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PROBABILITY OF DETECTION OF LIFECYCLE PHASES OF CORROSION UNDER
INSULATION USING ARTIFICIAL INTELLIGENCE AND TEMPORAL
THERMOGRAPHY

RELATED APPLICATION

[0001] This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application
No. 63/371,346, filed August 12, 2022, entitled “Nondestructive Detection and Classification of
Lifecycle Phases of Corrosion Under Insulation on Industrial Assets,” which is hereby

incorporated by reference as if set forth in its entirety herein.
BACKGROUND

[0002] Corrosion under insulation (CUI) is a condition in which an insulated structure such as a
metal pipe suffers corrosion on the metal surface beneath the insulation. As the corrosion cannot
be easily observed due to the insulation covering, which typically surrounds the entire structure,
CUI is challenging to detect. The typical causes of CUI are moisture buildup that infiltrates into
the insulation material. Water can accumulate in the annular space between the insulation and
the metal surface, causing surface corrosion. Sources of water that can induce corrosion include
rain, water leaks, and condensation, cooling water tower drift, deluge systems and steam tracing
leaks. While corrosion usually begins locally, it can progress at high rates if there are repetitive

thermal cycles or contaminants in the water medium such as chloride or acid.
SUMMARY

[0003] In onc aspect, a system for determining corrosion under insulation is provided. The
system can include an infrared camera configured to acquire one or more time-series infrared
images of an industrial area including an industrial asset. The system can further include a
computing device including at least one hardware data processor, and a memory coupled to the at
least one data processor. The memory storing instructions causes the at least one data processor

to perform operations including receiving data characterizing the one or more time-series
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infrared images and identifying an area of interest of the industrial asset within the one or more
time-series infrared images. The operations can further include identifying, by a machine
learning algorithm, a plurality of defects within the area of interest, wherein each defect of the
plurality of defects is identified based on pixel-wise assignment of at least one defect category
selected from a plurality of defect categories associated with a lifecycle of corrosion under
insulation of the industrial asset. The operations can also include providing the so-identified
plurality of defects within the area of interest of the industrial asset for downstream assessment,

action, or both.

[0004] In some implementations, the plurality of defect categories can include a healthy asset
category, a moisture accumulation category, an insulation damage category, a metal corrosion
category, and a severe corrosion category. The lifecycle of corrosion under insulation of the
industrial asset can include a sequence of progressive stages of corrosion of the industrial asset.
In some implementations, the area of interest can be automatically identified or identified based

on user-provided inpul.

[0005] In some implementations, the machine learning algorithm can be trained by providing
one or more training configuration parameters associated with at least one defect lifecycle of a
defect of the industrial asset and generating a plurality of defect patch images based on the one
or more training configuration parameters. To be clear, , the plurality of defect patch images
referred to herein are ones that include the defect. The machine learning algorithm can also be
trained by applying one or more of the defect patch images onto time-series image data of the
industrial asset. The time-series image data can exclude any defects of the industrial asset. The
machine learning algorithm can also be trained by generating time-series training data based on
the steps of applying and training the machine learning algorithm using the generated time-series

training data.

[0006] In some implementations, the time-series training data can further comprise annotated
time-series image data including one or more known defects of the industrial asset. In some
implementations, the one or more training configuration parameters can be associated with the
industrial asset and can include a surface temperature associated with the industrial asset, a type

of fluid within the industrial asset, a temperature of a fluid within the industrial asset, an
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atmospheric condition where the industrial asset is located, a type of defect, a size of a defect, a
shape of a defect, a depth of a defect, a location of a defect, a metal thickness of the industrial

asset, a material of the industrial asset, a thickness of the insulation.

[0007] In some implementations, applying the one or more defect patch images to the time-series
image data of the industrial asset can include scaling a simulated size of the defect to an actual
size of the defect. In some implementations, the one or more defect patch images can be applied
onto the time-series image data at random locations on the industrial asset. In some
implementations, the industrial assel can be a horizontal pipe and the one or more defect palch
images are applied to an inferior portion of the horizontal pipe simulating gravitational force. In
some implementations, the one or more defect patch images can be applied at pre-determined

locations based on historical observation data of the industrial asset.

[0008] In some implementations, generating the plurality of defect patch images can include
determining, using a first physical model of temperature propagation across a cross-section of the
industrial asset, at least one temperature profile of the industrial asset responsive to providing a
defect depth as the training configuration parameter or a defect size as the training configuration
parameter. Generating the plurality of defect patch images can also include generating, based on
the determining step, a surface temperature for each pixel included in the plurality of detect
patches. Generating the plurality of defect patch images can also include providing the surface

temperatures in the cross-section of the industrial asset in the plurality of defect patch images.

[0009] In some implementations, generating the plurality of defect patch images can include
determining, using a second physical model of temperature propagation across a surface of the
industrial asset, at least one surface temperature profile of the industrial asset responsive to
providing a defect location as a corrosion origination point as training configuration parameters.
Generating the plurality of defect patch images can also include generating, based on the
corrosion origination point, a surface temperature distribution within the plurality of defect
patches. Generating the plurality of defect patch images can also include providing the surface
temperature distribution in the plurality of defect patch images, wherein the surface temperature
distribution extends across the surface of the industrial asset from the corrosion origination point

toward edges of the plurality of defect patch images.
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[0010] In some implementations, a camera noise model corresponding to the infrared camera can
be applied to the plurality of defect patch images to generate a plurality of modified defect patch
images, wherein the plurality of modified defect patch images include the surface temperature

distribution with added noise due to the infrared camera.

[0011] In some implementations, the generated time-series training data can be used to
determine a probability of detection for the machine learning algorithm, the probability of
detection based on the machine learning algorithm predicting at least one defect in the one or
more time-series infrared data matching a corresponding defect present in the generated time-
series data, wherein the probability of detection is indicative of the machine learning algorithms
performance detecting a defect location or a defect size, and classifying the defect. In some
implementations, the machine learning algorithm can be trained in a machine learning process
including at least one of a convolutional neural network, a recurrent neural network, a long short-
term memory network, or a vision transformer.

[0012] In accordance with further aspect of the present disclosure, in certain implementations the
Al model can be configured to synthesize simulated data to augment or balance the categories of
defects with corresponding defect type labels to supplement the existing real data, under control
of code executing therein. The simulated data can be used in initial POD determinations and
thereafter removed from POD determinations performed once more real data become available
that the real data is deemed sufficient and balanced, such as by exceeding a prescribed threshold
applicable to the data under review. A dataset generation system or subsystem can comprise its
own hardware processor and code executing therein, or can be part of the system(s) that

implement methods described herein.

[0013] In certain implementations in which data is synthesized, the dataset generation system
can include, among other configuration paramcters, cnvironmental paramcters concerning the
location of the industrial asset being analyzed, the type of condition monitoring location under
review, the category or subcategory of defect, and the actual data that had been acquired, such as
a set of thermographic IR images. These configurations are included together within a catalog of
IR videos of actual captured data which include CML mask locations which have no defect,

which are stored in a database. The code that executes in the processor to perform the POD
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computations uses known thermodynamic equations operating on the configuration provided to
the processor, and a temperature offset time series 1108, such as determined by the heat transfer
thermodynamic computations, as well as the heat transfer computations, are used to compute the
synthetic data points which are then fed into a video synthesis module. The video synthesis
module develops the synthetic data to augment the real data with no defects by providing further
datasets that are stored in database for the AI model to use for augmented training and testing,
and POD calculations. The video synthesis module also receives a subset of IR videos in
accordance with CML properties for like-(sub)category defects, wherein the subset of IR videos

are obtained from a database.

[0014] In another aspect, a system for determining corrosion under insulation is provided. The
system can include an infrared camera configured to acquire one or more time-series infrared
images of an industrial area including an industrial asset. The system can further include a
computing device including at least one hardware data processor, and a memory coupled to the at
least one data processor. The memory storing instructions can cause the at least one data
processor to perform operations including receiving data characterizing the one or more time-
series infrared images and identifying an area of interest of the industrial asset within the one or
more time-series infrared images. The operations can further include identifying, by a machine
learning algorithm, at least one defect within the area of interest, wherein the at least one defect
is identified based on pixel-wise assignment of at least one defect category selected from at least
one defect category of a plurality of defect categories associated with a lifecycle of corrosion
under insulation of the industrial asset. The machine learning algorithm can be trained by
providing one or more training configuration parameters associated with at least one defect
lifecycle of a defect of the industrial asset and generating at least one defect patch image based
on the one or more training configuration parameters. Again, to be clear the at least one defect
patch image referred to herein includes the defect. The machine learning algorithm can also be
trained by applying at least one defect patch image onto time-series image data of the industrial
asset. The time-series image data can exclude any defects of the industrial asset. The machine
learning algorithm can also be trained by generating time-series training data based on applying
and training the machine learning algorithm using the generated time-series training data. The

generated time-series training data can be used to determine a probability of detection for the
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machine learning algorithm. The probability of detection based on the machine learning
algorithm that predicts at least one defect in the one or more time-series infrared data matches a
corresponding defect present in the generated time-series data, wherein the probability of
detection is indicative of the machine learning algorithms performance detecting a defect
location or a defect size and classifying the defect. The operations can also include providing the

plurality of defects within the area of interest of the industrial asset.

