A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
15 November 2001 (15.11.2001)

PCT

(10) International Publication Number

WO 01/86432 A2

(51) International Patent Classification’: GO6F 9/38

(21) International Application Number: PCT/US01/15176

(22) International Filing Date: 10 May 2001 (10.05.2001)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
60/203,465
60/203,409

11 May 2000 (11.05.2000)
11 May 2000 (11.05.2000)

Us
Us

(71) Applicants (for all designated States except US): NETOC-
TAVE, INC. [US/US]; 507 Airport Boulevard, Suite 111,
Morrisville, NC 27560 (US). HANNA, Michael [US/US];
522 N. Person Street, Raleigh, NC 27604 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BLAKER, David
[US/US]; 109 Hogan Glen Court, Chapel Hill, NC 27516
(US). SAVARDA, Raymond [US/US]; 4224 Sancroft
Drive, Apex, NC 27502 (US).

(74) Agent: MYERS BIGEL SIBLEY & SAJOVEC; P.O.
Box 37428, Raleigh, NC 27627 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, S, SK,
SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA,
7ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: CRYPTOGRAPHIC DATA PROCESSING SYSTEMS, COMPUTER PROGRAM PRODUCTS, AND METHODS OF
OPERATING SAME IN WHICH MULTIPLE CRYPTOGRAPHIC EXECUTION UNITS EXECUTE COMMANDS FROM A

HOST PROCESSOR IN PARALLEL

& (57) Abstract: Embodiments of cryptographic data processing systems, computer program products, and methods of operating same
are provided. For example, cryptographic data processing systems include a host processor, a system memory coupled to the host
processor, and a cryptographic processor integrated circuit that comprises a local memory. One or more operands are downloaded
into the local memory from the system memory and the cryptographic processor executes an instruction that references one of the
~~ downloaded operands using a first relative position in the local memory. Operands and results may be packed together in the local
memory, which may conserve storage space. In other embodiments, separate command interfaces are provided that are respectively
associated with execution units in the cryptographic processor. Commands blocks are respectively provided to the execution units
and these command blocks are executed simultaneously by the plurality of execution units. By performing operations in parallel
using a plurality of functional units, the total number of operations that may be performed may be increased and the average latency

for completing operations may be reduced.

WO 01/86432 PCT/US01/15176

10

15

20

CRYPTOGRAPHIC DATA PROCESSING SYSTEMS, COMPUTER PROGRAM
PRODUCTS, AND METHODS OF OPERATING SAME IN WHICH MULTIPLE
CRYPTOGRAPHIC EXECUTION UNITS EXECUTE COMMANDS FROM A
HOST PROCESSOR IN PARALLEL

CROSS-REFERENCE TO PROVISIONAL APPLICATIONS
This application claims the benefit of Provisional Application Serial No.
60/203,409, filed May 11, 2000, entitled Cryptographic Acceleration Methods and
Apparatus, and Provisional Application Serial No. 60/203,465, filed May 11, 2000,

entitled Methods and Apparatus for Supplying Random Numbers, the disclosures of

which are hereby incorporated herein by reference in their entirety as if set forth fully

herein.

BACKGROUND OF THE INVENTION

The present invention relates generally to the field of data processing systems,
and, more particularly, to cryptographic data processing systems, computer program
products, and methods of operating same.

Signal processors and integrated circuit chips have been developed to
accelerate cryptographic operations, such as public key operations. Examples of such
chips include, but are not limited to, the Hifn 6500 available from Hifn, Inc., the
SafeNet ADSP 2141 available from SafeNet, Inc., and the Rainbow Mykotronx
FastMAP available from Rainbow Mykotronx, Inc. Despite the availability of
cryptographic accelerator products, there remains room for improvement in the art.

For example, conventional cryptographic data processing systems generally
use two main methods for issuing a command to a cryptographic accelerator: The first
method involves the provision of a command register on the cryptographic accelerator

that a host processor uses to issue a single command. Once the cryptographic
1

WO 01/86432 PCT/US01/15176

10

15

20

25

30

accelerator completes executing a command, the host processor may issue a new
command. After completing a command, the cryptographic accelerator is generally
idle until the host processor issues a new command. Unfortunately, the host processor
may spend much time interacting directly with the cryptographic accelerator to
download data and issue commands. This may reduce the amount of time available to
the host processor for attending to other tasks.

The second method allows the host processor to download one or more
command sequences to the cryptographic accelerator and then to instruct the
cryptographic accelerator to execute one or more of the downloaded command
sequences. After completing a command sequence, the cryptographic accelerator is
generally idle until the host processor issues a new command. The size of the
command sequences may be limited based on the amount of memory that may be
placed on the cryptographic accelerator. Like the first method, the host processor
may spend much time interacting directly with the cryptographic accelerator to
download data and issue command sequences. This may reduce the amount of time
available to the host processor for attending to other tasks.

Cryptographic accelerators generally perform operations using one or more
operands. These devices may include general-purpose operand storage that comprises
fixed length registers to store the operands and results. To execute an instruction, a
register number is used to indicate which operand should be used for the operation
and where the output should be stored. For example, if the operation were "a+b =
c," then part of the instruction would indicate that "a" is in register 7, "b" is in register
1, and "c" should be put into register 2.

Because the registers are fixed in size and the operands and results are variable
in size, the size of the operands will always be less than or equal to the register size.
As aresult, some of the memory in the registers may be wasted. This reduces the
number of operands that may be stored on a chip in a given amount of space. In
addition, if the cryptographic accelerator is redesigned to accommodate larger
operands, then each of the registers may need to be modified. More registers may be
designed into a cryptographic accelerator; however, adding more memory to a
cryptographic accelerator may reduce the amount of other functionality that may be
included and/or increase the cost.

Cryptographic processors and/or other types of signal processors and

integrated circuits may use a hardware-based random number generator. Various -
2

WO 01/86432 PCT/US01/15176

10

15

20

25

30

conventional methods may be used to retrieve random numbers from an integrated
circuit incorporating a random number generator. One method is for the random
number generator to provide one or more data registers that a host processor may read
to obtain random numbers. The host processor may tell the random number generator
to provide more random data before or after retrieving random data from the registers.
The random number generator may generate the random data in the background so
that random data may be available when needed by the host processor.

Another method for obtaining random data is for the host processor to request
a block of random data from the random number generator. The host processor may
provide the random number generator with a request that specifies an amount of
random data and a location in memory where the random data should be placed. The
random number generator may then generate the random data and transfer the random
data to the requested location in the background.

Unfortunately, by providing random data through data registers on the random
number generator or other integrated circuit chip, any buffer management that rﬁay be
desired is generally performed by the host processor. Moreover, the bus that connects
the host processor with the random number generator may be used inefficiently
because single data reads are typically used instead of block reads. If a host processor
requests a block of random data, however, then the host processor may initiate the
data transfers and any desired buffer management that may be desired is generally
performed by the host processor. The foregoing operations may be performed in the
background and/or a fast host processor may be used; however, a faster host processor

may increase system costs.

SUMMARY OF THE INVENTION

Embodiments of the present invention provide cryptographic data processing
systems, computer program products, and methods of operating same. For example,
in accordance with embodiments of the present invention, cryptographic data
processing systems comprise a host processor, a system memory coupled to the host
processor, and a cryptographic processor integrated circuit that comprises a local
memory. One or more operands are downloaded into the local memory from the
system memory and the cryptographic processor executes an instruction that
references one of the downloaded operands using a first relative position in the local

memory. In further embodiments of the present invention, a result is generated based
3

WO 01/86432 PCT/US01/15176

10

15

20

25

30

on the operand referenced when executing the instruction and this result is stored at a
second relative position in the local memory. The first and second relative positions
may comprise first and second offsets from a base address in the local memory.
Advantageously, operands and results may be packed togetfler in the local memory,
which may conserve storage space.

