«» UK Patent Application «.GB .2 299483 ., A

(43) Date of A Publication 02.10.1996

(21) Application No 9506199.0

(22) Date of Filing 27.03.1995

(71) Applicant(s}
Northern Telscom Limited

(Incorporated in Canada - Quebec)

World Trade Center of Montreal,
380 St Antoine Street West,8th Floor, Montreal,
Quebec H2Y 3Y4, Canada

(72) Inventor(s)
Stuart Bond
Jon Coward
Phillip William Hobson
Kevin John Twitchen

(74) Agent and/or Address for Service
JP W Ryan
Norte! limited, West Road, HARLOW, Essex,
CM20 2SH, United Kingdom

(61) INT CLS
H04Q 3/545

(62) UK CL {Edition O)
H4K KDD

{66) Documents Cited
None

(58) Field of Search
NO SEARCH PERFORMED: SECTION 17(5)(B)

(54) Switch reconfiguration

(57) The operationality of instructions (605) arranged to
control a telecommunication or data transfer switch (602)
by referring to originating encoding instructions (606). A
module of instructions forming part of the encoded sets
(606) of originating instructions is identified and said
module is processed (609) to obtain definitions of the
interactivity of said module with other modules of said set
and the interactivity with signal transmissions external to
said module. This facilitates the generation (611) of
replacement originating instructions from which new
executable instructions are generatable (611) and
executable after being embedded within said switching
means (605).

Generate Encoded p
Instructions

Convert To Executable | 607
Instructions

! 608
I Download To Switch -

|

609~ l
e Operationality Of
Module To Produce
Interface Definitions
610)|
Another Module ?
611~ I No

~
I Generate New Instructions

Yas

612~ l

CGombine With Existing
L—{ Modules To Provide Full Set
Of Modules

613 l
Convert To Executable
Instructions

614)|
r Download To Switch |

] Figure 6

Vv €8 66C ¢ 9O

1/11

101

Figure 1

204

203

DMPX

202

202

2/1

Matrix

§
Control |

Figure 2

205

MPX

206

3/11

& aInbi

S0e S0E

B $ess
O /:\uuu// \n\\\\\\
Jie O m_ 90€ 3/
Ty \z0¢
806~ /1
GlLg /K\ | __
81€ I e
/
9ie I
/
\ , \\
tie LLE 0g \R\
f __ ﬁl? !
gl N
106 QmA
/% pig NHM o0 X

5/11

20§

suonpuog
-ald

SUONIPUOY

-1s0d f

e1s

sabueyn ejeq

~

143

%

0

S

6/11

Generate

Instructions

Convert To

Instructions

Executable

y

X

606
Encoded j’
1/ 607

1 Download To Switch ‘If

605 601

609~ 1

A’nalyse Operationality Of
Module To Produce)
Interface Definitions

>

:

o

Another

610¥

Module ?

}ej

No

611~
~

y

Generate New Instructions I

612~ ,

Y

4

Combine With Existing
Modules To Provide Full Set
Of Modules

613)

Y

[~ Convert To Executable
Instructions
614

A=

Download

To Switch]

A

y

y

| Executable

Instructions
- 60
Swithh
144 &

N

::l,\

YN

604

603

Figure 6

7/11

606

[Select Procedure For Analysis I

702~[Parse Module To Produce]

701 ~\

Internal Representation And
User Comments

703
N Tag Statements Relevant To
Interface Information
704 \["Deduce Paths Which Indiude
Tagged Steps
705\
" Define Interface Constraints
706

Q(Embed As Comments ?

Yes
' 707_Embed Constraints As Commentsl

In Existing Procedure

y

610 |

Figure 7

8/11

701]

Identify Proce

dure Name And 801
ervices Available

A

4

: : 802
Identify Internal State Variables ;r

A

Y

: : 803
Identify External State Variables ~|/

y

Identify Service

804
Request Details -r

: 805
Identify Pre-Conditions :I
_ \ 4
Identify Post Conditions And 806
Observables

3

y

807
Identify Exceptions j

h 4
Identify Service Parameter '/ 808

| Txpe Expansions

809
Identify Procedure Constraints r

70s_]| Figure 8

Pre-Conditions

@ (915) @ ?S.a"
(o7

922f 920 923
l r 922

Post-
Conditions FI g ure 9

10/11

[703

1001
Initiate Initial path jf

y 1002
Examine Current Statement

1003

Is Current Statement End Yes
Of Procedure ? /

v No
Is Current Statement, 1004
Current Path Return Position ?

No Yes /-1012
Is Current Path Taggled ?

Goto Next
Statement

4

”1

No 1013 |
Flag Current Path Origin'atorJ

/1 006
| Is Current Statement
A Branch ?
1007~ No Yes

Is Current Statement
Tagged ?

As Not Important

y
Remove PathJ
L .

Exit l.J
1005

Figure 10

1014

f\'l 008

Tag Current Path]/

A4

Initiate New Path |

1009
[

4 As Originator At New Path

'

1011
Set New Path As NOT Tagged {
T]

. 1010
Set Current Statement {

11/11

705

Initiate Initial path

“[1101

11097

Goto Next
Path

/-1108

Goto Next
| Statement

&

y

Examine Current Path

[1102

1103
<is Current Path Th;&;s 1110

EndPath?

No

Get Statement]’ 1104

| 1105
Is Statement Tagged AsX No |
Interface Contract ?

