
US 20210273981A1
MIN IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0273981 A1

Stach et al . (43) Pub . Date : Sep. 2 , 2021

65/608 (2013.01) ; H04L 67/02 (2013.01) ;
H04L 65/601 (2013.01)

(54) METHOD FOR ESTABLISHING A
COMMUNICATION CONNECTION WHICH
IS SUITABLE FOR TRANSMITTING MEDIA
STREAMS BETWEEN A FIRST RTC CLIENT
AND A SECOND RTC CLIENT

(57) ABSTRACT

(71) Applicant : RingCentral , Inc. , Belmont , CA (US)

(72) Inventors : Thomas Stach , Wien (AT) ; Ernst
Horvath , Wien (AT) ; Johannes
Winter , Gumpoldskirchen (AT)

(73) Assignee : RingCentral , Inc. , Belmont , CA (US)

(21) Appl . No .: 17 / 322,708

(22) Filed : May 17 , 2021

Related U.S. Application Data
(63) Continuation of application No. 15 / 318,726 , filed on

Dec. 14 , 2016 , filed as application No. PCT / EP2015 /
001116 on Jun . 2 , 2015 .

The invention concerns a computer - implemented method for
establishing a communication connection suitable for trans
mitting media streams from a first RTC client (20) to a
second RTC client (30) , comprising the following steps :

the first RTC client (20) generates a request (50) to
establish the communication connection , wherein the
request (50) contains media - specific data and / or param
eters for the first RTC client (20) , and preferably also
for the communication connection ,

the request (50) is adapted to the media - specific data
and / or parameters of the second RTC client (30) ,

the adapted request (52) is sent to the second RTC client
(30) ,

the second RTC client (30) generates a response (60) to
the adapted request (52) ,

the second RTC client (30) is configured using the
adapted request (52) and the response (60) , and the
response (60) is also sent to the first RTC client (20) ,
and

the first RTC client (20) is configured using the adapted
request (52) and the response (60) .

The method is characterized in that
the first RTC client (20) sends the request (50) to a web

server (40) and the second RTC client (30) sends the
response (60) to the web server (40) , and

the web server (40) adapts the request (50) and sends the
adapted request (52) both to the second RTC client (30)
and also back to the first RTC client (20) , in addition to
sending the response (60) both to the first RTC client
(20) and also back to the second RTC client (30) .

(30) Foreign Application Priority Data

Jun . 26 , 2014 (DE) 102014009495.2

Publication Classification

(51) Int . Ci .
H04L 29/06 (2006.01)
H04L 29/08 (2006.01)

(52) U.S. CI .
CPC H04L 65/1069 (2013.01) ; H04L 65/1059

(2013.01) ; H04L 67/42 (2013.01) ; H04L

92 SZ $ 4 610
Webserver

... ? ? LE ** IL L - 40 adap
OFFER OFFER

Adaptation
ANSWER
Adaptation adap .

ANSWER *** 11N
WY KA

SO $ 2 S3 62 59 58 S10 -56 Ls5 STAN
.22 32

33 JSEP layer 23 JSEP layer
62 50 52 60 q ? Javascript / HTML5 RTC Web client Javascript / HTML5 RTC Web client OFFER OFFER adap . ANSWER

OFFER
Create- SetLocal- SetRemote- Create
Offer Description Description Answer

adap ANSWER
ANSWER
SetLoca- Create

Description Answer
Create
Offer

SetRemote
Description

51 25 Peer Connection API 35 PeerConnection API

Media 24 34 Media Browser
RTCWEB
Functions

STUNICE
function

Browser STUNICE RTCWEB function Functions functions functions

Browser Browser (RTP , STUN , ICE)
S44 ? 30

20

210

92

Fig . 1

S4

SZ

Webserver

21

adap . 1 .