[0015] In another aspect, a method [or determining corrosion under insulation is provided. The
method can include receiving, by a hardware data processor, data characterizing one or more
time-series infrared images of an industrial asset acquired via an infrared camera. The method
can also include identifying, by the data processor, an area of interest of the industrial asset
within the one or more time-series infrared images. The method can further include identifying,
by the data processor, a plurality of defects within the area of interest using a machine learning
algorithm, wherein each defect of the plurality of defects is identified based on pixel-wise
assignment of at least one defect category selected from a plurality of defect categories
associated with a lifecycle of corrosion under insulation of the industrial asset. The method can
also include providing, by the data processor, the plurality of defects within the area of interest of

the industrial asset.

[0016] In some implementations, the plurality of defect categories can include a healthy asset
category, a moisture accumulation category, an insulation damage category, a metal corrosion
category, and a severe corrosion category, and further wherein the lifecycle of corrosion under
insulation of the industrial includes a sequence of progressive stages of corrosion of the
industrial asset. In some implementations, the area of interest can be automatically identified or

identified based on user-provided input.

[0017] In some implementations, the machine learning algorithm can be trained by providing

one or more training configuration parameters associated with at least one defect lifecycle of a
defect of the industrial asset and generating a plurality of defect patch images based on the one
or more training configuration parameters. Again, the plurality of defect patch images referred

to herein are those that include the defect. The machine learning algorithm can also be trained
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by applying one or more of the defect patch images onto time-series image data of the industrial
asset. The time-series image data can exclude any defects of the industrial asset. The machine
learning algorithm can also be trained by generating time-series training data based on the
applying and training the machine learning algorithm using the generated time-series training

data.

[0018] In some implementations, the time-series training data can further comprise annotated
time-series image data including one or more known defects of the industrial asset. In some
implementations, the one or more training configuration parameters can be associated with the
industrial asset and can include a surface temperature associated with the industrial asset, a type
of fluid within the industrial asset, a temperature of a fluid within the industrial asset, an
atmospheric condition where the industrial asset is located, a type of defect, a size of a defect, a
shape of a defect, a depth of a defect, a location of a defect, a metal thickness of the industrial

asset, a material of the industrial asset, a thickness of the insulation.

[0019] In some implementations, applying the one or more defect patch images on to the time-
series image data of the industrial asset can include scaling a simulated size of the defect to an
actual size of the defect. In some implementations, the one or more defect patch images can be
applied onto the time-series image data at random locations on the industrial asset. In some
implementations, the industrial asset can be a horizontal pipe and the one or more defect patch
images are applied to an inferior portion of the horizontal pipe simulating gravitational force. In
some implementations, the one or more defect patch images can be applied at pre-determined

locations based on historical observation data of the industrial asset.

[0020] In some implementations, generating the plurality of defect patch images can include
determining, using a first physical model of temperature propagation across a cross-section of the
industrial asset, at least one temperature profile of the industrial asset responsive to providing a
defect depth as the training configuration parameter or a defect size as the training configuration
parameter. Generating the plurality of defect patch images can also include generating, based on
the determining step, a surface temperature for each pixel included in the plurality of detect
patches. Generating the plurality of defect patch images can also include providing the surface

temperatures in the cross-section of the industrial asset in the plurality of defect patch images.
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[0021] In some implementations, generating the plurality of defect patch images can include
determining, using a second physical model of temperature propagation across a surface of the
industrial asset, at least one surface temperature profile of the industrial asset responsive to
providing a defect location as a corrosion origination point as training configuration parameters.
Generating the plurality of defect patch images can also include generating, based on the
corrosion origination point, a surface temperature distribution within the plurality of defect
patches. Generating the plurality of defect patch images can also include providing the surface
temperature distribution in the plurality of defect patch images, wherein the surface lemperature
distribution extends across the surface of the industrial asset from the corrosion origination point

toward edges of the plurality of defect patch images.

[0022] In some implementations, a camera noise model corresponding to the infrared camera can
be applied to the plurality of defect patch images to generate a plurality of modified defect patch
images, wherein the plurality of modified defect patch images include the surface temperature

distribution with added noise due to the infrared camera.

[0023] In some implementations, the generated time-series training data can be used to
determine a probability of detection for the machine learning algorithm, the probability of
detection based on the machine learning algorithm predicting at least one defect in the one or
morc time-scrics infrarcd data matching a corresponding defect present in the generated time-
series data, wherein the probability of detection is indicative of the machine learning algorithms
performance detecting a defect location or a defect size, and classifying the defect. In some
implementations, the machine learning algorithm can be trained in a machine learning process
including at least one of a convolutional neural network, a recurrent neural network, a long short-

term memory network, or a vision transformer.

[0024] Non-transitory computer program products (i.e., physically embodied computer program
products) are also described that store instructions, which when executed by one or more
hardware data processors of one or more computing systems, causes at least one hardware data
processor to perform operations herein. Similarly, computer systems are also described that may

include one or more hardware data processors and physical or virtual memory coupled to the one
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or more data processors. The memory may temporarily or permanently store instructions that
cause at least one processor to perform one or more of the operations described herein. In
addition, methods can be implemented by one or more hardware data processors either within a
single computing system or distributed among two or more computing systems. Such computing
systems can be connected and can exchange data and/or commands or other instructions or the
like via one or more connections, including a connection over a network (e.g. the Internet, a
wireless wide area network, a local area network, a wide area network, a wired network, or the

like), via a direct connection between one or more of the multiple computing systems, etc.

[0025] These and other capabilities of the disclosed subject matter will be more fully understood

after a review of the following figures, detailed description, and claims.

DESCRIPTION OF DRAWINGS

[0026] These and other [eatures will be more readily understood [rom the [ollowing detailed

description taken in conjunction with the accompanying drawings, in which:

[0027] FIG. 1A is a schematic diagram showing inputs and outputs of an artificial intelligence
model that is trained on a series of infrared thermographic images concerning a region of an
industrial asset as part of an exemplary prediction system for detection of corrosion-under-

insulation;

[0028] FIG. 1B is the schematic diagram of FIG. 1A in which the inputs to the artificial
intelligence model that is being trained is being provided with labels (the outputs of FIG. 1A)
based on the actual ground truth data concerning the condition of the industrial asset having a

particular defect;

[0029] FIG. 1C is a schematic illustration of an cxemplary prediction system for detection of

corrosion-under-insulation;

[0030] FIG. 2 depicts an exemplary implementation of a cloud-based system for CUI prediction

and detection more generally shown in FIG. 1;
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[0031] FIG. 3 is a flow diagram illustrating one embodiment of a method for identifying a defect

in an insulated pipe;
[0032] FIG. 4 illustrates a visual representation of an infrared image of an insulated pipe;

[0033] FIG. 5 illustrates an exemplary modified image of the insulated pipe with different

categories of defects;

[0034] FIG. 6 depicts a block diagram illustrating an cxample of a computing system, in

accordance with some example embodiments;

[0035] FIG. 7 is a flow diagram showing the derivation of the probability of detection of

corrosion under insulation at a given condition monitoring location;

[0036] FIG. 8 illustrates an example ol a probability of detection of corrosion under insulation

curve;

[0037] FIG. 9 illustrates a probability of detection graph showing the AI model’s computation of

the probability of detection for one category of defect;

[0038] FIG. 10 illustrates an example of a probability of detection (POD) calculation for a

category of defect for which there are three data points; and

[0039] FIG. 11 illustrates a schematic arrangement of a dataset generation system that can be

utilized in connection with one or more embodiments of the present disclosure.

[0040] It is noted that the drawings are not necessarily to scale. The drawings are intended to
depict only typical aspects of the subjcct matter disclosed hercin, and thercfore should not be

considered as limiting the scope of the disclosure.
DETAILED DESCRIPTION

[0041] An industrial asset (e.g., insulated pipe) can develop defects during the course of its
operation. A defect, if left unattended, can evolve (e.g., grow in size, transform into a different
defect), and hinder the operation of the industrial asset (e.g., cause the material to spill over or

the industrial asset to shut-down). It can be desirable to detect a defect at an early stage and / or

10
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monitor its evolution so that a corrective action can be performed in a timely manner. In many
cases, the defect can be located below the surface of the industrial asset (e.g., corrosion under the
insulation layer of an insulation pipe). This can render the detection of defect challenging.
Existing inspection techniques rely on ultrasound detection that can be slow and inefficient (e.g.,
especially for large industrial assets). Additionally, these techniques are incapable of classifying
the defect type. For example, these techniques are unable to distinguish between different defect
types (e.g., as the defect evolves from one type to another type). Therefore, there is a need in the
art to develop and improve inspection techniques that can quickly and efficiently detect the

location of hidden defects (e.g., corrosion damages) and identify the defect type.

