PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 96/38769
GO5B 19/18 Al i o

(43) International Publication Date: 5 December 1996 (05.12.96)

(21) International Application Number: PCT/US96/08149 | (81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH,

(22) International Filing Date: 30 May 1996 (30.05.96)

(30) Priority Data:

08/454,736 30 May 1995 (30.05.95) UsS

(71) Applicant: ROY-G-BIV CORPORATION [US/US}; 150 East
Jewett Boulevard, White Salmon, WA 98672 (US).

(72) Inventors: BROWN, David, W.; 150 East Jewett Boulevard,
White Salmon, WA 98672 (US). CLARK, Jay, S.; Suite
175, 557 Roy Street, Seattle, WA 98109 (US).

(74) Agent: SCHACHT, Michael, R.; Hughes, Multer & Schacht,
P.S., 1720 Iowa Street, Bellingham, WA 98226 (US).

CA
CN, CZ, DE, DK, ES, FI, GB, GE, HU, JP, KE, KG, KP
KR, KZ, LK, LT, LU, LV, MD, MG, MN, MW, NO, NZ
PL, PT, RO, RU, SD, SE, SI, SK, TJ, TT, UA, UZ, VN,
European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB
GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

(54) Title: MOTION CONTROL SYSTEMS

(57) Abstract

XMC Motion Control - System Interaction-Mep

A system for motion control in which an applica-

tion is developed that is independent from the actual mo-
tion control hardware used to implement the system. The
system comprises a software system that employs an ap-
plication programming interface (26) comprising compo-
nent functions and a service provider interface comprising
driver functions. A system programmer (24) writes an ap-
plication that calls the component functions. Code asso-
ciated with the components relates these functions to the
driver functions. A hardware designer (16a) writes driver
code that implements the driver functions on a given mo-
tion control hardware product. The driver functions (38)
are separated into core and extended driver functions. All
software drivers implement the core driver function, while

!

! Farvond Compuiet Software

the software drivers need not contain code for implement-
ing the extended driver functions. If the software driver
does not contain code to implement an extended driver
function, the functionality of the extended driver function
is obtained through a combination of core driver func-
tions.

YR R
g g
AT
TS

S R e)
&“J..*“W....W, ulii',ifi‘m = R

e

==

. . :
= x o y \‘
e S b b :
20a. i Saenaest ; iy : ey :
g . : A~~~ /g(_
{ / - ! 5 T \\ UL '
(o u.‘-lc.-u / mn]c--: / / lkn-ltunnl
Dekera 20p ot 20
XMC System Interaction-Map b <
18 5\ 10

AM
AT
AU
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
Cs
CZ
DE
DK
EE
ES
FI
FR
GA

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international
applications under the PCT.

Armenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Ttaly

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

MW
MX
NE
NL

NZ
PL

RO
RU
SD
SE

SI

SK
SN
LY/
D
TG
TJ

UA
uG

vz

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

/'i‘r

o

10

20

30

WO 96/38769 PCT/US96/08149

-1-
MOTION CONTROL SYSTEMS

TECHNICAL FIELD
The present invention relates to motion control systems and, more particularly, to

interface software that facilitates the creation of hardware independent motion control software.

BACKGROUND OF THE INVENTION

The purpose of a motion control device is to move an object in a desired manner. The
basic components of a motion control device are a controller and a mechanical system. The
mechanical system translates signals generated by the controller into movement of an object.

While the mechanical system commonly comprises a drive and an electrical motor, a
number of other systems, such as hydraulic or vibrational systems, can be used to cause
movement of an object based on a control signal. Additionally, it is possible for a motion control
device to comprise a plurality of drives and motors to;allow multi-axis control of the movement of
the object.

The present invention is of particular importance in the context of a mechanical system
including at least one drive and electrical motor having a rotating shaft connected in some way to
the object to be moved, and that application will be described in detail herein. But the principles
of the present invention are generally applicable to any mechanical system that generates
movement based on a control signal. The scope of the present invention should thus be
determined based on the claims appended hereto and not the following detailed description.

in @ mechanical system comprising a controller, a drive, and an electrical motor, the
motor is physically connected to the object to be moved such that rotation of the motor shaft is
translated into movement of the object. The drive is an electronic power amplifier adapted to
provide power to a motor to rotate the motor shaft in a controlled manner. Based on control
commands, the controller controls the drive in a predictable manner such that the object is moved
in the desired manner.