Iris

11.II.1.1111111

Patent Application Publication

111

OFFER Adaptation

40

OFFER

ANSWER Adaptation

11.B

adap . ANSWER
KIT

????
ATS

SO S2

LS3
Ls10

62

59

58

57

256 255

-22

32 33

JSEP layer

23

JSEP layer

50

52

62

60

RTC Web client
a JavascriptHTML5

OFFER

OFFER adap

ANSWER
OFFER

Create- SetLocal . | SetRemote Create Offer Description | Description Answer

Javascript / HTML5
RTC Web client

adap . ANSWER
ANSWER SetLocal- Create Description Answer

Sep. 2 , 2021 Sheet 1 of 6

Create . Offer

SetRemote Description]

-25

35 .

PeerConnection API

PeerConnection API

Media

-24

34

Media

Browser RTCWEB Functions

STUNICE function

Browser
STUNICE

RTCWEB
function

Functions

functions

functions

Browser

Browser

ILONA

(RTP , STUN , ICE)
SAA

-30 130

20

US 2021/0273981 A1

fig . 2

Webserver IIIT

Patent Application Publication

III

TS

-WA - 141 TRIVEX

adap OFFER
ANSWER

adap . ANSWER

OFFER

JSEP layer

JSEP laver

OFFER Adaptation

ANSWER Adaptation

Javascript / HTML5
RTC Web client

OFFER adap OFFER
Create- SetLocal- SetRemote - Create Offer Descriptton Description Answer

JavascriptHTML5
RTC Web client

adap . ANSWER ANSWER SetLocal- Create Description Answer

Sep. 2 , 2021 Sheet 2 of 6

Create Offer

SetRemote Description

PeerConnection API

PeerConnection API

Media

Media

Browser RTCWEB Functions

STUNICE function

Browser
STUNICE

RTCWEB
function

Functions

functions

functions

Browser

Browser
(RTP , STUN , ICE)

US 2021/0273981 A1

Patent Application Publication

hig 3

Server

User A

User B

Sep. 2 , 2021 Sheet 3 of 6

Device A1

Device A2

Device B1

Device B2

?

A

?

A

VIC

A

v

A

C

US 2021/0273981 A1

User

Fig . 4

Patent Application Publication

Conversation

Res . I

Res , n

Session #y control / state information
(purpose / action / status)

media

participant

local (own) SDP

Participant 1 (e.g. calling user)

Alternative 1

Sep. 2 , 2021 Sheet 4 of 6

remote SDP

Participant 2 (e.g. 1st called user)

media

Participants (e.g. conference bridge)

media configuration 1
(e.g. audio

Alternative 2

US 2021/0273981 A1

media configuration m
(e.g : video)

REST server FE .

client B - called party -

fig . 5

client A - calling party -

POST WSS : // ~ / session /

MakeCall

Purpose : startSession

(successful) Caller.client - A

Target.contact - user - B

SDP offer

200 OK

Patent Application Publication

Method : 1

NOTIFY (New Resource
Wss : //-/session/b.abc) GET (WSS : //session/b.abc)

Session - id : a.abc
Participant : / part A & B

2000K Session - id : b.abc Session Status : startSession Participant : / part / A & B

SDP : offer PUT wss : //w/session/b.abc/media/

Sep. 2 , 2021 Sheet 5 of 6

Purpose : proceedSession SDP : pranswer

ProceedCall / ringing

Notify
Sessior - id : a.abc

SessionStatus : proceedSession Participant : Ipart / B

SDP : pranswer

200 OK

PUT WSS : //~/session/b.abc/media/

AnswerCall

Purpose : connectSession
SDP : answer

200 OK

Notify
Session - id : a.abc SessioStatus : connectSession Participant / part / B

SDP : answer

US 2021/0273981 A1

REST server . FE .

client B -called party -

Fig . 6
6

client A - calling party -

POST wss : // m / session /

MakeCall

Purpose : startSession

(successful)

Caller.client - A
Target contact - user - B

SDP : offer

Method 2

Patent Application Publication

200 OK Session - id : a.abc
Participant : / part / A & B

Notify Session - id : b.abc Session Status : startSession Participant / part / A & B