Yes

Exit

———

y 1106
Add Statement To
Interface Contract File

1107
[

No / o
—ls Statement End At Path 75,

Yes

Figure 11

10

15

20

25

2299483

SWITCH RECONFIGURATION

The present invention relates to a method and apparatus for replacing
a first set of control instructions configured to control operations of a
telecommunications switching means with an upgraded set of control

instructions produced by processing a first set of originating instructions.

In recent years it has been appreciated that the modification of control
instructions in major systems is by no means a straightforward matter and
over the years improved techniques have been developed for constructing
large collections of instructions for operation in real time, in environments

where errors could result in major systems failure.

A significant amount of time and money was often spent in the
development of control instructions and, although it is often desirable to make
upgrades, it is also desirable to obtain maximum benefit from existing code.
Although the size of existing instruction is large and is often not consistent
with modern development techniques, it does in itself provide two distinctive
advantages. Firstly, it exists, and does not require additional investment in
order for it to be created. Secondly, given the fact that generally, it will have

been in operation for several years, it is tried and tested.

To an operational manager deriving benefits from existing systems, the
associated instructions are perceived as something of great value, and is often
referred to as "heritage" code. However, to the development engineer, the
existing code provides major problems, in that it, generally, is not consistent
with modern techniques and modern procedures. In particular, it has been

found in recent years that object-oriented environments are particularly suited

10

15

20

25

2

to defining telecommunications functionality, given their inherent modularity.
Development Engineers tend not, therefore, to see existing earlier instruction
suites in such glowing light and tend to refer to them as a "legacy" to be

tolerated, rather than an inheritance to be appreciated!

When presented with a legacy system of this type it is not uncommon
to be referring to several million lines of executable statements and

maintenance engineers may adopt one of two clear strategies.

Firstly, they could continue to operate in the manner anticipated by
their predecessors. Thus, they would continue to use the earlier techniques
and develop systems in accordance with the tried and trusted methods. The
second option would be to effectively discard all of the previous legacy
instructions and start again, defining each of ;he modules in accordance with
modern object-oriented techniques. However, although appearing to be
attractive, such a strategy would in itself present several risks. Firstly, it is
possible that the investment required would be too large, thereby creating an
intolerable burden in terms of the development costs. Secondly, it is likely
that the systems must interface with other systems, therefore it would not be
entirely possible to disregard all of the legacy systems because they may
belong to another party. Thirdly, a major re-write of all of the instructions
would take a significant period of time. It is therefore possible that
procedures adopted at the beginning of a development process, although

modern in their time, would rapidly become out of date.

According to a first aspect of the present invention, there is provided
apparatus for replacing a first set of control instructions configured to control
operations of a telecommunications switching means, with an upgraded set of

control instructions produced by processing a first set of originating

10

15

20

25

3

instructions, comprising analysing means for analysing the function specified
by said first set of originating instructions; generating means for generating
an updated set of originating instructions; converting means for converting
said upgraded set of originating instructions to produce said set of control
instructions; and downloading means for downloading said upgraded control
instructions on to said telecommunication switching means, wherein said
analysing means comprises selecting means for selecting a bounded module
having a plurality of statements, executable by said switch after conversion,
of which some are arranged to communicate across said boundary; labelling
means for labelling statements in said module arranged to control
communication across said boundary, which thereby represent the interface
characteristics of said boundary; processing means for processing said
statements to produce interface specifications; and means for generating
enhanced originating instructions in response to said processed interface

specifications.

In a preferred embodiment, statements within a selected module are
grouped together to define a plurality of procedures and interface statements

are processed sequentially for each of said procedures.

Preferably, the processing means examines paths through the statements
executable after conversion to control instructions, and retains paths which

include statements labelled by the labelling means.

According to a second aspect of the present invention there is provided
a method of replacing a first set of control instructions configured to control
operations of a telecommunications switching means with an upgraded set of
control instructions produced by processing a first set of originating

instructions, comprising steps of analysing the functions specified by said first

10

15

20

4

set of originating instructions; generating an upgraded set of originating
instructions; converting said upgraded set of originating instructions to
produce said upgraded set of control instructions; and downloading said
upgraded control instructions onto said telecommunications switching means,
wherein said analysing step comprises selecting a bounded module having a
plurality of statements, executable by said switch after conversion, of which
some are arranged to communicate across said boundary; labelling statements
in said module which are arranged to control communication across said
boundary, and thereby represent the interface characteristics of said boundary;
processing said statements to produce interface specifications; and generating
enhanced originating instructions in response to said processed interface

specifications.

The invention will now be described by way of example only with

reference to the accompanying drawings, in which:

Figure 1 shows a classical telecommunications environment having a

plurality of analogue telephones connected to a local exchange.
Figure 2 shows a digital switching sub-system;
Figure 3 shows part of a complex digital telecommunications network;

Figure 4 shows a hierarchical representation of a network of the type

identified in Figure 3;

Figure 5 shows an example of relationships between modules of
instructions for controlling operation of switching systems of the type shown

in Figure 3;

10

15

20

5

Figure 6 illustrates a machine executable routine for processing
modules of the type shown in Figure 5 for execution on a switch of the type
shown in Figure 3, including a step which analyses the operationality of a

module to produce interface definitions;

Figure 7 details the analysis step identified in Figure 6, including a
step for the tagging of relevant procedures and a step for deducing paths
which include tagged steps;

Figure 8 details the tagging step shown in Figure 7;

Figure 9 shows an example of a module under analysis;

Figure 10 details the deduction of paths step shown in F igure 7; and

Figure 11 details the definition of interface constraint step identified

in Figure 7.

