A 0 0 0O 0 O

37510 A2

~

O 01

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
25 May 2001 (25.05.2001)

PCT

I 00 OO0 0 A

(10) International Publication Number

WO 01/37510 A2

(51) International Patent Classification’: HO04L 29/00

(21) International Application Number: PCT/US00/31295

(22) International Filing Date:

14 November 2000 (14.11.2000)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/165,581 15 November 1999 (15.11.1999) US
09/696,893 26 October 2000 (26.10.2000) US
(71) Applicant and

(72) Inventor: COHEN, Fred [US/US]; 572 Leona Drive, Liv-
ermore, CA 94550 (US).

(74) Agents: QUINE, Jonathan, Alan et al.; Law Offices of
Jonathan Alan Quine, P.O. Box 458, Alameda, CA 94501
(US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU,ID,IL, N, IS, JP, KE, KG, KP, KR, KZ,LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO,NZ,PL,PT,RO,RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ,MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
Without international search report and to be republished
upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND APPARATUS FOR NETWORK DECEPTION/EMULATION

(57) Abstract: A number of innovations in the field of networking are disclosed. These techniques use multiple address translation
to achieve effective deceptions, emulations, extended private networks and related goals. A further embodiment using a deception
network having a number of different actual computer systems each performing emulation where deceived datagrams are routed to
an actual machine that is particularly able to perform the desired emulation. The invention allows the emulation to receive a datagram
just as it would appear at an external access point, operate on that datagram and return a datagram which is then passed through a

deception wall using multiple address translations.

W

20

25

30

WO 01/37510 PCT/US00/31295

METHOD AND APPARATUS FOR
NETWORK DECEPTION/EMULATION

FIELD OF THE INVENTION
The present invention is related to the field of networking of information systems. More

specifically, the present invention is various aspects is directed to network emulation, deception,

and techniques using advanced address translation.

BACKGROUND OF THE INVENTION
This application claims priority from provisional patent application 60/165,581 filed

November 15, 1999 and USSN 09/696,893, filed October 26, 2000.

Throughout the history of war, deception has been a cornerstone of successful offense
and defense. Indeed, the history of information protection includes many examples of the use of
deception for defense including the use of honey pots to gain insight on attacker behavior, the use
of lightning rods to draw fire, and the use of program evolution as a technique for defending
against automated attacks on operating systems. Even long before computers existed, information
protection through deception was widely demonstrated. The history of information protection
also demonstrates that the use of deception by attackers far outstrips its use by defenders in this
field.

The present invention in one part concerns novel and advanced techniques for using
deception in information systems protection. The invention in further embodiments, comprises
independently novel techniques of network emulation and address substitution, which are
described herein and should be understood as independent inventions.

In particular embodiments, the present invention utilizes techniques of address
translation. Address translation in general is a known technique in the art. FIG. 1B is a block
diagram illustrating address translations between a first client network and a second server
network using a proxy server as known in the prior art. One common use of translations is to
separate an inside network containing internal IP addresses from an outside network, such as the
Internet. Consider an office LAN with 100 computers, each having an IP address of the form
10.*.*.* The computers can talk with any other computer on the LAN. using the 10.*.*.* TP
addresses as source and destination addresses in transmitted packets. However, when an inside
computer wishes to communicate to an address on the outside internet, an issue arises in that the
internal IP address may not be a valid external IP address. For example, destination addresses

beginning with 10. are reserved for private networking and are not routable on the Internet.

-

20

25

30

35

WO 01/37510 PCT/US00/31295

Also, internal IP addresses may have been assigned without acquiring the corresponding external
IP address. So an internal address of 24.24.24.2, for example, may be registered in the external
network to another institution. Therefore, while an inside computer 10.n.m.o0 might be able to
transmit a packet out over the Internet with a valid external destination address, no packets can be
returned from the external network if the original source address is 10.n.m.o or another not
valid IP address because that address cannot be correctly routed over the external Internet.

A second issue is that valid external IP addresses can be expensive, and an institution
with a very large number of computers may not wish to buy a valid external IP address for each
computer if it is not necessary. In the simplest case, an institution might wish to use just one
external IP address for its entire LAN. |

To solve these problems, network administrators use a network computing device or
logic module sometimes referred to as a PROXY SERVER or an ADDRESS TRANSLATION
GATEWAY (ATG). An ATG sits between a private LAN network or server network and the
outside network. It receives any packet on the LAN that is addressed to an outside computer, and
translates at least the source address of that packet before placing that packet on the Internet. A
return packet is routed back to the ATG using the translated source address as the destination and
the ATG or proxy again translates the packet addresses and places the packet on the internal
network.

Translations can be accomplished by a variety of techniques known in the art, such as
table-lookup, rules-based translations algorithms, using port fields to hold portions of an
addresss, or using transmit and response timing to match packets. An ATG keeps track of internal
address/external address pairs so that when it receives packets from the external network, they
can be sent over the LAN to the correct individual machine. The ATG/proxy function can be
performed by logic within another network device (such as a firewall or server or bridge) or the
function can be performed by a dedicate gateway computer. Additional information about
gateways; internet addressing, and subnetworks can be found at
www.sohointer.net/learn/gateways.htm and www.sohointer.net/learn/addrs.htm and their
referenced pages.

An ATG functionality will typically be incorporated with other functions in a network
devices. Thus, devices acting as firewalls, routers, or servers can include ATG functions.
Network capable devices with ATG functionality are available from a number of different
vendors. Some examples of such devices include Cisco Routers, the Linux OS, FreeBSD.

‘Standard configurations and capabilities provided by such devices include:

1. At least two interfaces for connecting between two separate communication

environments (such as a private (or local) network and an outside network).

-

20

25

30

WO 01/37510 PCT/US00/31295

2. At least one external interface able to detect and receive packets on an external
network directed to the ATGs external network addresses.

3. At least one internal interface able to detect and receive packets on said internal
network directed to one or more external network addresses.

4. An address translation ability to change source and destination addresses for packets
transferred between the internal interface and the external interface.

5. An address facility able to map between external addresses and internal addresses.

The inventor has written a number of papers and books regarding network and data

security deception. Many of these writings are available at http://all.net/. A few papers of interest

are listed in the section below.

REFERENCES
1. [Dunnigan95] Jim (James F.) Dunnigan and Albert A. Nofi, Victory and Deceit - Dirty Tricks at War,

William Morrow and Co., 1995.), [In this book, examples of the historical use of deception are
categorized into concealment, camouflage, false and planted information, ruses, displays,

demonstrations, feints, lies, and insight.]

2. [Bellovin92] S. M. Bellovin. There Be Dragons. Proceedings of the Third Usenix UNIX Security
Symposium. Baltimore (September 1992). [In this paper, numerous foiled attacks from the Internet
against AT&T are described and the author details how some of these are traced and what is done about

them.

3. [Cohen96] F. Cohen, Internet Holes - Internet Lightning Rods Network Security Magazine, July, 1996.
[This paper describes the use of a system as an intentional target over a period of several years to draw

fire from more critical systems and to learn about attack and defense behavior.] [Drill Down]

4. [Cheswick91] Bill Cheswick, Steve Bellovin, Diana D'Angelo, and Paul Glick, An Evening with
Berferd [In this paper, the details of an attack rerouted to a Honey Pot are demonstrated. The defenders

observed and analyzed attacks with a jury-rigged fake system that they called the 'Jail'.] [Drill-Down]

5. [Cohen92] F. Cohen, Operating System Protection Through Program Evolution Computers and
Security 1992. [In this paper, techniques for automatically modifying programs without changing their

operation are given as a method of camouflage to conceal points of attack.] {Drill-Down]

6. [Cohen97] F. Cohen, Information System Attacks - A Preliminary Classification Scheme Computers
and Security, 1997. [This paper describes almost 100 different classes of attack methods gathered from

.many different sources.] [Drill-Down]

7. [Cohen97-2] F. Cohen, Information System Defenses - A Preliminary Classification Scheme Computers
and Security, 1997. [This paper describes almost 140 different classes of protective methods gathered

from many different sources.] [Drill-Down)

15

20

25

30

35

WO 01/37510 v PCT/US00/31295

8.

10.

11

12.

13.

14.

15.

16.

17.

[Cohen96-03] F. Cohen Internet Holes - The Human Element, Network Security Magazine, March.

1996 [Drill-Down]
[Cohen98] F. Cohen et. al. Model-Based Situation Anticipation and Constraint

[Cohen96-04] F. Cohen. Internet Holes - Incident at All.Net [This paper described an Internet-based
distributed coordinated attack against the all.net Internet site and gives examples of deception used by

attackers to create the impression that deception for defense is unfair and inappropriate] [Drill-Down]

[Cohen96-DCA] F. Cohen, A Note On Distributed Coordinated Attacks , [This paper describes a new
class of highly distributed coordinated attacks and methods used for tracking down their sources.]

[Drill-Down]

[Cohen85] F. Cohen, Algorithmic Authentication of Identification, Information Age, V7#1 (Jan. 1985),
pp 35-41.

[Pessin86] Esther Pessin. Pirate, New York (UPI). April 29, 1986. [HBO on January 15 became the
first major cable channel to scramble its signals to prevent satellite dish owners from picking up HBO
programming for free and the interruption which appeared during a movie early Sunday apparently was
a protest of the policy. The hacker dubbed himself "Captain Midnight" and broke into the film "The
Falcon and the Snowman" with a message that flickered on television screens across the nation for
anywhere from 10 seconds to more than a minute. The cable raider broke into HBO with a multicolor
test pattern and a five-line message printed in white letters: **Good evening HBO From Captain

Midnight $12.95/month? No way! Showtime/Movie Channel beware."]

[Cohen95-3]1 F. Cohen, A Note on Detecting Tampering with Audit Traiis, IFIP-TC11, *Computers and
Security', 1996 [Drill-Down]

[Wilson68] Andrew Wilson, The Bomb and the Computer Delacorte Press, 1968. [This excellent book
describes much of the history of strategic and tactical war gaming from its inception through the

introduction of computers to the art.]

[Cohen98-04] F. Cohen Managing Network Security - The Unpredictability Defense [Donn Parker
asserts that in interviewing hundreds of computer criminals who had been caught, a few things stood out
in common. One is that they depend on predictability of defenses as a cornerstone of their attacks.
Many of them stated that unless they were certain of how and when things would happen, they would
not commit their crimes. Furthermore, the way many of them were detected and caught was by

unanticipated changes in the way the defenses worked. If Donn is right...] [Drill-Down]

[Howard97] J. Howard, An Analysis Of Security Incidents On The Internet Dissertation at Carnegie-
Mellon University [This research analyzed trends in Internet security through an investigation of 4,299
security-related incidents on the Internet reported to the CERT. Coordination Center (CERT./CC) from
1989 to 1995. Prior to this research, our knowledge of security problems on the Internet was limited
and primarily anecdotal. This information could not be effectively used to determine what government

policies and programs should be, or to determine the effectiveness of current policies and programs.

-

wn

20

25

30

35

WO 01/37510 : PCT/US00/31295

19.

21.

22.

This research accomplished the following: 1) development of a taxonomy for the classification of
Internet attacks and incidents, 2) organization, classification, and analysis of incident records available
at the CERT./CC, and 3) development of recommendations to improve Internet security, and to gather
and distribute information about Internet security. ... "Estimates based on this research indicated that a
typical Internet domain was involved in no more than around one incident per year, and a typical

Internet host in around one incident every 45 years."]

. [Cohen96-03] F. Cohen, Internet Holes - The Human Element ["I've mentioned our Internet site before,

and I've probably told you that we detect more than one suspicious activity per day on average."] [Drill-

Down]

[Cheswick94] , W. Cheswick and S. Bellovin, Firewalls and Internet Security - Repelling the Wiley
Hacker Addison-Wesley, 1994. [This book is one of the most authoritative early sources of information
on network firewalls. It includes many details of attack and defense techniques as well as case studies of

attacks against AT&T.]

