
US010437670B1

(12) United States Patent
Koltsidas et al .

(10) Patent No . : US 10 , 437 , 670 B1
(45) Date of Patent : Oct . 8 , 2019

(56) References Cited (54) METADATA HARDENING AND PARITY
ACCUMULATION FOR LOG - STRUCTURED
ARRAYS U . S . PATENT DOCUMENTS

(71) Applicant : International Business Machines
Corporation , Armonk , NY (US)

5 , 537 , 534 A
6 , 738 , 863 B2

7 / 1996 Voigt et al .
5 / 2004 Butterworth et al .

(Continued)

OTHER PUBLICATIONS
(72) Inventors : Ioannis Koltsidas , Zurich (CH) ;

Charles J . Camp , Sugar Land , TX
(US) ; Nikolas Ioannou , Zurich (CH) ;
Roman A . Pletka , Uster (CH) ;
Antonios K . Kourtis , Zurich (CH) ;
Sasa Tomic , Kilchberg (CH) ; Radu I .
Stoica , Zurich (CH) ; Christopher
Dennett , Houston , TX (US) ; Andrew
D . Walls , San Jose , CA (US)

Menon , J . , “ A Performance Comparison of RAID - 5 and Log
Structured Arrays , " Proceedings of the 4th IEEE International
Symposium on High Performance Distributed Computing , 1995 ,
pp . 167 - 178 .

(Continued)

(73) Assignee : International Business Machines
Corporation , Armonk , NY (US)

Primary Examiner — Christine T . Tu
(74) Attorney , Agent , or Firm - Zilka - Kotab , P . C .

(*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U . S . C . 154 (b) by 0 days .

(21) Appl . No . : 15 / 988 , 889
(22) Filed : May 24 , 2018
(51) Int . Ci .

GIIC 29 / 00 (2006 . 01)
G06F 11 / 00 (2006 . 01)

(Continued)
(52) U . S . CI .

CPC G06F 11 / 1068 (2013 . 01) ; G06F 3 / 064
(2013 . 01) ; G06F 3 / 0619 (2013 . 01) ;
(Continued)

(58) Field of Classification Search
CPC GO6F 11 / 1068 ; GO6F 3 / 0619 ; G06F 3 / 064 ;

G06F 3 / 0656 ; G06F 3 / 0688 ; G11C 29 / 05
(Continued)

(57) ABSTRACT
A computer - implemented method , according to one embodi
ment , includes : receiving a write command to write data , the
write command being received from a log structure array at
a host location . The computer - implemented method also
includes : extracting metadata information from the received
write command ; sequentially adding the extracted metadata
information to a metadata buffer ; extracting parity informa
tion from the received write command ; adding the extracted
parity information to a parity buffer ; sending the data
corresponding to the received write command to memory ;
determining whether an open segment in the memory which
corresponds to the write command has been filled ; updating
the parity buffer with the metadata information included in
the metadata buffer in response to determining that the open
segment has been filled ; and destaging the metadata infor
mation from the metadata buffer and parity information from
the parity buffer to a physical storage location in the
memory

20 Claims , 11 Drawing Sheets

800 802
Receive a write command from a LSA at a host

location

Extract metadata information from the received write
command

806
Sequentially add the metadata information to a

metadata accumulation buffer

808
Extract parity information from the received write

command

Droo Add the parity information to a parity accumulation
buffer

2812 Send the data corresponding to the received write
command to memory

- 814

NO

Has the open
segment in the memory
corresponding to the write

command been
filled with data ?

816 1 YES
Update the parity accumulation buffer with the
metadata information included in the metadata

accumulation buffer

er with the

818 Destage the metadata accumulation buffer and the
parity accumutat : on buffer to a physical storage

location in the memory
820 Send an indication to the host that the write

command has been performed

End 2 - 822

US 10 , 437 , 670 B1
Page 2

(51)

(52)

Int . CI .
G06F 11 / 10 (2006 . 01)
GIIC 29 / 52 (2006 . 01)
G06F 3 / 06 (2006 . 01)
U . S . CI .
CPC G06F 3 / 0656 (2013 . 01) ; G06F 3 / 0688

(2013 . 01) ; GIIC 29 / 52 (2013 . 01)
Field of Classification Search
USPC 714 / 766 , 767 , 772 , 758 , 752 , 799 , 800 ,

714 / 807
See application file for complete search history .

(58)

(56) References Cited
U . S . PATENT DOCUMENTS

8 , 850 , 114 B2 9 / 2014 Rosenband et al .
9 , 501 , 398 B2 11 / 2016 George et al .
9 , 606 , 734 B23 / 2017 Ioannou et al .
9 , 619 , 158 B2 4 / 2017 Haas et al .

2011 / 0087837 A1 * 4 / 2011 Blinick G06F 11 / 1076
711 / 114

2011 / 0202792 A1 * 8 / 2011 Atzmony GO6F 11 / 1076
714 / 6 . 24

2014 / 0164694 A1 * 6 / 2014 Storer G06F 11 / 1092
711 / 114

OTHER PUBLICATIONS

Koltsidas et al . , U . S . Appl . No . 16 / 508 , 151 , filed Jul . 10 , 2019 .
Koltsidas et al . , U . S . Appl . No . 16 / 508 , 164 , filed Jul . 10 , 2019 .

* cited by examiner

GPP memory

atent

GPP 112

Gateway 102

2 - 100

114

Oct . 8 , 2019

Flash controller memory 110

Flash controller 108

Flash controller 108

Flash controller memory 110

104

104

104

104

Sheet 1 of 11

104

106

104

104

T

106

104

104

104

104

104

w

Flash card

US 10 , 437 , 670 B1

FIG . 1

200

:

Processor system

Processor system

U . S . Patent

201

210 210

- . -

210 210

210

210

| 210 | . . . | 210

.

1

Local storage 211

Local storage 211

I / O adapter

218

1 / 0 adapter 218

. . .

Oct . 8 , 2019

H

- 204

220

. . . 2204

. . .

Interface card

- 202

Interface card

Comme 202

RAID controller

RAID controller

907 mize

MOOOOO .

. . .

.

.

. .

.

. .

.

. .

Sheet 2 of 11

208

208

208

208

TO Data storage system

US 10 , 437 , 670 B1

FIG . 2

300

Garbage collector 304

Free block manager 306

????????????????????

atent

LPT manager

Write cache 302

Memory 1 / 0 unit 310

308
???????

400

FIG . 3

Oct . 8 , 2019

Channel O Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7 Channel 8 Channel 9 Channel 10

_

ii

iiiiiiiiiiiiiiiiiiiiiiiiiLLLLLLLLSTALAAAAAAAAAAAAA
A

.

.

.

.

.

.

.

.

.

Page Page 1 | Page 2

Page Page 1 Page 2
Page Page 1 Page 2

Page 0 Page 1 Page 2

Page 0 Page 0 Page 1 Page 1 Page 2 | Page 2

Page Page 1 Page 2
Page Page 1 Page 2
Page Page 1 Page 2

Page Page 0 h Page - stripe 0

Page 1 Page 1 :
Page 2 | Page 2 ?????????????????????????????????

Sheet 3 of 11

Page N

Page N

Page N

Page N

Page N

Page N

Page N

Page N

Page N

Page N

Page N

Page - stripe N

+

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

. .

. *

* .

Block 10

Block 41

Block - stripe 0

Plane 0

Plane 1

Plane 2

Plane 3

Plane 4

Plane 5

Plane 6

Plane 7

Plane M

US 10 , 437 , 670 B1

FIG . 4

U . S . Patent Oct . 8 , 2019 Sheet 4 of 11 US 10 , 437 , 670 B1

500

2502
Logical Physical
Address Address - 506

????????????????????????????

512

FIG . 5

600

606 606
604 604 te

p?? 0 PBA 1 PBAM - 1 Page 0 PBAM PBA 2 + 1 PBA 2m - 1 Page 1 Pagek

6084 Header

Page 0
Page 1 610

LBAX
LBAY

tso

Page m - 11 LBAZ Sm - 4

FIG . 6

U . S . Patent Oct . 8 , 2019 Sheet 5 of 11 US 10 , 437 , 670 B1

700

- 702
712 - 9

714 - 706

708

??? . . ?
FIG . 7A

atent Oct . 8 , 2019 Sheet 6 of 11 US 10 , 437 , 670 B1

700 100
710 710 strip sub - strip 710

stripe

sub - stripe

FIG . 7B

700

714 706

EEEEEEEEEEEEEEEEEEEEEEE

754 750 756 1

FIG . 70

U . S . Patent Oct . 8 , 2019 Sheet 7 of 11 US 10 , 437 , 670 B1

800
Receive a write command from a LSA at a host

location
1802

04
Extract metadata information from the received write

command

- 806
Sequentially add the metadata information to a

metadata accumulation buffer
LILLA 2808 Extract parity information from the received write

command

Add the parity information to a parity accumulation
buffer

- 812
Send the data corresponding to the received write

command to memory

NO

Has the open
segment in the memory
corresponding to the write

command been
filled with data ?

r816
IYES

Update the parity accumulation buffer with the
metadata information included in the metadata

accumulation buffer

818 Destage the metadata accumulation buffer and the
parity accumulation buffer to a physical storage

location in the memory

820 Send an indication to the host that the write
command has been performed

wwwwwwwwwwwwwwwwwwwwwww

End822

FIG . 8

U . S . Patent atent Oct . 8 , 2019 en server Sheet 8 of 11 us 14892670 US 10 , 437 , 670 B1

904 904 904 904 904

* * * * * . . * * * » * . * . * . . * .

902 - 1
* * ANA ' ' # in

906 908 910

FIG . 9

1000

w 702
712

710 710 710 710

1002 NUNUNUN NUNUNUN

1004 1004 1002 1004 1002 1004 1002

FIG . 10

U . S . Patent Oct . 8 , 2019 Sheet 9 of 11 US 10 , 437 , 670 B1

1100

1116
1111

* *

1 106
1120

Network 2

Network 3 1101 1102
1108

Gateway 1116

1104

Network 1 1114

1116

1120

FIG . 11

U . S . Patent Oct 8 , 2019 Sheet 10 of 11 US 10 , 437 , 670 B1

1200

1220 -
1235

NETWORK

1210 1216 1214 1218 · 1234

CPU 110 ROM RAM COMMUNICATION
ADAPTER ADAPTER

1212
LLLLLLLLLLLLLLL 1238 1222 1236 m

1224 .

USER
INTERFACE
ADAPTER

DISPLAY
ADAPTER

.