A classical telecommunications environment is shown in Figure 1, in
which a plurality of analogue telephones 101 are connected to a local
exchange 102 via respective communication links 103 in the form of a twisted
pair of copper conductors. The local exchange 102 is also connected to other
similar local exchanges 104, 105 and 106 and in a real network, the number
of local exchanges connected to the network would be very large indeed,

covering large geographical areas.

The local exchanges are connected via trunk cables 107 and
traditionally these trunk cables were also provided in the form of copper

conducting cables. Consequently, the cost of providing all this cabling was

10

15

20

25

6

quite significant and represented a substantial proportion of the overall cost
of the network. The total cost of the switching apparatus was relatively low,
therefore more could be invested on this apparatus an attempt to maximise the
efficiency of the available cable. This led to the use of frequency division
multiplexing, so as to increase the number of communication channels which

could be conveyed along a common physical link.

The ability to increase the number of transmission paths provided by
a single physical link was enhanced in the 1970s by the utilisation of digital
transmission techniques, which allowed many pulse code modulated signals
to be combined by a process of byte multiplexing. Thus, a four kilohertz
analogue telephone signal could be represented as a sixty four kilobit per
second digital bit stream, whereafter thirty of such channels could be
combined, together with signalling information, to provide a 2.048 megabit

per second multiplex.

In order to facilitate digital transmission of this type, characteristics of
the exchanges, such as exchanges 102, 104, 105 and 106 in F igure 1, became
increasingly complex and significant circuit design was required in order to
provide platforms which in turn could make available the required level of
functionality. Thus, no longer were local exchanges merely required to
provide switching mechanisms for analogue signals, they were required to
provide analogue-to-digital conversion, time switching, in addition to space
switching, and multiplexing, where appropriate, for transmission over

multiplexed trunk cables.

It was soon realised that the level of multiplexing could be increased

and standards were established for transmitting at one hundred and forty

10

15

20

25

7

megabits per second and five hundred and sixty five megabits per second,

effectively giving a deep hierarchy of available bit rates.

The transmission of digital data over substantial bandwidth provision,
enabled other communications services to be incorporated within a network
which was originally provided solely for the transmission of relatively low
bandwidth speech signals. As soon as it became apparent that a premium
charge could be placed on data transmission of this type, the race was on for
establishing connection points within existing networks for commercial
purposes. Thus, in addition to speech telephones being connected through
switched telephone networks, it became possible to connect data processing
equipments separated by large geographical distances and thereby significantly

improve the overall flow of data between displaced sites.

This process was further enhanced by the introduction of synchronous
transmission systems which in turn facilitated data ports to be provided at
many different data rates, without disrupting the overall integrity of the
multiplexing and transmissions systems. This in turn led to a vast expansion
in the number of services which could be provided within the network and the
level of intelligence which could be embedded within the network. A
retention of hard-wired switching sub-systems would have effectively led to
a stagnation of this expansion process and it therefore became inevitable that
switching systems of this type would be replaced with adaptable
programmable systems, in which general purpose hardware switching matrices
would be configured in response to executable instructions. Thus, as far as
the switching sub-system is concerned, local executable instructions may be
considered as the means by which switching functionality, in terms of actual
hardware components, is configured, so as to provide a level of system

functionality within the network environment.

10

15

20

25

8

A typical switching sub-system operating under these conditions is
illustrated in Figure 2. A switching matrix 201 receives input channels 202
from a de-multiplexing device 203. The de-multiplexing device 203 in turn
receives trunk cables 204, each arranged to convey a plurality of multi-

multiplexed signals.

Each line 202 supplied to the matrix 201 includes a thirty channel time
multiplex and within the matrix 201 time switching occurs, in which the
positions of time slots are re-arranged and space switching occurs in which
data conveyed within a particular multiplex is switched to another multiplex.
Thereafter, the switched time multiplexes are supplied to a re-multiplexing
circuit 205, which in turn provides outputs on trunk cables 206, conveying
higher order digital multiplex signals.

The matrix 201 itself contains all the physical elements required to
perform switching operations. The actual switchin g operations themselves are
effected under the control of the central controlling device 207, that is itself
arranged to execute control instructions and supply control signals to the

matrix 201 over control lines 208.

Digital switching sub-systems of the type shown in Figure 1 allow
telecommunications networks to be built up, as illustrated in Figure 3. Thus,
in Figure 3 a local exchange 301 is similar to local exchange 102 shown in
Figure 1. Similarly telephones 302 and 303 may be identical to telephones
101 shown in Figure 1 and communicate with the local exchange 301 over
analogue twisted pairs. However, at the local exchange the analogue signals
are converted into digital signals, thereby facilitating transmission over trunk

cables, such as trunk cable 304, in the form of a time division multiplex.

10

15

20

25

9

Given that local exchange 301 operates within a digital environment,
it is also configured to communicate with digital telephones 305. These
digital telephones are connected, via digital communication channels 306, to
a line concentrator 307. Thus, in the example shown in Figure 3, five digital
telephones 305 are connected to the concentrator 304, but only a total of three
digital lines 308 are provided in order to connect the concentrator 307 to the
local exchange 301. At the local exchange 301 analogue signals received
from telephones 302 and 303 are converted into digital signals and combined
with digital signals originating from concentrator 307 such that, from the rest

of the networks standpoint, the signals are effectively equivalent.