[0042] In some implementations of the current subject matter, a prediction system is described
that can detect and identify defects in an insulated pipe. As illustrated in FIG. 1A, the detection
and identification are based on acquisition of one or more infrared images 101 (e.g., a sequence
or a time-series of infrared images) of the insulated pipe. The prediction system can include
predictive analysis capabilities (e.g., in real (ime) that can detect and identify a defect in the
insulated pipe, using an artificial intelligence (“AI”’) model 103 that learns from annotated data.
In some implementations, the prediction system can alert a technician of the presence of the
defect. For example, the prediction system can generate an image of the insulated pipe 105 (or a
portion thereof), and identify the location and type of the defect therein, such as location 105A.
The image can be provided to the technician, and as a result allow for a rapid response to the
defect. This can improve the maintenance of the insulated pipe that can result in longer lifetime
of the insulated pipe. As illustrated in FIG. 1B, the location of a defect 105A and the training of
the Al model 103 are done with ground truth information in which an industrial asset is stripped
of its insulation and the existence of a defect and its parameters (size, classification and other
information) is verified. The so-stripped industrial asset, having been exposed, has the defect
105B ready for providing the labels needed for the training of the AI modeland/or for
verification purposes while performing a classic direct inspection. The Al model is part of a

prediction system 100 described next.

[0043] FIG. 1C is a schematic illustration of an exemplary prediction system 100 for prediction
and detection of corrosion-under-insulation (CUI). FIG. 1 shows an exemplary industrial asset

(e.g., an insulated pipe) 105 to be tested. The insulated pipe can include a metallic pipe conduit

11



WO 2024/035640 PCT/US2023/029637

surrounded by one or more layers of insulation. Moisture can be trapped in the annular region of
the insulated pipe (e.g., between the insulation and the metallic portion of the pipe). An infrared
camera 110 (e.g., Wi-Fi enabled infrared camera) can capture infrared radiation and record
infrared images associated with the insulated pipe 105. In some embodiments, the camera 110
can be a permanently positioned camera or a semi-permanently positioned camera, such as a
camera on a mobile platform. While a single camera is shown in the FIG. 1, the prediction
system 100 can include multiple cameras that can capture the image of the industrial asset 105
from different vantage points. In some embodiments, multiple cameras 110 can be configured to
acquire image data synchronously (e.g., at a constant rate with respect to one another) or
asynchronously (e.g., periodically acquired at non-constant rates). The image data can be
acquired by cameras 110 on a schedule. The schedule can be associated with an inspection

guideline or procedure for the industrial asset.

[0044] In some embodiments, the prediction system 100 can determine a binary determination of
corrosion that can be present. For example, the prediction system can determine whether
corrosion is present or whether corrosion is not present. In some embodiments, the prediction
system 100 can be configured to determine the presence of different types of corrosion. For
example, the corrosion can include moisture, insulation damage, and/or a loss of material. In
some embodiments, the prediction system 100 can determine a rate of corrosion based on
historical infrared data and comparing the current infrared data to previously collected infrared

data of the asset.

[0045] The infrared images of the industrial pipe 105 captured by the infrared camera 110 can
reveal internal thermal contrasts that may be undetectable in the visible spectrum radiation. The
internal thermal contrasts can be indicative of various defects associated with the insulated pipe
105. For example, the thermal contrasts can be indicative of moisture accumulation, insulation
damage, metal corrosion, severe corrosion, etc. In some cases a defect may evolve during the
lifecycle of the insulated pipe. For example, a moisture accumulation in the insulation layer of
the insulated pipe 105 may transform into insulation damage of the insulation layer that may in
turn transform into metal corrosion. The metal corrosion, if left unattended, can transform into

severe corrosion of the metal portion of the insulated pipe 105.

12
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[0046] In some implementations, the infrared camera 110 can acquire multiple infrared images
of the insulated pipe 105. For example, the infrared images can be acquired periodically (e.g., at
regular time intervals). The infrared images can be converted into standardized computer-
readable file format. The infrared camera 110 can be positioned on a mount 112 (e.g., a tripod).
The mount 112 can be extendable to reach high elevations relative to the insulated pipe 105 (e.g..
by telescoping), and can include a mechanical head fixture coupling to the camera that has
several degrees of freedom to pan and tilt at various angles with respect to a fixed plane. Field
technical personal can set the extension and orientation of the mount head to capture infrared
images from different areas of the structure, as required. In some embodiments, the prediction
system 100 can determine defect data based on a distance of the camera 110 with respect to the

industrial asset or an angle at which the camera 110 is observing the industrial asset.

[0047] In some implementations, identification tags can be posted on industrial assets, or
portions thereof. The precise geographical location of each tag can be determined using GPS.
The identification tags can be implemented using image-based tags such as QR codes that are
readable from a distance. In some implementations, a standard camera can be included along
with the infrared camera on the mount 112 to scan tags on the assets. Depending on the size of
tags (of known size) in the image, distances from the camera to the tags can be determined.
Tagging enables simultaneous scanning and localization of the facility assets without the need to

create complex three-dimensional CAD models of the facility.

[0048] The infrared camera 110 can be physically and communicatively coupled to the mount
112 (e.g., wirelessly by Bluetooth or Wi-Fi communication). The mount 112 can include or can
be coupled to one or more additional detectors, such as electromagnetic sensors (not shown in
FIG. 1), which can be used to probe the insulated pipe 105 and obtain supplemental readings to
complement the data obtained by infrared imaging. The mount 112 can be communicatively
coupled to a computing device 115 (e.g., a tablet, laptop, etc.). The mount 112 can be configured
to transmit infrared or thermographic files received from the camera 110 to the computing device

115.

[0049] The computing device 115 preferably stores executable applications for pre-processing

and predictive analysis. Preprocessing can include image filtering steps for reducing noise in the
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images that can arise from many causes. The computing device 115 can execute one or more
machine learning algorithms such as the AI model 103 discussed above that can receive data
characterizing images (e.g., a time-series of infrared images) of the industrial asset (e.g.,
insulated pipe 105), data characterizing ambient information (e.g., temperature, pressure,
humidity, etc.) associated with the industrial asset as input. The machine learning algorithm can
add visual indicators that indicate the location of the defect in the industrial asset, and type of
defect (e.g., moisture accumulation, insulation damage, metal corrosion, severe corrosion, etc.)
as output. In some implementations, the machine learning algorithm can include convolutional
networks, recurrent neural networks, etc., that can track changes in the defect over time (e.g.,
evolution of the defect from moisture accumulation to severe corrosion). Tracking changes in
the defect allows field technical personal to support observations and focus rapidly on high-risk

areas of the structure that are more likely subject to corrosion damage.

[0050] In some implementations, the computing device 115 can communicate wirelessly via a
network switch 120 (via wireless communication network 122) with a cloud computing platform
125. Wireless network 122 can be a wireless local area network (WLAN), wireless wide area
networks (WWAN), cellular networks or a combination of such networks. The cloud computing
platform 125 includes computing resources that can be dynamically allocated, including one or
more hardware processors (e.g., one or more servers or server clusters), that can operate
independently or collaboratively in a distributed computing configuration. The cloud computing
platform 125 can include database storage capacity for storing computer-executable instructions
for hosting applications and for archiving received data for long term storage. For example,
computing device 115 in the field can upload all infrared images and other data received to the
cloud computing platform 125 for secure storage and for further processing and analysis. In
some implementations, the computing device 115 can format and send data records in MySQL or
another database format. An example database record can include, among other fields, a tagged
asset location, a series of infrared images taken over time at a particular asset location (or a link
thereto), the data value for the camera's ID (cameralD) of the camera that captured the infrared
images, the time/date at which each image was captured, ambient conditions at the time/date
(e.g., temperature, pressure, humidity, etc.), sensor fusion data (e.g., electromagnetic sensor

data). The cloud database can store a detailed geographical mapping of the location and layout
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of the infrastructure assets (e.g., from LiDAR data) and applications executed on the cloud
platform can perform detailed analyses that combine the sensor data and predictive analyses with
the detailed mapping of the assets to make risk assessments covering entire structures or groups
of structures. Reports of such assessments and results of other processing performed at the cloud
computing platform 125 can be accessible to a control station 130 communicatively coupled to
the cloud computing platform. In some implementations, the smart mount 112 can format and
transmit the received data to the cloud computing platform directly before analysis of the data is

performed on site.