SDP : offer PUT wss : //--/session/b.abc/media/ Purpose : proceedSession SDP : pranswer

ProceedCall / ringing

Notify
Session - id : a.abc

Session Status : proceedSession Participant : / part / B

SDP : pranswer

Sep. 2 , 2021 Sheet 6 of 6

200 OK

PUT wss : //-/session/b.abc/media/

AnswerCall

Purpose : connectSession SDP answer
200 OK

Notify
Session - id : a.abc SessioStatus : connectSession Participant : / part / B

SDP answer

US 2021/0273981 A1

US 2021/0273981 A1 Sep. 2 , 2021
1

METHOD FOR ESTABLISHING A
COMMUNICATION CONNECTION WHICH
IS SUITABLE FOR TRANSMITTING MEDIA
STREAMS BETWEEN A FIRST RTC CLIENT

AND A SECOND RTC CLIENT

[0001] This invention concerns a method for establishing
a communication connection suitable for transmitting media
streams from a first Real - Time Communication (RTC) client
to a second RTC client according to the preamble of claim
1. This invention also concerns a computer program or
computer program product implementing the method , a
corresponding machine - readable data carrier with the com
puter program stored on it , and a telecommunication system
according to the preamble of claim 10 for executing the
method .
[0002] Based , among other things , on a WebRTC initiative
(Real - Time Communication via the Worldwide Web) from
the IETF (Internet Engineering Task Force) and W3C
(World Wide Web Consortium) , the JSEP (JavaScript Ses
sion Establishment Protocol) is often used for exchanging
media - specific data and parameters between a web browser
and a JavaScript - based application running on the browser ,
in order to establish an IP - based communication connection
with another browser , an IP - based telephone , or a gateway
in a telephone network . The JSEP is described in an IETF
specification , and the current state of the work is docu
mented in http : //tools.iettorg/html/draft-ietf-rtcweb-jsep-02 .
The JSEP is based on the exchange of SDP - based media
descriptions (SDP = Session Description Protocol , RFC [Re
quest for Comments] 4566) and uses a two - stage signaling
model . In the first stage , the browser's abilities (also called
capabilities) are called up in the form of an SDP data set
(using a CreateOffer command , for example) . In a second
stage , the browser is configured with the desired media
parameters by providing it with a possibly modified - SDP
data set , which can be done using the SetLocalDescription
command , for example .
[0003] The media parameters are then sent to the commu
nication partner by a web server . After receiving the
response with the media parameters from the communica
tion partner , the web server places the media parameters into
the JavaScript code in the browser , which is then configured
with the partner's media parameters (using the SetRemot
eDescription command , for example) , to make communica
tion possible .
[0004] The current JSEP specification http : //tools.iettorg/
html / draft - ietf - rtcweb - jsep - 02 # section - 1 states that the pre
viously described modification of the SDP data sets takes
place in the JavaScript application . A procedure of this type
is shown in FIG . 2 as an illustrative example , in which JSEP
with JavaScript - based SDP modification is used .
[0005] However , the previously described procedure is
sometimes not considered to be flexible enough .
[0006] This invention is based on the objective of further
developing the previously described method so that it is
more flexible and can be applied with greater versatility .
[0007] This objective is achieved with a computer - imple
mented method as in claim 1 , a computer program product
configured to implement this method as in claim 8 , a
machine - readable data carrier as in claim 9 with the com
puter program product stored on it , and a telecommunication
system as in claim 10. Additional advantageous embodi
ments of the invention are the subject matter of the depen
dent claims .

