE UPDATES

HUMAN INTERFACE ANNOTATIONS
PAGES & COMMANDS

MESSAGES
MEMBER

FUNCTIONS
OBJECT MANAGER

A ANNOTATIONS
PONTERS 210 PAGES 8 COMMANDS
MESSAGES MESSAGES CAL BACKS

w
CONFERENCE MANAGER

COMMAND RESULTS
ANNOTATION &

MULEPONT LINK MANAGER PAGE UPDATES

COMMUNICATION MEDUM

260

250

OTHER AGENTS

FIGURE 2

U.S. Patent Mar. 9, 2004 Sheet 4 of 25 US RE38,457 E

OBJECT MANAGER CLASS

PUBLIC MEETING

PRIVATE MEETING

THIS USER ARBITRATOR C PARTICIPANTS

330 340

FIGURE 3

U.S. Patent Mar. 9, 2004 Sheet 5 of 25 US RE38,457 E

400

MEETING

GRAPHICANNOTATIONS

412

DRAWING ANNOTATIONS
413
1.

TEXTUAL ANNOTATIONS

FIGURE 4

U.S. Patent Mar. 9, 2004 Sheet 6 of 25 US RE38,457 E

5O1 509 512

in
COBJECTMANAGER O CCPARTICIPANT CCPERSON

/ 510 N 513
COE

514
1

SO6
1

CCPHONE
CCTEXT

ANNOAON CCMEETING

CCPAGE Oo CCOBJECTD

A2
O 1

CCDRAW CCANNOTAON ANNOTATON

CCGRAPHC CCFILE
ANNOTATION ANNOTATION CFLEBLOB

540 S.
CCCACHAELEBLOE

CCOLE
ANNOTAON

BTMANAGER
1

504

CCACHE

FIGURE 5
CLASS HERARCHY

U.S. Patent Mar. 9, 2004 Sheet 7 of 25 US RE38,457 E

6O.

START

COMMAND
RECURES DEFERRED

ARBTRATION

DELETE
OBJECT NO

NO

S
OBJECT ALREAOY

BLOCKED 605

SEND REO UEST TO
ARBTRATOR FOR

POSITION/INDEX OF OBJECT

RESPONSE
FROM ARTRATO

PERFORM CHANGE
LOCALLY ONLY

RECEIVE INDEX/POSITON
OF OBJECT

UPDATE LOCAL DISPLAY/MEETING
STRUCTURE TO MAKE

SYNCHRONOUS
NDICATE CHANGES
AS BLOCKED

BROADCAS BLOCKED CHANGES
TO OTHER PARTICIPANTS

PERFORM CURRENT OPERATION
WITH NORMAL COMMUNICATION

FIGURE 6a

U.S. Patent Mar. 9, 2004 Sheet 8 of 25 US RE38,457 E

614

OWNERSHIP
OF OBJECT

REGUEST OWNERSHIP
OF OBJECT AND
SUB-OBECTS

OWNERSHIP
GRANTED

DELETE FAILED

FIGURE 6b

U.S. Patent Mar. 9, 2004 Sheet 9 of 25 US RE38,457 E

Time t
1 ARBITRATOR

701 71

O
702 72

703 713

FIGURE 7a

f

o. 74
LOCAL OBJECT CREATED REGUEST FROM SECOND

AGENT

FIGURE 7)

U.S. Patent Mar. 9, 2004 Sheet 10 of 25 US RE38,457 E

Time t3 AGENT ARBTRATOR
701 71

o,
702 712

703 713

704 74

FIGURE 7c

Time t 4
AGENT ARBTRATOR

701 711

702 712

713
703 UPDATED ENTRY

oa FROM SECOND AGENT oa
704 y - o 714

705 FIRST AGENT

ORIGINAL OBJECT FOR
AGENT REASSIGNMENT

715

FIGURE 7d

U.S. Patent Mar. 9, 2004 Sheet 11 of 25 US RE38,457 E

Time t
5 ARBTRATOR

701 711

AGENTIARBITRATORSYNCHRONIZED

FIGURE 7e

U.S. Patent Mar. 9, 2004 Sheet 12 of 25 US RE38,457 E

LOCAL REMOTE
PARTICIPANT PARTICIPANT(S)

8O1 802

REMOTE PARTICIPANT(S) LOCAL PARTICIPANT ADDS RECEIVE THE NEW OBJECT
TO THE CONFERENCE NCLUDING THE BLOB
AN OBJECT CONTAINING STRUCTURE (MNUS

A LARGE BLOB (
BLOB DATA)

803

REMOTE PARTICIPANT(S)
SUBMT ASYNCHRONOUS
REQUEST(S) FOR BLOB

DATA

805 804

LOCAL PARTICIPANT
PROCESSES REQUEST(S)

REMOTE PARTICIPANT(S)
SUBMIT REPRORTZATION

RECUESTS FOR BLOB
DATA

FOR BLOB DATA
(SEE FIGURE 9)

806

REMOTE PARTICIPANT(S)
ADD RECEIVED BOB
DATA PACKETS TO THE

EXISTENG BLOB
STRUCTURE

LOCAL PARTICIPANT
SENDS BLOB DATA

PACKET(S)

807 809

LOCAL PARTICIPANT REMOTE PARTICIPANT(S)
REMOVES BLOB REOUEST UPDATE BASED ON

FROM E. UPON COMPLETE BOB DATA
COMPLETON OF DATA (E.G., DISPLAY

TRANSFER CORRESPONDING OBJECT)

FIGURE 8

U.S. Patent Mar. 9, 2004 Sheet 13 0f 25 US RE38,457 E

RECUEST
FOR DATA RECEIVED

DETERMINE TRANSPORT
OUAL FER

(SEE FIGURE 10)

900

901

IS EXISTING
REOUEST FOR DATA

PENDING

ADD NEW TRANSFER
OUEUE ENTRY FOR
THIS REGUEST

DETERMINE F PARTAL
REGUEST IS RECURED

(SEE FIGURE 11)

DATA REGUEST
PROCESSING
COMPLETE

FIGURE 9

U.S. Patent Mar. 9, 2004 Sheet 14 of 25 US RE38,457 E

1000

1 OO1

DETERMINATION OF
TRANSPORT GUAL FIER

SHIGH-SPEED
TRANSPORT
AVAILABLE

USE LOW-SPEED
TRANSPORT CRUALIFEER

USE HIGH-SPEED
TRANSPORT GUAFEER

DETERMINATION
OF TRANSPORT

OUAL FIER COMPLETE

FIGURE 10

U.S. Patent Mar. 9, 2004 Sheet 15 0f 25 US RE38,457 E

1101 1100
AN EXISTING RECRUEST
S PENONG FOR THIS

BLOB DATA

ADO REGUESTING PARTICIPAN
TO DISTRIBUTION LIST FOR
EXISTING TRANSFER QUEUE

ENTRY

S RECUEST
PENDING FOR THIS

PARTICIPANT

HAS
DATA TRANSFER
COMMENCED FOR

THIS ENTRY

NO

ADD PARTA REGUEST FOR
REPRORTZE EXISTING PORTION OF EXISTING
TRESSESSue TRANSFERENTRY

PREVIOUSLY TRANSFERRED
(SEE FIGURE 12)

FIGURE 11

U.S. Patent Mar. 9, 2004 Sheet 16 of 25 US RE38,457 E

EXISTING ENTRY (TRANSFER HAS COMMENCED)

O 1200 time t

2O1 12O2

NEXT TRANSFER OFFSET: 2,000
REMAINING TRANSFER SIZE: 36,000

SEND TO:
PARTICIPANT B
PARTICIPANT C

FIGURE 12a

U.S. Patent Mar. 9, 2004 Sheet 17 of 25 US RE38,457 E

FOLLOWING PROCESSING OF RECUEST FROM PARTICIPANTD

i2O
time t2

NEW PARTICIPANT ADDED TO
EXISTING TRANSFERENTRY

12O 12O2

NEXTRANSFER OFFSE: 2,000
REMAINING TRANSFER SIZE: 36,000

SEND TO
PARTICIPAN B
PARTICIPANT C
PARICPANTD

FIGURE 12b

NEW ENTRY ADDED TO
ACCOUNT FOR BLOB DATA
ALREADY TRANSFERRED.

