
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0090054A1

Bolzoni et al.

US 20140090054A1

(43) Pub. Date: Mar. 27, 2014

(54)

(75)

(73)

(21)

(22)

(86)

(60)

(30)

Jul. 26, 2011

SYSTEMAND METHOD FOR DETECTING
ANOMALIES IN ELECTRONIC DOCUMENTS

Inventors: Damiano Bolzoni, Enschede (NL);
Emmanuele Zambon, Enschede (NL)

Assignee: SECURITYMATTERS B.V., Enschede
(NL)

Appl. No.: 13/824,211

PCT Fled: Jul. 26, 2012

PCT NO.:

S371 (c)(1),
(2), (4) Date:

PCT/NL12/SO537

Dec. 5, 2013

Related U.S. Application Data
Provisional application No. 61/51 1,685, filed on Jul.
26, 2011.

Foreign Application Priority Data

(NL) 2007 18O

Application
b Program

Detectic
Engine

34

Service)
33

Publication Classification

(51) Int. Cl.
G06F2L/50 (2006.01)

(52) U.S. Cl.
CPC G06F2I/50 (2013.01)
USPC .. 726/22

(57) ABSTRACT

A system and method are described herein for detecting an
anomaly in an electronic document. In a computer system, a
detection engine is attached to an application program which
processes the electronic document. Function calls to a service
provided through an application program interface (API) are
intercepted by the detection engine as the application pro
gram processes the electronic document. If an entry for the
intercepted function call is not present in the detection model,
or an entry is present but the argument value does not match
the argument value in the detection model, an alert is raised.
The detection model is populated by processing a plurality of
known good documents, populating the detection model with
entries on intercepted good function calls and their argument
values. A threshold may be applied to the detection model,
removing from the detection model function calls which were
observed less than the threshold amount.

Engine

3. Detection wode

f a -> set: 3,7
a2 int: 20
a3 -> String: 0-9. 4, 15

a -> set: 3,2,4,3,16
a2 -> int: ,255

Patent Application Publication Mar. 27, 2014 Sheet 1 of 6 US 2014/0090054 A1

Patent Application Publication Mar. 27, 2014 Sheet 2 of 6 US 2014/0090054 A1

Attach detection
engine to application

intercept function
cal and arguments

Unsafe
function

N ca? -
N230

Bissue aert

240

/ Argument oun
N of range? 1 Bissue aert

26

Aow function cai
2

US 2014/0090054 A1 Mar. 27, 2014 Sheet 3 of 6 Patent Application Publication

€ (31

US 2014/0090054 A1 Mar. 27, 2014 Sheet 4 of 6 Patent Application Publication

|

200 peg

Patent Application Publication Mar. 27, 2014 Sheet 5 of 6 US 2014/0090054 A1

Process set of
known good docS

1.

intercept function
Cai and arguments
2.

Add to

Retection Mode

Apply threshold
S40

US 2014/0090054 A1 Mar. 27, 2014 Sheet 6 of 6

Z poogy

Patent Application Publication

US 2014/0090054 A1

SYSTEMAND METHOD FOR DETECTING
ANOMALIES IN ELECTRONIC DOCUMENTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is related to, and claims priority to,
Patent Cooperation Treaty (PCT) International Application
Number PCT/NL2012/050537, entitled “METHOD AND
SYSTEM FOR CLASSIFYING A PROTOCOLMESSAGE
INA DATA COMMUNICATIONS NETWORK and filed
Jul. 26, 2012, which claims the benefit of U.S. Provisional
Patent Application No. 61/51 1,685, entitled, “METHOD
AND SYSTEM FOR CLASSIFYING A PROTOCOLMES
SAGE IN ADATA COMMUNICATIONS NETWORK and
filed Jul. 26, 2011, and Netherlands Application No. NL
2007180, entitled “METHOD AND SYSTEM FOR CLAS
SIFYINGAPROTOCOLMESSAGE INADATA COMMU
NICATIONS NETWORK and filed Jul 26, 2011. Each of
the aforementioned applications is incorporated herein by
reference.

BACKGROUND OF THE INVENTION

0002 1. Field of the Invention
0003. The present invention relates generally to detecting
anomalous or malicious content in electronic documents.
0004 2. Description of the Prior Art
0005 Along with the rise of the use of computers in mod
ern life, there has been a rise in the misuse of such computers.
One area of this misuse can be referred to as malware, par
ticularly the distribution of electronic documents such as
computer files, websites, and the like which have malicious
content, usually hidden. Such malware is commonly
designed to Surreptitiously install programs on a target com
puter system that allow the target computer system to be
exploited remotely, for example capturing keystrokes,
accessing files on the target computer system, accessing net
work connections, and the like.
0006 Increasingly, malware appears in the guise of seem
ing innocuous documents, such as web site Hyper Text
Markup Language (HTML) documents, documents using the
Portable Document Format (PDF) championed by Adobe R.
Systems and now a standard (ISO 32000-1:2008), documents
for Microsoft Office(R) from Microsoft(R), Inc., image docu
ments, and others. These document formats are container
formats, as they allow different types of content to be
included in one document, for example combining text and
graphics with Scripting for executing computer programs
contained in the electronic document. As examples, PDF and
HTML documents Support objects of many kinds, including
text, graphics, and computer scripting using JavaScript TM or
Flash R, all combined into one document.
0007 When an electronic document such as a PDF docu
ment is to be opened on a computer system, the computer
operating system activates the application program associ
ated with the electronic document, such as Adobe R. Reader(R)
or Adobe Acrobat(R) from Adobe Systems. The application,
for example Adobe Reader, opens the electronic document
and interprets the objects the electronic document contains to
display the electronic document's contents on a computer
SCC.

