

US009109250B2

(12) United States Patent

Hill

(54) PRODUCTION OF CLOSED LINEAR DNA

- (76) Inventor: Vanessa Hill, Surrey (GB)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 350 days.
- (21) Appl. No.: 13/146,350
- (22) PCT Filed: Feb. 1, 2010
- (86) PCT No.: PCT/GB2010/000165
 § 371 (c)(1), (2), (4) Date: Jul. 23, 2012
- (87) PCT Pub. No.: WO2010/086626PCT Pub. Date: Aug. 5, 2010

(65) **Prior Publication Data**

US 2012/0282283 A1 Nov. 8, 2012

(30) Foreign Application Priority Data

Jan. 30, 2009 (GB) 0901593.4

- (51) **Int. Cl.**
- *C12Q 1/68* (2006.01) (52) U.S. Cl.

CPC C12Q 1/6846 (2013.01)

(56) **References Cited**

U.S. PATENT DOCUMENTS

5,589,466	Α	12/1996	Felgner et al.
5,714,320	Α	2/1998	Kool
6,369,038	B1	4/2002	Blumenfeld et al.
6,451,563	B1	9/2002	Wittig et al.
6,620,597	B1	9/2003	Chen et al.
6,977,148	B2	12/2005	Dean et al.
7,452,699	B2	11/2008	Makrigiorgos
7,955,795	B2	6/2011	Kumar
8,163,489	B2	4/2012	Murray et al.
2003/0054392	A1	3/2003	Wittig et al.
2008/0305142	A1	12/2008	Chen et al.
2008/0305535	A1	12/2008	Auerbach
2010/0055744	A1*	3/2010	Nelson et al 435/91.4

FOREIGN PATENT DOCUMENTS

EP	1176204	1/2002	
EP	1176204 A1	1/2002	
GB	2332516	* 6/1999	 C12Q 1/68
JP	10234399 A	9/1998	
WO	9201813 A1	2/1992	
WO	9219732 A1	11/1992	
WO	9632473 A1	10/1996	
WO	9719193 A2	5/1997	
WO	9821322 A1	5/1998	
WO	9918241 A1	4/1999	
WO	0015779 A2	3/2000	

(10) Patent No.: US 9,109,250 B2

(45) **Date of Patent:** Aug. 18, 2015

WO	WO 01/04280			1/2001	
WO	WO-01/04280	A2		1/2001	
WO	0177384	A2		10/2001	
WO	WO 2004/028562			4/2004	
WO	WO-2004/028562	A2		4/2004	
WO	WO 2005/054435			6/2005	
WO	WO-2005/054435	A2		6/2005	
WO	WO 2007/087478			8/2007	
WO	WO-2007/087478	A2		8/2007	
WO	WO2007087478		*	8/2007	C12N 15/70
WO	WO2008151023		*	12/2008	C12Q 1/68
WO	2010026099	A1		3/2010	

OTHER PUBLICATIONS

Deneke J, Ziegelin G, Lurz R, Lanka E. The protelomerase of temperate *Escherichia coli* phage N15 has cleaving-joining activity. Proc Natl Acad Sci U S A. Jul. 5, 2000;97(14):7721-7726.*

Ebersole T, Okamoto Y, Noskov VN, Kouprina N, Kim JH, Leem SH, Barrett JC, Masumoto H, Larionov V. Rapid generation of long synthetic tandem repeats and its application for analysis in human artificial chromosome formation. Nucleic Acids Res. Sep. 1, 2005;33(15):e130.*

Hartig JS, Kool ET. Small circular DNAs for synthesis of the human telomere repeat: varied sizes, structures and telomere-encoding activities. Nucleic Acids Res. Nov. 1, 2004; 32(19):e152.*

Nosek J, Rycovska A, Makhov AM, Griffith JD, Tomaska L. Amplification of telomeric arrays via rolling-circle mechanism. J Biol Chem. Mar. 18, 2005; 280(11):10840-5. Epub Jan. 18, 2005.*

Schirmbeck R, König-Merediz SA, Riedl P, Kwissa M, Sack F, Schroff M, Junghans C, Reimann J, Wittig B. Priming of immune responses to hepatitis B surface antigen with minimal DNA expression constructs modified with a nuclear localization signal peptide. J Mol Med (Berl). Jun. 2001; 79(5-6):343-350.*

Beyer S, Nickels P, Simmel FC. Periodic DNA nanotemplates synthesized by rolling circle amplification. Nano Lett. Apr. 2005;5(4):719-722.*

Deneke J, Ziegelin G, Lurz R, Lanka E. The protelomerase of temperate *Escherichia coli* phage N15 has cleaving-joining activity. Proc Natl Acad Sci U S A. Jul. 5, 2000; 97(14):7721-7726.*

Deneke J, Ziegelin G, Lurz R, Lanka E. Phage N15 telomere resolution. Target requirements for recognition and processing by the protelomerase. J Biol Chem. Mar. 22, 2002; 277(12):10410-9. Epub Jan. 11, 2002.*

Dean FB, Nelson JR, Giesler TL, Lasken RS. Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res. Jun. 2001; 11(6):1095-1099.*

Heinrich J, Schultz J, Bosse M, Ziegelin G, Lanka E, Moelling K. Linear closed mini DNA generated by the prokaryotic cleavingjoining enzyme TelN is functional in mammalian cells. J Mol Med (Berl). Oct. 2002;80(10):648-654. Epub Aug. 28, 2002.*

(Continued)

Primary Examiner - Angela M Bertagna

Assistant Examiner — Olayinka Oyeyemi

(74) Attorney, Agent, or Firm — Norton Rose Fulbright US LLP

(57) **ABSTRACT**

An in vitro process for the production of closed linear deoxyribonucleic acid (DNA) comprises (a) contacting a DNA template comprising at least one protelomerase target sequence with at least one DNA polymerase in the presence of one or more primers under conditions promoting amplification of said the template; and (b) contacting amplified DNA produced in (a) with at least one protelomerase under conditions promoting production of closed linear DNA. A kit provides components necessary in the process.

29 Claims, 6 Drawing Sheets

(56) **References Cited**

OTHER PUBLICATIONS

Genbank Accession No. X53370—Bacteriophage phi29 temperature sensitive mutant TS2(98) DNA polymerase, complete genome (GI: 15733, submitted by Bernad et al. Jun. 7, 1990, retrieved on Mar. 17, 2014 from http://www.ncbi.nlm.nih.gov/nuccore/15733).*

Genbank Accession No. CAA37450—Bacillus phage phi29 protein, (GI: 15734, submitted by Bernad et al. Jun. 7, 1990, retrieved on Mar. 17, 2014 from http://www.ncbi.nlm.nih.gov/protein/GI:15734).*

Genbank Accession No. Q37967—Telomerase (Gp29), (GI: 75078301, Oct. 31, 2006, retrieved on Mar. 21, 2014 from http://www.ncbi.nlm.nih.gov/protein/Q37967).*

Genbank Accession No. Q38545—Bacteriophage phi29 temperature sensitive mutant TS2 (98) DNA polymerase gene), (GI: 75092995, Oct. 31, 2006, retrieved on Mar. 21, 2014 from http://www.ncbi.nlm. nih.gov/protein/Q38545).*

Blasco MA, Blanco L, Parés E, Salas M, Bernad A. Structural and functional analysis of temperature-sensitive mutants of the phage phi 29 DNA polymerase. Nucleic Acids Res. Aug. 25, 1990;18(16):4763-4770.*

Hutchison et al. Cell-free cloning using Φ 29 DNA polymerase. Proceedings of the National Academy of Sciences of the United States of America. 2005. 102(48): 17332-17336.*

Nosek J, Rycovska A, Makhov AM, Griffith JD, Tomaska L. Amplification of telomeric arrays via rolling-circle mechanism. J Biol Chem. Mar. 18, 2005; 280(11):10840-10845. Epub Jan. 18, 2005.* Robinson HL, Pertmer TM. Nucleic acid immunizations. Curr Protoc Immunol. 1998. Chapter 2: Unit 2.14. p. 2.14.1-2.14.19. Review.*

Rodriguez Ernesto G: "Nonviral DNA Vectors for Immunization and Therapy: Design and Methods for Their Obtention", Journal of Molecular Medicine, Springer Verlag, De, vol. 82, No. 8, Aug. 1, 2004, pp. 500-509, Xp009128328, ISSN: 0946-2716.*

Lin C, Xie M, Chen JJ, Liu Y, Yan H. Rolling-circle amplification of a DNA nanojunction. Angew Chem Int Ed Engl. Nov. 20, 2006; 45(45):7537-7539.*

Mardanov et al. (2006), J. Resmic.; 157(2): pp. 176 to 183.

Ravin et al. (2001), Journal of Molecular Biology; 312(5): pp. 899 to 905.

Huang et al. (2004), Journal of Molecular Biology; 337(1): pp. 77 to 86.

Heinrich et al. (2002), J. Mol. Med; 80: pp. 648 to 654.

Deneke et al. (2000), PNAS; 97(14): pp. 7721 to 7726.

Ravin et al. (2000), Journal of Molecular Biology; 299(1): pp. 53 to 73.

Deneke et al. (2002), Journal of Biological Chemistry; 277: pp. 10410 to 10419.

Xiao Le-Yi, et al., Principle and Application of Rolling Circlie DNA Amplification China Biotechnology, vol. 24, No. 9, pp. 33-38.

Nosek, et al., "Amplifiction of Telomeric Arrays via Rolling-circle Mechanism", Journal of Biological Chemistry, vol. 280, No. 11, pp. 10840-10845; published Jan. 18, 2005.

Leutenegger, C.M., et al, "Immunization of Cats against Feline Immunodeficiency Virus (FIV) Infection by Using Minimalistic Immunogenic Defined Gene Expression Vector Vaccines Expressing FIV gp140 Alone or with Feline Interleukin-1(IL12), IL-16, or a CpG Motif", Journal of Virology, vol. 74, pp. 10477-10457, Nov. 2000.

Rogriguez, E.G., "Nonviral DNA vectors for immunization and therapy: deisgn and methods for their obtention", J. Mol. Med; vol. 82, pp. 500-509, 2004.

Rybchin et al., The plasmid prophage N15: a linear DNA with covalently closed ends, Mol Microbiol. Sep. 1999;33(5):895-903.

Ooi et al., Recombineering linear DNA that replicate stably in *E. coli*, Plasmid. Jan. 2008;59(1):63-71. Epub Nov. 7, 2007.

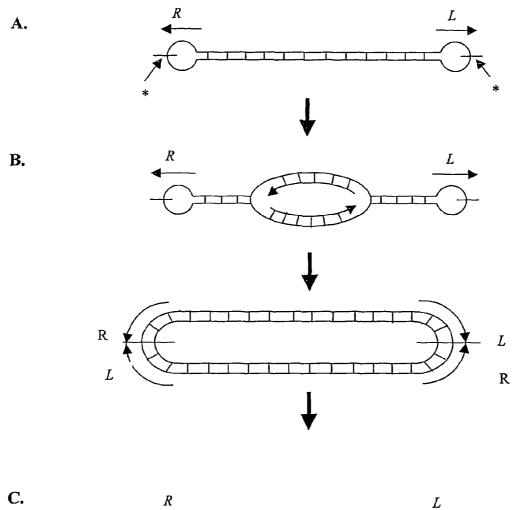
Ravin et al., Mechanisms of replication and telomere resolution of the linear plasmid prophage N15, FEMS Microbiol Lett. Apr. 11, 2003;221(1):1-6.

Kuhn et al., High-purity preparation of a large DNA dumbbell, Antisense Nucleic Acid Drug Dev. Jun. 2001;11(3):149-153.

Aihara et al., An interlocked dimer of the protelomerase TelK distorts DNA structure for the formation of hairpin telomeres, Mol Cell. Sep. 21, 2007;27(6):901-913.

Deneke et al., Catalytic residues of the telomere resolvase ResT: a pattern similar to, but distinct from, tyrosine recombinases and type IB topoisomerases, J Biol Chem. Dec. 17, 2004;279(51):53699-53706. Epub Oct. 6, 2004.

Bankhead et al., Mixing active-site components: a recipe for the unique enzymatic activity of a telomere resolvase, Proc Natl Acad Sci U S A. Sep. 21, 2004;101(38):13768-13773. Epub Sep. 13, 2004.


Dongyu Liu et al., Rolling Circle DNA Synthesis:? Small Circular Oligonucleotides as Efficient Templates for DNA Polymerases, J. Am. Chem. Soc., 1996, 118 (7), pp. 1587-1594.

Meinhardt et al., Microbial linear plasmids, Appl Microbiol Biotechnol. Apr. 1997;47(4):329-336.

Tourand et al., Differential Telomere Processing by Borrelia Telomere Resolvases In Vitro but Not In Vivo, J Bacteriol. Nov. 2006; 188(21): 7378-7386.

Inoue et al., Improvements of rolling circle amplification (RCA) efficiency and accuracy using *Thermus thermophilus* SSB mutant protein, Nuc. Acids Res. 2006, vol. 34, No. 9.

* cited by examiner

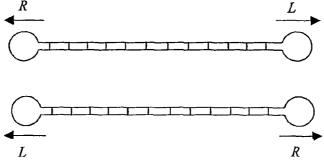


Figure 1

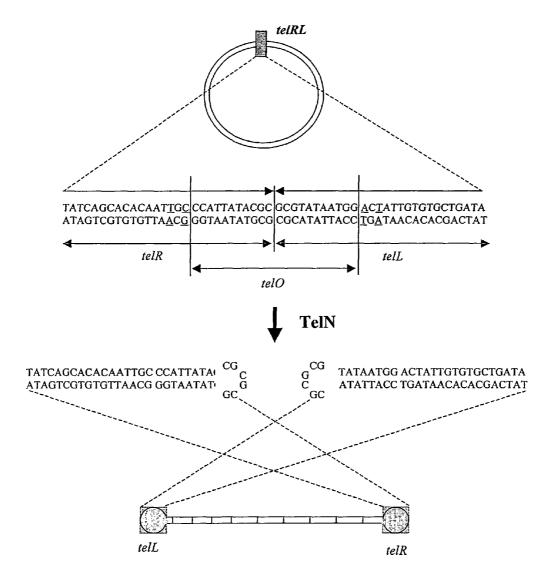


Figure 2

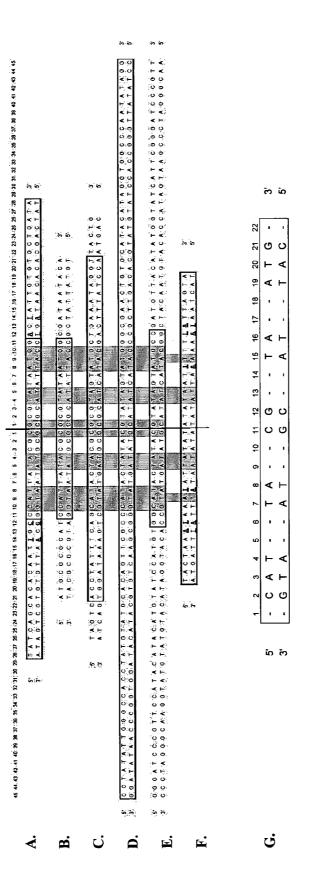


Figure 3

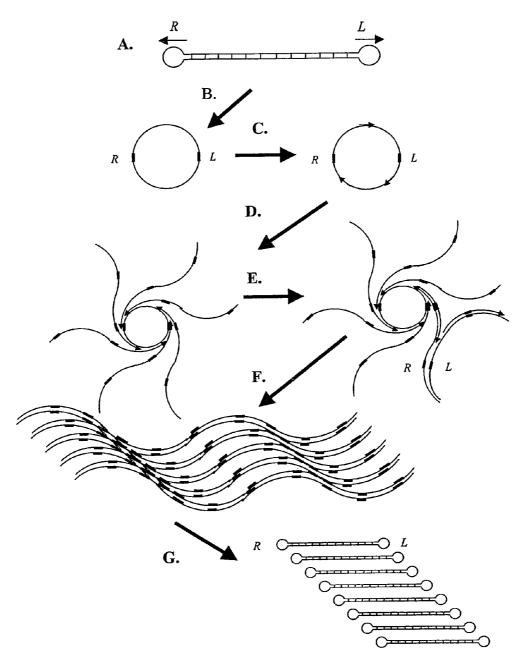


Figure 4

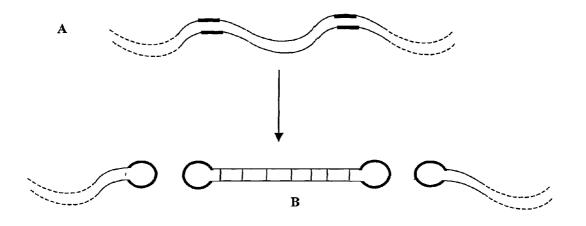
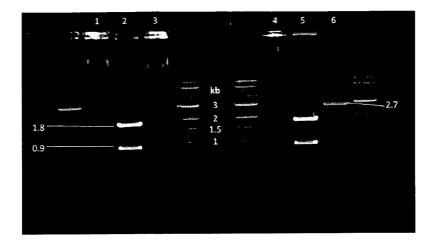



Figure 5

А.

C.

Figure 6

PRODUCTION OF CLOSED LINEAR DNA

This application is a national phase filing under 35 USC §371 of PCT International Application Serial No. PCT/GB2010/000165, filed Feb. 1, 2010, which claims priority to ⁵ GB Patent Application Serial No. 0901593.4, filed Jan. 30, 2009, both of which applications are incorporated by reference herein in their entirety.

FIELD OF THE INVENTION

The present invention relates to an in vitro, cell-free process for the production of closed linear deoxyribonucleic acid (DNA).

BACKGROUND OF THE INVENTION

Traditional cell-based processes for amplification of DNA in large quantities are costly. For example, use of bacteria requires their growth in large volumes in expensive ferment-²⁰ ers that are required to be maintained in a sterile state in order to prevent contamination of the culture. The bacteria also need to be lysed to release the amplified DNA and the DNA needs to be cleaned and purified from other bacterial components. In particular, where DNA vaccines or other therapeutic ²⁵ DNA agents are produced, high purity is required to eliminate the presence of endotoxins which are toxic to mammals.

In addition to the issues of cost, use of bacteria can in many cases present difficulties for fidelity of the amplification process. In the complex biochemical environment of the bacterial ³⁰ cell, it is difficult to control the quality and yields of the desired DNA product. The bacteria may occasionally alter the required gene cloned within the amplified DNA and render it useless for the required purpose. Recombination events may also lead to problems in faithful production of a DNA of ³⁵ interest. Cell-free enzymatic processes for amplification of DNA avoid the requirement for use of a host cell, and so are advantageous.

For example, the manufacture of medicinal DNA cassettes relies on almost exclusively on their insertion into bacterial ⁴⁰ plasmids and their amplification in bacterial fermentation processes.

This current state of the art process limits opportunities for improving the manufacture of such DNA medicines in a number of ways. In addition, the plasmid product is essentially a crude DNA molecule in that it contains nucleotide sequences not required for its medicinal function. Accordingly, in the field of production of DNA products, such as DNA medicines, there is a need to provide improved methods for amplification of DNA in large quantities. In particular, ⁵⁰ there is a need to provide improved methods for amplification of specific forms of DNA, such as closed linear DNAs. Closed linear DNA molecules have particular utility for therapeutic applications, as they have improved stability and safety over other forms of DNA. ⁵⁵

SUMMARY OF THE INVENTION

The present invention relates to a process for in vitro, cell-free production of linear covalently closed DNA (closed 60 linear DNA). The process allows for enhanced production of linear covalently closed DNA compared to current methodologies involving cellular processes and amplification within plasmids. This significantly increases process productivity while reducing the cost of product purification. 65

According to the present invention, production of linear covalently closed DNA from a DNA template is carried out enzymatically in the absence of a host cell. The template DNA comprises at least one protelomerase target sequence. The template DNA is contacted with at least one DNA polymerase in the presence of one or more primers under conditions promoting amplification of the template. DNA amplified from the template is contacted with at least one protelomerase under conditions promoting production of closed linear DNA.

Accordingly, the present invention provides an in vitro cell-free process for production of a closed linear deoxyribonucleic acid (DNA) comprising:

(a) contacting a DNA template comprising at least one protelomerase target sequence with at least one DNA polymerase in the presence of one or more primers under conditions promoting amplification of said template; and

(b) contacting amplified DNA produced in (a) with at least one protelomerase under conditions promoting production of closed linear DNA.

The invention further relates to a kit providing components necessary in the process of the invention. Thus, the invention provides a kit comprising at least one DNA polymerase and at least one protelomerase and instructions for use in a process of the invention.

BRIEF DESCRIPTION OF FIGURES

FIG. 1: Replication of linear covalently closed DNA in bacteriophages and the role of protelomerase. A. Depiction of extrachromosomal bacteriophage linear covalently closed DNA. *=Centre of palindromic sequence of telomere. The R sequence is an inverted palindromic repeat of the L sequence. B. Replication of bacteriophage DNA in host: Bubble indicates DNA strand replication. Synthesis of the complementary strand to R and L leads to identical double stranded RL sequences. C. Products formed by action of protelomerase. Protelomerase binds to the RL sequence and cuts and ligates the opposite strands at the centre point of the palindromic sequence to reform the telomeres and complete the replication of the original linear covalently closed DNA.

FIG. 2: The action of *Escherichia coli* phage N15 protelomerase (TelN) on circular double stranded DNA containing its target site, telRL. TelRL is an inverted palindrome with 28 bp right (telR) (SEQ ID NO:37) and left (telL) (SEQ ID NO:38) arms indicated by the arrows. The sequences underlined indicate imperfections in the telRL palindrome. A central 22 bp perfect inverted palindrome TelO (SEQ ID NO:17) is required for the binding of the enzyme, TelN. TelN cleaves this 22 bp sequence at its mid-point and joins the ends of the complementary strands to form covalently closed ends.

FIG. 3: Comparison of protelomerase target sequences in found in various organisms. The boxed sequences show the extent of perfect or imperfect palindromic sequence. Underlining shows imperfections in the palindrome. The base pair sequences highlighted are common to all protelomerase target sequences indicating their importance to protelomerase binding and action. A. Escherichia coli phage N15 (SEQ ID NO:25). B. Klebsiella phage Phi KO2 (SEQ ID NO:26). C. Yersinia phage Py54 (SEQ ID NO:27). D. Halomonas phage Phi HAP (SEQ ID NO:24). E. Vibrio phage VP882 (SEQ ID NO:28). F. Borrelia burgdorferi plasmid lpB31.16 (SEQ ID NO:29). The boxed sequences show the extent of perfect or imperfect palindromic sequence for each bacteriophage. G. The consensus inverse palindromic sequence for bacteriophage protelomerase binding and action is shown in SEQ ID NO:16. This is a 22 base pair perfect inverted repeat sequence (11 base pairs either side of the cut site). The consensus sequence is derived from the conserved highlighted residues shown for A-E. Conserved base pairs and their positions in the palindrome are indicated. Dashes indicate flexibility in sequence composition i.e. where bases may be N (A, T, C or G).

FIG. 4: Specific process for in vitro amplification of a linear double stranded covalently closed DNA using an RCA strand displacement DNA polymerase in combination with TelN protelomerase. A. Closed linear DNA template. R and L represent the DNA sequences of the right and left arms of the 5 TelN protelomerase binding sequence. B. Denaturation of starting template to form circular single stranded DNA. C. Primer binding. D-E. Rolling circle amplification from single stranded DNA template by an RCA strand displacement DNA polymerase. F. Formation of long concatemeric double stranded DNA comprising single units of amplified template separated by protelomerase binding sequences (RL). G. Contacting with TelN protelomerase specific to RL sequence. Protelomerase cleaves concatameric DNA at RL site and ligates complementary strands to produce amplified copies of the original linear covalently closed DNA template.

FIG. 5: Excision of DNA cassette expressing gene of interest from a long double stranded DNA molecule to create a closed linear DNA cassette. A. Linear double stranded DNA molecule containing a DNA cassette containing gene of interest flanked by protelomerase target sequences. B. Excision of the DNA cassette as a linear covalently closed DNA molecule. FIG. 5: Excision of DNA cassette expressing gene of interstep and the phage phiKO2 protelomerase SEQ ID NO: 12 is the nucleon set flanked by protelomerase target sequences. B. Excision of the DNA cassette as a linear covalently closed DNA molecule.

FIG. **6**: Amplification of closed linear DNA and reporter ²⁵ gene expression for "doggybone" expression cassette.

A. Confirmation of TelN cleavage of RCA amplified concatamers to form closed linear DNA by agarose gel electrophoresis. Lanes 1 to 3 show RCA amplified pUC18. Lane 1: 3 microliters undigested RCA amplified pUC18. Lane 2: 2 ³⁰ microliters RCA amplified pUC18 digested with Pvu1. Lane 3: 2 microliters RCA amplified pUC18 treated with TelN (negative control). Lanes 4 to 6 show RCA amplified pUC18 telRL. Lane 4: 3 microliters undigested RCA amplified pUC18 telRL. Lane 5: 1 microliter RCA amplified pUC18 ³⁵ telRL digested with Pvu1. Lane 6: 4 microliters RCA amplified pUC18 telRL treated with TelN. The 2.7 kb closed linear DNA generated on treatment with TelN is indicated. Flanking lanes are DNA size markers.

B. Lab-On-A-Chip (LOC) analysis showing resistance of ⁴⁰ closed linear DNA to thermal denaturation. Lane 1: DNA size marker. Lanes 2 and 3: 100 ng PCR DOG. Lanes 4 and 5: 100 ng denatured PCR DOG. Lanes 6 and 7: "doggybone" DNA—100 ng pGL DOG treated with TelN. Lanes 6 and 7: "doggybone DNA"—100 ng pGL DOG treated with TelN ⁴⁵ and denatured.

C. Validation of expression of closed linear DNA in cells by transfection. y axis: mean Firefly/*Renilla* ratio; x-axis: linear DNA constructs used in transfection. PCR pGL: open linear PCR fragment from pGL4.13 across luc gene. PCR DOG: ⁵⁰ open linear PCR fragment amplified from pGL DOG using primers flanking the telRL sites. "doggy MP": closed linear DNA from pGL DOG isolated from mini-prep DNA digested with PvuI (to remove contaminating vector DNA) and cleaved with TelN. "doggy RCA": closed linear DNA from ⁵⁵ pGL DOG amplified by RCA digested with PvuI and cleaved with TelN.

DESCRIPTION OF SEQUENCES

SEQ ID NO:1 is the nucleic acid sequence of a *Bacillus* bacteriophage phi29 DNA polymerase.

SEQ ID NO: 2 is the amino acid sequence of a *Bacillus* bacteriophage phi29 DNA polymerase encoded by SEQ ID NO: 1.

SEQ ID NO: 3 is the amino acid sequence of a *Pyrococcus* sp Deep Vent DNA polymerase.

SEQ ID NO: 4 is the nucleic acid sequence of *Bacillus* stearothermophilus DNA polymerase I.

SEQ ID NO: 5 is the amino acid sequence of *Bacillus stearothermophilus* DNA polymerase I encoded by SEQ ID NO: 4.

SEQ ID NO: 6 is the nucleic acid sequence of a *Halomonas* phage phiHAP-1 protelomerase nucleic acid sequence.

SEQ ID NO: 7 is the amino acid sequence of a *Halomonas* phage phiHAP-1 protelomerase encoded by SEQ ID NO: 6.

SEQ ID NO: 8 is the nucleic acid sequence of a *Yersinia* phage PY54 protelomerase.

SEQ ID NO: 9 is the amino acid sequence of a *Yersinia* phage PY54 protelomerase encoded by SEQ ID NO: 8.

SEQ ID NO: 10 is the nucleic acid sequence of a *Klebsiella* phage phiKO2 protelomerase.

SEQ ID NO: 11 is the amino acid sequence of a *Klebsiella* phage phiKO2 protelomerase encoded by SEQ ID NO: 10.

SEQ ID NO: 12 is the nucleic acid sequence of a *Vibrio* phage VP882 protelomerase.

SEQ ID NO: 13 is the amino acid sequence of a *Vibrio* phage VP882 protelomerase encoded by SEQ ID NO: 12.

SEQ ID NO: 14 is the nucleic acid sequence of an *Escherichia coli* bacteriophage N15 protelomerase (telN) and secondary immunity repressor (cA) nucleic acid sequence.

SEQ ID NO: 15 is the amino acid sequence of an *Escherichia coli* bacteriophage N15 protelomerase (telN) encoded by SEQ ID NO: 14

SEQ ID NO: 16 is a consensus nucleic acid sequence for a perfect inverted repeat present in bacteriophage protelomerase target sequences.

SEQ ID NO: 17 is a 22 base perfect inverted repeat nucleic acid sequence from *E. coli* phage N15 and *Klebsiella* phage phiKO2.

SEQ ID NO: 18 is a 22 base perfect inverted repeat nucleic acid sequence from *Yersinia* phage PY54.

SEQ ID NO: 19 is a 22 base perfect inverted repeat nucleic acid sequence from *Halomonas* phage phiHAP-1.

SEQ ID NO: 20 is a 22 base perfect inverted repeat nucleic acid sequence from *Vibrio* phage VP882.

SEQ ID NO: 21 is a 14 base perfect inverted repeat nucleic acid sequence from *Borrelia burgdorferi* plasmid lpB31.16.

SEQ ID NO: 22 is a 24 base perfect inverted repeat nucleic acid sequence from *Vibrio* phage VP882.

SEQ ID NO: 23 is a 42 base perfect inverted repeat nucleic acid sequence from *Yersinia* phage PY54.

SEQ ID NO: 24 is a 90 base perfect inverted repeat nucleic acid sequence from *Halomonas* phage phiHAP-1.

SEQ ID NO: 25 is a nucleic acid sequence from *E. coli* phage N15 comprising a protelomerase target sequence.

SEQ ID NO: 26 is a nucleic acid sequence from *Klebsiella* phage phiKO2 comprising a protelomerase target sequence.

SEQ ID NO: 27 is a nucleic acid sequence from *Yersinia* phage PY54 comprising a protelomerase target sequence.

SEQ ID NO: 28 is a nucleic acid sequence from *Vibrio* phage VP882 comprising a protelomerase target sequence.

SEQ ID NO: 29 is a nucleic acid sequence from *Borrelia burgdorferi* plasmid lpB31.16 comprising a protelomerase target sequence.

SEQ ID NO: 30 is a modified oligonucleotide primer used in amplification of TelN.

60

SEQ ID NO: 31 is a modified oligonucleotide primer used in amplification of TelN.

SEQ ID NO: 32 is a synthetic oligonucleotide containing 65 the TelN recognition site telRL.

SEQ ID NO: 33 is a synthetic oligonucleotide containing the TelN recognition site telRL.

SEQ ID NO: 34 is a primer sequence used in amplification of PCR DOG.

SEQ ID NO: 35 is a primer sequence used in amplification of PCR DOG.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to processes for the production of linear double stranded covalently closed DNA i.e closed linear DNA molecules. Closed linear DNA molecules 10 typically comprise covalently closed ends also described as hairpin loops, where base-pairing between complementary DNA strands is not present. The hairpin loops join the ends of complementary DNA strands. Structures of this type typically form at the telomeric ends of chromosomes in order to 15 protect against loss or damage of chromosomal DNA by sequestering the terminal nucleotides in a closed structure. In examples of closed linear DNA molecules described herein, hairpin loops flank complementary base-paired DNA strands, forming a "doggy-bone" shaped structure (as shown in FIG. 20 1).

The processes of the present invention provide for high throughput production of closed linear DNA molecules by incorporating a single processing step converting amplified DNA into closed linear DNA. In addition, the processes of the 25 present invention are carried out in an in vitro cell-free environment, and as such are not limited to use of DNA templates having extraneous sequences necessary for bacterial propagation. As outlined below, the process of the invention can therefore be used to produce closed linear DNA molecules 30 which lack problematic vector sequences and are particularly suitable for therapeutic uses.

Closed DNA molecules have particular utility as therapeutic agents i.e. DNA medicines which can be used to express a gene product in vivo. This is because their covalently closed 35 structure prevents attack by enzymes such as exonucleases, leading to enhanced stability and longevity of gene expression as compared to "open" DNA molecules with exposed DNA ends. Linear double stranded open-ended cassettes have been demonstrated to be inefficient with respect to gene 40 expression when introduced into host tissue. This has been attributed to cassette instability due to the action of exonucleases in the extracellular space.

Sequestering DNA ends inside covalently closed structures also has other advantages. The DNA ends are prevented from 45 integrating with genomic DNA and so closed linear DNA molecules are of improved safety. Also, the closed linear structure prevents concatamerisation of DNA molecules inside host cells and thus expression levels of the gene product can be regulated in a more sensitive manner. The present 50 invention provides an in vitro cell-free process for production of closed linear DNA molecules that comprises templatedirected DNA amplification, and specific processing of amplified DNA by protelomerase.

Typically, the process of the invention may be used for 55 production of DNA for in vitro expression in a host cell, particularly in DNA vaccines. DNA vaccines typically encode a modified form of an infectious organism's DNA. DNA vaccines are administered to a subject where they then express the selected protein of the infectious organism, initi- 60 ating an immune response against that protein which is typically protective. DNA vaccines may also encode a tumour antigen in a cancer immunotherapy approach.

A DNA vaccine may comprise a nucleic acid sequence encoding an antigen for the treatment or prevention of a 65 number of conditions including but not limited to cancer, allergies, toxicity and infection by a pathogen such as, but not

6

limited to, fungi, viruses including Human Papilloma Viruses (HPV), HIV, HSV2/HSV1, Influenza virus (types A, B and C), Polio virus, RSV virus, Rhinoviruses, Rotaviruses, Hepatitis A virus, Norwalk Virus Group, Enteroviruses, Astroviruses, Measles virus, Parainfluenza virus, Mumps virus, Varicella-Zoster virus, Cytomegalovirus, Epstein-Barr virus, Adenoviruses, Rubella virus, Human T-cell Lymphoma type I virus (HTLV-I), Hepatitis B virus (HBV), Hepatitis C virus (HCV), Hepatitis D virus, Pox virus, Marburg and Ebola; bacteria including Mycobacterium tuberculosis, Chlamydia, Neisseria gonorrhoeae, Shigella, Salmonella, Vibrio cholerae, Treponema pallidum, Pseudomonas, Bordetella pertussis, Brucella, Franciscella tularensis, Helicobacter pylori, Leptospira interrogans, Legionella pneumophila, Yersinia pestis, Streptococcus (types A and B), Pneumococcus, Meningococcus, Haemophilus influenza (type b), Toxoplasma gondii, Campylobacteriosis, Moraxella catarrhalis, Donovanosis, and Actinomycosis; fungal pathogens including Candidiasis and Aspergillosis; parasitic pathogens including Taenia, Flukes, Roundworms, Amoebiasis, Giardiasis, Cryptosporidium, Schistosoma, Pneumocystis carinii, Trichomoniasis and Trichinosis.

DNA vaccines may comprise a nucleic acid sequence encoding an antigen from a member of the adenoviridae (including for instance a human adenovirus), herpesviridae (including for instance HSV-1, HSV-2, EBV, CMV and VZV), papovaviridae (including for instance HPV), poxyiridae (including for instance smallpox and vaccinia), parvoviridae (including for instance parvovirus B19), reoviridae (including for instance a rotavirus), coronaviridae (including for instance SARS), flaviviridae (including for instance yellow fever, West Nile virus, dengue, hepatitis C and tick-borne encephalitis), picornaviridae (including polio, rhinovirus, and hepatitis A), togaviridae (including for instance rubella virus), filoviridae (including for instance Marburg and Ebola), paramyxoviridae (including for instance a parainfluenza virus, respiratory syncitial virus, mumps and measles), rhabdoviridae (including for instance rabies virus), bunyaviridae (including for instance Hantaan virus), orthomyxoviridae (including for instance influenza A, B and C viruses), retroviridae (including for instance HIV and HTLV) and hepadnaviridae (including for instance hepatitis B).