X

à M VE 1228 1232 1226

FIG . 12

U . S . Patent Oct 8 , 2019 Sheet 11 of 11 US 10 , 437 , 670 B1

1300

Host Interface
1314

Storage System Manager
1312

SAN
1310

Higher Storage Tier
1302 .

wii 1304 1304
eeeeeeeeeeee

Lower Storage Tier
1306

1308

Additional Storage Tiers
1316

FIG . 13

US 10 , 437 , 670 B1

METADATA HARDENING AND PARITY received write command ; sequentially adding the extracted
ACCUMULATION FOR LOG - STRUCTURED metadata information to a metadata buffer ; extracting parity

ARRAYS information from the received write command ; adding the
extracted parity information to a parity buffer ; sending the

BACKGROUND 5 data corresponding to the received write command to
memory ; determining whether an open segment in the

The present invention relates to data storage systems , and memory which corresponds to the write command has been
more particularly , this invention relates to data storage filled ; updating the parity buffer with the metadata informa
system architectures that are able to increase data retention . tion included in the metadata buffer in response to deter Using Flash memory as an example , the performance 10 min mining that the open segment has been filled ; and destaging
characteristics of conventional NAND Flash - based solid
state drives (SSDs) are fundamentally different from those the metadata information from the metadata buffer and

parity information from the parity buffer to a physical of traditional hard disk drives (HDDs) . Data in conventional
SSDs is typically organized in pages of 4 , 8 , or 16 KB sizes . storage location in the memory .
Moreover , page read operations in SSDs are typically one 15 A computer program product , according to another
order of magnitude faster than write operations and latency embodiment , includes a computer readable storage medium
neither depends on the current nor the previous location of having program instructions embodied therewith . The com
operations . puter readable storage medium is not a transitory signal per
However , in Flash - based SSDs , memory locations are se . Moreover , the program instructions readable and / or

erased in blocks prior to being written to . The size of an 20 executable by a processor to cause the processor to perform
erase block unit is typically 256 pages and the erase opera - a method which includes : receiving , by the processor , a
tions takes approximately one order of magnitude more time write command to write data , the write command being
than a page program operation . Due to the intrinsic proper - received from a log structure array at a host location ;
ties of NAND Flash , Flash - based SSDs write data out - of extracting , by the processor , metadata information from the
place whereby a mapping table maps logical addresses of the 25 received write command ; sequentially adding , by the pro
written data to physical ones . This mapping table is typically cessor , the extracted metadata information to a metadata
referred to as the Logical - to - Physical Table (LPT) . buffer ; extracting , by the processor , parity information from
As Flash - based memory cells exhibit read errors and / or the received write command ; adding , by the processor , the

failures due to wear or other reasons , additional redundancy extracted parity information to a parity buffer ; sending , by
may be used within memory pages as well as across memory 30 the processor , the data corresponding to the received write chips . For example , Redundant Array of Independent Disks command to memory ; determining , by the processor ,
(RAID) schemes of differing levels (e . g . , RAID - 5 and whether an open segment in the memory which corresponds RAID - 6 like schemes) may be implemented . The additional to the write command has been filled ; updating , by the redundancy within memory pages may include error correc
tion code (ECC) which , for example , may include BCH 35 s processor , the parity buffer with the metadata information
codes . While the addition of ECC in pages is relatively included in the metadata buffer in response to determining

that the open segment has been filled ; and destaging , by the straightforward , the organization of memory blocks into
RAID - like stripes is more complex . For instance , individual processor , the metadata information from the metadata buf
blocks are retired over time which requires either reorgani fer and the parity information from the parity buffer to a
zation of the stripes , or capacity reduction of the stripe . As 40 physical storage location in the memory .
the organization of stripes together with the LPT defines the A system , according to yet another embodiment , includes :
placement of data , SSDs typically utilize a Log - Structured an input / output controller ; and logic integrated with and / or
Array (LSA) architecture , which combines these two meth executable by the input / output controller , the logic being
ods . configured to : receive , by the input / output controller , a write

The LSA architecture performs out - of - place writes . In this 45 command to write data , the write command being received
approach , a memory page overwrite will result in writing the from a log structure array at a host location . The logic is also
memory page data to a new location in memory , marking the configured to : extract , by the input / output controller , meta
old copy of the memory page data as invalid , and then data information from the received write command ; sequen
updating the mapping information . Due to the limitations of tially add , by the input / output controller , the extracted
current NAND memory technology , an invalidated data 50 metadata information to a metadata buffer ; extract , by the
location cannot be reused until the entire block it belongs to input / output controller , parity information from the received
has been erased . Before erasing , though , the block under write command ; add , by the input / output controller , the goes garbage collection , whereby any valid data in the block extracted parity information to a parity buffer , send , by the is relocated to a new block . Garbage collection of a block is input / output controller , the data corresponding to the typically deferred for as long as possible to maximize the 55
amount of invalidated data in block , and thus reduce the received write command to memory ; determine , by the

input / output controller , whether an open segment in the number of valid pages that are relocated , as relocating data
causes additional write operations , and thereby increases memory which corresponds to the write command has been
write amplification . filled ; update , by the input / output controller , the parity buffer

60 with the metadata information included in the metadata
SUMMARY buffer in response to determining that the open segment has

been filled ; and destage , by the input / output controller , the
A computer - implemented method , according to one metadata information from the metadata buffer and the

embodiment , includes : receiving a write command to write parity information from the parity buffer to a physical
data , the write command being received from a log structure 65 storage location in the memory .
array at a host location . The computer - implemented method Other aspects and embodiments of the present invention
also includes : extracting metadata information from the will become apparent from the following detailed descrip

US 10 , 437 , 670 B1

ont

tion , which , when taken in conjunction with the drawings , ability to group all the metadata pages for the LSA segment
illustrate by way of example the principles of the invention . contiguously in the physical space , e . g . , as will be described

in further detail below .
BRIEF DESCRIPTION OF THE DRAWINGS It should be appreciated that various embodiments herein

5 can be implemented with a wide range of memory mediums ,
FIG . 1 is a diagram of a non - volatile memory card , in including for example non - volatile random access memory

accordance with one embodiment . (NVRAM) technologies such as NAND Flash memory ,
FIG . 2 is a diagram of a data storage system architecture , NOR Flash memory , phase - change memory (PCM) , mag

in accordance with one embodiment . netoresistive RAM (MRAM) and resistive RAM (RRAM) .
FIG . 3 is a system diagram , in accordance with one 10 To provide a context , and solely to assist the reader , various

embodiment . embodiments may be described with reference to a type of
FIG . 4 is a conceptual diagram which includes a block non - volatile memory . This has been done by way of example

stripe and page - stripe , in accordance with one embodiment only , and should not be deemed limiting on the invention
FIG . 5 is a partial representational view of a storage defined in the claims .

system , in accordance with one embodiment . 15 In one general embodiment , a computer - implemented
FIG . 6 is a representative view of the metadata corre - method includes : receiving a write command to write data ,

sponding to a LSA segment , in accordance with one embodi the write command being received from a log structure array
ment . at a host location . The computer - implemented method also

FIG . 7A - 7C are partial representational views of a storage includes : extracting metadata information from the received
system , in accordance with one embodiment . 20 write command ; sequentially adding the extracted metadata

FIG . 8 is a flowchart of a method , in accordance with one information to a metadata buffer ; extracting parity informa
embodiment . tion from the received write command ; adding the extracted

FIG . 9 is a representational view of a plurality of storage parity information to a parity buffer ; sending the data
drives , in accordance with one embodiment . corresponding to the received write command to memory ;

FIG . 10 is a partial representational view of a distributed 25 determining whether an open segment in the memory which
storage system , in accordance with one embodiment . corresponds to the write command has been filled ; updating

FIG . 11 is a network architecture , in accordance with one the parity buffer with the metadata information included in
embodiment . the metadata buffer in response to determining that the open

FIG . 12 is a representative hardware environment that segment has been filled ; and destaging the metadata infor
may be associated with the servers and / or clients of FIG . 11 , 30 mation from the metadata buffer and parity information from
in accordance with one embodiment . the parity buffer to a physical storage location in the

FIG . 13 is a tiered data storage system in accordance with memory .
one embodiment . In another general embodiment , a computer program

product includes a computer readable storage medium hav
DETAILED DESCRIPTION 35 ing program instructions embodied therewith . The computer

readable storage medium is not a transitory signal per se .
The following description is made for the purpose of Moreover , the program instructions readable and / or execut

illustrating the general principles of the present invention able by a processor to cause the processor to perform a
and is not meant to limit the inventive concepts claimed method which includes : receiving , by the processor , a write
herein . Further , particular features described herein can be 40 command to write data , the write command being received
used in combination with other described features in each of from a log structure array at a host location ; extracting , by
the various possible combinations and permutations . the processor , metadata information from the received write

Unless otherwise specifically defined herein , all terms are command ; sequentially adding , by the processor , the
to be given their broadest possible interpretation including extracted metadata information to a metadata buffer ; extract
meanings implied from the specification as well as meanings 45 ing , by the processor , parity information from the received
understood by those skilled in the art and / or as defined in write command ; adding , by the processor , the extracted
dictionaries , treatises , etc . parity information to a parity buffer ; sending , by the pro

It must also be noted that , as used in the specification and cessor , the data corresponding to the received write com
the appended claims , the singular forms “ a , " " an " and " the " mand to memory ; determining , by the processor , whether an
include plural referents unless otherwise specified . It will be 50 open segment in the memory which corresponds to the write
further understood that the terms " comprises ” and / or " com - command has been filled ; updating , by the processor , the
prising , " when used in this specification , specify the pres - parity buffer with the metadata information included in the
ence of stated features , integers , steps , operations , elements , metadata buffer in response to determining that the open
and / or components , but do not preclude the presence or segment has been filled ; and destaging , by the processor , the
addition of one or more other features , integers , steps , 55 metadata information from the metadata buffer and the
operations , elements , components , and / or groups thereof . parity information from the parity buffer to a physical

The following description discloses several preferred storage location in the memory .
embodiments of data storage systems , as well as operation In yet another general embodiment , a system includes : an
and / or component parts thereof which are able to achieve an input / output controller ; and logic integrated with and / or
efficient and accurate management of metadata and parity 60 executable by the input / output controller , the logic being
information for LSA data arrays such that durability and configured to : receive , by the input / output controller , a write
persistence of all user write operations is achieved . The command to write data , the write command being received
embodiments included herein may even achieve data dura from a log structure array at a host location . The logic is also
bility in the presence of arbitrary host failures , power loss , configured to : extract , by the input / output controller , meta
system crashes , etc . Moreover , these improvements are 65 data information from the received write command ; sequen
achieved while also implementing sequential write patterns tially add , by the input / output controller , the extracted
for each of the respective LSA segments , as well as the metadata information to a metadata buffer , extract , by the

US 10 , 437 , 670 B1

input / output controller , parity information from the received controller memory 110 may be battery - backed DRAM ,
write command ; add , by the input / output controller , the phase - change memory PC - RAM , MRAM , STT - MRAM ,
extracted parity information to a parity buffer , send , by the
input / output controller , the data corresponding to the As previously mentioned , memory card 100 may be
received write command to memory ; determine , by the 5 implemented in various types of data storage systems ,
input / output controller , whether an open segment in the depending on the desired embodiment . FIG . 2 illustrates a
memory which corresponds to the write command has been data storage system architecture 200 according to an exem
filled ; update , by the input / output controller , the parity buffer plary embodiment which is in no way intended to limit the
with the metadata information included in the metadata invention . Moreover , it should be noted that the data storage
buffer in response to determining that the open segment has 10 system 220 of FIG . 2 may include various components
been filled ; and destage , by the input / output controller , the found in the embodiment of FIG . 1 .
metadata information from the metadata buffer and the Looking to FIG . 2 , the data storage system 220 comprises
parity information from the parity buffer to a physical a number of interface cards 202 configured to communicate
storage location in the memory . via input / output (I / O) interconnections 204 to one or more