221

NEXT TRANSFER OFFSET: O
REMAINING TRANSFER SIZE: 2,000

SEND TO:
PARTICIPANTO

FIGURE 12c

U.S. Patent Mar. 9, 2004 Sheet 18 of 25 US RE38,457 E

1310

BACKGROUND
13 TRANSFERMANAGER (BTM) 1316

1312

PARTICIPANT
CONNECTION/

DISCONNECTION
CONTROL LOGIC

REGUEST
PROCESSING

LOGIC

DATA TRANSFER
PROCESSING

OGC

CLEAR-O-SEND
LIST

OUT-GOING TRANSFER IN-COMING TRANSFER

1318 132O 322

FIGURE 13

U.S. Patent Mar. 9, 2004 Sheet 19 of 25 US RE38,457 E

1410

NOTIFICATION OF
PARTICIPANTA
CONNECTION

ADD PARTICIPANTA
TO CLEAR-TO-SEND

LIST

S
PARTICIPANT
CONNECTED WA
HGH-SPEED
TRANSPORT

RECORD PARTICIPANTA
AS OUAL FED FOR

LOW-SPEED TRANSFER

RECORD PARTICIPANT A
AS QUALIFED FOR

HIGH-SPEED TRANSFER

RECALCULATE THE RECALCULATE THE
HIGH-SPEED TRANSFER LOW-SPEED TRANSFER
OPTMAL PACKETSIZE OPTMAL PACKETSIZE

PARTICIPANT
CONNECTION
NOTIFICATION
COMPLETE

FIGURE 14

U.S. Patent Mar. 9, 2004 Sheet 20 of 25 US RE38,457 E

510

NOTIFICATION OF
PARTICIPANTA
DISCONNECTION

RECALCULATE
CORRESPONDING OPTIMAL
TRANSFER PACKETSIZE

REMOVE
PARTICIPANT A FROM
CLEAR-TO-SEND LIST

REMOVE PARTICIPANTA
FROM OSTREBUTION LISTS

FOR ALL TRANSFER
OUEUE ENTRIES

REMOVE ALL TRANSFER
OUEUE ENTRES FOR
WHICH PARTICIPANTA

WAS THE ONLY RECIPIENT

1528

PARTICIPANT
DISCONNECTION
NOTIFICATION
COMPLETE

FIGURE 15

U.S. Patent Mar. 9, 2004 Sheet 21 of 25 US RE38,457 E

1610

TRANSFER QUEUE ENTRY 162

1614 REFERENCE TO BLOB OBJECT
1616

NEXT TRANSFER
OFFSE

REMAINING TRANSFER
SZE

1618

RECIPIENT LIST

PREVIOUS TRANSFER OUEUE ENTRY

NEXT TRANSFER OUEUE ENTRY

1622

FIGURE 16

U.S. Patent Mar. 9, 2004 Sheet 22 of 25 US RE38,457 E

1710

INAL STATE

TRANSFER OUEUE

1720

RECUEST RECEIVED

TRANSFER OUEUE

REGUES 2 RECEIVED

730

TRANSFER OUEUE

1740
REPRORIZATION OF
RECUEST 1 RECEIVED

TRANSFER OUEUE

750

RECQUEST 3 RECEIVEO

TRANSFER OUEUE

1760

REPRIORITIZATION OF
REGUEST 2 RECEIVED

REPRIORITIZATION OF
REOUEST 1 RECEIVED

TRANSFER OUEUE 2 3

770

HIGHES LOWEST
PRIORITY PRIORITY

FIGURE 17

U.S. Patent Mar. 9, 2004 Sheet 23 Of 25 US RE38,457 E

18O

INTIAL STATE

2 3

CLEAR-TO-SEND LIST: A (OK) B (OK) C (OK)
1820

SEND PACKETS FROM ENTRY 1
UNT NOT CLEAR-TO-SEND

2 3

CLEAR-TO-SEND LIST: A (OK) B (NCTS) C (OK)
1830

SEND PACKETS FROM ENTRY 2
UN NOT CLEAR-TO-SENO

1 2 3

CLEAR-TO-SEND LIST: A (OK) B (NCTS) C (NCTS)
1840

SKIP ENTRY 3 BECAUSE ONE OR MORE
RECIPIENTS ARE NOT CLEAR-TO-SEND

1850

SEND PACKETS FROM ENTRY 4
UNT NOT CLEAR-O-SEND

2 3

CLEAR-TO-SEND LIST: A (NCTS) B (NCTS) C (NCTS)
1860

STOP PROCESSING ENTRIES SINCE ALL
RECIPIENS ARE NOT CLEAR-TO-SENO

FIGURE 18

U.S. Patent Mar. 9, 2004 Sheet 24 of 25 US RE38,457 E

1910

REGUEST
PROCESSING OGC

(REQUESTOR)

DOES 1914
NCOMING ST

CONTAIN AN ENTRY
ASSOCATED
WITH THIS
BlpB

ADD A TRANSFER OUEUE
ENRY TO THE ENCOMING
LST FOR THIS BLOB

SEND A
"REPRORITIZATION"

REGUEST
SEND A "NEW" REOUEST
FOR THE BLOB OATA

FIGURE 19

U.S. Patent Mar. 9, 2004 Sheet 25 0f 25 US RE38,457 E

2010
RECQUEST

PROCESSINGLOGIC
(BLOB ORIGINATOR)

AOD A NEW OUT-GONG
TRANSFER OUEUE ENTRY
TO THE TRANSFER OUEUE

REPRORIZATION
REOUEST

REPRORTZE THE
TRANSFER OUEUE

CAN REOUEST
BE coyBINED

COMBINE THE RECUEST
WTH AN EXISTING

TRANSFER OUEUE ENTRY

FIGURE 20

US RE38,457 E
1

DEFERRED SYCHRONIZATION OF
DISTRIBUTED OBJECTS

Matter enclosed in heavy brackets appears in the
original patent but forms no part of this reissue specifi
cation; matter printed in italics indicates the additions
made by reissue.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention is related to teleconferencing
computer Systems. More Specifically, the present invention
is related to mechanisms for communicating data among a
plurality of users, e.g. participants in an electronic confer
encing System.

2. Background Information
One of the more developing areas of computer network

ing is the field of electronic conferencing. Conferencing
provides the ability to have an electronic on-line “meeting
between a plurality of users on computer Systems in a variety
of locations. Users at a variety of Sites may communicate
with one another as if they were in the same room. Using
Such application programs, modern communication Systems
have enabled the ability to have a meeting wherein all users
participate in the meeting through their individual computer
Systems and share data, graphics, text and other types of
information. Users may communicate with one another
Sharing data in the form of graphical images, text or other
annotations and other information represented on the com
puter System display. This is analogous to a meeting where
participants in a face-to-face meeting may display informa
tion to one another on a white or blackboard and other
participants may add annotations, delete or otherwise
modify the board. It is also anticipated that as bandwidth of
communication media improves and compression Standards
for graphical data also become more robust that Video data
may also be shared among a plurality of connected users
during Such teleconferences.
One of the requisites of an electronic conferencing System

is the need to replicate the same data on all users displayS
participating in the conference. Such Systems typically
implement this capability in a variety of ways. The most
common is the client/server model wherein a single con
nected node acts as a "server' of other nodes in the System
and the remaining nodes connected in the conference act as
Slaves or clients to the Server process. Thus, each of the
clients merely receive data from the central machine to
update their displayS. Such Systems, however, are entirely
dependent upon the Service being provided by the Server and
the throughput of the communication medium. Obviously,
Systems wherein the clients merely act as displays and inputs
for user requests Suffer from Severe performance problems
due to resulting updates of data from the Server, which is
typically handled serially by the server.

Another prior art Solution for maintaining all of a partici
pant's display in a conferencing System Synchronous rely on
a distributed client/server system. In a distributed client/
Server approach a shared object Structure is kept on the
Server and clients are made aware of changes of that
distributed information through alerts or demons daemons.
The disadvantage of this approach, Similar to the centralized
client/server approach is the reliance on the architecture
itself. This includes a data conferencing application which
must be able to connect Several users over a phone line from
point to point without requiring access to a centralized
COO. SCWC.

15

25

35

40

45

50

55

60

65

2
In the client/server approach, moreover, performance Suf

fers greatly because requests to add or delete objects Such as
annotations, graphical images or other information on a
participant's display is entirely dependent upon communi
cation from the Server. Thus, real-time performance Severely
Suffers in prior art client/server models Since approval to act
and manipulate upon objects on a participants display is
entirely dependent upon a whole Set of dependent variables
Such as the number of requests to the Server pending, the
throughput of the communication medium, the number of
participants connected, etc.

Yet another prior art approach for maintaining Synchro
nicity of a plurality of participants in a conferencing System
is the use of a distributed object-oriented system. This is a
generalized approach which relies upon extensions, in one
prior art Solution, of the SmallTalk language itself. In this
prior art System, “local objects Send messages to “proxy”
objects which are local representatives for objects in the
“shared’ object Space. The proxy objects communicate with
the real objects through an RPC (Remote Procedure Call)
mechanism. RPC is a protocol governing the method with
which an application activateS processes on other nodes and
retrieves the results. Such a conventional mechanism is
defined by Sun Microsystems, Inc. and described in RFC
1057 that provides a standard for initiating and controlling
processes on remote or distributed computer Systems.
The problem with this approach is in its generality which

requires extensive Support for sharing any object while
making no assumptions about the behavior of objects. This
has two disadvantages. First, a complex “SmallTalk system”
is needed to Support the distribution of objects in general.
Second, the concurrency problem for any object is difficult
because multiple participants may have different objects in
their systems and such different objects may not be aleable
to be communicated to the remaining users.

Yet another of the disadvantages of prior art data confer
encing Systems is their ability to Support the transfer of very
large blocks of information. Typically, Such Systems have
relied upon point-to-point communication Schemes wherein
individual nodes Such as the Server, in the client/server
model, must transmit the information from one individual
node to the Server and then from the Server to the remaining
participants Systems. Also, the transfer of very large pieces
of data, Such as files and/or images or other data, consumes
lots of resources in the system and bandwidth of the com
munication medium. Thus, prior art conferencing Systems
Suffer from Severe performance penalties caused by the
amount of data which may be transmitted within the system
during a teleconference.

Thus, prior art distributed data conferencing processing
Systems Suffer from many disadvantages.

SUMMARY AND OBJECTS OF THE PRESENT
INVENTION

The present invention relates to methods and apparatus
for communication data between agents, Such as those in an
electronic conferencing System. In an electronic conferenc
ing a System wherein data is shared between a plurality of
participants during an electronic conference users, a
method is disclosed for maintaining consistency of the data
among the participants during the electronic conference
users. The In One embodiment, the method of the present
invention comprises the following steps: a) each participant
in the electronic conferencing System user maintains a local
copy of the shared data for the electronic conference during
the electronic conference; b) one of the participants users

US RE38,457 E
3

commences to perform modifications to an associated local
copy of the shared data; c) Subsequent to the step of
commencing modifications, a participant user requests an
index for the modifications from an arbitrator participant
user, wherein the modifications to the associated local copy
of the shared data may continue to be performed; d) the
arbitrator participant user responds to the participant user
requesting the index for the modifications; and e) a partici
pant user modifies the associated local copy of the shared
data according to the indeX received from the arbitrator
participant user and then transmits the local modifications
to the plurality of participants users.