The antigen may be from a pathogen responsible for a veterinary disease and in particular may be from a viral pathogen, including, for instance, a Reovirus (such as African Horse sickness or Bluetongue virus) and Herpes viruses (including equine herpes). The antigen may be one from Foot and Mouth Disease virus, Tick borne encephalitis virus, dengue virus, SARS, West Nile virus and Hantaan virus. The antigen may be from an immunodeficiency virus, and may, for example, be from SIV or a feline immunodeficiency virus.

DNA vaccines produced by the process of the invention may also comprise a nucleic acid sequence encoding tumour antigens. Examples of tumour associated antigens include, but are not limited to, cancer-testes antigens such as members of the MAGE family (MAGE 1, 2, 3 etc), NY-ESO-1 and SSX-2, differentiation antigens such as tyrosinase, gp100, PSA, Her-2 and CEA, mutated self antigens and viral tumour antigens such as E6 and/or E7 from oncogenic HPV types. Further examples of particular tumour antigens include MART-1, Melan-A, p97, beta-HCG, GaINAc, MAGE-1, MAGE-2, MAGE-4, MAGE-12, MUC1, MUC2, MUC3, MUC4, MUC18, CEA, DDC, P1A, EpCam, melanoma antigen gp75, Hker 8, high molecular weight melanoma antigen, K19, Tyr1, Tyr2, members of the pMel 17 gene family, c-Met, PSM (prostate mucin antigen), PSMA (prostate specific

membrane antigen), prostate secretary protein, alpha-fetoprotein, CA 125, CA 19.9, TAG-72, BRCA-1 and BRCA-2 antigen.

Also, the process of the invention may produce other types of therapeutic DNA molecules e.g. those used in gene 5 therapy. For example, such DNA molecules can be used to express a functional gene where a subject has a genetic disorder caused by a dysfunctional version of that gene. Examples of such diseases include Duchenne muscular dystrophy, cystic fibrosis, Gaucher's Disease, and adenosine 10 deaminase (ADA) deficiency. Other diseases where gene therapy may be useful include inflammatory diseases, autoimmune, chronic and infectious diseases, including such disorders as AIDS, cancer, neurological diseases, cardiovascular disease, hypercholestemia, various blood disorders 15 including various anaemias, thalassemia and haemophilia, and emphysema. For the treatment of solid tumors, genes encoding toxic peptides (i.e., chemotherapeutic agents such as ricin, diptheria toxin and cobra venom factor), tumor suppressor genes such as p53, genes coding for mRNA sequences 20 which are antisense to transforming oncogenes, antineoplastic peptides such as tumor necrosis factor (TNF) and other cytokines, or transdominant negative mutants of transforming oncogenes, may be expressed.

Other types of therapeutic DNA molecules are also con- 25 templated for production by the process of the invention. For example, DNA molecules which are transcribed into an active RNA form, for example a small interfering RNA (siRNA) may be produced according to the process of the invention.

In embodiments directed to production of DNA molecules 30 having therapeutic utility, the DNA template will typically comprise an expression cassette comprising one or more promoter or enhancer elements and a gene or other coding sequence which encodes an mRNA or protein of interest. In particular embodiments directed to generation of DNA vac-35 cine molecules or DNA molecules for gene therapy, the DNA template comprises an expression cassette consisting of a eukaryotic promoter operably linked to a sequence encoding a protein of interest, and optionally an enhancer and/or a eukaryotic transcription termination sequence. Typically, the 40 DNA template may be in the form of a vector commonly used to house a gene e.g. an extrachromosomal genetic element such as a plasmid.

A "promoter" is a nucleotide sequence which initiates and regulates transcription of a polynucleotide. Promoters can 45 include inducible promoters (where expression of a polynucleotide sequence operably linked to the promoter is induced by an analyte, cofactor, regulatory protein, etc.), repressible promoters (where expression of a polynucleotide sequence operably linked to the promoter is repressed by an 50 analyte, cofactor, regulatory protein, etc.), and constitutive promoters. It is intended that the term "promoter" or "control element" includes full-length promoter regions and functional (e.g., controls transcription or translation) segments of these regions. 55

"Operably linked" refers to an arrangement of elements wherein the components so described are configured so as to perform their usual function. Thus, a given promoter operably linked to a nucleic acid sequence is capable of effecting the expression of that sequence when the proper enzymes are 60 present. The promoter need not be contiguous with the sequence, so long as it functions to direct the expression thereof. Thus, for example, intervening untranslated yet transcribed sequences can be present between the promoter sequence and the nucleic acid sequence and the promoter 65 sequence can still be considered "operably linked" to the coding sequence. Thus, the term "operably linked" is

intended to encompass any spacing or orientation of the promoter element and the DNA sequence of interest which allows for initiation of transcription of the DNA sequence of interest upon recognition of the promoter element by a transcription complex.

According to the present invention, closed linear DNA molecules are generated by the action of protelomerase on DNA amplified from a DNA template comprising at least one protelomerase target sequence. A protelomerase target sequence is any DNA sequence whose presence in a DNA template allows for its conversion into a closed linear DNA by the enzymatic activity of protelomerase. In other words, the protelomerase target sequence is required for the cleavage and religation of double stranded DNA by protelomerase to form covalently closed linear DNA.

Typically, a protelomerase target sequence comprises any perfect palindromic sequence i.e any double-stranded DNA sequence having two-fold rotational symmetry, also described herein as a perfect inverted repeat. As shown in FIG. 3, the protelomerase target sequences from various mesophilic bacteriophages, and a bacterial plasmid all share the common feature of comprising a perfect inverted repeat. The length of the perfect inverted repeat differs depending on the specific organism. In Borrelia burgdorferi, the perfect inverted repeat is 14 base pairs in length. In various mesophilic bacteriophages, the perfect inverted repeat is 22 base pairs or greater in length. Also, in some cases, e.g E. coli N15, the central perfect inverted palindrome is flanked by inverted repeat sequences, i.e forming part of a larger imperfect inverted palindrome (see FIGS. 2 and 3; the underlined bases indicate where the symmetry of the inverted repeats is interrupted).

A protelomerase target sequence as used in the invention preferably comprises a double stranded palindromic (perfect inverted repeat) sequence of at least 14 base pairs in length. Preferred perfect inverted repeat sequences include the sequences of SEQ ID NOs: 16 to 21 and variants thereof. SEQ ID NO: 16 (NCATNNTANNCGNNTANNATGN) is a 22 base consensus sequence for a mesophilic bacteriophage perfect inverted repeat. As shown in FIG. **3**, base pairs of the perfect inverted repeat are conserved at certain positions between different bacteriophages, while flexibility in sequence is possible at other positions. Thus, SEQ ID NO: 16 is a minimum consensus sequence for a perfect inverted repeat sequence for use with a bacteriophage protelomerase in the process of the present invention.

Within the consensus defined by SEQ ID NO: 16, SEQ ID NO: 17 (CCATTATACGCGCGTATAATGG) is a particularly preferred perfect inverted repeat sequence for use with *E. coli* phage N15 (SEQ ID NO: 15), and *Klebsiella* phage Phi KO2 (SEQ ID NO: 11) protelomerases. Also within the consensus defined by SEQ ID NO: 16, SEQ ID NOs: 18 to 20:

SEQ ID NO: 18 (GCATACTACGCGCGTAGTATGC), SEQ ID NO: 19 (CCATACTATACGTATAGTATGG), SEQ ID NO: 20 (GCATACTATACGTATAGTATGC),

are particularly preferred perfect inverted repeat sequences for use respectively with protelomerases from *Yersinia* phage PY54 (SEQ ID NO: 9), *Halomonas* phage phiHAP-1 (SEQ ID NO: 7), and *Vibrio* phage VP882 (SEQ ID NO: 13). SEQ ID NO: 21 (ATTATATATATAAT) is a particularly preferred perfect inverted repeat sequence for use with a *Borrelia burgdorferi* protelomerase. This perfect inverted repeat sequence is from a linear covalently closed plasmid, lpB31.16 comprised in *Borrelia burgdorferi*. This 14 base sequence is shorter than the 22 bp consensus perfect inverted repeat for bacteriophages (SEQ ID NO: 16), indicating that bacterial protelomerases may differ in specific target sequence require-

ments to bacteriophage protelomerases. However, all protelomerase target sequences share the common structural motif of a perfect inverted repeat.

The perfect inverted repeat sequence may be greater than 22 bp in length depending on the requirements of the specific protelomerase used in the process of the invention. Thus, in some embodiments, the perfect inverted repeat may be at least 30, at least 40, at least 60, at least 80 or at least 100 base pairs in length. Examples of such perfect inverted repeat sequences include SEQ ID NOs: 22 to 24 and variants thereof.

SEQ ID NO: 22 (GGCATAC TATACGTATAGTATGCC) SEQ ID NO: 23 (ACCTATTTCAGCATACTACGCGCG-TAGTATGCTGAAATAGGT)

SEQ ID NO: 24 (CCTATATTGGGGCCACCTATGTATG-15 ATAGTATGGGC-CACAGTTCGCCCATACTATACGT GAACTGTGCATACATAGGTGGCCCAATATAGG)

SEQ ID NOs: 22 to 24 and variants thereof are particularly preferred for use respectively with protelomerases from Vibrio phage VP882 (SEQ ID NO: 13), Yersinia phage PY54 (SEQ ID NO: 9) and Halomonas phage phi HAP-1 (SEQ ID 20 NO: 7).

The perfect inverted repeat may be flanked by additional inverted repeat sequences. The flanking inverted repeats may be perfect or imperfect repeats i.e may be completely symmetrical or partially symmetrical. The flanking inverted ²⁵ repeats may be contiguous with or non-contiguous with the central palindrome. The protelomerase target sequence may comprise an imperfect inverted repeat sequence which comprises a perfect inverted repeat sequence of at least 14 base pairs in length. An example is SEQ ID NO: 29. The imperfect 30 inverted repeat sequence may comprise a perfect inverted repeat sequence of at least 22 base pairs in length. An example is SEQ ID NO: 25

Particularly preferred protelomerase target sequences 35 comprise the sequences of SEQ ID NOs: 25 to 29 or variants thereof.

SEQ ID NO: 25: (TATCAGCACAAATTGCCCATTATACGCGCGTATAATGGACTATTG

TGTGCTGATA)

SEQ ID NO: 26 (ATGCGCGCATCCATTATACGCGCGTATAATGGCGATAATACA) SEQ ID NO: 27

(TAGTCACCTATTTCAGCATACTACGCGCGTAGTATGCTGAAATAGG

TTACTG

	SEQ	ID	NO:	28:
(GGGATCCCGTTCCATACATACATGTATCCATGTGGC	ATAC	TAT	ACG	

TATAGTATGCCGATGTTACATATGGTATCATTCGGGATCCCGTT)

(TACTAAATAAATATTATATATATATATATTTTTTTATTAGTA)

SEQ ID NO: 29

40

45

The sequences of SEQ ID NOs: 25 to 29 comprise perfect inverted repeat sequences as described above, and additionally comprise flanking sequences from the relevant organisms. A protelomerase target sequence comprising the sequence of SEQ ID NO: 25 or a variant thereof is preferred 60 for use in combination with E. coli N15 TelN protelomerase of SEQ ID NO: 15 and variants thereof. A protelomerase target sequence comprising the sequence of SEQ ID NO: 26 or a variant thereof is preferred for use in combination with Klebsiella phage Phi K02 protelomerase of SEQ ID NO: 11 65 and variants thereof. A protelomerase target sequence comprising the sequence of SEQ ID NO: 27 or a variant thereof is

10

preferred for use in combination with Yersinia phage PY54 protelomerase of SEQ ID NO: 9 and variants thereof. A protelomerase target sequence comprising the sequence of SEQ ID NO: 28 or a variant thereof is preferred for use in combination with Vibrio phage VP882 protelomerase of SEQ ID NO: 13 and variants thereof. A protelomerase target sequence comprising the sequence of SEQ ID NO: 29 or a variant thereof is preferred for use in combination with a Borrelia burgdorferi protelomerase.

Variants of any of the palindrome or protelomerase target sequences described above include homologues or mutants thereof. Mutants include truncations, substitutions or deletions with respect to the native sequence. A variant sequence is any sequence whose presence in the DNA template allows for its conversion into a closed linear DNA by the enzymatic activity of protelomerase. This can readily be determined by use of an appropriate assay for the formation of closed linear DNA. Any suitable assay described in the art may be used. An example of a suitable assay is described in Deneke et al, PNAS (2000) 97, 7721-7726. Preferably, the variant allows for protelomerase binding and activity that is comparable to that observed with the native sequence. Examples of preferred variants of palindrome sequences described herein include truncated palindrome sequences that preserve the perfect repeat structure, and remain capable of allowing for formation of closed linear DNA. However, variant protelomerase target sequences may be modified such that they no longer preserve a perfect palindrome, provided that they are able to act as substrates for protelomerase activity.

It should be understood that the skilled person would readily be able to identify suitable protelomerase target sequences for use in the invention on the basis of the structural principles outlined above. Candidate protelomerase target sequences can be screened for their ability to promote formation of closed linear DNA using the assays described above.

The DNA template may comprise more than one protelomerase target sequence, for example, two, three, four, five, ten or more protelomerase target sequences. Use of multiple protelomerase target sequences can allow for excision of short closed linear DNAs comprising sequences of interest from a larger DNA molecule. In particular, one or more sequences of interest in the DNA template may be flanked on either side (i.e 5' and 3') by a protelomerase target sequence. The two flanking protelomerase sequences can then mediate excision of each short sequence of interest from the amplified DNA as a closed linear DNA, subject to the action of protelomerase (as shown in FIG. 5). The DNA template may comprise one or more sequences of interest (preferably expression cassettes) flanked on either side by protelomerase target sequences. The 50 DNA template may comprise two, three, four, five or more sequences of interest flanked by protelomerase target sequences as described above.

In a preferred embodiment, the process of the invention uses a DNA template comprising an expression cassette 55 flanked on either side by a protelomerase target sequence. The expression cassette preferably comprises a eukaryotic promoter operably linked to a coding sequence of interest, and optionally a eukaryotic transcription termination sequence. In this embodiment, following amplification of the template DNA, and contacting with protelomerase according to the invention, the expression cassette is released from the amplified template as a closed linear DNA. Unnecessary sequences in the template DNA are concomitantly deleted as a result from the product.

Such unnecessary or extraneous sequences (also described as bacterial or vector sequences) may include bacterial origins of replication, bacterial selection markers (e.g antibiotic resistance genes), and unmethylated CpG dinucleotides. Deletion of such sequences creates a "minimal" expression cassette which does not contain extraneous genetic material. Also, bacterial sequences of the type described above can be problematic in some therapeutic approaches. For example, 5 within a mammalian cell, bacterial/plasmid DNA can cause the cloned gene to switch off such that sustained expression of the protein of interest cannot be achieved. Also, antibiotic resistance genes used in bacterial propagation can cause a risk to human health. Furthermore, bacterial plasmid/vector DNA 10 may trigger an unwanted non-specific immune response. A specific characteristic of bacterial DNA sequences, the presence of unmethylated cytosine-guanine dinucleotides, typically known as CpG motifs, may also lead to undesired immune responses. 15

In some embodiments, particularly where the closed linear DNA product is a DNA vaccine, CpG motifs may be retained in the sequence of the product. This is because they can have a beneficial adjuvant effect on the immune response to the encoded protein.

Thus, the invention provides an in vitro process for the production of a closed linear expression cassette DNA. This process comprises a) contacting a DNA template comprising at least one expression cassette flanked on either side by a protelomerase target sequence with at least one DNA poly- 25 merase in the presence of one or more primers under conditions promoting amplification of said template; and b) contacting amplified DNA produced in a) with at least one, protelomerase under conditions promoting formation of a closed linear expression cassette DNA. The closed linear 30 expression cassette DNA product may comprise, consist or consist essentially of a eukaryotic promoter operably linked to a coding sequence of interest, and optionally a eukaryotic transcription termination sequence. The closed linear expression cassette DNA product may additionally lack one or more 35 bacterial or vector sequences, typically selected from the group consisting of: (i) bacterial origins of replication; (ii) bacterial selection markers (typically antibiotic resistance genes) and (iii) unmethylated CpG motifs.

As outlined above, any DNA template comprising at least 40 one protelomerase target sequence may be amplified according to the process of the invention. Thus, although production of DNA vaccines and other therapeutic DNA molecules is preferred, the process of the invention may be used to produce any type of closed linear DNA. The DNA template may be a 45 double stranded (ds) or a single stranded (ss) DNA. A double stranded DNA template may be an open circular double stranded DNA, a closed circular double stranded DNA, an open linear double stranded DNA or a closed linear double stranded DNA. Preferably, the template is a closed circular 50 double stranded DNA. Closed circular dsDNA templates are particularly preferred for use with RCA DNA polymerases. A circular dsDNA template may be in the form of a plasmid or other vector typically used to house a gene for bacterial propagation. Thus, the process of the invention may be used 55 to amplify any commercially available plasmid or other vector, such as a commercially available DNA medicine, and then convert the amplified vector DNA into closed linear DNA.

An open circular dsDNA may be used as a template where 60 the DNA polymerase is a strand displacement polymerase which can initiate amplification from at a nicked DNA strand. In this embodiment, the template may be previously incubated with one or more enzymes which nick a DNA strand in the template at one or more sites. A closed linear dsDNA may 65 also be used as a template. The closed linear dsDNA template (starting material) may be identical to the closed linear DNA

product. Where a closed linear DNA is used as a template, it may be incubated under denaturing conditions to form a single stranded circular DNA before or during conditions promoting amplification of the template DNA.

As outlined above, the DNA template typically comprises an expression cassette as described above, i.e comprising, consisting or consisting essentially of a eukaryotic promoter operably linked to a sequence encoding a protein of interest, and optionally a eukaryotic transcription termination sequence. Optionally the expression cassette may be a minimal expression cassette as defined above, i.e lacking one or more bacterial or vector sequences, typically selected from the group consisting of: (i) bacterial origins of replication; (ii) bacterial selection markers (typically antibiotic resistance genes) and (iii) unmethylated CpG motifs.

The DNA template may be provided in an amount sufficient for use in the process by any method known in the art. For example, the DNA template may be produced by the polymerase chain reaction (PCR). Where the DNA template 20 is a dsDNA, it may be provided for the amplification step as denatured single strands by prior incubation at a temperature of at least 94 degrees centigrade. Thus, the process of the invention preferably comprises a step of denaturing a dsDNA template to provide single stranded DNA. Alternatively, the 25 dsDNA template may be provided in double-stranded form. The whole or a selected portion of the DNA template may be amplified in the reaction.

The DNA template is contacted with at least one DNA polymerase under conditions promoting amplification of said template. Any DNA polymerase may be used. Any commercially available DNA polymerase is suitable for use in the process of the invention. Two, three, four, five or more different DNA polymerases may be used, for example one which provides a proof reading function and one or more others which do not. DNA polymerases having different mechanisms may be used e.g strand displacement type polymerases and DNA polymerases replicating DNA by other methods. A suitable example of a DNA polymerase that does not have strand displacement activity is T4 DNA polymerase.

It is preferred that a DNA polymerase is highly stable, such that its activity is not substantially reduced by prolonged incubation under process conditions. Therefore, the enzyme preferably has a long half-life under a range of process conditions including but not limited to temperature and pH. It is also preferred that a DNA polymerase has one or more characteristics suitable for a manufacturing process. The DNA polymerase preferably has high fidelity, for example through having proof-reading activity. Furthermore, it is preferred that a DNA polymerase displays high processivity, high strand-displacement activity and a low Km for dNTPs and DNA. A DNA polymerase may be capable of using circular and/or linear DNA as template. The DNA polymerase may be capable of using dsDNA or ssdNA as a template. It is preferred that a DNA polymerase does not display non-specific exonuclease activity.

The skilled person can determine whether or not a given DNA polymerase displays characteristics as defined above by comparison with the properties displayed by commercially available DNA polymerases, e.g phi29, DeepVent® and *Bacillus stearothermophilus* (Bst) DNA polymerase I, SEQ ID NOs: 2, 3 and 5 respectively. Bst DNA polymerase I is commercially available from New England Biolabs, Inc. Where a high processivity is referred to, this typically denotes the average number of nucleotides added by a DNA polymerase enzyme per association/dissociation with the template, i.e the length of primer extension obtained from a single association event.

Strand displacement-type polymerases are preferred. Preferred strand displacement-type polymerases are Phi 29 (SEQ ID NO: 2), Deep Vent® (SEQ ID NO: 3) and Bst DNA polymerase I (SEQ ID NO: 5) or variants of any thereof. Variants of SEQ ID NOs: 2, 3 and 5 may be as defined below 5 in relation to protelomerase enzymes. The term "strand displacement" is used herein to describe the ability of a DNA polymerase to displace complementary strands on encountering a region of double stranded DNA during DNA synthesis. It should be understood that strand displacement amplification methods differ from PCR-based methods in that cycles of denaturation are not essential for efficient DNA amplification, as double-stranded DNA is not an obstacle to continued synthesis of new DNA strands. In contrast, PCR methods require cycles of denaturation (i.e elevating temperature to 94 degrees centigrade or above) during the amplification process to melt double-stranded DNA and provide new single stranded templates.

A strand displacement DNA polymerase used in the 20 method of the invention preferably has a processivity (primer extension length) of at least 20 kb, more preferably, at least 30 kb, at least 50 kb, or at least 70 kb or greater. In particularly preferred embodiments, the strand displacement DNA polymerase has a processivity that is comparable to, or greater 25 than phi29 DNA polymerase.

A preferred strand displacement replication process is rolling circle amplification (RCA). The term RCA describes the ability of RCA-type DNA polymerases (also referred to herein as RCA polymerases) to continuously progress around 30 a circular DNA template strand whilst extending a hybridised primer. This leads to formation of linear single stranded products with multiple repeats of amplified DNA. These linear single stranded products serve as the basis for multiple hybridisation, primer extension and strand displacement 35 events, resulting in formation of concatameric double stranded DNA products, again comprising multiple repeats of amplified DNA. There are thus multiple copies of each amplified "single unit" DNA in the concatameric double stranded DNA products.

RCA polymerases are particularly preferred for use in the process of the present invention. The products of RCA-type strand displacement replication processes conventionally require complex processing to release single unit DNAs. Beneficially, according to the present invention, use of protelom- 45 erase catalytic functions allows this processing to be carried out in a single step. The use of protelomerase also directly generates the desired closed linear DNA structure without need for additional processing step(s) to form molecules having this structure.

In order to allow for amplification according to the invention, it is preferred that the DNA template is also contacted with one or more primers. The primers may be non-specific (i.e random in sequence) or may be specific for one or more sequences comprised within the DNA template. It is preferred $\,$ 55 $\,$ that the primers are of random sequence so as to allow for non-specific initiation at any site on the DNA template. This allows for high efficiency of amplification through multiple initiation reactions from each template strand. Examples of random primers are hexamers, heptamers, octamers, nonam- 60 ers, decamers or sequences greater in length, for example of 12, 15, 18, 20 or 30 nucleotides in length. A random primer may be of 6 to 30, 8 to 30 or 12 to 30 nucleotides in length. Random primers are typically provided as a mix of oligonucleotides which are representative of all potential combi- 65 nations of e.g. hexamers, heptamers, octamers or nonamers in the DNA template.

In other embodiments, the primers are specific. This means they have a sequence which is complementary to a sequence in the DNA template from which initiation of amplification is desired. In this embodiment, a pair of primers may be used to specifically amplify a portion of the DNA template which is internal to the two primer binding sites. Primers may be unlabelled, or may comprise one or more labels, for example radionuclides or fluorescent dyes. Primers may also comprise chemically modified nucleotides. Primer lengths/sequences may typically be selected based on temperature considerations i.e as being able to bind to the template at the temperature used in the amplification step.

The contacting of the DNA template with the DNA polymerase and one or more primers takes place under conditions promoting annealing of primers to the DNA template. The conditions include the presence of single-stranded DNA allowing for hybridisation of the primers. The conditions also include a temperature and buffer allowing for annealing of the primer to the template. Appropriate annealing/hybridisation conditions may be selected depending on the nature of the primer. An example of preferred annealing conditions used in the present invention include a buffer 30 mM Tris-HCl pH 7.5, 20 mM KCl, 8 mM MgCl₂. The annealing may be carried out following denaturation by gradual cooling to the desired reaction temperature.

Once the DNA template is contacted with the DNA polymerase and one or more primers, there is then a step of incubation under conditions promoting amplification of said template. Preferably, the conditions promote amplification of said template by displacement of replicated strands through strand displacement replication of another strand. The conditions comprise use of any temperature allowing for amplification of DNA, commonly in the range of 20 to 90 degrees centigrade. A preferred temperature range may be about 20 to about 40 or about 25 to about 35 degrees centigrade.

Typically, an appropriate temperature is selected based on the temperature at which a specific DNA polymerase has optimal activity. This information is commonly available and forms part of the general knowledge of the skilled person. For 40 example, where phi29 DNA polymerase is used, a suitable temperature range would be about 25 to about 35 degrees centigrade, preferably about 30 degrees centigrade. The skilled person would routinely be able to identify a suitable temperature for efficient amplification according to the process of the invention. For example, the process could be carried out at a range of temperatures, and yields of amplified DNA could be monitored to identify an optimal temperature range for a given DNA polymerase.

Other conditions promoting amplification of the DNA template comprise the presence of a DNA polymerase and one or more primers. The conditions also include the presence of all four dNTPs, ATP, TTP, CTP and GTP, suitable buffering agents/pH and other factors which are required for enzyme performance or stability. Suitable conditions include any conditions used to provide for activity of DNA polymerase enzymes known in the art.

For example, the pH may be within the range of 3 to 10, preferably 5 to 8 or about 7, such as about 7.5. pH may be maintained in this range by use of one or more buffering agents. Such buffers include, but are not restricted to MES, Bis-Tris, ADA, ACES, PIPES, MOBS, MOPS, MOPSO, Bis-Tris Propane, BES, TES, HEPES, DIPSO, TAPSO, Trizma, HEPPSO, POPSO, TEA, EPPS, Tricine, Gly-Gly, Bicine, HEPBS, TAPS, AMPD, TABS, AMPSO, CHES, CAPSO, AMP, CAPS, CABS, phosphate, citric acid-sodium hydrogen phosphate, citric acid-sodium citrate, sodium acetate-acetic acid, imidazole and sodium carbonate-sodium bicarbonate.

The reaction may also comprise salts of divalent metals such as but not limited to salts of magnesium (Mg²⁺) and manganese (Mn²⁺), including chlorides, acetates and sulphates. Salts of monovalent metals may also be included, such as sodium salts and potassium salts, for example potassium ⁵ chloride. Other salts that may be included are ammonium salts, in particular ammonium sulphate.

Detergents may also be included. Examples of suitable detergents include Triton X-100, Tween 20 and derivatives of either thereof. Stabilising agents may also be included in the reaction. Any suitable stabilising agent may be used, in particular, bovine serum albumin (BSA) and other stabilising proteins. Reaction conditions may also be improved by adding agents that relax DNA and make template denaturation 15 easier. Such agents include, for example, dimethyl sulphoxide (DMSO), formamide, glycerol and betaine.

It should be understood that the skilled person is able to modify and optimise amplification and incubation conditions for the process of the invention on the basis of their general 20 knowledge. Likewise the specific concentrations of particular agents may be selected on the basis of previous examples in the art and further optimised on the basis of general knowledge. As an example, a suitable reaction buffer used in RCAbased methods in the art is 50 mM Tris HCl, pH 7.5, 10 mM 25 MgCl₂, 20 mM (NH₄)₂SO₄, 5% glycerol, 0.2 mM BSA, 1 mM dNTPs. A preferred reaction buffer used in the RCA amplification of the invention is 35 mM Tris-HCl, 50 mM KCl, 14 mM MgCl2, 10 mM (NH₄)₂ SO4, 4 mM DTT, 1 mM dNTP. This buffer is particularly suitable for use with phi29 30 RCA polymerase.

The reaction conditions may also comprise use of one or more additional proteins. The DNA template may be amplified in the presence of at least one pyrophosphatase, such as Yeast Inorganic pyrophosphatase. Two, three, four, five or 35 more different pyrophosphatases may be used. These enzymes are able to degrade pyrophosphate generated by the DNA polymerase from dNTPs during strand replication. Build up of pyrophosphate in the reaction can cause inhibition of DNA polymerases and reduce speed and efficiency of DNA 40 amplification. Pyrophosphatases can break down pyrophosphate into non-inhibitory phosphate. An example of a suitable pyrophosphatase for use in the process of the present invention is Saccharomyces cerevisiae pyrophosphatase, available commercially from New England Biolabs, Inc

Any single-stranded binding protein (SSBP) may be used in the process of the invention, to stabilise single-stranded DNA. SSBPs are essential components of living cells and participate in all processes that involve ssDNA, such as DNA replication, repair and recombination. In these processes, 50 SSBPs bind to transiently formed ssDNA and may help stabilise ssDNA structure. An example of a suitable SSBP for use in the process of the present invention is T4 gene 32 protein, available commercially from New England Biolabs, Inc

In addition to the amplification step, the process of the invention also comprises a processing step for production of closed linear DNA. Amplified DNA is contacted with at least one protelomerase under conditions promoting production of closed linear DNA. This simple processing step based on 60 protelomerase is advantageous over other methods used for production of closed linear DNA molecules. The amplification and processing steps can be carried out simultaneously or concurrently. However, preferably, the amplification and processing steps are carried out sequentially with the processing 65 step being carried out subsequent to the amplification step (i.e on amplified DNA).

A protelomerase used in the invention is any polypeptide capable of cleaving and rejoining a template comprising a protelomerase target site in order to produce a covalently closed linear DNA molecule. Thus, the protelomerase has DNA cleavage and ligation functions. Enzymes having protelomerase-type activity have also been described as telomere resolvases (for example in *Borrelia burgdorferi*). A typical substrate for protelomerase is circular double stranded DNA. If this DNA contains a protelomerase target site, the enzyme can cut the DNA at this site and ligate the ends to create a linear double stranded covalently closed DNA molecule. The requirements for protelomerase target sites are discussed above. As also outlined above, the ability of a given polypeptide to catalyse the production of closed linear DNA from a template comprising a protelomerase target site can be determined using any suitable assay described in the art.

Protelomerase enzymes have been described in bacteriophages. In some lysogenic bacteria, bacteriophages exist as extrachromosomal DNA comprising linear double strands with covalently closed ends. The replication of this DNA and the maintenance of the covalently closed ends (or telomeric ends) are dependent on the activity of the enzyme, protelomerase. The role of protelomerase in the replication of the viral DNA is illustrated in FIG. 1. An example of this catalytic activity is provided by the enzyme, TelN from the bacteriophage, N15 that infects Escherichia coli. TelN recognises a specific nucleotide sequence in the circular double stranded DNA. This sequence is a slightly imperfect inverted palindromic structure termed telRL comprising two halves, telR and telL, flanking a 22 base pair inverted perfect repeat (telO) (see FIG. 2). Two telRL sites are formed in the circular double stranded DNA by the initial activity of specific DNA polymerase acting on the linear prophage DNA. TelN converts this circular DNA into two identical linear prophage DNA molecules completing the replication cycle. telR and telL comprise the closed ends of the linear prophage DNA enabling the DNA to be replicated further in the same way.

The process of the invention requires use of at least one protelomerase. The process of the invention may comprise use of more than one protelomerase, such as two, three, four, five or more different protelomerases. Examples of suitable protelomerases include those from bacteriophages such as phiHAP-1 from Halomonas aquamarina (SEQ ID NO: 7), PY54 from Yersinia enterolytica (SEQ ID NO: 9), phiKO2 from Klebsiella oxytoca (SEO ID NO: 11) and VP882 from Vibrio sp. (SEQ ID NO: 13), and N15 from Escherichia coli (SEQ ID NO: 15), or variants of any thereof. Use of bacteriophage N15 protelomerase (SEQ ID NO: 15) or a variant thereof is particularly preferred.

Variants of SEQ ID NOs: 7, 9, 11, 13 and 15 include homologues or mutants thereof. Mutants include truncations, substitutions or deletions with respect to the native sequence. A variant must produce closed linear DNA from a template comprising a protelomerase target site as described above.

Any homologues mentioned herein are typically a functional homologue and are typically at least 40% homologous to the relevant region of the native protein. Homology can be measured using known methods. For example the UWGCG Package provides the BESTFIT program which can be used to calculate homology (for example used on its default settings) (Devereux et al (1984) Nucleic Acids Research 12, 387-395). The PILEUP and BLAST algorithms can be used to calculate homology or line up sequences (typically on their default settings), for example as described in Altschul S. F. (1993) J Mol Evol 36:290-300; Altschul, S, F et al (1990) J

Mol Biol 215:403-10. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information.

The BLAST algorithm performs a statistical analysis of the similarity between two sequences; see e.g., Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90: 5873-5787. One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. 10 For example, a sequence is considered similar to another sequence if the smallest sum probability in comparison of the first sequence to the second sequence is less than about 1, preferably less than about 0.1, more preferably less than about 0.01, and most preferably less than about 0.001.

A variant polypeptide comprises (or consists of) sequence which has at least 40% identity to the native protein. In preferred embodiments, a variant sequence may be at least 55%, 65%, 70%, 75%, 80%, 85%, 90% and more preferably at least 95%, 97% or 99% homologous to a particular region 20 of the native protein over at least 20, preferably at least 30, for instance at least 40, 60, 100, 200, 300, 400 or more contiguous amino acids, or even over the entire sequence of the variant. Alternatively, the variant sequence may be at least 55%, 65%, 70%, 75%, 80%, 85%, 90% and more preferably 25 at least 95%, 97% or 99% homologous to full-length native protein. Typically the variant sequence differs from the relevant region of the native protein by at least, or less than, 2, 5, 10, 20, 40, 50 or 60 mutations (each of which can be substitutions, insertions or deletions). A variant sequence of the 30 invention may have a percentage identity with a particular region of the full-length native protein which is the same as any of the specific percentage homology values (i.e. it may have at least 40%, 55%, 80% or 90% and more preferably at least 95%, 97% or 99% identity) across any of the lengths of 35 sequence mentioned above.

Variants of the native protein also include truncations. Any truncation may be used so long as the variant is still able to produce closed linear DNA as described above. Truncations will typically be made to remove sequences that are non- 40 essential for catalytic activity and/or do not affect conformation of the folded protein, in particular folding of the active site. Truncations may also be selected to improve solubility of the protelomerase polypeptide. Appropriate truncations can routinely be identified by systematic truncation of sequences 45 of varying length from the N- or C-terminus.

Variants of the native protein further include mutants which have one or more, for example, 2, 3, 4, 5 to 10, 10 to 20, 20 to 40 or more, amino acid insertions, substitutions or deletions with respect to a particular region of the native 50 protein. Deletions and insertions are made preferably outside of the catalytic domain. Insertions are typically made at the N- or C-terminal ends of a sequence derived from the native protein, for example for the purposes of recombinant expression. Substitutions are also typically made in regions that are 55 DNA medicines, the amplified DNA will be required for use non-essential for catalytic activity and/or do not affect conformation of the folded protein. Such substitutions may be made to improve solubility or other characteristics of the enzyme. Although not generally preferred, substitutions may also be made in the active site or in the second sphere, i.e. 60 residues which affect or contact the position or orientation of one or more of the amino acids in the active site. These substitutions may be made to improve catalytic properties.