The trunk cable 304 in the example shown in Figure 3 is arranged to
convey a thirty channel multiplex. However, this cable is supplied to an
intermediate exchange 309, arranged to receive similar multiplexes, such as
on line 310 and thereafter combine these multiplexes into a higher order of
multiplexing for transmission over a trunk cable 311. Similarly, a further
level of concentration may be provided at an intermediate switching station
312 which in tumn provides an even higher level of multiplexing for
transmission over trunk cable 313. Furthermore, signals multiplexed to this
level of concentration may also be supplied to microwave links, illustrated by

microwave dish 314.

The multiplexing performed by the configuration shown in Figure 3 is
synchronous, such that it is possible for a two megabit link to be provided to
a data processing facility 315 over a direct data digital communication 316.
Thus, at the intermediate exchange 309, the digital multiplex received from
processing station 315 may be considered in a substantially similar way to the

speech multiplexes received on communication trunks 304 and 310.

10

15

20

25

10

Similarly, intermediate exchange 312 may provide an even higher
digital bandwidth, say sixty four megabits per second, to a high powered data
processing system 317 over a direct digital link 318. Again, at digital
exchange 312, data received over the communication path 318 is considered
in substantially the same way as the multiplex received from exchange 309
over trunk 311.

The ability to reconfigure the functionality of individual operating sub-
systems, in response to executable instructions, facilitates the construction of
complex communication environments as shown in Figure 3. In addition, it
will readily be appreciated that a first level or layer of instructions may be
provided in order to control the operations of individual components, with
higher layers of functionality being provided in order to co-ordinate the
operation of individual sub-systems within the overall network. Thus, the
development of systems of this type has led to a hierarchical and modular

approach.

In conventional communication networks, hierarchies were effectively
geographical and the provision of resources were dictated by the allocation
of bandwidth. However, due to increasing levels of multiplexing and the
introduction of relatively inexpensive optical fibre links, the cost of
transmitting signals over large distances has reduced dramatically, therefore
the hierarchy of distributed switching systems may be considered in terms of

their functionality, rather than their geographical displacement.

An illustration of this hierarchical approach is shown in Figure 4.
Thus, a first tier of communication represents the highest level of bandwidth
communication, provided between central switching sites, which may in turn

be distributed globally. Below this a second tier 402 unifies switching

10

15

20

25

11

operations being performed at a lower concentration of multiplexing, with a

similar reduced level of multiplexed communication occurring at a third tier

of operation 403.

Each unit within the tier will have its own set of control instructions,
with control instructions co-ordinating operations within a tier and an overall

operational contro! being effected at a management control level 404.

In addition, greater levels of functionality have been provided to
individual telephone subscribers, providing services such as call forward and
automatic redial etc. These services may be added to existing networks by
upgrading and modifying instructions executable on switching sub-systems.
An advantage of such an approach is that it is possible to add additional
functionality while minimising the amount of time during which the sub-
system itself is placed off-line. This is because new instructions may be
developed on independent development platforms, tested and only then
converted into an executable form, suitable for downloading onto the

switching system itself.

In many situations a modular approach has been adopted in terms of
creating modules of instructions, ultimately executable on switching sub-
systems. Originating instructions usually consist of identifiable lines and in
many situations the number of lines present in the originating instructions
may run into many thousands, possibly millions. These lines of instructions
however do form part of identifiable modules and in many circumstances it
is possible to upgrade modules without needing to reconstruct the whole set
of executable instructions. However, this exercise is not as straightforward

as it may appear, given that, over the years, modifications will have been

10

15

20

25

12

made and a complete analysis of the existing instructions may be difficult to

locate and comprehend.

A graphical representation of a set of originating instructions is
illustrated in Figure S. The instructions are identified as residing within
respective modules. Thus, a set of instructions, possibly in the form of
several files each containing several thousand lines of instructions, are present
within a module 51, with a similar set within module 52, a similar set within
module 53 and so on for modules 54, 55, 56 and 57. Figure 5 is merely
illustrative and in a real working set of instructions the number of modules

present may be significantly larger.

The arrows connecting the modules shown in Figure 5 represent their
inter-dependency. Thus, when instructions resident within module 51 are
being executed, these instructions may in turn make a call to instructions
within module 52, illustrated by arrow 508. Similarly, module 502 may call
503, which in turn may also call back to 502 in a recursive manner or call
module 507. Thus, a complex network of inter-relations have been built up,
in which new modules are added, usually to provide enhanced functionality,
while at the same time, making calls to existing modules so as to make use
of instruction sets already present within the overall system and, ideally, to
reduce the total size of the instructions required in order to operate the

switching system.

Within each module a degree of functionality is provided. Thus, to
provide an illustration, it is assumed that the instructions defined within
module 507 have become obsolete and it would be desirable, in order for the
switch as a whole to provide the new required level of functionality, to

replace the instructions contained within module 507 with new instructions,

10

15

20

25

13
possibly created using new techniques and implementing new automated

procedural tools etc.