[0051] In some implementations, data from two or more distinct and independent sensing modes
can be combined, referred to as "sensor fusion" that can make downstream prediction and
detection much more robust by reduction of false positive classifications. The mount 112 also
includes sensors for detecting ambient conditions including temperature, humidity, and air
pressure. Received infrared images can be associated with the ambient conditions and the
current time at which the ambient conditions are recorded. This data comprises parameters used
by the machine learning algorithms that contribute to the interpretation and classification of the

infrared images captured from the structure.

[0052] FIG. 2 depicts an exemplary implementation of a cloud-based learning system for CUI
prediction and detection more generally shown in FIG. 1. In FIG. 2, this system 150 includes
four sets of cameras, mounts and computing devices ("investigative kits") positioned at various
positions in proximity to structure 105 for capturing infrared image and other data. Although
four investigative kits are used in this embodiment, it is again noted that fewer or a greater
number of kits can be employed depending, for example, on the size of the structure or
installation investigated. For example, the system 150 can be configured using a first infrared
camera 152 associated with a first mount 154 and first computing device 156 positioned at a first
location; a second infrared camera 162 associated with a second mount so 164 and second
computing device 166 positioned at a second location; a third infrared camera 172 associated
with a third mount 174 and third computing device 176 positioned at a third location; and a
fourth infrared camera 182 associated with a fourth mount 184 and fourth computing device 186
positioned at a forth location proximal to the asset 105. Two-way wireless communications can

be supported by all the mounts and computing devices of the system, each of which can thus
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communicate with each other. For example, infrared image data received by the computing
devices 156, 166, 176, 186, can be transmitted to the cloud computing platform 125 via network
switch 120, and to control station 130. Alternatively, the smart mounts 154, 164, 174, 184 can
communicate directly with the control station when wireless connectivity is available. By
providing redundant connectivity, each smart mount or computing device in the system can act
as a communication node in a multi-node system, so that if one or more of the mounts or
computing devices loses connectivity with the control station, data can be forwarded to other
nodes that maintain connectivity. The control station 130 is configured to provide configuration
and control commands to the smart mounts 154, 164, 174, 184 or computing devices 156, 166,

176, 186.

[0053] FIG. 3 is a flow diagram illustrating one embodiment of a method 300 for identifying a
defect in an insulated pipe. At step 302, data characterizing at least one infrared image of an
industrial asset (e.g., insulated pipe) can be received. For example, one or more infrared images
can be captured by an infrared camera (e.g., infrared camera 110). Dala characterizing the one or
more infrared images can be received by a computing device (e.g., computing device 115,
computing resources of cloud computing platform 125, etc.). In some implementations, data
characterizing the one or more infrared images can be transmitted by the mount 112 to the
computing device 115 (e.g., wirelessly communicated). In some implementations, the
computing device 115 can receive the data characterizing the one or more infrared images and
transmit the received data (or a portion thereof) to the cloud computing platform 125 (e.g. by the

network switch 120 via wireless communication network 122).

[0054] FIG. 4 illustrates a visual representation 400 of an infrared image of an insulated pipe.
The shade of a region of the visual representation 400 can be indicative of absorption of infrared
radiation. For example, regions of the visual representation 400 having a lighter shade can be
representative of a smaller absorption of infrared radiation compared to regions of the visual

representation 400 having a darker shade.

[0055] At step 304, an area of interest of the industrial asset can be identified within the one or
more time-series infrared images. Additionally, at 306, a machine learning algorithm can

identify a plurality of defects such as area 105A within the area of interest. Each defect within
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the plurality of defects can be identified based on pixel-wise assignment of at least one defect
category selected from a plurality of defect categories associated with a lifecycle of corrosion
under insulation of the industrial asset. The identifying step can be based on the predicted
portions of the one or more time-series images and a one or more training images of the
industrial asset. The machine learning algorithm can be executed by the computing device 115
and/or computing resources of cloud computing platform 125. The identification of defects in a
portion of the data can be based on one or more infrared images of the industrial asset (e.g.,
infrared images received at step 102). In some implementations, the machine learning algorithm
can receive a plurality of infrared images where each infrared image is captured at a different
time as a sequence (or a time-series of infrared images) and ambient information as input, and

identify defect portion of data associated with the input images.

[0056] FIG. 5 illustrates an exemplary image 500 of the insulated pipe. The image 500 includes
visual indicators 502-512 that can be indicative of locations of defects in the insulated pipe. A
visual indicator can indicate the location of a delect, [or example, by overlapping with the delect
(e.g., by surrounding the defect). In some implementations, a visual property of the visual
indicator (e.g., color) can be indicative of the type associated with the defect (e.g., moisture
accumulation, insulation damage, metal corrosion, severe corrosion, etc.). In some
implementations, the modified image 500 can include separate visual indicators indicative of the

type of visual defect.

[0057] At step 308, the plurality of defects within the area of interest can be provided to a user
(e.g., an operator). Based on the defect portion of the data, the user may determine the response
to the detected defects. For example, if the defect is determined to be severe corrosion, the user
may choose to replace the insulated pipe or a portion thereof. In some implementations, a
notification can be generated when the defect is identified to have a predetermined defect type
(e.g., severe corrosion). The notification can be transmitted to computing device(s) of

predetermined user(s) to alter him/her of the detected defect.

[0058] In some implementations, the machine learning algorithm (Al model) 103 can be trained
by a training dataset. The training dataset can include a plurality of images (or training images)

of the insulated pipe, associated with the plurality of images, and one or more ground truth
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values associated with each of the images in the training dataset such as defect 105B of FIG. 1B.
The ambient conditions for a training image can include one or more of temperature, humidity,

air pressure, etc., in the ambience of the insulated pipe when the training image was acquired.

[0059] A first ground-truth value (associated with a first training image of the insulated pipe) can
include a type identifier indicative of the type of a first defect in the insulated pipe. The first
ground-truth value can also include a first visual identifier that identifies the location of the first
defect in the first training image. In some implementations, the training dataset can include
multiple ground truth values associated with the first training image. For example, a second
ground-truth value can include a second type identifier indicative of the type of a second defect
in the insulated pipe and a second visual identifier that identifies the location of the second defect

in the first training image.

[0060] The machine learning model can be trained using the images and the associated ground-
truth value(s) in the training data set. For example, the machine learning model can receive a
training image, and predict the location(s) and/or type(s) of defect(s) in the training image. The
predicted location(s) and/or type(s) of defect(s) can be compared with the ground-truth value(s),
and based on the comparison the machine learning model can be modified in order to improve
the convergence between the predicted location(s) and/or type(s) of the defect(s) and the
location(s) and/or type(s) of defect in the ground-truth value(s). This process can be repeated for

multiple training images in the training dataset.

[0061] It should be appreciated that the current subject matter contemplates the use of any
machine learning model. For example, the machine learning model may be one or more variants
of a recurrent neural network (RNN) such as, for example, a long short-term memory (LSTM)
network, or a Vision Transformer based network. A recurrent neural network such as a long-
short term memory network may be configured to have longer memories, thereby overcoming
the vanishing gradient problem associated with other variants of recurrent neural networks.
Accordingly, a recurrent neural network such as a long-short term memory network may be used
to handle scenarios where there are long time lags of unknown size between correlated dataset
received at different times (e.g., infrared images of the insulated pipe received at different times).

The recurrent neural network structure may allow in-time classification, whereby the network
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may remember what happened before. Whenever when a new dataset (e.g., associated with a
new infrared image) is detected, the recurrent neural network may combine its memory and the
new dataset together to provide a new classification result (e.g., a new classification of the defect

in the insulated pipe).

[0062] In some implementations, one or more training images used for training the machine
learning algorithm can be generated. For example, a plurality of defect patch images associated
with a plurality of corrosion lifecycle scenarios of the industrial asset can be generated. A defect
patch is a portion of an image of the industrial asset that includes the image of the defect in the
industrial asset. In some implementations, the defect patch can have arbitrary, e.g. random,
shapes and can be digitally mixed with images of the industrial asset (e.g., images obtained in
real-time). The generating of the plurality of defect patch images can be based on one or more of
defect depths associated with the industrial asset, type and temperature of fluid flowing through
the industrial asset, defect size and defect types. The defect patch images can be digitally
inserted onto an image of the industrial assel (e.g., acquired by the camera 162) upon proper
scaling of the simulated defect to the actual size. Digital insertion of the defect patch images
(e.g., one or more defect patch image selected from the plurality of defect patch images) can
generate a training image of the plurality of training images. Digitally inserting the defect patch
images can include placing (e.g., randomly placing) one or more of the plurality of defect

patches in the image of the industrial asset at random locations on the asset.