FIG . 1 illustrates a memory card 100 , in accordance with 15 processor systems 201 . The data storage system 220 may
one embodiment . It should be noted that although memory also comprise one or more RAID controllers 206 configured
card 100 is depicted as an exemplary non - volatile data to control data storage in a plurality of non - volatile data
storage card in the present embodiment , various other types storage cards 208 . The non - volatile data storage cards 208
of non - volatile data storage cards may be used in a data may comprise NVRAM , Flash memory cards , RAM , ROM ,
storage system according to alternate embodiments . It fol - 20 and / or some other known type of non - volatile memory .
lows that the architecture and / or components of memory The I / O interconnections 204 may include any known
card 100 are in no way intended to limit the invention , but communication protocols , such as Fiber Channel (FC) , FC
rather have been presented as a non - limiting example . over Ethernet (FCOE) , Infiniband , Internet Small Computer
Moreover , as an option , the present memory card 100 may System Interface (iSCSI) , Transport Control Protocol / Inter

be implemented in conjunction with features from any other 25 net Protocol (TCP / IP) , Peripheral Component Interconnect
embodiment listed herein , such as those described with Express (PCIe) , etc . , and / or any combination thereof .
reference to the other FIGS . However , such memory card The RAID controller (s) 206 in the data storage system
100 and others presented herein may be used in various 220 may perform a parity scheme similar to that employed
applications and / or in permutations which may or may not by RAID - 5 , RAID - 10 , or some other suitable parity scheme ,
be specifically described in the illustrative embodiments 30 as would be understood by one of skill in the art upon
listed herein . Further , the memory card 100 presented herein reading the present descriptions .
may be used in any desired environment . Each processor system 201 comprises one or more pro

With continued reference to FIG . 1 , memory card 100 cessors 210 (such as CPUs , microprocessors , etc .) , local data
includes a gateway 102 , a general purpose processor (GPP) storage 211 (e . g . , such as RAM 1214 of FIG . 12 , ROM 1216
112 (such as an ASIC , FPGA , CPU , etc .) connected to a GPP 35 of FIG . 12 , etc .) , and an I / O adapter 218 configured to
memory 114 (which may comprise RAM , ROM , battery communicate with the data storage system 220 .
backed Dynamic RAM (DRAM) , phase - change memory Referring again to FIG . 1 , memory controllers 108 and / or
PC - RAM , MRAM , STT - MRAM , etc . , or a combination other controllers described herein (e . g . , RAID controllers
thereof) , and a number of memory controllers 108 , which 206 of FIG . 2) may be able to perform various functions on
include Flash controllers in the present example . Each 40 stored data , depending on the desired embodiment . Specifi
memory controller 108 is connected to a plurality of cally , memory controllers may include logic configured to
NVRAM memory modules 104 (which may comprise perform any one or more of the following functions , which
NAND Flash or other non - volatile memory type (s) such as are in no way intended to be an exclusive list . In other words ,
those listed above) via channels 106 . depending on the desired embodiment , logic of a storage

According to various embodiments , one or more of the 45 system may be configured to perform additional or alterna
controllers 108 may be or include one or more processors , tive functions , as would be appreciated by one skilled in the
and / or any logic for controlling any subsystem of the art upon reading the present description .
memory card 100 . For example , the controllers 108 typically Garbage Collection
control the functions of NVRAM memory modules 104 such Garbage collection in the context of SSD memory con
as , data writing , data recirculation , data reading , etc . The 50 trollers of the present description may include the process of
controllers 108 may operate using logic known in the art , as identifying blocks of data to be reclaimed for future usage
well as any logic disclosed herein , and thus may be consid - and relocating all pages that are still valid therein . Moreover ,
ered as a processor for any of the descriptions of non - volatile depending on the specific controller and / or the respective
memory included herein , in various embodiments . garbage collection unit of operation , LEBs may be identified

Moreover , the controller 108 may be configured and / or 55 for being reclaimed and / or relocated . Typically , one LEB
programmable to perform or control some or all of the corresponds to one block stripe , but alternative implemen
methodology presented herein . Thus , the controller 108 may tations may consider a fixed number of block stripes build
be considered to be configured to perform various operations ing a LEB as well .
by way of logic programmed into one or more chips , A physical “ block ” represents a minimal unit that may be
modules , and / or blocks ; software , firmware , and / or other 60 erased on non - volatile memory , e . g . , such as NAND Flash
instructions being available to one or more processors , etc . , memory , and thereby prepared for writing data thereto .
and combinations thereof . However , a typical garbage collection unit of operation is

Referring still to FIG . 1 , each memory controller 108 is often a multiple of the physical blocks of non - volatile
also connected to a controller memory 110 which preferably memory , and is also referred to herein as a LEB . This is due
includes a cache which replicates a non - volatile memory 65 to the fact that typically RAID - like parity information is
structure according to the various embodiments described added in LEBs . Therefore , in case of a page or block failure
herein . However , depending on the desired embodiment , the data can only be rebuilt when all blocks in the LEB are still

US 10 , 437 , 670 B1

holding data . Accordingly , the individual blocks from the block will also have a high update rate . Rather , a high
garbage collection unit can only be erased either individu frequency of read operations performed on a given memory
ally or in a single unit once all still valid data from all blocks block may denote an importance , value , etc . of the data
in the LEB has been relocated successfully to new locations stored in the memory block .
Hence , the full garbage collection units are garbage - col - 5 By grouping memory blocks of the same and / or similar
lected as a single unit . Moreover , the size of the LEB directly write heat values , heat segregation may be achieved . In
affects the garbage collection induced write amplification . particular , heat segregating methods may group hot memory
The larger the LEB , the more likely it becomes that unre pages together in certain memory blocks while cold memory lated data are stored together in the LEB , and therefore more pages are grouped together in separate memory blocks . of the LEB data may have to be relocated upon garbage 10 - Thus , a heat segregated LEB tends to be occupied by either collection selection . hot or cold data . Frequently , blocks from different dies and / or flash chan The merit of heat segregation is two - fold . First , perform nels are grouped together , such that blocks from the same
group can be read or written in parallel , thereby increasing ing a garbage collection process on a hot memory block will
overall bandwidth . It is also possible to combine the previ - 15 prevent triggering the relocation of cold data as well . In the
ous two methods , and to compose RAID stripes using blocks absence of heat segregation , updates to hot data , which are
from different flash channels that can be accessed in parallel . performed frequently , also results in the undesirable reloca

It should also be noted that an LEB may include any tions of all cold data collocated on the same LEB as the hot
multiple of the physical memory block , which is a unit of data being relocated . Therefore , the write amplification
physical erasure . Moreover , the organization of memory 20 incurred by performing garbage collection is much lower for
blocks into LEBs not only allows for adding RAID - like embodiments implementing heat segregation .
parity protection schemes among memory blocks from dif Secondly , the relative heat of data can be utilized for wear
ferent memory chips , memory planes and / or channels but leveling purposes . For example , hot data may be placed in
also allows for significantly enhancing performance through healthier (e . g . , younger) memory blocks , while cold data
higher parallelism . For instance , multiple non - volatile 25 may be placed on less healthy (e . g . , older) memory blocks
memory blocks may be grouped together in a RAID stripe . relative to those healthier memory blocks . Thus , the rate at
As will be appreciated by one skilled in the art upon reading which relatively older blocks are exposed to wear is effec
the present description , RAID schemes generally improve tively slowed , thereby improving the overall endurance of a
reliability and reduce the probability of data loss . given data storage system implementing heat segregation .

According to an exemplary embodiment , which is in no 30 Write Allocation
way intended to limit the invention , memory controllers Write allocation includes placing data of write operations
(e . g . , see 108 of FIG . 1) may internally perform a garbage into free locations of open LEBs . As soon as all pages in a
collection . As previously mentioned , the garbage collection LEB have been written , the LEB is closed and placed in a
may include selecting a LEB to be relocated , after which all pool holding occupied LEBs . Typically , LEBs in the occu
data that is still valid on the selected LEB may be relocated 35 pied pool become eligible for garbage collection . The num
(e . g . , moved) . After the still valid data has been relocated , ber of open LEBs is normally limited and any LEB being
the LEB may be erased and thereafter , used for storing new closed may be replaced , either immediately or after some
data . The amount of data relocated from the garbage col - delay , with a fresh LEB that is being opened .
lected LEB determines the write amplification . Moreover , an During performance , garbage collection may take place
efficient way to reduce the write amplification includes 40 concurrently with user write operations . For example , as a
implementing heat segregation . user (e . g . , a host) writes data to a device , the device
Heat Segregation controller may continuously perform garbage collection on
In the present context , the " write heat ” of data refers to the LEBs with invalid data to make space for the new incoming

rate (e . g . , frequency) at which the data is updated (e . g . , data pages . As mentioned above , the LEBs having the
rewritten with new data) . Memory blocks that are considered 45 garbage collection being performed thereon will often have
“ hot ” tend to have a frequent updated rate , while memory some pages that are still valid at the time of the garbage
blocks that are considered “ cold ” have an update rate slower collection operation ; thus , these pages are preferably relo
than hot blocks . cated (e . g . , written) to a new LEB .

Tracking the write heat of a logical page may involve , for Again , the foregoing functions are in no way intended to
instance , allocating a certain number of bits in the LPT 50 limit the capabilities of any of the storage systems described
mapping entry for the page to keep track of how many write and / or suggested herein . Rather , the aforementioned func
operations the page has seen in a certain time period or tions are presented by way of example , and depending on the
window . Typically , host write operations increase the write desired embodiment , logic of a storage system may be
heat whereas internal relocation writes decrease the write configured to perform additional or alternative functions , as
heat . The actual increments and / or decrements to the write 55 would be appreciated by one skilled in the art upon reading
heat may be deterministic or probabilistic . the present description .

Similarly , read heat may be tracked with a certain number Referring now to FIG . 3 , a system 300 is illustrated in
of additional bits in the LPT for each logical page . To reduce accordance with one embodiment . As an option , the present
meta - data , read heat can also be tracked at a physical block system 300 may be implemented in conjunction with fea
level where separate counters per block for straddling and 60 tures from any other embodiment listed herein , such as those
non - straddling reads can be maintained . However , it should described with reference to the other FIGS . However , such
be noted that the number of read requests to and / or read system 300 and others presented herein may be used in
operations performed on a memory block may not come into various applications and / or in permutations which may or
play for heat segregation when determining the heat of the may not be specifically described in the illustrative embodi
memory block for some embodiments . For example , if data 65 ments listed herein . Further , the system 300 presented herein
is frequently read from a particular memory block , the high may be used in any desired environment , e . g . , in combina
read frequency does not necessarily mean that memory tion with a controller .

co

ca

US 10 , 437 , 670 B1
10

As illustrated , system 300 includes a write cache 302 In each plane of non - volatile memory , a single block from
which is coupled to several other components , including each channel may form a respective block - stripe . It follows
garbage collector 304 . As previously mentioned , garbage that a number of block - stripes supported by a given embodi
collector 304 may be used to free LEB units by relocating ment of non - volatile memory may be determined by the
valid data and providing non - volatile memory blocks to be 5 number of blocks per plane and the number of planes .
erased for later reuse . Thus , the garbage collector 304 may In the exploded view of Plane 0 , the conceptual diagram
reclaim blocks of consecutive physical space , depending on 400 further illustrates a single block - stripe (Block - stripe 0)
the desired embodiment . According to an exemplary out of the set of block - stripes supported in the remainder of
embodiment , block erase units may be used to keep track of the planes . Block - stripe 0 of plane 0 is shown as including
and / or complete the erase of non - volatile memory blocks 10 11 blocks , one block from each channel labeled " Channel O . ”
handed over by the garbage collector 304 . through “ Channel 10 " . It should be noted that the association

Write cache 302 is also coupled to free block manager 306 of blocks to block - stripe can change over time as block
which may keep track of free non - volatile memory blocks stripes are typically dissolved after they have been garbage
after they have been erased . Moreover , as would be appre collected . Erased blocks may be placed in free block pools ,
ciated by one of ordinary skill in the art upon reading the 15 whereby new block - stripes are assembled from blocks in the
present description , the free block manager 306 may build free block pools when write allocation requests fresh block
free stripes of non - volatile memory blocks from different stripes . For example , looking to conceptual diagram 400 ,
lanes (e . g . , block - stripes) using the erased free non - volatile Block 10 from Channel O and Block 41 from Channel 4 are
memory blocks . currently associated with the illustrated Block - stripe 0 of