One of the objects of the present invention is to provide
a data conferencing System wherein real-time performance
of individual participants in a data conferencing System do
not Suffer from performance problems due to medium
throughput.

Another of the objects of the present invention is to
provide an improved data conferencing System which enable
users to have more or leSS real-time response from their
individual Systems in the conference.

Another of the objects of the present invention is to
overcome the prior art disadvantages of the client/server
model provided in certain conferencing applications.

Another of the objects of the present invention is to
provide a System which provides concurrency among a
plurality of participants in a conferencing application,
however, not having the attendant disadvantages of real-time
impacts upon performance due to Such demands of concur
rency.

Another of the objects of the present invention is to
provide the capability to transfer very large pieces of data
without impacting upon real-time performance of users in a
conferencing application program.

In One application, the users are participants of an
electronic conference, and the Shared data are the "meet
ing' data of the electronic conference.

Other objects Objects, features and advantages of the
present invention will be apparent from Viewing the figures
and the description which follows below.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example
and not limitation in the figures of the accompanying in
which like references indicate Similar elements and in
which:

FIG. 1a illustrates a topology of a System in which various
agents may be connected in an exemplary conferencing
System.

FIG. 1b illustrates a block diagram of circuitry contained
in one agent participating in a the exemplary conferencing
System.

FIG. 2 illustrates a block diagram of the various control
procedures which are present in an agent participating in an
exemplary conference.

FIG. 3 illustrates a block diagram of classes used in one
implemented embodiment of the present invention.

FIG. 4 illustrates the types of annotations which may be
performed upon a user interface display of a single agent
within various implementations of the preferred embodi
ment.

FIG. 5 illustrates the object hierarchy used in certain
embodiments of the present invention.

FIGS. 6a and 6b illustrate process-flow diagrams of a
proceSS performed upon detection of an event requiring the

15

25

35

40

45

50

55

60

65

4
creation/deletion/modification of objects during an exem
plary electronic conference which may be executed from an
event loop of the object manager in one embodiment of the
present invention.

FIGS. 7a-7e illustrate object structures maintained by an
arbitrator and an agent in an exemplary conferencing System
during various time periods when an agent is performing
actions in his local System.

FIG. 8 illustrates a method used for the deferred transfer
of very large binary object data within certain embodiments
of the present invention.

FIG. 9 illustrates an object data request process flow
diagram used in one embodiment of the present invention.

FIG. 10 illustrates the determination of a transport quali
fier used for transferring large object data in one embodi
ment of the present invention.

FIG. 11 illustrates a proceSS flow diagram of a process
used for determining the need for a partial request of large
object data in one embodiment of the present invention.

FIGS. 12a-12c illustrate various stages of completion of
the transfer of very large object data in one embodiment of
the present invention.

FIG. 13 illustrates the Background Transfer Manager
architecture.

FIGS. 14-15 illustrate the processing logic for the Par
ticipant Connection/Disconnection Logic.

FIG. 16 illustrates a transfer queue entry.
FIG. 17 illustrates an example of the transfer request

reprioritization process.
FIG. 18 illustrates an example of the Clear-to-Send pro

cessing of a transfer queue entry.
FIGS. 19-20 illustrate the Request Processing Logic of

the present invention.

DETAILED DESCRIPTION

The present invention relates to methods and apparatus
for data communication between agents, Such as those in an
electronic conferencing System. Although present invention
will be described with reference to electronic conferencing,
including Specific Signal names, formats, time intervals and
other specific information, these are to be viewed to be used
for illustration purposes only and not to be construed as
limiting the present invention. It can be appreciated by one
skilled in the art that the present invention may be practiced
in Other application areas, and many departures and modi
fications may be made without departing from the overall
Spirit and Scope of the present invention.
AS illustrated in FIG. 1a, a communication System may

comprise a plurality of agents Such as 11-14 which are all
coupled to a communication medium, e.g., 20 illustrated in
FIG. 1a. In certain embodiments of the present invention,
each individual agent coupled to the medium 20 has equiva
lent capabilities to provide communication between the
agents. The For the illustrated exemplary System, the
implemented conferencing System uses a distributed
approach wherein each of the agents 11-14 maintains local
copies of the conferencing structure (called a “meeting)
which shall be consistent with one another. In addition, one
of the agents 13, in one embodiment of the present
invention, acts as an arbitrator to grant requests to add
objects to various structures within each agent to maintain
consistency among the displayed objects on each of the
agents Systems. The System used in various embodiments of
the present invention uses a distributed architecture, wherein

US RE38,457 E
S

each agent 11-14 maintains local copies of all the objects
being used in the electronic conference. Thus, displays, text,
graphics and other information displayed on the agents
computer System displays are represented in data structure
maintained in each of the Systems local memory and/or
media devices coupled to those Systems. Thus, the present
System comprises a hybrid of the client/server architecture
wherein, instead of maintaining centralized copies of all the
objects, Such as those in the electronic conferencing System,
each agent maintains a local copy of the data So that changes
to the data may be more or leSS immediate. The Structure of
one agent, which may be coupled to the communication
medium Such as 20 illustrated in FIG. 1a, is illustrated with
reference to FIG 1b.

Referring to FIG. 1b, a system upon which one embodi
ment of an agent (e.g., 11 of FIG. 1a) of the present invention
is implemented in the exemplary application is shown as
100. 100 comprises a bus or other communication means
101 for communicating information, and a processing means
102 coupled with bus 101 for processing information. Sys
tem 100 further comprises a random access memory (RAM)
or other volatile storage device 104 (referred to as main
memory), coupled to bus 101 for storing information and
instructions to be executed by processor 102. Main memory
104 also may be used for storing temporary variables or
other intermediate information during execution of instruc
tions by processor 102. System 100 also comprises a read
only memory (ROM) and/or other static storage device 106
coupled to bus 101 for storing static information and instruc
tions for processor 102, and a data storage device 107 Such
as a magnetic disk or optical disk and its corresponding disk
drive. Data storage device 107 is coupled to bus 101 for
storing information and instructions. System 100 may fur
ther be coupled to a display device 121, Such as a cathode
ray tube (CRT) or liquid crystal display (LCD) coupled to
buS 101 for displaying information to a computer user. An
alphanumeric input device 122, including alphanumeric and
other keys, may also be coupled to bus 101 for communi
cating information and command Selections to processor
102. An additional user input device is cursor control 123,
Such as a mouse, a trackball, Stylus, or cursor direction keys,
coupled to bus 101 for communicating direction information
and command Selections to processor 102, and for control
ling cursor movement on display 121. Another device which
may be coupled to bus 101 is hard copy device 124 which
may be used for printing instructions, data, or other infor
mation on a medium Such as paper, film, or Similar types of
media. In the described embodiments, another device which
is coupled to bus 101 is a communication device 125 which
is used for communicating with other agents. This commu
nication device may include any of a number of commer
cially available networking peripheral devices Such as those
used for coupling to an Ethernet or Token-Ring communi
cation medium. Note, also, that any or all of the components
of system 100 and associated hardware may be used in
various embodiments, however, it can be appreciated that
any configuration of the System may be used for various
purposes according to the particular implementation.

In one embodiment, system 100 is an IBM compatible
type personal computer. Processor 102 may be one of the
80x86 compatible microprocessors, such as the 80386,
80486 or Pentium TM brand microprocessor manufactured
by Intel Corporation, Inc. of Santa Clara, Calif.

Note that the following discussion of various embodi
ments discussed herein will refer Specifically to a Series of
routines which are generated in a high-level object-oriented
programming language (e.g., the Microsoft C/C++) avail

15

25

35

40

45

50

55

60

65

6
able from Microsoft, Inc. Redmond, Wash. This series of
routines is compiled, linked, and then run as object code in
system 100 during run-time. It can be appreciated by one
skilled in the art, however, that the following methods and
apparatus may be implemented in Special purpose hardware
devices, Such as discrete logic devices, large Scale integrated
circuits (LSI's), application-specific integrated circuits
(ASIC's), or other specialized hardware. The description
here has equal application to apparatus having Similar func
tion.

Software Organization of an Agent
Operative within each agent of the exemplary System

during conference run time is a Series of Software procedures
which are organized in the manner illustrated with reference
to FIG. 2. FIG. 2 illustrates 200 which is a general block
diagram of the organization of the processes within a Single
agent in one embodiment of the present invention. The
Software organization 200 within a single agent comprises a
multi-point process 240 which is responsible for direct
communication onto the communication medium 260 So
that other agents 250 may be communicated with. This
provides all the low-level communication functions which
allow direct accessing communication medium 260. In
different embodiments of the present invention, communi
cation medium 260 may be any one of the various network
ing Standards used including local area networkS Such as
Ethernet, Token-Ring or other types of networking Stan
dards. Communication medium 260 may also be a telephone
network and modem connection or other data communica
tions medium. Multi-point function 240 thus provides all the
necessary packetization and responses to communication
received over communication medium 260.

The next higher level in the software organization 200 of
a single agent is the conference manager 230 which provides
all the necessary executive functionality for communication
with the low level communication functions 240 and the
higher level functions provided by the human interface
process 210 and the object manager 220. The conference
manager 230 controls the object manager 220 through a
Series of callbacks to commands in the conferencing System
which are desired to be executed. Conference manager 230
also executes the callbacks in object manager 220 according
to messages which are received from the communication
process 240 and directs the creation, deletion or other action
upon objects in the System. AS will be described in more
detail below, objects within the System Such as annotations,
pages, commands and other objects used within the System
are treated using an object-oriented System wherein hierar
chies of objects are defined. This will be described in more
detail below.