[0008] According to the invention , a first RTC client
generates a request for a communication connection to be
established . The request therefore contains media - specific
data and / or parameters for the first RTC client , and prefer
ably also for the communication connection . Then the
request generated by the first RTC client is adapted to the
media - specific data and / or parameters of a second RTC
client , with which a communication connection is to be
established . This adapted request is then transmitted to the
second RTC client , and it in turn generates a response to the
adapted request . The second RTC client is then configured
using the adapted request and response . In addition , the
response is also transmitted to the first RTC client , which in
turn is configured using the adapted request and the
response . The invented method is characterized in that the
first RTC client sends the response to a web server — and
specifically not “ through a web server ” to the communica
tion partner and in the same manner the second RTC client
also sends the response to the web server . Also according to
the invention , the web server and not the communication
partner's browser - processes the request and sends the
adapted request both to the second RTC client and also back
to the first RTC client , in addition to sending the response
both to the first RTC client and also back to the second RTC
client .
[0009] Obviously , according to the invention , there can
also be multiple first RTC clients and / or multiple second
RTC clients , which are sending and / or receiving different
media (audio / video) , for example .
[0010] This invention is therefore based on the concept of
having the request (SDP modification in one example)
changed not through the JavaScript code in a browser but
rather in the web server . To do this , the appropriate data must
be addressed to the corresponding web server , which is not
used exclusively as the transit station for data and / or param
eters , requests and responses .
[0011] In this case , it should be noted that the protocols
between a browser and a web server do not necessarily have
to be defined . However , the data and the codecs , etc. do have
to be defined , which still does not require the use of the SDP .
However , usually a browser sends an SDP to a WebRTC
client , through a CREATE command , for example . For a
better understanding of this invention , some abbreviations
and explanations are summarized below :

[0012] (S) RTP = (Secure) Real - Time Transport Protocol ,
see RFC 3550 , RFC 3711 ,

[0013] STUN = Session Traversal Utilities for NAT
(Network Address Translation) , see RFC 5389 ,

[0014] ICE = Interactive Connectivity Establishment ,
see RFC 5245 ,

[0015] REST = Representational State Transfer ,
[0016] SIP = Session Initiation Protocol
[0017] a WebRTC client is typically a web browser ,
[0018] a request is generated , for example , through an
SDP - OFFER ,

[0019] a response is generated , for example , through an
SDP - ANSWER ,

[0020] According to one advantageous version of the
invented method , the web server adapts the response to the
media - specific data and / or parameters of the first RTC
client as well as the communication connection if neces
sary — before the web server transmits the (adapted)
response to the first RTC client and to the second RTC client .
This is particularly advantageous when the situation has

US 2021/0273981 A1 Sep. 2 , 2021
2

changed between transmission and response , which can
occur , for example , when the band width changes due to an
additional video connection .
[0021] The invented method is particularly advantageous
when multiple communication devices are assigned to one
user , each having a first RTC client and / or a second RTC
client , and when different media types are sent to different
communication devices . This means that , for example , audio
data can be sent to a smart phone with hands - free capability ,
but video data is sent to a tablet or notebook to be played on
its larger screen . In such cases , the web server can modify
he media parameters appropriately , based on knowledge of
the various devices and the user's preferences . Therefore ,
this invention offers particular advantages when media
streams include different types of media .
[0022] It can be advantageous when the connection
between the first RTC client , the second RTC client , and the
web server is a so - called Web - Socket connection or an
HTTP - PUT request .
[0023] It can offer further advantages when so - called
RESTful procedures are used in combination with asynchro
nous event reporting for the communication between the
first RTC client , the second RTC client , and the web server .
Here , for example , a call with multiple participants is
modeled as a set of resources assigned to each of the
participating users and managed centrally on the web server ,
wherein the web server then also coordinates these resources
into a single overall picture of the call .
[0024] According to one embodiment of the invention , the
Session Description Protocol (SDP) can be used to generate
and transmit the request , the adapted request , the response ,
and , if applicable , the adapted response .
[0025] A computer program product configured to be
suitable for executing the previously described method , as
well as a machine - readable data carrier on which the com
puter program product is stored , are also considered part of
this invention .
[0026] The problem on which the invention is based is
further solved with a telecommunication system consisting
of a web server , a first RTC client that is either connectable
or already connected to the web server , and a second RTC
client that is either connectable or already connected to the
web server . The invented telecommunication system is
therefore configured such that the web server , the first RTC
client , and the second RTC client have equipment suitable
for executing the previously described method . This equip
ment can consist , for example , of software components ,
processors suitable for running these software components ,
and / or hardware components or similar items .
[0027] Additional advantages , features , and characteris
tics of the present invention are presented in the following
description of advantageous embodiments with reference to
the drawing . The figures show schematically :
[0028] FIG . 1 a diagram of one embodiment of a telecom
munication system according to the invention , in which the
individual sequential steps can also be seen ,
[0029] FIG . 2 a diagram of a telecommunication system
according to the prior art and an overview representation of
the sequential steps ,
[0030] FIG . 3 a schematic diagram of a configuration in
which audio and video data are transmitted from one par
ticipant to another participant ,
[0031] FIG . 4 a diagram of a conference resource model ,
and