On the whole, it should be a quite straightforward matter to generate
new instructions for execution within module 507, so as to provide the
required level of functionality. However, it should be appreciated from the
inter-dependency of modules illustrated in Figure 5, that it is not possible to
construct instructions for module 507 in complete isolation. Careful
consideration must be taken of the interactivity of the instructions contained
within module 507 with its co-operating modules. Thus, a specification must
be drawn up which details the required level of functionality required by new
module 507. However, in addition, the specification must also include a
detailed description of how module 507 communicates or interfaces with the
rest of the overall instruction environment. Thus, in a particular example, it
can be seen that module 507 is itself invoked in response to a call originating
from module 503 or module 504. Thus, instructions contained within module
507 must be responsible to these particular types of invocations, which will
be set in accordance with instructions resident within modules 503 and 504.
Modules 503 and 504 will invoke module 507 in a particular way, therefore
this definition must include an interface specification. Similarly, module 507
is itself required to invoke the assistance of module 506 and again the
particular nature of this invocation will be specified, such that the interface
between modules 507 and 506 is maintained and module 506 is unaware that

module 507 has been replaced.

Ultimately, control signals and other types of signals must be generated
by the overall set of instructions and, similarly, the instructions will be
arranged to receive signals emanating from their local exchange hardware

and, probably, emanating from other units within the overall structure. Thus,

10

15

20

25

14

as shown in Figure 5, modules 501, 503 and 506 are arranged to perform
communications with external devices and the nature of these communications
must also be specified for the respective module interfaces. Thus, before
work can start in preparing new instructions for a particular module, it is
necessary to accurately define its interface with other modules within the set
of instructions. In order to do this, the instructions themselves are processed,
thereby generating an indication as to the nature of the interface and
facilitating the creation of new instructions which, although providing a new
level of functionality within the overall network, will interface with existing
modules in substantially the same way as the previous module that has been

replaced.

Each module is constructed from a plurality of inter-related procedures,
each identified by its own procedure or file name. The procedures contain
a list of statements which, once converted and downloaded onto the switch

602 are executable on a line-by-line basis.

Internal procedures are shown within module 506. A call from module
507 is directed towards procedure 508, resulting in an invocation of said
procedure. Procedure 508 may therefore be identified as a "public”
procedure, given that it experiences a degree of communication which Crosses
the module boundary. Procedure 508 may in turn call procedure 509 which
in turn may call procedure 510. Procedures 509 and 510 do not communicate
across the module boundary and are therefore identified as "private"
procedures. Procedure 511 is callable by procedure 510 and this procedure
also communicates across the module boundary, therefore defining it as a
"public" procedure. Thus, in order for procedure 511 to interface correctly,
pre-conditions 512, post-conditions 513 and data changes 514 must be

specified.

10

15

20

25

15

A procedure for processing modules in order to define interface
constraints is shown in Figure 6. A switching system 601 includes a switch
602, arranged to receive incoming data on line 603 and to transmit outgoing
data on line 604. The operation and configuration of switching mechanisms
within switch 602 is accurately controlled in response to the execution of

executable instructions, received from a storage device 605.

Prior to the actual installation and commissioning of switching system
601, encoded instructions were generated at a step 606. These instructions
would have been converted at step 607 into an executable form and at step
608 the instructions were downloaded to the instruction storage memory

device 605.

The instructions generated at step 606 were of the modular type
illustrated in Figure 5 and it will be assumed that a large number of upgrades
and modifications have been made, thereby creating a problem in terms of

generating and upgrading individual modules within the suite.

In order to facilitate this upgrading and in order to specify the interface
constraints for individual modules, the original encoded instructions,
representing the operationality of the executable instructions supplied to the
switch itself, are analyzed at step 609. Thus, at step 609 the modules of
instructions are processed to obtain definitions of interactivity with other
modules within the set of modules and to obtain definitions of interactivity
with signal transmissions external to the module. Thus, in this way, the
generation of replacement originating instructions, from which new executable
instructions are generatable, is significantly facilitated, thereby providing
enhanced functionality to the switching system 601 when the new executable

instructions have been embedded within the switching system.

10

15

20

25

16

At step 610 a question is asked as to whether another module is to be

analyzed and if answered in the affirmative, control is returned to step 609.

If a question asked at step 610 is answered in the negative, new
instructions are generated at step 611 in response to the interface analysis
made at step 609. At step 612 the new instructions are combined with the
existing modules, that is all the modules except for the module for which new
instructions have been produced, so as to generate a full set of instructions in

encoded form.

At step 613 these encoded instructions are converted to executable
form, a process similar to that performed at step 607 and at step 614 the

executable instructions are downloaded onto the switching system 601.

The analysis step 609 is detailed in Figure 7. At step 701 a module
is selected for analysis which, thereafter, is parsed to produce an internal
representation of the instructions to be executed, along with details of user

comments included in the originating encoded instructions.

Thus, the parsing step 701 builds up an internal data representation of
the source originating encoded instructions and extracts user comments
therefrom, which may be later reproduced in the interface specification. The
parsing process is similar to initial procedures used to convert encoded
instructions into executable instructions, as identified at step 607 in Figure 6.
This machine readable form of the encoded instructions allows subsequent
processing to analyze these instructions and thereafter produce a detailed
account of the behaviour of the procedures executed by instructions contained
within the module. The behaviour of the procedure represents the tasks that

can be expected to be performed by that particular module and this will be

10

15

20

25

17

determined by the transitions of inputs to outputs and changes made to global
variables and structures after an invocation of the routines contained within
the module. Thus, step 702 represents procedures by which the encoded
instructions may be retained within memory locations of an analysing

platform, thereby allowing it to make a technical assessment of its interface

definitions.