Substitutions preferably introduce one or more conservative changes, which replace amino acids with other amino 65 acids of similar chemical structure, similar chemical properties or similar side-chain volume. The amino acids introduced

may have similar polarity, hydrophilicity, hydrophobicity, basicity, acidity, neutrality or charge to the amino acids they replace. Alternatively, the conservative change may introduce another amino acid that is aromatic or aliphatic in the place of a pre-existing aromatic or aliphatic amino acid. Conservative amino acid changes are well known in the art and may be selected in accordance with the properties of the 20 main amino acids as defined in Table A.

TABLE A

	Chemical properti	es of ar	nino acids
Ala	aliphatic, hydrophobic, neutral	Met	hydrophobic, neutral
Cys	polar, hydrophobic, neutral	Asn	polar, hydrophilic, neutral
Asp	polar, hydrophilic, charged (-)	Pro	hydrophobic, neutral
Glu	polar, hydrophilic, charged (–)	Gln	polar, hydrophilic, neutral
Phe	aromatic, hydrophobic, neutral	Arg	polar, hydrophilic, charged (+)
Gly	aliphatic, neutral	Ser	polar, hydrophilic, neutral
His	aromatic, polar, hydrophilic, charged (+)	Thr	polar, hydrophilic, neutral
Ile	aliphatic, hydrophobic, neutral	Val	aliphatic, hydrophobic, neutral
Lys	polar, hydrophilic, charged(+)	Trp	aromatic, hydrophobic, neutral
Leu	aliphatic, hydrophobic, neutral	Tyr	aromatic, polar, hydrophobic

It is particularly preferred that the variant is able to produce closed linear DNA as described above with an efficiency that is comparable to, or the same as the native protein.

As outlined above, it is preferred that the amplification of DNA according to the process of the invention is carried out by a strand displacement DNA polymerase, more preferably an RCA DNA polymerase. The combination of an RCA DNA polymerase and a protelomerase in an in vitro cell free process allows for surprising efficiency and simplicity in the production of closed linear DNA.

As discussed above, long linear single stranded DNA molecules are initially formed in strand displacement reactions which then serve as new templates, such that double stranded molecules are formed (FIG. 4). The double stranded molecules comprise a continuous series of tandem units of the amplified DNA formed by the processive action of strand displacement polymerases (a concatamer). These concatameric DNA products comprise multiple repeats of the amplified template DNA. A concatamer generated in the process of the invention therefore comprises multiple units of sequence amplified from the DNA template. The concatamer may comprise 10, 20, 50, 100, 200, 500 or 1000 or more units of amplified sequence, depending on the length of the single unit which is to be amplified. The concatamer may be at least 5 kb, at least 10 kb, at least 20 kb, more preferably at least 30 kb, at least 50 kb, or at least 70 kb or greater in size.

In many embodiments, for example in the production of as a single unit. Therefore, such concatamers require processing to release single units of the amplified DNA. In order to convert this concatemeric DNA into single units of amplified DNA, it needs to be precisely cut and the ends of the paired strands require religation. Conventionally, this could be done by incorporation of restriction endonuclease sites into the DNA template. Thus, restriction endonucleases could be incubated with concatamers to cleave at their recognition sites and release single units. The open linear double stranded DNA formed by the action of restriction endonucleases could then be incubated with a DNA ligase enzyme to covalently close the single unit DNAs.

According to the present invention, the processing of concatameric DNA into closed linear single unit DNAs is achieved by use of a single enzyme, protelomerase. This represents an advantageous simplicity and economy in a process for generation of closed linear DNA molecules. Firstly, cleavage and religation of single units is achieved by incubation with a single enzyme. Secondly, the single units are also released having the desired closed linear structure, and so additional processing steps to generate this structure (i.e from a covalently closed circular single unit DNA) are not required.

The DNA amplified from the DNA template is incubated with at least one protelomerase under conditions promoting production of closed linear DNA. In other words, the conditions promote the cleavage and religation of a double stranded DNA comprising a protelomerase target sequence to form a covalently closed linear DNA with hairpin ends. Conditions promoting production of closed linear DNA comprise use of any temperature allowing for production of closed linear 20 DNA, commonly in the range of 20 to 90 degrees centigrade. The temperature may preferably be in a range of 25 to 40 degrees centigrade, such as about 25 to about 35 degrees centigrade, or about 30 degrees centigrade. Appropriate temperatures for a specific protelomerase may be selected 25 according to the principles outlined above in relation to temperature conditions for DNA polymerases. A suitable temperature for use with E. coli bacteriophage TelN protelomerase of SEQ ID NO: 15 is about 25 to about 35 degrees centigrade, such as about 30 degrees centigrade.

Conditions promoting production of closed linear DNA also comprise the presence of a protelomerase and suitable buffering agents/pH and other factors which are required for enzyme performance or stability. Suitable conditions include 35 any conditions used to provide for activity of protelomerase enzymes known in the art. For example, where *E. coli* bacteriophage TelN protelomerase is used, a suitable buffer may be 20 mM TrisHCl, pH 7.6; 5 mM CaCl₂; 50 mM potassium glutamate; 0.1 mM EDTA; 1 mM Dithiothreitol (DTT). 40 Agents and conditions to maintain optimal activity and stability may also be selected from those listed for DNA polymerases.

In some embodiments, it may be possible to use the same conditions for activity of protelomerase as are used for DNA 45 amplification. In particular, use of the same conditions is described where DNA amplification and processing by protelomerase are carried out simultaneously or concurrently. In other embodiments, it may be necessary to change reaction conditions where conditions used to provide optimal DNA 50 polymerase activity lead to sub-optimal protelomerase activity. Removal of specific agents and change in reaction conditions may be achievable by filtration, dialysis and other methods known in the art. The skilled person would readily be able to identify conditions allowing for optimal DNA polymerase 55 activity and/or protelomerase activity.

In a particularly preferred embodiment, for use in amplification of DNA by an RCA DNA polymerase, preferably phi29, the DNA amplification is carried out under buffer conditions substantially identical to or consisting essentially 60 of 35 mM Tris-HCl, 50 mM KCl, 14 mM MgCl2, 10 mM $(NH_4)_2$ SO4, 4 mM DTT, 1 mM dNTP at a temperature of 25 to 35 degrees centigrade, such as about 30 degrees centigrade. The processing step with protelomerase may then preferably be carried out with TelN, and/or preferably under buffer con-65 ditions substantially identical to or consisting essentially of 20 mM TrisHCl, pH 7.6; 5 mM CaCl₂; 50 mM potassium

glutamate; 0.1 mM EDTA; 1 mM Dithiothreitol (DTT) at a temperature of 25 to 35 degrees centigrade, such as about 30 degrees centigrade.

All enzymes and proteins for use in the process of the invention may be produced recombinantly, for example in bacteria. Any means known to the skilled person allowing for recombinant expression may be used. A plasmid or other form of expression vector comprising a nucleic acid sequence encoding the protein of interest may be introduced into bacteria, such that they express the encoded protein. For example, for expression of SEQ ID NOs: 2, 5, 7, 9, 11, 13 or 15, the vector may comprise the sequence of SEQ ID NOs: 1, 4, 6, 8, 10, 12 or 14 respectively. The expressed protein will then typically be purified, for example by use of an affinity tag, in a sufficient quantity and provided in a form suitable for use in the process of the invention. Such methodology for recombinant protein production is routinely available to the skilled person on the basis of their general knowledge. The above discussion applies to the provision of any protein discussed herein.

Amplified DNA obtained by contacting of the DNA template with a DNA polymerase may be purified prior to contacting with a protelomerase. Thus, the process of the invention may further comprise a step of purifying DNA amplified from the DNA template. However, in a preferred embodiment, the process is carried out without purification of amplified DNA prior to contacting with protelomerase. This means the amplification and processing steps can be carried out consecutively, typically in the same container or solution. In some such embodiments, the process involves the addition of a buffer providing for protelomerase activity i.e. to provide conditions promoting formation of closed linear DNA.

Following production of closed linear DNA by the action of protelomerase, the process of the invention may further comprise a step of purifying the linear covalently closed DNA product. The purification referred to above will typically be performed to remove any undesired products. Purification may be carried out by any suitable means known in the art. For example, processing of amplified DNA or linear covalently closed DNA may comprise phenol/chloroform nucleic acid purification or the use of a column which selectively binds nucleic acid, such as those commercially available from Qiagen. The skilled person can routinely identify suitable 45 purification techniques for use in isolation of amplified DNA.

Once linear covalently closed DNA has been generated and purified in a sufficient quantity, the process may further comprise its formulation as a DNA composition, for example a therapeutic DNA composition. A therapeutic DNA composition will comprise a therapeutic DNA molecule of the type referred to above. Such a composition will comprise a therapeutically effective amount of the DNA in a form suitable for administration by a desired route e.g. an aerosol, an injectable composition or a formulation suitable for oral, mucosal or topical administration.

Formulation of DNA as a conventional pharmaceutical preparation may be done using standard pharmaceutical formulation chemistries and methodologies, which are available to those skilled in the art. Any pharmaceutically acceptable carrier or excipient may be used. Auxiliary substances, such as wetting or emulsifying agents, pH buffering substances and the like, may be present in the excipient or vehicle. These excipients, vehicles and auxiliary substances are generally pharmaceutical agents which may be administered without undue toxicity and which, in the case of vaccine compositions will not induce an immune response in the individual receiving the composition. A suitable carrier may be a liposome.

Pharmaceutically acceptable excipients include, but are not limited to, liquids such as water, saline, polyethyleneglycol, hyaluronic acid, glycerol and ethanol. Pharmaceutically acceptable salts can also be included therein, for example, mineral acid salts such as hydrochlorides, hydrobromides, 5 phosphates, sulfates, and the like; and the salts of organic acids such as acetates, propionates, malonates, benzoates, and the like. It is also preferred, although not required, that the preparation will contain a pharmaceutically acceptable excipient that serves as a stabilizer, particularly for peptide, 10 protein or other like molecules if they are to be included in the composition. Examples of suitable carriers that also act as stabilizers for peptides include, without limitation, pharmaceutical grades of dextrose, sucrose, lactose, trehalose, mannitol, sorbitol, inositol, dextran, and the like. Other suitable 15 carriers include, again without limitation, starch, cellulose, sodium or calcium phosphates, citric acid, tartaric acid, glycine, high molecular weight polyethylene glycols (PEGs), and combination thereof. A thorough discussion of pharmaceutically acceptable excipients, vehicles and auxiliary sub- 20 stances is available in REMINGTON'S PHARMACEUTI-CAL SCIENCES (Mack Pub. Co., N.J. 1991), incorporated herein by reference.

The process of the invention is carried out in an in vitro cell-free environment. Thus, the process is carried out in the 25 absence of a host cell and typically comprises use of purified enzymatic components. Accordingly, the amplification of a template DNA and processing by protelomerase is typically carried out by contacting the reaction components in solution in a suitable container. Optionally, particular components 30 may be provided in immobilised form, such as attached to a solid support.

It should be understood that the process of the invention may be carried out at any scale. However, it is preferred that the process is carried out to amplify DNA at a commercial or 35 industrial scale i.e generating amplified DNA in milligramme or greater quantities. It is preferred that the process generates at least one milligramme, at least 10 milligrammes, at least 20 milligrammes, at least 50 milligrammes or at least 100 milligrammes of amplified DNA. The final closed linear DNA 40 product derived from the amplified DNA may also preferably be generated in milligramme or greater quantities. It is preferred that the process generates at least one milligramme, at least 2 milligrammes, at least 5 milligrammes, at least 10 milligrammes, at least 5 milligrammes, at least 10 milligrammes, at least 20 milligrammes, at least 50 milligrammes, at least 50 milligrammes, at least 10 milligrammes, or at least 100 milligrammes of closed linear DNA.

The invention further provides a kit comprising components required to carry out the process of the invention. This kit comprises at least one DNA polymerase and at least one protelomerase and optionally instructions for use in a process 50 as described herein. The kit may comprise two, three, four, five or more different DNA polymerases. Preferably, the kit comprises at least one strand displacement-type DNA polymerase, still more preferably an RCA DNA polymerase. It is particularly preferred that the kit comprises phi29 DNA poly-55 merase (SEQ ID NO: 2), Deep Vent® DNA polymerase (SEQ ID NO: 3) or Bst 1 DNA polymerase (SEQ ID NO: 5) or a variant of any thereof. In some embodiments, DNA polymerases that replicate DNA by other methods may also be included. The kit comprises at least one protelomerase. The 60 kit may comprise two, three, four or more different protelomerases. The protelomerases may be selected from any of SEQ ID NOs: 5, 7, 9, 11, 13 or 15 or variants of any thereof. It is particularly preferred that the kit comprises E. coli N15 TelN (SEQ ID NO: 15) or a variant thereof.

The kit may also comprise at least one single stranded binding protein (SSBP). A preferred SSBP is T4 gene 32

protein available commercially from New England Biolabs, Inc. Two, three, four or more different SSBPs may be included in the kit. The kit may further comprise a pyrophosphatase. A preferred pyrophosphatase is *S. cerevisiae* pyrophosphatase, available commercially from New England Biolabs, Inc. In some embodiments, two, three, four, five or more different pyrophosphatases may be included. The kit may comprise any DNA polymerase, protelomerase, SSBP or pyrophosphatase described herein. The kit may also comprise dNTPs, suitable buffers and other factors which are required for DNA polymerase and/or protelomerase enzyme performance or stability as described above.

EXAMPLES

Example 1

Expression of TelN and Generation of Vector Constructs Comprising Protelomerase Target Sequences

TelN was PCR amplified from the commercially available cloning vector pJAZZ (Lucigen) using modified oligonucleotide primers:

PT1F 5' ATGAGCAAGGTAAAAATCGGTG 3' (SEQ ID NO: 30)

PT1R 5' TTAGCTGTAGTACGTTTCCCAT 3' (SEQ ID NO: 31)

for directional in frame cloning into the commercially available, pQE-30 vector (Qiagen). This system allows inducible expression of $6\times$ N-terminal His tagged proteins from a lac promoter whilst providing strong repression in trans from the lacI-expressing plasmid pREP4. A number of putative recombinant clones were identified in *E. coli* M15, and validated by sequencing to show in frame insertion of TelN. Six clones were further characterised in small scale induction experiments. All clones expressed a protein of 74.5 kDa corresponding in molecular weight to recombinant TelN protelomerase.

TelN was expressed from *E. coli* M15 pREP4 by inducing protein expression from pQE-30 with IPTG, and induced cells were sonicated (6 bursts of 30 seconds at 100%) and centrifuged (30 min at 25000 g) to yield insoluble and insoluble fractions from the cell lysate. Gel analysis showed presence of TelN in the soluble fraction. Purification of TelN was carried out on a HisTrap column using an Akta Prime system (GE Healthcare) with elution using a 0-100% (0.5M) imidazole gradient. Purified TelN was dialysed to remove imidazole and stored in a buffer of 10 mMTris HCl pH 7.4, 75 mM NaCl, 1 mM DTT, 0.1 mM EDTA and 50% glycerol.

Vector constructs allowing for validation of TelN activity were created by directional cloning of synthetic oligonucleotides containing the TelN recognition site telRL: RL1

5'AGCTTTATCAGCACACAATTGCCCAT-

TATACGCGCGTATAATGGACTATT GTGTGCTGATAG 3' (SEQ ID NO: 32)

RL2 5'GATCCTATCAGCACACAATAGTCCAT-

TATACGCGCGTATAATGGGCAATT GTGTGCTGATAA 3' (SEQ ID NO: 33)

into the BamHI and HindIII sites of plasmids pUC18 and pBR329. pUC18 has Genbank accession number L09136, and may be obtained commercially from Fermentas Cat no. SD0051; pBR329 has Genbank Accession number J01753 and may be obtained commercially from DSMZ Cat no. 5590].

Additionally, for transfection studies, two copies of the telRL recognition site were cloned into the luciferase expression plasmid pGL4.13 (Promega) at the unique SacI and BamHI restriction sites flanking the expression cassette for the firefly luciferase gene. The first telRL site was cloned into the unique SacI site upstream from the SV40 promoter following reannealing of telRL synthetic oligonucleotides with SacI overhangs. The second telRL site was cloned downstream of the SV40 polyadenylation signal in the unique BamH1 site using telRL synthetic oligonucleotides with BamHI overhangs. The resulting construct was denoted pGL DOG since it allows for the formation of a covalently closed linear (doggybone) DNA encoding luciferase to be expressed in mammalian cells.

Example 2

Validation of TelN Cleavage

Cleavage of supercoiled, circular pUC18 telRL and pGL DOG vector constructs by TelN was validated. 100 ng of each ²⁰ substrate was incubated with 4.5 pmol TelN for 1 hour 40 minutes at 30 degrees centigrade. The reaction was performed in TelN buffer [10 mM Tris HCl pH 7.6, 5 mM CaCl₂, 50 mM potassium glutamate, 0.1 mM EDTA, 1 mM DTT].

Cleavage products were visualised by native agarose gel 25 electrophoresis. Incubation of supercoiled, circular pUC18 telRL with TelN released a 2.7 kb linear fragment indicating cleavage. Incubation of supercoiled, circular pGL DOG with TelN released two fragments of 2.4 kb indicating cleavage at the two telRL sites. 30

Additionally, pUC18 telRL and pGL DOG were linearised by restriction digestion and then incubated with TelN to further validate specific cleavage at telRL. 100 ng pUC18 telRL was linearised with Xmn1 and then incubated with TelN. This released expected fragments of 1.9 kb and 0.8 kb. 100 ng pGL 35 DOG was linearised with Pvu1 and then incubated with TelN. This released expected fragments of 2.4 kb, 1.6 kb and 0.7 kb. Similarly, pGL DOG linearised with Pst1 and then incubated with TelN released expected fragments of 2.4 kb, 1.1 kb and another 1.1 kb. This demonstrated the endonuclease activity 40 of TelN on circular and linear DNA substrates comprising a protelomerase target sequence.

In a preliminary assessment of cleavage activity, it was found that an excess of TelN at 3.4 pmol cut at least 200 ng pUC18 telRL in 1 hour. In a time course experiment, the same ⁴⁵ amount of DNA was cut within around 10 minutes.

Example 3

Validation of Rejoining Activity of TelN and Formation of Closed Linear DNA

Validation of the closed linear DNA structure of the products of TelN cleavage was carried out using denaturing gel electrophoresis. pGL DOG was incubated with TelN as in 55 Example 3. A synthetic PCR product (PCR DOG) corresponding to the region contained within the doggybone, but having open DNA ends was used as a control. The PCR DOG linear fragment was amplified from pGL DOG using primers flanking the telRL sites: 60

		(SEQ ID NO: 34)
Sac pGL	5'	GTGCAAGTGCAGGTGCCAGAAC 3';

(SEQ ID NO: 35) 65

Bam pGL 5' GATAAAGAAGACAGTCATAAGTGCGGC 3'.

On a native agarose gel [0.8% agarose in TAE buffer (40 mM Tris-acetate, 1 mM EDTA)], the 2.4 kb cleavage product obtained by incubation of 100 ng pGL DOG with TelN migrated to a similar size as PCR DOG (2.7 kb), since both products remain double-stranded.

However, when run on a denaturing agarose gel [1% agarose in H_2O run in 50 mM NaOH, 0.1 mM EDTA and neutralised post-run in 1M Tris HCl pH 7.6, 1.5M NaCl] allowing denaturation and separation of double-stranded DNA into single-stranded DNA, the TelN "doggybone" fragment migrated at a higher molecular weight [ca. 5 kb] than the open-ended PCR control or pUC18 telRL linearised with XmnI (both 2.7 kb).

This difference in migration indicated the formation of a closed linear "doggybone" structure by TelN. Denaturation of a "doggybone" structure would produce single-stranded open circles which migrate more slowly through the gel than the linear single strands released on denaturation of an open-ended linear PCR product.

Validation of the closed linear structure of products formed by TelN was also shown on analysis of thermal denaturation by Lab-On-a-Chip (LOC) capillary electrophoresis. LOC analysis represents a capillary electrophoresis platform for the rapid separation of biological molecules. The Agilent Bioanalyzer with DNA 7500 chips, (Agilent, UK) can be used for the separation and approximate sizing of DNA fragments up to 7000 bp.

This chip system does not detect single stranded DNA.
Heat denaturation (95° C. for 5 mins) and rapid (<1° C./s) cooling 1° C./s of conventional double stranded DNA under low salt conditions e.g. in H2O, results in single stranded DNA that cannot be visualised on the LOC system. However, DNA ends that are covalently joined in "doggybone" DNA
(resulting from cleavage by TelN) cannot be separated following denaturation and therefore reanneal to reform double stranded DNA that has been rapidly cooled therefore allows discrimination between covalently closed linear (ccl) doggy-40 bone DNA and conventional open linear (ol) double stranded DNA.

DNA samples (100 ng) in H2O were denatured (95° C. for 5 mins), rapidly cooled (<1° C./s) to 4° C. in thin walled PCR tubes in a thermal cycler (Biorad I-cycler, Biorad, UK). For
comparison with TelN cleavage, samples were first incubated in 1×Tel N buffer with 1 microliter purified protelomerase enzyme at 30° C. for 10 min. Control samples were treated identically but without enzyme. Samples (1 microliter) were analysed using an Agilent Bioanalyser with DNA 7500 chips 50 in accordance with manufacturer's instructions.

Results are shown in FIG. **6**B. These show that closed linear "doggybone" DNA obtained by incubation of pGL DOG with TelN is resistant to thermal denaturation as compared with equivalent conventional open linear DNA (PCR DOG). Equivalent resistance against heat denaturation was also obtained using RCA amplified doggybone DNA resulting from RCA amplification and TelN cleavage.

In other experiments, TelN cleavage was carried out on the open-ended PCR DOG. This resulted in the formation of the thermostable cleavage product "doggybone" DNA of 2.8 kb, and thermostable "doggybone" ends of 0.09 and 0.14 kb.

The estimated sizes of "doggybone" and PCR DOG in LOC analysis ranged from 2.8 kb to 3.0 kb and 3.1-3.5 kb respectively compared with sequence data that predicted approximate sizes of 2.4 kb and 2.7 kb. This reflects conformational based differences in migration that occur in non-denaturing LOC analysis.

10

Example 4

Formation of Closed Linear DNA from Concatameric DNA Formed by RCA (Rolling Circle Amplification)

An in vitro cell free process for amplifying a DNA template and converting the amplified DNA into closed linear "doggybone" DNAs was carried out. RCA using phi29 enzyme from *Bacillus subtilis* phage phi29 and random hexamers as primers was used under various conditions to amplify covalently closed plasmid templates with and without the telRL site. This led to the amplification of concatameric DNA via the processive strand displacement activity of phi29. Initial work was performed using a TempliPhi kit (GE Healthcare) in accordance with manufacturer's instructions. However this was later substituted by an in house process (using phi29 supplied from NEB) resulting in higher product yields with increased purity.

Denaturation of 40 pg-200 ng closed circular template and ²⁰ annealing of primers was carried out in 10 microliters of Annealing/denaturation buffer, 30 mM Tris-HCl pH 7.5, 20 mM KCl, 8 mM MgCl₂, 20 micromolar random hexamers. Denaturation and annealing was carried out by heating to 95° C. for 1 min, followed by cooling to room temp over 30 min.²⁵

10 microliters reaction buffer [35 mM Tris-HCl, 50 mM KCl, 14 mM MgCl₂, 10 mM (NH_4)₂ SO₄, 4 mM DTT, 10 U phi29, 0.002 U PPi (Yeast Inorganic pyrophosphatase), 1 mM dNTP] was then added to 10 microliters of annealed DNA/ primer reaction.

The 20 microliter reactions were incubated at 30° C. for 18 hrs. A sample was run on gel to check for formation of concatamers and then the reaction mixture was digested with restriction enzyme or TelN to check products.

³⁵Concatameric DNA amplified by RCA was then incubated ³⁵with TelN. Typically, the RCA amplified DNA substrate was diluted in water and 10×TelN buffer to a final volume of 20 microliters. Results for pUC18 telRL are shown in FIG. **6**A.

As can be seen from the gel in lane 1, the undigested concatameric amplified DNA forms a mesh which does not enter the gel. However, TelN was able to cleave the RCA material resulting in release of a 2.7 kb doggybone fragment (lane 6). Confirmation that the DNA amplified by RCA was the starting template used in the reaction was achieved by restriction digestion with Pvu1 (lanes 2 and 5). pUC18 (no telRL) served as a negative control for TelN activity (lane 3).

Similarly, in other experiments, RCA generated concatamers of pGL DOG were also cleaved by TelN. Accordingly, the process of the invention was shown to be effective in amplifying closed linear DNA from a starting template. Further, it was possible to amplify closed linear DNA in a simple manner using RCA polymerase and protelomerase in sequential steps, without need for intervening purification of amplified DNA.

Example 5

Expression of Amplified Closed Linear DNA

Transfection experiments using HeLa cells were performed to investigate expression of a luciferase reporter gene from closed linear "doggybone" DNA produced in accordance with the invention. Covalently closed circular DNA and the linear PCR DOG control were used as controls.

Transfection was carried out at 60% confluence in 20 mm diameter wells in RPMI and used Transfectam® (Promega) in accordance with manufacturer's instructions. Each transfection used 400 ng of construct DNA. Transfection frequency was normalised within and between experiments by inclusion of an internal control using 40 ng of the *Renilla* luciferase-expressing plasmid pGL4.73 (containing the hRluc gene from *Renilla reniformis*) in each transfection. Firefly luciferase (luminescence from *Photinus pyralis*) and *Renilla* luciferase® Reporter (DLRTM) Assay System (Promega). Relative light units were measured using a GloMax Multi Luminometer (Promega) and results were expressed as the ratio of Firefly luciferase/*Renilla* luciferase. All experiments were carried out in triplicate.

Constructs tested in transfection were as follows: pGL4.13 luc control DNA pGL4.73 hRluc PCR DOG

PCR control (fragment from pGL4.13 across luc gene) pGL DOG (pGL4.13 containing 2 telRL sites)

"doggybone" MP (pGL DOG isolated from mini-prep DNA digested with PvuI (to remove contaminating vector DNA) followed by TelN cleavage)

"doggybone" RCA (pGL DOG amplified by RCA digested with PvuI then cleaved with TelN)

RCA pGL DOG—concatameric DNA produced in the initial RCA amplification of pGL DOG.

Results are shown in FIG. **6**C. Closed linear DNA, including that amplified by RCA was shown to express luciferase at higher levels than the open linear PCR constructs. This demonstrates that closed linear DNA produced in accordance with the invention may be used to successfully express luciferase when introduced into mammalian cells. Sequences of the Invention

TABLE A

Bacillus ba	acteriophag	e phi29 DNA	polymerase NO: 1)	nucleic ac	id sequence	(SEQ :	ID
atgaagcata	tgccgagaaa	gatgtatagt	tgtgactttg	agacaactac	taaagtggaa	60	
gactgtaggg	tatgggcgta	tggttatatg	aatatagaag	atcacagtga	gtacaaaata	120	
ggtaatagcc	tggatgagtt	tatggcgtgg	gtgttgaagg	tacaagctga	tctatatttc	180	
cataacctca	aatttgacgg	agcttttatc	attaactggt	tggaacgtaa	tggttttaag	240	
tggtcggctg	acggattgcc	aaacacatat	aatacgatca	tatctcgcat	gggacaatgg	300	
tacatgattg	atatatgttt	aggctacaaa	gggaaacgta	agatacatac	agtgatatat	360	
gacagcttaa	agaaactacc	gtttcctgtt	aagaagatag	ctaaagactt	taaactaact	420	
gttcttaaag	gtgatattga	ttaccacaaa	gaaagaccag	tcggctataa	gataacaccc	480	
gaagaatacg	cctatattaa	aaacgatatt	cagattattg	cggaacgtct	gttaattcag	540	
tttaagcaag	gtttagaccg	gatgacagca	ggcagtgaca	gtctaaaagg	tttcaaggat	600	
attataacca	ctaagaaatt	caaaaaggtg	tttcctacat	tgagtcttgg	actcgataag	660	
		aggtggtttt				720	
		cttcgatgtt				780	
		acctatagta	-			840	
-	00 0	0		0 0			

TABLE	A-cont	inued
-------	--------	-------

acccactac	acatacagca	tatcagatgt	gagttcgaat	tgaaagaggg	ctatataccc	900
actatacaga	taaaaagaag	taggttttat	aaaggtaatg	agtacctaaa	aagtagcggc	960
gggagatag	ccgacctctg	gttgtcaaat	gtagacctag	aattaatgaa	agaacactac	1020
atttatata	acgttgaata	tatcagcggc	ttaaaattta	aagcaactac	aggtttgttt	1080
aagatttta	tagataaatg	gacgtacatc	aagacgacat	cagaaggagc	gatcaagcaa	1140
tagcaaaac	tgatgttaaa	cagtctatac	ggtaaattcg	ctagtaaccc	tgatgttaca	1200
ggaaagtcc	cttatttaaa	agagaatggg	gcgctaggtt	tcagacttgg	agaagaggaa	1260
caaaagacc	ctgtttatac	acctatgggc	gttttcatca	ctgcatgggc	tagatacacg	1320
caattacag	cggcacaggc	ttgttatgat	cggataatat	actgtgatac	tgacagcata	1380
atttaacgg	gtacagagat	acctgatgta	ataaaagata	tagttgaccc	taagaaattg	1440
gatactggg	cacatgaaag	tacattcaaa	agagttaaat	atctgagaca	gaagacctat	1500
tacaagaca	tctatatgaa	agaagtagat	ggtaagttag	tagaaggtag	tccagatgat	1560
acactgata	taaaatttag	tgttaaatgt	gcgggaatga	ctgacaagat	taagaaagag	1620
ttacgtttg	agaatttcaa	agtcggattc	agtcggaaaa	tgaagcctaa	gcctgtgcaa	1680
tgccgggcg	gggtggttct	ggttgatgac	acattcacaa	tcaaataa		1728
Bacillus bacteriophage phi29 DNA polymerase amino acid sequence (SEQ ID NO: 2)						

MKHMPRKMYS	CDFETTTKVE	DCRVWAYGYM	NIEDHSEYKI	GNSLDEFMAW	VLKVQADLYF	60
HNLKFDGAFI	INWLERNGFK	WSADGLPNTY	NTIISRMGQW	YMIDICLGYK	GKRKIHTVIY	120
DSLKKLPFPV	KKIAKDFKLT	VLKGDIDYHK	ERPVGYKITP	EEYAYIKNDI	QIIAERLLIQ	180
FKQGLDRMTA	GSDSLKGFKD	IITTKKFKKV	FPTLSLGLDK	EVRYAYRGGF	TWLNDRFKEK	240
EIGEGMVFDV	NSLYPAQMYS	RLLPYGEPIV	FEGKYVWDED	YPLHIQHIRC	EFELKEGYIP	300
TIQIKRSRFY	KGNEYLKSSG	GEIADLWLSN	VDLELMKEHY	DLYNVEYISG	LKFKATTGLF	360
KDFIDKWTYI	KTTSEGAIKQ	LAKLMLNSLY	GKFASNPDVT	GKVPYLKENG	ALGFRLGEEE	420
TKDPVYTPMG	VFITAWARYT	TITAAQACYD	RIIYCDTDSI	HLTGTEIPDV	IKDIVDPKKL	480
GYWAHESTFK	RVKYLRQKTY	IQDIYMKEVD	GKLVEGSPDD	YTDIKFSVKC	AGMTDKIKKE	540
VTFENFKVGF	SRKMKPKPVQ	VPGGVVLVDD	TFTIK			575

TABLE	В
-------	---

Pyrococcus sp Deep Vent DNA polymerase amino acid sequence (SEQ ID 3)	NO :
MILDADYITE DGKPIIRIFK KENGEFKVEY DRNFRPYIYA LLKDDSQIDE VRKITAERHG	60
KIVRIIDAEK VRKKFLGRPI EVWRLYFEHP QDVPAIRDKI REHSAVIDIF EYDIPFAKRY	120
LIDKGLIPME GDEELKLLAF DIETLYHEGE EFAKGPIIMI SYADEEEAKV ITWKKIDLPY	180
VEVVSSEREM IKRFLKVIRE KDPDVIITYN GDSFDLPYLV KRAEKLGIKL PLGRDGSEPK	240
MQRLGDMTAV EIKGRIHFDL YHVIRRTINL PTYTLEAVYE AIFGKPKEKV YAHEIAEAWE	300
TGKGLERVAK YSMEDAKVTY ELGREFFPME AQLSRLVGQP LWDVSRSSTG NLVEWYLLRK	360
AYERNELAPN KPDEREYERR LRESYAGGYV KEPEKGLWEG LVSLDFRSLY PSIIITHNVS	420
PDTLNREGCR EYDVAPEVGH KFCKDFPGFI PSLLKRLLDE RQEIKRKMKA SKDPIEKKML	480
DYRQRAIKIL ANSYYGYYGY AKARWYCKEC AESVTAWGRE YIEFVRKELE EKFGFKVLYI	540
DTDGLYATIP GAKPEEIKKK ALEFVDYINA KLPGLLELEY EGFYVRGFFV TKKKYALIDE	600
EGKIITRGLE IVRRDWSEIA KETQAKVLEA ILKHGNVEEA VKIVKEVTEK LSKYEIPPEK	660
LVIYEQITRP LHEYKAIGPH VAVAKRLAAR GVKVRPGMVI GYIVLRGDGP ISKRAILAEE	720
FDLRKHKYDA EYYIENQVLP AVLRILEAFG YRKEDLRWQK TKQTGLTAWL NIKKK	775

ΤA	BI	ĿΕ	С

Bacillus stearothermophilus DNA polymerase I (polA) nucleic acid sequence(SEQ ID NO: 4)						
atgaagaaga	agctagtact	aattgatggc	aacagtgtgg	cataccgcgc	ctttttgcc	60
ttgccacttt	tgcataacga	caaaggcatt	catacgaatg	cggtttacgg	gtttacgatg	120
atgttgaaca	aaattttggc	ggaagaacaa	ccgacccatt	tacttgtage	gtttgacgcc	180
			caagagtata			240
			ttgcgcgagc		-	300
			gacgatatta	-		360
	-		atttccggcg			420
			aaaaaaggga		-	480
		aaaatacqqc		-		540