Referring still to FIG . 3 , write cache 302 is coupled to 20 Plane 0 . Furthermore , the illustrated Block - stripe O holds
LPT manager 308 and memory 1 / 0 unit 310 . The LPT N + 1 page - stripes and each block therefore holds N + 1 pages
manager 308 maintains the logical - to - physical mappings of labeled “ Page 0 ” through “ Page N ” .
logical addresses to physical pages in memory . According to Cache Architecture
an example , which is in no way intended to limit the Referring still to FIG . 4 , each block of pages illustrated in
invention , the LPT manager 308 may maintain the logical - 25 the exploded view of aggregated Plane O may constitute a
to - physical mappings of 4 KiB logical addresses . The unique block from one channel when implemented in a
memory I / O unit 310 communicates with the memory chips cache architecture . Similarly , each channel contributes a
in order to perform low level operations , e . g . , such as single , individual block which form a block - stripe . For
reading one or more non - volatile memory pages , writing a example , looking to conceptual diagram 400 , Block 10 from
non - volatile memory page , erasing a non - volatile memory 30 Channel O includes all pages (Page 0 through Page N)
block , etc . therein , while Block 41 from Channel 4 corresponds to all

To better understand the distinction between block - stripes pages therein , and so on .
and page - stripes as used herein , FIG . 4 is a conceptual In the context of a memory controller , e . g . , which may be
diagram 400 , in accordance with one embodiment . LEBs are capable of implementing RAID at the channel level , a
built from block stripes and typically a single block stripe is 35 block - stripe is made up of multiple blocks which amount to
used to build a LEB . However , alternative embodiments a stripe of blocks . Looking still to FIG . 4 , the multiple blocks
may use multiple block stripes to form an LEB . As an of aggregated Plane O constitute Block - stripe 0 . While all
option , the present conceptual diagram 400 may be imple - blocks in a block - stripe typically belong to the same aggre
mented in conjunction with features from any other embodi gated plane , in some embodiments one or more blocks of a
ment listed herein , such as those described with reference to 40 block - stripe may belong to different physical planes . It
the other FIGS . However , such conceptual diagram 400 and follows that each aggregated plane may include one or more
others presented herein may be used in various applications block - stripe . Thus , according to an illustrative embodiment ,
and / or in permutations which may or may not be specifically Block 0 through Block 10 from different physical planes
described in the illustrative embodiments listed herein . may constitute a block - stripe .
Further , the controller conceptual diagram 400 presented 45 Regardless of whether the conceptual diagram 400 of
herein may be used in any desired environment . Thus , the FIG . 4 is implemented with non - volatile memory and / or a
exemplary non - volatile memory controller conceptual dia - cache architecture , in different embodiments , the number of
gram 400 of FIG . 4 may be implemented in a cache pages in each block and / or the number of channels in each
architecture . However , depending on the desired embodi - plane may vary depending on the desired embodiment .
ment , the conceptual diagram 400 of FIG . 4 may be imple - 50 According to an exemplary embodiment , which is in no way
mented in defining the organization of data stored in non intended to limit the invention , a block may include 256
volatile memory . Accordingly , both implementations are pages , but could include more or less in various embodi
described in turn below . ments . Analogously , the number of channels per plane
Non - Volatile Memory and / or the number of planes may vary depending on the
Looking now to FIG . 4 , the conceptual diagram 400 55 desired embodiment .

includes a set of M + 1 aggregated planes labeled “ Plane 0 % Referring still to FIG . 4 , all pages in a block - stripe with
through “ Plane M ” . An aggregated plane consists of all the same page index denote a page - stripe . For example ,
physical planes with the same plane index on different Page - stripe O includes the first page (Page 0) of each channel
channels . It should be noted that aggregated planes are also in Block - stripe 0 of Plane 0 . Similarly , Page - stripe N
referred to herein simply as planes . 60 includes the last page (Page N) of each channel in Block
When implemented with data stored in non - volatile stripe 0 of Plane 0 .

memory , each physical plane on a channel may include a As mentioned above , Flash - based SSDs write data out
large set of blocks , e . g . , typically in the order of 1024 , 2048 of - place . Accordingly , a LPT is used to map logical
or more . Moreover , one or more physical planes may also addresses of the written data to physical addresses in
include several additional blocks which may be used as 65 memory . However , Flash - based SSDs may also implement
replacement blocks for bad blocks (e . g . , blocks performing sequential write patterns , such as those that result from LSA
poorly , blocks having undesirable characteristics , etc .) . data organization . LSAs pack data into logical segments

11
US 10 , 437 , 670 B1

12
which are then appended to a global log structure that may “ Timestamp " is the timestamp of when the page was written .
span multiple devices . As write operations enter the system , It should be noted that the timestamp does not necessarily
the LSA packs the written data into large segments , each of reflect the time represented on a wall clock , but rather , it may
which has a size which is typically a multiple of the logical also be a logical timestamp , e . g . , a monotonically increasing
erase block size of the underlying device . For instance , user 5 counter that can be used to define a total order over all the
read and write operations may have units which are 4 KB in mapping updates in the system . As this mapping is the
size . When a segment is finally full , it is destaged to the SSD reverse of the LPT , it may be referred to as “ reverse
as a single sequential write operation . Thus , a LPT is used mapping ” , while each metadata entry may be referred to as
to keep track of which physical location corresponds to a a “ back - pointer ” .
given logical address . 10 It follows that the LSA segment is essentially an array of

Referring momentarily to FIG . 5 , a representative view of logical pages . Accordingly , the physical address included in
the relationship between logical and physical space in a a mapping entry is implied , and may be determined by the
storage system 500 is depicted in accordance with one starting address of the segment , plus the offset of the
embodiment . As an option , the present storage system 500 physical page in the segment . Therefore , only the Logical
may be implemented in conjunction with features from any 15 Address and Timestamp from the mapping entry may be
other embodiment listed herein , such as those described with written for each logical page in the segment . Moreover , for
reference to the other FIGS . However , such storage system approaches in which data is compressed , metadata may
500 and others presented herein may be used in various further include information about the compressed data size .
applications and / or in permutations which may or may not However , in preferred approaches , the metadata entries for
be specifically described in the illustrative embodiments 20 a given segment are grouped together in one or more
listed herein . Further , the storage system 500 presented physical pages of the segment . These metadata pages may
herein may be used in any desired environment . Thus FIG . either be dispersed among the data pages in the segment , or
5 (and the other FIGS .) may be deemed to include any stored together at the end of the segment .
possible permutation . The metadata is desirable , as it serves two main purposes .

As shown , the storage system 500 includes logical space 25 First , upon system start - up the LSA system may simply read
502 and physical space 504 which are interconnected by a the metadata pages to re - construct the LPT mapping in the
LPT 506 . As mentioned above , the LPT 506 maps each of main memory . Second , when a segment is picked for gar
the logical addresses 508 in the logical space 502 to a bage collection , each back - pointer may be compared with
physical address 510 in the physical space 504 . Subsets of the corresponding entry for that logical page in the LPT . This
physical address 510 may also correspond to LSA segments 30 comparison may determine whether the page is still valid , or
512 . if the logical page has been updated and may thereby be

When a user updates a previously stored page , the data is safely deleted .
appended to the currently open segment at the first free (e . g . , Each metadata page may also have a checksum of all the
empty) page in that same segment . The LPT entry for the metadata entries included therein which may be used for
logical page is also updated to point to the new physical 35 integrity checking purposes . Additionally , a segment may be
location , while the old version of the logical page (which prepended by an appropriate header which identifies the
had been stored in some other segment) is rendered invalid . segment in the system , and includes all the configuration
Thus , when a user wants to read a stored logical page , the information involved with the LSA understanding the format
LPT is consulted to find the current physical location where of the data included in the segment . Finally , the last metadata
the data is stored . The LPT may also be stored in DRAM 40 page written for a segment may include a checksum that
memory in order to achieve fast access times . incorporates elements from the segment header as well as
LSAs may be implemented in various embodiments in the timestamp of that last metadata page . This enables the

order to achieve different results . For instance , LSAs may be system to determine , upon start - up , whether a given segment
implemented in order to avoid performing RAID read - was closed properly before the system was shutdown .
modify - writes across the storage network , e . g . , as would be 45 Looking to FIG . 6 , a representative view of the metadata
appreciated by one skilled in the art after reading the present 600 corresponding to a LSA segment is illustrated in accor
description . As a result , LSAs may increase performance , dance with one embodiment . As an option , the present
improve efficiency , reduce I / O amplification , etc . for the metadata 600 may be implemented in conjunction with
storage system . LSAs may also be implemented in order to features from any other embodiment listed herein , such as
reduce write amplification on memory , thereby further 50 those described with reference to the other FIGS . , such as
increasing performance and improving endurance . TO FIG . 5 . However , such metadata 600 and others presented
achieve these improvements , LSAs remap logical pages as herein may be used in various applications and / or in per
write operations are received to achieve a sequential fill mutations which may or may not be specifically described in
pattern . Accordingly , logical data may be re - mapped at a the illustrative embodiments listed herein . Further , the meta
LSAs page granularity which , e . g . , may span from about 4 55 data 600 presented herein may be used in any desired
KB to about 32 KB , but may be higher or lower depending environment . Thus FIG . 6 (and the other FIGS .) may be
on the approach . deemed to include any possible permutation .

A LSA segment also includes metadata which may be As shown , the metadata 600 includes a header 602 as well
used to identify which logical pages are included therein . as metadata pages 604 which are separated by physical
Theoretically , the LSA metadata may also be placed in 60 block addresses (PBA) 606 . According to an illustrative
dedicated metadata segments . However , because the meta - approach , the metadata header 602 may have a size of 4 KiB .
data is updated when data is being relocated upon garbage Moreover , the header 602 may include various information ,
collection , co - locating it with the actual data is preferred . e . g . , such as segment configuration parameters , segment
Typically , metadata includes a mapping entry for each checksums , a segment timestamp , host information , an
logical page stored in a segment . According to an exemplary 65 allocation timestamp , volume information , extent informa
approach , the mapping entry may have the following form : tion , etc . Each of the metadata pages 604 may also have a
[Physical address - > Logical Address , Timestamp] , where header 608 which includes checksum information in addi

13
US 10 , 437 , 670 B1

14
tion to an array 610 . As illustrated , the array 610 includes e . g . , such as host crashes , power failures , etc . Therefore , to
block pointer information (LBAY , LBAY . . . , LBAZ) and ensure the durability of user write operations , the LSA
a timestamp (tso , ts1 , . . . , tsm - 1) for each of the pages which component 712 preferably does not accumulate data in the
correspond thereto . host memory before sending full segments of data to the
However , conventional storage systems have a hard limit 5 storage drives 710 . Rather , the LSA component 712 remaps

on achievable performance . This is due , in part , to the fact each write request to the appropriate physical location and
that these conventional systems implement the storage func - immediately destages the data to that location . Accordingly ,
tionalities in a storage controller which has performance the LSA component may send one or more commands to the
limitations . Accordingly , conventional products have been storage drives 710 , instructing a new segment be opened in
unable to further increase performance . Moreover , conven - 10 memory to store the data corresponding to one or more new
tional products are vulnerable to data loss resulting from write requests . Although this results in a higher number of
failure events which occur before a write request can be fully smaller write requests compared to the situation in which the
performed . For instance , conventional products accumulate entire segment is destaged using a single command , the
data in the host memory before sending full segments of data remapping process is beneficial in terms of the write ampli
to be written to memory . However , data stored in host 15 fication savings achieved in the storage drives 710 . This is
memory may be lost as a result of experiencing such failure because the resulting data invalidation pattern at the physical
events , e . g . , such as a power loss at the host location , a level is the same , irrespective of whether the segment was
system crash , a network crash , etc . written with one or more write requests .