At step 703 the procedures parsed at step 702 are considered to
identify particular individual steps which are relevant to interface information.
Thus, at step 703 it is possible to identify actual procedures which may be
perceived from an interface to the procedure and will therefore undergo
modification, possibly, when the procedure is invoked. Thus, it is these
particular relationships which will need to be considered in terms of an
interface definition, on the assumption that the interfaces are actually invoked

when the routine under consideration is called for execution.

At step 704 executions of the parsed code are simulated, and particular
consideration is given to the tagged steps identified at step 703. Thus, from
an interface standpoint, only paths which include tagged steps are required to

be deduced, in order that a full specification of the interface may be defined.

Thereafter, having significantly reduced the number of possible paths,
to those procedures tagged at step 703, the definition of the interface

constraints are defined.

At step 706 a question is asked as to whether comments, defining the
interface constraints of the procedures deduced by the previous steps, are to
be embedded within the encoded procedures of the module. If answered in

the affirmative, the constraints are embedded in the existing module

10

15

20

25

18

instructions, resulting in the source instructions being updated so as to include
the constraints comments. After step 707 or as a result of 706 being
answered in the negative, control is directed to step 610 which, as shown in
Figure 6, asks as to whether another module is to be considered. If answered
in the affirmative, control is returned to step 701 and another module is

selected.

As previously stated, the parsing step at step 702 is substantially
similar to procedures performed at steps 607 and 613, in order to convert the
encoded instructions into an executable form for execution on the switching
system 601. After step 702, the processing of the parsed encoded statements
takes on a different form, in order to specify the interface constraints. The

tagging of relevant statements, at step 703, is detailed in Figure 8.

At step 801 the name of the a procedure under review is identified and
recorded. In addition, step 801 also searches for the names of all procedures
within the module which are accessible from outside the module. As used
herein, such procedures will be referred to as being publicly accessible while
procedures which are purely accessible from within the module itself and are
not accessed from outside the module, will be referred to as private
procedures. Procedure names are tagged so that they can be identified
subsequently, whereafter they may be considered as services, given that each
procedure which may be invoked externally represents a particular service

within the module which needs to be expressed in the module interface.

At step 802 the names of internal state variables are identified. These
are the variables that are shared by the service within the module but are
entirely private to the module. Interactions with these variables can only take

place through the services of the module itself. It is only necessary to

10

15

20

19

identify the internal state variables that are used to determine a particular
outcome of a service request, referred to herein as a post-condition or those

which form the basis for a post-condition by virtue of the given service

causing them to be updated.

It is not necessary to model changes to variables that do not directly

affect the outcome of this or of other services within the module. These

internal variables are ignored.

Thus, internal variables which are relevant to the interface operation
of the module are tagged. Step 802 then goes on to identify the particular
type of the tagged variables, given that it is necessary to have at least a high

level type expansion for each of the internal state variables so tagged.

At step 803 the names of the external state variables are identified by
tracking the instance of the variable to its declaration. If it is declared in the
module’s private interface, it represents an internal state variable. However,
if it is declared in the module’s public interface or in another module, it
represents an external state variable. If the instance of the variable is a
pointer, it is necessary to determine whether the construction of the pointer

is at an internal or an external state variable.

The external state variables are those which are shared by services
within the module and, in addition, are also accessible to other modules and
services. The particular external variables that are tagged consist of those
which are used to determine the particular outcome of a service request, that
is to say, a post-condition, and those which form the basis of a post-condition

by virtue of the given service updating them.

10

15

20

20

External state variables are accessed by other services and modules and
therefore it is important to capture changes that may be made to them by the
particular service under analysis. Again, the particular types of the variable

is also identified.

At step 804 an identification is made of the service request details.
Each service includes a service request rule, in the form of the service name
followed by the list of parameter types associated to the request. The
parameters and parameter types are recorded and classified in accordance as

to whether they are read by the service or updated by the service.

At step 805 an identification is made of pre-conditions. Pre-conditions
represent constraints imposed upon the requests made to the particular service
under consideration, that must be satisfied before the request service can be

expected to perform in a predictable way.

The pre-conditions may be summarised as service request pre-

conditions, pre-conditions on success and weak pre-conditions.

Service request pre-conditions are those expressed before a service can
be requested. For example, it may be that a service can only be requested
provided that another service has been successfully requested previously.
Another example is a situation in which two state variables must be equal

before the service can be requested.

Pre-conditions on success are all the pre-conditions that must be
satisfied in order to guarantee the success of the requested service. The
service implementation will often include checks to deal with the violation of

pre-conditions. This violation will generally produce an error therefore at

10

15

20

25

21

step 805 an examination is made as to how and where these errors are
generated, which in turn indicates the conditions that need to be satisfied in

order for the service to perform successfully.

Weak pre-conditions are conditions defining types of variables,
therefore a weak precondition of the service is one stating that variables must

be of the correct type.

At step 806 post-conditions are identified, representing the results of
a service request. Post-conditions of the given service will indicate the
changes made to step variables, service request parameters and return values.
The service may terminate in a plurality of possible states, depending on its
behavioural characteristics. However, once the service parameters and state
variables effected by the service have been identified, it is possible to
determine the changes made to them and hence to identify the post-conditions

of the service.