In accordance with further embodiments of the present invention, the
performance of cryptographic data processing systems may be improved by providing
separate command interfaces that are respectively associated with execution units in
the cryptographic processor. For example, a plurality of execution units may be
provided in the cryptographic processor. Commands blocks may be respectively
provided to the execution units and these command blocks may be executed
simultaneously by the plurality of execution units. By performing operations in
parallel using a plurality of functional units, the total number of operations that may
be performed may be increased and the average latency for completing operations

may be reduced.

BRIEF DESCRIPTION OF THE DRAWINGS

Other features of the present invention will be more readily understood from
the following detailed description of specific embodiments thereof when read in
conjunction with the accompanying drawings, in which:

FIG. 1 is a block diagram that illustrates cryptographic data processing
systems, computer program products, and methods of operating same in accordance
with embodiments of the present invention;

FIG. 2 is a flowchart that illustrates operations of cryptographic data
processing systems and computer program products in accordance with embodiments
of the present invention;

FIGS. 3 - 5 are block diagrams that illustrate functional execution units of a
cryptographic accelerator processor in accordance with embodiments of the present
invention;

FIG. 6 is a flowchart that illustrates operations of cryptographic data
processing systems and computer program products in accordance with further

embodiments of the present invention;

WO 01/86432 PCT/US01/15176

10

15

20

25

30

FIG. 7 - 8 are block diagrams that illustrate an encryption/authentication
command queue and a public key command queue, respectively, in accordance with '
embodiments of the present invention;

FIGS. 9 - 11 are flowcharts that illustrate operations of cryptographic data
processing systems and computer program products in accordance with further
embodiments of the present invention;

FIGS. 12A - 12D are block diagrams that illustrate command blocks in
accordance with embodiments of the present invention;

FIG. 13 is a flowchart that illustrates operations of cryptographic data
processing systems and computer program products in accordance with further
embodiments of the present invention;

FIGS. 14A, 14B, and 15 are block diagrams that illustrate command blocks in
accordance with further embodiments of the present invention;

FIGS. 16 and 17 are flowcharts that illustrate operations of cryptographic data
processing systems and computer program products in accordance with further
embodiments of the present invention;

FIG. 18 is a block diagram that illustrates a random number generator data
queue in accordance with embodiments of the present invention;

FIG. 19 is a flowchart that illustrates operations of cryptographic data
processing systems and computer program products in accordance with further
embodiments of the present invention;

FIG. 20 is a block diagram that illustrates a command interface for a
conventional application specific integrated circuit;

FIG. 21 is a block diagram that illustrates parallel command interfaces for an
application specific integrated circuit in accordance with embodiments of the present
invention;

FIG. 22 is a block diagram of a cryptographic accelerator processor in which
command interface managers are respectively associated with functional execution
units in accordance with embodiments of the present invention; and

FIG. 23 is a flowchart that illustrates operations of cryptographic data
processing systems and computer program products in accordance with further

embodiments of the present invention.

WO 01/86432 PCT/US01/15176

10

15

20

25

30

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

While the invention is susceptible to various modifications and alternative
forms, specific embodiments thereof are shown by way of example in the drawings
and will herein be described in detail. It should be understood, however, that there is
no intent to limit the invention to the particular forms disclosed, but on the contrary,
the invention is to cover all modifications, equivalents, and alternatives falling within
the spirit and scope of the invention as defined by the claims. Like reference numbers
signify like elements throughout the description of the figures. It will also be
understood that when an element is referred to as being "connected" or "coupled" to
another element, it can be directly connected or coupled to the other element or
intervening elements may also be present. In contrast, when an element is referred to
as being "directly connected" or "directly coupled" to another element, there are no
intervening elements present.

The present invention may be embodied as methods, data processing systems,
and/or computer program products. Accordingly, the present invention may be
embodied in hardware and/or in software (including firmware, resident software,
micro-code, efc.). Furthermore, the present invention may take the form of a
computer program product on a computer-usable or computer-readable storage
medium having computer-usable or computer-readable program code embodied in the
medium for use by or in connection with an instruction execution system. In the
context of this document, a computer-usable or computer-readable medium may be
a‘ny medium that can contain, store, communicate, propagate, or transport the program
for use by or in connection with the instruction execution system, apparatus, or
device.

The computer-usable or computer-readable medium may be, for éxample but
not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, device, or propagation medium. More specific
examples (a nonexhaustive list) of the computer-readable medium would include the
following: an electrical connection having one or more wires, a portable computer
diskette, a random access memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash memory), an optical fiber, and a
portable compact disc read-only memory (CD-ROM). Note that the computer-usable
or computer-readable medium could even be paper or another suitable medium upon

which the program is printed, as the program can be electronically captured, via, for
6

WO 01/86432 PCT/US01/15176

10

15

20

25

30

instance, optical scanning of the paper or other medium, then compiled, interpreted, or
otherwise processed in a suitable manner, if necessary, and then stored in a computer
memory.

Referring now to FIG. 1, an exemplary cryptographic data processing system
12, in accordance with embodiments of the present invention, comprises a
cryptographic accelerator processor 14, a host processor 16, a cache memory 18, a
system memory 22, and a system bus controller 24, such as a north-bridge system
controller. The system bus controller 24 couples the host processor 16 to the cache
memory 18 and the system memory 22, and also couples the host processor 16 and the
system memory 22 to the cryptographic accelerator processor 14 via a system bus 26,
which may be, for example, a peripheral component interconnect (PCI) bus. The host
processor 16 may be, for example, a commercially available or custom
microprocessor. The system memory 22 is representative of an overall hierarchy of
memory devices containing the software and data used to implement the functionality
of the cryptographic data processing system 12. The system memory 22 may include,
but is not limited to, the following types of devices: ROM, PROM, EPROM,
EEPROM, flash, SRAM, and DRAM.

In accordance with embodiments of the present invention, the cryptographic
accelerator processor 14 comprises a random number generator (RNG) execution unit
28, an encryption/authentication (E/A) execution unit 32, and a public key (PK)
engine execution unit 34, which are coupled to a local memory 36 via a local bus 38.
In accordance with particular embodiments of the present invention, the system
memory 22 contains a random number (RN) data queue 42, an E/A command queue
44, a PK command queue 46, and data buffer(s) 47.

| Although FIG. 1 illustrates an exemplary cryptographic data processing
system architecture, it will be understood that the present invention is not limited to
such a configuration, but is intended to encompass any configuration capable of
carrying out operations described herein. Computer program code for carrying out
operations of embodiments of the cryptographic data processing system 12 may be
written in a high-level programming language, such as C or C++, for development
convenience. Nevertheless, some modules or routines may be written in assembly
language or even micro-code to enhance performance and/or memory usage. It will
be further appreciated that the functionality of any or all of the program modules may

also be implemented using discrete hardware components, a single application
7

WO 01/86432 PCT/US01/15176

10

15

20

25

30

specific integrated circuit (ASIC), or a programmed digital signal processor or
microcontroller.