In sharp contrast , various ones of the embodiments Accordingly , write data may be sent from the host 702
included herein are able to overcome the conventional 20 (e . g . , from the LSA component 712) to the I / O controller
performance limitations , thereby achieving performance 706 . Upon receiving the write data , the I / O controller 706
levels that are significantly higher than previously possible . may perform additional data processing operations before
Moreover , these improvements to performance may be the write data is finally sent to the storage drives 710 to be
achieved in addition to increasing data retention and secu - stored . For example , the I / O controller 706 may perform any
rity , e . g . , as will be described in further detail below . 25 one or more of the processes included in method 800 below .

Referring now to FIGS . 7A - 7C , a representative view of Accordingly , the I / O controller 706 may include a relatively
the architecture of a storage system 700 is illustrated in small amount of protected memory 714 , e . g . , such as a
accordance with one embodiment . As an option , the present battery - backed DRAM , or other types of NVRAM . The I / O
storage system 700 may be implemented in conjunction with controller 706 may also be capable of computing parity
features from any other embodiment listed herein , such as 30 information for the desired erasure coding scheme . In other
those described with reference to the other FIGS . , such as words , the I / O controller 706 may include an XOR engine
FIGS . 5 - 6 . However , such storage system 700 and others which is compatible with different RAID schemes . How
presented herein may be used in various applications and / or ever , in other approaches , the parity information may be
in permutations which may or may not be specifically computed elsewhere , e . g . , such as by the storage drives 710 .
described in the illustrative embodiments listed herein . 35 In preferred approaches , the storage drives 710 are SSDs .
Further , the storage system 700 presented herein may be Accordingly , the LSA may be constructed on top of an array
used in any desired environment . Thus FIGS . 7A - 7C (and of SSDs . However , the storage drives 710 may include any
the other FIGS .) may be deemed to include any possible type of storage medium depending on the approach . In some
permutation . approaches , the LSA may also add erasure coding for fault

As shown in FIG . 7A , the storage system 700 includes a 40 tolerance . It should be appreciated that various embodiments
host 702 which is coupled to an I / O controller 706 by a herein may be implemented with a wide range of RAID - like
network 704 . I / O controller 706 is also connected to a schemes , including for example RAID - 4 , RAID - 5 , RAID - 6 ,
plurality of storage drives 710 by a second network 708 . etc . To provide a context , and solely to assist the reader ,
Depending on the approach , the network 704 and / or the various embodiments may be described with reference to a
second network 708 may include any desired type of net - 45 RAID - 5 scheme . This has been done by way of example
work , e . g . , including a local area network (LAN) , a wide only , and should not be deemed limiting on the invention .
area network (WAN) , a storage area network (SAN) , etc . As mentioned above , a LSA based segment may be
However , it should be noted that the configuration depicted opened in memory to store data corresponding to write
in FIG . 7A is in no way intended to limit the invention . In requests received . Depending on the approach , the segment
different approaches the various components included in the 50 may correspond to one or more RAID stripes . However ,
storage system 700 may or may not be positioned in a same looking to FIG . 7B , for ease of explanation , a LSA segment
physical enclosure , located at a same geographic location , is illustrated as mapping to precisely one RAID “ stripe ” .
etc . Thus , any of the host 702 , the I / O controller 706 , and the Moreover , the chunk of data that a RAID stripe stores on a
storage drives 710 may be coupled to each other using a given drive is referred to as a “ strip ” . For example , in an
wireless connection , e . g . , WiFi , Bluetooth , a cellular net - 55 array having 4 drives with a strip size of 64 KB , the size of
work , etc . ; a wired connection , e . g . , a cable , a fiber - optic one stripe would be 256 KB . Furthermore , the collection of
link , a wire , etc . , etc . , or any other type of connection which pages that are stored in the same offset across all strips is
would be apparent to one skilled in the art after reading the referred to as a “ sub - stripe ” . Furthermore , each of the pages
present description . In still other approaches , the network in the sub - stripe are referred to as “ sub - strip ” . It follows that
704 and the second network 708 may be implemented as a 60 the parity for each sub - stripe may be computed and written
single network that connects the various components in independently of all other sub - stripes .
storage system 700 . With continued reference to FIGS . 7A - 7B , it is again

Referring still to FIG . 7A , the host 702 includes a LSA noted that the I / O controller 706 may include at least some
component 712 . Accordingly , the LSA component 712 may protected memory 714 , e . g . , such as a battery - backed
process host write data in order to achieve LSA data orga - 65 DRAM or other type of NVRAM . A portion of the protected
nization , e . g . , as described above . However , memory at the memory 714 in the I / O controller 706 may be allocated for
host location may not be protected against failure events , each segment which is opened (e . g . , identified) to perform

US 10 , 437 , 670 B1
15 16

write operations in the storage drives 710 . In other words , Each of the steps of the method 800 may be performed by
the process of transferring a write request from the host any suitable component of the operating environment . For
location to the I / O controller 706 may involve (e . g . , be example , as mentioned above , any one or more of the
prefaced by) allocating memory space (e . g . , a buffer) on the processes included in method 800 may be performed by an
protected memory 714 of the I / O controller 706 . 5 1 / 0 controller which is in communication with a LSA at a

In some approaches , the allocation of the protected host location as well as memory , e . g . , such as I / O controller
memory 714 may even be performed by the LSA component 706 in FIG . 7A . In various other embodiments , the method
712 itself , e . g . , as would be appreciated by one skilled in the 800 may be partially or entirely performed by a controller ,
art after reading the present description . For instance , the a processor , a computer , etc . , or some other device having
LSA component 712 may send a request to the I / O controller 10 one or more processors therein . Thus , in some embodiments ,
706 , the request allocating memory space on the protected method 800 may be a computer - implemented method . In
memory 714 of the I / O controller 706 for a newly opened such embodiments , the computer used to implement the
segment in the storage drives 710 . Thereafter , the allocated method may include a storage drive itself or a portion
memory space (e . g . , buffer) on the protected memory 714 of thereof such as the controller , the tape , an external host , a
the I / O controller 706 may be used to store different types of 15 server , etc . Moreover , the terms computer , processor and
information received with future write requests . controller may be used interchangeably with regards to any

For instance , the memory space (e . g . , buffer) allocated on of the embodiments herein , such components being consid
the protected memory 714 for an open segment may store ered equivalents in the many various permutations of the
the cumulative parity of all the data that has been written so present invention .
far to the open segment . The memory space (e . g . , buffer) 20 Moreover , for those embodiments having a processor ,
allocated on the protected memory 714 for an open segment the processor , e . g . , processing circuit (s) , chip (s) , and / or
may also store the collection of all metadata entries (e . g . , module (s) implemented in hardware and / or software , and
back - pointers) for the data pages that have been written so preferably having at least one hardware component may be
far into the segment . In still further approaches , the memory utilized in any device to perform one or more steps of the
space (e . g . , buffer) allocated on the protected memory 714 25 method 800 . Illustrative processors include , but are not
for an open segment may store a short description of the limited to , a central processing unit (CPU) , an application
logical identifier for the segment . The short description may specific integrated circuit (ASIC) , a field programmable gate
correspond to the information stored in the segment header array (FPGA) , etc . , combinations thereof , or any other
and may include the storage pool and / or volume to which the suitable computing device known in the art .
segment belongs , the segment ID , configuration parameters , 30 Operation 802 of method 800 includes receiving a write
the RAID stripe in the segment (if the LSA segment includes command (also referred to herein as a " write request ”) to
multiple RAID stripes) , etc . The information included in the write data , from a LSA at a host location . Each write request
memory space is preferably able to enable the I / O controller received from the host LSA includes the actual data to be
706 to destage both the metadata pages and the parity to the written (e . g . , the data associated with the write request) , as
appropriate physical location in the storage drives 710 when 35 well as a metadata entry which is associated with that write
appropriate to do so . request . Accordingly , the write request received in operation

Looking to FIG . 7C , the logical structure of memory 802 may include data to be written to memory as well as
space (e . g . , a buffer) 750 allocated on the protected memory metadata which corresponds to the data . In some approaches
714 for an open segment is illustrated in accordance with an the metadata may include logical block address information ,
exemplary embodiment , which is in no way intended to limit 40 time stamp information , user information which corresponds
the invention . As shown , the allocated memory space 750 to the write request , information which identifies a type of
includes a header 752 , a parity accumulation buffer 754 , and data included in the write request , etc . , but may include any
a metadata accumulation buffer 756 . The header 752 may type of metadata which would be apparent to one skilled in
store information which links the specific allocated memory the art after reading the present description .
space 750 to the corresponding open segment in the storage 45 Moreover , operation 804 includes extracting metadata
drives . Moreover , the parity accumulation buffer 754 may be information from the received write command . The meta
used to store the parity information corresponding to the data may be extracted from the received write request using
write requests received which are directed to the open any known processes . For instance , in some approaches the
segment . The metadata accumulation buffer 756 may also be write request may identify the metadata using a flag . Once
used to store the metadata corresponding to the write 50 extracted , the metadata information is sequentially added to
requests received which are directed to the open segment , a metadata accumulation buffer . See operation 806 . As
e . g . , as will be described in further detail below . described above , a memory space (e . g . , a buffer) is prefer

The process by which data is received at the I / O controller a bly allocated for each open segment . Moreover , the allo
706 from the host 702 , and ultimately sent to the storage cated memory space may include a header , a parity accu
drives 710 in FIGS . 7A - 7B may include any one or more of 55 mulation buffer , and a metadata accumulation buffer (e . g . ,
the processes of method 800 . As shown in FIG . 8 , a see FIG . 7C above) . The metadata accumulation buffer may
flowchart of a method 800 for managing the metadata and be used to store the metadata corresponding to the write
parity information corresponding to a LSA array in such a requests received which are directed to the open segment .
way that achieves durability and persistence of all user write Accordingly , the extracted metadata information maybe
operations is shown according to one embodiment . The 60 sequentially added to the metadata accumulation buffer
method 800 may be performed in accordance with the using any desired processes .
present invention in any of the environments depicted in Referring still to method 800 , operation 808 includes
FIGS . 1A - 7B , among others , in various embodiments . Of extracting parity information from the received write com
course , more or less operations than those specifically mand . According to some approaches , the parity information
described in FIG . 8 may be included in method 800 , as 65 may be extracted from the write command by actually
would be understood by one of skill in the art upon reading performing parity computations . The parity computations
the present descriptions . may be able to achieve fault tolerance by calculating the