0008 Unfortunately, a given document may contain not
only text and graphics, but also malicious commands which
cause a scripting engine such as JavaScript to breach security

Mar. 27, 2014

on the computer system by exploiting software flaws, and
Surreptitiously install malicious Software. Such malicious
software can be difficult to detect, and expensive to remedy
once present and detected on a computer system.
0009 Various approaches have been developed to deal
with the issues Surrounding malicious Software, and in pre
venting malicious software from entering a computer system.
0010 A widely used approach to malware detection is
based on digital signatures of electronic documents. In such a
signature-based detection system, the company responsible
for the detection system takes a malware-containing elec
tronic document and computes a digital signature for the
electronic document. Such digital signature algorithms are
well known to the computer arts. The digital signature of the
malware containing electronic document is then distributed to
the company’s customers, where detection Software running
on target computers computes digital signatures on electronic
documents on the computer system, including incoming
documents, and compares those signatures to a library of
malware signatures, alerting if a match is found, and possibly
taking other actions such as quarantining the Suspect elec
tronic document.
0011 Signature-based malware detection systems have a
number of serious difficulties. One difficulty is that they only
detect malware that has already been identified; they defend
against yesterday's known attacks, but not the unknown
attacks of tomorrow. An electronic document must have been
previously identified as malicious. Then the electronic docu
ment must be sent to the company responsible for the detec
tion system. The company verifies the malicious nature of the
electronic document, and computes its digital signature. That
digital signature is then made available to customers. The
updated digital signature must make its way to customer
systems, a path fraught with its own difficulties.
0012. This process of identification, creating a digital sig
nature, and distributing the digital signature to customers may
take hours, days, or longer from the time the electronic docu
ment is first identified as malicious and submitted to the
company. An electronic document may never be submitted as
malicious if it is not recognized as malicious; thus a carefully
crafted malicious electronic document may continue to be
Successfully malicious for months or even years.
0013 Additional difficulties come from the nature of the
digital signature process. A digital signature algorithm,
related to hashing algorithms in the computer arts, takes an
electronic document or computer file and produces a digital
signature representing that electronic document or file. As an
example, a detection system may create 256-byte digital sig
natures from electronic documents. Since most electronic
documents are larger than this 256-byte signature, math
ematically the process is a many-to-one mapping in which at
least two different documents having the same 256-byte sig
nature must exist. While digital signature and hashing algo
rithms are designed to minimize Such collisions, mathemati
cally Such collisions must exist. In practice in a signature
based malware detection system, when such a collision
occurs, the detection system mistakenly identifies an innocu
ous file as malicious. This is known as a false positive.
Instances of false positives are to be minimized as they
impede or deny access to valid electronic documents and files.
0014. An additional difficulty arising from the digital sig
nature process comes from a goal of the digital signature
algorithms themselves, that Small changes in an electronic
document result in large changes in its digital signature. A

US 2014/0090054 A1

malware generation or distribution system which introduces a
slight variation in each of the malicious electronic documents
it delivers thus produces malicious electronic documents each
having different digital signatures, thus evading signature
based detection mechanisms.
0015. Other approaches to dealing with malicious elec
tronic documents and malicious software are anomaly-based,
designed in different ways to prevent malware from taking
root in a computer system by detecting and preventing mali
cious behavior as it occurs.
0016 Some anomaly-based malware detection systems
attach themselves to the internals of the computer operating
system, monitoring system functions for Suspicious behavior.
As an example, such a system would alert on an attempt to
modify a file marked as belonging to the operating system, or
on an attempt to create files in operating system portions of
the computer file system. Such anomaly-based systems also
have issues with false positive alerts, for example during
application program installation or updating, when applica
tion program component files must be created or modified.
0017 What is needed is a better way to detect malicious
content in electronic documents.

SUMMARY

0018. In one embodiment a method of detecting an
anomaly in an electronic document comprises: a detection
engine intercepting a function call and at least one argument
value of the function call, the function call for a service
provided through an application program interface (API), the
function call generated by an application program processing
the electronic document containing the function call, the
detection engine determining that the intercepted function
call is unsafe by comparing the intercepted function call and
the at least one argument value to a detection model, and
issuing an alert that an anomaly has been detected in the
electronic document.
0019. In an embodiment, the step of determining that the
intercepted function call is unsafe by comparing the inter
cepted function call and the at least one argument value to the
detection model comprises: determining, by the detection
engine, that an entry for the intercepted function call is not in
the detection model, or determining, by the detection engine,
that an entry for the intercepted function call is present in the
detection model and that at least one argument value of the
intercepted function call does not match a predefined value or
range present in the entry for the function call in the detection
model.
0020. In an embodiment, building the detection model
comprises: processing, by the application program, a plural
ity of known good electronic documents, each containing at
least one good function call, intercepting, by the detection
engine, a good function call of the at least one good function
call, and at least one argument value of the good function call,
the good function call for the service provided through the
API, the good function call generated by the application
program processing the known good electronic document
containing the good function call, adding, by the detection
engine, an entry for the intercepted good function call to the
detection model, the entry including the at least one argument
value, and repeating the intercepting and adding steps for
each good function call in each known good electronic docu
ment.