The present invention is described hereinafter with reference to flowchart
and/or block diagram illustrations of methods, data processing systems, and/or
computer program products in accordance with exemplary embodiments of the
invention. It will be understood that each block of the flowchart and/or block diagram
illustrations, and combinations of blocks in the flowchart and/or block diagram
illustrations, may be implemented by computer program instructions. These computer
program instructions may be provided to a processor of a general purpose computer, a
special purpose computer, or other programmable data processing apparatus to
produce a machine, such that the instructions, which execute via the processor of the
computer or other programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart and/or block diagram block
or blocks.

These computer program instructions may also be stored in a computer usable
or computer-readable memory that may direct a computer or other programmable data
processing apparatus to function in a particular manner, such that the instructions
stored in the computer usable or computer-readable memory produce an article of
manufacture including instructions that implement the function/act specified in the
flowchart and/or block diagram block or blocks.

The computer program instructions may also be loaded onto a computer or
other programmable data processing apparatus to cause a series of operational steps to
be performed on the computer or other programmable apparatus to produce a
computer implemented process such that the instructions that execute on the computer
or other programmable apparatus provide steps for implementing the functions/acts
specified in the flowchart and/or block diagram block or blocks.

Exemplary operations of cryptographic data processing systems, computer
program products, and methods of operating same, in accordance with embodiments
of the present invention, will be described hereafter. Referring now to FIG. 2, the
host processor 16 loads a command block into one of the command queues 44 and 46
at block 52. The cryptographic accelerator processor 14 may be notified by the host
processor 16 that the command block is available for processing or may periodically
access the command queues 44, and/or 46 to determine if a command block is

available for processing. The cryptographic accelerator processor 14 downloads the
8

WO 01/86432 PCT/US01/15176

10

15

20

25

30

command block from one of the command queues 44 and 46 and executes the
command block at block 54. Once the cryptographic accelerator processor 14
completes execution of the command block, the host processor 16 is notified at block
56. Thus, according to embodiments of the present invention, the host processor 16
need not spend time interacting directly with the cryptographic accelerator processor
14 (e.g., issuing a command to the cryptographic accelerator processor 14, waiting for
that command to complete, and then issuing another command). Instead, the host
processor 16 may load commands into command queues 44 and 46, which may then
be processed in background by the cryptographic accelerator processor 14. Moreover,
the size and number of command block sequences may be less constrained because
the availability of system memory is generally more abundant.

Referring now to FIGS. 3 - 5, the RNG execution unit 28, the E/A execution
unit 32, and the PK engine execution unit 34 may use various registers that facilitate
communication with the RN data queue 42 and the command queues 44 and 46. For
example, as shown in FIG. 3, a control/status register 62, a RN data queue base
address register 64, a RN data queue size register 66, and a RN data queue pointer
register 68 may be defined for use by the RNG execution unit 28. The control/status
register 62 may include a self-test error field, which may be set if the RNG execution
unit 28 generates two successive random number samples that are the same, and/or an
error flag field, which may be used to notify the host processor 16 of an error on the
system bus 26. The RN data queue base address register 64 may be used to hold the
base address of the RN data queue 42 in the system memory 22. If the RN data queue
42 does not have a fixed size, then the RN data queue size register 66 may be used to
hold the size of the RN data queue 42. The RN data queue pointer register 68 may
comprise a read pointer 72 portion and a write pointer 74 portion, which may be used
by the RNG execution unit 28 and the host processor 16 as will be discussed in more
detail hereinafter.

As shown in FIG. 4, a control/status register 82, an E/A command queue base
address register 84, an E/A command queue size register 86, and an E/A command
queue pointer register 88 may be defined for use by the E/A execution unit 32. The
control/status register 82 may include an interrupt flag field, which may be set if the
host processor 16 requests an interrupt upon completion of a command block and/or if
execution of a command block fails and/or an error flag field, which may be used to

notify the host processor 16 of an error on the system bus 26. The E/A command
9

WO 01/86432 PCT/US01/15176

10

15

20

25

30

queue base address register 84 may be used to hold the base address of the E/A
command queue 44 in the system memory 22. If the E/A command queue 44 does
not have a fixed size, then the E/A command queue size register 86 may be used to
hold the size of the E/A command queue 44. The E/A command queue pointer
register 88 may comprise a read pointer 92 portion and a write pointer 94 portion,
which may be used by the E/A execution unit 32 and the host processor 16,
respectively, as will be discussed in more detail hereinafter.

As shown in FIG. 5, a control/status register 102, a PK command queue base
address register 104, a PK command queue size register 106, and a PK command
queue pointer register 108 may be defined for use by the PK engine execution unit 34.
The control/status register 102 may include an interrupt flag field, which may be set if
the host processor 16 requests an interrupt upon completion of a command block
and/or if execution of a command block fails and/or an error flag field, which may be
used to notify the host processor 16 of an error on the system bus 26. The PK
command queue base address register 104 may be used to hold the base address of the
PK command queue 46 in the system memory 22. If the PK command queue 46 does
not have a fixed size, then the PK command queue size register 106 may be used to
hold the size of the PK command queue 46. The PK command queue pointer register
108 may comprise a read pointer 112 portion and a write pointer 114 portion, which
may be used by the PK engine execution unit 34 and the host processor 16,
respectively, as will be discussed in more detail hereinafter.

Referring now to FIG. 6, operations for loading a command block into the
E/A command queﬁe 44 and/or the PK command queue 46, in accordance with
embodiments of the present invention, will be described in more detail hereafter. In
general, the host processor 16 writes commands into the command queues 44 and 46
beginning at write address locations stored in the write pointers for the respective
command queues (e.g., write pointers 94 and 114). Before writing a command block
into a command queue, however, the host processor determines at block 122 whether
the write address plus the command block size equals the read address stored in the
corresponding read pointer 92 or 112. If the result determined at block 122 is "Yes,"
then the host processor 16 postpones loading a new command block into the
command queue until the cryptographic accelerator processor 14 has incremented the
read address. If, however, the result determined at block 122 is "No," then the host

processor 16 loads a command block into the command queue at block 124 at the
10

WO 01/86432 PCT/US01/15176

10

15

20

25

30

write address associated with the command queue and then increments the write
address at block 126 by an amount corresponding to the size of the loaded command
block. The host processor 16 need not check the current read address every time a
new command block is loaded. Instead, the host processor 16 may check the read
address when the write address is getting close to the last value the host processor 16
has for the read address. Checking the read address may be expensive in terms of
processor cycles consumed. By checking the read address only when the read address
is getting close to the write address (e.g., within a predefined threshold), host
processor 16 cycles may be conserved.

The foregoing operations are illustrated, for example, in FIGS. 7 and 8, which
show embodiments of the E/A command queue 44 and the PK command queue 46,
respectively. As shown in FIGS. 7 and 8, both the E/A command queue 44 and the
PK command queue 46 are configured to hold m command blocks, which each
comprise eight, thirty-two bit words. The host processor 16 has written a single
command block into the first command block position (i.e., the "0" position) and the
write address has been incremented to point to the next empty command block slot.
The addresses used in FIGS. 7 and 8 are based on command block slot numbers for
purposes of illustration. These addresses may be converted into absolute addresses by
multiplying the command block slot number by 256 and adding the resulting product
to the respective base addresses for the command queues, which are stored in the E/A
command queue base address register 84 and the PK command queue base address
register 104, respectively. Note that the test used at block 122 of FIG. 6 to determine
whether a new command block may be loaded into a command queue implies that if a
command queue may hold up to m command blocks, then only m -1 command blocks
may be stored in the command queue at the same time.