[Cohen95] F. Cohen, Why is thttpd Secure? Published in slightly altered form in Computers and
Security, 1996 [A "secure" server daemon was written by Management Analytics in the week of June
5-9, 1995. We believe this daemon to be secure in the sense that it does exactly what it is supposed to
do - nothing more and nothing less. This paper describes the inner workings of this very small program,
why we think it is trustworthy, and where our assumptions may fail. This server was subsequently

mathematically proven to meet its security requirements.] [Drill-Down]

[Cohen97-3] National Info-Sec Technical Baseline - Intrusion Detection and Response [This paper
covers the state of the art in intrusion detection and includes an extensive review of the literature while

identifying key limitations of current intrusion detection technology.] [Drill-Down]

[Cohen-98] National InfoSec Technical Baseline - At the Intersection of Security, Networking, and
Management [This paper covers the state of the art in network security management and secure network
management and includes an extensive review of the current state of the art and identifies key

limitations of current technology.] [Drill-Down]

SUMMARY OF THE INVENTION

The present discussion illustrates a number of innovations in the field of networking. The

invention in various specific aspects and embodiments is related to deception techniques,

multiple address translation methods, and proxy services for deception and emulation. According

to these novel methods and apparatuses, used either alone or in combinations, complex

emulations and deceptions can be accomplished.

In some embodiments, these complex emulations and deceptions can be accomplished

using standard networking devices with standard ADDRESS TRANSLATION GATEWAY (or

proxy addressing)ability . in novel configurations according to the invention. The use of

-5-

20

25

30

35

WO 01/37510 PCT/US00/31295

standard networking devices can reduce system installation and management costs. There are a
wide range of additional specific applications of the novel methods and apparatuses, some of
which are described as specific examples herein.

In specific embodiments, the present invention involves innovations to improve both the
fidelity of deceptions or emulations and the ability to do large scale deceptions or emulations.
These innovations include responding to multiple incoming IP addresses in conjunction with
deception techniques.

In a further embodiment, a deception system can act as a firewall that allows only
permitted traffic and rapidly and automatically reacts to illicit access attempts by altering
deceptions. In a further embodiment, the invention uses proxy mechanisms to provide enhanced
deception or emulation. Proxies translate IP addresses and forward packets and are at the heart of
some existing firewall technologies.

Deceptions on Multiple Addresses
FIG. 3 is a block diagram showing a deployment of an advanced Deception Tool Kit

within a network, according to one embodiment of the present invention, with the Deception Tool
Kit providing deceptive services at multiple addresses.

In specific embodiments, the present invention can be used with innovations that can
improve both the fidelity of deceptions or emulations and the ability to do large scale deceptions
or emulations. These innovations include responding to multiple incoming IP addresses from a
machine in conjunction with deception techniques. As such, in this aspect, the invention provides
the means to do large scale deceptions at a very low cost. In a further embodiment, the use of
flexible characteristics based on source or destination IP address allows a single machine to
emulate a large number (such as up to 4,000) different systems, each with unique characteristics,
thus providing a rich environment for deception as well as network emulation.

In further embodiments, emulations may be altered over time to emulate the
characteristics of real networks, such as turning off machines at various times of day at different
places in the world, the movement of machines from network to network, and the alteration of
systems and usage patterns over time. In various embodiments, these and other alterations may be
controllable from a single deception control system or from a distributed deception control
system thus providing improved deception fidelity on a large scale for a very low cost.

Multiple Address Translations
In specific embodiments of the present invention, the innovation of multiple address

translation involves using two or more proxy or other address translation mechanisms to facilitate
high fidelity deception or to accomplish other goals, such as emulation, extended private

networking, obscuring paths, or facilitation multiple processor systems. These goals are

-6-

20

25

30

35

WO 01/37510 PCT/US00/31295

implemented by translating from an original address into an intermediate address, and then
translating back to the original address.

It may aid in understanding to consider as example a simple case of two address
translations: the first being a translation from an “outside” network into an “intermediate” or
“control” network: and the second being a translation from the “intermediate” or “control”
network to an “inside” or “deception” network. FIG. 4A-C, which are discussed in more detail
below, shows one example of such a translation. While this is a good functional example of
multiple address translations according to the invention, the method of the invention can also be
practiced on different hardware configurations, such as within a single network simulation device
as described below. In further embodiments, the present invention can extend known translating
schemes by using multiple translations to produce packets in an inside network or system that are
identical to the original packets. In further embodiments, the invention provides a method for
accomplishing complex emulations, deceptions, etc., using standard networking equipment. In
further embodiments, the present invention, by providing such translation into a different IP
address and then back into the original IP address, provides a means by which existing protocols

and systems can be used to redirect traffic as if it were passing through a cross-point switch.

Emulation/Deception Networks Using a Variety of “Real” Hardware/Software

Platforms

In a further embodiment, the present invention allows flexible control of a deception or
emulation system in which a set of services. behaviors, paths, and hardware configurations can be
emulated at very high fidelity by routing requests to different deception or emulation hardware
configurations. Thus, a deception system according to the present invention, instead of simulating
a Sun computer running an Apache Web server on a given IP address and port but performing the
simulation on a different kind of computer system, can redirect “deceived” traffic so that the
traffic is handled by an actual Sun\computer running an actual Apache web server and responding
to the IP packets as originally addressed in the outside network. According to this aspect, the
present invention can use a small number of different actual computer systems in an
emulation/deception network and can configure and reconfigure access to them and their
behavior in real time to provide an extremely high fidelity emulation/deception. In a further
embodiment, more than two address translations can be used with similar effect in cases when
multiple hops are required for the purpose of the deception.

According to various embodiments of the present invention, ea‘ch of these techniques on
their own provides a very substantial improvement to the ability to provide large scale high
fidelity deception. But when combined together, these techniques provide the means, for

example, for fewer than 100 computers to do a very high quality emulation of a network of tens

7-

i

20

25

30

WO 01/37510 PCT/US00/31295

of thousands of computers. For example, in one embodiment, it is possible to do an emulation of
an entire Class B network (e.g. more than 60,000 computers) with only about 60 computers and a
set of associated networking hardware and control software. Such an emulation/deception
according to the invention is very accurate and behaves very much like an actual network of this
size would behave, with the exception that the total aggregate computing performance is far less
than that of an actual network of this size. This is an unavoidable side effect of having fewer
computers available and operating at a lower cost, however, for a vast range of deception and
emulation purposes, this method is as good as having the larger system, and in many ways it is far
better. Some of the advantages are the ability to control the network much more easily, higher
availability because of the reduction in hardware, lower cost, power consumption, space
utilization, and so forth. This method also provides very high signal to noise ratios of intrusion
detection, high speed adaptation to changing circumstances in the environment, and can be used
to do testing and emulation of a wide range of network attack and defense methods with results
equivalent to that of a real network.

A further understanding of the invention can be had from the detailed discussion of
specific embodiments below. For purposes of clarity, this discussion refers to devices, methods,
and concepts in terms of specific examples. However, the method of the present invention may
operate with a wide variety of types of communication systems and logic systems. It is therefore
intended that the invention not be limited except as provided in the attached claims. Furthermore,
it is well known in the art that logic systems can include a wide variety of different components
and different functions in a modular fashion. Different embodiments of a system can include
different mixtures of elements and functions and may group various functions as parts of various
elements.

For purposes of clarity, the invention is described in terms of systems that include many
different innovative components and innovative combinations of components. No inference
should be taken to limit the invention to combinations containing all of the innovative
components listed in any illustrative embodiment in this specification.

The invention as described herein at times refers to transmission of various packets,
datagrams, PDU’s or data units of data. These terms should be understood as generally
equivalent and indicate any known format for exchanging data with address indications.

Furthermore, for purposes of clarity, aspects of the invention are at times described with
reference to a deception system. As discussed herein, this should be understood as a specific
example, and the invention has other applications, such as emulation systems, redirection

systems, analysis systems, or systems to create extended private networks.

-8-

20

25

30

WO 01/37510 PCT/US00/31295

All publications, patents, and patent applications cited herein are hereby incorporated by
reference in their entirety for all purposes. The invention will be better understood with

reference to the following drawings and detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1A is a block diagram illustrating a honey pot system within a local area network as

known in the prior art.

FIG. 1B is a block diagram illustrating address translations between a first client network
and a second server network using a proxy server as known in the prior art.

FIG. 1C is a block diagram illustrating a front-end/back-end firewall system as known in
the prior art.

FIG. 2 is a block diagram illustrating a deployment of an early version of a deception tool

kit in individual computer systems, with each deployment providing deception services at a single

computer system.

FIG. 3 is a block diagram showing a deployment of an advanced Deception Tool Kit
within a network, according to one embodiment of the present invention, with the Deception Tool
Kit providing deceptive services at multiple addresses.

FIG. 4A is a block diagram illustrating two examples of address translations, according to
specific embodiments of the present invention.

FIG. 4B is a block diagram illustrating multiple address translations, according to one
embodiment of the present invention, that can allow deception networks to be separated from
normal networks and can further allow “real” emulation systems to replace lower fidelity
deceptions and that further can allow increased indirection and obscurity.

FIG. 4C 1s a block diagram illustrating multiple address translations, according to one
embodiment of the present invention, and providing further details according to specific
embodiments.

FIG. 5A-C illustrate an example application for the present invention in a student distant
learning exercise.

FIG. 6 illustrates an alternative application for multiple address translations, according to
further embodiments of the present invention, allowing redirection and obscuring réquests Ina
network.

FIG. 7 is a block diagram illustrating use of address translation according to one
embodiment of the present invention to facilitate MIMD computations.

FIG. 8 is a block diagram illustrating a typical representative logic device in which

various aspects of the present invention may be embodied.

9.

20

25

30

35

WO 01/37510 PCT/US00/31295

FIG. 9 is a flowchart illustrating a method for providing deception/emulation responses
according to embodiments of the present invention.

FIG. 10 is a flowchart illustrating a method for providing deception/emulation responses
from multiple emulation systems according to embodiments of the present invention.

FIG. 11 1s a flowchart illustrating a method for using multiple translations to an internal
network according to embodiments of the present invention.

FIG. 12 is a flowchart illustrating a method for directing datagram traffic to a
deception/emulation device in a separate internal network according to embodiments of the
present invention.

FIG. 13 is a flowchart illustrating a method for request obscuring according to
embodiments of the present invention.

FIG. 14 is a flowchart illustrating a method for enabling multiple logic processing

according to embodiments of the present invention.

DESCRIPTION OF SPECIFIC EMBODIMENTS

Single Address Deception Tool Kit
A consideration of the present inventor’s work as embodied in early versions of

Deception ToolKit (DTK) (http://all.net/dtk/dtk.htmi) will aid in understanding the present
discussion. DTK is at present a publicly available off-the-shelf deception system. DTK is
designed primarily to provide the average Internet user with a way to turn on a set of deceptions
in a few minutes that will be effective in substantially increasing attacker workloads while
reducing defender workloads. Various functions and aspects of DTK have been made available
at the inventor’s website in an incremental fashion.

In its early-version off-the-shelf form, DTK is designed to be installed on one or more
single machines on a network and provide fictions that are adequate to fool current off-the-shelf
automated attack tools. FIG. 2 is a block diagram illustrating a deployment of an early version of
a deception tool kit in individual computer systems, with each deployment providing deception
services at a single computer system. As will be understood in the art from the teachings herein,
FIG. 2 represents a number of actual computers on a network, such as a LAN, that may be
vulnerable to attack. Seven of the computers are shown containing a DTK module. The net effect
is that attack tools that automatically scan for known vulnerabilities (such as in the LAN
computers shown in FIG. 2) find what appear to be large volumes of vulnerabilities. The number
of detected vulnerabilities is very high and dominated by deceptions. The attacker is faced with
spending additional time and effort trying to figure out which of the indicated attacks really work
on that machine. At the same time, all of the attack attempts against deceptions are revealed to
the defender.