0021. In an embodiment where the decision model
includes at least a number of times the function call is inter

Mar. 27, 2014

cepted by the detection engine while building the detection
model, a threshold may be applied to the detection model by
removing function call entries from the detection model
where the number of times the function call was intercepted
by the detection engine in processing the plurality of known
good electronic documents is less than a threshold, after the
plurality of known good electronic documents are processed
by the application program.
0022. In an embodiment, an apparatus for detecting an
anomaly in an electronic document comprises: a memory
configured to contain a detection model, and a microproces
Sor coupled to the memory, the microprocessor configured to:
intercept a function call and at least one argument value of the
function call, the function call for a service provided through
an API, the function call generated by an application program
processing the electronic document containing the function
call, determine that the intercepted function call is unsafe by
comparing the intercepted function call and the at least one
argument value to the detection model, and issue an alert that
an anomaly has been detected in the electronic document.
0023. In an embodiment, the apparatus for detecting an
anomaly in an electronic document is configured to determine
that the intercepted function call is unsafe by comparing the
intercepted function call and the at least one argument value
to the detection model by being further configured to: deter
mine that an entry for the intercepted function call is not in the
detection model, or determine that an entry for the intercepted
function call is present in the detection model and that the at
least one argument value of the intercepted function call does
not match a predefined value or range present in the entry for
the function call in the detection model.
0024. In an embodiment, the apparatus for detecting an
anomaly in an electronic document is configured to build the
detection model contained in the memory by being further
configured to: process a plurality of known good electronic
documents, each containing at least one good function call,
intercept a good function call of the at least one good function
call, and at least one argument value of the good function call,
the good function call for the service provided through the
API, the good function call generated by the application
program processing the known good electronic document
containing the good function call, add an entry for the inter
cepted good function call to the detection model contained in
the memory, the entry including the at least one argument
value, and repeat the intercepting and adding steps for each
good function call in each known good electronic document.
0025. In an embodiment where the decision model
includes a number of times the function call is intercepted by
the detection engine while building the detection model, the
apparatus for detecting an anomaly in an electronic document
is further configured to remove function call entries from the
detection model contained in the memory where the number
of times the function call was intercepted by the detection
engine in processing the plurality of known good electronic
documents is less than a threshold, after the plurality of
known good electronic documents are processed by the appli
cation program.
0026. In an embodiment, a non-transitory computer read
able medium having Stored thereupon computing instructions
for detecting an anomaly in an electronic document com
prises: a code segment to intercept a function call and at least
one argument value of the function call, the function call for
a service provided through an API, the function call generated
by an application program processing the electronic docu

US 2014/0090054 A1

ment containing the function call, a code segment to deter
mine that the intercepted function call is unsafe by comparing
the intercepted function call and the at least one argument
value to a detection model, and a code segment to issue an
alert that an anomaly has been detected in the electronic
document.
0027. In an embodiment, the non-transitory computer
readable medium where the code segment to determine that
the intercepted function call is unsafe by comparing the inter
cepted function call and the at least one argument value to the
detection model comprises: a code segment to determine that
an entry for the intercepted function call is not in the detection
model, and a code segment to determine that an entry for the
intercepted function call is present in the detection model and
that the at least one argument value of the intercepted function
call does not match a predefined value or range present in the
entry for the function call in the detection model.
0028. In an embodiment, the non-transitory computer
readable medium having Stored thereupon computing
instructions for detecting an anomaly in an electronic docu
ment further having stored thereupon computing instructions
for building the detection model comprising: a code segment
to process a plurality of known good electronic documents,
each containing at least one good function call, a code seg
ment to intercept a good function call of the at least one good
function call, and at least one argument value of the good
function call, the good function call for the service provided
through the API, the good function call generated by the
application program processing the known good electronic
document containing the good function call, a code segment
to add an entry for the intercepted good function call to the
detection model, the entry including the at least one argument
value, and a code segment to repeat the intercepting and
adding steps for each good function call in each known good
electronic document, thereby building the detection model.
0029. In an embodiment where the code segment to add an
entry for the known good function call to the document model
includes a code segment to include in the decision model
entry a number of times the function call is intercepted by the
detection engine while building the detection model, the non
transitory computer readable medium further comprising: a
code segment to remove function call entries from the detec
tion model where the number of times the function call was
intercepted by the detection engine in processing the plurality
of known good electronic documents is less than a threshold,
after the plurality of known good electronic documents are
processed by the application program.

BRIEF DESCRIPTION OF DRAWINGS

0030 FIG. 1 is a block diagram of a computer system
according to an embodiment.
0031 FIG. 2 is a flowchart of detecting an anomaly in an
electronic document according to an embodiment.
0032 FIG. 3 is a diagram of detecting an anomaly in an
electronic document according to an embodiment.
0033 FIG. 4 is a diagram of detecting an anomaly in an
electronic document according to an embodiment.
0034 FIG. 5 is a flowchart of building a detection model
for use in detecting an anomaly in an electronic document
according to an embodiment.
0035 FIG. 6 is a diagram of building a detection model for
use in detecting an anomaly in an electronic document
according to an embodiment.