Referring now to FIG. 9, operations for executing a command block that has
been loaded into the E/A command queue 44 and/or the PK command queue 46, in
accordance with embodiments of the present invention, will be described in more
detail hereafter. At block 132, the cryptographic accelerator processor 14 determines
whether the write address is equal to the read address. Specifically, the E/A execution
unit 32 determines whether the write address is equal to the read address for the E/A
command queue 44 and the PK engine execution unit 34 determines whether the write
address is equal to the read address for the PK command queue 46. If the result

determined at block 132 is "Yes," then the cryptographic processor 14 waits until the
11

WO 01/86432 PCT/US01/15176

10

15

20

25

30

host processor 16 loads a new command block into the command queue. If, however,
the result determined at block 132 is "No," then the cryptographic accelerator
processor 14 downloads the command block at the read address associated with the
command queue and executes the command block at block 134. In particular
embodiments of the present invention, multiple command blocks may be downloaded
for execution on the cryptographic accelerator processor 14 at the same time, which
may further improve performance. The cryptographic accelerator processor 14 then
increments the read address at block 136 by an amount corresponding to the size of
the executed command block.

Returning to FIGS. 7 and 8, the read addresses are set to point to the first
command block slot, which has been loaded with a command block by the host
processor 16. The E/A execution unit 32 and the PX engine execution unit 34 may
read the command blocks loaded in the E/A command queue 44 and the PK command
queue 46, respectively, with only minimal interaction with the host processor 16, e.g.,
maintenance of the read pointers 92 and 112, and the write pointers 94, and 114. In
general, the cryptographic accelerator processor 14 may continue to execute
commands located in a circular command queue in system memory until the read
address equals the write address for that command queue.

In accordance with further embodiments of the present invention, interaction
between the host processor 16 and the cryptographic accelerator processor 14 may be
further reduced and overall system performance improved by including load and store
commands in the cryptographic accelerator processor's command set. Referring now
to FIG. 10, a load command loads one or more operands from the system memory 22
(e.g., the data buffer(s) 47) to the local memory 36 at block 142. The cryptographic
accelerator processor 14 then performs one or more operations on the operand(s) at
block 144 to generate a result that is stored in the local memory 36. A store command
then stores the result in the system memory 22 at block 146. Advantageously, the
host processor 16 need not consume processing time downloading operands to the
cryptographic accelerator processor 14 and/or uploading results from the
cryptographic accelerator processor 14 into the system memory 22.

To improve utilization of the chip area used to implement the cryptographic
accelerator processor 14, at least a portion of the operands downloaded from the
system memory 22 may be stored in the local memory 36. Instead of using a register

number to identify the location of operands and results, an offset is used that identifies
12

WO 01/86432 PCT/US01/15176

10

15

20

25

30

the relative position of the operands and results in the local memory 36. For example,
to perform the operation "a + b = c," a cryptographic accelerator processor 14
instruction may indicate that "a" is at offset 0 relative to a base address of the local
memory 36, "b" is at offset 8 relative to the base address of the local memory 36, and
the result "c" should be placed at offset 122 relative to the base address of the local
memory 36. In accordance with further embodiments of the present invention, the
result generated in the local memory 36 may also be stored in a result field of a
command block, which is located in one of the command queues 44 and 46 in the
system memory 22. Advantageously, operands and results may be packed together
into the local memory 36, which may conserve storage space. Because there is no
wasted space in storing the operands and results in the local memory 36, memory
utilization may be improved. If the cryptographic accelerator processor 14 needs to
be redesigned to handle larger operands, then the local memory 36 may be easier to
resize than resizing several registers.

In accordance with further embodiments of the present invention, interaction
between the host processor 16 and the cryptographic accelerator processor 14 may be
further reduced and overall system performance improved by allowing the
cryptographic accelerator processor 14 to inform the host processor 16 when
command blocks have been executed. Referring now to FIG. 11, the host processor
16 loads a command block into one of the command queues 44 and 46 at block 152.
As shown in FIG. 12A, the command block may include an interrupt field, which
may be set by the host processor 16 to turn an interrupt request on or off. The
cryptographic accelerator processor 14 downloads the command block from one of
the command queues 44 and 46 and executes the command block at block 154. The
cryptographic accelerator processor 14 may optionally store error information in the
command block as shown in FIG. 12B at block 156. The error information may
comprise information that is associated with downloading the command block to the
cryptographic accelerator processor 14 and/or executing the command block on the
cryptographic accelerator processor 14. At block 158, if an interrupt has been
requested in the interrupt field of the command block, then the cryptographic
accelerator processor 14 invokes an interrupt to notify the host processor 16 that the
command block has completed.

In other embodiments of the present invention, instead of invoking an interrupt

to notify the host processor 16 that a command block has been executed, the
13

WO 01/86432 PCT/US01/15176

10

15

20

25

30

cryptographic accelerator processor 14 may update a completion field in the
command block as shown in FIG. 12C. In addition, a periodic interrupt may be
defined that upon each occurrence triggers the host processor 16 to check one or more
of the command queues 44 and 46 to determine whether any of the command blocks
stored therein have been executed by examining their completion fields. In still other
embodiments of the present invention, the cryptographic accelerator processor 14 may
store the results from executing a command block in the command block as shown in
FIG. 12D.

In still other embodiments of the present invention, the host processor 16 may
set a timer when storing a command block into a command queue 42, 44. Upon
expiration of the timer, the host processor 16 may check to determine whether the
command block has been executed. Advantageously, the status of a command block
may be determined by the host processor 16 without the need to process an interrupt
from the cryptographic accelerator processor 14.

In accordance with further embodiments of the present invention, improved
utilization of the system memory 22 may be attained by re-using at least a portion of a
command block that contains input data to store a result or output that is generated by
an adjunct processor, such as the cryptographic accelerator processor 14, upon
executing the command block. It is assumed that the size of the result or output is
small enough to fit into the portion of the command block containing the input data
that is to be overwritten. In addition, the region of the command block in which the
result or output is stored should be selected carefully to ensure that the input data that
is overwritten is no longer needed by the host processor 16 after the command block
has been executed by the adjunct processor.

Referring now to FIG. 13, exemplary operations begin at block 162 where the
host processor loads a command block that includes input data into one of the
command queues 44 or 46 in the system memory 22. Note that that instead of or in
addition to including input data into the command block, the command block may
include pointers to input data that réside, for example, in the data buffer(s) 47 in the
system memory 22. An adjunct processor, such as the cryptographic accelerator
processor 14, may download the command block and perform one or more operations
on the input data to generate a result at block 164. If the command block includes
pointers to input data, then the data are separately downloaded to the cryptographic

accelerator processor 14 using the input data pointers. The result is then stored in the
14

WO 01/86432 PCT/US01/15176

10

15

20

25

30

command block in the system memory 22 at block 166 such that at least a portion of
the input data is overwritten. Advantageously, the memory reserved for the command
block in the system memory 22 may be reduced because additional storage space need
not be reserved to store the result of executing the command block either in the
command block or elsewhere in the system memory 22.

The foregoing operations are illustrated by way of example in FIGS. 14A and
14B, which show an exemplary command block for decrypting an encrypted packet.’
Specifically, in FIG. 14A, a command block is shown that comprises a field that
contains a hash key for the encrypted packet and another field that contains input
information. The cryptographic accelerator processor 14 downloads the command
block of FIG. 14A and performs hash operations using the hash key and input
information to generate a hash value. As shown in FIG. 14B, this hash value is then
stored in the command block in the system memory 22 by overwriting the input
information, which is no longer needed once the hash value has been computed. Note
that the input information may be one or more pointers to input data stored, for
example, in the data buffer(s) 47 in the system memory 22.