Communication from object manager 220 to conference
manager 230 is provided via messages which are passed to
the multi-point link manager 240 for the creation of objects,
arbitration between the arbitrator and the agent and com
munication with other agents in the conference. Moreover,
conference manager 230 directs human interface process
210 via pointers to display various things on the display.
Results from the display of human interface functions are
passed back to the conference manager 230 via messaging.

Object manager 220 is a process which is operative during
run time to keep track of the various objects used during a
conference between the agent and other agents in the System.
The object manager coordinates the meeting between the
agents. The object manager keeps track of all objects created
during the meeting, including, other agents, the various

US RE38,457 E
7

things displayed during the conference and other objects. In
addition, the object manager is used for maintaining the
Status of the meeting and keeping all the other agents
Synchronized with the current agent. Contents of a meeting
may be saved and retrieved from mass Storage (e.g., 107 of
FIG.1b) when exiting or entering a conference. The object
manager also exchanges meeting contents with other object
managers in other agents to keep copies of the meeting
Synchronized.

Each object manager 220 maintains its own local copy of
the meeting which is provided to human interface 210 as
required. Object manager 220 informs human interface 210
about changes from other agents participating in the meet
ing. Human interface layer 210 then may adjust the display
as directed. Human interface 210 also informs the object
manager about changes that the user wishes to make to the
current meeting. Object manager 220 then Synchronizes the
changes with all other object managers participating in the
meeting. The object manager controls the human interface
through messaging, as does the human interface direct the
object manager to perform certain actions upon objects,
according to the adjustment of the display under control of
human interface 210. A brief overview of the structure of
objects in one embodiment of present invention is illustrated
with reference to FIG. 3.

Object Classification Structure
FIG. 3 illustrates a general classification of the high level

objects which are used in one embodiment of the present
invention. In this embodiment, the object manager class 300
comprises the broadest classification of objects within the
System. Generally, within the object manager class, are two
general areas, public meetingS 310 and private meetings
320. The object manager maintains information that the user
has entered into his private Space in the private meeting
object class 320 which is distinct from the public meeting
object class 310. Each is maintained as a separate Structure
of objects within the meeting class. Therefore, during a
public meeting Stored in public meeting class 310, a user
may similarly store private information 320 also to be
asSociated with that Same meeting.

In addition, object manager 220 maintains information
about the user in classification 330 and arbitrator 340, of
which there is only one during any one electronic conference
and the other participants in the meeting in a participants
classification 350. These are all also members of the object
manager class. Object manager 300 keeps track of the
participants in the meeting, Such as when new participants
join the meeting new participants copies of the meeting are
brought into Synchronization with all of the other partici
pants. AS participants leave the meeting, all of the users
contributions are ensured to be shared before the participant
leaves the meeting.
One of the agents or participants in the meeting is known

as the arbitrator. This is represented in the arbitrator class
340. The arbitrator resolves conflicts between users when
question of control of meeting properties arise. The arbitra
tor determines which participant controls an annotation, how
many pages exist in the present meeting, etc. It also keeps a
master copy of the meeting that all other participants Syn
chronize to. Object mangers within each agent or participant
coordinate who the arbitrator is and assign a new arbitrator
when the assigned arbitrator leaves the meeting or as dic
tated by other conference events - Such as opening/merging
a meeting file in which the participant opening/merging the
meeting file becomes the arbitrator prior to opening/merging

15

25

35

40

45

50

55

60

65

8
the file. In one implementation of the present invention, the
first user to start a meeting is assigned the arbitrator.
A very rough approximation of the types of objects which

may be present upon a participant's display is illustrated
with reference to FIG. 4. Generally, a user will have a
meeting area 400 on his display in which various informa
tion may be entered. Typically, each meeting comprises a
Series of pages which is analogous to a Single white board or
shared display Space which users in a room could access.
Analogously, one embodiment of the present invention uses
the notebook metaphor which is, in fact, a shared “note
book” among a plurality of participants in the meeting into
which every participant may enter information. The shared
area or notebook comprises a plurality of pages 410 onto
which annotations may be made. Users may create or delete
pages at will, Subject to certain conditions. Annotations on
the pages may comprise one of at least four types, in one
embodiment of the present invention. The first three of these
types are illustrated in FIG. 4. For instance, a page 410 may
comprise a drawing annotation 411 which is typically an
object-oriented drawing created by a single user. Such
object-oriented drawing illustrations as 411 comprise a
description of point positions and Segments between them
and are well-known to those in the prior art. Annotations
may also comprise graphic annotations 412 which are gen
erally bit-map representations of graphic image data. Textual
annotations 413 may be placed upon a page. Textual anno
tations can be any of the user's choosing and, including in
certain prior art implementations, allowing users to choose
Style, point size, font and other formatting information as is
typical in the prior art. One other annotation which may be
used in one embodiment of the present invention is the OLE
annotation using the Object Linking and Embedding (OLE)
protocol available from Microsoft Corporation of Redmond,
Wash. OLE annotations may reference other “objects' cre
ated and/or maintained by other application programs and
which may be either linked or embedded using OLE. Each
of these annotations is Stored as an object under an "anno
tation' classification which is associated with objects in the
page classification. FIG. 5 illustrates the classification for
objects used in one embodiment of the present invention.
The overall structure of the object classes is illustrated

with reference to FIG. 5. FIG. 5 includes the meeting object,
user, arbitrator, participants and annotation objects which
were discussed and illustrated with reference to FIGS. 3 and
4 above. In FIG. 5, relationships are illustrated with refer
ence to the dotted line/Solid bar representation wherein
inheritance relationships are shown by the arrowhead with
the direction of the inheritance following the orientation of
the arrowhead. In addition, each of the relationships illus
trated in the figures indicate multiple relationships. That is,
if a relationship is n:1 that means that there may be n of the
Sub-class objects under the parent object. For example, as
was illustrated and discussed with reference to FIG. 3 and
now shown on FIG. 5, the CObjectManager 501 has two
CCMeeting object classes: the “public' meeting and the
“private” meeting shown in FIG. 3. In addition, the CCMeet
ing object class 506 has Participant objects 509 associated
with it, those shown as 350 in FIG. 3. In addition, the
CCMeeting object classification 506 references the CCPage
object 508. The CCPage classification is used for defining all
the pages which may fall under a specific meeting. Under the
CCPage classification 508, are the annotation classifications
(under the class CCAnnotation 532) which are shown with
their various inheritance relationships in the lower Section of
the diagram. Thus, the CCAnnotation classification 532 may
comprise objects inheriting all relationships of the annota

US RE38,457 E
9

tion object, for text annotations contained within the class
CCTextAnnotation 521, the CCGraphicAnnotation 522 for
representing graphic or bitmap annotations Such as 412 in
FIG. 4 and the CCDraw Annotation class 523 for referencing
drawing annotations such as 411 shown in FIG. 4. One other
annotation which may be used in one embodiment of the
present invention is the CCOLEAnnotation class 520 which
is part of the COLEDocument classification 503 for per
forming object linking and embedding using the Object
Linking and Embedding (OLE) protocol available from
Microsoft Corporation of Redmond, Wash. Annotations
may, thus, be references to “objects' created and/or main
tained by other application programs and which may be
either linked or embedded using OLE.

Other classifications are available from the Object
Manager, classification 501 such as the CCPerson classifi
cation 512 which is associated with a CCPassword classi
fication 510 for associating user passwords with perSon
objects. Also, each perSon has an associated CCAddress
class 513 and a CCPhone class 514 for defining participant
network addresses and/or acceSS telephone numbers.

Finally, the remaining Set of object classes shown in FIG.
5 includes the CCCachableBlob object classification 515
and the CCBlob class 516 which has a relationship and
inherits characteristics from the annotation object classifi
cation and the CCCachableBlob object classifications 532
and 515. The CCBlob 516 is used for representing very large
objects in various embodiments of the present invention.
Various embodiments of the present invention allow very
large binary objects, known in this embodiment as Binary
Large Objects or BLOBs, which may be any type of data.
These very large binary objects may also be shared and
distributed among users. Further, various embodiments of
the present invention allow for such objects to be transferred
only upon demand of Specific users and/or when medium
traffic allows. In this manner, the communication medium is
not burdened with the task of transmitting these very large
binary objects, unless absolutely required. Very large binary
objects or BLOBs may be used for representing any type of
information, however, in certain embodiments they may
only be used for representing large bitmap data or other
graphical image data Such as compressed animations or
audio information such as those represented in MPEG
(Motion Picture Experts Group)or JPEG (Joint Photogra
phers Experts Group) format. It is anticipated in alternative
embodiments that other binary data may be transmitted
using these techniques, including executable program data.

Overview of Operation of Deferred
Synchronization

AS already has been discussed, each of the participants in
an exemplary conference maintains its own data regarding
the current state of display of the shared notebook for all
users in the conference. In this manner, no individual
participant is dependent upon the accessing of a central
server for the display of its own information. However, a
Special participant in the conference is known as the “arbi
trator” and the arbitrator maintains an “official version' of a
meeting. All other participants are required to keep their
versions synchronized with the arbitrator's official copy. A
Second participant may become an arbitrator either upon its
own request or upon the arbitrator desiring to cease partici
pating in the conference. In this case, all other participants
are also informed of the change and a new arbitrator can Start
functioning. In one embodiment of the present invention, the
arbitrator of a conference is the original participant that
began the meeting.