-10-

20

25

30

35

WO 01/37510 PCT/US00/31295

DTK's deception is programmable, but it is typically limited to producing output in
response to attacker input in such a way as to simulate the behavior of a system that is vulnerable
to the attackers’ method. As a programmable deception capability, DTK provides a low-cost
method for a defender to create custom deceptions of arbitrary complexity. For example, it 1s a
fairly simple matter to create a series of convincing electronic mail messages that indicate a false
intent to an attacker. If the attacker is clever enough to break into the pop3 email server deception
using known attack techniques, they are provided with false and planted information. DTK is not
intended to be the end-all to deceptions in information systems. It is only a simple tool for
creating deceptions that fool simplistic attacks, defeat some automatic attack systems, and change
the balance of workload in favor of the defender.

A simplistic view of deception for the purposes of analysis is that out of a few thousand
widely known possible vulnerabilities in modern information systems, most current systems are
only vulnerable to a small percentage of them, if only because most modern system don't use
most of the capabilities of their systems for useful applications. If an attacker does not observe
traffic before trying to test the defenses, and assuming that access attempts are not concentrated
more on actual services provided than on deceptive services, every attempted access has a high
probability of triggering a deception rather than an actual service.

In addition to causing an increase in the attacker's workload, a DTK system has a further
pleasant effect for the defender: every miss by the attacker represents a detection by the defender.
This means that defenders, instead of ignoring unused services, are alerted to all of the failed
attempts. With deception in place, every use of a deceptive service constitutes the detection of an
attempted attack. In general, there are two problems for the designer of automated attacks against
deceptive defenses such as those demonstrated in DTK. The first problem is generating
automation that differentiates between deceptions and real services. The second problem is
finding a way to succeed in the attack before the defender is able to react.

While the problem of differentiating deception from reality is, in general, a very complex
problem equivalent to the general problem of finite state machine differentiation, the realities of
DTK today limit its deceptions to relatively simple state machines. Since the attacker has access
to the most widely used deceptions in the same manner as the defenders, writing differentiation
routines for complex services should be simple, while writing differentiation routines for simple
services may be impossible. In essence, the more complex the deception requirement, the harder
it is to make a good deception, and thus the easier it is to differentiate real systems from limited
deceptions. On the other hand, simple systems such as pop3 servers are so simple to build that a
deception can be built easily that completely and precisely mimics the real service. The much

harder problem is defeating deception by moving so quickly that the decision cycle of the

-11-

20

25

30

WO 01/37510 PCT/US00/31295

defender cannot block the attack. In normal systems without deception, the attacker has a long
time before detection takes place. With deception in place. every attempt to use a deception
service can generate an immediate detection. With automated notification and response
procedures are in place for each detected attack attempt, the attacker may have to succeed in a
matter of milliseconds to prevent the defender from acting.

DTK responding from a single address has been used in experiments and in beta test
systems since early in 1998. Early versions of DTK were implemented as a Perl script. The use of
common (i.e., shared) code segments by all invocations of Perl on a given system combined with
the small size and quantity of state information required in order to implement DTK's finite state
response services produces a relatively small performance and memory impact on systems, and
essentially no effect when attacks are not underway. In experiments with common denial of
service attacks, it was found that DTK was able to sustain operations when the normal service
daemons that are attacked in typical denial of service attacks were susceptible.

DTK was designed with the intention of being resilient to resource exhaustion attacks by
including timeouts and input length limitations that most normal service programs do not have -
to their detriment. DTK uses the same methods as the secure Get-only Web server to provide
additional protection in a secure daemon. DTK has a tremendous advantage in that it is able to
closely control events on deception services, while the typical intrusion detection system has to
merely watch an essentially unrestricted flow of information. DTK thus significantly improves
the signal to noise ratio for detection.

Port 365
If DTK becomes very widespread, one of DTK's deceptions will become very effective.

This deception is IP port 365 - which has staked a claim as the deception port. Port 365 indicates
whether a machine is running a deception defense. Naturally, attackers who wish to avoid
deceptive defenses will check there first. Eventually, simply running the deception defense
notifier may eliminate many attackers. Of course, some defenders may turn on the deception
announcement message in order to track new attack attempts.

Deception port 365 has aiso been used to facilitate two kinds of enhancements. One form
of enhancement is to provide a means for remotely accessing log information in order to
centralize intrusion management. In this way, fully decentralized deceptions can be implemented
in a large network with remote reporting and control. Of course this remote control has to have
proper protections to prevent it from being exploited by attackers. The details of these protocols
is well within the classes of existing cryptographic protocols used for intrusion detection and
remote network management systems.

Another enhanced use of the deception port is communication between deception

systems to coordinate defensive efforts. In an experimental system, deception systems

-12-

20

25

30

WO 01/37510 PCT/US00/31295

communicate with other deception systems engaged in related business functions. They
independently schedule deceptions to increase and replace non-critical functions as detected
attacks increase, decrease deceptions and enhance non-critical functions as attacks decrease, and
pseudo-randomly insert and alter deceptions during times of low-level activity so as to make it
impossible for even the expert insider who set up deception to be certain of going undetected.
This can be done in a fully distributed, automatic, and hard-to-predict fashion while still being
forced by mathematical methods to meet operational constraints and consuming very small
amounts of time and space and operating on heterogeneous networks.

One other area of deception has been experimented with are internal deceptions wherein
programs that could be used to gain unauthorized access once inside a system are instrumented
and augmented to include deceptions. For example, if an unauthorized Unix user attempts to use
the Unix su command, a deception is used to allow the root password to be easily guessed. The
user is then placed in a jail-like enclosure to allow any attempts at further access or exploitation
of illicit access to be observed, analyzed, and recorded. This type of deception is significantly

complicated by the large volume of information that is legitimately provided to most internal

users.

Multiple Address Deceptions

A more advanced deception against attacks can be provided according to sepcific
embodiments of the invention as illustrated in FIG. 3. FIG. 3 is a block diagram showing a
deployment of an advanced Deception Tool Kit within a network, according to one embodiment
of the present invention, with the Deception Tool Kit providing deceptive services at multiple
addresses. Illustrated on the right of FIG. 3 is the “real” configuration of network equipment.
FIG. 3 illustrates nine “normal” systems in a communications network that the invention wishes
to protect from attacks. These nine systems can be understood as perhaps individually
addressable computers on a local area network (LAN) that might be subject to attack, perhaps
through a firewall or gateway, or from an attacker with direct access to the inside network. To
protect these systems, one or more deception modules or machines (labeled DTK) is placed in the
network. This module might be a software module running on a computer system on the
network, or it mught be a separate piece of hardware dedicated to providing deceptions.
According to specific embodiments of the present invention, the deception system DTK responds
to some or all illegitimate or unauthorized packets that enter the network with deceptions.

For example, suppose the nine “normal” systems responded at nine addresses that were
non-zero multiples of six, such as 10.0.0.6, 10.0.0.12, 10.0.0.18, etc. An attacker that had
gained access to the inside network without knowing the existing addresses, might attempt to

discover valid internal addresses at random. In a network not using the invention, the attacker

13-

20

25

30

35

WO 01/37510 PCT/US00/31295

might first attempt addresses 10.0.0.0-5 and each time he did not get a valid response, the
attacker would turn to the next address.

According to specific embodiments of the present invention, however. as illustrated in
FIG. 3, an attacker would get a response at one or more addresses 10.0.0.0-5. These responses,
however, would all be generated by deception component DTK. Deception component DTK,
depending on its capabilities, can provide rather elaborate deceptions that varied for each
incoming IP address and that varied over time. Thus, an attacker could be led to waste a large
amount of time breaking in to deception systems and risking detection.

As will be understood to those of skill in the art from the teachings herein and the
illustration in FIG. 3, unauthorized packets can reach the DTK device in a number of ways
consistent with standard networking techniques. For example, where the devices shown to the
right of FIG. 3 all reside on a Local Area Network (LAN), DTK can be programmed to simply
respond to every packet addressed to a destination that is not active on the network. An advanced
DTK can also sniff every packet, and respond to every packet that does not meet a predefined
authorization characteristic, such as having a particular key.

It will also be understood to those of skill in the art from the teachings herein, that the
techniques illustrated in FIG. 2 and in FIG. 3 could be used in the same network. Thus, packets
that reached a normal system with an unauthorized service request could be responded to by a
deception module at that normal system, while packets addressed to unauthorized destinations
could be handled by a multiple address DTK as illustrated in FIG. 3.

FIG. 9 is a flowchart illustrating a method for providing deception/emulation responses
according to these embodiments of the present invention. As shown in the figure, unauthorized
packets to various destination addresses are received at a deception system in a network and the
deception system generates deception responses emulating different computer systems at
different destination addresses and returns deception responses to the unauthorized senders so
that the senders will be deceived to believe they have reached different systems.

Deception Tool Kit Limitations
DTK as shown in both FIG. 3 and FIG. 2 is limited in the richness of the deceptions it

can provide. It is simple to differentiate between a real computing environment and the limited
capabilities demonstrated by a finite state machine having only a small number of states.
However, against many modern automated attack tools, even this limited deception is adequate.
For a serious attacker, differentiation even by an automated tool may be a simple matter.
For example, an attacker may pseudo-randomly select a series of commands from a normal
environment, run them on a local machine, and compare results to those of the same commands

run against a machine under attack. Differences would indicate possible deceptions. A

-14-

20

25

30

WO 01/37510 PCT/US00/31295

sophisticated attacker could break into an intermediate site. test the site under attack for
deception, differentiate deception services from legitimate services, and then exploit the
legitimate services from a different location. This type of distributed coordinated attack (DCA)
can render the sort of limited deceptions provided by DTK less effective.

DTK provides a limited unlimited customization capability. It is unlimited in that,
theoretically, a deception module can simulate anything that a Turing machine can do with finite
state machines and unlimited memory; in practice, however, the deception is limited by the
ability of customization to adequately deceive. A good example is a simulated mail server: while
it can be easily programmed to provide access to forged email, generating a sequence of
meaningful forged emails to create a deception is not such a simple task.

Enhanced Emulation/Deception Using Multiple Actual Logic Systems
In further aspects, the present invention provides a method and system for more complex

and sophisticated deceptions and emulations. It will be understood to those of skill in the art that
the concept of emulation and deception are related. The purpose of an emulation is to act as if it
were the real thing for the intended purposes even though it is not in fact the real thing. The
purpose of a deception is to convince an attacker that an attacked target is the desired target even
though the attacked target is not in fact the desired target. The present invention, in various
aspects, is related to apparatus and methods that are useful for both deception and emulation and
to other apparatus and methods useful in advanced digital communications. As used herein,
deception and emulation can be understood to describe essentially the same functionality, though
for different purposes.

Other network emulation and deception systems, such as network simulators, early
versions of DTK, various hardware emulation mechanisms, and honey pot systems, have a
number of limitations. They are only able to do high quality deceptions of a single system with a
single system at one time. This is true of both normal honey-pot systems as shown in FIG. 1A and
early versions of DTK as shown in FIG. 2. Network simulators are able to simulate large scale
networks, but do so at resolution limited by the model upon which their simulations are based.

Furthermore, the fidelity of deceptions is relatively poor. This is true primarily of early
versions of Deception ToolKit, which traded off low cost and low system utilization for poor
fidelity. Other network simulation technologies may do a good job at emulating some facets of
the networked environment, but because they require explicit modeling of simulated components,
their fidelity is limited except in the aspects they are specifically designed to elucidate: One of
the exceptions to this is a set of systems that provide virtual machine environments. In this case,

the emulations are very good but consume a lot of performance and are not scalable beyond a few:

-15-

(94}

20

25

30

WO 01/37510 PCT/US00/31295

emulated systems per host system. Further information regarding deceptions of this sort are
documented in all.net/journal/ntb/deception.html, portions of which are included herein.

In part to address these limitations, the present invention in specific embodiments
provides a method for emulating a network of logic systems of at least two distinct types (such as
two different operating systems or two different hardware platforms). According to this aspect of
the invention, the emulations generally are done by actual logic systems that are particularly
appropriate for running those emulations. A communication channel to the actual logic systems
can distribute datagrams that are having their responses emulated so that datagrams wind up at
the appropriate emulation system. Typically, each emulation system will respond to multiple
addresses to emulate multiple systems. If the desired emulated network, for example, included 23
Sun Apache servers and 13 NT Servers, in the emulation network, a single Sun Apache Server
might be used to respond to the 23 Apache addresses and a single NT server might he used to
respond to the NT addresses. To improve the network-wide emulation, at least one of the
emulation systems may provide variant response characteristics. Variations can be based on the
incoming emulated address, to provide the emulation of different instances of the computer type
in the network and can include such things as time and use characteristics. The network
configuration and individual responses of the emulations can also be altered over time to emulate
the characteristics of real networks.