In accordance with further embodiments of the present invention illustrated in
FIG. 15, the command block may include an input pointer field and/or an output
pointer field, which are used to identify the location of the encrypted packet in the
system memory 22 and the location where the decrypted packet is to be stored in the
system memory 22. For example, the cryptographic accelerator processor 14 may use
the input pointer to download the encrypted packet from the system memory 22 and -
may then decrypt the encrypted packet using the hash key and input information to
generate a hash value as discussed hereinabove. Note that the input information may
be one or more pointers to input data stored, for example, in the data buffer(s) 47 in
the system memory 22. The hash value may be attached to the decrypted packet and
the decrypted packet with the attached hash value may be stored in the system
memory 22 at the address identified by the output pointer field in the command block.

Cryptographic processors and/or other types of signal processors and
integrated circuits may use a hardware-based random number generator. The
cryptographic accelerator processor 14 may include a RNG execution unit 28 that
may be used to generate random numbers for use by other execution units of the
cryptographic accelerator processor 14 and/or the host processor 16. Exemplary

operations that may be used to reduce interaction between the host processor 16 and
15

WO 01/86432 PCT/US01/15176

10

15

20

25

30

the cryptographic accelerator processor 14 and to improve overall system
performance will be described hereafter. Referring now to FIG. 16, operations begin
at block 172 where the cryptographic accelerator processor 14 loads a random number
sample into the RN data queue 42 beginning at the write address stored in the write
pointer field 74 of the RN data queue pointer register 68 (see FIG. 3). At block 174
the host processor 16 reads the random number sample in the RN data queue 42
beginning at the read address stored in the read pointer field 72 of the RN data queue
pointer register 68 (see FIG. 3). Thus, according to embodiments of the present
invention, the host processor 16 need not spend time interacting directly with the
cryptographic accelerator processor 14 to request blocks of random data and/or
reading random data from, for example, one or more registers on the cryptographic
accelerator processor 14 chip.

Referring now to FIG. 17, operations for loading a random number sample
into the RN data queue 42, in accordance with embodiments of the present invention,
will be described in more detail hereafter. Before writing a random number sample
into the RN data queue 42, the cryptographic accelerator processor 14 determines at
block 182 whether the write address plus the random number sample size equals the
read address stored in the read pointer field 72. If the result determined at block 182
is "Yes," then the cryptographic processor 14 postpones loading a new random
number sample into the RN data queue 42 until the host processor 16 has incremented
the read address. If, however, the result determined at block 182 is "No," then the
cryptographic processor 14 loads a random number sample into the RN data queue 42
at block 184 at the write address stored in the write pointer field 74 and then
increments the write address at block 186 by an amount corresponding to the size of
the loaded random number sample.

Note that in accordance with embodiments of the present invention, the
cryptographic processor 14 may include a register and/or may recognize a command
block that may be written to the cryptographic processor 14 that allows the host
processor 16 to, for example, provide the cryptographic processor 14 with a random
number seed and/or instruct the cryptographic processor 14 to begin generating
random numbers.

The foregoing operations are illustrated, for example, in FIG. 18, which
shows an exemplary embodiment of the RN data queue 42. As shown in FIG. 18, the

RN data queue 42 is configured to hold 512 random number samples, which each
16

WO 01/86432 PCT/US01/15176

10

15

20

25

30

comprise 64 bits. The cryptographic processor 14 has written four random number
samples into addresses 1 through 4 and the write address has been incremented to
point to the next available address, which is empty or contains data that have already
been read by the host processor 16. The addresses shown in FIG. 18 are based on
random number sample units for purposes of illustration. These addresses may be
converted into absolute addresses by multiplying the random number sample number
by 64 and adding the resulting product to the respective base address for the RN data
queue 42, which is stored in the RN data queue base address register 64. Note that the
test used at block 182 of FIG. 17 to determine whether a new random number sample
may be loaded into the RN data queue 42 implies that if the RN data queue 42 may
hold up to m random number samples, then only m - 1 random number samples may
be stored in the RN data queue 42 at the same time. Thus, if the RN data queue 42 is
filled to its capacity, then it may hold 32,704 bits (511, 64-bit random number
samples), which exceeds the 20,000 bits required by the Federal Information
Processing Standard (FIPS) 140-1, Security Requirements for Cryptographic Modules
issued January 11, 1994.

Referring now to FIG. 19, operations for reading a command block that has
been loaded into the RN data queue 42, in accordance with embodiments of the
present invention, will be described in more detail hereafter. At block 192, the host
processor 16 determines whether the write address is equal to the read address. If the
result determined at block 192 is "Yes," then the host processor 16 waits until the
cryptographic accelerator processor 14 loads a new random number sample into the
RN data queue 42. If, however, the result determined at block 192 is "No," then the
host processor 16 reads the random number sample at the read address stored in the
read pointer field 72 at block 194. The host processor 16 then increments the read
address at block 196 by an amount corresponding to the size of the random number
sample. The host processor 16 need not check the current write address every time a
new random number sample is read. Instead, the host processor 16 may check the
write address when the read address is getting close to the last value the host
processor 16 has for the write address.

Thus, according to embodiments of the present invention, a cryptographic
accelerator processor 14 may provide random number samples for use by a host
processor 16 with reduced interaction between the host processor 16 and the

cryptographic accelerator processor 14. In general, the host processor 14 need only
17

WO 01/86432 PCT/US01/15176

10

15

20

25

30

interact with the cryptographic accelerator processor 14 to update the read address and
to check the value of the write address when the read address approaches the last
value the host processor 14 has for the write address. In addition, the cryptographic
accelerator processor 14 may manage the buffering of the random number samples,
which may conserve processor cycles of the host processor 16 and may reduce
transactions on the system bus 26, which may improve overall system performance.

The performance of cryptographic data processing systems may be affected by
the system architecture and the methodology used to perform operations. For
example, conventional cryptographic data processing systems may comprise one or
more ASICs, such as the ASIC 202 shown in FIG. 20. The ASIC 202 comprises a
plurality of functional units 204, 206, and 208, which are configured to perform
specific operations. As shown in FIG. 20, however, input commands are provided to
the ASIC 202 serially and then routed to the appropriate functional unit 204, 206,
and/or 208. The outputs and/or results of executing the input commands are provided
serially as command outputs from the ASIC 202. Thus, the ASIC 202 typically
processes commands sequentially such that a first command must finish before a
subsequent command may be processed even if the commands are executed by
different functional units.

Referring now to FIG. 21, the performance of cryptographic data processing
systems may be improved, in accordance with embodiments of the present invention,
by providing separate command interfaces that are respectively associated with the
functional units such that each functional unit may receive command inputs and may
generate command outputs and/or results independently of other functional units. As
shown in FIG. 21, an ASIC 212 includes a plurality of functional units 214, 216, and
218, which each receive command inputs through its own command interface and
generate outputs and/or results that may be communicated to another processor
through the command interface. By associating a separate command interface with
each functional unit 214, 216, and 218, the functional units 214, 216, and 218 may
operate independently and in parallel, thereby improving the performance of a
cryptographic data processing system.