Mar. 27, 2014

DETAILED DESCRIPTION OF THE INVENTION

0036. A common vehicle for distributing malware is the
use of malicious electronic documents which outwardly
appear to be innocuous and of interest to a user, but contain
embedded commands to exploit a vulnerability in the soft
ware running on the computer system and install malicious
Software or perform some malicious action. For example, a
user may receive a document attached to an electronic mail
message, the document having a title Such as “QuarterlyBo
nusInfo.PDF or “Weekend PartyPics. PDF' which may con
tain some legitimate content, but also contains function calls
generated by an application program such as Adobe Reader
for a service provided through an API such as JavaScript,
Flash, or a dynamically linked library (DLL) to exploit a
Vulnerability in the system Software, and install malicious
software.
0037 Presented herein are various embodiments of a
method and apparatus for detecting such malicious content in
electronic documents.
0038. As described previously herein, signature-based
malware detection at best protects against yesterday's
attacks, and is easily circumvented.
0039. Accordingly, a method and apparatus are described
in which a detection engine monitors an application program
processing an electronic document, for example Adobe
Reader processing a PDF electronic document. The detection
engine is a separate Software component which intercepts
function calls from the separate application program to a
service provided through an API as the application program
processes the electronic document, and determines if those
function calls represent anomalies which should result in an
alert being issued.
0040. The application program processes the electronic
document. The electronic document may contain function
calls to a service provided through the API provided by the
application program. These function calls may be present in
the electronic document in the form of text, or encoded in
binary or other Suitable representation. The application pro
gram takes the function call present in the electronic docu
ment and generates the function call to the service provided
through the API to execute the function call. The application
program generates the function call from the electronic docu
ment for example by translating the text or encoded function
call in the document to the form required for the API. This
process will be determined by the requirements of the API,
and may involve processes known to the computer arts Such
as tokenizing, table look-ups, compiling, interpretation, or
the like to generate a function call to the service provider as
required by the API.
0041 As is known in the art, an API provides a mechanism
for an application program to make use of services provided
by other computer programs such as Scripting engines,
dynamic linked libraries (DLLs), dynamic libraries (dylibs),
ActiveX control, shared object files (so), and the like. The API
mechanism allows a computer program stored as one com
puter file, e.g. an application program, to make use of services
provided by a computer program stored as another computer
file, e.g., a scripting engine, DLL, dylib, ActiveX control, or
the like. Unix, Linux, and Apple(R) Macintosh R OSX com
puter systems use the API mechanism to provide services
Such as Scripting engines (e.g., JavaScript, Flash or Visual
Basic), System extensions such as device drivers and kernel
extensions, and shared libraries. Microsoft Windows systems
use the API mechanism to provide services Such as scripting

US 2014/0090054 A1

engines (e.g. JavaScript, Flash and Visual Basic), dynamic
linked libraries, and system extensions such as device drivers
and ActiveX controls.

0042. As an example, Adobe Reader provides APIs to
make use of services provided by the JavaScript scripting
engine. By providing services through an API, both the appli
cation program making use of the services and the service
provider can be maintained and upgraded separately and
independently. As an example, the JavaScript scripting
engine can be updated to provide additional functionality or
to fix programming bugs without having to modify Adobe
Reader. Similarly, Adobe Reader can be updated without
having to modify JavaScript, as the API provides access to
services in a manner independent of the versions of the appli
cation programs or services.
0043. By attaching to APIs, for example the APIs provided
by Adobe Reader, the detection engine intercepts function
calls from the application program through the API to a ser
Vice provided through the API, e.g., the JavaScript scripting
engine. The function calls are generated by the application
program as it interprets an electronic document. The detec
tion engine determines if those function calls represent
anomalies which should result in an alert being issued.
0044. In operation, an application program Such as a web
browser (e.g., Firefox R, Chrome(R), Safari(R), Internet
Explorer(R), or the like) processes text from an electronic
document such as a web page (i.e. a HTML document). When
the web browser processes text marked as JavaScript, for
example a fragment such as "parseFloat(kstr), the web
browser generates a function call to the JavaScript parse
Float() function, passing the String argument kstr. The Java
Script scripting engine processes this function call to the
parseFloat function and returns a floating point number. An
application program Such as Adobe Reader goes through the
same process, taking text contained in an electronic document
and generating, from text marked as JavaScript, function calls
to the JavaScript scripting engine. An application program
such as Microsoft Word or Microsoft Excel, components of
Microsoft Office, go through the same process in taking text
marked as Visual Basic, for example in a macro contained in
an electronic document such as a spreadsheet or word pro
cessing document, and generating function calls to the Visual
Basic scripting engine.
0045. The detection engine uses a detection model which

is built by causing the application program to process a set of
known good electronic documents. As the set of electronic
documents, for example a set of PDF electronic documents,
are known to be good, the commands, such as function calls
and argument values to the function calls for the services
provided through an API, e.g., function calls to JavaScript,
contained in these known good electronic documents are also
assumed to be good. The detection engine populates the
detection model with entries generated by these known good
documents, building entries on observed function calls and
observed argument values contained in these known good
electronic documents.

0046. In operation, that is, after the detection model has
been built, as the application program processes an electronic
document, the detection engine intercepts function calls and
their arguments generated by the application program as it
processes the electronic document prior to those function
calls being passed from the application program to the Script
ing engine.