TABLE C-continued

ggattgatgg	gcgataaatc	cgacaacatc	ccgggcgtgc	ccggcatcgg	ggaaaaaacg	600
gcggtcaagc	tgctgaagca	atttggtacg	gtggaaaatg	tgctcgcatc	gattgatgag	660
gtgaaagggg	aaaaactgaa	agaaaacttg	cgccaacacc	gggatttagc	tctcttgagc	720
aaacagctgg	cgtccatttg	ccgcgacgcc	ccggttgagc	tgtcgttaga	tgacattgtc	780
tacgaaggac	aagaccgcga	aaaagtcatc	gcgttattta	aagaactcgg	gtttcagtcg	840
ttcttggaaa	aaatggccgc	gccggcagcc	gaaggggaga	aaccgcttga	ggagatggag	900
tttgccatcg	ttgacgtcat	taccgaagag	atgcttgccg	acaaggcagc	gcttgtcgtt	960
gaggtgatgg	aagaaaacta	ccacgatgcc	ccgattgtcg	gaatcgcact	agtgaacgag	1020
catgggcgat	tttttatgcg	cccggagacc	gcgctggctg	attcgcaatt	tttagcatgg	1080
cttgccgatg	aaacgaagaa	aaaaagcatg	tttgacgcca	agcgggcagt	cgttgcctta	1140
aagtggaaag	gaattgagct	tcgcggcgtc	gcctttgatt	tattgctcgc	tgcctatttg	1200
ctcaatccgg	ctcaagatgc	cggcgatatc	gctgcggtgg	cgaaaatgaa	acaatatgaa	1260
gcggtgcggt	cggatgaagc	ggtctatggc	aaaggcgtca	agcggtcgct	gccggacgaa	1320
cagacgcttg	ctgagcatct	cgttcgcaaa	gcggcagcca	tttgggcgct	tgagcagccg	1380
tttatggacg	atttgcggaa	caacgaacaa	gatcaattat	taacgaagct	tgagcagccg	1440
ctggcggcga	ttttggctga	aatggaattc	actggggtga	acgtggatac	aaagcggctt	1500
gaacagatgg	gttcggagct	cgccgaacaa	ctgcgtgcca	tcgagcagcg	catttacgag	1560
ctagccggcc	aagagttcaa	cattaactca	ccaaaacagc	tcggagtcat	tttatttgaa	1620
aagctgcagc	taccggtgct	gaagaagacg	aaaacaggct	attcgacttc	ggctgatgtg	1680
cttgagaagc	ttgcgccgca	tcatgaaatc	gtcgaaaaca	ttttgcatta	ccgccagctt	1740
ggcaaactgc	aatcaacgta	tattgaagga	ttgttgaaag	ttgtgcgccc	tgataccggc	1800
aaagtgcata	cgatgttcaa	ccaagcgctg	acgcaaactg	ggcggctcag	ctcggccgag	1860
ccgaacttgc	aaaacattcc	gattcggctc	gaagaggggc	ggaaaatccg	ccaagcgttc	1920
gtcccgtcag	agccggactg	gctcattttc	gccgccgatt	actcacaaat	tgaattgcgc	1980
gtcctcgccc	atatcgccga	tgacgacaat	ctaattgaag	cgttccaacg	cgatttggat	2040
attcacacaa	aaacggcgat	ggacattttc	catgtgagcg	aagaggaagt	cacggccaac	2100
atgcgccgcc	aggcaaaggc	cgttaacttc	ggtatcgttt	acggaattag	cgattacgga	2160
ttggcgcaaa	acttgaacat	tacgcgcaaa	gaagctgccg	aatttatcga	acgttacttc	2220
gccagctttc	cgggcgtaaa	gcagtatatg	gaaaacattg	tgcaagaagc	gaaacagaaa	2280
ggatatgtga	caacgctgtt	gcatcggcgc	cgctatttgc	ctgatattac	aagccgcaat	2340
ttcaacgtcc	gcagttttgc	agagcggacg	gccatgaaca	cgccaattca	aggaagcgcc	2400
gctgacatta	ttaaaaaagc	gatgattgat	ttagcggcac	ggctgaaaga	agagcagctt	2460
caggctcgtc	ttttgctgca	agtgcatgac	gagctcattt	tggaagcgcc	aaaagaggaa	2520
attgagcgat	tatgtgagct	tgttccggaa	gtgatggagc	aggccgttac	gctccgcgtg	2580
ccgctgaaag	tcgactacca	ttacggccca	acatggtatg	atgccaaata	a	2631
D	7		D313			-

Bacillus stearothermophilus DNA polymerase I (polA) amino acid sequence(SEQ ID NO: 5)

MKKKLVLIDG	NSVAYRAFFA	LPLLHNDKGI	HTNAVYGFTM	MLNKILAEEQ	PTHLLVAFDA	60
GKTTFRHETF	QEYKGGRQQT	PPELSEQFPL	LRELLKAYRI	PAYELDHYEA	DDIIGTLAAR	120
AEQEGFEVKI	ISGDRDLTQL	ASRHVTVDIT	KKGITDIEPY	TPETVREKYG	LTPEQIVDLK	180
GLMGDKSDNI	PGVPGIGEKT	AVKLLKQFGT	VENVLASIDE	VKGEKLKENL	RQHRDLALLS	240
KQLASICRDA	PVELSLDDIV	YEGQDREKVI	ALFKELGFQS	FLEKMAAPAA	EGEKPLEEME	300
FAIVDVITEE	MLADKAALVV	EVMEENYHDA	PIVGIALVNE	HGRFFMRPET	ALADSQFLAW	360
LADETKKKSM	FDAKRAVVAL	KWKGI ELRGV	AFDLLLAAYL	LNPAQDAGDI	AAVAKMKQYE	420
AVRSDEAVYG	KGVKRSLPDE	QTLAEHLVRK	AAAIWALEQP	FMDDLRNNEQ	DQLLTKLEQP	480
LAAI LAEMEF	TGVNVDTKRL	EQMGSELAEQ	LRAIEQRIYE	LAGQEFNINS	PKQLGVILFE	540
KLQLPVLKKT	KTGYSTSADV	LEKLAPHHEI	VENILHYRQL	GKLQSTYIEG	LLKVVRPDTG	600
KVHTMFNQAL	TQTGRLSSAE	PNLQNIPIRL	EEGRKIRQAF	VPSEPDWLIF	AADYSQIELR	660
VLAHIADDDN	LIEAFQRDLD	IHTKTAMDIF	HVSEEEVTAN	MRRQAKAVNF	GIVYGISDYG	720
LAQNLNITRK	EAAEFIERYF	ASFPGVKQYM	ENIVQEAKQK	GYVTTLLHRR	RYLPDITSRN	780
FNVRSFAERT	AMNTPIQGSA	ADIIKKAMID	LAARLKEEQL	QARLLLQVHD	ELILEAPKEE	840
IERLCELVPE	VMEQAVTLRV	PLKVDYHYGP	TWYDAK			876

TABLE D

Halomonas phage phiHAP-1 protelomerase	nucleic acid sequence (SEQ ID NO: 6)
atgageggtg agteaegtag aaaggtegat ttageg	
gagatcaaag agatcgacgc cgatgatgag atgcca	cgta aagagaaaac caagcgcatg 120
gcgcggctgg cacgtagctt caaaacgcgc ctgcat	gatg acaagcgccg caaggattct 180
gageggateg eggteaegae etttegeege tacatg	acag aagcgcgcaa ggcggtgact 240
gcgcagaact ggcgccatca cagcttcgac cagcag	atcg agcggctggc cagccgctac 300
ccggcttatg ccagcaagct ggaagcgctc ggcaag	ctga ccgatatcag cgccattcgt 360
atggcccacc gcgagctgct cgaccagatc cgcaac	gatg acgacgctta tgaggacatc 420
cgggcgatga agctggacca tgaaatcatg cgccac	ctga cgttgagctc tgcacagaaa 480
agcacgctgg ctgaagaggc cagcgagacg ctggaa	gagc gcgcggtgaa cacggtcgag 540
atcaactacc actggttgat ggagacggtt tacgag	ctgc tgagtaaccg ggagagaatg 600
gtcgatgggg agtatcgcgg ctttttcagt taccta	gege ttgggetgge getggeeaee 660
gggcgtcgct cgatcgaggt gctgaagacc ggacgg	atca cgaaggtggg cgagtatgag 720
ctggagttca gcggccaggc gaaaaagcgc ggcggc	gtcg actatagcga ggcttaccac 780
atttataccc tggtgaaagc tgacctggtg atcgaa	gcgt gggatgagct tcgctcgctg 840
ccggaagctg ctgagctgca gggcatggac aacagc	gatg tgaaccgccg cacggcgaag 900
acgeteaaca egeteaetaa geggatettt aacaae	gatg agcgcgtttt caaggacagc 960
cgggcgatct gggcgcggct ggtgtttgag ctgcac	ttet egegegacaa gegetggaag 1020
aaagtcaccg aggacgtgtt ctggcgtgag atgctg	gggc atgaggacat ggatacacag 1080

TABLE	D-continued

cgcagctacc	gcgcctttaa	aatcgactac	gacgagccgg	atcaagccga	ccaggaagat	1140
tacgaacacg	ctageegeet	cgccgcgctg	caggcgctgg	acggccatga	gcagcttgag	1200
agcagcgacg	cccaggcgcg	tgtgcatgcc	tgggtgaaag	cgcagatcga	gcaggagcct	1260
gacgcgaaaa	ttacgcagtc	tctgatcagc	cgggagctgg	gcgtttatcg	ccctgccata	1320
aaagcgtacc	tggagctggc	gcgagaggcg	ctcgacgcgc	cgaacgtcga	tctggacaag	1380
gtcgcggcgg	cagtgccgaa	ggaagtagcc	gaggcgaagc	cccggctgaa	cgcccaccca	1440
caaggggatg	gcaggtgggt	cggggtggct	tcaatcaacg	gggtggaagt	tgcacgggtg	1500
ggcaaccagg	caggccggat	cgaagcgatg	aaagcggcct	ataaagcggc	gggtgggcgc	1560
tga						1563
					lence (SEQ II	
MSGESRRKVD	LAELIEWLLS	EIKEIDADDE	MPRKEKTKRM	ARLARSFKTR	LHDDKBBKDS	~ ~ ~
ERIAVTTFRR	YMTEARKAVT	1 OF FURNER			BIIDDIGGCODD	60
MAHRELLDOT		AQNWRHHSFD	QQIERLASRY	PAYASKLEAL		60 120
	RNDDDAYEDI	~	~~		GKLTDISAIR	
~		RAMKLDHEIM	RHLTLSSAQK	STLAEEASET	GKLTDISAIR LEERAVNTVE	120
~ INYHWLMETV	RNDDDAYEDI	RAMKLDHEIM VDGEYRGFFS	RHLTLSSAQK YLALGLALAT	STLAEEASET GRRSIEVLKT	GKLTDISAIR LEERAVNTVE GRITKVGEYE	120 180
- INYHWLMETV LEFSGQAKKR	RNDDDAYEDI YELLSNRERM	RAMKLDHEIM VDGEYRGFFS IYTLVKADLV	RHLTLSSAQK YLALGLALAT IEAWDELRSL	STLAEEASET GRRSIEVLKT PEAAELQGMD	GKLTDISAIR LEERAVNTVE GRITKVGEYE NSDVNRRTAK	120 180 240
INYHWLMETV LEFSGQAKKR TLNTLTKRIF	RNDDDAYEDI YELLSNRERM GGVDYSEAYH	RAMKLDHEIM VDGEYRGFFS IYTLVKADLV RAIWARLVFE	RHLTLSSAQK YLALGLALAT IEAWDELRSL LHFSRDKRWK	STLAEEASET GRRSIEVLKT PEAAELQGMD KVTEDVFWRE	GKLTDISAIR LEERAVNTVE GRITKVGEYE NSDVNRRTAK MLGHEDMDTQ	120 180 240 300
INYHWLMETV LEFSGQAKKR TLNTLTKRIF RSYRAFKIDY	RNDDDAYEDI YELLSNRERM GGVDYSEAYH NNDERVFKDS	RAMKLDHEIM VDGEYRGFFS IYTLVKADLV RAIWARLVFE YEHASRLAAL	RHLTLSSAQK YLALGLALAT IEAWDELRSL LHFSRDKRWK QALDGHEQLE	STLAEEASET GRRSIEVLKT PEAAELQGMD KVTEDVFWRE SSDAQARVHA	GKLTDISAIR LEERAVNTVE GRITKVGEYE NSDVNRRTAK MLGHEDMDTQ WVKAQIEQEP	120 180 240 300 360
INYHWLMETV LEFSGQAKKR TLNTLTKRIF RSYRAFKIDY DAKITQSLIS	RNDDDAYEDI YELLSNRERM GGVDYSEAYH NNDERVFKDS DEPDQADQED	RAMKLDHEIM VDGEYRGFFS IYTLVKADLV RAIWARLVFE YEHASRLAAL KAYLELAREA	RHLTLSSAQK YLALGLALAT IEAWDELRSL LHFSRDKRWK QALDGHEQLE LDAPNVDLDK	STLAEEASET GRRSIEVLKT PEAAELQGMD KVTEDVFWRE SSDAQARVHA	GKLTDISAIR LEERAVNTVE GRITKVGEYE NSDVNRRTAK MLGHEDMDTQ WVKAQIEQEP	120 180 240 300 360 420

TABLE E

Yersinia phage PY54 p	protelomeras	se nucleic a	acid sequend	ce (SEQ ID N	0:8)
atgaaaatcc attttcgcga	tttagttagt	ggtttagtta	aagagatcga	tgaaatagaa	60
aaatcagacc gggcgcaggg					120
aaaaatgccg tgtttatgga	-				180
tcgttaacaa catttaataa					240
caccatagtt ttcctcaatc					300
ataataaaag atctggataa	-		-		360
ataactcatc ttgaatccgg					420
aaaccatcta cagctaaaaa					480
gatctagata ctttaattag					540
gggaccgacc tacttaacgc					600
ttaacgatgc agcettetga					660
tttaaaaagc gtaacatcgt		-		-	720
atactacatc ttccagatat					780
tttgctctag cagctgctag					840
		-			900
gacgccaaaa ataaaagcat tcaggtggac attatgaaat					960 960
					1020
gagtttttac gttctcatag					1020
gaacatcgta ctgaactatc					1140
gcaaaacagt tetttgtega				-	1200
cgcatagcat atgaaaaatg					
gttttcttct ctgaattatt					1260 1320
ttcaagctgg taaatttcaa					
ttagctgcac ttcaagagct					1380
gttcgcatac atgagtgggt					1440
gcataccaaa tcaagaaaaa	-				1500
tggtgtgctg acgcgctagg					1560
ctcccaccat cgctcgtgct					1620
atagaggaag actttactga				-	1680
gccagtgatg aagataagcc					1740
gaggactctt ggctgattaa					1800
geegaaagtg ttategatge	gatgaaacaa	gcatggactg	aaaatatgga	gtaa	1854
Yersinia phage PY54	protelomera	ase amino ac	id sequence	e (SEQ ID NO	: 9)
MUTHERDING CONVERSES	KCDDAOCDV	DDVOCARDVD	KNA MEMOKO V	VDOMOMEND	6.0
MKIHFRDLVS GLVKEIDEIE					60
SLTTFNKYLS RARSRFEERL	~				120
ITHLESGVNL LEKIGSLGKI				~~ ~	180
GTDLLNALHS LKVNHEVMYA	~			~	240
ILHLPDIAFE DSMASLAPLA					300
SGGHYEIYSL IDSELFIQRL					360
AKQFFVDDRR VFKDTRAIYA				~ ~	420
FKLVNFNPKW TPNISDENPR			-	-	480
AYQIKKNLNC RNDLASRYMA					540
IEEDFTDEEI DDTEFDVSDN	ASDEDKPEDK	PRFAAPIRRS	EDSWLIKFEF	AGKQYSWEGN	600
AESVIDAMKQ AWTENME					617

ТΑ	BLE	F

			TABLE F			
Klebsiella	phage phiK	02 protelome	erase nucle:	ic acid sequ	uence (SEQ ID	NO: 10)
						<u> </u>
			aattcgcttg			60 120
			acgaagaaaa			120
			aagtttcgcg			240
			agtcgggcaa			300
			aaactatcag gcggcatcaa			360
						420
			ttggcagaag aaactcgcta			480
			tggaaggata			540
			gacttgaata			600
			gagcgaacct			660
			gtcgtgattg			720
			gtttcgttcg			780
			ctatctggtc			840
			tatacagtaa			900
	-		aaaatatata			960
			tgccccgctg			1020
			tcagaaaatg			1080
			ttcttaggcg			1140
			tatgaaatgt			1200
			atggagattc			1260
			gctaacttct			1320
			ctgcaaaagc			1380
			catgagaccg			1440
			ctgcgaccgt			1500
			gcattgggcc			1560
			atagtcctgc			1620
			aaccatgatg			1680
			gaactggagg			1740
			cctggcaagc			1800
			tttgaattcg			1860
			atgcaatctg			1920
tga						1923
Klebsiella	a phage phil	KO2 protelo	merase amino	o acid seque	ence (SEQ ID	NO: 11)
MRKVKTGFLT	NSLVSEVEAT	DASDRPOGDK	TKKIKAAALK	YKNALENDER	KEBGKGLEKP	60
			KLSEKYPLYS			120
			KLANKYPEWQ		~	120
			ERTSIQORWA			240
						240 300
			LSGRRMIEIM CPAAADFDEV			
						360
			YEMFFRVDPR			420
			LQKLDSMMPD			480
			ALGQFVGENG			540
			ELEEAGDAEE	AEVAEQEEKH	PGKPNFKAPR	600
DNGDGTYMVE	FEFGGRHYAW	SGAAGNRVEA	MQSAWSAYFK			640

TABLE G

		1	ADLL G			
Vibrio pha	age VP882 pi	rotelomerase	e nucleic ac	id sequence	e (SEQ ID NO	: 12)
ataaaaaaa	agaatagaga	aaagtaaag	atagagagat	taataaatga	aataataasa	60
	aaagtagaca					120
	ccatcgatga			-		180
	cgactaaatt					
	ctctgagcac		-			240
	ggaaacacca				-	300
	ctgagcagct					360
ctggcgcatc	gcgacctcct	gaagagcatc	aaggacaacg	atgaagcctt	cgaggatatc	420
cgcagcatga	agttagacca	cgaggtaatg	cgccatctga	cgctacccag	tgcgcaaaag	480
gcgagactgg	cagaggaagc	cgccgaggcg	ttgaccgaga	agaaaaccgc	cacggtcgac	540
atcaactatc	acgagctgat	ggccggcgtg	gtggagctgt	tgaccaagaa	gaccaagacg	600
gtcggcagcg	acagcaccta	cagcttcagc	cggctggcgc	ttggtattgg	cctggctacc	660
ggtcgtcgtt	ctatcgagat	actgaagcag	ggcgagttca	aaaaggtgga	tgagcagcgg	720
ctcgagttct	ctggccaagc	gaaaaagcgc	ggcggtgccg	actattcaga	gacctatacc	780
atttacaccc	tggtcgactc	cqacctqqta	ctgatggcgc	tqaaqaacct	qcqaqaqttq	840
	gcgcactgga					900
	gctgtgcaaa					960
	tcaaagatag					1020
	cgcgctggaa					1080
	tcgagactca					1140
	tgcacaagcc					1200
	aggacattac					1260
	cggaagaccc	-				1320
						1320
ggereaggee	gtaaggtgat	caaggactac	clegadelgg	cugacgauge	collgolgtg	T380

TABLE	G-	continued

gtgaatactc	ctgtcgatga	cgcagtcgtc	gaggttccag	ctgatgtgcc	ggcagcagaa	1440
aaacagccga	agaaagcgca	gaagcccaga	ctcgtggctc	accaggttga	tgatgagcac	1500
tgggaagcct	gggcgctggt	ggaaggcgag	gaggtggcca	gggtgaaaat	caagggcacc	1560
cgcgttgagg	caatgacagc	cgcatgggag	gccagccaaa	aggcactcga	tgactaa	1617
<i>Vibrio</i> pl	nage VP882 p	protelomeras	se amino aci	ld sequence	(SEQ ID NO:	13)
MSGESRQKVN	LEELINELVE	EVKTIDDNEA	ITRSEKTKLI	TRAATKFKTK	LHDDKRRKDA	60
TRIALSTYRK	YMTMARAAVT	EQNWKHHSLE	QQIERLAKKH	PQYAEQLVAI	GAMDNITELR	120
LAHRDLLKSI	KDNDEAFEDI	RSMKLDHEVM	RHLTLPSAQK	ARLAEEAAEA	LTEKKTATVD	180
INYHELMAGV	VELLTKKTKT	VGSDSTYSFS	RLALGIGLAT	GRRSIEILKQ	GEFKKVDEQR	240
LEFSGQAKKR	GGADYSETYT	IYTLVDSDLV	LMALKNLREL	PEVRALDEYD	QLGEI KRNDA	300
INKRCAKTLN	QTAKQFFGSD	ERVFKDSRAI	WARLAYELFF	QRDPRWKKKD	EDVFWQEMLG	360
HEDIETQKAY	KQFKVDYSEP	EQPVHKPGKF	KSRAEALAAL	DSNEDITTRS	SMAKIHDWVK	420
ERIAEDPEAN	ITQSLITREL	GSGRKVIKDY	LDLADDALAV	VNTPVDDAVV	EVPADVPAAE	480
KQPKKAQKPR	LVAHQVDDEH	WEAWALVEGE	EVARVKIKGT	RVEAMTAAWE	ASQKALDD	538

TABLE H

			TABLE H			
Escheri	lchia coli k	acteriophag	ge N15 telon	erase (tell	I) and secon	dary
	nity repres					
catatocact	atatcatatc	tcaattacoo	aacatatcag	cacacaatto	cccattatac	60
	tggactattg					120
	gttgtgttcc					180
	ttaatcgtca					240
	cgggatgagc					300
	aattgatgcc					360
	acggtataag					420
	aagaataacc					480
	taaattacat					540
	cagcgaagaa					600
	atcgttacaa					660
	aataggetet					720
	gagttttgct					780
	taagttattc					840
	tgaggttctg					900
	ggccgatgtt					960
	gcagtctatc					1020
	tggaatggca					1020
	aatgtttcag					1140
	taaaaaacgc					1200
	attattcgtt					1260
	ggttgttaaa					1320
						132
	tttagcaaaa taaagatagc					1440
						1500
	acggtggaaa gaacacccag					1560
	tgaagttggg					1620
	aggetttgee					1680
	gcaggaccca					1740
	gatgattagc					1800
	cgggcagtgg					1860
	tgagaccatc					1920
	tgagetegae					1980
	gccaactgct					2040
	gatagagttt					2100
	ggccgcaatg					2160
	atcggtggct					2220
	aggcggaaac					2280
	gtaaagcggg					2340
	tagtttcgtg					2400
	cttctccagt					2460
	accgccacga					2520
	cgtttctgca					2580
	ggttattggg					2640
	aacccatgcg					2700
	tctttctgcc					2760
	tactcgccgt					2820
	caggetgteg					2880
	gattccgata					2940
	ccgagggtca					3000
	ttcaatgcag					3060
	cgtatagggt					3120
	atttcagctg					3180
	cgacctgcag					324(
	tgcggtgagc					3300
,-ggagarag	-y-yy-yaye	agageeeaca	ayoyoocaa	Jergeageag	gogettetta	550

TABLE	Н-	cont	inue	d
-------	----	------	------	---

	aac tgaatctggt tcatgcgatc acctcgctga 3360
ccgggatacg ggctgacaga acgagga	icaa aacggetgge gaactggega egagettete 3420
gctcggatga tgcaatggtg gaaaggo	ggt ggatatggga ttttttgtcc gtgcggacga 3480
cagctgcaaa tttgaatttg aacatgg	tat gcatteetat ettgtatagg gtgetaeeae 3540
cagagttgag aatctctata ggggtgg	jtag cccagacagg gttctcaaca ccggtacaag 3600
aagaaaccgg cccaaccgaa gttggco	cca tctgagccac cataattcag gtatgcgcag 3660
atttaacaca caaaaaaca cgctggo	gcg tgttgtgcgc ttcttgtcat tcggggttga 3720
gaggcccggc tgcagatttt gctgcag	cgg ggtaactcta ccgccaaagc agaacgcacg 3780
tcaataattt aggtggatat tttacco	cgt gaccagtcac gtgcacaggt gtttttatag 3840
tttgctttac tgactgatca gaacctg	atc agttattgga gtccggtaat cttattgatg 3900
accgcagcca ccttagatgt tgtctca	aac cccatacggc cacgaatgag ccactggaac 3960
ggaatagtca gcaggtacag cggaacg	aac cacaaacggt tcagacgctg ccagaacgtc 4020
gcatcacgac gttccatcca ttcggta	ittg tcgac 4055
Escherichia coli bacteriophag	ge N15 telomerase amino acid sequence (SEQ I NO: 15)
	NO: 15)
MSKVKIGELI NTLVNEVEAI DASDRPG	NO: 15) QGDK TKRIKAAAAR YKNALFNDKR KFRGKGLQKR 60
MSKVKIGELI NTLVNEVEAI DASDRPG ITANTFNAYM SRARKRFDDK LHHSFDF	NO: 15)
MSKVKIGELI NTLVNEVEAI DASDRPG ITANTFNAYM SRARKRFDDK LHHSFDI LQSKLKEIMP LAEELSNVRI GSKGSD?	NO: 15) QGDK TKRIKAAAAAR YKNALFNDKR KFRGKGLQKR 60 NIN KLSEKYPLYS EELSSWLSMP TANIRQHMSS 120
MSKVKIGELI NTLVNEVEAI DASDRPQ ITANTFNAYM SRARKRFDDK LHHSFDI LQSKLKEIMP LAEELSNVRI GSKGSDZ LFQQGSALLE ELHQLKVNHE VLYHLQI	NO: 15) QGDK TKRIKAAAAAR YKNALFNDKR KFRGKGLQKR 60 NIN KLSEKYPLYS EELSSWLSMP TANIRQHMSS 120 KIA RLIKKYPDWS FALSDLNSDD WKERRDYLYK 180
MSKVKIGELI NTLVNEVEAI DASDRPC ITANTFNAYM SRARKRFDDK LHHSFDI LQSKLKEIMP LAEELSNVRI GSKGSDJ LFQQCSALLE ELHQLKVNHE VLYHLQI SIYDILNNPA TLFSLNTRSG MAPLAFJ	NO: 15) QGDK TKRIKAAAAAR YKNALFNDKR KFRGKGLQKR 60 NIN KLSEKYPLYS EELSSWLSMP TANIRQHMSS 120 KIA RLIKKYPDWS FALSDLNSDD WKERRDYLYK 180 SPA ERTSIQQRWA DVLREKKRNV VVIDYPTYMQ 240
MSKVKIGELI NTLVNEVEAI DASDRP(ITANTFNAYM SRARKRFDDK LHHSFDI LQSKLKEIMP LAEELSNVRI GSKGSD/ LFQQGSALLE ELHQLKVNHE VLYHLQU SIYDILNNPA TLFSLNTRSG MAPLAP/ KRSEDKSVTR TIYTLCEAKL FVELLTH	NO: 15) CODK TKRIKAAAAR YKNALFNDKR KFRGKGLQKR OK NIN KLSEKYPLYS EELSSWLSMP TANIRQHMSS LAA VSGRRMIEIM FQGEFAVSGK YTVNFSGQAK
MSKVKIGELI NTLVNEVEAI DASDRO ITANTFNAYM SRARKRFDDK LHHSFDI LQSKLKEIMP LAEELSNVRI GSKGSDJ LFQQSALLE ELHQLKVNHE VLYHLQI SIYDILNNPA TLFSLNTRSG MAPLAFF KRSEDKSVTR TIYTLCEAKL FVELLTH AKAFNPWVKS FFGDDRRVYK DSRAIYJ	NO: 15) CGDK TKRIKAAAAR YKNALFNDKR KFRGKGLQKR NIN KLSEKYPLYS EELSSWLSMP TANIRQHMSS LKIA RLIKKYPDWS FALSDLNSDD WKERRDYLYK LSPA ERTSIQQRWA DVLREKKRNV VVIDYPTYMQ 240 LLAA VSGRRMIEIM FQGEFAVSGK YTVNFSGQAK CLRS CSAASDFDEV VKGYGKDDTR SENGRINAIL JGC LRIA YEMFFRVDPR WKNVDEDVFF MEILGHDDEN
MSKVKIGELI NTLVNEVEAI DASDRO ITANTFNAYM SRARKRFDDK LHHSFDI LQSKLKEIMP LAEELSNVRI GSKGSDJ LFQQGSALLE ELHQLKVNHE VLYHLQI SIYDILNNPA TLFSLNTRSG MAPLAFJ KRSEDKSVTR TIYTLCEAKL FVELLTT AKAFNPWVKS FFGDDRRVYK DSRAIYJ TQLHYKQFKL ANFSRTWRPE VGDENTH	NO: 15) GGK TKRIKAAAAR YKNALFNDKR KFRGKGLQKR 600 NIN KLSEKYPLYS EELSSWLSMP TANIRQHMSS 120 KIA RLIKKYPDWS FALSDLNSDD WKERRDYLYK 180 JSPA ERTSIQQRWA DVLREKKRNV VVIDYPTYMQ 240 LLAA VSGRRMIEIM FQGEFAVSGK YTVNFSQQAK 300 LRS CSAASDFDEV VKGYGKDTR SENGRINALL 360 ARIA YEMFFRVDPR WKNVDEDVFF MEILGHDDEN 420 LVA LQKLDDEMPG FARGDAGVRL HETVKQLVEQ 480
MSKVKIGELI NTLVNEVEAI DASDRO ITANTFNAYM SRARKFDDK LHHSFDI LQSKLKEIMP LAEELSNVRI GSKGSDJ LFQQGSALLE ELHQLKVNHE VLYHLQI SIYDILNNPA TLFSLNTRSG MAPLAFJ KRSEDKSVTR TIYTLCEAKL FVELLTH AKAFNPWVKS FFGDDRRVYK DSRAIYJ TQLHYKQFKL ANFSRTWRPE VGDENTH DPSAKITNST LRAFKFSPTM ISRYLEH	NO: 15) GDK TKRIKAAAAR YKNALFNDKR KFRGKGLQKR 60 NIN KLSEKYPLYS EELSSWLSMP TANIRQHMSS 120 KIA RLIKKYPDWS FALSDLNSDD WKERRDYLYK 180 SPA ERTSIQQRWA DVLREKKRNV VVIDYPTMQ 240 LAA VSGRMIEIM FQGEFAVSGK YTVNFSGQAK 300 CLRS CSAASDFDEV VKGYGKDDTR SENGRINAIL 360 RIA YEMFFRVDPR WKNVDEDVFF MEILGHDDEN 420 RIA YEMFFRVDPR FARGDAGVRL HETVKQLVEQ 480 PAAD ALGQFVGENG QWQLKIETPA IVLPDEESVE 540
MSKVKIGELI NTLVNEVEAI DASDRO ITANTFNAYM SRARKFDDK LHHSFDI LQSKLKEIMP LAEELSNVRI GSKGSDJ LFQQGSALLE ELHQLKVNHE VLYHLQI SIYDILNNPA TLFSLNTRSG MAPLAFJ KRSEDKSVTR TIYTLCEAKL FVELLTH AKAFNPWVKS FFGDDRRVYK DSRAIYJ TQLHYKQFKL ANFSRTWRPE VGDENTH DPSAKITNST LRAFKFSPTM ISRYLEH	NO: 15) XGDK TKRIKAAAAR YKNALFNDKR KFRGKGLQKR NIN KLSEKYPLYS EELSSWLSMP TANIRQHMSS LXIA RLIKKYPDWS FALSDLNSDD WKERRDYLYK LSPA ERTSIQQRWA DVLREKKRNV VVIDYPTYMQ LLAA VSGRRMIEIM FQGEFAVSGK YTVNFSGQAK LLRS CSAASPDEV VKGYGKDDTR SENGRINAIL JGC LRIA YEMFFRVDPR WKNVDEDVFF MEILGHDDEN LVA LQKLDDEMPG FARGDAGVRL HETVKQLVEQ LVAL LQKLDDEMPG QWQLKIETPA IVLPDEESVE SPA EEGPEEHQP TALKPVFKPA KNNGDGTYKI

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 42

<210> SEQ ID NO 1 <211> LENGTH: 1728 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Bacillus bacteriophage phi29 DNA polymerase nucleic acid sequence <400> SEQUENCE: 1 atgaagcata tgccgagaaa gatgtatagt tgtgactttg agacaactac taaagtggaa gactgtaggg tatgggcgta tggttatatg aatatagaag atcacagtga gtacaaaata 120 ggtaatagcc tggatgagtt tatggcgtgg gtgttgaagg tacaagctga tctatatttc 180 cataacctca aatttgacgg agcttttatc attaactggt tggaacgtaa tggttttaag 240 tggtcggctg acggattgcc aaacacatat aatacgatca tatctcgcat gggacaatgg tacatgattg atatatgttt agg
ctacaaa gggaaacgta agatacatac agtgatatat $% \left({{{\left({{{\left({{{\left({{{\left({{{\left({{{{\left({{{\left({{{{\left({{{{\left({{{{\left({{{{\left({{{{\left({{{{}}}}} \right\}}}} \right. \\$ gacagettaa agaaactaee gttteetgtt aagaagatag etaaagaett taaactaaet gttcttaaag gtgatattga ttaccacaaa gaaagaccag tcggctataa gataacaccc gaagaatacg cctatattaa aaacgatatt cagattattg cggaacgtct gttaattcag tttaagcaag gtttagaccg gatgacagca ggcagtgaca gtctaaaagg tttcaaggat attataacca ctaagaaatt caaaaaggtg tttcctacat tgagtcttgg actcgataag gaagtgagat acgcctatag aggtggtttt acatggttaa atgataggtt caaagaaaaa gaaatcggag aaggcatggt cttcgatgtt aatagtctat atcctgcaca gatgtatagc cgtctccttc catatggtga acctatagta ttcgagggta aatacgtttg ggacgaagat tacccactac acatacagca tatcagatgt gagttcgaat tgaaagaggg ctatataccc actatacaga taaaaagaag taggttttat aaaggtaatg agtacctaaa aagtagcggc