To allow for sophisticated variation, in specific embodiments, emulation of various
machines can be controllable from one or more control systems. A control system, for example,
can operate much as a network administration system on a real network, and can start and stop
various emulations, change operating characteristics and network response characteristics of
various emulations, and/or change the routing to various emulation systems to change the
perceived topology of the network.

These techniques can be used to provide deception in a communication network by
responding to received datagrams using different deception emulations so that a receiver believes
a number of different units have been reached. This can be accomplished by routing datagrams
addressed to non-existing computers or non-available services to a deception system and
responding to said datagrams using varying emulations. For the deceptions, emulations can vary
based on one or more of: datagram addresses, time, or usage charactersitics.

This technique can be implemented in a simplified way by including two DTK systems
of different types in the system shown in FIG. 3, and programming those systems so that each
responds to a different set of unauthorized addresses. with different emulations. This deception
can be performed in a more sophisticated manner using an emulation subnetwork as described

below.

-16-

20

25

30

WO 01/37510 PCT/US00/31295

FIG. 10 is a flowchart illustrating a method for providing deception/emulation responses
from multiple emulation systems according to embodiments of the present invention. As shown
in this example method, datagrams to multiple destinations to are detected (or may be directed on
a network in specific embodiments) at two or more emulation/deception systems of two or more
different types and responses are generated by a deception system of the same general type as the
system being emulated.

Emulation Subnetworks
In further embodiments, the invention provides a method for connecting an emulation

subnetwork to a network using address translation. FIG. 4A is a block diagram illustrating two
examples of address translations, according to specific embodiments of the present invention.
Address translation can also be understood as employing an emulation wall, where the emulation
wall is a system or device that can receiving datagrams from an outside network, determine that a
datagram should be handled in an emulation subnetwork and pass the datagram into the
emulation subnetwork with the original addressing it had in the outside network.

In one embodiment, this function could be handled by a specially programmed network
device that was able to internally distinguish datagrams (or packets) addressed on the two
networks. However, in further embodiments, the invention provides a technique for operating an
emulation wall using standard network devices, by using proxy addressing. In this embodiment,
packets entering the emulation wall have their original addressing translated into a proxy address
while in the emulation wall and then have the proxy address translated back into the original
address when the datagrams exit the other side of the emulation wall into the emulation
subnetwork. The datagrams can then be routed in the emulation subnetwork using their original
addresses, allowing for sophisticated emulation/deception using multiple different emulation
machines.

In the reverse direction, a response received at the emulation has its address translated
back to a proxy address then passed into an outside network from the emulation subnetwork
while the proxy address is translated back into the original address.

Thus, the invention provides a method for deception in a computer network, that includes
passing a datagram received with a non-legitimate identifier (such as address, port, or improper
characteristics) IP into enters a deception network, rather than encountering a normal user
system.

| FIG. 11 1s a flowchart illustrating a method for using multiple translations to an internal

network according to embodiments of the present invention.

-17-

20

25

30

35

WO 01/37510 PCT/US00/31295

Larger Scale Example
FIG. 4B is a block diagram illustrating multiple address translations, according to one

embodiment of the present invention, that can allow deception networks to be separated from
normal networks and can further allow “real” emulation systems to replace lower fidelity
deceptions and that further can allow increased indirection and obscurity.

FIG. 4B shows a larger scale example that was experimentally implemented to create a
large-scale deception mechanism covering 40.000 IP addresses. In this example, external traffic
can enter the network from the Internet (e.g., from W.X.y.Z to a.b.c.d and from m.n.o.p to
a.b.c.g) and internal traffic can go from system to system (e.g., from a.b.c.g to a.b.c.f).

In this example, there is no legitimate TP address a.b.c.d, so all traffic directed to that IP
address (e.g. W.X.Y.Z to a.b.c.d as illustrated) is routed into and enters the deception network
rather than encountering a normal user system. From the deception network, three things can
happen. (1) If the controlling system has established rules indicating the datagram 1s something to
be ignored, the datagram is dropped. (2) If the datagram can be handled at the initial deception
system interface, it is, thus datagrams such as Internet Control Message Protocol (ICMP)
messages can be responded to from the initial deception network location and the datagram does
not encounter the deception system. (3) If the datagram is to be passed into the more detailed
deception, it is translated by way of a proxy or other translation means into an internal source
address (such as 10.X.y.z on port W*256 +n, where n indicates the desired service number to
directed to the outside system). In this example, it is assumed that the incoming port/service
number only requires one-byte of storage and that the internal packets allow two bytes for port
numbers.

After this translation, from the initial proxy system, that datagram is routed in the internal
deception system and eventually reaches a second proxy service. This service translates the
source address back to original sburce address and the destination address back to the original
destination address. In different implementations, different address translation mechanisms, such
as discussed above, can be used.

This second translation makes the datagram on the 'inside' identical to the one that
arrived on the 'outside'. The "Real system" (i.e. the actual emulation/deception computer systems)
assigned to a.b.c.d within the deception/emulation network then handles the datagram exactly as
if it were in the 'outside' part of the network. Responses are sent back through the proxy systems
using the reverse of the translation process. In this way, even if the “real” emulation/deception
computer system is broken into, the damage is limited to the deception systems. From there, an
attacker could try to attack other IP addresses in the defender's network, but all of these attempts

will be launched against other systems in the deception network, rather than the systems in the

18-

20

25

30

35

WO 01/37510 PCT/US00/31295

"outside” network. Any activities reaching the deception network systems can be logged and
analyzed, and the attacker can be traced back while spending time attacking the deception
systems.

Thus, it will be understood from the teachings herein, that FIG. 4B illustrates an example
deception/emulation network having four deception systems 20a-d on the outside (10.0.x.X) and
four deception systems 22a-d on the inside (10.1.x.X). The figure illustrates three normal
systems 10 on the outside network. These normal systems can also include deception components
(DT) that are similar to the DTK components described above with reference to FIG. 2.
However, these deception modules, unlike with DTK, instead pass unauthorized datagrams into
the deception network.

Thus, in a similar way, incoming Internet traffic that is destined for an existing system in
the "outside" network (e.g., a.b.C.g) can also be directed into the deception network if the traffic
is unauthorized. Unauthorized traffic, as understood in the art, can be determined according to a
variety of criteria. For example, by detecting any datagram that attempts to use a service not
authorized for external use; by detecting a datagram attempting to use a service not authorized
from a particular source address; by detecting any datagram coming from an unauthorized source;
etc. An unauthorized datagram can also be a datagram that is in any way not correctly formatted,
for example a datagram that does not contain a required key.

According to specific embodiments of the invention, an unauthorized datagram arriving
at a normal outside system will be directed by a small proxy address translation mechanism at the
normal system into the deception system (e.g., into address a.f.c.g at 20c). From there, the
datagram is translated as in the previous example, and handled by the "Real System” in the
"Inside" network. Responses are scnt back to the "Outside System" and the proxy translation
system translates them back so that the outsider (i.e., from mM.Nn.0.p) observes the same behavior
that would be encountered if the original system (e.g. a.b.c.g) were handling the request, except
that the results are generated by the deception system in the "Inside" network. A break-in will
therefore function against the "Inside" network as in the previous example.

According to further specific embodiments of the invention, if an insider (i.e., from
a.b.c.g - whether as a result of a successful break-in to a.b.c.g or from a user of a.b.c.g
performing unauthorized activities) attempts to use an unauthorized service from another internal
system (i.e., a.b.c.f) this is treated by a.b.c.f in the same manner as in the last example except
that the proxy uses a different destination address to indicate to the deception system that this is
an insider attack.

Inside the deception network shown in FIG. 4B and FIG. 4C are shown, as examples,

actual or “real” emulation/deception computer systems 40p-r), indicating different actual

-19-

20

25

30

35

WO 01/37510 » PCT/US00/31295

computer systems that can run various emulations/deceptions. The deception network can
contain any number of actual systems. The optimal number will vary according to the
emulations/deceptions that it is desired to run.

FIG. 4C further illustrates more specifically that a deception system according to specific
embodiments of the present invention can involve three network. A first network N1 is the
network that is connected to the outside of the outside deception systems 20. The intermediate
network N2 represents the communication channel between the outside and inside translation
modules. The inside network N3 is a decpetion/emulation network where packets can be routed
to various emluation systems to provide a sophisticated deception, possible using multiple
emulation systems 40. Again, according to the invention, the packets flowing in N3 can have
identical addressing to packets in the NI network, thereby allowing for more advanced
deceptions.

An optional internal control mechanism 25 is illustrated to indicate that in particular
embodiments, control information is provided to components of the system. Control packets or
control signals can be directed to systems 20 or 22 by internal module 25 or from an external
location to modify or control the translations provided by systems 20 and 22. Control packets
can be transmitted according to any mechanism known in the art, such as control protocols
including SNMP, etc.

Example Translation/Emulation Application
A prototype built according to a specific embodiment of the invention has been

demonstrated capable of providing one or more of secure subnetworks within an internal
computing environment. In one implementation, a subnetwork was created and tested out by
students in computer security distance learning classes doing laboratory experiments over the
Internet. The students were unaware of how many computers were actually in use and how the
translations were actually done. They proceeded with the class unaware that less hardware was
actually available than they thought was there based on responses received from the network.

FIG. 5A-C illustrate an example application for the present invention in a student distant
learning exercise. FIG. 5A illustrates generally what the students perceived, which was a private
network of computers with internal private IP addresses of the form 10.*.*.*. Though only
three individual machines are shown, any number of perceived machines could exist within the
10.*.*.* network. (In the figures, the perceived machines are given labels (*Attacker”
“Defender” and “IDS”) corresponding to roles those perceived machines played in this particular
student exercise, but these labels are not important to the present discussion.)

The students also perceived that this private network sat behind a firewall with an

external address of 24.1.84.100 and an internal address of 10.0.0.1. This is a common

-20-

10

15

20

25

30

WO 01/37510 PCT/US00/31295

configuration of a LAN connected through a firewall or gateway to the internet. Thus, FIG. 5A
illustrates what a student in this example perceives at address 21.1.84.100. The student
perceives a standard firewall at that IP address, and behind that firewall, three to 250 systems at
local IP addresses 10.0.0.2-4 and 10.0.0.5-255.

In reality, the network configuration shown in FIG. 5A was emulated by the actual
network system shown in FIG. 5B. The emulation worked as follows. The students entered the
network from wherever they were located, by directing datagrams to an 'outside’ address of the
deception system (in this example, 24.1.84.100 at the top of FIG. 5B). From there, the student
datagram addresses were detected by the first device and translated into a first inside address
scheme, for example, in the incoming direction 204.7.229.1 as source and 204.7.229.16 as
destination). With this translated address, the packets can be allowed to flow over an
intermediate internal network (N2), which in this case may have been an actual LAN or WAN
used as a campus network. These datagrams can then flow on the middle network in any way that
is convenient and are received at a second deception system where they are ftranslated to
10.0.0.1 as the source and any internal IP address as the destination.

When received by 204.7.229.16 on network N2, the datagrams were then translated
into a third addressing system (source 10.0.0.1 and destination 10.*.*.*) for use within an
inside deception/emulation network (N3). The original source and destination translation
information is preserved within each deception layer using any other translation methods known
in the art for firewalls, proxies, or ATG modules.

Within the inside N3 network, there was created an environment that appeared to have
more than 250 internal IP addresses operating different versions of Unix and Windows
environments. The Unix environments were provided by a small number of PCs running different
Unix service sets and doing .selective deceptions, while the Windows environments operated
using simulated PCs with their own IP addresses.

This method is different from the common technique of using a single server to provide
service to multiple IP addresses. In the present invention, the technique uses multiple address
translation so that the internal systems are isolated from the rest of the environment and sov that
the pathways between systems are obscured.