17
US 10 , 437 , 670 B1

18
differences between different versions of data and storing the parity information which correspond to a given segment (or
results . In some approaches , the parity information may be RAID stripe) are protected independently of the host loca
computed by XORing the data included in the received write tion as soon as the write operation is received and processed .
request , e . g . , as would be appreciate by one skilled in the art Thus , even if the host location crashes , power is lost , a
after reading the present description . According to an illus - 5 communication link to the host location is severed , etc . , the
trative example , which is in no way intended to limit the buffers stored in the protected memory at the I / O controller
invention , the parity information may be extracting in opera - include all of the information involved with either safely
tion 808 using a XOR engine which is configured to be destaging the metadata and parity information to the appro
compatible with a RAID - 5 scheme . priate physical locations in memory , or continuing operation
Moreover , operation 810 includes adding the extracted 10 after the host location is restarted and / or in response to

parity information to a parity accumulation buffer . Once another host location assuming control from the failed host
again , a memory space (e . g . , a buffer) is preferably allocated location over the LSA function . As a result , data durability
for each open segment , and may include a header , a parity (e . g . , retention) is significantly increased and the data also
accumulation buffer , and a metadata accumulation buffer becomes highly available . Moreover , these improvements
(e . g . , see FIG . 7C above) . Accordingly , the parity informa - 15 may be achieved in addition to maintaining the advantages
tion extracted in operation 808 may be added to the parity provided by a log - structured architecture , e . g . , as will be
accumulation buffer using any desired processes . In an described in further detail below .
exemplary approach , the extracted parity information may Referring still to FIG . 8 , decision 814 includes determin
be added to the parity accumulation buffer by combining the ing whether the open segment in the memory which corre
extracted parity information with the existing contents of the 20 sponds to the write command has been filled with data . In
parity accumulation buffer . For approaches implementing a other words , decision 814 includes determining whether the
RAID scheme , e . g . , such as RAID - 5 , the extracted parity open segment has reached capacity . As mentioned above , a
information may be combined with the existing contents of segment may be opened (e . g . , identified) in memory in
the parity accumulation buffer by XOR - ing the previously response to receiving a write request , and the open segment
accumulated (existing) parity information with the new 25 may be used to store data corresponding to the received
extracted parity information . This XOR - ing operation may write request . However , the amount of data included in the
be performed using any processes which would be apparent write request received may not align perfectly with the size
to one skilled in the art after reading the present description . of the open segment . Thus , in some approaches the data
This allows for the parity information being accumulated in corresponding to a write request may not be able to com
the parity accumulation buffer to be updated for the corre - 30 pletely fill the open segment .
sponding segment . Determining whether the open segment has been filled to

The data corresponding to the received write command is capacity with data may be performed differently depending
also sent to memory . See operation 812 . The memory on the approach . For instance , in some approaches decision
preferably includes a plurality of memory devices (e . g . , 814 may be determined by an I / O controller which is able to
components) which are configured as an array of memory . 35 count a number of write requests which have been per
Accordingly , operation 812 may include specifying a spe - formed using the open segment . The I / O controller may be
cific physical storage location and / or a specific storage able to keep track of the number of write operations which
component in the memory array where the data is to be have been performed on the open segment as a result of the
stored , and subsequently sending the data there . In some process by which data is written to the open segment .
approaches , the memory may include an array of Flash - 40 Specifically , open segments may be written in a write
based SSDs which are configured to implement a RAID append mode . However , in other approaches , decision 814
scheme . Thus , operation 812 may include forwarding the may be determined in response to receiving an explicit
data corresponding to the received write command to the indication from the host location that an open segment has
appropriate SSD such that it may be stored thereon . How been filled (e . g . , completed) . In still other approaches ,
ever , in other approaches , the memory may include any 45 decision 814 may be determined by an I / O controller which
desired type (s) of memory . maintains a small amount of cache for storing metadata and

Operations 804 , 806 , 808 , 810 , and 812 are preferably parity information , whereby the I / O controller simply evicts
performed in parallel in response to receiving a write an entry when new space needs to be made available for a
request . In other words , data corresponding to a received new segment . For instance , a least recently used , oldest ,
write command is preferably sent to memory for storage in 50 newest , largest , etc . entry in the cache may be evicted to
parallel with extracting parity information from the write make room for a new segment . Accordingly , the I / O con
request and using it to update a parity accumulation buffer , troller may implement a caching policy which is used to
as well as extracting metadata information from the write manage the small amount of cache included therein .
request and using it to update a metadata accumulation Open segments which have not yet been filled (e . g . ,
buffer . According to an exemplary approach , which is in no 55 reached capacity) preferably remain in an open state , e . g . ,
way intended to limit the invention , operations 804 , 806 , such that data corresponding to subsequently received write
808 , 810 , and 812 may be performed simultaneously and in operations may be stored therein . Moreover , the metadata
parallel by an I / O controller which is in communication with accumulation buffer and the parity accumulation buffer are
the host location as well as the memory (e . g . , see 706 in FIG . preferably not destaged to the stripe until the open stripe has
7A) . Moreover , the parity accumulation buffer and the 60 been filled . Accordingly , method 800 is illustrated as skip
metadata accumulation buffer may be located in a protected ping operations 816 and 818 , jumping to operation 820 in
portion of memory in the I / O controller . In other words , the response to determining that the open segment has not been
parity accumulation buffer and the metadata accumulation filled with data . There , operation 820 includes sending an
buffer may be stored in non - volatile memory (e . g . , such as indication to the host that the write command has been
NVRAM) which is able to retain the data stored therein 65 performed .
despite experiencing power loss , a system crash , network However , returning to decision 814 , method 800 proceeds
connection issues , etc . As a result , both the metadata and the to operation 816 in response to determining that the open

US 10 , 437 , 670 B1
20

segment has been filled with data . In other words , method implementing the various processes of method 800 and / or
800 proceeds to operation 816 in response to determining specific components included in the system may experience
that a portion of the open segment configured to store data a failure condition as a result of different situations . Accord
corresponding to one or more write requests has been filled ing to various approaches , a failure condition may be caused
to capacity . There , operation 816 includes updating the 5 by a loss of a power supply , a system crash , corrupt software ,
parity accumulation buffer with the metadata information a severed network connection , etc . Moreover , these failure
included in the metadata accumulation buffer . In other conditions may be experienced at the memory location , the
words , operation 816 may include updating the parity accu - 1 / 0 controller , the host location , etc .
mulation buffer to include parity information which protects In response to detecting that a failure condition is about to
the metadata included in the metadata accumulation buffer . 10 occur , is currently occurring , has occurred , etc . , the metadata
Accordingly , any one of the approaches described above information in the metadata accumulation buffer and / or the
may be used to update the parity accumulation buffer with parity information in the parity accumulation buffer may be
additional parity information . used to complete the outstanding write command . As men
Moving to operation 818 , both the metadata information tioned above , the metadata accumulation buffer and the

in the metadata accumulation buffer and the parity informa - 15 parity accumulation buffer are preferably stored in protected
tion in the parity accumulation buffer are destaged to a memory at the I / O controller . Thus , even after a failure
physical storage location in the memory . As mentioned condition has occurred , the information included in the
above , co - locating the metadata with the actual data is metadata and parity accumulation buffers may be unaffected
preferred as the metadata is updated when data is being by the failure condition . The information included in the
relocated upon garbage collection . Accordingly , operation 20 metadata and parity accumulation buffers may be destaged
818 may include destaging both the metadata information in to a given location in memory , whereby the write request
the metadata accumulation buffer and the parity information may be completed , e . g . , as would be appreciated by one
in the parity accumulation buffer to a physical storage skilled in the art after reading the present description .
location that is located in the open stripe . However , in some Although the storage system 700 illustrated in FIGS .
approaches the metadata accumulation buffer and / or the 25 7A - 7C includes a central I / O controller which is coupled to
parity accumulation buffer may be stored in dedicated each of the storage drives 710 , a storage system may have
metadata segments . Moreover , it should be noted that while a distributed configuration in some approaches . For instance ,
in some approaches the metadata accumulation buffer and referring momentarily to FIG . 10 , a storage system 1000
the parity accumulation buffer may be destaged to the same having a distributed architecture is illustrated in accordance
physical storage location (e . g . , such that the information 30 with one embodiment . As an option , the present storage
included in the buffers is collocated) , in other approaches the system 1000 may be implemented in conjunction with
parity accumulation buffer and the metadata accumulation features from any other embodiment listed herein , such as
buffer may be destaged to different locations in the open those described with reference to the other FIGS . Specifi
stripe to which they correspond . cally , FIG . 10 illustrates variations of the embodiment of

Referring momentarily to FIG . 9 , a segment 902 spanning 35 FIGS . 7A - 7C having several exemplary configurations
across an array of SSDs 904 is illustrated in accordance with within a distributed storage system 1000 . Accordingly , vari
one embodiment . According to the present embodiment , the ous components of FIG . 10 have common numbering with
segment 902 may correspond to a single RAID stripe . those of FIGS . 7A - 7C .
Moreover , the segment 902 is shown as including data 906 , However , such storage system 1000 and others presented
metadata 908 , and parity information 910 . The pages having 40 herein may be used in various applications and / or in per
metadata 908 stored therein are located at the end of the mutations which may or may not be specifically described in
segment 902 and are grouped together in a contiguous the illustrative embodiments listed herein . Further , the stor
physical space . As a result , the metadata may desirably be age system 1000 presented herein may be used in any
read with a single I / O operation from a single SSD . The LPT desired environment . Thus FIG . 10 (and the other FIGS .)
portion which corresponds to the segment 902 may also be 45 may be deemed to include any possible permutation .
reconstructed with a single I / O operation from a single SSD As shown , the storage system 1000 includes a host 702
Similarly , the pages having parity information 910 stored which is coupled to a plurality of storage drives 710 by a
therein are grouped in the rightmost SSD 904 . It follows that network 704 , e . g . , according to any of the approaches
the metadata accumulation buffer and / or the parity accumu - described above . Moreover , the host 702 includes a LSA
lation buffer may be destaged in operation 818 such that the 50 component 712 . Looking to the plurality of storage drives
resulting distribution of information in the memory may 710 , each of the storage drives 710 includes an I / O controller
mirror (or at least be similar) to that shown in FIG . 9 . 1002 included therein . Each of the I / O controllers 1002 also

Returning to FIG . 8 , method 800 includes sending an include a relatively small amount of protected memory
indication to the host that the write command has been 1004 , e . g . , such as a battery - backed DRAM , or other types
performed . See operation 820 . Thereafter , the flowchart 55 of NVRAM as described above . Accordingly , each of the
progresses to operation 822 whereby method 800 may end . storage drives 710 may be able to process requests , com
However , it should be noted that although method 800 may mands , instructions , etc . received from the host 702 .
end upon reaching operation 822 , any one or more of the Due to the distributed nature of the storage system 1000 ,
processes included in method 800 may be repeated in order the I / O controllers 1002 in the various storage drives 710
to process additional write requests received . In other words , 60 may be able to communicate directly with each other , e . g . ,
any one or more of the processes included in method 800 using the network 704 . Each of the I / O controllers 1002 may
may be repeated for subsequently received write requests . also be able to maintain a metadata accumulation buffer

Although not shown in the flowchart of FIG . 8 , a failure and / or a parity accumulation buffer therein . In some
condition may be experienced at any point of performing approaches , a write request received from the host 702 may
method 800 . Thus , in some approaches a failure condition 65 be distributed by the network 704 such that each portion of
may be experienced before a current write command has the writ request is delivered to the I / O controllers 1002 in the
actually been performed (e . g . , completed) . The system storage drive 710 which corresponds to the intended storage