60

300

360

420

480

540

600

660

720

780

840

900

960

US 9,109,250 B2

40

39

gatt																	
-	gagat	ag d	ccgad	cetet	g gt	tgto	caaat	gta	agaco	ctag	aati	caatç	gaa a	agaad	actac	1020	
aaaç	tata	ata a	acgtt	gaat	a ta	atcaç	gegge	tta	aaaat	tta	aago	caact	ac a	aggtt	tgttt	1080	
	gattt	ta t	agat	aaat	g ga	acgta	acato	aag	gacga	acat	caga	aagga	age g	gatca	agcaa	1140	
ctaç	gcaaa	aac t	gate	gttaa	a ca	agtet	atac	: ggt	aaat	tcg	ctaç	gtaad	ccc t	gate	jttaca	1200	
ggga	aaagt	ccc d	ttat	ttaa	aa ag	gagaa	atggg	a dcð	getag	ggtt	tcaç	gactt	gg a	agaag	Jaggaa	1260	
acaa	aaaga	acc d	tgtt	tata	ac ac	cctat	gggo	gtt	ttca	atca	ctgo	catgo	ggc t	agat	acacg	1320	
acaa	attac	cag o	eggea	acago	gc tt	gtta	atgat	cgg	gataa	atat	acto	gtgat	cac t	gaca	igcata	1380	
catt	taac	gg g	gtaca	agaga	at ad	cctga	atgt <i>a</i>	ata	aaaq	gata	tagi	tgad	ccc t	aaga	aattg	1440	
ggat	cacto	ada (cacat	gaaa	ag ta	acatt	caaa	a aga	agtta	aaat	atci	gaga	aca g	jaaga	loctat	1500	
atad	caaga	aca t	ctat	tatga	aa ag	gaagt	agat	ggt	aagt	tag	taga	aaggt	ag t	ccaç	jatgat	1560	
taca	actga	ata t	aaaa	attta	ag to	yttaa	aatgt	gco	gggaa	atga	ctga	acaaç	yat t	aaga	aagag	1620	
gtta	acgtt	tg a	agaat	ttca	aa ag	gtcgg	gatto	e agt	cgga	aaaa	tgaa	agcct	aa g	geete	Itgcaa	1680	
gtgo	cggg	aca é	gggtg	ggtto	t g	gttga	atgac	aca	attca	acaa	tcaa	aataa	a			1728	
<220 <223		EATUR THER nino	RE: INFO acid	DRMAI 1 seç	ION	: Bad	-		acter	riopl	hage	phi2	29 DI	IA po	lymeras	e	
	Lys	-			Arg	Lys	Met	Tyr	Ser	Cys	Asp	Phe	Glu	Thr	Thr		
1	-			5		-		-	10	-	-			15			
Thr	Lys	Val	Glu 20	Asp	Суз	Arg	Val	Trp 25	Ala	Tyr	Gly	Tyr	Met 30	Asn	Ile		
Glu	Asp		Ser	Glu	Tyr	Lys		Gly	Asn	Ser	Leu		Glu	Phe	Met		
	_	35	_	_			40	_	_	_		45	_	_	_		
Ala	Trp 50	Val	Leu	Lys	Val	Gln 55	Ala	Asp	Leu	Tyr	Phe 60	His	Asn	Leu	LYS		
	Asp	Gly	Ala	Phe		Ile	Asn	Trp	Leu		Arg	Asn	Gly	Phe	-		
65 Trn	C	<u>م</u> ٦-	7	C1	70	D	7	ጥኤ	m	75 Agn	ጥኤ	T1 -	T1 -	C	80 Arc		
тъ	Ser	лта	чар	85 85	ьeu	LTO.	ASU	mr	1yr 90	ASU	1111.	тте	тте	ser 95	μī		
Met	Gly	Gln	Trp 100	Tyr	Met	Ile	Asp	Ile 105	Cys	Leu	Gly	Tyr	Lys 110	Gly	Lys		
Ara	Lys	T10		Thr	Val	TIA	ፐህኮ		Ser	Leu	[wa	Iva		Pro	Phe		
y	цур	11e 115			vai	116	120	чећ	PCT	Jeu	- Цр	цув 125	Jeu		- 110		
	Val 130	Lys	Lys	Ile	Ala	Lys 135	Asp	Phe	Lys	Leu	Thr 140	Val	Leu	Lys	Gly		
Pro		Agn	Tvr	His	Lys		Ara	Pro	Val	Glv		Lys	Ile	Thr	Pro		
	Ile				4		. 5			155	1 -	4			160		
Asp	Ile	11010	1		150												
Asp 145	Ile Glu	-	-	-		Lys	Asn	Asp		Gln	Ile	Ile	Ala		Arg		
Asp 145 Glu	Glu	- Tyr	Ala	165	Ile	-		-	170					175	-		
Asp 145 Glu		- Tyr	Ala	165	Ile	-		-	170					175	-		
Asp 145 Glu Leu	Glu	Tyr Ile Leu	Ala Gln 180	165 Phe	Ile Lys	Gln	Gly Asp	- Leu 185	170 Asp	Arg	Met	Thr Lys	Ala 190	175 Gly	Ser		
Asp 145 Glu Leu Asp	Glu Leu	Tyr Ile Leu 195	Ala Gln 180 Lys	165 Phe Gly	Ile Lys Phe	Gln Lys	Gly Asp 200	Leu 185 Ile	170 Asp Ile	Arg Thr	Met Thr	Thr Lys 205	Ala 190 Lys	175 Gly Phe	Ser Lys		

Ala Tyr Arg Gly 225	Gly Phe 230	Thr T	rp Leu		Asp 2 235	Arg	Phe	ГЛа	Glu	Lys 240
Glu Ile Gly Glu	Gly Met 245	Val P	he Asp	Val <i>4</i> 250	Asn :	Ser	Leu	Tyr	Pro 255	Ala
Gln Met Tyr Sei 260	-	Leu P	ro Tyr 265	Gly (Glu 1	Pro	Ile	Val 270	Phe	Glu
Gly Lys Tyr Val 275	Trp Asp		asp Tyr 80	Pro I	Leu 1	His	Ile 285	Gln	His	Ile
Arg Cys Glu Phe 290	Glu Leu	Lys G 295	Slu Gly	Tyr I		Pro 300	Thr	Ile	Gln	Ile
Lys Arg Ser Arg 305	Phe Tyr 310	Lys G	ly Asn		Tyr 1 315	Leu	Lys	Ser	Ser	Gly 320
Gly Glu Ile Ala	Asp Leu 325	Trp L	eu Ser	Asn \ 330	Val i	Aap	Leu	Glu	Leu 335	Met
Lys Glu His Ty 340		Tyr A	sn Val 345	Glu ?	Tyr :	Ile	Ser	Gly 350	Leu	Lys
Phe Lys Ala Thi 355	Thr Gly		Phe Lys 60	Asp H	Phe :	Ile	Asp 365	Lys	Trp	Thr
Tyr Ile Lys Thi 370	Thr Ser	Glu G 375	Sly Ala	Ile I		Gln 380	Leu	Ala	Lys	Leu
Met Leu Asn Sei 385	Leu Tyr 390	Gly L	ys Phe		Ser 1 395	Asn	Pro	Asp	Val	Thr 400
Gly Lys Val Pro	Tyr Leu 405	Lys G	lu Asn	Gly # 410	Ala 1	Leu	Gly	Phe	Arg 415	Leu
Gly Glu Glu Glu 420		Asp P	ro Val 425	Tyr 1	Thr 1	Pro	Met	Gly 430	Val	Phe
Ile Thr Ala Trp 435	Ala Arg		hr Thr 40	Ile ?	Thr 2	Ala	Ala 445	Gln	Ala	Суз
Tyr Asp Arg Ile 450	e Ile Tyr	Cys A 455	sp Thr	Asp S		Ile 460	His	Leu	Thr	Gly
Thr Glu Ile Pro 465	Asp Val 470	Ile L	'Aa yab		Val 2 475	Aap	Pro	Lys	Lys	Leu 480
Gly Tyr Trp Ala	His Glu 485	Ser T	'hr Phe	Lys / 490	Arg '	Val	Lys	Tyr	Leu 495	Arg
Gln Lys Thr Ty 500		Asp I	le Tyr 505	Met I	Lys (Glu	Val	Asp 510	Gly	Lys
Leu Val Glu Gly 515	Ser Pro	-	asp Tyr 20	Thr A	Asp :	Ile	Lys 525	Phe	Ser	Val
Lys Cys Ala Gly 530	Met Thr	Asp L 535	ys Ile	Lys I		Glu 540	Val	Thr	Phe	Glu
Asn Phe Lys Val 545	Gly Phe 550	Ser A	arg Lys		Lys 1 555	Pro	Lys	Pro	Val	Gln 560
Val Pro Gly Gly	Val Val 565	Leu V	al Asp	Asp : 570	Thr 1	Phe	Thr	Ile	Lys 575	
<pre><210> SEQ ID NC <211> LENGTH: 7 <212> TYPE: PR <213> ORGANISM: <220> FEATURE: <223> OTHER INH acid sequ</pre>	75 Artific ORMATION		-	ap De	eep '	Vent	DNF	A pol	Lymei	case amino
<400> SEQUENCE:	3									
Met Ile Leu As <u>r</u> 1	Ala Asp 5	Tyr I	le Thr	Glu <i>2</i> 10	Asp (Gly	Lys	Pro	Ile 15	Ile

Arg	Ile	Phe	Lув 20	Гла	Glu	Asn	Gly	Glu 25	Phe	ГЛа	Val	Glu	Tyr 30	Asp	Arg
Asn	Phe	Arg 35	Pro	Tyr	Ile	Tyr	Ala 40	Leu	Leu	Lys	Asp	Asp 45	Ser	Gln	Ile
Asp	Glu 50	Val	Arg	Lys	Ile	Thr 55	Ala	Glu	Arg	His	Gly 60	Lys	Ile	Val	Arg
Ile 65	Ile	Asp	Ala	Glu	Lys 70	Val	Arg	Lys	Lys	Phe 75	Leu	Gly	Arg	Pro	Ile 80
Glu	Val	Trp	Arg	Leu 85	Tyr	Phe	Glu	His	Pro 90	Gln	Asp	Val	Pro	Ala 95	Ile
Arg	Asp	Lys	Ile 100	Arg	Glu	His	Ser	Ala 105	Val	Ile	Asp	Ile	Phe 110	Glu	Tyr
Asp	Ile	Pro 115	Phe	Ala	Lys	Arg	Tyr 120	Leu	Ile	Asp	ГЛа	Gly 125	Leu	Ile	Pro
Met	Glu 130	Gly	Asp	Glu	Glu	Leu 135	Lys	Leu	Leu	Ala	Phe 140	Asp	Ile	Glu	Thr
Leu 145	Tyr	His	Glu	Gly	Glu 150	Glu	Phe	Ala	Lys	Gly 155	Pro	Ile	Ile	Met	Ile 160
Ser	Tyr	Ala	Asp	Glu 165	Glu	Glu	Ala	Lys	Val 170	Ile	Thr	Trp	Lys	Lys 175	Ile
Asp	Leu	Pro	Tyr 180	Val	Glu	Val	Val	Ser 185	Ser	Glu	Arg	Glu	Met 190	Ile	Lys
Arg	Phe	Leu 195	ГЛа	Val	Ile	Arg	Glu 200	Lys	Asp	Pro	Asp	Val 205	Ile	Ile	Thr
Tyr	Asn 210	Gly	Asp	Ser	Phe	Asp 215	Leu	Pro	Tyr	Leu	Val 220	Lys	Arg	Ala	Glu
Lys 225	Leu	Gly	Ile	Lys	Leu 230	Pro	Leu	Gly	Arg	Asp 235	Gly	Ser	Glu	Pro	Lys 240
Met	Gln	Arg	Leu	Gly 245	Asp	Met	Thr	Ala	Val 250	Glu	Ile	Lys	Gly	Arg 255	Ile
His	Phe	Asp	Leu 260	Tyr	His	Val	Ile	Arg 265	Arg	Thr	Ile	Asn	Leu 270	Pro	Thr
Tyr	Thr	Leu 275	Glu	Ala	Val	Tyr	Glu 280	Ala	Ile	Phe	Gly	Lys 285	Pro	ГÀа	Glu
Lys	Val 290	Tyr	Ala	His	Glu	Ile 295	Ala	Glu	Ala	Trp	Glu 300	Thr	Gly	ГÀа	Gly
Leu 305	Glu	Arg	Val	Ala	Lys 310	Tyr	Ser	Met	Glu	Asp 315	Ala	LÀa	Val	Thr	Tyr 320
Glu	Leu	Gly	Arg	Glu 325	Phe	Phe	Pro	Met	Glu 330	Ala	Gln	Leu	Ser	Arg 335	Leu
Val	Gly	Gln	Pro 340	Leu	Trp	Asp	Val	Ser 345	Arg	Ser	Ser	Thr	Gly 350	Asn	Leu
Val	Glu	Trp 355	Tyr	Leu	Leu	Arg	Lүв 360	Ala	Tyr	Glu	Arg	Asn 365	Glu	Leu	Ala
Pro	Asn 370	ГЛа	Pro	Asp	Glu	Arg 375	Glu	Tyr	Glu	Arg	Arg 380	Leu	Arg	Glu	Ser
Tyr 385	Ala	Gly	Gly	Tyr	Val 390	ГЛа	Glu	Pro	Glu	Lys 395	Gly	Leu	Trp	Glu	Gly 400
Leu	Val	Ser	Leu	Asp 405	Phe	Arg	Ser	Leu	Tyr 410	Pro	Ser	Ile	Ile	Ile 415	Thr
His	Asn	Val	Ser 420	Pro	Asp	Thr	Leu	Asn 425	Arg	Glu	Gly	Суз	Arg 430	Glu	Tyr

Amp Val Als Pro Glu Val Glu Plas Lyp Phe Cys Lyp Amp Phe Pro Gly 435 Phe file Pro Ser Leu Leu Lyp Arg Leu Leu Amp Glu Arg Gln Glu Ile 455 456 457 457 457 457 457 457 450 450 457 457 450 457 457 457 457 457 457 457 457 457 457 457 450 500 501 502 502 503 503 504 505 505 505 505 505 505 505 505 505 505 505 505 505 505 505												-	con	tın	ued	
450 455 460 Lyg Arg Lys Met Lys Ala Ser Lys Anp Pro Ile Glu Lys Lys Met Leu 475 Asp Tyr Arg Gln Arg Ala Ile Lys Ile Leu Ala Asn Ser Tyr Tyr Gly 495 Apr Tyr Gly Tyr Ala Lys Ala Arg Trp Tyr Cys Lys Glu Gya Ala Glu 500 Seer Val Thr Ala Trp Gly Arg Glu Tyr Ile Glu Phe Val Arg Lys Glu 525 Seer Val Thr Ala Trp Gly Arg Glu Tyr Ile Glu Phe Val Arg Lys Glu 526 Leu Glu Glu Lys Phe Gly Phe Lys Val Leu Tyr Ile Anp Thr Asp Gly 555 Seer Val Ala Thr Ile Pro Gly Ala Lys Pro Glu Glu Ile Lys Lys 550 555 Ala Leu Glu Fhe Val Arg Tyr Ile Ann Ala Lys Leu Pro Gly Leu Leu 555 Sol Leu Glu Tyr Glu Gly Phe Tyr Val Arg Gly Phe Phe Val Thr Lys 550 550 Glu Leu Glu Tyr Glu Gly Phe Tyr Val Arg Gly Lys Ile Ile Thr Arg Gly 560 Leu Glu The Val Arg Arg Agp Trp Ser Glu Ile Ala Lys Glu Thr Gln 610 Lys Tyr Ala Leu Glu Ala Ile Leu Lys His Gly Ano Val Glu Glu Ala 640 Val Lys Glu Val Thr Glu Gly Glu Thr Glu Glu Ala 640 Cal Ulu Ile Val Arg Arg Agp Trp Ser Glu Ile Ala Lys Glu Glu Ala 640 Cal Ulu Ile Val Lys Glu Val Thr Glu Glu Glu Thr Glu Glu Glu Ala 640 Cal Ulu Ile Val Lys Glu Val Thr Glu Glu Glu Jle Thr Arg Pro Leu His 640 Cal Glu The Glu Ala Glu Glu Glu His Val Ila Val Ala Lys Arg Leu Ala<	Asp	Val		Pro	Glu	Val	Gly		Lys	Phe	Сүз	Lys		Phe	Pro	Gly
Asp Tyr Arg Ars Ars Ars Ars Asp Tyr Arg Ch Ars Ars Tyr Ars Asp Tyr Arg Glh Arg Als Arg Tyr Tyr Tyr Glh Arg Als Arg Tyr Tyr Glh Arg Arg Lye Glh Sup Als Glh Sup Sup Glh Sup Sup Sup Sup Sup Sup Sup Glh Sup Su	Phe		Pro	Ser	Leu	Leu		Arg	Leu	Leu	Asp		Arg	Gln	Glu	Ile
Aug 490 495 Fyr Tyr Gly Tyr Ala Lye Ala Arg Trp Tyr Cye Lye Glu Cye Ala Glu 510 Ser Val Thr Ala Trp Gly Arg Glu Tyr 11e Glu Phe Val Arg Lye Glu 515 eu Glu Glu Lye Phe Gly Phe Lye Val Leu Tyr 11e Aap Thr Asp Gly 530 sau Glu Glu Lye Phe Gly Phe Lye Val Leu Tyr 11e Aap Thr Asp Gly 545 eu Glu Glu Lye Phe Gly Phe Lye Val Leu Tyr 11e Aap Thr Asp Gly 546 sau Thr I 1e Pro Gly Ala Lye Pro Glu Glu I 1e Lye Lye Lye 550 sau Leu Glu Tyr Glu Gly Phe Tyr Val Arg Gly Phe Phe Val Thr Lye 580 sau Leu Glu Tyr Glu Gly Phe Tyr Val Arg Gly Phe Phe Val Thr Lye 580 sau Leu Glu Tyr Glu Gly Phe Tyr Val Arg Gly Phe Phe Val Thr Lye 580 sau Leu Glu Arg Arg App Trp Ser Glu 11e Ala Lye Glu Thr Gln 615 sau Glu	-	Arg	Lys	Met	Lys		Ser	Lys	Aab	Pro		Glu	Lys	Lys	Met	
500 505 510 Ser Val Thr Ala Tr Gly Arg Gly Arg Gly Val Lee U Ty He Val Arg Lyo Gly Sup Gly Lee U Glu Glu Lyo Pho Gly Pho Lee U Ty He Val Arg Lyo Gly Sup Gly Lee U Glu Glu Lyo Pho Gly Pho Lyo Pro Gly Glu Lee U Ty He Val Arg Sup Gly Lee U Glu Glu Pho Val Arg Tyr He Arg Lyo Hu Fro Gly Lee Lee Solo Ury Tyr Ala Lee U Tyr He Arg Lyo Gly Gly He Tyr Solo Lue Glu Tyr Glu Gly Pho Tyr Val Arg Arg Arg Gly Glu Gly He Tyr Solo Solo Lue Glu Tyr Ala Arg Arg Arg Arg Fyr Solo Glu Gly Lyo He Gly Glu Glu Thr Glu Gly He Tyr Solo Tyr Ala Arg Arg Arg Arg Fyr Solo Glu Gly He Tyr Glu Gly He Tyr Glu Gly He Tyr Solo Tyr Thr Glu Gly Lee U Lyo Glu Gly He Tyr Solo Glu Glu Gly Glu Gly Gly Gly	4ab	Tyr	Arg	Gln		Ala	Ile	Lys	Ile		Ala	Asn	Ser	Tyr	-	Gly
515 520 525 Lew Glu Glu Lyø Phe Gly Phe Lyø Val Lew Tyr Ile Aøp Thr Aøp Gly 530 535 Lew Tyr Ala Thr Ile Pro Gly Ala Lyø Pro Glu Glu Ile Lyø Lyø Lyø 545 Ala Lew Glu Phe Val Aøp Tyr Ile Aøn Ala Lyø Lew Pro Gly Lew Lew 570 Sau Lew Glu Tyr Glu Gly Phe Tyr Val Arg Gly Phe Phe Val Thr Lyø 595 Sau Lew Glu Tyr Glu Gly Phe Tyr Val Arg Gly Phe Phe Val Thr Lyø 595 Sau Lew Glu Tyr Glu Gly Phe Tyr Val Arg Gly Phe Phe Val Thr Lyø 595 Sau Lew Glu Arg Arg Aøp Trp Ser Glu Ile Ala Lyø Glu Thr Gln 610 611 Val Lew Glu Ala Thr Glu Lyø Høg Gly Aøn Val Glu Glu Ala 625 Pro Pro Glu Lyø Lew Val I Thr Glu Lyø Løw Ser Lyø Tyr Glu Ile 635 Sau Tyr Lyø Ala Ile Gly Pro His Val Ala Val Ala Lyø Arg Lew Ala 645 Sau Tyr Lyø Ala Ile Gly Pro His Val Ala Val Ala Lyø Arg Lew Ala 646 Sau Tyr Lyø Ala Ile Gly Pro His Var Ala Glu Tyr Tyr Ile Val 650 Sau Tyr Lyø Ala Ile Gly Pro His Var Ala Glu Tyr Tyr Ile Glu Aøn 700 701 Ser Lyø Arg Ala Ile Lew Ala Phe Gly Tyr Arg 705 <	Fyr	Tyr	Gly		Ala	Lys	Ala	Arg		Tyr	Суз	Lys	Glu		Ala	Glu
530535540beu Tyr Ala Thr Ile Pro Gly Ala Lys Pro Glu Glu Ile Lys Lys 550Ala Leu Glu Phe Val Asp Tyr Ile Asn Ala Lys Leu Pro Gly Leu Leu 565530Slu Leu Glu Tyr Glu Gly Phe Tyr Val Arg Gly Phe Phe Val Thr Lys 580545Slu Leu Glu Tyr Glu Gly Phe Tyr Val Arg Gly Phe Phe Val Thr Lys 580546547548549549540540540540540541541541542543544544544545546546547548540540540540541540541541541541541541541541541541541541542542543544 <td>Ser</td> <td>Val</td> <td></td> <td>Ala</td> <td>Trp</td> <td>Gly</td> <td>Arg</td> <td></td> <td>Tyr</td> <td>Ile</td> <td>Glu</td> <td>Phe</td> <td></td> <td>Arg</td> <td>Lys</td> <td>Glu</td>	Ser	Val		Ala	Trp	Gly	Arg		Tyr	Ile	Glu	Phe		Arg	Lys	Glu
545 550 555 560 Ala Leu Glu Phe Val Asp Tyr Ile Asn Ala Lys Leu Pro Gly Leu Leu 575 Silu Leu Glu Tyr Glu Gly Phe Tyr Val Arg Gly Phe Phe Val Thr Lys 580 Silu Leu Glu Tyr Ala Leu Ile Asp Glu Glu Gly Lys Ile Ile Thr Arg Gly 605 Leu Glu Ile Val Arg Arg Asp Trp Ser Glu Ile Ala Lys Glu Thr Gln 615 Silu Leu Glu Lys Leu Glu Ala Ile Leu Lys His Gly Asn Val Glu Glu Ala 640 Kala Lys Tle Val Lys Glu Val Thr Glu Lys Leu Ser Lys Tyr Glu Ile 645 Pro Pro Glu Lys Leu Val Ile Tyr Glu Glu Ile Thr Arg Pro Leu His 650 Silu Tyr Lys Ala Ile Gly Pro His Val Ala Val Ala Lys Arg Leu Ala 640 690 For Pro Gly Val Lys Val Arg Pro Gly Met Val Ile Gly Tyr Ile Val 645 690 For Pro Gly Val Lys Val Arg Pro Gly Met Val Ile Gly Tyr Ile Val 700 690 For Pro Gly Val Lys Val Arg Pro Gly Met Val Ile Gly Tyr Ile Val 645 690 For Pro Gly Asp Gly Pro His Var Asp Ala Glu Tyr Tyr Ile Glu Asn 725 Silu Val Leu Pro Ala Val Leu Arg Tie Leu Glu Ala Phe Gly Tyr Arg 750 Siln Val Leu Pro Ala Val Leu Arg Tie Chr Lys Gln Thr Gly Leu Thr Ala 765 For Pro 770 For Pro 775 Silu Val Lys Lys Lys Tyr Asp Ala Glu Tyr Tyr Ile Glu Asn 725 Silu Val Leu Arg Trp Gln Lys Thr Lys Gln Thr Gly Leu Thr Ala 765 For Pro 770 775 Silu Val Leu Pro Ala Val Leu Arg Tie Lys Gln Thr Gly Leu Thr Ala	Leu		Glu	Lys	Phe	Gly		Lys	Val	Leu	Tyr		Asp	Thr	Asp	Gly
565 570 575 Slu Leu Glu Tyr Glu Gly Phe Tyr Val Arg Gly Phe Phe Val Thr Lys 590 Thr Lys 580 Ys Tyr Ala Leu Ile Asp Glu Glu Glu Gly Lys Ile Ile Thr Arg Gly 600 610 Val Arg Arg Arg Asp Trp Ser Glu Ile Ala Lys Glu Thr Gln 610 610 Val Leu Glu Ala Ile Leu Lys His Gly Asn Val Glu Glu Ala 640 7al Lys Ile Val Lys Glu Val Thr Glu Lys Leu Ser Lys Tyr Glu Ile 655 7ar O Clu Lys Leu Val Ile Tyr Glu Gln Gln Ile Thr Arg Pro Leu His 660 660 Val Leu Gly Pro His Val Ala Val Ala Lys Arg Leu Ala 685 670 Fro Fro Glu Lys Val Arg Pro Gly Met Val Ile Gly Tyr Ile Val 700 700 Fro Pro Glu Lys Val Arg Pro Gly Met Val Ile Gly Tyr Ile Val 700 680 Fro Pro Gly Val Lys Val Arg Pro Gly Met Val Ile Gly Tyr Ile Val 700 705 Fro Pro File Ser Lys Arg Ala Ile Leu Ala Glu Glu Glu Glu 710 705 Fro Pro File Ser Lys Tyr Asp Ala Glu Tyr Tyr Ile Glu Asn 720 705 Fro Pro File Arg Tyr Gln Lys Tyr Asp Ala Glu Tyr Tyr Ile Glu Asn 735 705 Fro File Arg Tyr Gln Lys Thr Lys Gln Thr Gly Leu Thr Ala 755 706 Fro File Arg Tyr Gln Lys Tyr Tyr Tyr File Gly Lys Tyr 765 <t< td=""><td></td><td>Tyr</td><td>Ala</td><td>Thr</td><td>Ile</td><td></td><td>Gly</td><td>Ala</td><td>Lys</td><td>Pro</td><td></td><td>Glu</td><td>Ile</td><td>Lys</td><td>Lys</td><td></td></t<>		Tyr	Ala	Thr	Ile		Gly	Ala	Lys	Pro		Glu	Ile	Lys	Lys	
580 585 590 Lys Lys Tyr Ala Leu Ile Asp Glu Glu Glu Gly Lys Ile Ile Thr Arg Gly 600 610 Leu Glu Ile Val Arg Arg Asp Trp Ser Glu Ile Ala Lys Glu Thr Gln 610 610 Lus Vy Val Leu Glu Ala Ile Leu Lys His Gly Asn Val Glu Glu Ala 630 610 Val Lys Ile Val Lys Glu Val Thr Glu Lys Leu Ser Lys Tyr Glu Ile 645 610 Pro Pro Glu Lys Leu Val Ile Tyr Glu Gln Ile Thr Arg Pro Leu His 660 660 Slu Tyr Lys Ala Ile Gly Pro His Val Ala Val Ala Lys Arg Pro Leu Ala 690 690 Ala Arg Gly Val Lys Val Arg Pro Gly Met Val Ile Gly Tyr Ile Val 700 700 Phe Asp Leu Arg Gly Pro Tle Ser Lys Arg Ala Glu Tyr Tyr Ile Glu Asn 725 710 Slu Val Leu Pro Ala Val Leu Arg Ile Leu Glu Ala Phe Gly Tyr Arg 740 745 Yes Glu Asp Leu Arg Trp Gln Lys Thr Lys Gln Thr Gly Leu Thr Ala 750 75 Cys Glu Asp Leu Arg Trp Gln Lys Thr Lys Gln Thr Gly Leu Thr Ala 765 765 Pro Leu Arg Ile Lys Lys 770 775 Calo SEQ ID NO 4 715 Calo SEQ ID NO 4 715	Ala	Leu	Glu	Phe		Asp	Tyr	Ile	Asn		Lys	Leu	Pro	Gly		Leu
Leu Glu He Val Arg Arg Arg Trp Ser Glu He Ala Lys Glu Thr Gln 610 He Val Leu Glu Ala He Leu Lys His Gly Asn Val Glu Glu Ala 620 Faile Val Leu Glu Ala He Leu Lys His Gly Asn Val Glu Glu Ala 630 Faile Val Leu Glu Ala He Leu Lys His Gly Asn Val Glu Glu Ala 645 630 Faile Val Lys Glu Val Thr Glu Lys Leu Ser Lys Tyr Glu Glu Faile 741 Lys Glu Val Thr Glu Gln Ile Thr Arg Pro Leu His 660 660 645 645 70 Pro Glu Lys Lys Val Arg Pro Gly Met Val Ala Lys Arg Leu Ala 685 670 Gly Asp Gly Val Lys Val Arg Pro Gly Met Val Ile Gly Tyr Ile Val 700 705 Gly Asp Gly Pro His Lys Tyr Asp Ala Glu Tyr Tyr Ile Glu Asn 720 705 Pro Ala Val Leu Arg Tie Leu Glu Ala Phe Gly Tyr Arg 735 711 Leu Pro Ala Val Leu Arg Tie Lys Gln Thr Gly Leu Thr Ala 765 720 Pro Tro 775 775 721 Leu Asn Tie Lys Lys Lys 775 7210 SEQ ID NO 4 7211 7210 SEQ ID NO 4 725 7210 Seq ID NO 4 7211 7210 Seq ID NO 4 7211	Glu	Leu	Glu		Glu	Gly	Phe	Tyr		Arg	Gly	Phe	Phe		Thr	ГЛа
610 615 620 Ala Lys Val Leu Glu Ala Tle Leu Lys His Gly Asn Val Glu Glu Ala 630 640 Val Lys Ile Val Lye Glu Val Thr Glu Lys Leu Ser Lys Tyr Glu Ile 655 640 Val Lys Ile Val Lys Leu Val Ile Tyr Glu Gln Ile Thr Arg Pro Leu His 655 670 Silu Tyr Lys Ala Ile Gly Pro His Val Ala Val Ala Lys Arg Leu Ala 655 680 Ala Arg Gly Val Lys Val Arg Pro Gly Met Val Ile Gly Tyr Ile Val 695 700 Glu Asp Leu Arg Gly Pro Ile Ser Lys Arg Ala Ile Leu Ala Glu Glu 720 715 Phe Asp Leu Arg Lys His Lys Tyr Asp Ala Glu Tyr Tyr Ile Glu Asn 725 745 Silu Asp Leu Arg Trp Gln Lys Thr Lys Gln Thr Gly Leu Thr Ala 765 750 Silu Asp Leu Arg Trp Gln Lys Thr Lys Gln Thr Gly Leu Thr Ala 755 775 SEQ ID NO 4 712 SEQ ID NO 4 712 SEQ ID NO 4 712 SEQ ID NO 4 715 SEQ ID NO 4 7215 7	TÀa	Lys		Ala	Leu	Ile	Asp		Glu	Gly	Lys	Ile		Thr	Arg	Gly
525 630 635 640 7a1 Lys Ile Val Lys Glu Val Thr Glu Lys Leu Ser Lys Tyr Glu Ile 655 16 Pro Pro Glu Lys Leu Val Ile Tyr Glu Gln Ile Thr Arg Pro Leu His 660 660 Slu Tyr Lys Ala Ile Gly Pro His Val Ala Val Ala Lys Arg Leu Ala 670 Ala Arg Gly Val Lys Val Arg Pro Gly Met Val Ile Gly Tyr Ile Val 690 Ala Arg Gly Asp Gly Pro Ile Ser Lys Arg Ala Ile Leu Ala Glu Glu 710 Asp Leu Arg Lys His Lys Tyr Asp Ala Glu Tyr Tyr Ile Glu Asn 725 Sln Val Leu Pro Ala Val Leu Arg Ile Leu Glu Ala Phe Gly Tyr Arg 745 Glu Asp Leu Arg Trp Gln Lys Thr Lys Gln Thr Gly Leu Thr Ala 765 Frp Leu Asn Ile Lys Lys Lys 775 C210> SEQ ID NO 4 775 C210> SEQ ID NO 4 775 C210> ORGANISM: Artificial Sequence	Leu		Ile	Val	Arg	Arg	_	Trp	Ser	Glu	Ile		Гла	Glu	Thr	Gln
645 650 655 Pro Pro Glu Lys Leu Val Ile Tyr Glu Gln Gln The Arg Pro Leu His Slu Tyr Lys Ala Ile Gly Nal Ala Val Ala Val Ala Lus Arg Leu Ala Ala Arg Gly Val Lys Val Arg Pro Gly Nal Ala Val Ala Lus Arg Leu Ala Arg Gly Val Lys Val Arg Pro Gly Met Val The Gly Cu Arg Gly Asp Gly Pro Ile Ser Lys Arg Ala Glu Tyr Ile Val Cu Arg Gly Asp Gly Pro Ile Ser Lys Arg Ala Glu Asp Glu Asp Asp Leu Arg Lys Tyr Asp Ala Clu Tyr Tyr Ile Glu Asp Asp Leu Arg Tyr Tyr Glu <td></td> <td>Lys</td> <td>Val</td> <td>Leu</td> <td>Glu</td> <td></td> <td>Ile</td> <td>Leu</td> <td>Lys</td> <td>His</td> <td></td> <td>Asn</td> <td>Val</td> <td>Glu</td> <td>Glu</td> <td></td>		Lys	Val	Leu	Glu		Ile	Leu	Lys	His		Asn	Val	Glu	Glu	
660 665 670 Glu Tyr Lys Ala Ile Gly Pro His Val Ala Val Ala Lys Arg Leu Ala 685 680 Ala Arg Gly Val Lys Val Arg Pro Gly Met Val Ile Gly Tyr Ile Val 695 690 Ala Arg Gly Val Lys Val Arg Pro Gly Met Val Ile Gly Tyr Ile Val 695 690 Leu Arg Gly Asp Gly Pro Ile Ser Lys Arg Ala Ile Leu Ala Glu Glu 700 700 Phe Asp Leu Arg Lys His Lys Tyr Asp Ala Glu Tyr Tyr Ile Glu Asn 725 730 Glu Al Leu Pro Ala Val Leu Arg Ile Leu Glu Ala Phe Gly Tyr Arg 750 750 Lys Glu Asp Leu Arg Trp Gln Lys Thr Lys Gln Thr Gly Leu Thr Ala 765 770 Trp Leu Asn Ile Lys Lys Lys 775 775 775 <210> SEQ ID NO 4 4211> LeuGrH: 2631 223> ORGANISM: Artificial Sequence	Val	Lys	Ile	Val		Glu	Val	Thr	Glu		Leu	Ser	Lys	Tyr		Ile
675 680 685 Ala Arg Gly Val Lys Val Arg Pro Gly Met Val Ile Gly Tyr Ile Val 695 Geo Gly Val Lys Val Arg Pro Gly Met Val Ile Gly Tyr Ile Val 690 Leu Arg Gly Asp Gly Pro Ile Ser Lys Arg Ala Ile Leu Ala Glu Glu 720 Phe Asp Leu Arg Lys His Lys Tyr Asp Ala Glu Tyr Tyr Ile Glu Asn 725 Glu Val Leu Pro Ala Val Leu Arg Ile Leu Glu Ala Phe Gly Tyr Arg 730 Clu Asp Leu Arg Trp Gln Lys Thr Lys Gln Thr Gly Leu Thr Ala 765 Frp Leu Asn Ile Lys Lys Lys 775 770 775 <210> SEQ ID NO 4 <211> LENGTH: 2631 <213> ORGANISM: Artificial Sequence	Pro	Pro	Glu		Leu	Val	Ile	Tyr		Gln	Ile	Thr	Arg		Leu	His
690 695 700 Leu Arg Gly Asp Gly Pro Ile Ser Lys Arg Ala Ile Leu Ala Glu Glu 715 720 Phe Asp Leu Arg Lys His Lys Tyr Asp Ala Glu Tyr Tyr Ile Glu Asn 725 11e Lys Tyr Asp Ala Glu Ala Phe Gly Tyr Arg 745 Glu Asp Leu Pro Ala Val Leu Arg Ile Leu Glu Ala Phe Gly Tyr Arg 740 610 11e Lys Glu Asp Leu Arg Trp Gln Lys Thr Lys Gln Thr Gly Leu Thr Ala 755 775 Club Asn Tle Lys Lys Lys 770 775 Club Asn Tle Lys Lys Lys 775 775 Club Asn Tle Lys Lys Lys 775 Club Asn Tle Lys Lys Lys 775 Club Asp Leu Arg Trp Bla Lys Thr Lys Gln Thr Gly Leu Thr Ala 765 Club Asn Tle Lys Lys Lys 775 Club Asn Attificial Sequence	Glu	Tyr		Ala	Ile	Gly	Pro		Val	Ala	Val	Ala	-	Arg	Leu	Ala
705 710 715 720 Phe Asp Leu Arg Lys His Lys Tyr Asp Ala Glu Tyr Tyr Ile Glu Asn 725 730 735 Glu Val Leu Pro Ala Val Leu Arg Ile Leu Glu Ala Phe Gly Tyr Arg 740 745 745 75 75 Lys Glu Asp Leu Arg Trp Gln Lys Thr Lys Gln Thr Gly Leu Thr Ala 755 770 775 <210> SEQ ID NO 4 <211> LENGTH: 2631 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence	Ala		Gly	Val	ГЛа	Val		Pro	Gly	Met	Val		Gly	Tyr	Ile	Val
725 730 735 Gln Val Leu Pro Ala Val Leu Arg Ile Leu Glu Ala Phe Gly Tyr Arg 745 740 Lys Glu Asp Leu Arg Trp Gln Lys Thr Lys Gln Thr Gly Leu Thr Ala 755 776 Trp Leu Asn Ile Lys Lys Lys 775 775 <210> SEQ ID NO 4 775 775 <211> LENGTH: 2631 2631 <213> ORGANISM: Artificial Sequence 570		Arg	Gly	Asp	Gly		Ile	Ser	Lys	Arg		Ile	Leu	Ala	Glu	
740 745 750 Lys Glu Asp Leu Arg Trp Gln Lys Thr Lys Gln Thr Gly Leu Thr Ala 755 760 755 760 765 (210> SEQ ID NO 4 (211> LENGTH: 2631 (212> TYPE: DNA (213> ORGANISM: Artificial Sequence	Phe	Asp	Leu	Arg		His	Lys	Tyr	Asp		Glu	Tyr	Tyr	Ile		Asn
755 760 765 Trp Leu Asn Ile Lys Lys Lys 770 775 <210> SEQ ID NO 4 <211> LENGTH: 2631 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence	Gln	Val	Leu		Ala	Val	Leu	Arg		Leu	Glu	Ala	Phe	_	Tyr	Arg
770 775 <210> SEQ ID NO 4 <211> LENGTH: 2631 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence	Lys	Glu	_	Leu	Arg	Trp	Gln	-	Thr	Lys	Gln	Thr	-	Leu	Thr	Ala
<211> LENGTH: 2631 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence	ſrp		Asn	Ile	Lys	ГЛа	_									
<223> OTHER INFORMATION: Bacillus stearothermophilus DNA polymerase I (polA) nucleic acid sequence <400> SEQUENCE: 4	<211 <212 <213 <220 <223	L> LI 2> T 3> OI 0> FI 3> O (1	ENGTI YPE : RGANI EATUI THER pola	H: 2 DNA ISM: RE: INF() nu(631 Art: DRMA cleio	TION	: Bad	cillu	ıs st	ceard	othe:	rmopl	hilu	s DNA	A poj	lymerase I