The second source and destination translation in this particular example are also
preserved by the second deception system. As indicated in the figure, many different IP addresses
can be emulated behind the deception wall. Traffic flowing through the outside network devices
into the deception network can be understood as traffic flowing through the network but unable

to do anything at computers in that network but flow through them.

21-

20

25

30

35

WO 01/37510 PCT/US00/31295

It will be further understood that this method allows sophisticated deceptions and
emulations using fairly standard network devices configured to perform fairly standard network
functions. It is the techniques of the present invention that allows sophisticated
emulation/deception without having to build a specialized, high performing, network device that
can handle the detecting, translating and emulating functions.

Second Application — Moving External Services into a Protected Network
FIG. 5C shows a further example configuration with a deception student network as

described above, and a second deception network or protected network (N4). In other
embodiment, the invention using this basic configuration can allow a set of external services that
previously operated in the 'outer' network to be moved to a separate 'inner' network so that they
can operate securely in the sense that any successful bypassing of the security on the 'inner'
systems would not be able to affect other systems in the environment. It would appear to an
attacker who took control of these systems that the attacker was connected directly to these
systems without going through the deception and that there were no other systems available to
attack in this environment. In fact there could be several other networks operating at the same
time through different address translation schemes.

In this manner, multiple simultaneous deceptions (N3 and N4) are operable at the same
time based on different uses of multiple address translations for deception. This is quite different
from the common firewall technique of creating a '‘DeMilitarized Zone' (DMZ) for two reasons;
(1) previous firewall techniques do not use multiple address translation for deception purposes,
and (2) previous firewall techniques do not use this mechanism to emulate large networks by
using a small number of computers.

In this example, multiple 'back end' translations are used to create separate deception
networks for different applications. In this example, 24.1.84.100, an external actual IP address
of an outside network system translates the same services differently for different incoming
source addresses, creating for some, the illusion of the University network (N3), for others the
illusion of the service system with a vulnerable deception target (N4), and for still others, access
to the 'other systems' (N2). This can be extended indefinitely to create arbitrarily complex parallel
and sequential translations in order to emulate any number of different situations for any number
of different observers and to allow the apparent architecture of the network to change with time
or viewpoint just as a large scale computer networks change with time and viewpoint. It can be
used, if desired, to redirect traffic of particular types through particular pieces of hardware to
provide any desired emulation for each individual or group of access requests.

In experiments, the implementation depicted here has been extended to include five

different networks, with as many as five translations required for any given access, and with

20

20

25

30

35

WO 01/37510 PCT/US00/31295

different apparent architectures seen from each point in the network. This provides practical
benefit in that it permits customized access to different user bases to different facilities but with
the same instructions and with increased assurance of separation between their uses. It can aiso
successfully misdirect attackers into wasting large amounts of effort breaking into deception
targets while the attackers were observed and without affecting services to other elements of the
infrastructure.

Other uses of this implementation strategy can include (1) creating secure multiple-hop
tunnels between distributed intelligence gathering systems, and (2) creating source address
differentiated deceptions allowing specific users to perform systems administration tasks while
other users are passed through the transparent address translation mechanism into an internal
applications environment.

FIG. 12 is a flowchart illustrating a method for directing datagram traffic to a
deception/emulation device in a separate internal network according to embodiments of the
present invention. In this method according to specific embodiments of the present invention,
datagrams are received at an outside deception device with an original source/destination address
indication, and a first translation of original indication to an intermediate indication is performed
and datagrams are routed on an intermediate network to one or more internal subnetworks.
Datagrams are detected on an appropriate intermediate network device that performs a second
translation of intermediate indication to an internal address indication. The datagrams are then
passed into an internal network, where a response is generated and the process is reversed.

A Further Example Application — Obscuring Requests
A further example application of specific embodiments of the present invention involves

larger numbers of address translations. In this case, depending on where the user comes from and
what services they attempt to use, the behavior of the network will be completely different.
Multiple address translations are used to create the perception that traffic is coming from
different locations and via different paths. This is similar to the manner in which 'anonymizer'
services operate, and one of the provisions that this process enables includes the creation of
anonymity, however, unlike previous anonymizing services, multiple address translation are used
to obscure the fact that the request is coming from or through an anonymizihg system. This is
also different from the so-called 'mixmaster' systems which seek to obscure information by
routing requests through muitiple hops using cryptographic tunnels. While this architecture can
and does use cryptographic tunnels to provide control over traffic observation, the use of multiple
address translation is not part of existing mixmaster methods and improves upon their technique
by further obscuring the links between traffic patterns and sources and allowing unencrypted

and/or non-member traffic to be facilitated along with encrypted traffic. This goal is

223-

20

25

30

35

WO 01/37510 PCT/US00/31295

accomplished by routing requests through different servers and IP addresses on each request or
each set of requests.

This technique can effectively aide in a large variety of deception and emulation
activities including but not limited to 1) generating desired traffic patterns to test behavior under
different loads and access methods, 2) obscuring the connection between requests and requesters,
3) creating different network traffic concentrations on different parts of intervening infrastructure
to detect and trace sources of attacks without directly tracing the routes and while avoiding
detection of the traceback, 4) gathering intelligence while obscuring its source or use, 5) altering
network traffic patterns via reflexive control, and 6) inducing misperceptions in the minds of the
people operating services as to the usage patterns and utility of advertisements or similar analysis
of traffic patterns.

In FIG. 6, two independent applications are shown. In the "Obscure Request" activity, an
original request to be obscured is received at 4.2.1.3 and then passed through multiple address
translations located at multiple sites before arriving at its intended destination so as to obscure
characteristics of the datagram traffic such as distance, location, timing regularities, and other
factors that could be used to track the source.

In the "Locate Traffic" instance, the deception provides the means for an individual at
2.1.3.1 to artificially and selectively impact traffic traveling over the infrastructure between
other locations, and in doing so, observe the effect of this impact on other nodes to which there 1s
access. This traffic modification method provides the means to detect the paths between other
parties, and in so doing, to track traffic to its source while obscuring the source of the intelligence
gathering activity and not sending any traffic to any of the elements participating in the activity
under analysis observation. It is the multiple address translation that obscures the link between
2.1.3.1 and, for example, traffic between 4.2.1.3 and 7.2.4.6. Indeed, address translations
can also be used in the generation of the traffic between these remote nodes so that the fact that
they are only communicating between each other is obscured except to those who have a similar
intelligence capability and are observing the traffic patterns in a similar manner.

This technique further may be based on the pre-placement of deception systems
throughout infrastructures, which can be easily extended to arbitrary size by the multiple address
translation deception mechanism. We have demonstrated reliable operation using up to 16
translations over long distances and there is no apparent limit to the ability to do this activity.
These includes the routing of traffic back and forth between multiple machines to both induce
increase infrastructure effects and to increase the obscuring effect.

FIG. 13 is a flowchart illustrating a method for request obscuring according to

embodiments of the present invention.

4.

20

25

30

35

WO 01/37510 PCT/US00/31295

Distributed Computing Application
Large-scale parallel Multiple Instruction Multiple Data (MIMD) processing has been of

increasing import in the last several years, largely because of the need for increased computing
power of personal computers and the increasing need for computation that is easily distributed -
such as large-scale searching of the Internet. According to a further embodiment of the present
invention, multiple address translation can be used to make the physical location of distributed
computing resources transparent and automatic to the programmer of distributed system software.

In this instance, the present invention can be adapted to enable physically distributing
processing, using multiple address translation to create the deception to an MIMD processor that
all of the resources are locally available and in a local address range. Therefore, an MIMD
processing computer system programmer need not have to keep track of complex networking
infrastructures and architecture.

Referring to FIG. 7, this embodiment of the invention can be understood in a
configuration where up to 64,000 MIMD logic processing addresses are grouped into up to 255
separable MIMD LANs, with each MIMD LAN accessible through a translation gateway. For
example, a parallel processing application according to this embodiment, can assign an entire
internal Class A network (e.g. 10.*.*.*, capable of including up to about 16 million addresses)
for parallel processing purposes. External to the parallel processing application, multiple address
translation can be used to locate the physical computers at any address, while providing the
iliusion to the parallel processing application that they are all local and have a local IP address.

This is accomplished by utilizing a set of deception systems as described above. Each
deception system translates between an internal address (e.g. 10.*.*.*) and an external
address/port pair associated with the location of the appropriate remote computing resources
assigned to that address. Then the data is transmitted (using the translated address) over the
intervening infrastructure. Upon arrival at the distant location, a reverse translation is performed
by a deception system residing at that distant location address, and the datagram is passed to the
intended computer. This creates the deception that the source of the request is local to the
intended computer.

This technique eliminates the need to differentiate between local and distant resources in
MIMD programming or to have the users or programs know anything about the topology of the
intervening network. This is, of course, is done at the expense of abstracting out the
communications overhead from the programming task. In cases where the underlying
assumptions are poor, this is could cause significant performance degradation.

In FIG. 7, each portion of the distributed computing envi-onment can include up to about

64.000 different IP addresses (as designated by 10.1.*.*; 10.2.*.* ; 10.3.*.*; 10.4.*%.%;

5.

20

25

30

WO 01/37510 : PCT/US00/31295

etc. At times, an address such as 10.1.*.* can also be indicated as 10.1.%), and each
deception IP address translation element (such as a.b.c.d./n.m and the other eleven translation
modules shown in the figure) has the ability to translate between all of the 10.*.*.* IP
addresses (more than 16 million of them) and the IP addresses assigned to the address translation
modules.

In a particular embodiment, emulation components (i.e. the translation gateways)
gateways)translates all of these addresses (10.*.*.*) into a form that uses the port number in the
IP protocol to hold the last two parts of the IP address of the remote computer within its class B
subnetwork (e.g. 10.3.*.* where a.b.c.d gets translated to 10.3.a.b/c.d). A lookup table at an
emulation element is used to indicate which remote IP address to use for each remote class B
network. Thus, each emulation element in FIG. 7 can be understood to contain a table or

translation algorithm that accomplishes translations in two ways of the general form:

MIMD (Local) Assigned IP (External)
Address Address

10.1.n.m <> 202.13.233.5/n.m
10.2.n.m <> 122.211.2.125/n.m

10.255.n.m €&-> 71.151.2.8/n.m

In this case, the Internet or other intervening infrastructure is used to transport the
datagrams between MIMD (i.e. class B) subnetworks, using the assigned deceptive IP addresses
and port numbers as addresses in place of the internal addressing scheme. The multiple address
translation eliminates the requirement for nodes to do anything special in order to reach other
nodes, regardless of their physical location, even though the internal addressing scheme is
incompatible with the external addressing scheme (in this case, the Internet).

From the perspective of the Internet as a whole, in this example, an entire 16 million
element network (e.g. 10.*.*.*) consumes only 255 individual IP addresses, assuming that the
MIMD processors can be reached by the up to 255 IP locations that are performing the address
translation. In specific embodiments, these up to 255 IP addresses can change over time to meet
the changing infrastructure without affecting the internal operations of MIMD modules. Even a
translation into a different internetworking protocol can be accommodated without reconfiguring
the 16 million nodes in the distributed system because of the deception used to abstract the

realities of networking from the system in the view from the parallel processing environment.

26-

15

20

25

30

WO 01/37510 PCT/US00/31295

With currently available networking technology, this may be a two-step process because
some currently available hardware systems can typically only do address translation for about
4,000 IP addresses. This leads to a multiple address translation process generally using multiple
network computers. In further embodiments, a special purpose implementation of an address
translation system can be constructed and can facilitate the required level of translations without
undue difficulty. An example of such a system would be a computer that sniffs all network
traffic and generates packets to reflect the proper translation.

This example is different from the previous examples because the deception is not
intended to 'fool' anyone into misunderstanding the operation of the network. Rather, it is
intended to aide the user by abstracting the physical location of computers. It is, in a sense,
complementary to the earlier examples. In the previous examples, 'external' users are deceived
into believing that there is no intervening infrastructure when there is; while in this example,
"internal’ users (i.e. the MIMD executable programs) are provided the abstraction that there is no
intervening Internet infrastructure, while 'external' users can clearly see that the network is
fragmented over many locations.