[0032] FIGS . 5 and 6 two examples of a call setup
according to the invention .
[0033] According to FIG . 1 , the invented telecommunica
tion system 10 consists of a web server 40 , a first RTC client
20 , and a second RTC client 30 , each of which is or at least
can be connected to the web server 40. Both RTC clients are
or preferably include browsers or WebRTC browsers . Each
of the RTC clients 20 , 30 is equipped with a first functional
unit 22 or 32 and a second functional unit 24 or 34. The first
functional unit 22 , 32 includes JavaScript / HTML5 , a JSEP
layer , and an RTCWeb client 23 or 33 , and the second
functional unit 24 or 34 includes the functions of a WebRTC
browser (the RTCWeb reference in FIG . 1 is equivalent to
the WebRTC designation) and contains a PeerConnection
API 25 or 35 .
[0034] FIG . 1 also shows schematically an illustrated data
carrier 90 , in the form of a CD , on which a computer
program product 92 is stored and which can be read by the
web server 40 , for example .
[0035] Below , with reference to FIG . 1 , an embodiment of
the invented method for establishing a communication con
nection suitable for transmitting media streams from a first
browser or RTC client 20 to a second browser or RTC client
30 is described . In other words , FIG . 1 refers to an invented
method in which JSEP with web server - based SDP modifi
cation is used .
[0036] In a step Si , the WebRTC client 23 calls a Peer
Connection API (API = Application Programming Interface)
25 of the second functional unit 24 in the browser 20 using
the CreateOffer method .
[0037] In a step S2 , as a result , an SDP data set is
generated by the browser 20 , marked as a request 50 in the
form of an SDP OFFER , and provided to the WebRTC client
23. This request 50 contains media - specific data and param
eters for the first browser 20 and the communication con
nection . The WebRTC client 23 forwards this request 50 to
the web server 40 , for example through an already existing
web - socket connection , an HTTP - PUT request , or other
methods .
[0038] Next , in a step S3 , the web server 40 can adapt or
manipulate the SDP OFFER 50 in a variety of ways in a
special “ OFFER adaptation ” function . Examples of this
would be reducing the number of offered codecs or elimi
nating video streams , if there was not enough band width
available , for example . This adapted response or SDP
OFFER 52 is next sent back to the WebRTC client 23 in the
browser 20 and forwarded through a SetLocalDescription
method of the PeerConnection API 25 to the first browser
20 , which it then configures .
[0039] In a step S4 , which can take place simultaneously
with step S3 , the adapted request 52 is sent to the second
browser 30 in the form of an adapted SDP OFFER and is
shared for the subsequent generation of an adapted response
62 in the form of a modified SDP ANSWER by the second
browser 30 with a so - called “ ANSWER adaptation ” func
tion .
[0040] In a step S5 , the adapted request 52 is then for
warded to the second browser 30 , e.g. , through an already
existing web socket connection .
[0041] In a step S6 , the adapted request 52 in the second
browser 30 is forwarded by means of the SetRemote De
scription method of the PeerConnection API 35 to the
browser 30. To generate a response 60 in the form of an SDP
ANSWER , the WebRTC client 33 calls up the Create