15

25

35

40

45

50

55

60

65

10
The arbitrator also acts as a central System upon which

annotations in the official copy of the meeting Structure are
approved. Although users may make changes to their own
local copies of the meeting Structure in real-time, without
authority from the arbitrator, in order for the meeting to be
maintained as consistent among all the participants, the
arbitrator must make a final decision about the position of
certain annotations. The allowing of a single participant to
modify its meeting structure without the authority of the
arbitrator and the later Synchronization of that meeting
Structure with the other participants in the conference will,
for the remainder of this application, be referred to as
deferred Synchronization.

ASSociated with each page and annotation class object in
the meeting Structure is a variable indicating whether the
page or annotation has been Synchronized with other par
ticipants in the conference. This is known as the “blocked”
flag and this flag is Set true until the page or annotation
object has been Synchronized with the other participants. In
addition, the arbitrator maintains and grants object indices to
new objects as they are created and/or modified by a
particular agent, thus keeping the entire meeting Synchro
nized among all the participants. The agent then requesting
the addition and/or modification of objects receives mes
Sages from the arbitrator indicating a new object index, So
that the participant may update his local meeting Structure to
comply with the remaining participants in the meeting. In
addition, the blocked flag may then be changed to false
indicating that the objects in question are now Synchronized
and no further communication needs to be performed with
the arbitrator for the present time.

For example, one participant may decide to add an
annotation to an existing page. Human Interface process 210
detects this request and Sends a message to object manager
220 in order to add the annotation. Then a request is sent by
the object manager 220 of the requesting participant to the
object manger of the arbitrator. In addition, the object
manager will add an object to its local meeting Structure with
the flag indicating that the annotation is "blocked' indicating
that the object has not been Synchronized with other par
ticipants in the meeting. In addition, in the communication
to the arbitrator, the participant has indicated its participant
indeX and a request for an object indeX from the arbitrator.
Then the user of the agent may continue operation upon the
annotation, until the object indeX is received back from the
arbitrator. Once the object index has been received, the
participant may update its meeting Structure to comply with
the index received back from the arbitrator. A more detailed
discussion of this will be shown and discussed with refer
ence to FIGS. 6a–7e.

Detail of Process for Deferred Synchronization
FIGS. 6a and 6b illustrate detailed process steps for a

process 600 which may be executed upon the detection of a
request to execute a command requiring Synchronization
with other participants in an exemplary meeting within the
event loop of the exemplary conference manager. Thus,
process 600 may be entered upon detection of a creation of
a new object, modification of an existing object or the
deletion of an object as detected by human interface 210 on
FIG. 2. Process 600 may start at a typical process entry point
Such as 601 illustrated in FIG. 6a. Then, it is determined
whether the command is one which requires deferred arbi
tration at step 602. If not, then the current operation may be
performed with normal communication and the associated
latency, if any, between the current agent and any other
participants in the conference at step 613. Then, at step 620,
process 600 may exit at a typical process exit point.

US RE38,457 E
11

If, however, it was a command which requires deferred
arbitration, that is, timing requirements for meeting Synchro
nization are relaxed and the user may make any modifica
tions to the local meeting Structure without the latency
incurred by Synchronization with other agents and continues
at step 603. At step 603 it is determined whether the current
command has occurred to change an object which is already
“blocked'. An object will only be indicated as blocked if it
has been determined that the object was previously
modified, deleted or added and the object has not yet been
Synchronized with other participants in the conference. This
flag, as already discussed, is only Set upon detection of a
change, but prior to the assignment of an object indeX by the
arbitrator. If it is not blocked (e.g., this is an initial action
upon the object), then at step 604, it is determined whether
the request has been detected for a deletion of the object.
Deletion requires a specific Series of Steps, Since ownership
of all the objects requested to be deleted must be acquired
prior to any deletion. This proceSS also requires communi
cation with other participants in the conference as shown on
FIG. 6b. First, at step 614, it is determined whether owner
ship of the object has been obtained. This includes owner
ship of all the objects and sub-objects. If not, then such
ownership is requested from each of the owners of the
objects at Step 615. If ownership is granted, as detected at
step 616, or ownership of the object had already been
obtained as detected at 614, then the proceSS may continue
back at step 605 illustrated on FIG. 6a. If not, then the delete
failed as indicated at Step 617, and the process returns at a
typical process exit point such as that shown as 620 in FIG.
6a.
At step 605 it has now been determined that the object is

one which has previously not been blocked, that is, it has
previously been Synchronized, and now Some Sort of change
is occurring to the object. Thus, when this occurs, a request
must be sent to request an object indeX for the object in order
for the participant to be synchronized with all the other
participants. However, the user may continue to make
changes and perform other operations even prior to the
receipt of the object indeX from the arbitrator. Thus, changes
will therefore be local only, until the later synchronization of
the meeting Structure of the requesting participant with other
participants in the meeting. The requested changes by the
user are performed locally only at Step 606, making all
changes to the meeting Structure which are permissible, and
the changes are indicated as blocked at step 607. Then, this
sub-process within the event loop may be exited at step 620,
a typical process exit point.

Process 600 continues through the initial steps, 601, 602
and 603 for blocked objects for which commands have been
received. If the object is detected as “blocked’, that is a
request has been Sent to the arbitrator for an object index,
however, no response has yet been received the process 600
continues at step 609. Step 609 detects whether the response
containing the object indeX has been received from the
arbitrator. If not, then the process proceeds to steps 606, 607
and 620, as already discussed. That is, changes continue to
be performed locally and any changes are indicated as
blocked until the synchronization with the arbitrator and,
thus, the other participants has occurred.

If, however, a response has been received from the
arbitrator, then the object index is received at step 610. Then,
the participant may update its local meeting structure at Step
611 in order to make the participant Synchronous with the
arbitrator (and thus the other participants in the meeting). In
addition, the Human Interface HI layer 210 is informed of
this occurrence in order for the participant to update its

15

25

35

40

45

50

55

60

65

12
display. For example, if a page had been added by the
participant which the local participant assigned page 4, but
the arbitrator now assigns to page 5, the human interface
layer 210 detects this change and updates the display accord
ingly to move the page Visually to page 5. For example, in
the notebook metaphor shown on the display, a new page
“tab' may be created for the page using well-known prior art
user-interface commands to associate a new page tab labeled
“Page 5” with the locally created page. Then, after its own
local meeting Structure and display have been modified at
Step 611, the participant broadcasts any of the blocked
changes, that is changed pages or annotations, to the other
participants in the conference at Step 612 as requested by the
participants. Therefore, none of the other participants is
Synchronous with the current participant until this time.
Once this is accomplished, the other participants in the
conference may also update their own local meeting Struc
tures and associated displays with the appropriate pages and
annotations in order to be Synchronous with the participant
performing the change. Finally, the current operation then
may be performed with normal communication at Step 613,
thus making all the participants Synchronous in the confer
ence. Then, at Step 620, the process exits at a typical process
exit point.
A simple illustration of an exemplary local and an exem

plary arbitrator's meeting Structures may be illustrate with
reference to FIGS. 7a-7e, showing the addition of an object
during certain steps in the process 600 illustrated in FIGS.
6a-6b. For example, at a time period t as illustrated in FIG.
7a, a single agent or participant may have three items in its
meeting structure 701-703, linked in a hierarchical fashion,
e.g., a list of annotations or a list of pages. Similarly, an
arbitrator agent may also have a similar three objects in its
meeting structure, 711–713, wherein all the objects are not
blocked in either agent. At a Second time period t, as
illustrated in FIG. 7b, the participant may create an addi
tional object (e.g., 704), Such as a page or an annotation to
add to its local meeting Structure. Simultaneously, the arbi
trator may receive a request from a Second participant to add
an object to its meeting structure O' 714 due to a request to
add command. Then, Subsequently, at time t, the arbitrator
and the agent will each have within its local meeting
Structure, a different object having the same object indeX 4.
For example, the agent may have the object 704 as its fourth
object in its object meeting Structure and the arbitrator may
have object 714 as its fourth object in its meeting structure.
Then, at a Subsequent time period t, the agent will Send a
request to the arbitrator requesting the adding of an addi
tional object to the “official” object structure maintained by
the arbitrator. This is illustrated as 715 in FIG. 7d. Because
all requests are Serialized at the arbitrator from each of the
participants in the conference, the request from the first
agent to add the object 715 has arrived later in time than that
request for the object 714. Thus, it is assigned an object
indeX 5. The arbitrator will then transmit back to the
requesting agent the indeX 5 to be associated with the object.
The arbitrator then transmits back a response indicating that
the object 704 should instead be assigned the object index 5.
Another participant then transmits back a new object to be
inserted into the local participants object list O'705. Thus,
at a subsequent time interval tis illustrated in FIG. 7e, both
the arbitrators and the original agent's meeting Structures
may be fully synchronized with one another and other
participants in the conference. That is, all objects in the
agent's meeting Structure and the arbitrator's meeting Struc
ture are the same and in the same order.

Therefore, deferred synchronization of objects for partici
pants in an electronic conference poses Substantial advan

US RE38,457 E
13

tages over the client/server model of the prior art, because,
timing requirements between the client and Server are more
relaxed. Because full consistency between participants is
deferred, local participants may perform Such CPU
intensive operations as the modification and creation of
annotations in real-time without the latency in coordinating
Such operations with the Server. A further advantage which
deferred Synchronization of objects has over the client/
server model of the prior art is that the synchronization of
objects for all participants is provided without using a
central data repository as common in the client/server
model. This is Substantial advantage because the computer
conferencing System can be used between personal comput
ers where a network client/server model is not available or
practical. The local participant will perform all Such changes
to its local display and meeting Structure, and updates will
only be coordinated upon the receipt of a response from the
arbitrator assigning an object index. Therefore, the present
invention poses Substantial advantages over the prior art
Systems which require full Synchronization at all times
between all participants in the conference thus incurring
Substantial latency for Synchronization and response delayS
in the users interface to the System.