[0063] In some implementations, an input identifying an Area of Interest (AOI) can be provided
to the system. The AOI input can be provided with respect to a subset of the infrared time-series
images to be monitored for defect detection. This AOI is sometimes also referred to as
Condition Monitoring Location (CML). This image subset can limit the defect detection to the
interior of the area or areas. In some implementations, a given time-series of infrared images
may have multiple AOIs defined. In some embodiments, the AOI can identify a 3D shaped
region of the asset and need not be limited to a 2D area. In some embodiments, an AOI can be

determined manually or programmatically.

[0064] In some implementations, the machine learning algorithm can use the simulated defect

patches of known types and sizes to calculate the probability of detection (or other metrics or
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statistical characteristics) that can quantify the ability to detect the defect patch and classify the
defect type. In some implementations, the ground truth value associated with a training image
can be the defect type associated with the defect patch (or defect patches) included in the training
image. In some implementations, the machine learning algorithm can use the simulated defect
patches which can be indicative of combinations of underlying conditions / properties of the pipe
(e.g. pipe thickness, insulation type and thickness, ambient and the product temperatures, defect
depth, etc.) that affect corrosion development to calculate probability of detection (or other
metrics or statistical characteristics) of the underlying conditions. In some embodiments, a
temperature variation present across a surface of the industrial asset can identify or correspond to

a defect.

[0065] In some implementations, a physical model can be used to calculate the surface
temperatures based on one or more defect depths of the industrial asset based on one or more of
diameter of the industrial asset, fluid flowing through the industrial asset, thickness of the
industrial asset, material ol the industrial asset, thickness and/or material of an insulator of the
industrial asset, and defect type. The physical model can receive inputs detected by sensors

located at the industrial site (e.g., temperature sensor, humidity sensor, etc.)

[0066] FIG. 6 illustrates an exemplary computing system 600 configured to execute the data
flow described in FIG. 3. The computing system 600 can include a hardware processor 610, a
memory 620, a storage device 630, and input/output devices 640. The processor 610, the
memory 620, the storage device 630, and the input/output devices 640 can be interconnected via
a system bus 650. The processor 610 is capable of processing instructions for execution within
the computing system 600. Such executed instructions can implement one or more steps for
identifying defect portion of data associated with an image of the insulated pipe. In some
example embodiments, the processor 610 can be a single-threaded processor. Alternately, the
processor 610 can be a multi-threaded processor. The processor 610 is capable of processing
instructions stored in the memory 620 and/or on the storage device 630 to train / execute the

machine learning algorithm.

[0067] The memory 620 is a computer-readable medium such as volatile or non-volatile that

stores information within the computing system 600. The memory 620 can store the training
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datasets. The storage device 630 is capable of providing persistent storage for the computing
system 600. The storage device 630 can be a floppy disk device, a hard disk device, an optical
disk device, a tape device, a solid-state drive, and/or other suitable persistent storage means. The

input/output device 640 provides input/output operations for the computing system 600.

[0068] In some example embodiments, the input/output device 640 includes a keyboard and/or
pointing device. In various implementations, the input/output device 640 includes a display unit
for displaying graphical user interfaces. In some implementations, a web-browser 670 of the
monitoring system can be displayed in a display of the input/output device 640. In some
implementations, the computing device 600 can be communicatively coupled to an industrial
enterprise database 660. The search engine (e.g., executed by the processor 610) can perform the

search (based on a context dataset) in the industrial enterprise database 660.

[0069] Certain exemplary embodiments will now be described to provide an overall
understanding of the principles ol the structure, function, manuflacture, and use ol the systems,
devices, and methods disclosed herein. One or more examples of these embodiments are
illustrated in the accompanying drawings in which key performance indicators used in the Al
model 103 in accordance with a particular arrangement consistent with the present disclosure. In
this arrangement, the probability of detection (“POD”) is computed from the selection of
condition monitoring locations. The higher the POD, the lower the false negatives are in the

monitored data. Mathematically, the POD is computed as follows:

TP
k4
n TP+FN

PoD = %Zn P(TP) = %Z

where TP refers to Positive determinations, P(TP) refers to the probability of true positive
determinations, FN refers to the count of False Negative determinations, and n refers to the
number of determinations. With further regard to “n,” it should be appreciated that, for the
multitude of CMLs, each will lead to a different count of TPs and TN for each (sub)category; as
such, the POD for each (sub)category is then computed from the aggregate of these counts. A
true positive situation exists when the Al model detects anomalies within the CML. On the other

hand, a falsc ncgative situation cxists when the Al model fails to detect an anomaly at all, or fails
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to detect an anomaly within the boundary of a given CML. As will be appreciated, more than

one anomaly can be detected within a given CML.

[0070] At one level, a defect probability of there being a detection of potential corrosion under
insulation (“DPCUI”) is computed by the Al model with the key performance indicators taken
from a relatively coarse granularity of condition monitoring locations (“CML”) during asset
inspection. The key performance indicators at this level of analysis include a metric indicative of
the machine learning algorithm (AT model) of detecting the potential presence of defects. An
inspector or facility manager, for instance, can decide whether to strip a given CML 105A (see

FIG. 1A) based on compound, high-level information included in the KPIs.

[0071] A next level, a defect probability of DPCUI is computed at a median granularity such as
by using polygon level KPIs. This comprises a field CML representation of the asset under
inspection to report on the performance of the Al model 103 at a deeper level. At this level of
granularity, the model uses aggregated pixel results [or each delective region to enable [urther
aggregation of defective regions that are part of the same CML, such as location 105A. The key
performance indicators at this level of analysis include a metric indicative of the machine
learning algorithm (Al model) being able to detect the potential presence of a defect location or a
defect size and being able to classify the defect. An inspector or facility manager, for instance,
can use this deeper level indicative performance metrics to further assist in deciding whether to
strip a given CML 105A (see FIG. 1A) based on compound, medium-level information included

in the KPIs.

[0072] The Al model is trained in certain arrangements consistent with the present disclosure
using a still finer granularity of pixel KPIs. The Al model development is learned and optimized

at a per-pixel level in this arrangement, which is a low level of CML.

[0073] Turning now to FIG. 7, a flow diagram showing the derivation of the probability of
detection of potential corrosion under insulation at a given condition monitoring location is
described. At step 702, data is received for a plurality of thermographic images that are received
concerning a given CML location. For instance, IR images 101 can comprise the thermographic
images which are captured over a sequence of time. In order to derive the probability of

detection, however, the data that is under analysis might have to be augmented because there
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sometimes is a scarcity of data on real defects which can impair the POD computation from
being immediately feasible. To account for this, consistent with certain implementations of the
present disclosure, field data is augmented using simulation data to compensate for the lack of
data availability. As a consequence, POD curves can be calculated for a given category of

defect.

[0074] FIG. 8 illustrates a POD curve for the category of metal loss, which is one effect that
corrosion has on metal pipes and structures. Curves such as shown in FIG. 8 are calculated
under a given set of experimental conditions, and each data point of the curve is computed for
multiple real and augmented (simulated) data for a given severity of a class of defect and plotted
along the x-axis, such as metal loss in this example. The set of experimental conditions for a
given curve can include the defect type/category (metal loss), product temperature,

environmental parameters, and the other parameters described hereinabove.

[0075] In FIG. 9, a POD graph showing the AI model’s computation of the probability of
detection for a subcategory of defect is illustrated. For a given anomaly under consideration
(here, metal loss), a dataset consisting only of anomalies with 20% metal losses is shown in this
example after a review of 805 cases out of 1000 cases in the dataset. For a given anomaly (#)
such as “20% metal loss,” the POD is the fraction of the instances of # that are successfully

found by the Al model as per the POD definition for one type of defect being examined:

TP

where TP refers to the count of True Positive determinations, FN refers to the count of False

Negative determinations.

[0076] FIG. 10 shows a simplified example of a POD calculation for a (sub)category of defect
for which there are three data points. In this example, there are two predicted defects inferred by
the Al model as being encompassed by the three ground truth areas 105 under review for
verification, and so in Case #3, there being no predicted defect, the count of true positives is 2.
On the other hand, the ground truth data indicates a count of 3. Putting this information into the

formula above results in a POD computation of 67% for this particular scenario with a very
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limited number of data points used during the verification stage. Of course, the higher the
number of field data points, with corresponding ground truths used, the higher representation this
KPI will carry. Given a DPCUI outcome, the objective of this KPI is to build and compound the
POD calculations, leading to a reliable and indicative performance metric of the machine
learning algorithm (Al model) in assisting in the decision making on whether to strip, verify, and

repair a given CML or not.

[0077] The POD curves described herein are computed from datasets that can comprise real and
actual inspections in which anomalies are verified by SMEs by stripping assets and verifying the
existence and details of an anomaly (see FIG. 1B; element 105B). POD curves also can be
computed using simulated/augmented and balanced categories of defects with corresponding

labels to supplement the existing real data that has been acquired and verified.