US 2021/0273981 A1 Sep. 2 , 2021
3

the HTTP methods PUT , GET , POST , and DELETE . These
RESTful CRUD operations are illustrated here , for example ,
with the following HTTP methods :
Create > HTTP POST

Read- > HTTP GET

Update- > HTTP PUT
Delete > HTTP DELETE

Answer method of the PeerConnection API 35 and receives
an SDP data set marked as SDP ANSWER .
[0042] In a step S7 , the WebRTC client 33 forwards the
response 60 back to the web server 40 , e.g. , through an
already existing web - socket connection , an HTTP - PUT
request , or other methods .
[0043] Next , in a step S8 , the SDP ANSWER 60 can be
manipulated or adapted again in an “ ANSWER adaptation "
function with reference to the correspondingly adapted SDP
OFFER 52 , and an adapted response 62 can be generated in
the form of an adapted SDP ANSWER . This adapted SDP
ANSWER 62 is then sent back to the WebRTC client 33 in
the second browser 30 and forwarded through the SetLo
calDescription method of the PeerConnection API 35 to the
browser 30 , which it then configures . The described step S8
is optional , since the response 60 or SDP ANSWER does not
need to be adapted unless necessary . However , the step S8
as such is necessary in order to call up the SetLocalDescrip
tion method .
[0044] In a step S9 , which can occur simultaneously with
step S8 , the adapted SDP ANSWER 62 is sent back to the
WebRTC client 23 in the first browser 20 .
[0045] In a step S10 , the adapted SDP ANSWER 62 is
forwarded by means of the SetRemote Description method of
the PeerConnection API 25 to the browser 20 , which it then
configures .
[0046] Both browsers 20 , 30 now know the media param
eters of their respective counterparts and can exchange
media streams , which is represented in a step S11 . The
abbreviations RTP , STUN , and ICE shown here stand for the
exchange of the protocols used , as applicable .
[0047] FIG . 3 illustrates , as an example , a call in which a
participant B receives audio data from a device B2 and video
data from another device B1 , and the server combines the
SDP data from these two end devices B1 and B2 into one
SDP description before it is sent to participant A. According
to this example , participant A can then receive both the audio
data A and the video data V on the same device A1 , i.e. , from
device B2 or from device B1 of participant B. As can be seen
from this example , the device A2 of participant A is not used
at all . In this particular example , the data C represents data
in general , such as that used for control signals , for example ,
or Instant Messaging , for example . The data C can therefore
be any data except the aforementioned audio and video data .
Obviously , many other examples of a connection with
various media are possible .
[0048] FIG . 4 illustrates an exemplary model of a session
resource used by a RESTful server . This exemplary embodi
ment is based on the concept of resources used in the Web
and uses a method for communication between web servers
and clients that involves the use of RESTful (Representa
tional State Transfer) procedures with asynchronous event
reporting instead of one of the known signaling protocols
such as SIP (Session Initiation Protocol) . REST describes a
particular programming style for web applications . A
description of its basic principles is available at http : // de .
wikipedia.org/wiki/Representational_State_Transfer , for
example . REST is based on the abstract model of a resource
on a web server , which can be unambiguously accessed
using a URI (Uniform Resource Identifier) . There is a set of
standard commands for this purpose , designated as CRUD
(Create , Read , Modify / Update , Delete) , with which the

can be generated , read , changed , and even
removed . These commands are executed , for example , using