Transfer of Large Object Data
One of the types of object data which may be transferred

between users, Such as participants in an electronic confer
ence is known as a very Binary Large OBject or “BLOB.”
A BLOB is an object which would not normally be able to
be transmitted during one complete idle cycle of the par
ticipant and transport medium. Thus, Such objects need to be
broken into Smaller portions, or packets and transmitted over
several idle cycles by a background task. BLOB's typically
comprise items. Such as very large graphic data, OLE anno
tations or files to be transferred. In other embodiments of the
present invention, such BLOB's may include full-motion
video objects such as MPEG or JPEG files and/or audio data.
Using the methods and apparatus described, the BLOB data
is transmitted in packets, the size of each of the packets
being dynamically based upon the capabilities of the trans
port medium, which may dynamically change as the con
nection between participants change. Therefore, if the Speed
of the connection between two participants transport
medium changes, the size of packets transmitted by the
transmitter is changed. This is done dynamically during
transmission time, in order to allow the most efficient use of
the transport medium during the transmission of BLOB's. In
addition, BLOB transmit requests are queued So that higher
priority BLOB's may be transmitted before lower-priority
BLOB's. In this way, a participant who is viewing a first
page containing BLOB data who Switches pages to a Second
page also containing BLOB data, the Second page, which
becomes the current viewing page containing the BLOB(S),
becomes reprioritized within the transmitter to be transmit
ted ahead of the BLOB for the first page. This is done using
a reprioritization request from the requester. Then, the
out-going transfer queue is re-arranged by the transmitter to
effect the desired change of transfer priority. The details of
these mechanisms will now be discussed.

First, during a typical an exemplary electronic
conference, BLOB data may not necessarily be transmitted
to other participants upon creation of a BLOB within a local
participant. In other words, transmission of the data for a
BLOB may be deferred until a later time at which the
transport medium may be idle, or the local participant has
Some idle processing time. Therefore, during creation of a
BLOB, remote participants may be notified that the BLOB

15

25

35

40

45

50

55

60

65

14
data is not contained within the BLOB to be created, and the
remote participant(s) only create the object in their local
meeting structures for the BLOB absent any data. During
later idle periods of either the local participant and/or the
remote participants, the BLOB data itself to be contained
within the BLOB object in the meeting structure of the
remote participants, may be added at Such time as is con
Venient for the two participants. A typical chronology of
actions which may be performed during a BLOB creation
and transmission is illustrated with reference to FIG. 8.
The steps illustrated with reference to FIG. 8 illustrate the

Sequence of Steps taken by exemplary local and an exem
plary remote participant(s) engaged in a conference. For
example, at a first step such as 801 in FIG. 8, a local
participant may add to its local meeting Structure an object
containing a BLOB. The object manager 230 contained
within the local participant will then notify all the remote
participants that they should also create objects within their
local meeting structures an object for a BLOB, at step 802.
This, of course, is performed after all necessary
Synchronization, as was described with reference to the
deferred Synchronization process above, including determi
nation of the object index and other relevant information for
an object. Then, each of the remote participants individually
submits asynchronous requests at step 803 to the local
participant for the BLOB data. The local participant then, at
step 805, processes the request for BLOB data such as
placing the request in a BLOB request queue and later
providing the data during idle times. Also, Subsequent to the
asynchronous requests by various participants for the BLOB
data at step 803, the remote participants may further submit
reprioritizations of prior requests for BLOB data at step 804.
In other words, if a remote participant had first requested
BLOB 1 and then later subsequently requested BLOB2, the
two requests may be reprioritized so that BLOB 2 may take
priority over BLOB 1 for the remote participant. In this
manner, if the remote participant Switches from a first page
containing BLOB 1 to a Second page containing BLOB 2,
the local participant will then re-order the BLOB requests
for that particular participant.
AS already discussed, the exemplary local participant

processes requests for the BLOB data at step 805. This will
be discussed in more detail with reference to FIG. 9 below.
The local participant then sends to each of the remote
participants the requested BLOB data packets at step 806. As
will be discussed in more detail below, BLOB data packets
are Sent according to the transport medium between the two
participants. Therefore, if the remote participant is con
nected to a high-capacity, high-speed transport medium Such
as a Ethernet, then the Size of the data packets will be
Substantially larger than if the participant was connected via
modem over a telephone line. AS the local participant Sends
the BLOB data packets at step 806, each of the remote
participants receives the BLOB data and adds the BLOB
data packets to the existing BLOB data structure. Then, the
local participant after completion of the transmission of all
the BLOB data packets for the requested BLOB, removes
the BLOB from the request queue upon completion of the
data transfer at step 807. The human interface process of the
remote participant is notified to update the display of the
previously incomplete BLOB-containing object. More
detailed illustrations of certain of the process Steps will now
be discussed.

Process 900 of FIG. 9 illustrates a series of steps which
are taken by an exemplary local participant upon receipt of
a request for BLOB data, the request being transmitted by
exemplary remote participants. For example, at Step 901, a

US RE38,457 E
15

proceSS entry point Such as that from an event loop of a main
proceSS is entered. That is, multiple new and reprioritization
requests may be received from multiple participants asyn
chronously. Then, at step 902, the transport qualifier for the
new request or for a reprioritization request is determined.
That is, it is determined whether the transport medium for
the remote participant is either a high or low-Speed transport
medium. Determination of the medium capability (i.e., high
or low-speed) is used as a qualification when considering the
combination of requests from multiple participants. AS will
be discussed in more detail below, during transfer of a
BLOB, for each BLOB in the transfer queue, a SIZE and an
OFFSET is maintained for each transfer queue entry of
BLOB data so that the last datum in the BLOB which was
transferred may be referenced. Multiple requests can be
combined into one queue entry, and likewise, multiple
reprioritization requests simply reprioritize queue entries.
Therefore, upon an initial request for BLOB data, the offset
will be zero, that is, the beginning of the BLOB, and the size
will be set equal to the full length of the BLOB. At any rate,
more detailed Steps for determining the transport qualifier
will be illustrated with reference to process 1000 of FIG. 10.
An example of the reprioritization process is described in
connection with FIG. 17.

Once the transport qualifier has been determined, it is
determined at step 903 whether an existing request for data
pending indicates receipt of a reprioritization request of an
original request for BLOB data. If it is a request for pending
data, then it is determined at step 904 whether a partial
request is required. That is, if other remote participants
request the same BLOB data which has already been
requested and which has already Started to be transferred, the
new requesting participants may receive the BLOB data
from the intermediate point at which the request was made,
but they will also require any data which had been trans
ferred up until that point. Thus, redundant transferS of data
are eliminated by combining nearly simultaneous requests
from multiple remote participants. For cases where transfer
asSociated with an original request has not yet started, the
Subsequent requesting participants are merely added to the
distribution list of the original transfer queue entry.
Otherwise, if transfer has commenced, in addition to the
above, one additional transfer queue entry will be added to
account for the data already transferred. If, however, no
pending requests exist for the actual BLOB data, then a new
transfer queue entry in entered into the participant's transfer
queue at step 905, in order to keep track of the BLOB
transfer. AS previously discussed, the queue entry maintains
an OFFSET and SIZE in order to track the transfer for
individual requests. At any rate, upon completion of either
steps 904 or 905, the data request processing is complete at
step 906, after which an actual data BLOB transfer will
occur in the background (i.e., during idle processing time),
and the process 900 will return to the normal event loop of
the executive routine of the local participant.
A more detailed illustration of the proceSS Steps taken at

step 902 of FIG. 9 is illustrated with reference to FIG. 10.
Process 1000 is used for determining the transport qualifier.
The transport qualifier is used in handling the combination
of multiple requests. That is, requests from recipients con
nected via a high-Speed medium are not combined with
requests from recipients connected via low-speed media,
and Vice versa.). This is done dynamically, upon each
request for transfer of a BLOB packet during idle processing
time. Thus, the transport qualifier for a particular participant
is used to allow the higher or lower-capacity transport
medium to be accommodated. Note that the transport quali

15

25

35

40

45

50

55

60

65

16
fier may specify any number of levels of transport through
put. The present invention is not limited to a high and low
level only. For example, the transport levels can be specified
to partition 4800 band modems, 9600 band modems, ISDN
connections, fast and Slow network connections, etc.
At any rate, proceSS 1000 starts at a typical process entry

point 1001. Then, at step 1002 it is determined whether a
high-speed transport facility is available between the local
and requesting participant. If So, then the high-speed trans
port qualifier is used at step 1003. If, however, the remote
and local participants are coupled via a low-Speed transport
medium as detected at step 1002, then at step 1004, a
low-speed transport qualifier is used. At any rate, at Step
1005, determination of the transport qualifier is complete
and the accompanying proceSS may continue.
The deferred transfer of object data process which was

discussed with reference to step 904 of FIG. 9, is now
discussed with reference to process 1100 of FIG. 11. For
example, it has already been determined that an existing
request is pending for the specific BLOB data at step 1101,
a typical process entry point from an event loop of an
executive process. If a request is already pending for the
current participant at Step 1102, then it is considered a
reprioritization request for the given participant and the
existing BLOB request on the transfer queue is reprioritized
at step 1107 illustrated in FIG. 11. Thus, any other BLOB
requests for that particular participant are reprioritized.
Then, at step 1106, the process is complete and process 1100
is returned from at a typical process exit point.