[0078] Turning again to FIG. 7, at step 704 the Al model is provided with data to process in
order (o idenlify all areas ol delects [or at least one calegory, or subcategory, ol delects among
the various defect categories that are available for processing, such as, for example, the metal
loss category illustrated in FIGs. 8 and 9. As described previously, the Al model 103 learns from
annotated data provided to it to distinguish between ground truth data with verified defects and
no defects and detected defects or not such as by reviewing changes in thermographic images
collected over time. Thus, at step 706, the Al model is verified against all areas produced by the
model against their ground truths and assigns values corresponding to whether the defect is
computed as being a true positive (“TP”), a true negative, a false positive or a false negative
(“FN”). At step 708, for each of the defect (sub)categories, an aggregated POD is calculated
from the TP and FN values just obtained. Thus, an aggregated POD can be calculated for a
variety of categories such as the healthy asset, moisture accumulation, an insulation damage, a
metal corrosion, and for subcategories for each class of defect, such as, for example, levels of

metal loss and/or severe corrosion categories mentioned above.

[0079] At step 710, the system tests via suitably configured code executing in the hardware
processor whether the data under consideration is sufficient and has balanced representations for
each category of defects. The data under consideration is considered sufficient if enough assets

with representation of all the (sub)categories are directly identified in the field. The data under
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consideration is a balanced representation for the (sub)category if enough representation is
directly identified in the field. While reasonable minds can differ as to what is sufficient in these
contexts, it is better to have multiple representations in each of the subcategories and the
threshold for each of the sufficient and balanced values can be prescribed by the system
administrator for a given facility, asset, and category/subcategory. In the event that the data is
sufficient and balanced, the process proceeds to step 712 where the processor determines under
control of the executing code whether there is any new data available for review by the Al
module. If that is true, then the flow loops back to step 702 to process the new data. If there is
no further data to be processed, then the flow continues step 714 where an overall POD,, is
computed using the set of aggregated PODs for the different (sub)categories that were just
processed. After that, the system loops back to step 712 so that it is ready to process any new

data and update the overall POD, computation, as needed.

[0080] In accordance with a salient aspect of the present disclosure, at step 710, in the event that
the data determined Lo not be sulficient or balanced, the process proceeds Lo step 716 where the
processor performs a further step of synthesizing using simulated/augmented data balanced
categories of defects with corresponding defect type labels only to supplement the existing real
data, under control of code executing therein. Once more real data become available that is
considered enough and balanced, this synthetic data is then removed from the POD calculations.
In FIG. 11, a schematic arrangement of a dataset generation system is provided in which data is
generated using a simulator to better ensure that POD determinations can be made in regard to
sufficient and balanced data under review. The dataset generation system can comprise its own
hardware processor and code executing therein, or can be part of the system(s) that implement
methods described in connection with FIGs. 3 and 7. The system 1100 includes an experiment
configuration 1102 which can include, among other configuration parameters, environmental
parameters concerning the location of the industrial asset being analyzed, the type of condition
monitoring location under review, the category or subcategory of defect, and the actual data that
had been acquired, such as a set of thermographic IR images. These configurations are included
together within a catalog of IR videos of actual captured data which include CML mask locations
which have no defect, which are stored in a database 1104. The system 1100 is configured by

the code executing in the processor to perform a computation at 1106 using known
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thermodynamic equations operating on the experiment’s configuration from block 1102. There
can be a temperature offset time series 1108, such as determined by the heat transfer
thermodynamic computations from block 1106. The heat transfer computation and the
temperature offset time series are used to compute synthetic data points which are then fed into a
video synthesis module 1110. The video synthesis module develops the synthetic data to
augment the real data with no defects by providing further datasets that are stored in database
1112 for the Al model 103 to use for augmented training and testing, and POD calculations. The
video synthesis module also receives a subset of IR videos 1114 in accordance with CML
properties for like-(sub)category defects, wherein the subset of IR videos 1114 are obtained from

the database 1104.

[0081] Returning to FIG. 7, regardless of whether step 716 is performed, the POD for the various
labeled categories of defects is computed at step 718, using the processor configured by code

executing therein, per the POD equation set forth above, namely:

TP
PoD = ZP(TP) - T

[0082] Those skilled in the art will understand that the systems, devices, and methods
specilically described herein and illustrated in the accompanying drawings are non-limiting
exemplary embodiments and that the scope of the present invention is defined solely by the
recitations in the claims and legal equivalents thereto. The features illustrated or described in
connection with one exemplary embodiment may be combined with the features of other
embodiments. Such modifications and variations are intended to be included within the scope of
the present disclosure. Further, in the present disclosure, like-named components of the
embodiments generally have similar features, and thus within a particular embodiment each

feature of each like-named component is not necessarily fully elaborated upon.

[0083] Other embodiments are within the scope and spirit of the disclosed subject matter. For
example, the monitoring system described in this application can be used in oil fields that can

include multiple oil wells. The monitoring system can also be used in facilities that have
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complex machines with multiple operational parameters that need to be altered to change the

performance of the machines (e.g., power-generating turbines).

[0084] The subject matter described herein can be implemented in digital electronic circuitry, or
in computer software, firmware, or hardware, including the structural means disclosed in this
specification and structural equivalents thereof, or in combinations of them. The subject matter
described herein can be implemented as one or more computer program products, such as one or
more computer programs tangibly embodied in an information carrier (e.g., in a
machine-readable storage device), or embodied in a propagated signal, for execution by, or to
control the operation of, data processing apparatus (e.g., a programmable processor, a computer,
or multiple computers). A computer program (also known as a program, software, software
application, or code) can be written in any form of programming language, including compiled
or interpreted languages, and it can be deployed in any form, including as a stand-alone program
or as a module, component, subroutine, or another unit suitable for use in a computing
environment. A compuler program does not necessarily correspond (o a (ile. A program can be
stored in a portion of a file that holds other programs or data, in a single file dedicated to the
program in question, or in multiple coordinated files (e.g., files that store one or more modules,
sub-programs, or portions of code). A computer program can be deployed to be executed on one
computer or on multiple computers at one site or distributed across multiple sites and

interconnected by a communication network.

[0085] The processes and logic flows described in this specification, including the method steps
of the subject matter described herein, can be performed by one or more programmable
processors executing one or more computer programs to perform functions of the subject matter
described herein by operating on input data and generating output. The processes and logic
flows can also be performed by, and apparatus of the subject matter described herein can be
implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array)

or an ASIC (application-specific integrated circuit).

[0086] Processors suitable for the execution of a computer program include, by way of example,
both general and special purpose microprocessors, and any one or more processor of any kind of

digital computer. Generally, a processor will receive instructions and data from a read-only
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memory or a random access memory or both. The essential elements of a computer are a
processor for executing instructions and one or more memory devices for storing instructions and
data. Generally, a computer will also include, or be operatively coupled to receive data from or
transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic,
magneto-optical disks, or optical disks. Information carriers suitable for embodying computer
program instructions and data include all forms of non-volatile memory, including by way of
example semiconductor memory devices, (€.g2., EPROM, EEPROM, and flash memory devices);
magnetic disks, (e.g., internal hard disks or removable disks); magneto-optical disks; and optical
disks (e.g., CD and DVD disks). The processor and the memory can be supplemented by, or

incorporated in, special purpose logic circuitry.

[0087] To provide for interaction with a user, the subject matter described herein can be
implemented on a computer having a display device, e.g., a CRT (cathode ray tube) or LCD
(liquid crystal display) monitor, for displaying information to the user and a keyboard and a
pointing device, (e.g., a mouse or a (rackball), by which the user can provide input to the
computer. Other kinds of devices can be used to support interaction with a user as well. For
example, feedback provided to the user can be any form of sensory feedback, (e.g., visual
feedback, auditory feedback, or tactile feedback), and input from the user can be received in any

form, including acoustic, speech, or tactile input.

[0088] The techniques described herein can be implemented using one or more modules. As
used herein, the term “module” refers to computing software, firmware, hardware, and/or various
combinations thereof. At a minimum, however, modules are not to be interpreted as software
that is not implemented on hardware, firmware, or recorded on a non-transitory processor-
readable recordable storage medium (i.e., modules are not software per se). Indeed “module” is
to be interpreted to always include at least some physical, non-transitory hardware such as a part
of a processor or computer. Two different modules can share the same physical hardware (e.g.,
two different modules can use the same processor and network interface). The modules
described herein can be combined, integrated, separated, and/or duplicated to support various
applications. Also, a function described herein as being performed at a particular module can be
performed at one or more other modules and/or by one or more other devices instead of or in

addition to the function performed at the particular module. Further, the modules can be
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implemented across multiple devices and/or other components local or remote to one another.
Additionally, the modules can be moved from one device and added to another device, and/or

can be included in both devices.