<400> SEQUENCE: 4

US 9,109,250 B2

48

47

				-contir	nued		
ttgccacttt	tgcataacga	caaaggcatt	catacgaatg	cggtttacgg	gtttacgatg	120	
atgttgaaca	aaattttggc	ggaagaacaa	ccgacccatt	tacttgtagc	gtttgacgcc	180	
ggaaaaacga	cgttccggca	tgaaacgttt	caagagtata	aaggcggacg	gcaacaaact	240	
cccccggaac	tgtccgagca	gtttccgctg	ttgcgcgagc	tattaaaagc	gtaccgcatt	300	
cccgcttatg	aacttgatca	ttacgaagcg	gacgatatta	tcgggacgct	cgctgcccgc	360	
gctgagcaag	aagggtttga	agtgaaaatc	atttccggcg	accgcgattt	aacccagctc	420	
gcctcccgtc	atgtgacggt	cgatattacg	aaaaaggga	ttaccgacat	tgagccgtat	480	
acgccagaga	ccgttcgcga	aaaatacggc	ctgactccgg	agcaaatagt	ggatttaaaa	540	
ggattgatgg	gcgataaatc	cgacaacatc	ccgggcgtgc	ccggcatcgg	ggaaaaaacg	600	
gcggtcaagc	tgctgaagca	atttggtacg	gtggaaaatg	tgctcgcatc	gattgatgag	660	
gtgaaagggg	aaaaactgaa	agaaaacttg	cgccaacacc	gggatttagc	tctcttgagc	720	
aaacagctgg	cgtccatttg	ccgcgacgcc	ccggttgagc	tgtcgttaga	tgacattgtc	780	
tacgaaggac	aagaccgcga	aaaagtcatc	gcgttattta	aagaactcgg	gtttcagtcg	840	
ttcttggaaa	aaatggccgc	gccggcagcc	gaaggggaga	aaccgcttga	ggagatggag	900	
tttgccatcg	ttgacgtcat	taccgaagag	atgcttgccg	acaaggcagc	gcttgtcgtt	960	
gaggtgatgg	aagaaaacta	ccacgatgcc	ccgattgtcg	gaatcgcact	agtgaacgag	1020	
catgggcgat	ttttatgcg	cccggagacc	gcgctggctg	attcgcaatt	tttagcatgg	1080	
cttgccgatg	aaacgaagaa	aaaaagcatg	tttgacgcca	agcgggcagt	cgttgcctta	1140	
aagtggaaag	gaattgagct	tcgcggcgtc	gcctttgatt	tattgctcgc	tgcctatttg	1200	
ctcaatccgg	ctcaagatgc	cggcgatatc	gctgcggtgg	cgaaaatgaa	acaatatgaa	1260	
gcggtgcggt	cggatgaagc	ggtctatggc	aaaggcgtca	agcggtcgct	gccggacgaa	1320	
cagacgcttg	ctgagcatct	cgttcgcaaa	gcggcagcca	tttgggcgct	tgagcagccg	1380	
tttatggacg	atttgcggaa	caacgaacaa	gatcaattat	taacgaagct	tgagcagccg	1440	
ctggcggcga	ttttggctga	aatggaattc	actggggtga	acgtggatac	aaagcggctt	1500	
gaacagatgg	gttcggagct	cgccgaacaa	ctgcgtgcca	tcgagcagcg	catttacgag	1560	
ctagccggcc	aagagttcaa	cattaactca	ccaaaacagc	tcggagtcat	tttatttgaa	1620	
aagctgcagc	taccggtgct	gaagaagacg	aaaacaggct	attcgacttc	ggctgatgtg	1680	
cttgagaagc	ttgcgccgca	tcatgaaatc	gtcgaaaaca	ttttgcatta	ccgccagctt	1740	
ggcaaactgc	aatcaacgta	tattgaagga	ttgttgaaag	ttgtgcgccc	tgataccggc	1800	
aaagtgcata	cgatgttcaa	ccaagcgctg	acgcaaactg	ggcggctcag	ctcggccgag	1860	
ccgaacttgc	aaaacattcc	gatteggete	gaagaggggc	ggaaaatccg	ccaagcgttc	1920	
gtcccgtcag	agccggactg	gctcattttc	gccgccgatt	actcacaaat	tgaattgcgc	1980	
gteetegeee	atatcgccga	tgacgacaat	ctaattgaag	cgttccaacg	cgatttggat	2040	
attcacacaa	aaacggcgat	ggacattttc	catgtgagcg	aagaggaagt	cacggccaac	2100	
atgcgccgcc	aggcaaaggc	cgttaacttc	ggtatcgttt	acggaattag	cgattacgga	2160	
ttggcgcaaa	acttgaacat	tacgcgcaaa	gaagetgeeg	aatttatcga	acgttacttc	2220	
gccagctttc	cgggcgtaaa	gcagtatatg	gaaaacattg	tgcaagaagc	gaaacagaaa	2280	
ggatatgtga	caacgctgtt	gcatcggcgc	cgctatttgc	ctgatattac	aagccgcaat	2340	
ttcaacgtcc	gcagttttgc	agagcggacg	gccatgaaca	cgccaattca	aggaagcgcc	2400	
gctgacatta	ttaaaaaagc	gatgattgat	ttagcggcac	ggctgaaaga	agagcagctt	2460	

cago	Jctco	gtc t	tttç	getgo	ca aç	gtgca	atgad	c gao	getea	attt	tgg	aagco	gee a	aaaa	gaggaa	2520	
atto	Jageo	gat t	atgt	cgago	ct to	gttco	cggaa	a gtę	gatgo	gagc	agg	ccgti	tac 🤉	gctco	cgcgtg	2580	
ccgo	tgaa	aag t	cgad	ctaco	ca ti	cacgo	geeca	a aca	atggt	tatg	atg	ccaaa	ata a	a		2631	
<211 <212 <213 <220	.> LE .> TY .> OF .> FE .> OT	EATUR THER	H: 8' PRT ISM: RE: INFO	76 Art:	FION	: Bad	cillu	ıs st	ceard	othe	rmopl	hilus	s DNA	A poi	lymerase	I	
<400)> SE	EQUEI	ICE :	5													
Met 1	Lys	Lys	Lys	Leu 5	Val	Leu	Ile	Asp	Gly 10	Asn	Ser	Val	Ala	Tyr 15	Arg		
Ala	Phe	Phe	Ala 20	Leu	Pro	Leu	Leu	His 25	Asn	Asp	Lys	Gly	Ile 30	His	Thr		
Asn	Ala	Val 35	Tyr	Gly	Phe	Thr	Met 40	Met	Leu	Asn	Lys	Ile 45	Leu	Ala	Glu		
Glu	Gln 50	Pro	Thr	His	Leu	Leu 55	Val	Ala	Phe	Asp	Ala 60	Gly	Lys	Thr	Thr		
Phe 65	Arg	His	Glu	Thr	Phe 70	Gln	Glu	Tyr	Lys	Gly 75	Gly	Arg	Gln	Gln	Thr 80		
Pro	Pro	Glu	Leu	Ser 85	Glu	Gln	Phe	Pro	Leu 90	Leu	Arg	Glu	Leu	Leu 95	Lys		
Ala	Tyr	Arg	Ile 100	Pro	Ala	Tyr	Glu	Leu 105	Asp	His	Tyr	Glu	Ala 110	Asp	Asp		
Ile	Ile	Gly 115	Thr	Leu	Ala	Ala	Arg 120	Ala	Glu	Gln	Glu	Gly 125	Phe	Glu	Val		
Lys	Ile 130	Ile	Ser	Gly	Asp	Arg 135	Aab	Leu	Thr	Gln	Leu 140	Ala	Ser	Arg	His		
Val 145	Thr	Val	Asp	Ile	Thr 150	Lys	Lys	Gly	Ile	Thr 155	Asp	Ile	Glu	Pro	Tyr 160		
Thr	Pro	Glu	Thr	Val 165	Arg	Glu	Lys	Tyr	Gly 170	Leu	Thr	Pro	Glu	Gln 175	Ile		
Val	Asp	Leu	Lys 180	Gly	Leu	Met	Gly	Asp 185	Lys	Ser	Asp	Asn	Ile 190	Pro	Gly		
Val	Pro	Gly 195	Ile	Gly	Glu	Lys	Thr 200	Ala	Val	Lys	Leu	Leu 205	Lys	Gln	Phe		
Gly	Thr 210	Val	Glu	Asn	Val	Leu 215	Ala	Ser	Ile	Asp	Glu 220	Val	Lys	Gly	Glu		
Lys 225	Leu	Lys	Glu	Asn	Leu 230	Arg	Gln	His	Arg	Asp 235	Leu	Ala	Leu	Leu	Ser 240		
Lys	Gln	Leu	Ala	Ser 245	Ile	Суз	Arg	Asp	Ala 250	Pro	Val	Glu	Leu	Ser 255	Leu		
Asp	Asp	Ile	Val 260	Tyr	Glu	Gly	Gln	Asp 265	Arg	Glu	Lys	Val	Ile 270	Ala	Leu		
Phe	Lys	Glu 275	Leu	Gly	Phe	Gln	Ser 280	Phe	Leu	Glu	Lys	Met 285	Ala	Ala	Pro		
Ala	Ala 290	Glu	Gly	Glu	Lys	Pro 295	Leu	Glu	Glu	Met	Glu 300	Phe	Ala	Ile	Val		
Asp 305	Val	Ile	Thr	Glu	Glu 310	Met	Leu	Ala	Asp	Lys 315	Ala	Ala	Leu	Val	Val 320		
Glu	Val	Met	Glu	Glu	Asn	Tyr	His	Asp	Ala	Pro	Ile	Val	Gly	Ile	Ala		

_	_	_	_	325	_	_	_	_	330	_	_	_	_	335	_	
Leu	Val	Asn	Glu 340	His	Gly	Arg	Phe	Phe 345	Met	Arg	Pro	Glu	Thr 350	Ala	Leu	
Ala	Asp	Ser 355	Gln	Phe	Leu	Ala	Trp 360	Leu	Ala	Asp	Glu	Thr 365	Lys	Lys	Lys	
Ser	Met 370	Phe	Asp	Ala	Гла	Arg 375	Ala	Val	Val	Ala	Leu 380	Lys	Trp	Lys	Gly	
Ile 385	Glu	Leu	Arg	Gly	Val 390	Ala	Phe	Asp	Leu	Leu 395	Leu	Ala	Ala	Tyr	Leu 400	
Leu	Asn	Pro	Ala	Gln 405	Asp	Ala	Gly	Asp	Ile 410	Ala	Ala	Val	Ala	Lys 415	Met	
Lys	Gln	Tyr	Glu 420	Ala	Val	Arg	Ser	Asp 425	Glu	Ala	Val	Tyr	Gly 430	Lya	Gly	
Val	ГЛа	Arg 435	Ser	Leu	Pro	Asp	Glu 440	Gln	Thr	Leu	Ala	Glu 445	His	Leu	Val	
Arg	Lys 450		Ala	Ala	Ile	Trp 455		Leu	Glu	Gln	Pro 460		Met	Asp	Asp	
		Asn	Asn	Glu			Gln	Leu	Leu			Leu	Glu	Gln		
465 Leu	Ala	Ala	Ile		470 Ala	Glu	Met	Glu		475 Thr	Gly	Val	Asn		480 Asp	
Thr	Lys	Arg		485 Glu	Gln	Met	Gly		490 Glu	Leu	Ala	Glu	Gln	495 Leu	Arg	
Ala	Ile		500 Gln	Arg	Ile	Tyr		505 Leu	Ala	Gly	Gln		510 Phe	Asn	Ile	
Asn		515 Pro	Lys	Gln	Leu		520 Val	Ile	Leu	Phe	Glu	525 Lys	Leu	Gln	Leu	
Pro	530 Val	Leu	Lys	Lys	Thr	535 Lys	Thr	Gly	Tyr	Ser	540 Thr	Ser	Ala	Asp	Val	
545			-	-	550	-		-	-	555			Ile	-	560	
		-		565					570				Gly	575		
-	-		580	-	-			585		-			590			
-		595	-		_		600	-				605	Phe			
	610				-	615					620		Asn			
625				-	630			-	-	635		-	Gln		640	
Val	Pro	Ser	Glu	Pro 645	Asp	Trp	Leu	Ile	Phe 650	Ala	Ala	Asp	Tyr	Ser 655	Gln	
Ile	Glu	Leu	Arg 660	Val	Leu	Ala	His	Ile 665	Ala	Asp	Aab	Asp	Asn 670	Leu	Ile	
Glu	Ala	Phe 675	Gln	Arg	Asp	Leu	Asp 680	Ile	His	Thr	ГЛа	Thr 685	Ala	Met	Asp	
Ile	Phe 690	His	Val	Ser	Glu	Glu 695	Glu	Val	Thr	Ala	Asn 700	Met	Arg	Arg	Gln	
Ala 705	ГЛа	Ala	Val	Asn	Phe 710	Gly	Ile	Val	Tyr	Gly 715	Ile	Ser	Asp	Tyr	Gly 720	
Leu	Ala	Gln	Asn	Leu 725	Asn	Ile	Thr	Arg	Lys 730	Glu	Ala	Ala	Glu	Phe 735	Ile	
Glu	Arg	Tyr			Ser	Phe	Pro	-		Lys	Gln	Tyr	Met		Asn	
			740					745					750			

Ile Val Gln Glu Ala Lys Gln Lys Gly Tyr Val Thr Thr Leu Leu His 755 760 765
Arg Arg Tyr Leu ProAsp Ile Thr Ser Arg Asn Phe Asn Val Arg770775780
Ser Phe Ala Glu Arg Thr Ala Met Asn Thr Pro Ile Gln Gly Ser Ala 785 790 795 800
Ala Asp Ile Ile Lys Lys Ala Met Ile Asp Leu Ala Ala Arg Leu Lys 805 810 815
Glu Glu Gln Leu Gln Ala Arg Leu Leu Gln Val His Asp Glu Leu 820 825 830
Ile Leu Glu Ala Pro Lys Glu Glu Ile Glu Arg Leu Cys Glu Leu Val 835 840 845
Pro Glu Val Met Glu Gln Ala Val Thr Leu Arg Val Pro Leu Lys Val 850 855 860
Asp Tyr His Tyr Gly Pro Thr Trp Tyr Asp Ala Lys 865 870 875
<210> SEQ ID NO 6 <211> LENGTH: 1563 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Halomonas phage phiHAP-1 protelomerase nucleic acid sequence
<400> SEQUENCE: 6
atgageggtg agteaegtag aaaggtegat ttageggaat tgatagagtg gttgeteage 60
gagatcaaag agatcgacgc cgatgatgag atgccacgta aagagaaaac caagcgcatg 120
gegeggetgg caegtagett caaaaegege etgeatgatg acaagegeeg caaggattet 180
gageggateg eggteaegae etttegeege taeatgaeag aagegegeaa ggeggtgaet 240
gegeagaaet ggegeeatea eagettegae eageagateg ageggetgge eageegetae 300
ccggcttatg ccagcaagct ggaagcgctc ggcaagctga ccgatatcag cgccattcgt 360
atggcccacc gcgagctgct cgaccagatc cgcaacgatg acgacgctta tgaggacatc 420
cgggcgatga agctggacca tgaaatcatg cgccacctga cgttgagctc tgcacagaaa 480
agcacgctgg ctgaagaggc cagcgagacg ctggaagagc gcgcggtgaa cacggtcgag 540
atcaactacc actggttgat ggagacggtt tacgagctgc tgagtaaccg ggagagaatg 600
gtcgatgggg agtatcgcgg ctttttcagt tacctagcgc ttgggctggc gctggccacc 660
gggcgtcgct cgatcgaggt gctgaagacc ggacggatca cgaaggtggg cgagtatgag 720
ctggagttca gcggccaggc gaaaaagcgc ggcggcgtcg actatagcga ggcttaccac 780
atttataccc tggtgaaagc tgacctggtg atcgaagcgt gggatgagct tcgctcgctg 840
ccggaagctg ctgagctgca gggcatggac aacagcgatg tgaaccgccg cacggcgaag 900
acgctcaaca cgctcactaa gcggatcttt aacaacgatg agcgcgtttt caaggacagc 960
cgggcgatct gggcgcggct ggtgtttgag ctgcacttct cgcgcgacaa gcgctggaag 1020
aaagtcaccg aggacgtgtt ctggcgtgag atgctggggc atgaggacat ggatacacag 1080
cgcagctacc gcgcctttaa aatcgactac gacgagccgg atcaagccga ccaggaagat 1140
tacgaacacg ctageegeet egeegeetg eaggegetgg aeggeeatga geagettgag 1200
agcagcgacg cccaggcgcg tgtgcatgcc tgggtgaaag cgcagatcga gcaggagcct 1260

gacgcgaaaa ttacgcagtc tctgatcagc cgggagctgg gcgtttatcg ccctgccata 1320

54

aaagcgtac	c tggag	ctggc g	cgagaggco	g ctcgac	gege	cgaa	acgto	:ga t	ctg	gacaag	1380
gtcgcggcg	g cagtg	ccgaa g	gaagtagc	c gaggeg	jaagc	cccç	ggete	jaa c	geed	caccca	1440
caaggggat	g gcagg	tgggt c	ggggtggci	t tcaatc	caacg	gggt	cggaa	ıgt t	gcad	cgggtg	1500
ggcaaccag	g caggc	cggat c	gaagcgat	g aaageg	gcct	ataa	aagee	ldc d	gggt	gggcgc	1560
tga											1563
<210> SEQ ID NO 7 <211> LENGTH: 520 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Halomonas phage phiHAP-1 protelomerase amino acid sequence											
<400> SEQ	UENCE :	7									
Met Ser G 1	-	Ser Arg 5	Arg Lys	Val Asp 10) Leu	Ala	Glu	Leu	Ile 15	Glu	
Trp Leu Le	eu Ser 20	Glu Ile	Lys Glu	Ile Asp 25	> Ala	Asp	Asp	Glu 30	Met	Pro	
Arg Lys G 3!	-	Thr Lys	Arg Met 40	Ala Arg	g Leu	Ala	Arg 45	Ser	Phe	Lys	
Thr Arg Lo 50	eu His	Aab Yab	Lys Arg 55	Arg Lys	a Aap	Ser 60	Glu	Arg	Ile	Ala	
Val Thr Tl 65	hr Phe	Arg Arg 70	Tyr Met	Thr Glu	ı Ala 75	Arg	Lya	Ala	Val	Thr 80	
Ala Gln A	_	Arg His 85	His Ser	Phe Asp 90) Gln	Gln	Ile	Glu	Arg 95	Leu	
Ala Ser A	rg Tyr 100	Pro Ala	Tyr Ala	Ser Lys 105	s Leu	Glu	Ala	Leu 110	Gly	Lys	
Leu Thr A 1	sp Ile 15	Ser Ala	Ile Arg 120	Met Ala	a His	Arg	Glu 125	Leu	Leu	Asp	
Gln Ile A: 130	rg Asn	Asp Asp	Asp Ala 135	Tyr Glu	ı Asp	Ile 140	Arg	Ala	Met	Lys	
Leu Asp H 145	is Glu	Ile Met 150	Arg His	Leu Thr	: Leu 155	Ser	Ser	Ala	Gln	Lys 160	
Ser Thr Lo		Glu Glu 165	Ala Ser	Glu Thr 170		Glu	Glu	Arg	Ala 175	Val	
Asn Thr Va	al Glu 180	Ile Asn	Tyr His	Trp Leu 185	ı Met	Glu	Thr	Val 190	Tyr	Glu	
Leu Leu So 1	er Asn 95	Arg Glu	Arg Met 200	Val Asp	Gly	Glu	Tyr 205	Arg	Gly	Phe	
Phe Ser T 210	yr Leu	Ala Leu	Gly Leu 215	Ala Leu	ı Ala	Thr 220	Gly	Arg	Arg	Ser	
Ile Glu Va 225	al Leu	Lys Thr 230	Gly Arg	Ile Thr	: Lys 235	Val	Gly	Glu	Tyr	Glu 240	
Leu Glu Pl		Gly Gln 245	Ala Lys	Lys Arg 250	-	Gly	Val	Asp	Tyr 255	Ser	
Glu Ala T	yr His 260	Ile Tyr	Thr Leu	Val Lys 265	a Ala	Asp	Leu	Val 270	Ile	Glu	
Ala Trp A 2	sp Glu 75	Leu Arg	Ser Leu 280	Pro Glu	ı Ala	Ala	Glu 285	Leu	Gln	Gly	

Met Asp Asn Ser Asp Val Asn Arg Arg Thr Ala Lys Thr Leu Asn Thr 290 295 300

											-	con	tin	ued		
Leu 305	Thr	Lys	Arg	Ile	Phe 310	Asn	Asn	Asp	Glu	Arg 315	Val	Phe	Lys	Asp	Ser 320	
Arg	Ala	Ile	Trp	Ala 325	Arg	Leu	Val	Phe	Glu 330	Leu	His	Phe	Ser	Arg 335	Asp	
Lys	Arg	Trp	Lys 340	Lys	Val	Thr	Glu	Asp 345	Val	Phe	Trp	Arg	Glu 350	Met	Leu	
Gly	His	Glu 355	Asp	Met	Asp	Thr	Gln 360	Arg	Ser	Tyr	Arg	Ala 365	Phe	Гла	Ile	
Asp	Tyr 370	Asp	Glu	Pro	Asp	Gln 375	Ala	Asp	Gln	Glu	Asp 380	Tyr	Glu	His	Ala	
Ser 385	Arg	Leu	Ala	Ala	Leu 390	Gln	Ala	Leu	Asp	Gly 395	His	Glu	Gln	Leu	Glu 400	
Ser	Ser	Asp	Ala	Gln 405	Ala	Arg	Val	His	Ala 410	Trp	Val	ГЛа	Ala	Gln 415	Ile	
Glu	Gln	Glu	Pro 420	Asp	Ala	ГЛа	Ile	Thr 425	Gln	Ser	Leu	Ile	Ser 430	Arg	Glu	
Leu	Gly	Val 435	Tyr	Arg	Pro	Ala	Ile 440	Lys	Ala	Tyr	Leu	Glu 445	Leu	Ala	Arg	
Glu	Ala 450	Leu	Asp	Ala	Pro	Asn 455	Val	Aab	Leu	Asp	Lys 460	Val	Ala	Ala	Ala	
Val 465	Pro	Lys	Glu	Val	Ala 470	Glu	Ala	Lys	Pro	Arg 475	Leu	Asn	Ala	His	Pro 480	
Gln	Gly	Asp	Gly	Arg 485	Trp	Val	Gly	Val	Ala 490	Ser	Ile	Asn	Gly	Val 495	Glu	
Val	Ala	Arg	Val 500	Gly	Asn	Gln	Ala	Gly 505	Arg	Ile	Glu	Ala	Met 510	Lys	Ala	
Ala	Tyr	Lys 515	Ala	Ala	Gly	Gly	Arg 520									
<213 <213 <213 <220 <223	L> LI 2> T 3> OI 0> FI 3> O 5 5	EATU	H: 18 DNA ISM: RE: INFO nce	354 Art: DRMA			Seque rsin:		nage	PY5	4 pro	otelo	omera	ase 1	nucleic	acid
atga	aaaat	ccc a	attt	zege	ga ti	tagi	ttagi	: ggt	tttaq	gtta	aaga	agat	cga 1	tgaaa	atagaa	60
aaat	caga	acc ç	gggc	gcag	gg tạ	gaca	aaact	c cgé	gcgtt	tatc	agg	gege	ggc (cagaa	aagttc	120
aaaa	aatgo	ccg t	gtti	catg	ga ta	aaac	ggaaa	a tat	tegeç	ggta	acg	gtato	gaa 🤉	gaata	agaata	180
tcgt	taad	caa d	catti	taat	aa at	atti	taagt	c cga	agcad	gtt	ctc	ggtti	tga a	agaaa	aggett	240
caco	cataç	gtt t	tcci	ccaat	te ta	atago	caact	t ato	ctcaa	aata	aat	atcci	tgc a	attca	agcgaa	300
ataa	ataaa	aag a	atcto	ggata	aa ta	agaco	ccgct	c cat	tgaaq	gtta	gaat	taaa	act 1	taaa	gaatta	360
ataa	actca	atc t	ttgaa	atcc	gg tạ	gttaa	attta	a tta	agaaa	aaaa	tag	gtag	ctt a	aggga	aaaata	420
aaa	ccato	cta d	cage	caaa	aa aa	atagi	ttago	e tta	aaaaa	aaaa	tgti	accca	atc a	atggo	gctaat	480
gato	ctaga	ata d	cttta	aatta	ag ta	actga	aagat	z get	tacaç	gaat	taca	aacaa	aaa g	gttaq	gagcaa	540
ggga	accga	acc t	tacti	caac	gc at	taca	attci	t cta	aaaaq	gtaa	acca	atga	agt 1	tatgi	tatgca	600
ttaa	acgat	cgc a	ageet	tct	ga ca	agago	ctgca	a tta	aaaaq	gcta	ggc	atga	cgc 1	tgcc	cttcac	660
ttta	aaaa	agc g	gtaa	catc	gt ad	ccta	tcgat	t tat	taca	ggct	ata	tgca	acg a	aatga	acggac	720
ata	ctaca	atc t	ttcca	agata	at ag	getti	ttgaa	a gat	ttcga	atgg	cat	cacti	tgc (ccct	tagca	780

59

-continued

		-continued	
tttgctctag cag	ctgctag cggtcgcaga caaattgaa	a tactaattac tggtgagttt	840
gacgccaaaa ata	aaagcat cattaaattt tctggacaa	g caaaaaaaag aatggccgtt	900
tcaggtggac att	atgaaat atacagtcta attgactca	g agctattcat tcaacggtta	960
gagtttttac gtt	ctcatag ctcaatactt cgattacaa	a atttggaaat agcacatgat	1020
gaacatcgta cto	aactatc tgttattaac ggttttgta	g ccaaaccttt aaatgatgca	1080
gcaaaacagt tct	ttgtcga tgacagaaga gtatttaaa	g ataccegtge aatttaeget	1140
cgcatagcat ato	aaaaatg gtttagaaca gatcctcgo	t gggcgaagtg cgacgaagat	1200
gttttcttct cto	aattatt aggccatgac gacccagat	a ctcagctggc atataaacaa	1260
ttcaagctgg taa	atttcaa tccaaaatgg acacctaat	a tatcagatga aaaccctcgg	1320
ttagctgcac tto	aagagct tgacaatgat atgcccggc	c tagcacgtgg cgatgcggca	1380
gttcgcatac ato	agtgggt taaagagcaa ctggcgcag	a accctgcggc aaaaataact	1440
gcataccaaa tca	agaaaaa tttaaattgt cgaaatgac	t tggccagccg atacatggca	1500
tggtgtgctg acc	cgctagg ggttgttatt ggtgatgat	g gacaggcaag gccagaagaa	1560
ctcccaccat cgo	tcgtgct tgatattaac gctgatgac	a ctgacgctga agaagatgaa	1620
atagaggaag act	ttactga tgaggaaata gacgacaco	g aattcgacgt atcagataac	1680
gccagtgatg aag	ataagcc cgaagataaa cctcgcttt	g cagcaccaat tcgtagaagt	1740
gaggactett gge	tgattaa atttgaattt gctggcaag	c aatatagctg ggagggtaat	1800
gccgaaagtg tta	tcgatgc gatgaaacaa gcatggact	g aaaatatgga gtaa	1854
sequence	: 9	-	
Met Lys lle Hi 1	s Phe Arg Asp Leu Val Ser G 5 10	y Leu Val Lys Glu IIe 15	
Asp Glu Ile Gl 20	u Lys Ser Asp Arg Ala Gln Gl 25	y Asp Lys Thr Arg Arg 30	
Tyr Gln Gly Al 35	a Ala Arg Lys Phe Lys Asn Al 40	a Val Phe Met Asp Lys 45	
Arg Lys Tyr Ai 50	g Gly Asn Gly Met Lys Asn Ar 55	g Ile Ser Leu Thr Thr 60	
Phe Asn Lys Ty 65	r Leu Ser Arg Ala Arg Ser An 70 75	g Phe Glu Glu Arg Leu 80	
His His Ser Ph	e Pro Gln Ser Ile Ala Thr Il 85 90	e Ser Asn Lys Tyr Pro 95	
Ala Phe Ser G 10	u Ile Ile Lys Asp Leu Asp As 0 105	n Arg Pro Ala His Glu 110	
Val Arg Ile Ly 115	s Leu Lys Glu Leu Ile Thr Hi 120	s Leu Glu Ser Gly Val 125	
Asn Leu Leu G] 130	u Lys Ile Gly Ser Leu Gly Ly 135	s Ile Lys Pro Ser Thr 140	
Ala Lys Lys I] 145	e Val Ser Leu Lys Lys Met Ty 150 19		
	r Leu Ile Ser Thr Glu Asp AJ 165 170		
		175	

Lys	Leu	Glu	Gln 180	Gly	Thr	Asp	Leu	Leu 185	Asn	Ala	Leu	His	Ser 190	Leu	Lys
Val	Asn	His 195	Glu	Val	Met	Tyr	Ala 200	Leu	Thr	Met	Gln	Pro 205	Ser	Asp	Arg
Ala	Ala 210	Leu	Lys	Ala	Arg	His 215	Asp	Ala	Ala	Leu	His 220	Phe	Lys	Lys	Arg
Asn 225	Ile	Val	Pro	Ile	Asp 230	Tyr	Pro	Gly	Tyr	Met 235	Gln	Arg	Met	Thr	Asp 240
Ile	Leu	His	Leu	Pro 245	Asp	Ile	Ala	Phe	Glu 250	Asp	Ser	Met	Ala	Ser 255	Leu
Ala	Pro	Leu	Ala 260	Phe	Ala	Leu	Ala	Ala 265	Ala	Ser	Gly	Arg	Arg 270	Gln	Ile
Glu	Ile	Leu 275	Ile	Thr	Gly	Glu	Phe 280	Asp	Ala	Гла	Asn	Lys 285	Ser	Ile	Ile
Lys	Phe 290	Ser	Gly	Gln	Ala	Lys 295	Lys	Arg	Met	Ala	Val 300	Ser	Gly	Gly	His
Tyr 305	Glu	Ile	Tyr	Ser	Leu 310	Ile	Asp	Ser	Glu	Leu 315	Phe	Ile	Gln	Arg	Leu 320
Glu	Phe	Leu	Arg	Ser 325	His	Ser	Ser	Ile	Leu 330	Arg	Leu	Gln	Asn	Leu 335	Glu
Ile	Ala	His	Asp 340	Glu	His	Arg	Thr	Glu 345	Leu	Ser	Val	Ile	Asn 350	Gly	Phe
Val	Ala	Lys 355	Pro	Leu	Asn	Asp	Ala 360	Ala	Lys	Gln	Phe	Phe 365	Val	Asb	Asp
Arg	Arg 370	Val	Phe	ГЛа	Asp	Thr 375	Arg	Ala	Ile	Tyr	Ala 380	Arg	Ile	Ala	Tyr
385	Lys	-		-	390	-		-	-	395	-	-	-		400
	Phe			405			-		410	-		-		415	
	Tyr	-	420		-			425				-	430		
	Ile	435	-				440					445			-
	Asp 450			-		455	-	-	-		460		-		
465	Trp				470					475					480
	Tyr			485	-				490	-		-		495	
	Tyr		500					505					510		
Aab	Gly	Gln 515	Ala	Arg	Pro	Glu	Glu 520	Leu	Pro	Pro	Ser	Leu 525	Val	Leu	Asp
Ile	Asn 530	Ala	Asp	Aab	Thr	Asp 535	Ala	Glu	Glu	Aab	Glu 540	Ile	Glu	Glu	Aab
Phe 545	Thr	Asp	Glu	Glu	Ile 550	Asp	Asp	Thr	Glu	Phe 555	Asp	Val	Ser	Asp	Asn 560
Ala	Ser	Asp	Glu	Asp 565	Гла	Pro	Glu	Aab	Lys 570	Pro	Arg	Phe	Ala	Ala 575	Pro
Ile	Arg	Arg	Ser 580	Glu	Asp	Ser	Trp	Leu 585	Ile	Гла	Phe	Glu	Phe 590	Ala	Gly