Thus, with such a system in place, computers participating in the MIMD calculation can
communicate with any of up to 16M other addressed processors as though they were all on the
same 10.*.*.* subnetwork. Each processor will use the appropriate 10.n.n.n address to
communicate with another processor, and the multiple address translation system according to the
present invention will handle translation to the remote computer, even on a wholly different IP
address.

FIG. 14 is a flowchart illustrating a method for enabling multiple logic processing
according to embodiments of the present invention.

Software Implementation Example
In each of the above discussed examples, a variety of similar mechanisms may be used to

provide address translation as will be understood to those of skill in the art from the teachings
provided herein. These mechanisms include: (1) multiple proxy-based network address
translations and (2) multiple addresses associated with a given network device.

A specific example of this can be implemented using the Unix programs: (1) 'ipfwadm’,
(2) 'TCP wrappers', (3) 'ifconfig’, and (4) 'metcat’. The Internet Deamon configuration file
(/etc/inetd.conf) is altered so that, in place of the normal service provided on a given port. netcat
is used as a proxy server to forward datagram content from a given source to a new destination,
replacing the source address of the original datagram with the source address of the interface

used for datagram forwarding to the specified destination. In this case, each external IP address 1s

07-

20

25

30

35

40

45

WO 01/37510 PCT/US00/31295

redirected to a different internal IP address. Within the inetd.conf file, TCP wrappers is specified

for handling datagrams:

s22 stream tcp nowait root /etc/tcpd /usr/local/sbin/sshd2 -1
Then, within TCP wrappers, each incoming IP address is forwarded to a corresponding

translated IP address in the 10.1.*.* IP address range:

sshd2@204.7.229.1: all: twist /u/fc/bin/nc -w 3 10.1.0.1 22
sshd2@204.7.229.2 . all: twist /u/fc/bin/nc -w 3 10.1.0.255 22
sshd2@204.7.229.255: all: twist /u/fc/bin/nc -w 3 10.1.0.255 22

This alteration is combined with multiple network cards and multiple addresses for one

of the network cards (ethO in this case) and is implemented using ifconfig by placing multiple

ifcfg-eth0.* files in /etc/sysconfig/network-scripts as follows (under Redhat Linux):

#!/bin/bash
for 1 in “count 1 2557
do
echo "DEVICE=eth0" /etc/sysconfig/network-scripts/ifcfg-eth0.$i

echo "IPADDR=204.7.229.$iv /etc/sysconfig/network-scripts/ifcfg-
eth0.$1

echo "NETMASK=255.255.255.0" /etc/sysconfig/network-scripts/ifcfg-

' etho.$1

echo "NETWORK=204.7.229.0" /etc/sysconfig/network-scripts/ifcfg-
etho0.$1i

echo "BROADCAST=204.7.229.255" /etc/sysconfig/network-scripts/ifcfg-
eth0.$1

echo "ONBOOT=yes" /etc/sysconfig/network-scripts/ifcfg-eth0.5i

done
When run from within the /etc/sysconfig/network-scripts directory in RedHat Linux, this

causes multiple runs of ifconfig at system startup, corresponding to each of 255 IP addresses on
network card eth0. On a second Ethernet card, a similar configuration is used with only one IP
address. The system is configured to gateway datagrams between its two network cards so that

the 'routed' program yields the following output:

Destination Gateway Genmask Flags Metric Ref Use
Iface

204.7.229.0 * 255.255.255.0 U 0 0 69
etho

127.0.0.0 * 255.0.0.0 U 0 0 119 lo
10.0.0.0 * 255.0.0.0 U 0 0 17
ethl

The net effect is that traffic sent to 204.7.229.a is translated into traffic from
10.0.0.a to 10.1.0.a, where 'a' corresponds to the last byte of the IP address. Thus, datagrams
destined for 204.7.229.a entering from Ethernet 0 (204.7.229.*) will be routed to Ethernet 1
with new addresses assigned, and return traffic will be routed back in the reverse direction with
the reverse translation.

To translate back, within the 10.*.*.* network, we then implement another system
which operates in much the same way, except that it translates between the 10.1.*.* address

range and the 204.7.229.* address range. This is done by replacing every occurrence of

208-

w

20

30

35

WO 01/37510 PCT/US00/31295

10.0.0.x with 204.7.229.x and every occurrence of 204.7.229.y with 10.1.0.x in the
above descriptions.

The reason this works is a bit tricky. In effect, multiple address translations are used to
'trick’ the network routing mechanisms into routing traffic into the deception network instead of
routing it back into the outside network. If the address translation were attempted in a single step,
it would fail because it would be impossible to determine which datagrams were destined for
which network; and the routing mechanisms of the Internet would automatically route the
translated traffic to the nearest location, which would always be the wrong one for purposes of
routing to a deception system. By using two or more translations, traffic is routed into the
deception network while allowing identical datagrams in the deception network to those in the
original network.

Additional translations can be done if desired, for example, to route the deception
through further networks to get to a particular computing resource. In this case, we create a series
of translations, for example, from 10.0.*.* to 10.1.*.* to 10.2.*.* t0 10.3.*.* to
10.4.*.*, and so on, eventually returning to 10.0.*.* at a different location. This multiple
translation mechanism can also be used to induce large volumes of traffic between a small
number of network systems, or to cover any given set of network paths. This is done by causing
the translation sequence to traverse the same path multiple times but with different IP address or
port assignments. This implements the examples in FIG. 6.

These same mechanisms have been experimentally used in other versions of Unix and
Unix-like operating environments, and the proxy forwarding application (FIG. 4B, where
m.n.o.p gets translated through a.b.c.g) has been experimentally demonstrated in Windows NT
and other Windows systems using the 'nc' program as the proxy forwarding program.

Embodiment in a Programmed Digital Apparatus
The invention may be embodied in a fixed media or transmissible program component

containing logic instructions and/or data that when loaded into an appropriately configured
computing device cause that device to perform in accordance with the invention.

FIG. 14 shows digital device 700 that may be understood as a logical apparatus that can
read instructions from media 717 and/or network port 719. Apparatus 700 can thereafter use
those instructions to direct a method of image interpolation. One type of logical apparatus that
may embody the invention is a computer system as illustrated in 700, containing CPU 707,
optional input devices 709 and 711, disk drives 715 and optional monitor 705. Fixed media 717
may be used to program such a system and could represent a disk-type optical or magnetic media
or a memory. Communication port 719 may also be used to program such a system and could

represent any type of communication connection.

29.

WO 01/37510 PCT/US00/31295

The invention also may be embodied within the circuitry of an application specific
integrated circuit (ASIC) or a programmable logic device (PLD). In such a case, the invention
may be embodied in a computer understandable descriptor language which may be used to create
an ASIC or PLD that operates as herein described.

The invention also may be embodied within the circuitry or logic processes of other
digital apparatus, such as cameras, displays, image editing equipment, etc.

Conclusion

The invention has now been explained with regard to specific embodiments. Variations
on these embodiments and other embodiments will be apparent to those of skill in the art. The
invention therefore should not be limited except as provided in the attached claims. It is
understood that the examples and embodiments described herein are for illustrative purposes only
and that various modifications or changes in light thereof will be suggested to persons skilled in
the art and are to be included within the spirit and purview of this application and scope of the
appended claims. All publications, patents, and patent applications cited herein are hereby

incorporated by reference in their entirety for all purposes.

-30-

WO 01/37510 PCT/US00/31295

WHAT IS CLAIMED:

1. A method of emulating a network of two or more distinct types of logic systems
comprising:

providing a plurality of actual logic systems of at least two distinct types;

5 providing a communication channel to said actual logic systems: and
running logic instructions on said actual logic systems whereby two or more said actual logic
systems respond on said communication channel as though each were multiple logic
systems, wherein an actual logic system responds as though it were multiple logic systems
similar to its type.
10 2. The method according to claim 1 further comprising:
at at least one of said actual logic systems, responding to multiple incoming addresses on said
communication channel as though said at least one logic system were multiple logic
systems.
3. The method according to claim 1 further comprising:
15 on at least one actual logic system, providing varying responses.
4, The method according to claim 3 wherein said responses vary based on an incoming
address.
5. The method according to claim 3 wherein said varying responses comprise varying time
and use characteristics.
20 6. The method according to claim 1 wherein said responses of said two or more actual logic
systems are altered over time to emulate characteristics of real networks.
7. The method according to claim 1 wherein said emulation is used to deceive unauthorized
users trying to access one or more protected logic systems.
8. The method according to claim 7 wherein said emulation is used to deceive unauthorized
25 users trying to access one or more protected logic systems by providing deceptive responses to

unauthorized datagrams so as to lead an unauthorized user to believe the user has accessed an

actual computer system.

9. The method according to claim 1 wherein said emulation is controllable from one or

more control systems.

31-

WO 01/37510 PCT/US00/31295

10. The method according to claim 9 wherein said one or more control systems comprise one

or more distributed control systems.

11. The method according to claim 1 wherein said distinct types comprise different operating
systems.
5 12. The method according to claim 1 wherein said distinct types comprise:

different operating systems; and

different hardware platforms.

13. A computer network emulation system comprising:
two or more emulation computer systems of at least two distinct types;
10 . a network able to deliver datagrams to said two or more emulation computer systems: and
wherein two or more of said two or more emulation computer systems provides emulation
responses of multiple emulated computer systems at muitiple addresses, each emulation
computer system providing emulation responses of emulated computers appropriate to said

emulation computer system’s type.

15 14. The system according to claim 13 further comprising:
a transmission control system able to establish and vary delivery paths to said emulation

computer systems.

15. The system according to claim 13 further comprising:
an emulation control system able to establish and vary emulations provided by said two or

20 more emulation computer systems.

16. A method of connecting an emulation subnetwork to a network through an emulation
wall comprising:
receiving a datagram at an outside of an emulation wall;
determining that said datagram should be handled in said emulation subnetwork;
25 translating an original address indication of said datagram into a proxy address indication;
passing said datagram into said emulation subnetwork while translating said proxy address
into an emulation original address indication; and
routing said packet in said emulation subnetwork based on said emulation original address

indication.

30 17. The method according to claim 16 further comprising:

receiving a response at an inside of said emulation wall from said emulation subnetwork;

-32-

20

30

WO 01/37510 PCT/US00/31295

translating a response emulation original address indication to a response proxy address

indication: and
passing said datagram into said network from said emulation subnetwork while translating

said response proxy address indication back to a response original address indication.

18. The method according to claim 16 wherein address indications comprise source and

destination addresses according to a standard networking protocol.

19. The method according to claim 18 wherein address indications comprise source and

destination addresses according to an IP networking protocol.

20. The method according to claim 16 wherein said emulation original address indication is

identical to said original address indication.

21. The method according to claim 16 wherein said passing comprises:

recelving said datagram at a first standard network gateway;

translating said original address indication of said datagram into a proxy address indication at
said first standard network gateway using a standard translation procedure;

routing said datagram with said proxy address indication to a second standard network
gateway;

translating said proxy address indication of said datagram into said emulation original address
indication at said second standard network gateway using a standard translation procedure;

and

forwarding said datagram with said emulation original address indication to said emulation

subnetwork.
22, An emulation wall connecting an emulation subnetwork to an outside network
conprising:

an outside layer able to detect datagrams in said outside network to be handled in said
emulation subnetwork;

a transport module, able to transport said datagrams into an internal emulation network while
preserving their original source and destination address;

one or more emulation systems on said emulation subnetwork able to receive said datagrams
with original source and destination address and to generate appropriate response
datagrams onto said emulation subnetwork: and

an inside layer able to detect response datagrams to be transferred to said outside network;

said transport facility able to transport said datagrams to said outside network.

-33-

[o°]
n

30

WO 01/37510 PCT/US00/31295

23. The device according to claim 22 wherein said outside layer and said inside layer are two
network interfaces in a specialized network translation device and said transport module 1s

implemented in specialized datagram handling logic in said device:

24. The device according to claim 22 wherein:
said outside layer comprises an outside interface of a first standard network address

translation module;

and said inside layer comprises an inside interface of a second standard network address
translation module;

said transport module is implemented by performing a first translation within said first
standard network address translation module into a proxy address, communicating a
translated datagram to said second standard network address translation module and
translating from the proxy address back to the original address on said emulation

subnetwork.