[0089] The subject matter described herein can be implemented in a computing system that
includes a back-end component (e.g., a data server), a middleware component (e.g., an
application server), or a front-end component (e.g., a client computer having a graphical user
interface or a web interface through which a user can interact with an implementation of the
subject matter described herein), or any combination of such back-end, middleware, and
front-end components. The components of the system can be interconnected by any form or
medium of digital data communication, e.g., a communication network. Examples of
communication networks include a local area network (“LAN") and a wide area network

(*WAN™), e.g., the Internet.

[0090] Approximalting language, as used herein throughout the specification and claims, may be
applied to modify any quantitative representation that could permissibly vary without resulting in
a change in the basic function to which it is related. Accordingly, a value modified by a term or
terms, such as “about™ and “substantially,” are not to be limited to the precise value specified. In
at least some instances, the approximating language may correspond to the precision of an
instrument for measuring the value. Here and throughout the specification and claims, range
limitations may be combined and/or interchanged, such ranges are identified and include all the

sub-ranges contained therein unless context or language indicates otherwise.
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What is claimed is:

1. A system comprising:

an infrared camera configured to acquire one or more time-series infrared images of an
industrial asset;

a compuling device including at least one data processor, and a memory coupled (o the at
least one data processor and storing instructions, which when executed, cause the at least one
data processor to perform operations comprising:

receiving data characterizing the one or more time-series infrared images of the
industrial asset,

determining an area of interest of the industrial asset within the one or more time-
series infrared images,

determining, by a machine learning algorithm, a plurality of defects associated
with pixels within the area of interest, wherein each defect of the plurality of defects is
determined based on pixel-wise assignment of at least one defect category selected from a
plurality of defect categories for each pixel of the one or more time-series infrared images and
each defect is represented by a cluster of pixels in which each pixel is assigned an identical
defect category, and wherein each defect category is associated with a lifecycle of corrosion
under insulation of the industrial asset, and

providing the determined plurality of defects within the area of interest in the one

or more time-series infrared images of the industrial asset.

2. The system of claim 1, wherein the plurality of defect categories includes a defect-free
category, an insulation damage category, a moisture accumulation category, a metal corrosion
category, and a deep-metal loss corrosion category, and further wherein the lifecycle of corrosion
under insulation associated with each defect category includes a sequence of progressive stages

of corrosion of the industrial asset.

3. The system of claim 1, wherein the area of interest is determined programmatically or

responsive to user-provided input.
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4. The system of claim 1, wherein the instructions are further configured to cause the at
least one data processor to train the machine learning algorithm by performing operations
comprising:

receiving data characterizing one or more time-series infrared images of the industrial
asset acquired via an infrared camera;

annotating the one or more time-series infrared images with ground-truth annotations
based on physical examination of the industrial asset; and

training the machine learning algorithm based on the annotated one or more time-series

infrared images.

5. The system of claim 1, wherein the instructions are further configured to cause the at
least one data processor to train the machine learning algorithm by performing operations
comprising:

receiving data characterizing one or more training configuration parameters associated
with at least one defect category selected from the plurality of defect categories and associated
with the lifecycle of corrosion under insulation of the industrial asset;

generating a plurality of defect image patches based on the data characterizing one or
more training configuration parameters, the plurality of defect image patches including the
defect;

ovcrlaying onc or morc of the defect image patches onto defect-free time-scrics image
data of the industrial asset, the defect-free time-series image data devoid of any defects of the
industrial asset;

generating time-series image training data based on the overlaying, wherein the generated
time-series image training data comprises ground-truth annotations corresponding to one or more
defect categories, the ground-truth annotations determined based on the one or more training
configuration parameters; and

training the machine learning algorithm using the generated time-series image training

data.
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6. The system of claim 1, wherein the instructions are further configured to cause the at
least one data processor to train the machine learning algorithm by performing operations
comprising:

receiving field-originated time-series infrared images of the industrial asset acquired via
an infrared camera and annotated with ground-truth annotations based on physical examination
of the industrial asset;

receiving time-series image training data generated based on overlaying one or more
defect image patches onto defect-free time-series image data of the industrial asset, the defect-
free time-series image data devoid of any defects of the industrial asset, wherein the time-series
image training data comprises ground-truth annotations corresponding to one or more defect
categories; and

training the machine learning algorithm based on a combined training dataset including

the field-originated time-series infrared images and the generated time-series image training data.

7. The system of claim 5, wherein the data characterizing one or more training configuration
parameters further include a surface temperature associated with the industrial asset, a
temperature of a fluid within the industrial asset, a type of defect, a size of a defect, a shape of a
defect, a depth of a defect, a location of a defect, a metal thickness of the industrial asset, a metal

type of the industrial asset, or a thickness of the insulation.

8. The system of claim 5, wherein overlaying the one or more defect image patches on to
the defect-free time-series image data includes scaling a simulated size of the defect to an actual

size of the defect.

9. The system of claim 5, wherein the one or more defect image patches are overlaid onto

the defect-free time-series image data at random locations on the industrial asset.

10. The system of claim 5, wherein the industrial asset is a horizontal pipe and the one or
more defect image patches are overlaid on to the defect-free time-series image data including an

inferior portion of the horizontal pipe to simulate a gravitational force exerted on the horizontal

pipe.
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11. The system of claim 5, wherein the one or more defect image patches are overlaid on to
the defect-free time-series image data at pre-determined locations of the industrial asset based on
historical observation data, expert knowledge, or location-based detection bias of the machine

learning algorithm.

12. The system of claim 5, wherein the data characterizing one or more training configuration
parameters includes a defect depth or a defect size, and generating the plurality of defect image
patches further comprises:

determining, using a first physical model of temperature propagation through a cross-
section of the industrial asset, at least one temperature profile of the industrial asset;

generating, based on the defect depth or the defect size and the determining a surface
temperature for each pixel included in the plurality of detect image patches; and

providing the surface temperature for each pixel in the plurality of defect image patches,
wherein the surface temperature is provided in the plurality of defect image patches as a cross-

sectional view of the industrial asselt.

13. The system of claim 5, wherein the data characterizing one or more training configuration
parameters includes a defect location corresponding to a corrosion origination point, and
generating the plurality of defect image patches further comprises:

determining, using a second physical model of temperature propagation across a surface
of the industrial asset, at least one surface temperature profile of the industrial asset;

generating, based on the defect location and the determining, a surface temperature
distribution within the plurality of defect image patches; and

providing the surface temperature distribution in the plurality of defect image patches,
wherein the surface temperature distribution extends across the surface of the industrial asset
from the defect location corresponding to the corrosion origination point toward edges of the

plurality of defect image patches.

14. The system of claim 13, wherein generating the plurality of defect image patches further
comprises applying a camera noise model corresponding to the infrared camera to the plurality of

defect image patches.
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15. The system of claim 5, wherein the generated time-series image training data is used to
determine an estimated probability of detection for the machine learning algorithm, the estimated
probability of detection based on the machine learning algorithm predicting at least one defect in
the one or more time-series infrared images matching a corresponding defect present in the
generated time-series image training data, wherein the estimated probability of detection is
indicative of the machine learning algorithms performance determining a defect category, a
defect location, a defect size, wherein the estimated probability of detection is associated with a
margin of error corresponding to statistical properties of the generated time-series image training

data.

16. The system of claim 1, wherein the machine learning algorithm is trained in a machine
learning process including at least one of a convolutional neural network, a recurrent neural

network, a long short-term memory network, or a vision transformer.

17. A method comprising:

receiving, by a data processor, data characterizing one or more time-series infrared
images of an industrial asset, the one or more time-series images acquired via an infrared
camera;

determining, by the data processor, an area of interest of the industrial asset within the
one or more time-series infrared images;

determining, by the data processor, a plurality of defects associated with pixels within the
area of interest using a machine learning algorithm, wherein each defect of the plurality of
defects is determined based on pixel-wise assignment of at least one defect category selected
from a plurality of defect categories for each pixel of the one or more time-series infrared images
and each defect is represented by a cluster of pixels in which each pixel is assigned an identical
defect category, and wherein each defect category is associated with a lifecycle of corrosion
under insulation of the industrial asset; and

providing, by the data processor, the determined plurality of defects within the area of

interest in the one or more time-series images of the industrial asset.

18. The method of claim 17, wherein the plurality of defect categories includes a defect-free

category, an insulation damage category, a moisture accumulation category, a metal corrosion
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category, and a deep-metal loss corrosion category, and further wherein the lifecycle of corrosion
under insulation associated with each defect category includes a sequence of progressive stages

of corrosion of the industrial asset.

19. The method of claim 17, wherein the area of interest is determined programmatically or

responsive to user-provided input.