[0049] In this way the caller can place a new resource on
the server , if he calls another participant and initiates a new
communication session . This can be handled completely
using the REST principles .
[0050] Beyond this point , the RESTful CRUD operations
alone are not sufficient . Here , a new NOTIFY operation ,
previously unavailable in REST , is necessary , allowing the
call recipient to also find out that he has been invited to the
communication session or is being called right now . By
means of the NOTIFY operation , the call recipient is
informed that a new resource (i.e. , a new communication
session) was initiated .
[0051] Then the call recipient can also use the REST
principles .
[0052] The NOTIFY operation is also necessary at the
caller's end if the resource changes , because of the call
recipient announcing his media parameters , for example .
Additional details about this can be found at http : // de .
wikipedia.org/wiki/CRUD .
[0053] FIG . 4 illustrates how a call or an active commu
nication relationship can be modeled as a session resource .
It shows the user or participant as the primary resource and
multiple sub - resources for one or more calls , media used
(audio , video) , other participants (e.g. , in a conference call) ,
etc. According to this example , a call with two to n partici
pants is modeled as a set of resources assigned to each of the
participating users and managed centrally on the web server .
The web server coordinates these resources into a single
overall picture of the call .
[0054] The sequences diagrammed above in FIG . 1 use the
two containers positioned under “ media ” in FIG . 4 to
exchange the adapted request (SDP OFFER) 52 and the
(adapted) response (SDP ANSWER) 60 or 62 between the
clients 20 , 30 and the web server 40 in the order shown in
FIG . 1. This is managed first by the standard commands
Create , Read , Modify , Delete , included in the RESTful set ,
oriented on HTTP (Hypertext Transfer Protocol) , and issued
by the client to the server (synchronous request / response
method) , and second through asynchronous event reports
from the server to the client (the aforementioned NOTIFY
operation)
[0055] As previously illustrated , modified function distri
bution during SDP generation is possible according to the
invention . It is also possible to implement resource - based
control instead of using the customary signaling protocol .
[0056] In summary :

[0057] The resources are located on a so - called back
end server ,

[0058] Each participant or user represents a root on the
respective resource tree ,

[0059] One session resource Hy is one instance of a
participant's conversation resource (i.e. , the respective
conversation) ,

resource

US 2021/0273981 A1 Sep. 2 , 2021
4

[0060] The sub - resource media describes the current
media configuration per media type (alternative 2) or
per end point (alternative 1) ,

[0061] The participant sub - resources are all participat
ing users in a session ,

[0062] A conference bridge is also modeled as a sepa
rate participant , e.g. , with a media server that handles
all media streams .

[0063] FIG . 5 illustrates a first method for initiating a call
from a caller (Calling Party) through a REST server ((Func
tional Entity or FE) to a call recipient (Called Party) . A GET
request is sent to the resource , which was announced by
NOTIFY . The related message 200 OK therefore contains all
parameter values for the related instance of the resource and
all sub - resources with their parameter values .
[0064] According to the method 2 illustrated in FIG . 6 , the
NOTIFY message could even already contain the parameter
values . This can eliminate the need for the GET request from
the first alternative .
[0065] Obviously the NOTIFY command can include one
or more resource URIs (with additional parameters if nec
essary) . In the case of a resource URI without additional
parameters , the client must then send one or more GET
requests for each resource URI , in order to obtain all the
information .
[0066] If the GET request contains a resource URI with
additional parameters , then only changed parameters for
each resource are received .
[0067] This applies similarly to the PUT request . If the
PUT request contains only one resource URI without addi
tional parameters , then a completely new resource is set up .
For a resource URI with additional parameters , only the
sub - resources are changed corresponding to the parameters .
[0068] By way of further explanation , the expression
“ SDP pranswer ” in connection with a NOTIFY message
refers to the concept of a “ provisional answer ” in JSEP ,
which is equivalent to a type of preview .
[0069] It should be noted that the features previously
described as method steps (components of the invented
method) can also similarly be considered as equipment
features of the invented telecommunication system with no
specific mention required . This correspondence of features
also applies inversely for the elements of the telecommuni
cation system described as equipment features .
[0070] It should further be noted that the features of the
invention described by referencing the presented embodi
ments , for example web server , (Web) RTC clients , the type
and configuration of the parameters used , control com
mands , protocols and hardware components , the arrange
ment of the individual components in relation to each other
or the sequence of the respective process steps can also be
present in other embodiments or variations hereof , unless
stated otherwise or prohibited for technical reasons . Not all
features of individual embodiments described in combina
tion must necessarily always be implemented in any one
particular embodiment .