Referring now to FIG. 22, the functional units 214, 216, and 218 may
comprise the E/A execution unit 32, the RNG execution unit 28, and the PK engine
execution unit 34. The E/A execution unit 32 comprises a command interface

manager 222, the RNG execution unit 28 comprises a command interface manager
18

WO 01/86432 PCT/US01/15176

10

15

20

25

30

224, and the PK engine execution unit 34 comprises a command interface manager
226. These respective command interface managers 222, 224, and 226 may be used
to receive input command blocks from the E/A command queue 44, to transmit
random number samples to the RN data queue 42, and to receive input command
blocks from the PK command queue 46, respectively, and to allow the respective
execution units 28, 32, and 34 to perform operations in parallel.

Referring now to FIG. 23, operations of cryptographic data processing
systems in which command interface managers are respectively associated with a
plurality of functional units, in accordance with embodiments of the present
invention, will be described hereafter. Operations begin at block 232 where one or
more command blocks are provided to each of the functional units, such as, for
example, by providing command blocks in the E/A command queue 44 and the PK
command queue 46 for the E/A execution unit 32 and the PK engine execution unit
34, respectively. At block 234, the command blocks are simultaneously executed by
the functional units by accessing the command blocks in parallel through, for
example, the command interface manager 222 and the command interface manager
226, which are associated with the E/A execution unit 32 and the PK engine execution
unit 34, respectively.

Note that command blocks may be provided to the cryptographic processor 14
in serial fashion over the system bus 24. Nevertheless, the cryptographic processor 14
may distribute command blocks to the command interface managers 222, 224, and
226 associated with the execution units 32, 28, and 34, which may then process the
command blocks in parallel.

For purposes of illustration, exemplary embodiments of the present invention
have been discussed hereinabove in which operations related to random number
generation, encryption/authentication, and public key generation are performed in
parallel based on functional units defined therefor. It will be understood that the
operations that may be performed in parallel may be adjusted based on requirements
and/or needs. Moreover, commands may be provided to the command interface
managers in a variety of ways. A processor may write commands directly to the
command interface managers or, alternatively, commands may be stored in a memory
and the command interface managers may be provided with the addresses where they

may retrieve the stored commands for execution.

19

WO 01/86432 PCT/US01/15176

10

15

In summary, by performing operations in parallel using a plurality of
functional units, the total number of operations that may be performed may be
increased and the average latency for completing operations may be reduced.

The flowcharts of FIGS. 2, 6,9 - 11, 13, 16, 17, 19, and 23 illustrate the
architecture, functionality, and operations of possible embodiments of the
cryptographic data processing system 12 of FIG. 1. In this regard, each block may
represent a module, segment, or portion of code, which comprises one or more
executable instructions for implementing the specified logical function(s). It should
also be noted that in some alternative embodiments, the functions noted in the blocks
may occur out of the order noted in FIGS. 2, 6,9 - 11, 13, 16, 17, 19, and 23. For
example, two blocks shown in succession may in fact be executed substantially
concurrently or the blocks may sometimes be executed in the reverse order,
depending on the functionality involved.

In concluding the detailed description, it should be noted that many variations
and modifications can be made to the preferred embodiments without substantially
departing from the principles of the present invention. All such variations and
modifications are intended to be included herein within the scope of the present

invention, as set forth in the following claims.

20

WO 01/86432 PCT/US01/15176

CLAIMS

We claim:

1. A method of 6perating a cryptographic data processing system that
comprises a host processor, a system memory coupled to the host processor, and a
cryptographic processor integrated circuit that comprises a local memory and is
coupled to the host processor and the system memory, the method comprising:
5 loading at least one operand from the system memory to the local memory;
and
executing an instruction using the cryptographic processor that references the

at least one operand using a first relative position in the local memory.

2. The method of Claim 1, wherein loading at least one operand from the
system memory to the local memory comprises loading at least two operands from the
system memory to the local memory, and executing the instruction comprises:

executing the instruction using the cryptographic processor that references a

5 first one of the operands using the first relative position in the local memory and a
second one of the operands using a second relative position in the local memory, the

first and second relative positions being contiguous with one another.

3. The method of Claim 2, wherein the first one of the operands and the

second one of the operands comprise different numbers of bits.

4. The method of Claim 1, wherein executing the instruction comprises:
generating a result based on the at least one operand; and

storing the result at a second relative position in the local memory.

5. The method of Claim 4, wherein the first relative position comprises a
first offset from a base address in the local memory, and the second relative positiori

comprises a second offset from the base address in the local memory.

6. A method of operating a cryptographic processor integrated circuit that

comprises a local memory, the method comprising:

21

WO 01/86432 PCT/US01/15176

executing an instruction using the cryptographic processor that references at

Jeast one operand using a first relative position in the local memory.

7. The method of Claim 6, wherein executing the instruction comprises:
generating a result based on the at least one operand; and

storing the result at a second relative position in the local memory.

8. The method of Claim 7, wherein the first relative position comprises a
first offset from a base address in the local memory, and the second relative position

comprises a second offset from the base address in the local memory.

9. A method of operating a cryptographic data processing system that
comprises a host processor and a cryptographic processor integrated circuit coupled to
the host processor, the method comprising:

providing a plurality of execution units in the cryptographic processor;

5 providing respective ones of a plurality of command blocks to respective ones
of the plurality of execution units using the host processor; and

executing the plurality of command blocks using the plurality of execution
units so that at least a portion of the execution of the plurality of command blocks is

carried out simultaneously.

10. The method of Claim 9, wherein a system memory is coupled to the
host processor and the cryptographic processor integrated circuit is coupled to the
system memory, and wherein providing the respective ones of the plurality of
command blocks to the respective ones of the plurality of execution units comprises:

5 providing a plurality of command queues in the system memory; and
loading the respective ones of the plurality of command blocks into respective

ones of the plurality of command queues using the host processor.
11. The method of Claim 9, wherein the plurality of execution units

comprise a random number generator unit, an encryption/authentication unit, and a

public key engine unit.

22

WO 01/86432 PCT/US01/15176

12. A cryptographic data processing system, comprising:
a system memory; and
a cryptographic processor that is coupled to the system memory and comprises
a plurality of execution units, each of the execution units comprising a command
5 interface manager that load respective ones of a plurality of command blocks stored in
the system memory to respective ones of the execution units for parallel execution
thereon independent of whether another of the execution units is executing a

command block.

13. The cryptographic data processing system of Claim 12, further
C(;mprising:
a host processor coupled to the system memory and being configured to load

the system memory with the plurality of command blocks.

14. The cryptographic data processing system of Claim 13, wherein the
system memory comprises a plurality of command queues that contain the plurality of
command blocks, and wherein respective ones of the command interface managers
are configured to independently load respective ones of the plurality of command

5 - blocks from respective ones of the plurality of command queues to respective ones of

the execution units for paralle]l execution thereon.

15. The cryptographic data processing system of Claim 12, wherein the
plurality of execution units comprise a random number generator unit, an

encryption/authentication unit, and a public key engine unit.

16. A cryptographic data processing system that comprises a host
processor, a system memory coupled to the host processor, and a cryptographic
processor integrated circuit that comprises a local memory and is coupled to the host
processor and the system memory, the system further comprising:

5 means for loading at least one operand from the system memory to the local
memory; and

means for executing an instruction using the cryptographic processor that

references the at least one operand using a first relative position in the local memory.