21
US 10 , 437 , 670 B1

22
location of the data in the respective portion . In other The computer readable storage medium can be a tangible
approaches , portions of a write request received from the device that can retain and store instructions for use by an
host 702 may be distributed to the various I / O controllers instruction execution device . The computer readable storage
1002 in an arbitrary manner . Thereafter , the various I / O medium may be , for example , but is not limited to , an
controllers 1002 may communicate with each other such that 5 electronic storage device , a magnetic storage device , an
each portion of the write request is delivered to the I / O optical storage device , an electromagnetic storage device , a
controller 1002 in the storage drive 710 which corresponds semiconductor storage device , or any suitable combination
to the intended storage location of the data in the respective of the foregoing . A non - exhaustive list of more specific

portion . It follows that any one or more of the processes examples of the computer readable storage medium includes
included in method 800 may be performed by each of the I / O 10 the following : a portable computer diskette , a hard disk , a

random access memory (RAM) , a read - only memory controllers 1002 , one of the I / O controllers 1002 which has (ROM) , an erasable programmable read - only memory been designated as a managing controller , subsets of the I / O (EPROM or flash memory) , a static random access memory controllers 1002 , etc . , depending on the desired approach . (SRAM) , a portable compact disc read - only memory (CD
It follows that various embodiments included herein are 15 ROM cruded herein are 15 ROM) , a digital versatile disk (DVD) , a memory stick , a

able to improve performance , while also increasing data floppy disk , a mechanically encoded device such as punch
retention and security . As described above , these improve cards or raised structures in a groove having instructions
ments may be achieved by transferring at least a portion of recorded thereon , and any suitable combination of the fore
the data processing functionality to the host location and / or going . A computer readable storage medium , as used herein ,
other components in the storage system , e . g . , such as an I / O 20 is not to be construed as being transitory signals per se , such
controller . Moreover , the improvements to data durability as radio waves or other freely propagating electromagnetic
and availability may be achieved in addition to maintaining waves , electromagnetic waves propagating through a wave
the advantages provided by a log - structured architecture . guide or other transmission media (e . g . , light pulses passing
For instance , log - structured architectures store metadata through a fiber - optic cable) , or electrical signals transmitted
together with the data at a well - known location . As a result , 25 through a wire .
the parity information may not even be updated on the Computer readable program instructions described herein
memory , even under workloads with small random write can be downloaded to respective computing processing
operations despite the fact that the LSA organization of data , devices from a computer readable storage medium or to an
metadata , and parity information may be performed by the external computer or external storage device via a network ,
host . 30 for example , the Internet , a local area network , a wide area

Again , various embodiments included herein are able to network and / or a wireless network . The network may com
achieve an efficient and accurate management of metadata prise copper transmission cables , optical transmission fibers ,
and parity information for LSA data arrays such that dura wireless transmission , routers , firewalls , switches , gateway
bility and persistence of all user write operations is achieved . computers and / or edge servers . A network adapter card or
These improvements may be achieved as a result of imple - 35 network interface in each computing processing device
menting an I / O controller which is equipped with a small receives computer readable program instructions from the
amount of protected memory (e . g . , NVRAM) . This pro - network and forwards the computer readable program
tected memory may be allocated for each LSA segment , and instructions for storage in a computer readable storage
used to incrementally accumulate the parity information for medium within the respective computing / processing device .
the RAID stripe that corresponds to that segment , while also 40 Computer readable program instructions for carrying out
incrementally accumulating the metadata entries which cor - operations of the present invention may be assembler
responding to that LSA segment . The embodiments included instructions , instruction - set - architecture (ISA) instructions ,
herein may even achieve data durability in the presence of machine instructions , machine dependent instructions ,
arbitrary host failures , as well as erasure coding without microcode , firmware instructions , state - setting data , or
parity updates (i . e . , no Read - Modify - Writes for RAID5 or 45 either source code or object code written in any combination
RAID6 , even in the presence of small user writes) . More - of one or more programming languages , including an object
over , these improvements are achieved while also imple - oriented programming language such as Smalltalk , C + + or
menting sequential write patterns for each of the respective the like , and conventional procedural programming lan
LSA segments , as well as the ability to group all the guages , such as the “ C ” programming language or similar
metadata pages for the LSA segment contiguously in the 50 programming languages . The computer readable program
physical space . instructions may execute entirely on the user ' s computer ,

Alternative embodiments may also implement the I / O partly on the user ' s computer , as a stand - alone software
controllers and / or protected memory inside each of the package , partly on the user ' s computer and partly on a
storage drives themselves , e . g . , in a distributed fashion as remote computer or entirely on the remote computer or
described above . This allows the storage controller to main - 55 server . In the latter scenario , the remote computer may be
tain an implicit or explicit mapping on which parity infor - connected to the user ' s computer through any type of
mation and metadata are to be placed for each stripe . network , including a local area network (LAN) or a wide
Preferably , parity information and / or metadata are placed in area network (WAN) , or the connection may be made to an
the protected memory of the storage drive on which the strip external computer (for example , through the Internet using
is going to be written (e . g . , destaged) once the segment has 60 an Internet Service Provider) . In some embodiments , elec
been fully written (e . g . , see operation 818 above) . tronic circuitry including , for example , programmable logic

The present invention may be a system , a method , and / or circuitry , field - programmable gate arrays (FPGA) , or pro
a computer program product . The computer program prod - grammable logic arrays (PLA) may execute the computer
uct may include a computer readable storage medium (or readable program instructions by utilizing state information
media) having computer readable program instructions 65 of the computer readable program instructions to personalize
thereon for causing a processor to carry out aspects of the the electronic circuitry , in order to perform aspects of the
present invention . present invention .

US 10 , 437 , 670 B1
23 24

Aspects of the present invention are described herein with functionality upon execution by the processor . Software
reference to flowchart illustrations and / or block diagrams of logic may be stored on local and / or remote memory of any
methods , apparatus (systems) , and computer program prod - memory type , as known in the art . Any processor known in
ucts according to embodiments of the invention . It will be the art may be used , such as a software processor module
understood that each block of the flowchart illustrations 5 and / or a hardware processor such as an ASIC , a FPGA , a
and / or block diagrams , and combinations of blocks in the central processing unit (CPU) , an integrated circuit (IC) , a
flowchart illustrations and / or block diagrams , can be imple - graphics processing unit (GPU) , etc .
mented by computer readable program instructions . It will be clear that the various features of the foregoing

These computer readable program instructions may be systems and / or methodologies may be combined in any way ,
provided to a processor of a general purpose computer , 10 creating a plurality of combinations from the descriptions
special purpose computer , or other programmable data pro - presented above .
cessing apparatus to produce a machine , such that the While various embodiments have been described above ,
instructions , which execute via the processor of the com - it should be understood that they have been presented by
puter or other programmable data processing apparatus , way of example only , and not limitation . Thus , the breadth
create means for implementing the functions / acts specified 15 and scope of a preferred embodiment should not be limited
in the flowchart and / or block diagram block or blocks . These by any of the above - described exemplary embodiments , but
computer readable program instructions may also be stored should be defined only in accordance with the following
in a computer readable storage medium that can direct a claims and their equivalents .
computer , a programmable data processing apparatus , and / FIG . 11 illustrates a network architecture 1100 , in accor
or other devices to function in a particular manner , such that 20 dance with one embodiment . As shown in FIG . 11 , a
the computer readable storage medium having instructions plurality of remote networks 1102 are provided including a
stored therein comprises an article of manufacture including first remote network 1104 and a second remote network
instructions which implement aspects of the function / act 1106 . A gateway 1101 may be coupled between the remote
specified in the flowchart and / or block diagram block or networks 1102 and a proximate network 1108 . In the context
blocks . 25 of the present network architecture 1100 , the networks 1104 ,

The computer readable program instructions may also be 1106 may each take any form including , but not limited to
loaded onto a computer , other programmable data process - a LAN , a WAN such as the Internet , public switched
ing apparatus , or other device to cause a series of operational telephone network (PSTN) , internal telephone network , etc .
steps to be performed on the computer , other programmable In use , the gateway 1101 serves as an entrance point from
apparatus or other device to produce a computer imple - 30 the remote networks 1102 to the proximate network 1108 . As
mented process , such that the instructions which execute on such , the gateway 1101 may function as a router , which is
the computer , other programmable apparatus , or other capable of directing a given packet of data that arrives at the
device implement the functions / acts specified in the flow - gateway 1101 , and a switch , which furnishes the actual path
chart and / or block diagram block or blocks . in and out of the gateway 1101 for a given packet .

The flowchart and block diagrams in the Figures illustrate 35 Further included is at least one data server 1114 coupled
the architecture , functionality , and operation of possible to the proximate network 1108 , and which is accessible from
implementations of systems , methods , and computer pro - the remote networks 1102 via the gateway 1101 . It should be
gram products according to various embodiments of the noted that the data server (s) 1114 may include any type of
present invention . In this regard , each block in the flowchart computing device / groupware . Coupled to each data server
or block diagrams may represent a module , segment , or 40 1114 is a plurality of user devices 1116 . Such user devices
portion of instructions , which comprises one or more 1116 may include a desktop computer , laptop computer ,
executable instructions for implementing the specified logi - handheld computer , printer , and / or any other type of logic
cal function (s) . In some alternative implementations , the containing device . It should be noted that a user device 1111
functions noted in the block may occur out of the order noted may also be directly coupled to any of the networks , in some
in the figures . For example , two blocks shown in succession 45 embodiments .
may , in fact , be executed substantially concurrently , or the peripheral 1120 or series of peripherals 1120 , e . g . ,
blocks may sometimes be executed in the reverse order , facsimile machines , printers , scanners , hard disk drives ,
depending upon the functionality involved . It will also be networked and / or local data storage units or systems , etc . ,
noted that each block of the block diagrams and / or flowchart may be coupled to one or more of the networks 1104 , 1106 ,
illustration , and combinations of blocks in the block dia - 50 1108 . It should be noted that databases and / or additional
grams and / or flowchart illustration , can be implemented by components may be utilized with , or integrated into , any
special purpose hardware - based systems that perform the type of network element coupled to the networks 1104 ,
specified functions or acts or carry out combinations of 1106 , 1108 . In the context of the present description , a
special purpose hardware and computer instructions . network element may refer to any component of a network .
Moreover , a system according to various embodiments 55 According to some embodiments , methods and systems

may include a processor and logic integrated with and / or described herein may be implemented with and / or on virtual
executable by the processor , the logic being configured to systems and / or systems which emulate one or more other
perform one or more of the process steps recited herein . By systems , such as a UNIX system which virtually hosts a
integrated with , what is meant is that the processor has logic M ICROSOFT WINDOWS environment , etc . This virtual
embedded therewith as hardware logic , such as an applica - 60 ization and / or emulation may be enhanced through the use
tion specific integrated circuit (ASIC) , a field programmable of VMWARE software , in some embodiments .
gate array (FPGA) , etc . By executable by the processor , In other embodiments , one or more networks 1104 , 1106 ,
what is meant is that the logic is hardware logic ; software 1108 , may represent a cluster of systems commonly referred
logic such as firmware , part of an operating system , part of to as a “ cloud . ” In cloud computing , shared resources , such
an application program ; etc . , or some combination of hard - 65 as processing power , peripherals , software , data , servers ,
ware and software logic that is accessible by the processor etc . , are provided to any system in the cloud in an on
and configured to cause the processor to perform some demand relationship , thereby allowing access and distribu

US 10 , 437 , 670 B1
25 26

tion of services across many computing systems . Cloud include one or more random access and / or direct access
computing typically involves an Internet connection media 1304 , such as hard disks , nonvolatile memory
between the systems operating in the cloud , but other (NVM) , NVRAM) , solid state memory in SSDs , flash
techniques of connecting the systems may also be used , as memory , SSD arrays , flash memory arrays , etc . , and / or
known in the art . 5 others noted herein or known in the art . According to

FIG . 12 shows a representative hardware environment illustrative examples , FIGS . 3 - 4 show exemplary architec
associated with a user device 1116 and / or server 1114 of tures of SSD systems which may be used as a higher storage
FIG . 11 , in accordance with one embodiment . FIG . 12 tier 1302 depending on the desired embodiment .
illustrates a typical hardware configuration of a processor Referring still to FIG . 13 , the lower storage tier (s) 1306
system 1200 having a central processing unit 1210 , such as 10 preferably includes one or more lower performing storage
a microprocessor , and a number of other units intercon media 1308 , including sequential access media such as
nected via a system bus 1212 , according to one embodiment magnetic tape in tape drives and / or optical media , slower
In some embodiments , central processing unit 1210 may accessing HDDs , slower accessing SSDs , etc . , and / or others
include any of the approaches described above with refer noted herein or known in the art . One or more additional
ence to the one or more processors 210 of FIG . 2 . 15 storage tiers 1316 may include any combination of storage