Mar. 27, 2014

0047. The terms “safe' and “unsafe' are used herein to
refer to the determinations by the detection engine with
respect to a particular function call and the arguments to that
function call. These determinations of safe or unsafe indicate
a possible attempt to exercise a Vulnerability leading to a
compromise of the computer system. As such, they are dis
tinct from the use of a function call and its arguments in a
computer programming sense. For example, a particular
function call may be defined as a legitimate function call in a
particular service provided through an API such as JavaS
cript, Flash, or in a particular DLL, and thus available for use
by programmers, but if an entry for that function call does not
exist in the detection model, indicating that the function call
was not observed in the set of known good electronic docu
ments, the detection engine will consider that function call to
be unsafe. When Sucha condition occurs, the detection engine
issues an alert that an anomaly has been detected in the
electronic document.
0048 Similarly, if an entry for the intercepted function call

is present in the document model, the argument values of the
intercepted function call are tested, and if an argument value
does not match or is outside the range for that argument
contained in the detection model entry for the intercepted
function, the intercepted function call is likewise considered
unsafe. When Such a condition occurs, the detection engine
issues an alert that an anomaly has been detected in the
electronic document.
0049. An alert can include one or more of a visual display
on a computer screen such as an alert dialog box, logging the
anomaly on the computer system or through a logging Ser
vice, or aborting further processing of the electronic docu
ment by the application program.
0050 Turning now to FIG. 1, a block diagram of a com
puter system 100 which may be used to practice the invention
is shown in simplified form. As understood in the art, com
puter system 100 comprises a central processing unit (CPU)
110 which is coupled to memory hierarchy 120, network
interface 130, and Input/Output (I/O) interface 140. CPU 110
may be a microprocessor Such as an x86 class processor from
Intel Corporation or Advanced Micro Devices. Other micro
processors such as those offered by MIPS, Advanced Risc
Machines (ARM), and others may also be used.
0051 Memory hierarchy 120, as understood by the art
includes any combination of a permanent memory device for
use in initializing the computer system on power-up, fast
read-write main memory Such as Random Access Memory
(RAM) for holding instructions and data for use by micro
processor 110, and file storage devices including but not
limited to flash memory, disc drives including Solid state
disks, memory cards and the like, for storing electronic docu
ments which include operating system files, programs includ
ing applications programs, and data files for use by the com
puter system.
0052 Network interface 130 may include wired and wire
less interfaces such as those compatible with IEEE 802.3
wired Ethernet standards or IEEE 802.11 WiFi standards, and
connects to local and/or wide area networks, not shown.
Input/Output interface 140 may include support for key
boards and graphic input devices such as mice and tablets, and
output devices such as a display shown as DISP 150.
0053 Computer system 100 operates under the control of
an operating system, such as Microsoft Windows from
Microsoft Corporation, OS/X from Apple Computer, or one
of the many open-source Linux operating systems.

US 2014/0090054 A1

0054 Referring now to the flowchart of FIG. 2 and the
diagrams of FIGS. 3 and 4, operation of the detection engine
in detecting an anomaly in an electronic document according
to an embodiment will now be described.
0055. In step 210, the detection engine is attached to an
application. As is known in the art, the application program
processes electronic documents of a particular document
type, for example, Adobe Reader processes PDF electronic
documents, sending function calls and arguments for those
function calls to a service provided through an API such as
JavaScript. In an embodiment, the detection engine attaches
itself to the application to intercept function calls from the
application program to a scripting engine.
0056. In an embodiment, the Adobe Reader application
program from Adobe Systems running on a WindowSR oper
ating system such as Windows 7 from Microsoft(R) Corpora
tion, uses an API to access services provided by the JavaScript
Scripting engine. Other services provided through similar
APIs which may be supported in other embodiments include
Java R) from Oracle Corporation, Adobe FlashR) the open
source Python, or Visual Basic from Microsoft Corporation.
0057. As is understood in the art, the process of attaching
a software component such as the detection engine to an
application program Such as Adobe Reader is dependent on
the operating system on which the detection engine and appli
cation program run. In the embodiment described, Adobe
Reader running on a Windows operating system, Adobe
Reader provides application program interfaces (APIs) to a
MethodDispatcher and an ArgumentParser. Detection engine
340 attaches computer code in detection engine 340 to the
Adobe Reader MethodDispatcher API to intercept function
calls from application program 320, Adobe Reader, to script
ing engine 330, JavaScript. Detection engine 340 attaches
computer code in detection engine 340 to the Adobe Reader
ArgumentParser API to retrieve argument values for the inter
cepted function call.
0058. In step 220 of FIG. 2, detection engine 340 inter
cepts a function call and arguments for the function call from
application program 320 to Scripting engine 330. In an
embodiment, electronic document 310 may contain many
different objects. In the case of a PDF electronic document,
these objects include text, graphics, and Scripting instructions
to a scripting engine Such as JavaScript, including function
calls to JavaScript functions. As application program 320, in
the embodiment, Adobe Reader, interprets the contents of
electronic document 310, application program 320 turns
these scripting instructions into function calls to be sent from
application program 320 to Scripting engine 330.
0059. In an embodiment, function calls from application
program 320 to scripting engine 330 are intercepted by detec
tion engine 340 using the Adobe Reader MethodDispatcher
API. Detection engine 340 retrieves the argument values for
the intercepted function call using the Adobe Reader Argu
mentParser API.