At step 807 an identification is made of exceptions. Exceptions are the
error and success return codes from the service request. These may be in the
form of a return or update parameter and they show if the service request
finished with a successful code or if some error was returned, due to the input
parameters being incorrect or some other conditions not being met. Once an
error return code has been identified, it is possible to search the code for
where these error return codes are assigned. Exceptions can be found if a

precondition violation check fails.

At step 808 service parameter type expansions are identified. Having
collected all of the parameter types at step 804, it is now necessary to

discover the types that these parameters refer to. The underlying definitions

10

15

20

25

22

for the service parameter types will have been modelled as close to defined
types as possible, in order that the implications of changes to them can be

realised.

At step 809 an identification of module constraints is made. These are
constraints on state variables and service parameters that hold for the module
as a whole. For example, a constraint may consist of a constant that is
referred to in a service and that is deemed to be of significance in
determining the satisfaction of a precondition violation or the calculation of

a post- condition.

Thus, after completing the step shown in Figure 8, individual
procedures will have been tagged, which are considered to be relevant in
terms of the interface specification for the module. It is now possible to
deduce actual state paths at step 704 from the tagged procedures identified at
step 703.

A diagrammatic representation of a particular instruction procedure,
such as module 511 of module 506 shown in Figure 5, is shown in Figure 9.
In order for the procedure to be invoked, certain pre-conditions must be
satisfied and at the termination of the invocation certain post-conditions will
have been set. As previously stated, it is essential for these pre-conditions
and post-conditions to be known if the module is to be re-engineered and then

successfully embedded within the executable instructions for the switch.

The procedures executed upon invocation of the procedure shown in
Figure 9 may be represented as a plurality of identifiable statements. Thus,
after invocation, statement 901 is executed followed by the execution of

statement 902. Statement 902 takes the form of a question, usually in the

10

15

20

25

23
form of, IF a certain a condition is satisfied, control is directed to statement

903, ELSE control is directed to step 912.

Similarly, at statement 903 further branching occurs, such that, in
response to specified conditions, control would be directed to statement 904
or statement 910. Similarly, after execution of statement 904, statement 905
is executed, with control then being directed to statement 906. As shown in
Figure 9, after the execution of statement 910, control is directed to statement
911, which again results in control being directed to statement 906. Thus,
statements 904 and 905 represent a first branch with statements 910 and 911
representing an alternative branch, both of these branches being nested within

the structure lying between statements 902 and 907.

After the execution of statement 907, control is directed to statement
908 and thereafter control is directed to the end condition, resulting in the

final post-conditions being satisfied.

After implementing statement 902, control is directed to statement 913,
consisting of a three-way branching point at which, subject to certain
conditions being satisfied, will result in control being directed to statement
914, 919 or 921. After completion of statement 914, control is directed to
statement 915, which in turn is followed by statement 916, followed by
statement 917 and statement 918. Similarly, after control has been directed
to procedure 919, control is directed to procedure 920, which terminates the

level of nesting by redirecting control to procedure 918.

Alternatively, if control is directed to procedure 921, this is followed
by procedure 922, followed by a return to procedure 920. Thus, procedure

920 represents a point at which a level of nesting is completed, the further

10

15

20

25

24

level of nesting being completed by control being directed to procedure 918.
Statement 922 is also capable of making a call to another procedure, say

public procedure 510, in the module, as represented by arrow 923.

Thus, it can be seen that a plurality of paths are available in order to
traverse from the invocation of the module to the termination of the module.
In practice, the number of possible paths can be extremely large, in the order
of millions. However, it is not necessary to consider all of these paths in
order to specify interface information. The task involved in specifying
interface information can be reduced significantly, if the interface related
paths may be separated from those which do not affect the relationship

between the pre-conditions and the post-conditions.

Referring to Figure 7, at step 703, procedures relevant to interface
information were identified and tagged. The tagging of such procedures is
identified in Figure 9 by the states being enclosed in a square tagging box
922. Thus, procedures 911, 915 and 917 are relevant in terms of specifying
the interfaces. Thus, in order to completely define the interface, it is only
necessary to consider the paths which includes these tagged procedures. As
far as the interface information is concerned, the other paths may be ignored,
thereby significantly reducing the size of the task in hand. Typically,
modules that include and define in the order of over two million paths may
be reduced to a sub-set of less than one hundred paths which need to be

considered for interface purposes.

At procedure 704 paths which include tagged procedures are identified
so that, by looking at these paths in greater detail, the actual interface
constraints may be defined at step 705.

10

15

20

25

25

The deduction of paths which include tagged procedures is detailed in
Figure 10. At step 1001 an initial path is initiated and at step 1002 the next
statement identified in that path is examined. At step 1003 a question is
asked as to whether the current statement is an end of procedure and if

answered in the affirmative control is directed to step 1005, at which the

routine terminates.

If the question asked at step 1003 is answered in the negative, to the
effect that the current statement is not an end of procedure, a question is
asked at step 1004 as to whether the current statement represents the return
position for the current path. If answered in the negative, control is directed
to step 1006, at which is asked as to whether the current statement is a
branch. If answered in the negative, control is directed to step 1007 at which
a question is asked as to whether the current statement has been tagged. If

answered in the negative, the next statement is considered and control is

returned to step 1002.