The processor system 1200 shown in FIG . 12 includes a memory media as desired by a designer of the system 1300 .
Random Access Memory (RAM) 1214 , Read Only Memory Thus , the one or more additional storage tiers 1316 may , in
(ROM) 1216 , and an I / O adapter 1218 . According to some some approaches , include a SSD system architecture similar
embodiments , which are in no way intended to limit the or the same as those illustrated in FIGS . 1 - 2 . Also , any of the
invention , I / O adapter 1218 may include any of the 20 higher storage tiers 1302 and / or the lower storage tiers 1306
approaches described above with reference to I / O adapter may include any combination of storage devices and / or
218 of FIG . 2 . Referring still to processor system 1200 of storage media .
FIG . 12 , the aforementioned components 1214 , 1216 , 1218 The storage system manager 1312 may communicate with
may be used for connecting peripheral devices such as the storage media 1304 , 1308 on the higher storage tier (s)
storage subsystem 1220 to the bus 1212 . In some embodi - 25 1302 and lower storage tier (s) 1306 through a network 1310 ,
ments , storage subsystem 1220 may include a similar and / or such as a storage area network (SAN) , as shown in FIG . 13 ,
the same configuration as data storage system 220 of FIG . 2 . or some other suitable network type . The storage system
According to an example , which is in no way intended to manager 1312 may also communicate with one or more host
limit the invention , storage subsystem 1220 may include systems (not shown) through a host interface 1314 , which
non - volatile data storage cards , e . g . , having NVRAM 30 may or may not be a part of the storage system manager
memory cards , RAM , ROM , and / or some other known type 1312 . The storage system manager 1312 and / or any other
of non - volatile memory , in addition to RAID controllers as component of the storage system 1300 may be implemented
illustrated in FIG . 2 . in hardware and / or software , and may make use of a
With continued reference to FIG . 12 , a user interface processor (not shown) for executing commands of a type

adapter 1222 for connecting a keyboard 1224 , a mouse 35 known in the art , such as a central processing unit (CPU) , a
1226 , a speaker 1228 , a microphone 1232 , and / or other user field programmable gate array (FPGA) , an application spe
interface devices such as a touch screen , a digital camera cific integrated circuit (ASIC) , etc . Of course , any arrange
(not shown) , etc . , to the bus 1212 . ment of a storage system may be used , as will be apparent

Processor system 1200 further includes a communication to those of skill in the art upon reading the present descrip
adapter 1234 which connects the processor system 1200 to 40 tion .
a communication network 1235 (e . g . , a data processing In more embodiments , the storage system 1300 may
network) and a display adapter 1236 which connects the bus include any number of data storage tiers , and may include
1212 to a display device 1238 . the same or different storage memory media within each

The processor system 1200 may have resident thereon an storage tier . For example , each data storage tier may include
operating system such as the MICROSOFT WINDOWS 45 the same type of storage memory media , such as HDDs ,
Operating System (OS) , a MAC OS , a UNIX OS , etc . It will SSDs , sequential access media (tape in tape drives , optical
be appreciated that a preferred embodiment may also be disk in optical disk drives , etc .) , direct access media (CD
implemented on platforms and operating systems other than ROM , DVD - ROM , etc .) , or any combination of media
those mentioned . A preferred embodiment may be written storage types . In one such configuration , a higher storage tier
using JAVA , XML , C , and / or C + + language , or other pro - 50 1302 , may include a majority of SSD storage media for
gramming languages , along with an object oriented pro storing data in a higher performing storage environment , and
gramming methodology . Object oriented programming remaining storage tiers , including lower storage tier 1306
(OOP) , which has become increasingly used to develop and additional storage tiers 1316 may include any combi
complex applications , may be used . nation of SSDs , HDDs , tape drives , etc . , for storing data in
Moreover , FIG . 13 illustrates a storage system 1300 55 a lower performing storage environment . In this way , more

which implements high level (e . g . , SSD) storage tiers in frequently accessed data , data having a higher priority , data
combination with lower level (e . g . , magnetic tape) storage needing to be accessed more quickly , etc . , may be stored to
tiers , according to one embodiment . Note that some of the the higher storage tier 1302 , while data not having one of
elements shown in FIG . 13 may be implemented as hard these attributes may be stored to the additional storage tiers
ware and / or software , according to various embodiments . 60 1316 , including lower storage tier 1306 . Of course , one of
The storage system 1300 may include a storage system skill in the art , upon reading the present descriptions , may
manager 1312 for communicating with a plurality of media devise many other combinations of storage media types to
on at least one higher storage tier 1302 and at least one lower implement into different storage schemes , according to the
storage tier 1306 . However , in other approaches , a storage embodiments presented herein .
system manager 1312 may communicate with a plurality of 65 According to some embodiments , the storage system
media on at least one higher storage tier 1302 , but no lower (such as 1300) may include logic configured to receive a
storage tier . The higher storage tier (s) 1302 preferably may request to open a data set , logic configured to determine if

27
US 10 , 437 , 670 B1

28
the requested data set is stored to a lower storage tier 1306 the write command in response to experiencing a
of a tiered data storage system 1300 in multiple associated failure condition before the write command has been
portions , logic configured to move each associated portion performed .
of the requested data set to a higher storage tier 1302 of the 9 . A computer program product comprising a computer
tiered data storage system 1300 , and logic configured to 5 readable storage medium having program instructions
assemble the requested data set on the higher storage tier embodied therewith , wherein the computer readable storage
1302 of the tiered data storage system 1300 from the medium is not a transitory signal per se , the program
associated portions . instructions readable and / or executable by a processor to Of course , this logic may be implemented as a method on cause the processor to perform a method comprising : any device and / or system or as a computer program product , 10 receiving , by the processor , a write command to write according to various embodiments . data , wherein the write command is received from a log
What is claimed is : structure array at a host location ;
1 . A computer - implemented method , comprising : extracting , by the processor , metadata information from
receiving a write command to write data , wherein the 15 the received write command ;

write command is received from a log structure array at sequentially adding , by the processor , the extracted meta

a host location ; data information to a metadata buffer ;
extracting metadata information from the received write extracting , by the processor , parity information from the
command ; received write command ;

sequentially adding the extracted metadata information to 20 adding , by the processor , the extracted parity information
a metadata buffer ; to a parity buffer ;

extracting parity information from the received write sending , by the processor , the data corresponding to the
command ; received write command to a memory ;

adding the extracted parity information to a parity buffer ; determining , by the processor , whether an open segment
sending the data corresponding to the received write 25 in the memory which corresponds to the write com
command to a memory ; mand has been filled ;

determining whether an open segment in the memory updating , by the processor , the parity buffer with the
which corresponds to the write command has been metadata information included in the metadata buffer in
filled ; response to determining that the open segment has been

updating the parity buffer with the metadata information 30 filled ; and
included in the metadata buffer in response to deter destaging , by the processor , the metadata information
mining that the open segment has been filled ; and from the metadata buffer and the parity information

destaging the metadata information from the metadata from the parity buffer to a physical storage location in
buffer and parity information from the parity buffer to the memory .
a physical storage location in the memory . 35 10 . The computer program product of claim 9 , wherein

2 . The computer - implemented method of claim 1 , the memory includes one or more solid state drives .
wherein the memory includes one or more solid state drives . 11 . The computer program product of claim 9 , wherein the

3 . The computer - implemented method of claim 1 , method is performed by an input / output controller , wherein
wherein the open segment corresponds to one or more RAID the input / output controller is in communication with the log
stripes . 40 structure array at the host location , wherein the input / output

4 . The computer - implemented method of claim 1 , controller is in communication with the memory .
wherein the method is performed by an input / output con - 12 . The computer program product of claim 11 , wherein
troller , wherein the input / output controller is in communi - the input / output controller includes a non - volatile random
cation with the log structure array at the host location , access memory , wherein the metadata buffer and the parity
wherein the input / output controller is in communication 45 buffer are stored in the non - volatile random access memory .
with the memory . 13 . The computer program product of claim 9 , wherein

5 . The computer - implemented method of claim 4 , the metadata buffer and the parity buffer are stored in a
wherein the input / output controller includes a non - volatile non - volatile random access memory .
random access memory , wherein the metadata buffer and the 14 . The computer program product of claim 9 , wherein
parity buffer are stored in the non - volatile random access 50 sequentially adding the extracted metadata information to
memory . the metadata buffer , adding the extracted parity information

6 . The computer - implemented method of claim 1 , to the parity buffer , and sending the data corresponding to
wherein the metadata buffer and the parity buffer are stored the received write command to a memory , are performed in
in a non - volatile random access memory . parallel .

7 . The computer - implemented method of claim 1 , 55 15 . The computer program product of claim 9 , wherein
wherein sequentially adding the extracted metadata infor - the program instructions are readable and / or executable by
mation to the metadata buffer , adding the extracted parity the processor to cause the processor to perform the method
information to the parity buffer , and sending the data cor comprising :
responding to the received write command to a memory , are sending , by the processor , an indication to the host that the
performed in parallel . 60 write command has been performed in response to

8 . The computer - implemented method of claim 1 , com determining that the open segment has not been filled ;
prising : and

sending an indication to the host that the write command using , by the processor , the metadata information in the
has been performed in response to determining that the metadata buffer and the parity information in the parity
open segment has not been filled ; and 65 buffer to complete the write command in response to

using the metadata information in the metadata buffer and experiencing a failure condition before the write com
the parity information in the parity buffer to complete mand has been performed .

US 10 , 437 , 670 B1
29 30

16 . A system , comprising : information from the parity buffer to a physical
an input / output controller ; and storage location in the memory .
logic integrated with and / or executable by the input / 17 . The system of claim 16 , wherein the memory includes

output controller , the logic being configured to cause one or more solid state drives , wherein the input / output
the input / output controller to : 5 controller is in communication with the log structure array
receive , by the input / output controller , a write com - at the host location , wherein the input / output controller is in
mand to write data , wherein the write command is communication with the one or more solid state drives .
received from a log structure array at a host location ; 18 . The system of claim 16 , wherein the input / output

controller includes a non - volatile random access memory , extract , by the input / output controller , metadata infor 10 wherein the metadata buffer and the parity buffer are stored mation from the received write command ; in the non - volatile random access memory . sequentially add , by the input / output controller , the
extracted metadata information to a metadata buffer ; 19 . The system of claim 16 , wherein sequentially adding

extract , by the input / output controller , parity informa the extracted metadata information to the metadata buffer ,
tion from the received write command ; adding the extracted parity information to the parity buffer ,

add , by the input / output controller , the extracted parity 15 and sending the data corresponding to the received write
information to a parity buffer ; command to a memory , are performed in parallel .

20 . The system of claim 16 , the logic being configured to send , by the input / output controller , the data corre
sponding to the received write command to a cause the input / output controller to :
memory ; send , by the input / output controller , an indication to the

determine , by the input / output controller , whether an 20 host that the write command has been performed in
open segment in the memory which corresponds to response to determining that the open segment has not

been filled ; and the write command has been filled ;
update , by the input / output controller , the parity buffer use , by the input / output controller , the metadata informa

with the metadata information included in the meta tion in the metadata buffer and the parity information in
data buffer in response to determining that the open 23 the parity buffer to complete the write command in
segment has been filled ; and response to experiencing a failure condition before the

destage , by the input / output controller , the metadata write command has been performed .
information from the metadata buffer and the parity * * * * *

25