Lys Gln Tyr Ser Trp G 595	lu Gly Asn Ala Glu Se 600	r Val Ile Asp Ala Met 605	
Lys Gln Ala Trp Thr G			
610	615		
<pre><210> SEQ ID NO 10 <211> LENGTH: 1923 <212> TYPE: DNA <213> ORGANISM: Artif <220> FEATURE: <223> OTHER INFORMATI</pre>	-	phiKO2 protelomerase nuc	leic
<400> SEQUENCE: 10			
atgcgtaagg tgaaaattgg	tgagctaatc aattcgctt	g tgagcgaggt cgaggcaatc	60
gatgcctctg atcgtccgca	aggcgataaa acgaagaaa	a ttaaagccgc agcattaaaa	120
tataagaatg cattatttaa	tgacaaaaga aagtttcgc	g gtaaaggttt agaaaaaaga	180
atttctgcca acacgttcaa	ctcgtatatg agtcgggca	a ggaaaagatt tgatgataga	240
ttgcatcata actttgaaaa	gaatgtaatt aaactatca	g aaaaatatcc tttatatagt	300
gaagaattat cttcgtggct	ttctatgcct gcggcatca	a ttagacagca tatgtcaaga	360
ttgcaagcca agctaaaaga	gataatgcca ttggcagaa	g acttatccaa tataaagatt	420
ggtacaaaaa atagcgaagc	aaaaataaat aaactcgct	a ataaatatcc tgaatggcaa	480
ttcgctatta gtgatttaaa	tagcgaagat tggaaggat	a aaagagatta tctttataaa	540
ctattccaac aaggttcttc	gctcctggaa gacttgaat	a acctgaaagt aaaccatgag	600
gttetetate atetgeaget	tagttctgcc gagcgaacc	t ctatccagca gcgctgggcc	660
aacgtcctca gcgagaaaaa	gcgcaacgtt gtcgtgatt	g actateegeg etatatgeag	720
gccatctacg atataatcaa	caagcctata gtttcgttc	g atttgactac tcgtcgtggt	780
atggccccgc tggcgttcgc	ccttgccgcg ctatctggt	c gccgaatgat tgaaatcatg	840
ctccagggtg aattttccgt	cgcaggtaaa tatacagta	a catteetggg geaagetaaa	900
aaacgctcgg aagataaagg	tatatcaagg aaaatatat	a ccttatgcga cgctacttta	960
tttgttagtt tggtaaatga	acttogotoa tgoocogot	g ctgcggattt tgatgaagta	1020
ataaaaggat atggcgaaaa	tgacactcgc tcagaaaat	g ggcgtattaa tgcaattctc	1080
gctacagctt ttaatccgtg	ggtaaaaact ttcttaggc	g atgaccgccg cgtttataaa	1140
gatageegeg etatttaege	ccgtattgcc tatgaaatg	t tetteegegt tgaeeetegg	1200
tggaagaatg ttgatgagga	tgtattcttc atggagatt	c tcggccatga cgatgaaaac	1260
acccaactgc actataagca	gtttaaattg gctaacttc	t ccagaacatg gcgaccaaat	1320
gtcggcgagg agaatgcccg	cctagcggcg ctgcaaaag	c tggatagcat gatgccagat	1380
tttgccaggg gcgacgccgg	ggttcgtatt catgagacc	g tgaagcagct ggtggagcag	1440
gacccatcga taaaaatcac	aaacagcacc ctgcgaccg	t ttaacttcag taccaggctg	1500
atteeteget acetggagtt	tgeegeegat geattggge	c agttcgtcgg tgaaaatggg	1560
caatggcaac tgaaggatga	ggcgcctgca atagtcctg	c ctgatgagga aattcttgag	1620
cctatggacg acgtcgatct	cgatgacgaa aaccatgat	g atgaaacgct ggatgacgat	1680
gagatcgaag tggacgaaag	cgaaggagag gaactggag	g aagcgggcga cgctgaagag	1740
gccgaggtgg ctgaacagga	agagaagcac cctggcaag	c caaactttaa agcgccgagg	1800
gataatggcg atggtaccta	catggtggaa tttgaattc	g gtggccgtca ttacgcctgg	1860
_ 000 00			

tcc	ggtgo	ccg (ccggt	taat	cg g	gtaga	aggca	a ato	gcaat	ctg	cct	ggagi	.gc (ctact	tcaag :	1920	
tga		-				5				0			-		5	1923	
<21 <21 <21 <21	0> FH 3> 01	ENGTH PE: RGAN EATUH	H: 64 PRT ISM: RE: INF(40 Art: ORMA	ific: TION		_		pha	ge pl	niKO;	2 pro	otelo	omera	use amino		
<40)> SI	EQUEI	ICE :	11													
Met 1	Arg	Lys	Val	Lys 5	Ile	Gly	Glu	Leu	Ile 10	Asn	Ser	Leu	Val	Ser 15	Glu		
Val	Glu	Ala	Ile 20	Asp	Ala	Ser	Asp	Arg 25	Pro	Gln	Gly	Asp	Lуз 30	Thr	LYS		
Lys	Ile	Lys 35	Ala	Ala	Ala	Leu	Lys 40	Tyr	Lys	Asn	Ala	Leu 45	Phe	Asn	Aap		
Lys	Arg 50	Lys	Phe	Arg	Gly	Lys 55	Gly	Leu	Glu	Lys	Arg 60	Ile	Ser	Ala	Asn		
Thr 65	Phe	Asn	Ser	Tyr	Met 70	Ser	Arg	Ala	Arg	Lys 75	Arg	Phe	Asp	Asp	Arg 80		
Leu	His	His	Asn	Phe 85	Glu	Lys	Asn	Val	Ile 90	Lys	Leu	Ser	Glu	Lys 95	Tyr		
Pro	Leu	Tyr	Ser 100	Glu	Glu	Leu	Ser	Ser 105	Trp	Leu	Ser	Met	Pro 110	Ala	Ala		
Ser	Ile	Arg 115	Gln	His	Met	Ser	Arg 120	Leu	Gln	Ala	Lys	Leu 125	Lys	Glu	Ile		
Met	Pro 130	Leu	Ala	Glu	Asp	Leu 135	Ser	Asn	Ile	Гла	Ile 140	Gly	Thr	Lys	Asn		
Ser 145	Glu	Ala	Lys	Ile	Asn 150	Lys	Leu	Ala	Asn	Lys 155	Tyr	Pro	Glu	Trp	Gln 160		
Phe	Ala	Ile	Ser	Asp 165	Leu	Asn	Ser	Glu	Asp 170	Trp	Гла	Asp	Lys	Arg 175	Asp		
Tyr	Leu	Tyr	Lys 180	Leu	Phe	Gln	Gln	Gly 185	Ser	Ser	Leu	Leu	Glu 190	Asp	Leu		
Asn	Asn	Leu 195	Lys	Val	Asn	His	Glu 200	Val	Leu	Tyr	His	Leu 205	Gln	Leu	Ser		
Ser	Ala 210	Glu	Arg	Thr	Ser	Ile 215	Gln	Gln	Arg	Trp	Ala 220	Asn	Val	Leu	Ser		
Glu 225	Lys	Lys	Arg	Asn	Val 230	Val	Val	Ile	Asp	Tyr 235	Pro	Arg	Tyr	Met	Gln 240		
Ala	Ile	Tyr	Asp	Ile 245	Ile	Asn	Lys	Pro	Ile 250	Val	Ser	Phe	Asp	Leu 255	Thr		
Thr	Arg	Arg	Gly 260	Met	Ala	Pro	Leu	Ala 265	Phe	Ala	Leu	Ala	Ala 270	Leu	Ser		
Gly	Arg	Arg 275	Met	Ile	Glu	Ile	Met 280	Leu	Gln	Gly	Glu	Phe 285	Ser	Val	Ala		
Gly	Lys 290		Thr	Val	Thr	Phe 295		Gly	Gln	Ala	Lys 300		Arg	Ser	Glu		
-		Gly	Ile	Ser	-		Ile	Tyr	Thr			Asp	Ala	Thr			
305 Phe	Val	Ser	Leu		310 Asn	Glu	Leu	Arg		315 Сув	Pro	Ala	Ala	Ala	320 Aap		
Phe	Asp	Glu	Val	325 Ile	Lys	Gly	Tyr	Gly	330 Glu	Asn	Asp	Thr	Arq	335 Ser	Glu		
	-				-	-	-	-			-		-				

												COII		uea		
			340					345					350			
Asn	Gly	Arg 355	Ile	Asn	Ala	Ile	Leu 360	Ala	Thr	Ala	Phe	Asn 365	Pro	Trp	Val	
ya	Thr 370	Phe	Leu	Gly	Asp	Asp 375	Arg	Arg	Val	Tyr	Lys 380	Asp	Ser	Arg	Ala	
le 85	Tyr	Ala	Arg	Ile	Ala 390	Tyr	Glu	Met	Phe	Phe 395	Arg	Val	Asp	Pro	Arg 400	
'rp	Lys	Asn	Val	Asp 405	Glu	Asp	Val	Phe	Phe 410	Met	Glu	Ile	Leu	Gly 415	His	
7ab	Asp	Glu	Asn 420	Thr	Gln	Leu	His	Tyr 425	Lys	Gln	Phe	Lys	Leu 430	Ala	Asn	
he	Ser	Arg 435	Thr	Trp	Arg	Pro	Asn 440	Val	Gly	Glu	Glu	Asn 445	Ala	Arg	Leu	
Ala	Ala 450		Gln	ГЛа	Leu	Asp 455		Met	Met	Pro	Asp 460	Phe	Ala	Arg	Gly	
462 162		Gly	Val	Arg	Ile 470		Glu	Thr	Val	Lys 475	Gln	Leu	Val	Glu	Gln 480	
	Pro	Ser	Ile	Lys 485		Thr	Asn	Ser	Thr 490		Arg	Pro	Phe	Asn 495		
Ser	Thr	Arg	Leu 500		Pro	Arg	Tyr	Leu 505		Phe	Ala	Ala	Asp 510		Leu	
Gly	Gln	Phe 515		Gly	Glu	Asn	Gly 520		Trp	Gln	Leu	Lys 525		Glu	Ala	
Pro			Val	Leu	Pro	Asp 535		Glu	Ile	Leu	Glu		Met	Asp	Азр	
	530 Asp	Leu	Asp	Asp			His	Asp	Asp		540 Thr	Leu	Asp	Asp	-	
545 31u	Ile	Glu	Val		550 Glu	Ser	Glu	Gly		555 Glu	Leu	Glu	Glu		560 Gly	
Asp	Ala	Glu		565 Ala	Glu	Val	Ala		570 Gln	Glu	Glu	Lys		575 Pro	Gly	
Lys	Pro		580 Phe	Lys	Ala	Pro		585 Asp	Asn	Gly	Asp		590 Thr	Tyr	Met	
Val	Glu	595 Phe	Glu	Phe	Gly	Gly	600 Arg	His	Tyr	Ala	Trp	605 Ser	Gly	Ala	Ala	
Gly	610 Asn	Arg	Val	Glu	Ala	615 Met	Gln	Ser	Ala	Trp	620 Ser	Ala	Tyr	Phe	Lys	
525		-			630								-		640	
<211 <212 <213 <220 <223	.> LE :> T) :> OF :> OF :> O :> O :> O	EATUI THER equei	H: 10 DNA ISM: RE: INFO hCe	617 Art: DRMA			Seque orio		ge VI	2882	prot	celor	nera:	se nu	cleic acid	
		EQUEI														
															tcgag 60 tgatc 120	
															atgcg 180	
															ttact 240	
	-	2						_	5		20		-			
	agaa	act d	ggaaa	acaco	ca ca	agte	togad	g cad	qcaqa	ataq	age	gget	qgc (caaaa	agcac 300	

69

-continued

ctggcgcatc	gcga	cctcc	t ga	aagag	catc	aaq	ggaca	acg	atga	aagco	ctt	cgago	jatatc	420	
cgcagcatga	agtta	agacc	a co	gaggt	aatg	cgo	ccato	tga	cgct	acco	cag	tgcgo	aaaag	480	
gcgagactgg	caga	ggaag	c cç	geega	ggcg	ttç	gadeg	jaga	agaa	aaaco	cgc	cacgo	ıtcgac	540	
atcaactatc	acga	gctga	t gg	geegg	lcgtg	gt	ggago	tgt	tgad	ccaag	jaa	gacca	agacg	600	
gtcggcagcg	acago	cacct	a ca	agctt	cage	cgé	getge	lcdc	ttgg	gtatt	gg	cctgg	gctacc	660	
ggtcgtcgtt	ctate	cgaga	t ac	ctgaa	Igcag	ggo	cgagt	tca	aaaa	aggto	ıga	tgago	agcgg	720	
ctcgagttct	ctgg	ccaag	c ga	aaaaa	gcgc	ggo	ggtg	lccd	acta	attca	iga	gacct	atacc	780	
atttacaccc	tggt	cgact	c cç	gacct	ggta	ctç	gatgg	lcdc	tgaa	agaad	ct	gcgag	jagttg	840	
ccagaagttc	gcgca	actgg	a to	gagta	cgac	caa	actgg	laca	agat	taag	gcg	gaaco	Jacgcc	900	
atcaataaac	gctg	cgcaa	a aa	acgct	caac	caa	aacco	gcca	agca	agtto	tt	tggca	igcgac	960	
gagcgcgtgt	tcaaa	agata	g to	cgtgc	catc	tg	ggege	gtc	tggo	cttat	ga	gttgt	tttt	1020	
caacgtgatc	cgcg	ctgga	a aa	aagaa	agac	gaq	ggacg	gttt	tctç	ggcag	gga	gatgo	tgggc	1080	
cacgaggaca	tcga	gactc	a ga	aaagc	ctat	aaq	gcaat	tca	aggt	cgad	cta	cageo	jaacct	1140	
gagcagccgg	tgca	caagc	c tç	ggcaa	attt	aaq	gagca	agag	ctga	aagco	ct	cgcgg	gcgctc	1200	
gactcaaatg	agga	catta	c ca	acccg	lctca	tco	catgo	gcca	agat	ccad	cga	ctggg	Itgaaa	1260	
gagcgtattg	cggaa	agacc	c cç	gagge	gaac	ato	cacac	agt	cact	cato	cac	ccggg	jaactg	1320	
ggctcaggcc	gtaa	ggtga	t ca	aagga	ctac	cto	cgaco	tgg	ctga	acgat	gc	cctt	jctgtg	1380	
gtgaatactc	ctgt	cgatg	a co	gcagt	cgtc	gaq	ggtto	cag	ctga	atgto	gcc -	ggcag	JCAGAA	1440	
aaacagccga	agaaa	agcgc	a ga	aagco	caga	cto	gtgg	gctc	acca	aggtt	ga	tgato	Jagcac	1500	
tgggaagcct	gggc	gctgg	t gg	gaagg	Icgag	gaq	ggtgg	jcca	gggt	gaaa	at	caago	Igcacc	1560	
cgcgttgagg	caat	gacag	c cé	gcatg	Iggag	gco	cageo	aaa	aggo	cacto	cga	tgact	aa	1617	
<210> SEQ <211> LENG <212> TYPE <213> ORGA <220> FEAT <223> OTHE sequ	TH: 5: : PRT NISM: URE: R INF(ence	38 Arti ORMAT			-		ge VE	882	prot	celon	nera	se an	nino ac	id	
<400> SEQU			7	d]	T	· · - · ·	7	T	a 1	a 1	T	T] -	3		
Met Ser Gl 1	y Giu	Ser. 5	Arg	GIN	гуз	vai	Asn 10	Leu	GIU	GIU	Leu	11e 15	Asn		
Glu Leu Va	l Glu 20	Glu	Val	ГЛа		Ile 25	Asp	Asp	Asn	Glu	Ala 30	Ile	Thr		
Arg Ser Gl 35	u Lys	Thr	Lys	Leu	Ile 40	Thr	Arg	Ala	Ala	Thr 45	Lys	Phe	Lys		
Thr Lys Le [.] 50	u His	Asp .	Asp	Lys 55	Arg	Arg	Lys	Asp	Ala 60	Thr	Arg	Ile	Ala		
Leu Ser Th 65	r Tyr	-	Lys 70	Tyr	Met	Thr	Met	Ala 75	Arg	Ala	Ala	Val	Thr 80		
Glu Gln As:	n Trp	Lys 85	His	His	Ser	Leu	Glu 90	Gln	Gln	Ile	Glu	Arg 95	Leu		
Ala Lys Ly	s His 100	Pro	Gln	Tyr		Glu 105	Gln	Leu	Val	Ala	Ile 110	Gly	Ala		
Met Asp As 11		Thr	Glu	Leu	Arg 120	Leu	Ala	His	Arg	Asp 125	Leu	Leu	Lys		
Ser Ile Ly 130	s Asp	Asn .	Asp	Glu 135	Ala	Phe	Glu	Asp	Ile 140	Arg	Ser	Met	Lys		

-continued

145 150 155 160 Ala Arg Leu Ala Glu Glu Ala Ala Glu Ala Glu Ala Glu Lau Ala Glu Ala Francisco Ala Glu Ala Ala Glu Ala Glu Lau Ala Glu Ala Ala Glu Ala<	Leu	Asp	His	Glu	Val	Met	Arg	His	Leu	Thr	Leu	Pro	Ser	Ala	Gln	Lys
165170175AlaThrValAspIleAsnTyrHisGluLeuMetAlaGlyYalValGluLeuThrLysLysThrLysThrLysThrValGluSerAspSerThrTyrSerPheSerArgLeuAlaLeuGlyGluGlyLeuAlaThrGlyArgSer210CluHeLysGluGluGluGluLeuLysSerGlyGluAspSer225GluHeSerGlyGluGluLysArgGlyAspFyrSer225GluThrThrThrThrLeuValAspSerAspGluAspTyrSer225GluThrThrThrThrLeuValAspSerAspFer270CerAlaLeuYrThrInteThrLeuValAspAspAspAspSer270Cer270AlaLeuLeuGluGluInteYrThrLeuValAspAspAspAspAspGluAspAspGluAspGluAspGluAspGluAspGluAspGluAspGluAspGluAspGluAspGluAspGlu <td></td> <td>۸ra</td> <td>Lou</td> <td>719</td> <td>c1.</td> <td></td> <td>719</td> <td>719</td> <td>Cl.u</td> <td>719</td> <td></td> <td>Thr</td> <td>Clu</td> <td>Lva</td> <td>Iva</td> <td></td>		۸ra	Lou	719	c1.		719	719	Cl.u	719		Thr	Clu	Lva	Iva	
180 185 190 Leu Luu Thr Lys Lys Lys Thr Lys Thr Val Gly Ser Asp Ser Thr Tyr Ser 205 Thr Tyr Ser 205 Phe Ser Arg Leu Ala Leu Gly The Gly Luu Ala Thr Gly Arg Arg Ser 215 Glu Ala Luu Lys Gln Gly Glu Ala Lys Lys Val Asp Glu Glu Ala Asp Tyr Ser 255 Glu Thr Tyr Thr Thr Thr Thr Leu Val Arg Ser Arg Gly Gly Ala Asp Tyr Ser 265 Glu Thr Tyr Thr Thr Thr Leu Val Arg Ala Leu Asp Glu 200 Ala Luu Lys Asn Leu Arg Glu Lau Pro Glu Val Arg Ala Luu Asp Tyr Ser 260 Glu Ala Asp Tyr Ser 260 Ala Luu Lys Asn Leu Arg Glu Lau Pro Glu Val Arg Ala Luu Asp Glu 205 Glu Ala Asp Tyr Ser 260 Ala Luu Lys Asn Leu Arg Glu Lau Pro Glu Val Arg Ala Luu Asp Glu 205 Glu Arg Ala Lys Thr Leu Asp Gln Thr Ala Lys Gln Phe Phe Gly Ser Asp 300 Cyr Ala Lys Thr Leu Asp Glu Asp Pro Arg Trp Lys Lys Lys Asp Glu Ala Asp 300 Glu Arg 315 Glu Luu Phe Phe Gln Arg Asp Pro Arg Trp Lys Lys Lys Asp Glu Ala Asp 300 Glu Arg 360 Ala Tyr Jyr Gln Glu Met Leu Gly His Glu Asp 11e Glu Thr Gln Lys 335 Glu Arg 300 Ala Tyr Jyr Glu Arg I Le Thr Thr Arg Ser Ser Met Ala Lys 11e His 400 Asp Tyr Lys Glu Arg I Le Thr Arg Glu Lau Gly Ser Gly Arg Luu Ala Arg 11e Thr 410 Asp Tyr Lys Glu Arg I Le Ala Asp Asp Arg 610 Glu Ala Asp 11e Thr 11e 300 Glu Luu Phe Phe Gly Lys Phe Lys Asp Asp Arg Ala Glu Alap Pro Glu Ala Asp 11e Thr 410 Asp Tyr Lys Glu Arg I Le Ala Asp Asp 11e Clu Ala Asp 11e 11e 330	лта	лч	Цеч	лта		GIU	лта	AIU	UIU		Цец	1111	GIU	цур		1111
195 200 205 Phe Ser Arg Leu Ala Leu Cly Ile Cly Leu Ala Thr Cly Arg Arg Ser 210 711 e Clu Ile Leu Lyo Cln Cly Clu Phe Lye Lyo Val Arg Cly And Arg Clu Cln Arg 225 Ile Clu Ile Leu Lyo Cln Cly Clu Phe Lye Lyo Yad Arg Cly Cly Ala Arg Tyr Ser 245 250 712 e Clu Thr Tyr Thr Ile Tyr Thr Leu Val Arg Cly Cly Ala Arg Tyr Ser 255 Glu Thr Tyr Thr Ile Tyr Thr Leu Val Arg Clu Val Arg Ala Leu Arg Clu 275 711 e Cly Clu Clu Clu Clu Clu Clu Clu Arg Ala Leu Arg Clu 275 Ala Leu Lyo Arg An Leu Arg Clu Leu Pro Clu Val Arg Ala Leu Arg Clu 275 717 Arg Gln Leu Cly Clu Ile Lyo Arg	Ala	Thr	Val		Ile	Asn	Tyr	His		Leu	Met	Ala	Gly		Val	Glu
210 215 220 11e Glu Lu Lu Lu Cu	Leu	Leu		Lys	Lys	Thr	ГЛЗ		Val	Gly	Ser	Asp		Thr	Tyr	Ser
225 230 235 240 Leu Glu Phe Ser Gly Gln Ala Lys Lys Arg Gly Gly Ala Asp Tyr Ser 245 245 Ana Lys Arg Gly Gly Ala Asp Tyr Ser 255 Glu Thr Tyr Thr Ile Tyr Thr Leu Val Asp Ser Asp Leu Val Leu Met 265 260 Val Arg Ala Lys Arg Gly Gly Ala Asp Tyr Ser 270 Ala Leu Lys Asp Leu Arg Glu Leu Yes Olu Val Arg Ala Leu Asp Glu 280 Ya Asp Ala The Asp Lys Arg 300 Ya Asp	Phe		Arg	Leu	Ala	Leu		Ile	Gly	Leu	Ala		Gly	Arg	Arg	Ser
245 250 255 Glu Thr Tyr Thr Ile Tyr Thr Ile Tyr Thr Leu Val Asp Ser Asp Leu Val Leu Met 260 270 Ala Leu Lyrs Asn Leu Arg Glu Leu Pro Glu Val Arg Ala Leu Asp Glu 275 270 Tyr Asp Gln Leu Gly Glu Ile Lys Arg Asn Asp Ala Ile Asn Lys Arg 300 280 Glu Arg Val Phe Lys Asp Ser Arg Ala Lys Gln Phe Phe Gly Ser Asp 310 215 Glu Leu Phe Phe Gln Arg Asp Ser Arg Ala Ile Trp Ala Arg Leu Ala Tyr 325 300 Glu Leu Phe Phe Gln Arg Asp Pro Arg Trp Lys Lys Lys Asp Glu Asp 346 360 Val Phe Typ Gln Phe Lys Asp Ser Arg Ala Glu Asp 116 Glu Arg 355 Ala Tyr Lys Gln Phe Lys Asp Ser Arg Ala Ile Glu Asp 116 Glu Arg 340 Ala Tyr Asp Glu Clu Arg Asp Asp Arg Arg Trp Lys Lys Lys Asp Clu Arg 360 Val Phe Typ Gln Phe Lys Asp Ser Arg Ala Glu Asp 116 Glu Clu Pro Val 365 Asp Tyr Lys Glu Pro Gly Lys Phe Lys Asp Tyr Ser Glu Pro Glu Ala Leu Ala Leu 400 Asp Trp Val Lys Glu Arg Ile Arg Asp Asp Arg Arg Arg 416 110 Asp Trp Val Lys Glu Arg Ile Arg Asp Asp Arg Arg Arg 416 110 Asp Trp Val Lys Glu Arg Ile Arg Asp Asp Arg		Glu	Ile	Leu	Lys		Gly	Glu	Phe	ГЛЗ		Val	Asp	Glu	Gln	
260 265 270 Ala Leu Lys Asn Leu Arg Glu Leu Pro Glu Val Arg Ala Leu Asp Glu 280 Arg Asn Asp Ala Leu Asp Glu 280 Arg Asn Asp Ala Leu Asp Glu 285 Tyr Asp Gln Leu Gly Glu II Le Lys Arg Asn Asp Ala II e Asn Lys Arg 290 Gln Yeu Asm Gln Thr Ala Lys Gln Phe Phe Gly Ser Asp 300 Ie Asn Lys Arg 300 Cys Ala Lys Thr Leu Asm Gln Thr Ala Lys Gln Phe Phe Gly Ser Asp 310 Glu Arg Val Phe Lys Asp Ser Arg Ala II = Trp Ala Arg Leu Ala Tyr 335 Glu Leu Phe Phe Gln Arg Asp Pro Arg Trp Lys Lys Lys Asp Glu Asp 346 Trp 418 Trp 611 Ag 355 Val Phe Trp Gln Glu Met Leu Gly His Glu Asp II e Glu Thr Gln Lys 365 Glu Asp II e Glu Arg 75 Ser Glu Pro 365 Ala Tyr Lys Gln Phe Lys Phe Lys Ser Arg Ala Glu Ala Leu Ala Ala Leu 380 Glu Ang 360 Glu Gln Pro Val 385 Asp Ser Asn Glu Asp II e Thr Thr Arg Ser Ser Met Ala Lys II e His 410 410 415 Asp Tyr Leu Asp Leu Ala Asp Asp Ala Glu Asp Pro Glu Ala Asn II e Thr 425 445 445 Asp Tyr Leu Asp Leu Ala Asp Asp Ala Clu Ala Asp Pro Clu Ala Asn Thr Pro 4450 445 445 Asp Tyr Lys Clu Arg II e Ala Asp Asp Ala Leu Ala Ala Leu 445 445 445 445 Asp Tyr Leu Asp Leu Ala Asp Asp Ala Leu Ala Asp Val Asn Thr Pro 4450 445 445 445 Asp Tyr Leu Asp Leu Ala Asp Asp Asp Ala Leu Ala Asp Val Aso Thr 445 450 4	Leu	Glu	Phe	Ser		Gln	Ala	Lys	Lys		Gly	Gly	Ala	Asp		Ser
275 280 285 Tyr Asp Gln Leu Gly Glu Ile Lys Arg Asn Asp Ala Jue Asn Lys Arg 290 Asn Lys Thr Leu Asn Gln Thr Ala Lys Gln Phe Phe Gly Ser Asp 310 Glu Arg Val Phe Lys Asp Ser Arg Ala Ile Trp Ala Arg Leu Ala Tyr 325 Glu Leu Phe Phe Gln Arg Asp Pro Arg Trp Lys Lys Lys Asp Glu Asp 340 Val Phe Trp Gln Glu Met Leu Gly His Glu Asp Ile Glu Thr Gln Lys 355 Ala Tyr Lys Gln Phe Lys Asp Ser Arg Ala Bag Asp 11 Glu Leu Phe Phe Gln Arg Asp Pro Arg Trp Lys Lys Lys Asp Glu Asp 350 Val Phe Trp Gln Glu Met Leu Gly His Glu Asp Ile Glu Thr Gln Lys 355 Ala Tyr Lys Gln Phe Lys Val Asp Tyr Ser Glu Pro Glu Glu Gln Pro Val 375 Asp Ser Asn Glu Asp Ile Thr Thr Arg Ser Ser Met Ala Lys Ile His 400 Asp Ser Asn Glu Asp Ile Thr Thr Arg Ser Ser Met Ala Lys Ile His 410 Asp Trp Val Lys Glu Arg Ile Ala Glu Asp Pro Glu Ala Asn Ile Thr 430 Asp Tyr Leu Asp Leu Ala Asp Asp Asp Ala Leu Ala Val Val Asn Thr Pro 4455 Asp Tyr Leu Asp Leu Ala Asp Asp Asp Ala Leu Ala Asp Val Pro Ala Ala Glu 445 Asp Asp Asp Ala Val Val Glu Ala Trp Ala Asp Val Glu Glu Glu Glu Val 495 Asp Asp Asp Glu His Trp Glu Ala Trp Ala Trp Ala Asp Val Glu Ala Met 495 Asp Asp Asp Glu His Trp Glu Ala Trp Ala Leu Asp Val Glu Ala Met Thr Ala Ala 515 Asp Asp Asp Glu His Trp Glu Ala Trp Ala Leu Asp Xal Clu Ala Met 510 Asp Asp Asp Glu His Trp Glu Ala Trp Ala Leu Asp Xal Clu Ala Met 510 Ala	Glu	Thr	Tyr		Ile	Tyr	Thr	Leu		Asb	Ser	Asp	Leu		Leu	Met
290295300CysAlaLysThrLeuAsnGlnThrAlaLysGlnPheGlySerAsp305ArgValPheLysAspSerArgAlaIleTrpAlaArgLeuAlaTyr325GluArgValPheLysAspSerArgAlaTipTrpAlaArgLeuAlaTyr325GluLeuPhePheGlnArgAspArgTrpLysLysAspGluAsp340GluLeuGluArgAspArgTrpLysLysAspGluAsp340SerGlnGluMetLeuGlyHisGluAspTipGluGluAsp355GlnPheLysValAspTyrSerGluAspGluAsp365AlaTyrLysGlnPheLysValAspTyrSerGluAsp365AlaTyrLysGlnPheLysValAspTyrSerGluAsp365AlaTyrLysGlnArgLysValAspTyrSerArgAlaLeuAlaAlaLeuAlaAlaLeuAlaAlaLeuAlaAlaLeuAlaAlaAlaAlaGlu <td>Ala</td> <td>Leu</td> <td>-</td> <td>Asn</td> <td>Leu</td> <td>Arg</td> <td>Glu</td> <td></td> <td>Pro</td> <td>Glu</td> <td>Val</td> <td>Arg</td> <td></td> <td>Leu</td> <td>Asp</td> <td>Glu</td>	Ala	Leu	-	Asn	Leu	Arg	Glu		Pro	Glu	Val	Arg		Leu	Asp	Glu
305 310 315 320 Glu Arg Val Phe Lys Asp Ser Arg Ala Ile Trp Ala Arg Leu Ala Tyr 325 Glu Leu Phe Phe Gln Arg Asp Pro Arg Trp Lys Lys Lys Lys Asp Glu Asp 340 Val Phe Trp Gln Glu Met Leu Gly His Glu Asp 11e Glu Trr Gln Lys 355 Glu Arg Val Phe Lys Val Asp Tyr Ser Glu Pro Glu Arg Trp Lys Lys Lys Asp Glu Asp 360 Ala Tyr Lys Gln Phe Lys Val Asp Tyr Ser Glu Pro Glu Ala Ala Leu 370 Glu Asp 11e Glu Arg Asp Tyr Ser Glu Pro Glu Glu Pro Val 380 Asp Ser Asn Glu Asp Ile Thr Thr Arg Ser Ser Met Ala Lys Ile His 400 Asp Trp Val Lys Glu Arg Ile Ala Glu Asp Pro Glu Ala Asn Ile Thr 425 Glu Ser Leu Ile Thr Arg Glu Leu Gly Ser Gly Arg Lys Val Asp Tyr 445 Asp Asp Asp Ala Val Val Glu Val Pro Ala Asp 445 Val Asp Asp Asp Ala Val Val Glu Val Pro Ala Asp 10 Asp Asp Asp Ala Val Yal Glu Val Pro Ala Asp 455 Asp Asp Asp Ala Val Val Glu Val Pro Ala Asp 450 Asp Asp Ala Val Val Glu Val Pro Ala Asp 450 Asp Asp Ala Val Val Glu Val Pro Ala Asp 450 Asp Asp Glu His Trp Glu Ala Trp Ala Leu Val Glu Glu Glu Val 450 Asp Asp Glu His Trp Glu Ala Trp Ala Leu Val Glu Ala Met 1510 Ala Arg Val Lys Ile Lys Gly Thr Arg Val Glu Ala Met 525 Arg Val Lys Ile Lys Ala Leu Asp Asp	Tyr		Gln	Leu	Gly	Glu		Lys	Arg	Asn	Asp		Ile	Asn	Lys	Arg
325 330 335 Glu Leu Phe Gln Arg Asp Pro Arg Trp Lys Lys Lys Asp Glu Asp Val Phe Trp Gln Glu Met Leu Gly His Glu Asp I Leu Glu Asp Trp Str Glu Asp Gln Lys Str Glu Asp I Leu Glu Asp Trp Str Glu Fue Gln Lys Str Glu Asp I Leu Glu Asp Trp Str Glu Pro Gln Pro Val Str Asp Trp Str Glu Pro Glu Pro Val Asp Trp Val Asp Trp Val Asp Trp Str Asp Asp Trp Str Asp I Leu Asp Asp Asp Asp Asp Asp Asp I Leu Asp Asp Asp I Leu Asp Asp I Leu Asp <td< td=""><td></td><td>Ala</td><td>Lys</td><td>Thr</td><td>Leu</td><td></td><td>Gln</td><td>Thr</td><td>Ala</td><td>Lys</td><td></td><td>Phe</td><td>Phe</td><td>Gly</td><td>Ser</td><td></td></td<>		Ala	Lys	Thr	Leu		Gln	Thr	Ala	Lys		Phe	Phe	Gly	Ser	
340 345 350 Val Phe Try Glu Glu Met Leu Gly His Glu Asp I.e Glu Try Glu Glu Mu So Try So Try Glu So So Try So So <t< td=""><td>Glu</td><td>Arg</td><td>Val</td><td>Phe</td><td></td><td>Asp</td><td>Ser</td><td>Arg</td><td>Ala</td><td></td><td>Trp</td><td>Ala</td><td>Arg</td><td>Leu</td><td></td><td>Tyr</td></t<>	Glu	Arg	Val	Phe		Asp	Ser	Arg	Ala		Trp	Ala	Arg	Leu		Tyr
355 360 365 Ala Tyr Lys Gln Phe Lys Val Asp Tyr Ser Glu Pro Ser Val Mis Lys Pro Gly Lys Phe Ser Arg Ala Glu Ala Leu Ala Lys Ala Leu Ala Lys Ala Lus Ala Lys Ala Ala Lys	Glu	Leu	Phe		Gln	Arg	Asp	Pro		Trp	Lys	Lys	Lys		Glu	Asp
370 375 380 His Lys Pro Gly Lys Pho Ser Arg Ala Glu Ala Leu Ala Lus Ile His Ala Ala Lys Glu Arg Ile Ala Clu Ala A	Val	Phe		Gln	Glu	Met	Leu		His	Glu	Asp	Ile		Thr	Gln	Lys
385390395400AspSerAsnGluAspIleThrThrArgSerSerMetAlaLysIleHisAspTrpValLysGluArgIleAlaGluAspIleAlaGluAspProGluAlaAsnAleThrGlnSerLeuIleThrArgGluLeuGluSerGluArgLysValIleLysAspTyrLeuAspLeuAlaAspAspAlaCluAspAspAlaValValAspIleLysAspTyrLeuAspLeuAlaAspAspAlaLusAspValAspThrProAf50NLusAspLeuAlaAspAspAlaLusAlaAspAspAlaGluAspAf5NLusAspAspAlaAspAspAspAlaAspAlaGluAlaAspAf65NNAlaAspAspAlaAspAspAlaAspAla	Ala		Lys	Gln	Phe	Lys		Asp	Tyr	Ser	Glu		Glu	Gln	Pro	Val
405 410 415 Asp Trp Val Lys Glu Arg Ile Ala Glu Arg Ile Ala Ala Ala Ass Ile Thr Gln Ser Leu Ile Thr Arg Glu Arg Glu Leu Gly Ser Gly Arg Lys Val Ile Lys Asp Tyr Leu Asp Leu Gly Ser Gly Arg Lys Val Asp Thr Arg Glu Leu Gly Ser Gly Arg Lys Val Asp Leu Ala Asp		Lys	Pro	Gly	Lys		Lys	Ser	Arg	Ala		Ala	Leu	Ala	Ala	
420425430Gln Ser Leu Ile Thr Arg Glu Leu Gly Ser Gly Arg Lys Val Ile Lys 435Asp Tyr Leu Asp Leu Ala Asp Asp Ala Leu Ala Val Val Asn Thr Pro 450Val Asp Asp Ala Val Val Glu Val Glu Val Pro Ala Asp Val Pro Ala Ala Glu 465Asp Yal Pro Ala Ala Glu 480Lys Gln Pro Lys Lys Ala Gln Lys Pro Arg Leu Val Ala His Gln Val 485Asp Asp Ala Val Clu Ala Trp Ala Leu Val Glu Glu Glu Glu Val 500Asp Asp Ala Val Ule Lys Gly Thr Arg Val Glu Ala Met Thr Ala Ala 515Trp Glu Ala Ser Gln Lys Ala Leu Asp Asp	Asp	Ser	Asn	Glu		Ile	Thr	Thr	Arg		Ser	Met	Ala	Lys		His
435 440 445 Asp Tyr Leu Asp Leu Asp	Asp	Trp	Val	-	Glu	Arg	Ile	Ala		Aab	Pro	Glu	Ala		Ile	Thr
450455460ValAspAspAlaValValProAlaAspValProAlaAlaGlu465AspAspAspAlaValValProAlaAspValProAlaAlaGluLysGlnProLysLysAlaGlnLysProArgAlaHisGlnValAspAspGluHisTrpGluAlaTrpAlaTrpAlaGluGluGluGluValAlaArgValLysIleLysGlyThrArgValGluAlaAlaAlaAlaAlaTrpGluAlaSerGlnLysAlaLeuAspAspAspAlaAlaAlaAlaTrpGluAlaSerGlnLysAlaLeuAspAspAsp	Gln	Ser		Ile	Thr	Arg	Glu		Gly	Ser	Gly	Arg		Val	Ile	Lys
465470475480LysGlnProLysAlaGlnLysProArgLeuValAlaHisGlnValAspAspGluHisTrpGluAlaTrpAlaLeuValGluGluGluGluValAlaArgValLysIleLysGlyThrArgValGluGluGluGluGluAlaAlaAlaArgValLysIleLysGlyThrArgValGluAlaMetThrAlaAlaTrpGluAlaSerGlnLysAlaLeuAspAsp	Asp		Leu	Asp	Leu	Ala		Asp	Ala	Leu	Ala		Val	Asn	Thr	Pro
485490495Asp Asp Glu His Trp Glu Ala Trp Ala Leu Val Glu Gly Glu Glu Glu Val 500505510Ala Arg Val Lys Ile Lys Gly Thr Arg Val Glu Ala Met Thr Ala Ala 515520525Trp Glu Ala Ser Gln Lys Ala Leu Asp Asp		Aab	Aab	Ala	Val		Glu	Val	Pro	Ala		Val	Pro	Ala	Ala	
500505510Ala Arg Val Lys Ile Lys Gly Thr Arg Val Glu Ala Met Thr Ala Ala 515520525Trp Glu Ala Ser Gln Lys Ala Leu Asp Asp	Lys	Gln	Pro	Lys	-	Ala	Gln	Lys	Pro	-	Leu	Val	Ala	His		Val
515 520 525 Trp Glu Ala Ser Gln Lys Ala Leu Asp Asp	Asp	Asp	Glu		Trp	Glu	Ala	Trp		Leu	Val	Glu	Gly		Glu	Val
	Ala	Arg		Lys	Ile	ГЛа	Gly		Arg	Val	Glu	Ala		Thr	Ala	Ala
	Trp		Ala	Ser	Gln	Lys		Leu	Asp	Asp						