[0077] 30 = Second browser / RTC client
[0078] 32 = First functional unit
[0079] 33 = Second WebRTC client
[0080] 34 = Second functional unit
[0081] 35 = PeerConnection API
[0082] 40 = Web server
[0083) 50 = Request / SDP OFFER
[0084] 52 = Adapted request / SDP OFFER
(0085] 60 = Response / ANSWER
[0086] 62 = Adapted response / ANSWER
[0087] 90 = Data carrier
[0088] 92 - Computer program product
[0089] S1 - S11 = Steps
[0090] A = Audio data
[0091] C = General data
[0092] V = Video data

1. Computer - implemented method for establishing a com
munication connection suitable for transmitting media
streams from a first RTC client (20) to a second RTC client
(30) , comprising the following steps :

the first RTC client (20) generates a request (50) to
establish the communication connection , wherein the
request (50) contains media - specific data and / or param
eters for the first RTC client (20) , and preferably also
for the communication connection ,

the request (50) is adapted to the media - specific data
and / or parameters of the second RTC client (30) ,

the adapted request (52) is sent to the second RTC client
(30) ,

the second RTC client (30) generates a response (60) to
the adapted request ,

the second RTC client (30) is configured using the
adapted request (52) and the response (60) , and the
response (60) is also sent to the first RTC client (20) ,
and

the first RTC client (20) is configured using the adapted
request (52) and the response (60) ,

cha acterized in that
the first RTC client (20) sends the request (50) to web

server (40) and the second RTC client (30) sends the
response (60) to the web server (40) , and

the web server (40) adapts the request (50) and sends the
adapted request (52) both to the second RTC client (30)
and also back to the first RTC client (20) , in addition to
sending the response (60) both to the first RTC client
(20) and also back to the second RTC client (30) .

2. Method as in claim 1 ,
characterized in that the web server (40) adapts the response
(60) to the media - specific data and / or parameters of the first
RTC client (20) , as well as the communication connection if
necessary , before the web server (40) transmits the adapted
response (62) to the first RTC client (20) and to the second
RTC client (30) .

3. Method as in claim 1 or 2 ,
characterized in that multiple communication devices are
assigned to one user , each having a first RTC client (20)
and / or a second RTC client 0) , and that different media
types are sent to different communication devices .

4. Method as in claim 3 ,
characterized in that the media streams contain different
types of media .

LIST OF REFERENCE INDICATORS
[0071] 10 = Telecommunication system
[0072] 20 = First browser / RTC client
[0073] 22 = First functional unit
[0074] 23 = First WebRTC client
[0075] 24 = Second functional unit
[0076] 25 = PeerConnection API

US 2021/0273981 A1 Sep. 2 , 2021
5

5. Method as in one of the preceding claims ,
characterized in that a Web - Socket connection or an HTTP
PUT request is used for the connection between the first
RTC client (20) , the second RTC client (30) , and the web
server (40) .

6. Method as in one of the preceding claims ,
characterized in that RESTful procedures in combination
with asynchronous event reporting are used for the connec
tion between the first RTC client (20) , the second RTC client
(30) , and the web server (40) .

7. Method as in one of the preceding claims ,
characterized in that the Session Description Protocol (SDP)
is used to generate and transmit the request , the adapted
request , the response , and the adapted response .

8. Computer program product (92) for executing the
method according to one of the preceding claims .

9. Machine - readable data carrier (90) with a computer
program product (92) according to claim 8 stored on it .

10. Telecommunication system (10) comprising
a web server (40) ,
a first RTC client (20) connected or connectable to the
web server (40) ,

a second RTC client (30) connected or connectable to the
web server (40) ,

characterized in that the web server (40) , the first RTC client
(20) , and the second RTC client (30) have equipment for
executing the method as in one of claims 1 to 8 , wherein the
equipment consists of software components in particular .

* *