23

WO 01/86432 PCT/US01/15176

17. The cryptographic data processing system of Claim 16, wherein the
means for loading at least one operand from the system memory to the local memory
comprises means for loading at least two operands from the system memory to the
local memory, and the means for executing the instruction comprises:

5 means for executing the instruction using the cryptographic processor that
references a first one of the operands using the first relative position in the local
memory and a second one of the operands using a second relative position in the local

memory, the first and second relative positions being contiguous with one another.

18. The method of Claim 17, wherein the first one of the operands and the

second one of the operands comprise different numbers of bits.

19. The cryptographic data processing system of Claim 16, wherein the
means for executing the instruction comprises:
means for generating a result based on the at least one operand; and

means for storing the result at a second relative position in the local memory.

20. The cryptographic data processing system of Claim 19, wherein the
first relative position comprises a first offset from a base address in the local memory,
and the second relative position comprises a second offset from the base address in

the local memory.

21. A cryptographic processor integrated circuit that comprises:
a local memory; and
means for executing an instruction using the cryptographic processor that

references at least one operand using a first relative position in the local memory.

22. The cryptographic processor integrated circuit of Claim 21, wherein
the means for executing the instruction comprises:
means for generating a result based on the at least one operand; and

means for storing the result at a second relative position in the local memory.

23. The cryptographic processor integrated circuit of Claim 22, wherein

the first relative position comprises a first offset from a base address in the local
24

WO 01/86432 PCT/US01/15176

10

memory, and the second relative position comprises a second offset from the base

address in the local memory.

24. A cryptographic data processing system that comprises a host
processor and a cryptographic processor integrated circuit coupled to the host
processor, the system further comprising:

means for providing a plurality of execution units in the cryptographic
processor;

means for providing respective ones of a plurality of command blocks to
respective ones of the plurality of execution units using the host processor; and

means for executing the plurality of command blocks using the plurality of
execution units so that at least a portion of the execution of the plurality of command

blocks is carried out simultaneously.

25. The cryptographic data processing system of Claim 24, wherein a
system memory is coupled to the host processor and the cryptographic processor
integrated circuit is coupled to the system memory, and wherein the means for
providing the respective ones of the plurality of command blocks to the respective
ones of the plurality of execution units comprises:

means for providing a plurality of command queues in the system memory;
and

means for loading the respective ones of the plurality of command blocks into

respective ones of the plurality of command queues using the host processor.

26. The cryptographic data processing system of Claim 24, wherein the
plurality of execution units comprise a random number generator unit, an

encryption/authentication unit, and a public key engine unit.

27. A computer program product for operating cryptographic data
processing system that comprises a host processor, a system memory coupled to the

host processor, and a cryptographic processor integrated circuit that comprises a local

25

WO 01/86432 PCT/US01/15176

10

10

memory and is coupled to the host processor and the system memory, the computer
program product comprising:

a computer readable program medium having computer readable program
code embodied therein, the computer readable program code comprising:

computer readable program code for loading at least one operand from the
system memory to the local memory; and

computer readable program code for executing an instruction using the
cryptographic processor that references the at least one operand using a first relative

position in the local memory.

28. The computer program product of Claim 27, wherein the computer
readable program code for loading at least one operand from the system memory to
the local memory comprises computer readable program code for loading at least two
operands from the system memory to the local memory, and the computer readable
program code for executing the instruction comprises:

computer readable program code for executing the instruction using the
cryptographic processor that references a first one of the operands using the first
relative position in the local memory and a second one of the operands using a second
relative position in the local memory, the first and second relative positions being

contiguous with one another.

29. The computer program product of Claim 28, wherein the first one of

the operands and the second one of the operands comprise different numbers of bits.

30. The computer program product of Claim 27, wherein the computer
readable program code for executing the instruction comprises:

computer readable program code for generating a result based on the at least
one operand; and

computer readable program code for storing the result at a second relative

position in the local memory.

31. The computer program product of Claim 30, wherein the first relative

position comprises a first offset from a base address in the local memory, and the

26

WO 01/86432 PCT/US01/15176

second relative position comprises a second offset from the base address in the local

memory.

32. A computer program product for operating a cryptographic processor
integrated circuit that comprises a local memory, the computer program product
comprising:

a computer readable program medium having computer readable program

5 code embodied therein, the computer readable program code comprising:

computer readable program code for executing an instruction using the

cryptographic processor that references at least one operand using a first relative

position in the local memory.

33. The computer program product of Claim 32, wherein the computer
readable program code for executing the instruction comprises:
computer readable program code for generating a result based on the at least
one operand; and
5 computer readable program code for storing the result at a second relative

position in the local memory.

34. The computer program product of Claim 33, wherein the first relative
position comprises a first offset from a base address in the local memory, and the
second relative position comprises a second offset from the base address in the local

memory.

35. A computer program product for operating a cryptographic data
processing system that comprises a host processor and a cryptographic processor
integrated circuit coupled to the host processor, the computer program product
comprising:

5 a computer readable program medium having computer readable program
code embodied therein, the computer readable program code comprising:

computer readable program code for providing a plurality of execution units in

the cryptographic processor;

27

WO 01/86432 PCT/US01/15176

10

10

computer readable program code for providing respective ones of a plurality
of command blocks to respective ones of the plurality of execution units using the
host processor; and

computer readable program code for executing the plurality of command
blocks using the plurality of execution units so that at least a portion of the execution

of the plurality of command blocks is carried out simultaneously.

36. The computer program product of Claim 35, wherein a system memory
is coupled to the host processor and the cryptographic processor integrated circuit is
coupled to the system memory, and wherein the computer readable program code for
providing the respective ones of the plurality of command blocks to the respective
ones of the plurality of execution units comprises:

computer readable program code for providing a plurality of command queues
in the system memory; and

computer readable program code for loading the respective ones of the
plurality of command blocks into respective ones of the plurality of command queues

using the host processor.

37. The computer program product of Claim 35, wherein the plurality of
execution units comprise a random number generator unit, an

encryption/authentication unit, and a public key engine unit.

38. A method of operating a cryptographic processor, comprising:

dividing functions of the cryptographic processor into a plurality of execution
units; and

providing commands to the execution units independent of whether another of

the execution units is processing a command.

39. The method of Claim 38, wherein the execution units comprise at least
one of an encryption/authentication execution unit, a public key engine execution

unit, and a random number generator execution unit.

28

WO 01/86432 PCT/US01/15176

40. The method of Claim 38, wherein at least a portion of the execution of

the commands is carried out simultaneously by the execution units.

29

PCT/US01/15176

WO 01/86432

L "OId

sz

iz
(s)layng
ejeq

oy
ananp
puewwo

Ad

1/18

24
ananp
puewwo)

v/3

42
ananp ejeq
Nd

174
Jajjoquon
sng welsAg

gl
Aows|\ ayoen

44
Koway
walsAg

/

cl

9l
108880014 }SOH

9¢

Z3
aulbug
Aay] ollgnd

Kiows|pn

43
uofjednuaLyiny
JuoirdAious

vl

8¢
lojeisusn)
JequinN
wopuey

0| losseoold
lojelsjaooy oiydelboydAin

WO 01/86432 PCT/US01/15176
2/18

(Begin)

Y

Load command block into | /— 92

command queue using the
host processor

Y

Execute command block / 54

using the cryptographic
processor

y

Notify the host processor | / 56
that the command block has
been executed

122

write address + command
block size = read address?