0060. In step 230, the detection engine determines if the
intercepted function call is unknown to the detection model.
In an embodiment, detection engine 340 determines if an
entry for the intercepted function call is present in detection
model 350. If no entry for the intercepted function call is
present in detection model 350, the function call is deemed
unsafe.
0061 This process is shown in more detail in FIG. 3. As
shown, electronic document 310 contains a function call f42(
. . .). In processing electronic document 310, application

Mar. 27, 2014

program 320 generates a function call to Scripting engine 330.
This function call is intercepted by detection engine 340. As
shown, detection model 350 contains entries for f1 through
fl2, but does not contain an entry for f42. Thus the intercepted
function call f42 is deemed unsafe by detection engine 340.
0062. In step 240, if no entry for the intercepted function
call is present in the detection model, an alert is issued by
detection engine 340 indicating that an anomaly has been
detected in the electronic document.
0063 Issuing an alert may include one or more of display
ing an alert on a computer display, logging the alert, or abort
ing processing of the electronic document by the application
program. In an embodiment, an alert dialog box may be
displayed to a user indicating an anomaly has been detected in
the electronic document. The alert may be logged, such as to
a log file on the computer system, or through a network-based
logging mechanism. Further processing of the electronic
document by the application may be aborted. In an embodi
ment, these alert options may be configurable, for example,
by a user or a management service.
0064. In step 250, a determination is made regarding
whether the argument values of the intercepted function call
matches a known value or are out of range. If an entry in the
detection model is present for the intercepted function call,
which has been determined to be present in Step 230, the
argument values for the intercepted function call are matched
against values and/or ranges present for the arguments in the
detection model entry for the intercepted function call. If any
argument values do not match the values and/or ranges
present in the detection model, the function call is deemed
unsafe by detection engine 340.
0065. This is shown in more detail in FIG. 4. As shown,
electronic document 410 contains a function call f2(2.
-4000). In processing electronic document 410, application
program 320 generates a function call to Scripting engine 330.
This function call is intercepted by detection engine 340. As
shown, detection model 350 contains an entry for f2. The
entry forf2 in detection model 350 shows two arguments, first
argument a1 with valid values from the set 1, 2, 4, 8, 16 and
second argumenta2 with valid values in the integer range 0 to
255. In the intercepted function call, the first argument to
function f2 is 2, which matches the set and is valid. The
second argument is -4000, which is out of the integer range 0
to 255, and is unsafe. Thus the intercepted function call f2(2.
-4000) is deemed unsafe by detection engine 340.
0066. In step 260 if an argument for the intercepted func
tion call does not match or is out of range when compared to
the entry in detection model 350 for the function call, an alert
is issued by detection engine 340 indicating that an anomaly
has been detected in the electronic document.
0067. In step 270, because the intercepted function call
and argument values to the intercepted function call have
been determined to be valid by Steps 230 and 250, the inter
cepted function call is allowed to proceed to Scripting engine
33O.

0068. In an embodiment, this process is repeated each time
a function call from the application program to the scripting
engine is generated by the application program processing the
electronic document.
0069 FIG. 5 shows a flowchart for building a detection
model for use in detecting an anomaly in an electronic docu
ment according to an embodiment.
(0070. In step 510, the detection model is built by populat
ing the detection model with known good function calls gen

US 2014/0090054 A1

erated by processing a plurality of known good electronic
documents by the application program. In an embodiment,
referring to FIG. 6, a set of known good documents, 610a,
610b, 610c and so on are processed by application program
320. In an embodiment, the detection engine is operated in a
detection model building mode for a period of time, such as a
period of hours, e.g., twenty four hours, during which known
good electronic documents are processed by the application
program.

(0071. In step 520 of FIG.5 the detection engine 340 inter
cepts a function call and argument values from application
program 320 to Scripting engine 330 as application program
320 processes a known good document.
0072. In step 530, an entry on the intercepted function call
and its argument values are added to detection model 350.
0073. In an embodiment, added to detection model 350
means that if an entry for the intercepted known good func
tion call is not present in detection model 350, an entry for the
intercepted function is added. This entry includes observed
argument values. Similarly, if an entry already exists for this
intercepted known good function call, argument values for
the intercepted known good function call are combined with
the argument values previously added to the detection model
entry. As an example, with integer arguments, values are
accumulated as sets or ranges. For strings, information Such
as allowable characters and string lengths are accumulated.
0.074. In an embodiment, a count of the number of times
this intercepted function has been observed is also part of the
entry in detection model 350; for the first time this intercepted
function is observed, this count is set to 1. When this inter
cepted function is Subsequently observed, the count in detec
tion model 350 for this function is incremented.

0075. At the completion, for example of the period oftime,
when all electronic documents 610 in the set of known good
electronic documents have been processed by application
program 320, with detection engine 340 populating detection
model 350 with entries on intercepted good function calls
from known good electronic documents 610 as processed by
application program 320.
0076. As an example of populating detection model 350,
referring to FIG. 6, known good electronic document 610a
contains known good function calls to f2 and fis. Known good
electronic document 610b has known good function calls f20
and fl. Known good electronic document 610c has known
good function calls fl and f2, and so on through the set of
known good documents.
0077. In an embodiment where a count of the number of
times a function has been observed is kept in detection model
350, in step 560, a threshold is applied to detection model
350, removing entries for function calls if the number of times
the function call was intercepted in processing the plurality of
known good electronic documents 610 is below the threshold.
The threshold is applied in such an embodiment based on the
premise that the threshold insures that a valid sample size of
intercepted function calls for the particular function call have
been obtained.

0078 Referring again to FIG. 6, in an embodiment where
a count of the number of times a function has been observed
is kept in detection model 350, assume that the threshold is
10. As shown in detection model 350, function fl was inter
cepted 20 times, function f2 was intercepted 67 times, func
tion f3 was intercepted 2 times, and function fl2 was inter
cepted 19 times. Of these entries, function f3 is below the

Mar. 27, 2014

threshold of 10, and the entry for function f3 is therefore
removed from detection model 350.