20. The method of claim 17, further comprising training, by the data processor, the machine
learning algorithm by performing operations comprising:

receiving data characterizing one or more time-series infrared images of the industrial
asset acquired via an infrared camera;

annotating the one or more time-series infrared images with ground-truth annotations
based on physical examination of the industrial asset; and

training the machine learning algorithm based on the annotated one or more time-series

in[rared images.

21. The method of claim 17, further comprising training, by the data processor, the machine
learning algorithm by performing operations comprising:

receiving data characterizing one or more training configuration parameters associated
with at least one defect category selected from the plurality of defect categories and associated
with the lifecycle of corrosion under insulation of the industrial asset;

generating a plurality of defect image patches based on the data characterizing the one or
more training configuration parameters, the plurality of defect image patches including the
defect;

overlaying one or more of the defect image patches onto defect-free time-series image
data of the industrial asset, the defect-free time-series image data devoid of any defects of the
industrial asset;

generating time-series image training data based on the overlaying, wherein the generated
time-series image training data comprises ground-truth annotations corresponding to one or more
defect categories, the ground-truth annotations determined based on the one or more training

configuration parameters; and
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training the machine learning algorithm using the generated time-series image training

data.

22. The method of claim 17, further comprising training, by the data processor, the machine
learning algorithm by performing operations comprising:

receiving field-originated time-series infrared images of the industrial asset acquired via
an infrared camera and annotated with ground-truth annotations based on physical examination
of the industrial asset;

receiving time-series image training data generated based on overlaying one or more
defect image patches onto defect-free time-series image data of the industrial asset, the defect-
free time-series image data devoid of any defects of the industrial asset, wherein the time-series
image training data comprises ground-truth annotations corresponding to one or more defect
categories; and

training the machine learning algorithm based on a combined training dataset including

the lield-originated time-series infrared images and the generated ime-series image (raining dala.

23. The method of claim 21, wherein the data characterizing the one or more training
configuration parameters further include a surface temperature associated with the industrial
asset, a temperature of a fluid within the industrial asset, a type of defect, a size of a defect, a
shape of a defect, a depth of a defect, a location of a defect, a metal thickness of the industrial

asset, a metal type of the industrial asset, or a thickness of the insulation.

24. The method of claim 21, wherein overlaying the one or more defect image patches on to
the defect-free time-series image data includes scaling a simulated size of the defect to an actual

size of the defect.

25. The method of claim 21, wherein the one or more defect image patches are overlaid onto

the defect-free time-series image data at random locations on the industrial asset.

26. The method of claim 21, wherein the industrial asset is a horizontal pipe and the one or
more defect image patches are overlaid on to the defect-free time-series image data including an

inferior portion of the horizontal pipe to simulate a gravitational force exerted on the horizontal

pipe.
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27. The method of claim 21, wherein the one or more defect image patches are overlaid on to
the defect-free time-series image data at pre-determined locations of the industrial asset based on
historical observation data, expert knowledge, or location-based detection bias of the machine

learning algorithm.

28. The method of claim 21, wherein the data characterizing one or more training
configuration parameters includes a defect depth or a defect size, and generating the plurality of
defect image patches further comprises:

determining, by the data processor using a first physical model of temperature
propagation through a cross-section of the industrial asset, at least one surface temperature
profile of the industrial asset;

generating, by the data processor based on the defect depth or the defect size and the
determining a surface temperature for each pixel included in the plurality of detect image
patches; and

providing, by the data processor, the surface temperature (or each pixel in the plurality of
defect image patches, wherein the surface temperature is provided in the plurality of defect

image patches as a cross-sectional view of the industrial asset.

29. The method of claim 21, wherein the data characterizing one or more training
configuration parameters include a defect location corresponding to a corrosion origination point,
and generating the plurality of defect image patches further comprises:

determining, by the data processor using a second physical model of temperature
propagation across a surface of the industrial asset, at least one surface temperature profile of the
industrial asset;

generating, by the data processor based on the defect location and the determining, a
surface temperature distribution within the plurality of defect image patches; and

providing, by the data processor, the surface temperature distribution in the plurality of
defect image patches, wherein the surface temperature distribution extends across the surface of
the industrial asset from the defect location corresponding to the corrosion origination point

toward edges of the plurality of defect image patches.
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30. The method of claim 29, wherein generating the plurality of defect image patches further
comprises applying a camera noise model corresponding to the infrared camera to the plurality of

defect image patches.

31. The method of claim 21, wherein the generated time-series image training data is used to
determine an estimated probability of detection for the machine learning algorithm, the estimated
probability of detection based on the machine learning algorithm predicting at least one defect in
the one or more time-series infrared images matching a corresponding defect present in the
generated time-series images, wherein the estimated probability of detection is indicative of the
machine learning algorithms performance determining a defect category, a defect location, a
defect size, wherein the estimated probability of detection is associated with a margin of error

corresponding to statistical properties of the generated time-series image training data.

32. The method of claim 17, wherein the machine learning algorithm is trained in a machine
learning process including at least one of a convolutional neural network, a recurrent neural

network, a long short-term memory network, or a vision transformer.

33. A method comprising:

receiving, by a data processor, data characterizing a predictive model trained to determine
a plurality of defects within an area of interest identified within one or more time-series infrared
images of an industrial asset acquired via an infrared camera, wherein the predictive model is
trained to determine each defect of the plurality of defects based on pixel-wise assignment of at
least one defect-category selected from a plurality of defect categories for each pixel of the one
or more time-series infrared images and each defect is represented by a cluster comprised of one
or more pixels in which each pixel is assigned an identical defect category;

receiving, by the data processor, data characterizing one or more time-series infrared
images including a defect of the industrial asset, wherein the one or more time-series infrared
images are generated by the data processor based on

receiving data characterizing one or more configuration parameters associated

with at least one defect category selected from the plurality of defect categories,
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generating a plurality of defect image patches based on the data characterizing the
one or more configuration parameters, the plurality of defect image patches including the
defect,
overlaying one or more of the defect image patches onto defect-free time-series
image data of the industrial asset, the defect-free time-series image data devoid of any
defects of the industrial asset, and
generating the one or more time-series infrared images based on the overlaying,
the generated one or more time-series infrared images including at least one of a known
defect location, a known defect size, or a known defect category for the defect included
in the one or more time-series infrared images;
receiving, by the data processor, data characterizing an area of interest of the industrial
asset within the one or more time-series infrared images;
executing, by the data processor and based on the receiving, the predictive model;
determining, by the data processor and based on the executing, an estimated probability
of detection for the predictive model, the estimated probability of detection indicating a measure
of performance of the predictive model to determine at least one of a defect location, a defect
size, or a defect category for the defect in the one or more time-series infrared images, wherein
the estimated probability of detection is associated with a margin of error corresponding to
statistical properties of the one or more time-series infrared images; and

providing the cstimatcd probability of detection.

34. The method of claim 33, wherein the plurality of defect categories includes a defect-free
category, an insulation damage category, a moisture accumulation category, a metal corrosion

category, and a deep-metal loss corrosion category.

35. The method of claim 33, wherein the data processor is further configured to determine

the probability of detection for each defect category included in the plurality of defect categories.

36. The method of claim 33, wherein the data processor is further configured to determine an
aggregate probability of detection for a subset of defect categories of the plurality of defect

categories.
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37. The method of claim 33, wherein the data processor is further configured to determine an

aggregate probability of detection for all defect categories of the plurality of defect categories.

38. A method comprising:

receiving, by a data processor, data characterizing a predictive model trained to determine
a plurality of defects within an area of interest identified within one or more field-originated
time-series infrared images of an industrial asset acquired via an infrared camera, wherein the
predictive model is trained to determine each defect of the plurality of defects based on pixel-
wise assignment of at least one defect-category selected from a plurality of defect categories for
each pixel of the one or more time-series infrared images and each defect is represented by a
cluster comprised of one or more pixels in which each pixel is assigned an identical defect
category,

receiving, by the data processor, data characterizing the one or more field-originated
time-series infrared images acquired via the infrared camera and annotated with ground-truth
annotations based on physical examination of the industrial asset;

receiving, by the data processor, data characterizing an area of interest of the industrial
asset within the one or more field-originated time-series infrared images;

executing, by the data processor and based on the receiving, the predictive model;

determining, by the data processor and based on the executing, an estimated probability
of detection of the predictive model, the cstimated probability of detection indicating the
measure of performance of the predictive model to determine at least one of a defect location, a
defect size, or a defect category in the one or more field-originated time-series infrared images,
wherein the estimated probability of detection is associated with a margin of error corresponding
to statistical properties of the one or more field-originated time-series infrared images; and

providing the estimated probability of detection.
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Category of a defect (e.g., metal loss)
FIG. 9
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