If, however, a request was not pending for this particular
participant, as detected by referencing the participant index
for the requesting participant which is associated with the
element in the transfer queue, then, at Step 1103, the request
ing participant is added to the distribution list for the existing
transfer queue entry. Therefore, the participant indeX may be
added to the existing transfer queue entry. A corresponding
partial request entry may exist for each participant in the
distribution list, but it is not required. Requests from mul
tiple participants may have been received prior to commenc
ing associated data transfer and as Such only the Single
transfer queue entry exists. Once data transfer commences,
additional requests from new participants will cause a com
bining with the existing entry and the addition of a partial
entry for the data transfer completed at that time. Therefore,
if data transfer has already commenced for the particular
BLOB as specified in its transfer queue entry at step 1104,
then a partial request for the remaining portion of the BLOB
must be added into the transfer queue entry. This is per
formed at step 1105. That is, all the data associated with the
BLOB and previously transferred to the other remote par
ticipants must be transferred to the current requesting par
ticipant upon completion of the current transfer. This is So
that this participant may also bring its BLOB current with
the other participants in the conference. If, however, data
transfer has not been commenced for this entry, the request
ing participant has merely been added to the existing transfer
queue entry at step 1103 and step 1104 proceeds to step
1106, the process exit point. The partial request for the
portion of an existing transfer entry previously transferred at
step 1105 will be illustrated in more detail with reference to
FIG. 12. Thus, an additional partial request is added to the
transfer queue at step 1105. This will now be discussed with
reference to FIG. 12.
The preparation of partial requests will be illustrated with

reference to FIGS. 12a-12c. For example, a BLOB of
38,000 bytes may be requested by two participants B and C
to be transferred from a local participant. In this case,

US RE38,457 E
17

initially, the offset will be set to Zero for the two participants
and in a remaining transfer will be equal to 38,000. Then, at
Some intermediate time period later, e.g., time t (time after
data transfer has commenced) illustrated in FIG. 12a, the
transfer offset will be equal to 2000, and the remaining
transfer size will be equal to 36,000 indicating that 2000
bytes have been transferred to date. This is illustrated with
reference to portion 1201 and portion 1202 of the graphic
representation of the BLOB 1200. At this time period, then
a third participant, participant D, may request transfer of the
Same BLOB data from the local participant. In this case,
participant D is added to the distribution list (of the existing
BLOB queue entry with OFFSET 2000 and SIZE 36000)
and a Subsequent partial (request) transfer queue item will be
added to the transfer queue at a position after the current
transfer queue entry (for OFFSET 0 and SIZE 2000). Thus,
at a Subsequent time period t illustrated in FIG. 12b,
participant D will be added to the existing transfer entry
distribution list and transfer may continue from the transfer
offset 2.00 and the remaining transfer size 36,000 indicated
in the BLOB transfer queue entry. This is graphically
represented with reference to 1210 which illustrates the
to-date portion transfer 1211 and the remaining portion
1212. Finally, upon completion of the transfer of the item
represented in FIG. 12b, another queue entry will be refer
enced for transferring only a portion of the BLOB since
participant D's request was received in the middle of the
initial transfer to participants B and C. In this instance, the
next transfer entry at time t illustrated in FIG. 12c, will have
a transfer offset of Zero (indicating the beginning of the file)
and a remaining transfer size of 2000 indicating that the first
2000 bytes of the BLOB are requested to be transferred to
participant D. This is illustrated graphically with reference
to 1220 illustrating the complete BLOB and only the portion
1221 which is requested by this queue entry to be transferred
to participant D. Once this partial transfer has been
completed, then all of participants B, C and D have received
the complete BLOB and redundant transfers of the portion
of the data represented by 1202 and 1212 and FIGS. 12a and
12b have been avoided. Thus, participant D only receives the
portion which was transferred up until the time in which its
own request was made, that is represented by area 1221 in
FIG. 12c. The transfer of data for the partial portion illus
trated in FIG. 12c is transferred from the end of the partial
portion to the beginning, in order so that the BLOB may be
maintained contiguously in the memory of the requesting
participant. Then, upon completion of receipt of the partial
portion illustrated in FIG. 12c, the participant D notifies its
human interface to update the display of the annotation
containing the previously incomplete BLOB object. Thus,
upon completion of the transfer indicated by the transfer
entry shown in FIG. 12c, the transfer of the BLOB to all of
participants B, C and D is complete. Transfer to participant
B and C is complete after completion of the transfer asso
ciated with the original queue entry. Transfer to participant
D completes at a later time when the queue entry associated
with the partial request is complete.

During transfers of such BLOB data, the exemplary
remote participant and the exemplary local participant may
be informed of Such operations using a progreSS bar or other
user interface feature under control of the Human Interface
(HI) layer 210 of the agent during participant idle time.
Thus, the user may be informed of intermediate transfers of
data for proper System feedback.

Note that the BLOB data transfer mechanism uses a
Clear-To-Send or CTS protocol wherein if transfer of data
asSociated with a particular transfer queue entry cannot

15

25

35

40

45

50

55

60

65

18
continue because a recipient is not Clear-To-Send, Subse
quent transfer queue entries not containing a not Clear-To
Send recipient are considered for transfer. This is performed
in order to maximize full potential of the transport medium,
during idle times of individual participants. The Clear-to
Send protocol of the present invention is described in more
detail in connection with FIG. 18.

Referring now to FIG. 13, an architectural diagram illus
trates the components of the Background Transfer Manager
(BTM) of the present invention. The transfer of large object
data is controlled by the BTM. The BTM consists of six
major portions: 1) user/participant connection/
disconnection control logic 1312, 2) request processing
logic 1314, 3) data transfer processing logic 1316, 4) a
Clear-To-Send list 1318, 5) an out-going transfer list 1320,
and 6) an in-coming transfer list 1322. The logic component
1312 is described in connection with FIGS. 14 and 15. The
logic components 1314 and 1316 are described in connec
tion with FIGS. 16-20. The Clear-To-Send list 1318 is used
to maintain the Clear-To-Send Status of requests. This pro
tocol is described in connection with FIG. 18. The in-coming
transfer list 1322 is used to record those entries for which
BLOB data requests have been submitted to remote users.
The BTM uses this list when processing Subsequent requests
to determine whether to Send a new request or a reprioriti
Zation request. The out-going transfer list 1320 is used to
maintain priorities of out-going BLOB data transferS.

PUserparticipant connection/disconnection processing
logic 1312 pertains to re-initialization upon notification of
participant connection and flushing of participant-specific
information upon participant disconnect notification. Refer
ring now to FIGS. 14 and 15, flowcharts illustrate this
connection and disconnection processing.

Referring to FIG. 14, a notification of an exemplary
participant connection is received at block 1410. The newly
connected participant is added to the Clear-To-Send list
1318 at block 1420. Depending on the transport medium
characteristics, the participant is qualified for high Speed
transfer with a corresponding optimal packet size (blocks
1428 and 1430) or qualified for low speed transfer with a
corresponding optimal packet size (blocks 1434 and 1436).

Referring to FIG. 15, a notification of an exemplary
participant disconnection is received at block 1510. The
optimal packet size is recalculated in block 1520. The
participant is removed from the Clear-To-Send list in block
1522. The participant is removed from all distribution lists
for all transfer queue entries in block 1524. Transfer queue
entries for which the participant was the only recipient are
removed in block 1526.
At the time of participant connection/disconnection, opti

mal transfer sizes are determined for each level of transport
throughput (high and low-speed) in use. These sizes remain
constant between participant connection and disconnection
events. Or put another way, only participant connection and
disconnection events affect the optimal transfer size. Note
that the optimal transfer Size is not a maximum transferable
packet size. It's the most optimal size that can be handled to
prevent partitioning of the packet. Utilizing this packet Size,
or Smaller, the packet takes the fastest path through the
processing logic on both the Send and receive ends.

Referring again to FIG. 13, Request Processing logic
1314 is used on both Sending and receiving Systems. The
Request Processing logic 1314 and Data Transfer logic 1316
both use a transfer queue for tracking the status of BLOB
requests and BLOB data. Referring to FIG. 16, an architec
tural diagram illustrates the Structure of a Single Background

US RE38,457 E
19

Transfer Manager Transfer Queue entry 1610. The transfer
queue entry 1610 comprises a reference to a single BLOB
object 1612 that represents the BLOB object being tracked
by the transfer queue entry. A next transfer offset 1614 and
a remaining transfer Size 1616 is used to track the progreSS
of the transfer of BLOB data. Recipient list 1618 is a list of
participants that should receive the particular BLOB iden
tified by reference 1612. Previous transfer queue entry 1620
and next transfer queue entry 1622 are used to link BLOB
requests together in the transfer queue.

Referring to FIG. 19, the Request Processing logic 1910
for a requesting participant is illustrated. FIG. 20 illustrates
the Request Processing logic 2010 for a BLOB originator. A
BLOB originator of BLOB data sends a BLOB object
Structure without its corresponding data to other partici
pants. These other participants are referred to as “request
ors' relative to this BLOB data. As shown in FIG. 19, a
requestor of BLOB data first checks the in-coming transfer
list 1322 to determine if a particular BLOB is already in the
list 1322 (decision block 1912). If so, a reprioritization
request is Sent to the BLOB originator thereby increasing the
priority of the existing request for BLOB data (processing
block 1922). If the BLOB is not already in the in-coming
transfer list 1322, the BLOB requestor adds a transfer queue
entry to the in-coming transfer list 1322 (processing block
1918) and sends a new request for BLOB data to the BLOB
originator (processing block 1920). Request Processing
logic for a BLOB requestor then terminates through return
bubble 1924.
As shown in FIG. 20, the BLOB originator then processes

this request and either adds a new out-going transfer queue
entry (processing block 2018), reprioritizes an existing
transfer queue entry (processing block 2026), or combines
the request with an existing entry (processing block 2034) to
track the transfer of the BLOB data. No BLOB data transfer
occurs as a result of this processing.