25. A method for countering attacks in a network comprising:
at an emulation computer system in said network, accepting network protocol datagrams that
are unauthorized; and
responding, by said computer system, to unauthorized datagrams using different emulations so
that an attacker perceives that a number of different computer systems within said network

have been reached.

26. The method according to claim 25 wherein a network protocol datagram is detected as
unauthorized by detecting that said datagram is addressed to a computer system that does not

actually exist on said network.

27. The method according to claim 25 further comprising:
at a normal computer in said network, detecting unauthorized network protocol datagrams
addressed to said normal computer; and
routing said unauthorized network protocol datagrams addressed to said normal computer to
said emulation computer using an address translation, for response by said emulation

computer.

28. The method according to claim 25 wherein an apparent emulated architecture changes
with time or incoming viewpoint just as a large scale computer network changes with time and

viewpoint.

29. A method of providing deception at a computer system on a network comprising:

-34-

2
i

30

WO 01/37510 PCT/US00/31295

accepting. at said computer system, network protocol datagrams addressed to different
computers; and

responding, by said computer system, to received datagrams using different deception
emulations so that a receiver perceives that a number of different computer systems have

been reached.

30. A method of protecting a computer network against unwanted attacks comprising:
routing datagrams addressed to non-existing computers to a deception system; and

at said deception system, responding to said datagrams using varying emulations.

31 The method according to claim 30 wherein said emulations vary based on one or more

parameters including datagram addresses, time, or usage statistics.

32. The method according to claim 30 wherein an emulation at a particular IP address
translates the same services differently for different remote access points, creating for some, the
illusion of a first network. for others the illusion of a service system with a vulnerable deception

target, and for still others, access to other systems.

33. A method enabling multiple processor processing across physically distributed computer
systems comprising:
at a first gateway between a first multiple processor network and an intermediate network,
receiving from said first multiple processor network a multiple processor-addressed
datagram to computers not on said first network;
at said first gateway, translating a multiple processor address indication into an intermediate
address indication;
transmitting said datagram with an intermediate address indication over an intermediate
network;
at a second gateway between said intermediate network and a second multiple processor
network, receiving said datagram with an intermediate address indication;
at said second gateway, translating an intermediate address indication back to a multiple
processor address indication: and
transmitting said datagram with a multiple processor address indication on said second
multiple processor network so that said datagram can be received on a computer on said

second multiple processor network.

34, The method according to claim 33 wherein said first gateway translates addresses into a

form that uses the port number in an IP protocol to hold the last two elements of the IP address of

-35.

20

25

30

WO 01/37510 PCT/US00/31295

the remote computer within its subnetwork and has a lookup table to indicate which remote IP

address to use for each remote subnetwork.

35. The method according to claim 33 wherein said intermediate network comprises the

world-wide Internet.

36. The method according to claim 33 wherein said first gateway and said second gateway

are standard network gateway devices able to perform a standard gateway address translation.

37. The method according to claim 33 wherein said multiple computer processing comprises

parallel multiple instruction multiple data (MIMD) processing.

38. The method according to claim 33 wherein said first multiple processor network and said
second multiple processor network each require assignment of only one address in said

“intermediate network to enable multiple process processing.

39. The method according to claim 38 wherein said first gateway and said second gateway

each translate data packets to up to approximately 64.000 computer systems.

40. The method according to claim 38 wherein address translations can be altered at said
gateways to reconfigure distributed computing transparently to any computer systems

participating in said distributed computing.

41. A distributed computer processing system comprising:

a plurality of computer system groups, each group comprising at least one computer
participating in said distributed computer processing system, with computers in each group
reachable by a group local address;

a plurality of interfaces to an intermediate network that can transport data between said
plurality of groups; and

one or more address translation modules between each of one or more of said groups and said
intermediate network; said address translation modules at one end able to translate a first
local address from a first group computer to a second group computer to an appropriate
address to reach said second group via said intermediate network and at said second group

translating said intermediate address back to a local network address.

42. The system according to claim 41 further comprising:
a first group with a group of first local addresses:
a first address translation module with an interface to communicate datagrams with said first
group and an interface to communicate datagrams to an intermediate network;

a second group with a group of second local addresses;

-36-

N

20

30

WO 01/37510 PCT/US00/31295

a second address translation module with an interface to communicate datagrams with said
second group and an interface to communicate datagrams to an intermediate network;
wherein first local addresses and second local addresses can be translated into a common

addressing scheme with no overlapping assignment of addresses.

43, The system according to claim 41 further comprising:
wherein a computer in a local group can communicate using its local groups addressing
scheme not only with other computers in its local group but also with computers in other
local groups; and
wherein an address translation module in a local group detects datagrams with local group
addressing indicating computers in other groups and translates the addressing of those
datagrams and places them on a network that can reach a second address translation

module, said second translation module translating to a second local group.

44, The system according to claim 41 further wherein said translation is transparent to said
first computer so that said first computer perceives it is part of a local group encompassing all

distributed computer systems.

45, The system according to claim 41 further wherein said datagram is detected by said first
address translation module and transmitted on said intermediate network with a translated address

to an appropriate second address translation module.

40. The system according to claim 41 further wherein said second address translation module
receives said datagram and translates its address to an address in said second group and transmits

said address to said second group.

47. The system according to claim 41 further wherein a computer in a local group perceives
that it can communicate with a large number of computers using a local addressing scheme, but
where two or more of said locally addressed computers have addresses translated by said

gateway.

48. A method enabling multiple processor computing comprising:
deploying a plurality of MIMD logic processing modules to a plurality of computer systems,
said modules aware of a local MIMD addressing scheme for reaching other MIMD logic
processing modules;
wherein said plurality of computer systems are deployed in a plurality of local groups;
deploying a plurality of address translation modules between said local groups and an

intermediate communication system;

-37-

wn

20

(o8]
i

30

WO 01/37510 PCT/US00/31295

wherein an address translation module is able to detect an MIMD packet at a local group that
it addressed to an MIMD logic processing module in a different local group;

wherein said address translation module translates said detected packet to an intermediate
address deliverable to a different address translation module over said intermediate
communication system; and

wherein said different address translation 110dule receives a packet over said intermediate
transmission system and translates it to a local MIMD addressing scheme at a different

local group.

49. The method according to claim 48 wherein said local MIMD addressing scheme and said

intermediate address are both in a standard IP addressing protocol.

50. The method according to claim 48 wherein said MIMD logic processing modules
communicate packets unaware of whether other MIMD logic processing modules are local or

reached through address translations.

51. The method according to claim 48 wherein said plurality of address translation modules
are responsible for keeping track of to which local groups MIMD logic processing modules

belong.

52. The method according to claim 49 wherein said MIMD address scheme comprises a
plurality of class B subnetwork addresses of the form 10.#.*.*, where 10 indicates any dedicated

class A subnetwork, and # indicates one or more class B subnetworks.

53. The method according to claim 49 wherein said intermediate address scheme comprises a
plurality of individual assigned IP addresses of the form ab.c.d and wherein said address
translation modules manage a mapping between each assigned intermediate address and an

MIMD 10.#.*.* network.

54. The method according to claim 48 wherein said address translation modules are standard

address translation gateway devices.

55. The method according to claim 48 wherein said intermediate communication system

comprises the Internet.

56. The method according to claim 48 wherein multiple address translation makes the
physical location of distributed computing resources transparent and automatic to the

programmer of distributed system software.

-38-

w

20

30

WO 01/37510 PCT/US00/31295

57. The method according to claim 48 wherein the method eliminates the need for an MIMD
logic processor or programmer to differentiate between local and distant resources or to know

anything about the topology of the network.

58. The method according to claim 48 wherein assignments of MIMD processing modules or
address translation modules can vary over time to compensate for failures wihout the need for

other MIMD processing modules to be aware of the variations.

59. The method according to claim 48 wherein the emulation component translates addresses
into a form that uses the port number in the IP protocol to hold the last two elements of the IP
address of the remote computer within its subnetwork and has a lookup table to indicate which

remote IP address to use for each remote subnetwork.

60. A method of obscuring a path of a datagram through a network comprising:
initially directing a datagram to a first translation module in said network;
at said first translation module, translating said datagram’s addressing directing said datagram
towards a final translation module in said network; and
at said final translation module, translating said datagram’s addressing directing said datagram

to a final destination.

61. The method according to claim 60 further comprising:
at said first translation module, translating said datagram’s addressing towards an intermediate
translation module in said network: and
at said intermediate translation module, translating said datagram’s addressing directing said

datagram towards a final destination.

62. The method according to claim 60 wherein at each translation module, translations are

stored internally and are not accessible outside of said translation module.

63. The method according to claim 60 wherein each translation module comprises a standard

address translation gateway.

64. A method for providing deception in a computer network comprising:

passing a datagram received with a non-legitimate characteristic (such as address, port, or

improper characteristics) into a deception network.

65. The method according to claim 64 further comprising:

if a controlling system of said deception network has marked said datagram type as

something to be ignored. dropping said datagram:;

-39-

w

20

25

30

WO 01/37510 PCT/US00/31295

if possible handling said datagram at an initial interface so that said datagram never
reaches a deception system; and
otherwise, if said datagram is to be passed into the more detailed deception, translating

said datagram by way of a proxy into internal address indications.

66. A method enabling accessing distributed computing resources residing in a plurality of
different locations to form a virtual local area network environment comprising:
at a first translation point between a first group location and an intermediate network,
receiving from a computing device at said first location a datagram with a first local
address indicating a destination not at said first group location;
at said first translation point, translating said local address indication of said datagram into an
intermediate address indication;
transmitting said datagram with an intermediate address indication over an inermediate
network to a second translation point;
at said second translation point, translating said intermediate address of said datagram to a
second local address; and
using said local address in a local addressing scheme to reach a desired computer system in

said second group.

67. The method according to claim 66 wherein said first local address, said intermediate

address, and said second local address are IP addresses.

68. The method according to claim 66 wherein said intermediate network comprises the

world-wide Internet.

69. The method according to claim 66 wherein said first translation point and said second
translation point are standard network gateway modules able to perform a standard gateway

address translation.

70. The method according to claim 66 wherein it is intended to aide a user by abstracting the

physical location of distributed computers.

71. The method according to claim 66 wherein internal users are deceived into an abstraction
that there is no intervening intermediate network infrastructure, while external users can clearly

see that the local network is fragmented over many locations.

72. - A distributed computing system comprising:

_40-

WO 01/37510 PCT/US00/31295

a plurality of address translation modules, each address translation module effectively residing
between one of a plurality of local communication groups and an intermediate

communication infrastructure;

a plurality of address detecting modules, each able to detect datagrams at a local

communication group indicating devices not in that local group;

wn

wherein a first of said address translation modules receives a detected datagram and translates
a local address to an intermediate address and transfers a translated datagram on an

intermediate communication infrastructure to a second of said address translation modules:

and

10 wherein said second of said address translation modules receives a datagram from said
intermediate communication infrastructure and translates and intermediate address to a

second local addressing scheme.

73. The system according to claim 72 wherein said translation modules include translation
logic for translating detected local addresses to an appropriate intermediate address to reach a

15 desired computing device.