<210> SEQ ID NO 14 <211> LENGTH: 4055

<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Escherichia coli bacteriophage N15 telomerase (telN) and secondary immunity repressor (cA) nucleic acid sequence <400> SEQUENCE: 14 catatgcact atatcatatc tcaattacgg aacatatcag cacacaattg cccattatac 60 gcgcgtataa tggactattg tgtgctgata aggagaacat aagcgcagaa caatatgtat 120 ctattccggt gttgtgttcc tttgttattc tgctattatg ttctcttata gtgtgacgaa 180 agcagcataa ttaatcgtca cttgttcttt gattgtgtta cgatatccag agacttagaa 240 acggggggaac cgggatgagc aaggtaaaaa tcggtgagtt gatcaacacg cttgtgaatg 300 aggtagaggc aattgatgcc tcagaccgcc cacaaggcga caaaacgaag agaattaaag 360 ccgcagccgc acggtataag aacgcgttat ttaatgataa aagaaagttc cgtgggaaag 420 gattqcagaa aagaataacc gcqaatactt ttaacgccta tatgagcagg gcaagaaagc 480 qqtttqatqa taaattacat cataqctttq ataaaaatat taataaatta tcqqaaaaqt 540 atcctcttta cagcgaagaa ttatcttcat ggctttctat gcctacggct aatattcgcc 600 agcacatgtc atcgttacaa tctaaattga aagaaataat gccgcttgcc gaagagttat 660 caaatgtaag aataggctct aaaggcagtg atgcaaaaat agcaagacta ataaaaaaat 720 atccagattg gagttttgct cttagtgatt taaacagtga tgattggaag gagcgccgtg 780 actatettta taagttatte caacaagget etgegttgtt agaagaacta caccagetea 840 aggtcaacca tgaggttctg taccatctgc agctaagccc tgcggagcgt acatctatac 900 agcaacgatg ggccgatgtt ctgcgcgaga agaagcgtaa tgttgtggtt attgactacc 960 caacatacat gcagtctatc tatgatattt tgaataatcc tgcgacttta tttagtttaa 1020 acactegtte tggaatggea eetttggeet ttgetetgge tgeggtatea gggegaagaa 1080 tgattgagat aatgtttcag ggtgaatttg ccgtttcagg aaagtatacg gttaatttct 1140 cagggcaagc taaaaaacgc tctgaagata aaagcgtaac cagaacgatt tatactttat 1200 gcgaagcaaa attattcgtt gaattattaa cagaattgcg ttcttgctct gctgcatctg 1260 atttcgatga ggttgttaaa ggatatggaa aggatgatac aaggtctgag aacggcagga 1320 taaatgctat tttagcaaaa gcatttaacc cttgggttaa atcatttttc ggcgatgacc 1380 gtcgtgttta taaagatagc cgcgctattt acgctcgcat cgcttatgag atgttcttcc 1440 gcgtcgatcc acggtggaaa aacgtcgacg aggatgtgtt cttcatggag attctcggac 1500 acgacgatga gaacacccag ctgcactata agcagttcaa gctggccaac ttctccagaa 1560 cctggcgacc tgaagttggg gatgaaaaca ccaggctggt ggctctgcag aaactggacg 1620 atgaaatgcc aggctttgcc agaggtgacg ctggcgtccg tctccatgaa accgttaagc 1680 agctqqtqqa qcaqqaccca tcaqcaaaaa taaccaacaq cactctccqq gcctttaaat 1740 ttagcccgac gatgattagc cggtacctgg agtttgccgc tgatgcattg gggcagttcg 1800 ttggcgagaa cgggcagtgg cagctgaaga tagagacacc tgcaatcgtc ctgcctgatg 1860 aagaatccgt tgagaccatc gacgaaccgg atgatgagtc ccaagacgac gagctggatg 1920 aagatgaaat tgagctcgac gagggtggcg gcgatgaacc aaccgaagag gaagggccag 1980 aagaacatca gccaactgct ctaaaacccg tcttcaagcc tgcaaaaaat aacggggacg 2040 gaacgtacaa gatagagttt gaatacgatg gaaagcatta tgcctggtcc ggccccgccg 2100 atagecetat ggeegeaatg egateegeat gggaaaegta etaeagetaa aagaaaagee 2160

75

-continued

accggtgtta	atcggtggct	tttttattga	ggcctgtccc	tacccatccc	ctgcaaggga	2220
cggaaggatt	aggcggaaac	tgcagctgca	actacggaca	tcgccgtccc	gactgcaggg	2280
acttccccgc	gtaaagcggg	gcttaaattc	gggctggcca	accctatttt	tctgcaatcg	2340
ctggcgatgt	tagtttcgtg	gatagcgttt	ccagetttte	aatggccagc	tcaaaatgtg	2400
ctggcagcac	cttctccagt	tccgtatcaa	tatcggtgat	cggcagctct	ccacaagaca	2460
tactccggcg	accgccacga	actacatcgc	gcagcagctc	ccgttcgtag	acacgcatgt	2520
tgcccagagc	cgtttctgca	gccgttaata	tccggcgcac	gtcggcgatg	attgccggga	2580
gatcatccac	ggttattggg	ttcggtgatg	ggttcctgca	ggcgcggcgg	agagccatcc	2640
agacgccgct	aacccatgcg	ttacggtact	gaaaactttg	tgctatgtcg	tttatcaggc	2700
ccgaagttct	tctttctgcc	gccagtccag	tggttcaccg	gcgttcttag	gctcaggctc	2760
gacaaaagca	tactcgccgt	ttttccggat	agctggcaga	acctcgttcg	tcacccactt	2820
gcggaaccgc	caggctgtcg	tcccctgttt	caccgcgtcg	cggcagcgga	ggattatggt	2880
gtagagacca	gattccgata	ccacatttac	tteeetggee	atccgatcaa	gtttttgtgc	2940
ctcggttaaa	ccgagggtca	atttttcatc	atgatccagc	ttacgcaatg	catcagaagg	3000
gttggctata	ttcaatgcag	cacagatatc	cagcgccaca	aaccacgggt	caccaccgac	3060
aagaaccacc	cgtatagggt	ggctttcctg	aaatgaaaag	acggagagag	ccttcattgc	3120
gcctccccgg	atttcagctg	ctcagaaagg	gacagggagc	agccgcgagc	ttcctgcgtg	3180
agttcgcgcg	cgacctgcag	aagttccgca	gcttcctgca	aatacagcgt	ggcctcataa	3240
ctggagatag	tgcggtgagc	agagcccaca	agcgcttcaa	cctgcagcag	gcgttcctca	3300
atcgtctcca	gcaggccctg	ggcgtttaac	tgaatctggt	tcatgcgatc	acctcgctga	3360
ccgggatacg	ggctgacaga	acgaggacaa	aacggctggc	gaactggcga	cgagettete	3420
gctcggatga	tgcaatggtg	gaaaggcggt	ggatatggga	tttttgtcc	gtgcggacga	3480
cagctgcaaa	tttgaatttg	aacatggtat	gcattcctat	cttgtatagg	gtgctaccac	3540
cagagttgag	aatctctata	ggggtggtag	cccagacagg	gttctcaaca	ccggtacaag	3600
aagaaaccgg	cccaaccgaa	gttggcccca	tctgagccac	cataattcag	gtatgcgcag	3660
atttaacaca	caaaaaaaca	cgctggcgcg	tgttgtgcgc	ttcttgtcat	tcggggttga	3720
gaggcccggc	tgcagatttt	gctgcagcgg	ggtaactcta	ccgccaaagc	agaacgcacg	3780
tcaataattt	aggtggatat	tttaccccgt	gaccagtcac	gtgcacaggt	gtttttatag	3840
tttgctttac	tgactgatca	gaacctgatc	agttattgga	gtccggtaat	cttattgatg	3900
accgcagcca	ccttagatgt	tgtctcaaac	cccatacggc	cacgaatgag	ccactggaac	3960
ggaatagtca	gcaggtacag	cggaacgaac	cacaaacggt	tcagacgctg	ccagaacgtc	4020
gcatcacgac	gttccatcca	ttcggtattg	tcgac			4055
<220> FEAT	TH: 631 : PRT NISM: Artif: JRE:	_		acteriophage	e N15 telome	rase

<223> OTHER INFORMATION: Escherichia coli bacteriophage N15 telomerase amino acid sequence

<400> SEQUENCE: 15

Met Ser Lys Val Lys Ile Gly Glu Leu Ile Asn Thr Leu Val Asn Glu 1 5 10 15

																_
Val	Glu	Ala	Ile 20	Asp	Ala	Ser	Asp	Arg 25	Pro	Gln	Gly	Asp	Lys 30	Thr	Lys	3
Arg	Ile	Lys 35	Ala	Ala	Ala	Ala	Arg 40	Tyr	Lys	Asn	Ala	Leu 45	Phe	Asn	Asp	ò
Lys	Arg 50	Lys	Phe	Arg	Gly	Lys 55	Gly	Leu	Gln	Lys	Arg 60	Ile	Thr	Ala	Asn	n
Thr 65	Phe	Asn	Ala	Tyr	Met 70	Ser	Arg	Ala	Arg	Lys 75	Arg	Phe	Asp	Asp	Lys 80	3
Leu	His	His	Ser	Phe 85	Asp	Lys	Asn	Ile	Asn 90	Lys	Leu	Ser	Glu	Lys 95	Tyr	r
Pro	Leu	Tyr	Ser 100	Glu	Glu	Leu	Ser	Ser 105	Trp	Leu	Ser	Met	Pro 110	Thr	Ala	a
Asn	Ile	Arg 115	Gln	His	Met	Ser	Ser 120	Leu	Gln	Ser	Lys	Leu 125	Lys	Glu	Ile	Ð
Met	Pro 130	Leu	Ala	Glu	Glu	Leu 135	Ser	Asn	Val	Arg	Ile 140	Gly	Ser	Lys	Gly	7
Ser 145	Asp	Ala	Lys	Ile	Ala 150	Arg	Leu	Ile	Lys	Lys 155	Tyr	Pro	Asp	Trp	Ser 160	
Phe	Ala	Leu	Ser	Asp 165	Leu	Asn	Ser	Asp	Asp 170	Trp	Lys	Glu	Arg	Arg 175	Asp	?
Tyr	Leu	Tyr	Lys 180	Leu	Phe	Gln	Gln	Gly 185	Ser	Ala	Leu	Leu	Glu 190	Glu	Leu	ı
His	Gln	Leu 195	Lys	Val	Asn	His	Glu 200	Val	Leu	Tyr	His	Leu 205	Gln	Leu	Ser	r
Pro	Ala 210	Glu	Arg	Thr	Ser	Ile 215	Gln	Gln	Arg	Trp	Ala 220	Asp	Val	Leu	Arg	3
Glu 225	Lys	Lys	Arg	Asn	Val 230	Val	Val	Ile	Asp	Tyr 235	Pro	Thr	Tyr	Met	Gln 240	
Ser	Ile	Tyr	Asp	Ile 245	Leu	Asn	Asn	Pro	Ala 250	Thr	Leu	Phe	Ser	Leu 255	Asn	n
Thr	Arg	Ser	Gly 260	Met	Ala	Pro	Leu	Ala 265	Phe	Ala	Leu	Ala	Ala 270	Val	Ser	r
Gly	Arg	Arg 275	Met	Ile	Glu	Ile	Met 280	Phe	Gln	Gly	Glu	Phe 285	Ala	Val	Ser	r
Gly	Lys 290	Tyr	Thr	Val	Asn	Phe 295	Ser	Gly	Gln	Ala	Lуз 300	Гла	Arg	Ser	Glu	ı
Asp 305	Lys	Ser	Val	Thr	Arg 310	Thr	Ile	Tyr	Thr	Leu 315	Cys	Glu	Ala	Lys	Leu 320	
Phe	Val	Glu	Leu	Leu 325	Thr	Glu	Leu	Arg	Ser 330	Суз	Ser	Ala	Ala	Ser 335	Asp	?
Phe	Asp	Glu	Val 340	Val	Lys	Gly	Tyr	Gly 345	Lys	Asp	Aap	Thr	Arg 350	Ser	Glu	ı
Asn	Gly	Arg 355	Ile	Asn	Ala	Ile	Leu 360	Ala	Lys	Ala	Phe	Asn 365	Pro	Trp	Val	L
Lys	Ser 370	Phe	Phe	Gly	Asp	Asp 375	Arg	Arg	Val	Tyr	Lys 380	Asp	Ser	Arg	Ala	a
Ile 385	Tyr	Ala	Arg	Ile	Ala 390	Tyr	Glu	Met	Phe	Phe 395	Arg	Val	Asp	Pro	Arg 400	-
	Lys	Asn	Val	Asp 405	Glu	Asp	Val	Phe	Phe 410		Glu	Ile	Leu	Gly 415		
Aap	Aap	Glu			Gln	Leu	His	-		Gln	Phe	Lys			Asn	n
Phe	Ser	Arg	420 Thr	Trp	Arg	Pro	Glu	425 Val	Gly	Asp	Glu	Asn	430 Thr	Arg	Leu	ı

continued

												con	cin	ued		
		435					440					445				
Val	Ala 450	Leu	Gln	Lys	Leu	Asp 455	Asp	Glu	Met	Pro	Gly 460	Phe	Ala	Arg	Gly	
-		Gly	Val	Arg	Leu 470	His	Glu	Thr	Val	-		Leu	Val	Glu		
465 Asp	Pro	Ser	Ala	Lys	470 Ile	Thr	Asn	Ser	Thr	475 Leu	Arg	Ala	Phe	Lys	480 Phe	
Ser	Pro	Thr	Met	485 Tle	Ser	Ara	Tvr	Leu	490 Glu	Phe	Ala	Ala	Asn	495 Ala	Leu	
			500			-	-	505					510			
GIY	GIN	рпе 515	vai	GIY	Glu	Asn	520	GIN	Trp	GIN	Leu	Lуз 525	IIe	GIU	Inr	
Pro	Ala 530	Ile	Val	Leu	Pro	Asp 535	Glu	Glu	Ser	Val	Glu 540	Thr	Ile	Asp	Glu	
Pro 545	Asp	Aab	Glu	Ser	Gln 550	Asp	Asp	Glu	Leu	Asp 555	Glu	Asp	Glu	Ile	Glu 560	
Leu	Asp	Glu	Gly	Gly 565	Gly	Asp	Glu	Pro	Thr 570	Glu	Glu	Glu	Gly	Pro 575	Glu	
Glu	His	Gln	Pro 580	Thr	Ala	Leu	Lys	Pro 585	Val	Phe	Lys	Pro	Ala 590	Lys	Asn	
Asn	Gly	Asp 595	Gly	Thr	Tyr	Lys	Ile 600	Glu	Phe	Glu	Tyr	Asp 605	Gly	Lys	His	
Tyr	Ala 610		Ser	Gly	Pro	Ala 615		Ser	Pro	Met	Ala 620		Met	Arg	Ser	
Ala 625		Glu	Thr	Tyr	Tyr 630						- 20					
<223 <220 <221 <222 <223 <220 <221 <222 <223 <220 <221 <222 <222 <222 <222 <222 <222	b3 5 5 5 5 5 5 5 5 5 5 5 5 5	THER THER ACT OF THER SATUI SA	INF riop RE: KEY: INF RE: INF INF INF INF INF INF INF INF	hage mis (1) DRMA mis (5) DRMA (9) DRMA mis (13) DRMA mis (17)	TION perr c_fec (1 TION c_fec (1 TION c_fec)(2 TION c_fec)(1 TION	fect ature) : n . ature 0) : n . ature 14) : n . ature 14)	inve e is a is a e is a e is a	erted c, c, c, c,	g, (g, (g, (opeat or t or t or t	sequ	ence	for	a me	esophili	2
<221 <222	.> NA :> LC	AME/I DCAT	KEY: ION:	(22	c_fea)(: TION	22)		c	а (or t						
			NCE :					- 1	5.	2						
ncat	nnta	ann (cgnn	tann	at gi	n										22
	.> LI		D NO H: 2													

<211> LENGIH: 22 <212> TYPE: DNA

- -213> ORGANISM: Artificial Sequence -220- REAMURE.	
<pre><220> FEATURE: <223> OTHER INFORMATION: particularly preferred perfect inverted repeat</pre>	
sequence for use with E.coli phage N15 and Klebsiella phage Phi	
KO2 protelomerases	
Kol procedulerabeb	
<400> SEQUENCE: 17	
ccattatacg cgcgtataat gg 22	
<210> SEQ ID NO 18	
<211> LENGTH: 22	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: particularly preferred perfect inverted repeat	
sequence for use with Yersinia phage PY54 protelomerase	
<400> SEQUENCE: 18	
gcatactacg cgcgtagtat gc 22	
gcatactacg cgcgtagtat gc 22	
<210> SEQ ID NO 19	
<211> LENGTH: 22	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: particularly preferred perfect inverted repeat	
sequence for use with Halomonas phage phiHAP-1 protelomerase	
<400> SEQUENCE: 19	
CHOON SEQUENCE: IN	
ccatactata cgtatagtat gg 22	
5 5 55	
<210> SEQ ID NO 20	
<211> LENGTH: 22	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: particularly preferred perfect inverted repeat sequence for use with Vibrio phage VP882 protelomerase	
sequence for use with visito phage vrooz procetomerase	
<400> SEQUENCE: 20	
gcatactata cgtatagtat gc 22	
-210- CEO ID NO 21	
<210> SEQ ID NO 21 <211> LENGTH: 14	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<220> FEATORE:	
<223> OTHER INFORMATION: particularly preferred perfect inverted repeat	
<223> OTHER INFORMATION: particularly preferred perfect inverted repeat sequence for use with a Borrelia burgdorferi protelomerase	
<223> OTHER INFORMATION: particularly preferred perfect inverted repeat	
<223> OTHER INFORMATION: particularly preferred perfect inverted repeat sequence for use with a Borrelia burgdorferi protelomerase <400> SEQUENCE: 21	
<223> OTHER INFORMATION: particularly preferred perfect inverted repeat sequence for use with a Borrelia burgdorferi protelomerase	
<223> OTHER INFORMATION: particularly preferred perfect inverted repeat sequence for use with a Borrelia burgdorferi protelomerase <400> SEQUENCE: 21	
<223> OTHER INFORMATION: particularly preferred perfect inverted repeat sequence for use with a Borrelia burgdorferi protelomerase <400> SEQUENCE: 21	
<223> OTHER INFORMATION: particularly preferred perfect inverted repeat sequence for use with a Borrelia burgdorferi protelomerase <400> SEQUENCE: 21 attatatat taat 14	
<223> OTHER INFORMATION: particularly preferred perfect inverted repeat sequence for use with a Borrelia burgdorferi protelomerase <400> SEQUENCE: 21 attatatat taat 14 <210> SEQ ID NO 22	
<223> OTHER INFORMATION: particularly preferred perfect inverted repeat sequence for use with a Borrelia burgdorferi protelomerase <400> SEQUENCE: 21 attatatat taat 14 <210> SEQ ID NO 22 <211> LENGTH: 24	
<223> OTHER INFORMATION: particularly preferred perfect inverted repeat sequence for use with a Borrelia burgdorferi protelomerase <400> SEQUENCE: 21 attatatat taat 14 <210> SEQ ID NO 22 <211> LENGTH: 24 <212> TYPE: DNA	
<223> OTHER INFORMATION: particularly preferred perfect inverted repeat sequence for use with a Borrelia burgdorferi protelomerase <400> SEQUENCE: 21 attatatat taat 14 <210> SEQ ID NO 22 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: particularly preferred perfect inverted repeat	
<pre><223> OTHER INFORMATION: particularly preferred perfect inverted repeat sequence for use with a Borrelia burgdorferi protelomerase <400> SEQUENCE: 21 attatatat taat 14 <210> SEQ ID NO 22 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: particularly preferred perfect inverted repeat sequence for use with a Borrelia burgdorferi protelomerase <400> SEQUENCE: 21 attatatat taat 14 <210> SEQ ID NO 22 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: particularly preferred perfect inverted repeat sequence for use with Vibrio phage VP882 protelomerase	
<223> OTHER INFORMATION: particularly preferred perfect inverted repeat sequence for use with a Borrelia burgdorferi protelomerase <400> SEQUENCE: 21 attatatat taat 14 <210> SEQ ID NO 22 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: particularly preferred perfect inverted repeat	
<223> OTHER INFORMATION: particularly preferred perfect inverted repeat sequence for use with a Borrelia burgdorferi protelomerase <400> SEQUENCE: 21 attatatat taat 14 <210> SEQ ID NO 22 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: particularly preferred perfect inverted repeat sequence for use with Vibrio phage VP882 protelomerase <400> SEQUENCE: 22	
<223> OTHER INFORMATION: particularly preferred perfect inverted repeat sequence for use with a Borrelia burgdorferi protelomerase <400> SEQUENCE: 21 attatatat taat 14 <210> SEQ ID NO 22 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: particularly preferred perfect inverted repeat sequence for use with Vibrio phage VP882 protelomerase	
<223> OTHER INFORMATION: particularly preferred perfect inverted repeat sequence for use with a Borrelia burgdorferi protelomerase <400> SEQUENCE: 21 attatatat taat 14 <210> SEQ ID NO 22 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: particularly preferred perfect inverted repeat sequence for use with Vibrio phage VP882 protelomerase <400> SEQUENCE: 22	
<223> OTHER INFORMATION: particularly preferred perfect inverted repeat sequence for use with a Borrelia burgdorferi protelomerase <400> SEQUENCE: 21 attatatat taat 14 <210> SEQ ID NO 22 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: particularly preferred perfect inverted repeat sequence for use with Vibrio phage VP882 protelomerase <400> SEQUENCE: 22 ggcatactat acgtatagta tgcc 24	
<223> OTHER INFORMATION: particularly preferred perfect inverted repeat sequence for use with a Borrelia burgdorferi protelomerase <400> SEQUENCE: 21 attatatat taat 14 <210> SEQ ID NO 22 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: particularly preferred perfect inverted repeat sequence for use with Vibrio phage VP882 protelomerase <400> SEQUENCE: 22	

<212> TYPE: DNA

<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: particularly preferred perf carupace for use with Versinia phase DVE4 pret</pre>	=
sequence for use with Yersinia phage PY54 prot	eromerase
acctatttca gcatactacg cgcgtagtat gctgaaatag gt	42
<210> SEQ ID NO 24 <211> LENGTH: 90 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: particularly preferred perf sequence for use with Halomonas phage phiHAP-1	
<400> SEQUENCE: 24	
cctatattgg gccacctatg tatgcacagt tcgcccatac tatacgta	ta gtatgggcga 60
actgtgcata cataggtggc ccaatatagg	90
<210> SEQ ID NO 25 <211> LENGTH: 56 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Particularly preferred prot sequence	elomerase target
<400> SEQUENCE: 25	
tatcagcaca caattgccca ttatacgcgc gtataatgga ctattgtg	tg ctgata 56
<210> SEQ ID NO 26 <211> LENGTH: 42 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Particularly preferred prot sequence	elomerase target
<400> SEQUENCE: 26	
atgcgcgcat ccattatacg cgcgtataat ggcgataata ca	42
<210> SEQ ID NO 27 <211> LENGTH: 52 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Particularly preferred prot sequence	elomerase target
<400> SEQUENCE: 27	
tagtcaccta tttcagcata ctacgcgcgt agtatgctga aataggtt	ac tg 52
<210> SEQ ID NO 28 <211> LENGTH: 90 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Particularly preferred prot sequence	elomerase target
<400> SEQUENCE: 28	
gggatcccgt tccatacata catgtatcca tgtggcatac tatacgta	ta gtatgccgat 60
gttacatatg gtatcattcg ggatcccgtt	90

86

85

-continued

<210> SEQ ID NO 29 <211> LENGTH: 38 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Particularly preferred protelomerase target sequence <400> SEQUENCE: 29 tactaaataa atattatata tataattttt tattagta 38 <210> SEQ ID NO 30 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PT1F primer <400> SEQUENCE: 30 22 atgagcaagg taaaaatcgg tg <210> SEQ ID NO 31 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PT1R primer <400> SEQUENCE: 31 22 ttagctgtag tacgtttccc at <210> SEQ ID NO 32 <211> LENGTH: 62 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: RL1 <400> SEQUENCE: 32 agetttatea geacaeaatt geeeattata egegegtata atggaetatt gtgtgetgat 60 ag 62 <210> SEQ ID NO 33 <211> LENGTH: 62 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: RL2 <400> SEQUENCE: 33 gateetatea geacacaata gteeattata egegegtata atgggeaatt gtgtgetgat 60 62 aa <210> SEQ ID NO 34 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Sac pGL <400> SEQUENCE: 34 22 gtgcaagtgc aggtgccaga ac

<210> SEQ ID NO 35 <211> LENGTH: 27

-continued		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Bam pGL		
<400> SEQUENCE: 35		
gataaagaag acagtcataa gtgcggc	27	
<210> SEQ ID NO 36 <211> LENGTH: 56 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Complement to SEQ ID NO: 25		
<400> SEQUENCE: 36		
tatcagcaca caatagtcca ttatacgcgc gtataatggg caattgtgtg ctgata	56	
<210> SEQ ID NO 37 <211> LENGTH: 56 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: telR		
<400> SEQUENCE: 37		
tatcagcaca caattgccca ttatacgcgc gtataatggg caattgtgtg ctgata	56	
<210> SEQ ID NO 38 <211> LENGTH: 56 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: telL <400> SEQUENCE: 38		
tatcagcaca caatagtcca ttatacgcgc gtataatgga ctattgtgtg ctgata	56	
<210> SEQ ID NO 39 <211> LENGTH: 42 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Complement of SEQ ID NO: 26 <400> SEQUENCE: 39		
tgtattatcg ccattatacg cgcgtataat ggatgcgcgc at	42	
<210> SEQ ID NO 40 <211> LENGTH: 52 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Complement of SEQ ID NO: 27		
<400> SEQUENCE: 40		
cagtaaccta tttcagcata ctacgcgcgt agtatgctga aataggtgac ta	52	
<210> SEQ ID NO 41 <211> LENGTH: 90 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Complement of SEQ ID NO: 28		
ADD CEOUENCE, 41		

<400> SEQUENCE: 41

continued	
aacgggatcc cgaatgatac cacatgtaac atcggcatac tatacgtata gtatgccaca	60
tggatacatg tatgtatgga acgggatece	90
<210> SEQ ID NO 42 <211> LENGTH: 38 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Complement of SEQ ID NO: 29	
<400> SEQUENCE: 42	
tactaataaa aaattatata tataatattt atttagta	38

60

The invention claimed is:

1. A process for production of linear double stranded deoxyribonucleic (DNA) covalently closed at both ends by hairpin loops, comprising:

- (a) amplifying by rolling circle amplification a DNA template comprising at least one protelomerase target sequence to produce a product comprising multiple protelomerase target sequences; and
- (b) producing linear double stranded DNA covalently closed at both ends by hairpin loops by contacting the product comprising multiple protelomerase target sequences produced in (a) with at least one protelomerase under suitable conditions,
- wherein steps (a) and (b) occur in an in vitro cell-free environment.

2. The process of claim 1, wherein primers for the amplification are random primers.

3. The process of claim **1**, wherein a DNA polymerase for ³⁵ the amplification is phi29 of SEQ ID NO: 2 or a variant thereof which comprises a sequence having at least 95% identity to SEQ ID NO: 2 and/or said protelomerase is bacteriophage N15 TelN of SEQ ID NO: 15 or a variant thereof which comprises a sequence having at least 95% identity to ⁴⁰ SEQ ID NO: 15.

4. The process of claim **1**, wherein said at least one protelomerase target sequence comprises a perfect inverted repeat DNA sequence.

5. The process of claim **1**, wherein said DNA template is a closed circular DNA.

6. The process of claim 1, wherein said DNA template is a linear double stranded DNA covalently closed at both ends by hairpin loops.

7. The process according to claim 1, wherein said DNA template comprises an expression cassette comprising a eukaryotic promoter operably linked to a coding sequence of interest.

8. The process according to claim **7**, wherein said expres- 55 sion cassette is flanked on either side by a protelomerase target sequence.

9. A process according to claim **1**, which produces a linear double stranded expression cassette DNA that is covalently closed at both ends by hairpin loops.

10. The process of claim **1**, which further comprises purifying the linear double stranded DNA covalently closed at both ends by hairpin loops produced in (b).

11. A process according to claim **1** comprising formulating the resulting linear double stranded DNA covalently closed at 65 both ends by hairpin loops with a pharmaceutically acceptable carrier or excipient to make a pharmaceutical composi-

tion comprising a linear double stranded DNA covalently closed at both ends by hairpin loops.

90

12. The process according to claim **6**, wherein said DNA template is incubated under denaturing conditions to form a closed circular DNA.

13. The process according to claim 6, wherein said expression cassette comprises a eukaryotic transcription termination sequence.

14. The process according to claim 7, wherein said coding sequence of interest is a human coding sequence or a coding sequence from a pathogen that infects humans.

15. A process for production of linear double stranded30 deoxyribonucleic (DNA) covalently closed at both ends by hairpin loops, comprising:

- (a) amplifying a DNA template comprising more than one protelomerase target sequence to produce a product comprising multiple protelomerase target sequences; and
- (b) producing linear double stranded DNA covalently closed at both ends by hairpin loops by contacting the product comprising multiple protelomerase target sequences produced in (a) with at least one protelomerase under suitable conditions,
- wherein steps (a) and (b) occur in an in vitro cell-free environment.

16. The process of claim **15**, wherein said DNA template is a closed circular DNA.

17. The process of claim 15, wherein said DNA template is a linear double stranded DNA covalently closed at both ends by hairpin loops.

18. The process according to claim 15, wherein said DNA template comprises an expression cassette comprising a eukaryotic promoter operably linked to a coding sequence of interest.

19. The process according to claim **18**, wherein said expression cassette is flanked on either side by a protelomerase target sequence.

20. A process according to claim **15**, which produces a linear double stranded expression cassette DNA that is covalently closed at both ends by hairpin loops.

21. The process of claim **15**, which further comprises purifying the linear double stranded DNA covalently closed at both ends by hairpin loops produced in (b).

22. A process according to claim **15** comprising formulating the resulting linear double stranded DNA covalently closed at both ends by hairpin loops with a pharmaceutically acceptable carrier or excipient to make a pharmaceutical composition comprising a linear double stranded DNA covalently closed at both ends by hairpin loops.

23. The process according to claim **17**, wherein said DNA template is incubated under denaturing conditions to form a closed circular DNA.

24. The process according to claim **15**, wherein said DNA template is amplified by polymerase chain reaction.

25. The process of claim **1**, wherein a DNA polymerase for the amplification is phi 29 of SEQ ID NO: 2 or a variant thereof which comprises a sequence having at least 95% identity to SEQ ID NO: 2 and said protelomerase is bacteriophage N15 TelN of SEQ ID NO: 15 or a variant thereof 10 which comprises a sequence having at least 95% identity to SEQ ID NO: 15.

26. A process according to claim **25**, wherein the amplifying step occurs at a temperature of about 25 to about 35 degrees centigrade and wherein the producing step occurs at 15 a temperature of about 25 to about 35 degrees centigrade.

27. A process according to claim **26**, wherein said protelomerase target sequence comprises the sequence of SEQ ID NO 25.

28. The process of claim **1**, wherein steps (a) and (b) occur 20 simultaneously.

29. The process of claim **1**, wherein steps (a) and (b) occur consecutively.

* * * * *