FIG. 17 illustrates an example of transfer queue repriori
tization. As shown, BLOB requests are added to the transfer
queue in the order received (step 1720 and 1730) until a
reprioritization request is received (step 1740). At step 1740,
request 1 is moved ahead of request 2. Subsequent requests
are added to the transfer queue (step 1750) until another
reprioritization request is received (step 1760). In this case,
request 3 is moved ahead of both request 1 and 2. If another
reprioritization request is received, the Subject request
(request 1 in step 1770) is moved ahead of the other requests
in the transfer queue.

Referring again to FIG. 13, Data Transfer processing logic
1316 is used during processing idle time. At this time, the
BTM examines the current out-going transfer queue for
entries requiring data transfer. For these entries, the BTM
repeatedly checks if the transport is Clear-To-Send a packet
of optimal size (as previously determined) to the list of
recipients listed in the transfer queue entry, and Sends the
packet if Clear-To-Send. The Clear-To-Send list 1318 is
used to track the Clear-To-Send status of packets of BLOB
data. If not Clear-To-Send, the recipients are marked as not
Clear-To-Send, and the BTM proceeds to the next transfer
queue entry whose recipient list does not contain a not
Clear-To-Send recipient and repeats the packet Sending
process. This process continues until either all BTM entries
have been processed or all participants are marked as not
Clear-To-Send. At this point, all participants not Clear-To
Send Status is cleared to prepare for the next idle time
processing.

FIG. 18 illustrates an example of the Clear-To-Send
processing of the present invention. In this example, each

15

25

35

40

45

50

55

60

65

20
cell or box represents a transfer queue entry. The numeral in
each cell represents an entry number used Solely for iden
tification purposes. The letter(s) in each cell represent(s) the
recipient(s) corresponding to the transfer queue entry. In the
initial State in this example (step 1810), each transfer queue
entry (cell) is initialized and each recipient is initially
Clear-To-Send (A-OK, B-OK, and C-OK). In step 1820,
packets from entry 1 are Sent until recipient B is no longer
Clear-To-Send (i.e., Not Clear-To-Send-NCTS). In this
case, the Data transfer processing logic 1316 shifts the data
transfer operation to entry 2 (step 1830). In step 1830,
packets from entry 2 are Sent until recipient C is no longer
Clear-To-Send. In step 1840, entry 3 is skipped, because
participant B, which is a recipient of entry 3, is Not
Clear-To-Send. In step 1850, packets from entry 4 are sent
until recipient A is no longer Clear-To-Send. Because all
entries in the transfer queue are not Clear-To-Send in Step
1860, data transfer processing ends and processing returns to
the main loop. This proceSS is repeated during each idle
time.

Thus, in conclusion, an improved method for the trans
mission of very large object data and the deferred Synchro
nization of user data, Such as participants data maintained
during an electronic conference has been described.
Although the present invention has been described with
reference to Specific application and embodiments, it can be
appreciated by one skilled in the art that may the present
invention may be practiced in Other data Sharing
applications, and departures and as well as modifications
may be made, and the present invention is only to be
construed as limited by the appended claims which follow.
What is claimed is:
1. In an electronic conferencing system wherein data is

shared between a plurality of participants during an elec
tronic conference, a method of maintaining consistency of
shared data among Said participants during Said electronic
conference comprising the following Steps:

a. each participant of Said plurality of participants in Said
electronic conferencing System maintaining a local
copy of Said shared data for Said electronic conference
during Said electronic conference;

b. One participant of Said participants commencing to
perform modifications to an associated local copy of
Said shared data;

c. Subsequent to commencing modifications, Said one
participant requesting an indeX for Said modifications
from an arbitrator participant, wherein Said modifica
tions to Said associated local copy of Said shared data
may continue to be performed;

d. Said arbitrator participant responding to Said one par
ticipant with Said indeX for Said modifications to Said
asSociated local copy of Said shared data;

e. Said one participant of Said participants modifying Said
asSociated local copy of Said shared data according to
Said indeX received from Said arbitrator participant; and

f transferring Said modifications of Steps b through e
above to a remote participant.

2. The method as claimed in claim 1 wherein said shared
data further includes an object.

3. The method as claimed in claim 2 further including a
Step of determining whether ownership of Said object has
been obtained.

4. The method as claimed in claim 2 further including a
Step of determining whether Said object is blocked.

5. The method as claimed in claim 2 further including a
Step of deleting Said object.

US RE38,457 E
21

6. In an electronic conferencing System wherein data is
shared between a plurality of participants during an elec
tronic conference, an apparatus for maintaining consistency
of Said data among Said participants during Said electronic
conference comprising:

a means for maintaining a local copy of Said shared data
for Said electronic conference during Said electronic
conference, each participant of Said plurality of partici
pants in Said electronic conferencing System including
Said means for maintaining;

b. means for commencing to perform modifications to an
asSociated local copy of Said shared data;

c. means for requesting an indeX for Said modifications
from an arbitrator participant, wherein Said modifica
tions to Said associated local copy of Said shared data
may continue to be performed, one participant of Said
participants including Said means for requesting,

d. means for responding to Said one participant with Said
indeX for Said modifications to Said associated local
copy of Said shared data, Said arbitrator participant
including Said means for responding;

e. means for modifying Said associated local copy of Said
shared data according to Said indeX received from Said
arbitrator participant; and

f. means for transferring Said local modifications to a
remote participant.

7. The apparatus as claimed in claim 6 wherein Said
shared data further includes an object.

8. The apparatus as claimed in claim 7 further including
a means for determining whether ownership of Said object
has been obtained.

9. The apparatus as claimed in claim 7 further including
a means for determining whether Said object is blocked.

10. The apparatus as claimed in claim 7 further including
a means for deleting Said object.

11. In an electronic conferencing System wherein data is
Shared between a plurality of participants during an elec
tronic conference, an apparatus for maintaining consistency
of Said data among Said participants during Said electronic
conference comprising:

a. maintenance logic aSSOciated with each of the partici
pants that correspondingly maintains for the partici
pants local copies of Said Shared data of Said electronic
conference during Said electronic conference,

b. modification logic associated with each of the partici
pants for making modifications to the corresponding
local copies of Said Shared data,

C. request logic aSSOciated with each of the participants
that correspondingly request indices for the modifica
tions being made by the participants to their local
copies of Said Shared data, upon commencement of the
modifications,

d respond logic aSSOciated with at leaSt One of the
participants that responds to each of Said participant
indices requests, Said modification logic further modi
fying the local copies of the Shared data according to
Said requested indices upon received them, and

e. transfer logic aSSOciated with each of the participants
that transferS Said modifications to Other remote par
ticipants upon completing Said modifications to the
local copies in accordance with the received indices.

12. The apparatus as claimed in claim 11 wherein Said
Shared data further includes an object.

13. The apparatus as claimed in claim 12 further includ
ing determination logic aSSOciated with each of the partici
pants that determines whether ownership of Said object has
been obtained.

5

15

25

35

40

45

50

55

60

65

22
14. The apparatus as claimed in claim 12 further includ

ing determination logic aSSOciated with each of the partici
pants that determines whether Said Object is pending Syn
chronization.

15. The apparatus as claimed in claim 12 further includ
ing deletion logic that deletes Said object.

16. An apparatus equipped with.
a. modification logic for modifying a local copy of Shared

data that is to be Synchronized with corresponding
remote copies, and

b. requesting logic that requests for an index for a
modification from an external Source, upon commence
ment of Said modification,

Said modification logic further modifying Said aSSOciated
local copy of Said Shared data according to Said
requested index, upon receiving Said requested index.

17. The apparatus as claimed in claim 16 wherein Said
Shared data further includes an object.

18. The apparatus as claimed in claim 17 further includ
ing determination logic that determines whether ownership
of Said object has been obtained.

19. The apparatus as claimed in claim 17 further includ
ing determination logic that determines whether said object
is pending Synchronization.

20. The apparatus as claimed in claim 17 further includ
ing deletion logic that deletes Said object.

21. The apparatus as claimed in claim 16 wherein Said
apparatus further comprising:

e. responding logic that responds to the request for the
index to modification being commenced against One of
Said remote copies of Said Shared data, the local copy
of Shared data being a master copy of the Shared data.

22. The apparatus as claimed in claim 16 wherein Said
apparatus further comprising:

e. transfer logic that transfers said local modifications to
a remote user having a corresponding remote copy of
Shared data to be Synchronized to the modified local
copy of Shared data.

23. The apparatus as claimed in claim 16 wherein Said
apparatus is an electronic conferencing System.

24. In a digital System wherein a local copy of shared data
is maintained, a method for Synchronizing the local copy of
the Shared data to corresponding remote copies of the
Shared data, the method comprising the Steps of

a.. upon commencing making modification to Said local
copy of Shared data, requesting an index for Said
modification,

b. upon requesting the index, continuing to modify Said
local copy of Shared data,

C. receiving Said requested index;
d. modifying Said local copy of Shared data according to

Said received index.
25. The method as claimed in claim 24 wherein Said

method further comprises the Step of
e. responding to a request for an index for modifications

being made to a corresponding remote copy of Shared
data, the local copy of Shared data being a master copy
of the Shared data.

26. The method as claimed in claim 24 wherein Said
method further comprises the Step of

e. transferring Said modifications to Said local copy of
Shared data to a remote user having a corresponding
remote copy of shared data to be Synchronized with the
modified local copy.

k k k k k