41-

PCT/US00/31295

WO 01/37510

1/19

1y JoLig)
VI B

WIdISAQ [eULION

WdISAS [BULION

WRISAG [eULION

104 Aduoy

WAJSAG [BULION

W9)SAS JRULION

SWIA)SAG 10d ASUOE]

WIISAS [BULION

WISAS [BULION

WAJSAS [BULION

PCT/US00/31295

WO 01/37510

2/19

(ay Jouid)
IR
:z: OH :J: @com :N: OH :vm: vcom
— >
AEY W EIS AXO0.1 Jual[)
<a | <a
wOu WOIL T, 1I9TIN why OdY X 3902

SJUSI[D 10J d)e[Suel],
SIOAISS WOl sasuodsar axe |,
SIOAIDS 10J dje[Suel],

S1UQI[O woJj sysanbax aye
SOOIAIAS AXOI]

3uryl (a1 9y} 10j 918300NS .

|

SIOIAISS 19ZIWAUOUR PIBPUR)S PUB S[[BMAIL] UL SIQAIS AXOI]

PCT/US00/31295

WO 01/37510

3/19

(v Jorig)
D1 S
Aemajen) pqe
1sonbay

191N0Y

JUOI]

7
a

JUO0I] 1sonbay]

SQUIYOJBW IO ISN SIUIYOBW IJBIPIULIIUL —

pajejSueI} JOU IR SISSAIPPY »
(19IN01) pajIUI] SUOHBIIUNWWO,)
}I0MIAU [BUISJUL U] UL PUD YOBY

[[BAMIIL] 3] UL PUD JUOL,|

SWIISAS [[eMIIL] PUI-YOBQ PUI-IUOI,]

PCT/US00/31295

WO 01/37510

4/19

L]

WASAS [BULION

WA)SAS [BULION

L]

WOISAS [BULION

W9)SAS [BULION

L]

WISAS [BULION

Em@m JRULION

Wa)SAS [BULION

WIOISAS [BULION

[]

W9ISAS [BULION

131001, uondasa(opduwrg

PCT/US00/31295

WO 01/37510

5/19

waIsAg WIISAS WIISAS

[eLION] TBULION TewIoN]

LUEITYAN WRJSAS (U EIEIAN

[BULION TEULION] [BULION]
MLd

w)sAg wa)sLg waIsg

[BULION] [eurioN [BULION

Aieay 2y,

¢ 51
wl e meessessses :
¢ lwaysAg i fwasds (UEITYAS
- a _ 1BULION] a i eulioN a [EULION
—I — Srasasesean \".
s — e e :
a sua| | a | | a a a i
. 2 S
[UEITINN waisk WA)SAS
1SAS
a [EULION] a N a [BUWLION]
r—- -
| a " a a a |l a | | a
- | .
II.I
M 111 &3 LY. wIIsAS wRIsAS
_ a _ ewIoN a [EULION a [eWIoN]
— Veeramrinaas :

suondaoop AJ[enoe ale YIIym Jo Auew
‘SIIDYSAS AUBLU S99 I9AIISQO Y |,

xog duQ ur suondada(g aydnny

I
| — —]

——
a

a

PCT/US00/31295

WO 01/37510

6/19

Joquinu yrod/ssaappe
[EWI3IXJ UB 0] SSAIppE
[BUI33UL 1JIBI I)BIDOSSE 0)
pasn s1 J|qe) uone[suea) €
pue 3pow snondspwoad,
3uisn paupwexa st ynduj

do'uwi

SSTSST/QEAX-Q0pT/q e A’X
0} sdje[suea}
SSTSST'qe-0'0rqe

0} sd)B[sue.I)
qeAx

Pa.1sap st paads y3iy
A324A J1 duaeMpaRY WO)ISND
1M 10 2I1BAL)JOS UI JUOP

3Q ued uolB[SUL.I) dJUIBS
Y} ‘wdsAs 3[3urs e Juis))

SST'IE/qeAX-0'01/q 8 A'X
0) sajejsue.a)
SSTIE'qe-091'q'e

S€559-0/d 0o u"w

SST'S1/q e Ax-0°0/q e kX
0} sajejsued)
SSTSI'qe-0°0'q®

x ¥ qe

s19indurod £ Suisn sassaIppe 0009
10} desuea) ued wIysAs dos
0M) & ‘A30[out]d3) Jua.aind guisn

sugdiso(g uonesuel], ojdwexyg om .

PCT/US00/31295

qay s

7/19

WO 01/37510

[onuo))
NI0MION Jouuf =
(4
U QU geyeqrg _
B, g ! (744 w.oT..: POz
0P d-oruwx 301
Wo1ISAS
.o.m.oﬁ [BULION
M}I0MIIN fouuf . - }Joge _| yoqe
uj QuIyoR T g N «— 4
: 3o qe
2L, _ ya-e _ q
ap | PO l_ q01
v woISAS
eULIO
. _ N _.|A| d-o'urw
't q07 d5q-e
d-oruq]
Syerm 201
3 HEI N _||
[BULION
£°X"M A (4 1S 101 *0t I._
<— < < <
bruy fry- £xX'mQ1 pqe 2°AXM

A11IN2SQO 29 UOIOSIIPUT PASBAIOUL MO[[E O} pue ‘suoldooap A1[aply mo| aoe[dol 0} saulydell [B31, MO[[®
0] hmv_._0>3®: [euiou wolj @O«m.—mmow 9q O] S}Iomlau COEQ@ODU AO}f]e 0] salurn} O_Q:_DHC paje|suel) aJe SISSAIPpVY
suone[sue. I, ss.Ippyv dnny

PCT/US00/31295

WO 01/37510

8/19

JF B
ST
0J3uo —
— I D — —
07 woysK
WOISAS | meesms— 1545
uonenwuy [elUION
.Jedy,, y/f 1d
3 a-e — 507 23w >q
82q T | g ,.A\\\ ﬁ_ rqe
39°qe
Lajlsrqe —
- by .I_Eoﬁ%m a0t
UEINAN [euLIO
uonenwy L q07 e drouw
:—NONmz A A—NN .A -U.A—.—,w
N.Q.H—.N douw a - mnlul'
aop WISAS
Wa1SAS [eWION
:om_u_““:m w7 %07 La e0T
R < =
poqe Z°AX'M pyqe Z°A° XM
__EN) 2 101 (ZN) #2001 (IN) YAOALAN
NHOMILAN NHOMLAN NHOMLAN TVNYALXH
NOILLdHADAd TOHdINOD LSHIA

PCT/US00/31295

WO 01/37510

9/19

€0001 AV yoootL

Bpusp([— sq] —————Pp oyoeny

Aquo gz 310d Hss

1000t
[[eMaIL]
00T ¥8T¥C
Aquo zg 310d sg

AN
T~
Ll

$99G JUApNIS A} IBY M

PCT/US00/31295

WO 01/37510

10/19

s Su
cort Y0001 €001
I IYoeRy IDpuda(]
swiayshg 1’000t
PO uondada(g
9T'6¢C L Y0C
1
“uoneunsap L'6CC LY0C
3y} S 91627 £ HOT PUe 92IN0S uondadsq
94} Se 1'6¢C 'L 0T 03U paje[suen 00L¥8' 1 ¥C

s308 sJ1 3souwr woxy g y1od 1SS

-1oyndwod sures

93 [[e 21 YI0OMISU [eUIIUT oY)
UO S3sSSaIppe J] paIpuny [eIaAds
ID\FOUR pue ‘ISPUSjIp ‘IOLRVY

EN

uoneunsap a3y se ¢'0°0°0L
NZ pure 951N0s 3y Se ['0°0°0L OIuT -

paje[suen s393 91 F8 1T 03

1’622 £ %07 Wwoxy 7z 31od Hss

PCT/US00/31295

WO 01/37510

11/19

DS 81
T000T ¢000T
pue 1a8re], ¢o00t ¥0'00L €000L
001 HR 1T uondadag sdl RS pLAENY Ippusje(d
PN
JI woxy 0% ¢N
TO00T
uondaoag Sw)sAg uondadad]
Nm.mmm_x.gm PO 9L 62C A TOC
1'6CC LY0C IN
uondadsa(q
010006790 s 74
yaomiau uordadop e ojul) _

3umad Ajuo Ajeal a1e

Ay mq 001v8°1'4¢ %W/

ojui Sumas are Koy \J____h :,_
SUIY) JayoeRNe oY |, HHH

-
o .
41

P‘d

Srduwrexy royiouy

IN uone[suen) ojdnnu £q
PI[qBUD - YIOM]IAU dUIES

oy uryim uondooap

Iayjoue 1opun 2jesodo
S)UAPNIS AYISIDAIUN DU],

PCT/US00/31295

WO 01/37510

12/19

9 "SI
A 1sanboy
< T
1'C1'8 1'¢1°C
A A
14
Pedl
1%
¢
¢
OveL [¢c1Iey
A

d1jje.1) 9J8I0T]

1Sanbay 2INdsqQ) pue UOHIAIPIY

3sanbau 3andsqQ

PCT/US00/31295

WO 01/37510

13/19

L3

L0 [

wu/z XM

+801 | G—P

wu/Aney-s

£'6°0 | [

wéu/r-b-d-o |

*9°01 #»S01 * V0l
weu/1 wi‘uyy wu/e
._. 2 .ﬁ—
R ‘3 2
1 q p
weugy «—» 0
JANENR \
NAY T TITTY
A wu/y8yd Tl.v #*T01
w'u/prqe P 101
w‘u/o wu/s wu/m
-d 9 X
‘b ‘n N
1 A z ordurexy
0 0 0 3uISSad01g
UNIN
*00°01 # 11°01 * 101

WO 01/37510

720

TN\
722 7 N

(Comwwmcmmn

Medium

14/19

PCT/US00/31295

54— 700
— 705 .. 717
719
S pr— 715
asa ans)
711
709—/

WO 01/37510 PCT/US00/31295

15/19

A1
receive unauthorized datagrams with multiple
destination addresses at a deception system

{ a2

generate deception responses emulating
different computer systems at different
destination addresses

*L A3

return deception responses to unauthorized
sender

FIG. 9

B1
receive datagrams to multiple destinations to
which emulation/deception responses will be

directed

{ 2

detect datagrams at two or more
emulation/deception systems of two or more
different types

\L B3

generate deception responses at deception
systems so that an emulated response is
generated by a deception system of the same
general type as an emulated system

\L B4

return deception/emulation responses
FIG. 10

WO 01/37510 PCT/US00/31295

16/19
C1

receive datagrams at an outside deception
device with an original source/destination
address indication

4 c2

perform first translation of original indication to
an intermediate indication

\L C3

perform second translation of intermediate
indication back to original indication and pass
into an internal network

\L C4

receive datagram at a system in internal
network and respond on internal network

\L C5

perform reverse second translation back to
intermediate indication

\L C6

perform reverse first translation of
intermediate indication back to original
source/destination address indication

{ c7

forward response to initial sender
FIG. 11

WO 01/37510 PCT/US00/31295

17/19
D1
receive datagrams at an outside deception
device with an original source/destination
address indication

\l/ D2

perform first translation of original indication to
an intermediate indication and route on an
intermediate network to one or more internal
subnetworks

\L D3

detect datagram on appropriate intermediate
network device and perform second
translation of intermediate indication to an
internal address indication and pass into an
internal network

\L D4

respond to datagram on an internal network

{ 5

perform reverse second translation back to
intermediate indication an place on
intermediate network

*L D6

perform reverse first translation of
intermediate indication back to original
source/destination address indication

{ o7

forward response to initial sender
FIG. 12

WO 01/37510 PCT/US00/31295

18/19
E1

receive datagram at first translating node and
perform first translation of original
source/destination address indication to a
second address indication

\l’ E2

forward datagram to a second translating
node indicated by the second address
indication

{ 3

receive datagram at second translating node
and perform second translation of address
indication towards a final translating address
indication

i 4

forward datagram to a final translating node
indicated by a final address indication

i es

receive datagram at final translating node and
translate to actual desired destination address

\L E6

forward datagram to actual desired destination
address with obscured source

¢ 7

forward response to initial sender
FIG. 13

WO 01/37510 PCT/US00/31295

19/19
F1
at a first MIMD processing module, transmit
datagrams to other processing modules using
a local MIMD addressing scheme

\L F2

at a first address translation module, detecting
datagrams transmitted using the first local
MIMD address scheme that are directed to
processing modules not locally present

¢ 3

at the first address translation module,
translating detected datagrams to an
intermediate network address of a second
address translation module

J F4

transmitting the translated datagram over an
intermediate network to the second address
translation module

\L F5

at the second address translation module,
translating datagrams from an intermediate
network address to a second MIMD
addressing scheme

\ Fo

transmitting the multiply translated datagram
to the appropriate MIMD processing module

FIG. 14

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