0079. It should be noted that in an embodiment where a
count of the number of times a function has been intercepted
is kept in detection model 350, this count data is only used
during the detection model building phase, and is not needed
for the operation of the detection engine in detecting anoma
lies in electronic documents. As such, the count data could be
removed from detection model 350 after detection model 350
is populated and the threshold of step 560 has been applied.
0080 While the disclosed method and apparatus has been
explained with respect to particular embodiments, such as
using Adobe Reader and PDF electronic documents contain
ing scripting in JavaScript, other embodiments will be appar
ent to those skilled in the art in light of this disclosure, includ
ing but not limited to processing of Flash embedded in PDF
electronic documents, HTML documents by web browsers
such as Internet Explorer, processing of Microsoft Office
documents by Microsoft Office, and the like.
I0081. As described previously herein, a scripting engine
Such as JavaScript is an example of a service provided
through an API. Certain aspects of the described method and
apparatus may be readily implemented, for example, with
application programs using services provided through APIs
such as dynamically linked libraries (DLLs) to extend the
functionality of the application program. Examples include
but are not limited to ActiveX controls on Microsoft Windows
operating systems, Java DLLS Such as JAR files, and shared
object (so) and dynamic library (dylib) files on Unix, Linux
and Apple(R) Macintosh(R) OSX operating systems. Applica
tion programs making use of services provided by APIs
include but are not limited to Adobe Acrobat, Adobe Reader,
Microsoft Internet Explorer, and Microsoft Office.
I0082 Certain aspects of the described method and appa
ratus may readily be implemented using configurations other
than those described in the embodiments above, or in con
junction with elements other than those described above. For
example, the methods may be practiced on a wide range of
computing equipment, including but not limited to servers,
desktop computers, virtualized systems, embedded systems,
and portable devices such as laptops, tablets, Smart phones,
appliances, and other devices containing embedded computer
systems which may use, process, display, or transport elec
tronic documents which may have anomalous or malicious
content, operating under operating systems including Win
dows operating systems from Microsoft Corporation, OSX
and iOS operating systems from Apple Inc, Unix, or Linux
operating systems among others.
I0083. Further, it should also be appreciated that the
described method and apparatus can be implemented in
numerous ways, including as a process, an apparatus, or a
system. The methods described herein may be implemented
by program instructions for instructing a processor to perform
Such methods, and Such instructions recorded on a non-tran
sitory computer readable storage medium such as a hard disk
drive, floppy disk, optical disc Such as a compact disc (CD) or
digital versatile disc (DVD), flash memory, memory cards,
etc., or a computer network wherein the program instructions
are sent over optical or wired or wireless electronic commu
nication links. It should be noted that the order of the steps of
the methods described herein may be altered and still be
within the scope of the disclosure.
I0084. It is to be understood that the examples given are for
illustrative purposes only and may be extended to other

US 2014/0090054 A1

implementations and embodiments with different conven
tions and techniques. While a number of embodiments are
described, there is no intent to limit the disclosure to the
embodiment(s) disclosed herein. On the contrary, the intentis
to cover all alternatives, modifications, and equivalents
apparent to those familiar with the art.
0085. In the foregoing specification, the invention is
described with reference to specific embodiments thereof, but
those skilled in the art will recognize that the invention is not
limited thereto. Various features and aspects of the above
described invention may be used individually or jointly. Fur
ther, the invention can be utilized in any number of environ
ments and applications beyond those described herein
without departing from the broader spirit and scope of the
specification. The specification and drawings are, accord
ingly, to be regarded as illustrative rather than restrictive. It
will be recognized that the terms “comprising.” “including.”
and “having as used herein, are specifically intended to be
read as open-ended terms of art.

1-34. (canceled)
35. A method of detecting an anomaly in an electronic

document comprising:
intercepting, by a detection engine, a function call and at

least one argument value of the function call, the func
tion call for a service provided through an application
program interface, the function call generated by an
application program processing the electronic document
containing the function call,

determining, by the detection engine, that the intercepted
function call is unsafe by comparing the intercepted
function call and the at least one argument value to a
detection model, and

issuing an alert, by the detection engine, that an anomaly
has been detected in the electronic document.

36. The method of claim 35 where the service provided
through the application program interface is a scripting
engine.

37. The method of claim 35 where the step of issuing an
alert by the detection engine comprises one or more of:

displaying the alert,
logging the alert, or
aborting any further processing of the electronic document
by the application program.

38. The method of claim 35 where the step of determining,
by the detection engine, that the intercepted function call is
unsafe by comparing the intercepted function call and the at
least one argument value to the detection model comprises:

determining, by the detection engine, that an entry for the
intercepted function call is not in the detection model, or

determining, by the detection engine, that an entry for the
intercepted function call is present in the detection
model and that the at least one argument value of the
intercepted function call does not match a predefined
value or range present in the entry for the function call in
the detection model.

39. The method of claim35 further comprising building the
detection model by:

processing, by the application program, a plurality of
known good electronic documents, each containing at
least one good function call,

intercepting, by the detection engine, a good function call
of the at least one good function call, and at least one
argument value of the good function call, the good func
tion call for the service provided through the application

Mar. 27, 2014

program interface, the good function call generated by
the application program processing the known good
electronic document containing the good function call,

adding, by the detection engine, an entry for the intercepted
good function call to the detection model, the entry
including the at least one argument value, and

repeating the intercepting and adding steps for each good
function call in each known good electronic document.