If a question asked at step 1007 is answered in the affirmative, to the
effect that the current statement has been tagged, the path as a whole is
tagged at step 1008 and control is then returned to step 1002.

If the question asked at step 1006 is answered in the affirmative, to the
effect that the current statement is a branch, a new path is initiated at step
1009 and at step 1010 a current statement is set to the effect that it originates
a new path. At step 1011 a new path, defined at step 1010, is provisionally
set as not being tagged and control is then returned to step 1002.

If a level of nesting has been identified, by the question asked at step

1006 being answered in the affirmative, the question asked at step 1004 will

10

15

20

25

26

also, eventually, be answered in the affirmative, given that the path must
return when a statement is identified at step 1004 as the current path return
position. Thus, when the question asked at step 1004 is answered in the
affirmative a question is asked at step 1012 as to whether that current path
has been tagged. If this question is answered in the affirmative, control is

returned to step 1002.

If a question asked at step 1012 is answered in the negative, the current
path originator is flagged as not being important at step 1013 and at step 1014

the path is removed and the routine exits at step 1005.

At step 704 of Figure 7, for deducing paths which include tagged steps,
is detailed in Figure 11. An initial path is identified at step 1101 and
examined at step 1102. A question is asked at step 1103 as to whether the
current path is the end path and if answered in the affirmative control exits

at 1110.

If a question asked at step 1103 is answered in the negative, a
statement is examined at step 1104 and at step 1105 a question is asked as to
whether the statement has been tagged as relating to the interface. If this
question is answered in the affirmative, control is directed to step 1106 at
which the statement is added to a file defining the interface. Thereafter,

control is returned to step 1104 and the next statement is examined.

If the statement identified at step 1104 has not been tagged, the
question asked at step 1105 is answered in the negative and control is directed
to step 1107. At step 1107 a question is asked as to whether the statement
is an end of path. If answered in the negative control is returned to step 1104

and the next statement of that path is considered. Alternatively, if the

27

question asked at step 1007 is answered in the affirmative, control is returned
to step 1102 and the next path is considered.

10

15

20

25

28
CLAIMS

1. Apparatus for replacing a first set of control instructions
configured to control operations of a telecommunications switching means,
with an upgraded set of control instructions produced by processing a first set
of originating instructions, comprising

analysing means for analysing the function specified by said first set
of originating instructions;

generating means for generating an updated set of originating
instructions;

converting means for converting said upgraded set of originating
instructions to produce said set of control instructions; and

downloading means for downloading said upgraded control instructions
on to said telecommunication switching means, wherein said analysing means
comprises

selecting means for selecting a bounded module having a plurality of
statements, executable by said switch after conversion, of which some are
arranged to communicate across said boundary;

labelling means for labelling statements in said module arranged to
control communication across said boundary, which thereby represent the
interface characteristics of said boundary;

processing means for processing said statements to produce interface
specifications; and

means for generating enhanced originating instructions in response to

said processed interface specifications.

2. Apparatus according to claim 1, wherein statements within a
selected module are grouped together to define a plurality of procedures and

interface statements are processed sequentially for each of said procedures.

10

15

20

29
3. Apparatus according to claim 1, wherein said labelling means
includes means for labelling internal variables relevant to said interface

information.

4, Apparatus according to claim 1, wherein said labelling means

includes means for labelling external variables relevant to said interface

information.

5. Apparatus according to claim 1, wherein said labelling means
includes means for identifying pre-conditions relevant to said interface

information.

6. Apparatus according to claim 1, wherein said labelling means
includes means for identifying post-conditions relevant to said interface

information.

7. Apparatus according to claim 1, wherein said processing means
examines paths through said statements executable after conversion to control
instructions, and retained paths which include statements labelled by said

labelling means.

8. A method of replacing a first set of control instructions
configured to control operations of a telecommunications switching means
with an upgraded set of control instructions produced by processing a first set
of originating instructions, comprising steps of

analysing the functions specified by said first set of originating
instructions;

generating an upgraded set of originating instructions;

10

15

20

25

30

converting said upgraded set of originating instructions to produce said
upgraded set of control instructions; and

downloading said upgraded control instructions onto said
telecommunications switching means, wherein said analysing step comprises

selecting a bounded module having a plurality of statements,
executable by said switch after conversion, of which some are arranged to
communicate across said boundary;

labelling statements in said module which are arranged to control
communication across said boundary, and thereby represent the interface
characteristics of said boundary;

processing said statements to produce interface specifications; and

generating enhanced originating instructions in response to said

processed interface specifications.

9. A method according to claim 8, wherein statements within a
selected module are grouped together to define a plurality of procedures; and

interface statements are processed sequentially for each of said procedures.

10. A method according to claim 8, wherein said step of labelling
statements which communicate across said boundary includes labelling

internal variables relevant to said interface information.

11. A method according to claim 8, wherein said step of labelling
statements which communicate across said boundary includes labelling

external variables relevant to said interface information.

12. A method according to claim 8, wherein said step of labelling
statements which communicate across said boundary includes identifying pre-

conditions relevant to said interface information.

31
13. A method according to claim 8, wherein said step of labelling

statements which communicate across said boundary includes labelling post-

conditions relevant to said interface information.

14. A method according to claim 8, wherein said step of processing
said statements includes examining paths through said statements, executable
after conversion to control instructions, and retaining paths which include said

labelled statements.