No
Y

Load command block into | /— 724
command queue using the
host processor

126

Y
Increment write address

N

End FIG. 6

PCT/US01/15176

WO 01/86432

3/18

191U10d SJLIAN

lajuio4 peay

89
lajsibay Jeulod enanp eleq N

‘_myw_mwmn_ 9ZIg ananp eleg NY

¥9
(_myw_mmm SSalPPY aseg snanpd eled N

29
._mu_m_mmmn_ snjel}s/|o41uo)

8z
Jojelauss)
J2qUInN Wwopuey

PCT/US01/15176

WO 01/86432

4/18

lajulod A lajulod pesy

88
l19)s1Bay JojI0d |nanp puewwon v/

J
|
19)s160y 821 ananp puewwo) /3 B

v8
._mu—w_mmm SS3IPPY 8skeg snanp puewlio) /3

c8
la)sibay sniejg/jo5uo)

43
uonesiusyiny
JuondAioug

PCT/US01/15176

WO 01/86432

5/18

Ll Ll
Jauiod aypn Jajulod peay
801
leisifay Jejulog ananp puewwod Yd

{
1s)s1Bey 92Ig Bhenp puUBLILIOY Md “

oL
1918169y Ssalppy aseg ananp) puewwon Md

20l
ls)s1Bay snieyg/lonuo)

ve
auibug Aey oligngd

PCT/US01/15176

WO 01/86432

6/18

L "Old

laiod slIpN, —

)9.9.9,0.9.0.0.9.0.0.0.0.0.9.9.9.0.0.0.0.9.9.0.0.9.

) 9:0.0.0.:0.0.0.0.9.:9.:0.9.9.9.0.0.0.0.0.0.9.0.0.0.0.¢

$9.0.90.9.0.9.9.9.0.9.0.0.0.9.0.0.0.9.0.0.0.¢.0.00

),:9.9.9,.0.9.9.0.9.0.0.0.0.9.9.9.9.0.9.0.9.0.0.9.0.0 ¢

),9.0.0.9.:0.0.0.9.9.0.0.9.0.0.0.9.9.0.9.0.90.0.0.0¢

)i9.9.9.9.9.9.9.0.0.0.0.0.0.90.0.0.00.00000004

) 9.9.9.9.9.9.9.0.0.0.0.0.0.9.0.9.00.0.0.0.0.0¢.¢

Jajuiod pesy —»

) $.9.0,0.9.9,¢,:¢,0,0,9,9.9.¢:¢.0,9.:9,9.9.¢,¢,0,9,¢¢

- suqze -

ananp
L puewwo)

V/3 Ul ssaippy

PCT/US01/15176

WO 01/86432

7/18

8 'Ol

lajulod Sjlpy —

),:9.9,0.0.0.0.9.0.0.0.0.0.0.0.0.0 0000000 ¢ e

)9.9,9.0,.0.9.9.9.0.0.0.0.0.0.00 0000000 ¢4

$.0.0.0.0.:0.0.0.00.0.0.0.0.0 00000000000

)i9.9,0,0.0.0.0.9.0.0.0.0.0.0. 000000000004

;9.9.9.9.9.9.0,.0.0.0.0.0.000 0000000

XXX XXXXXXXXXX XXX AXXXXX

) 9.9.0.0.0.9.0.000.0.00 000V CTETITOY

lsjuiod pesy —

XXXXXXX XXX XXX

- siq ¢e >

ananp
L puewiwion
Md Ul ssalppy

WO 01/86432 PCT/US01/15176
8/18

132

write address = read address?

No
v

Execute command block | /— 734
using the cryptographic
processor

A

/—— 136
Increment read address

Y

End FIG. 9

(Begin)

' A

L oad one or more operands | / 142

from the system memory to
the local memory

 J
Perform one or more 144
operations on the /_
operand(s) to generate a
result in the local memory

/

146
Store the result in the
system memory

Y

End FIG. 10

WO 01/86432

(Begin)

Y

Load command block
into command queue
using the host
processor

9/18

152
/~

/

Execute command
block using the
cryptographic
processor

Store error 1
information in the
command block |

L____l______

Invoke interrupt using
the cryptographic
processor if
requested in the
command block

Y

End

FIG. 11

e 154

156

/— 158

PCT/US01/15176

(Begin)

Y

Load command block
that includes input
data into command

qgueue using the host

processor

162
/_

4

Perform an operation
on the input data
using an adjunct

processor to
generate a result

164
s

Y

Store the result in the
command block such
that at least a portion
of the input data is
overwritten

166
/_

End

FIG. 13

PCT/US01/15176

WO 01/86432

10/18

gc¢l "old

act "oid

JNSay pUBWIWG,)

ozt 9Id

Uoew o] 1015

_

_ |

pIs14 uonajdwoy |

| |

-

HO/UQ Jandiap] _

PCT/US01/15176

WO 01/86432

11/18

grl "old

Gl 'Old

| anfeA

yseH

| Ay yseH

_ [
_ _
._wn_ 5330 _ 1d SQC_
_
| Aoy yseHy
vvi "‘OIld
]
_
_
_
_ _ _
_ uonewioluj
nduj

| Aoy yseH

WO 01/86432

12/18

(Begin)

v

PCT/US01/15176

Load random number
sample into command
queue using the
cryptographic processor
beginning at the write
address

/~172

Y

Read the random number
sample using the host
processor beginning at the
read address

174
/_

write address + random number
sample size = read address?

No
v

FIG. 16

182

Load random number
sample into command
queue using the
cryptographic processor

/—184

y

186

Increment write address

N

Y

End

FIG. 17

PCT/US01/15176

WO 01/86432

13/18

81 "OId

laiod sypy, —

XX XXXXXXXXXXXXXXXAXAXAXXXAXXXX

) 9.9.0.00.0 000000 TP

XXXXXXXXXXX XXX

lsuiod peey —»

) 9999990999900 0000000

A

\]

SH] 9

LLG

ananp
puBwWwoN
ONY Ul
ssalppy

O~~ANMT W

WO 01/86432

write address = read address”?

No
v

PCT/US01/15176

192

Read the random number
sample using the host
processor beginning at the
read address

/— 194

Y

Increment read address

196
/_

End

FIG. 19

PCT/US01/15176

WO 01/86432

15/18

(Liy JoLid)
0Z ‘Ol

80c
D liun |euoroun

sindino
puewwon

90C
g 1un |euonoun4

synduj
puewwo)

y0C
V Jun [euonoun4

20g
HnoD perelbalul
oij108dg uoneolddy

PCT/US01/15176

WO 01/86432

16/18

L¢ "OId

sindinQ
puewiwod O Jun

8ic
O Hun [euonoung

sinduj
puewwiod O nun

sindino
puewwo) g Hun

91z
g jun |euopoun

sindu
puewiwio) g jun

sndinQ
PuBwWwOo) v jun

ric
Y Hun |euonound

sinduj
puewwoy v jun

474
UN2IID pajesbolu)
olioedg uoneolddy

PCT/US01/15176

WO 01/86432

17/18

¢¢ Old

9¢
Aowsyp
9cg vee 444
1aBeue)y labeuep labeuepy
aoel8U| aoejIou| aoeLlaju|
puewwon puewwo) puewwon
73 8¢ ce
auibug lojelauen) uoneosnusyiny
Koy o119nd JaquinN wopuey JuondAioug

2
Dl J0jels|200y
olydeboydAin

WO 01/86432 PCT/US01/15176

18/18

{ Begin)

A

Providing one or more / 232
command blocks to each of
the execution units

Y

Simultaneously executing | / 234

the command blocks using
the execution units

End FIG. 23

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