40. The method of claim39 where the step of adding, by the
detection engine, an entry for the intercepted good function
call to the detection model further comprises: including a
number of times the function call is intercepted by the detec
tion engine while building the detection model.

41. The method of claim 40 further comprising:
removing, by the detection engine, function call entries

from the detection model where the number of times the
function call was intercepted by the detection engine in
processing the plurality of known good electronic docu
ments is less than a threshold, after the plurality of
known good electronic documents are processed by the
application program.

42. The method of claim 35 further comprising:
attaching, by the detection engine, the detection engine to

the application program,
before the step of intercepting, by the detection engine, the

function call and at least one argument value of the
function call

43. An apparatus for detecting an anomaly in an electronic
document comprising:

a memory configured to contain a detection model, and
a microprocessor coupled to the memory, the microproces

Sor configured to:
intercept a function call and at least one argument value

of the function call, the function call for a service
provided through an application program interface,
the function call generated by an application program
processing the electronic document containing the
function call,

determine that the intercepted function call is unsafe by
comparing the intercepted function call and the at
least one argument value to the detection model, and

issue an alert that an anomaly has been detected in the
electronic document.

44. The apparatus of claim 43 where the microprocessor is
further configured to issue an alert by one or more of:

displaying a visible alerton a display coupled to the micro
processor,

logging the alert to a file stored in the memory, or
aborting any further processing of the electronic document
by the application program.

45. The apparatus of claim 43 where the microprocessor is
configured to determine that the intercepted function call is
unsafe by comparing the intercepted function call and the at
least one argument value to the detection model by being
further configured to:

determine that an entry for the intercepted function call is
not in the detection model, or

determine that an entry for the intercepted function call is
present in the detection model and that the at least one
argument value of the intercepted function call does not
matcha predefined value or range present in the entry for
the function call in the detection model.

US 2014/0090054 A1

46. The apparatus of claim 43 where the microprocessor is
configured to build the detection model contained in the
memory by being further configured to:

process a plurality of known good electronic documents,
each containing at least one good function call,

intercept a good function call of the at least one good
function call, and at least one argument value of the good
function call, the good function call for the service pro
vided through the application program interface, the
good function call generated by the application program
processing the known good electronic document con
taining the good function call,

add an entry for the intercepted good function call to the
detection model contained in the memory, the entry
including the at least one argument value, and

repeat the intercepting and adding steps for each good
function call in each known good electronic document.

47. The apparatus of claim 46 where the microprocessor is
configured to add an entry for the intercepted good function
call to the detection model contained in the memory bye being
further configured to include in the entry at least a number of
times the function call is intercepted by the detection while
building the detection model.

48. The apparatus of claim 47 where the microprocessor is
further configured to:

remove function call entries from the detection model con
tained in the memory where the number of times the
function call was intercepted by the detection engine in
processing the plurality of known good electronic docu
ments is less than a threshold, after the plurality of
known good electronic documents are processed by the
application program.

49. The apparatus of claim 43 where the microprocessor is
further configured to attach the detection engine to the appli
cation program, before intercepting the function call.

50. A non-transitory computer readable medium having
stored thereupon computing instructions for detecting an
anomaly in an electronic document comprising:

a code segment to intercept a function call and at least one
argument value of the function call, the function call for
a service provided through an application program inter
face, the function call generated by an application pro
gram processing the electronic document containing the
function call,

a code segment to determine that the intercepted function
call is unsafe by comparing the intercepted function call
and the at least one argument value to a detection model,
and

a code segment to issue an alert that an anomaly has been
detected in the electronic document.

51. The non-transitory computer readable medium of claim
50 where the code segment to issue an alert by the detection
engine further comprises a code segment to:

Mar. 27, 2014

display a visible alert,
log the alert, or
abort any further processing of the electronic document by

the application program.
52. The non-transitory computer readable medium of claim

50 where the code segment to determine that the intercepted
function call is unsafe by comparing the intercepted function
call and the at least one argument value to the detection model
comprises:

a code segment to determine that an entry for the inter
cepted function call is not in the detection model, and

a code segment to determine that an entry for the inter
cepted function call is present in the detection model and
that the at least one argument value of the intercepted
function call does not match a predefined value or range
present in the entry for the function call in the detection
model.

53. The non-transitory computer readable medium having
stored thereupon computing instructions for detecting an
anomaly in an electronic document of claim 52 further having
stored thereupon computing instructions for building the
detection model comprising:

a code segment to process a plurality of known good elec
tronic documents, each containing at least one good
function call,

a code segment to intercept a good function call of the at
least one good function call, and at least one argument
value of the good function call, the good function call for
the service provided through the application program
interface, the function call generated by the application
program processing the known good electronic docu
ment containing the good function call,

a code segment to add an entry for the intercepted good
function call to the detection model, the entry including
the at least one argument value, and

a code segment to repeat the intercepting and adding steps
for each good function call in each known good elec
tronic document, thereby building the detection model.

54. The non-transitory computer readable medium having
stored thereupon computing instructions for detecting an
anomaly in an electronic document of claim 53 where the
code segment to add an entry for the intercepted good func
tion call further includes a code segment to include in the
entry a number of times the function call is intercepted by the
detection engine while building the detection model.

55. The non-transitory computer readable medium of claim
54 further comprising:

a code segment to remove function call entries from the
detection model where the number of times the function
call was intercepted by the detection engine in process
ing the plurality of known good electronic documents is
less than a threshold, after the plurality of known good
electronic documents are processed by the application
program.