These basic components are normally placed into a larger system to accomplish a
specific task. For example, one controller may operate in conjunction with several drives and
motors in a multi-axis system for moving a tool along a predetermined path relative to a
workpiece.

Additionally, the basic components described above are often used in conjunction with a
host computer or programmable logic controller (PLC). The host computer or PLC allows the use
of a high-level programming language to generate control commands that are passed to the
controller. Software running on the host computer is thus designed to simplify the task of
programming the controller.

Companies that manufacture motion control devices are, traditionally, hardware oriented

companies that manufacture software dedicated to the hardware that they manufacture. These

10

[
th

20

25

30

WO 96/38769 PCT/US96/08149

-2-
software products may be referred to as low level programs. Low level programs usually work
directly with the motion control command language specific to a given motion control device.
While such low level programs offer the programmer substantiélly complete control over the
hardware, these programs are highly hardware dependent. ! :

In contrast to low-level programs, high-level software programs, referred to sometimes as L
factory automation applications, allow a factory system designer to develop application programs
that combine large numbers of input/output (I/O) devices, including motion control devices, into a
complex system used to automate a factory floor environment. These factory automation
applications allow any number of I/O devices to be used in a given system, as long as these
devices are supported by the high-level program. Custom applications, developed by other
software developers, cannot be developed to take advantage of the simple motion control
functionality offered by the factory automation program.

Additionally, these programs do not aliow the programmer a great degree of control over
the each motion control device in the system. Each {)rogram developed with a factory
automation application must run within the context of that application.

PRIOR ART
In the following discussions, a number of documents are cited that are publicly availabie
as of the filing date of the present invention. With mény of these documents, the Applicant is not
aware of exact publishing dates. The citation of these documents should thus not be considered
an admission that they are prior art; the Applicant will take the steps necessary to establish
whether these documents are prior art if necessary.
As mentioned above, a number of software programs currently exist for programming
individual motion control devices or for aiding in the development of systems containing a
number of motion control devices.
The following is a list of documents disclosing presentty commercially available high-level
software programs: (a) Software Products For Industrial Automation, iconics 1993; (b) The
complete, computer-based automation tool (IGSS), Seven Technologies A/S; (c) OpenBatch
Product Brief, PID, inc.; (d) FIX Product Brochure, Intellution (1994); (e) Paragon TNT Product
Brochure, intec Controls Corp.; (f) WEB 3.0 Product Brochure, Trihedral Engineering Ltd. (1994):
and (g) AIMAX-WIN Product Brochure, TA Engineering Co., Inc. The foliowing documents
disciose simulation software: (a) ExperTune PID Tbning Software, Gerry Engineering Software:
and (b) XANALOG Model NL-SIM Product Brochure, XANALOG. -
The following list identifies documents related to low-level programs: (a) Compumotor (
Digiplan 1993-94 catalog, pages 10-11; (b) Aerotech Motion Control Product Guide, pages 233-
34; (c) PMAC Product Catalog, page 43; (d) PC/DSP-Series Motion Controlier C Programming
Guide, pages 1-3; (e) Oregon Micro Systems Product Guide, page 17; (f) Precision Microcontrol
Product Guide.

G

10

20

25

30

WO 96/38769 PCT/US96/08149

-3-

The Applicants are also aware of a software model referred to as WOSA that has been
defined by Microsoft for use in the Windows programming environment. The WOSA model is
discussed in the book Inside Windows 95, on pages 348-351. WOSA is also discussed in the
paper entitled WOSA Backgrounder: Delivering Enterprise Services to the Windows-based
Desktop. The WOSA model isolates application programmers from the complexities of
programming to different service providers by providing an AP layer that is independent of an
underlying hardware or service and an SPI layer that is hardware independent but service
dependent. The WOSA model has no relation to motion contro! devices.

The Applicants are also aware of the common programming practice in which drivers are
provided for hardware such as printers or the like; an application program such as a word
processor allows a user to select a driver associated with a given printer to allow the application
program to print on that given printer.

While this approach does isolates the application programmer from the complexities of
programming to each hardware configuration in existénce, this approach does not provide the
application programmer with the ability to control the hardware in base incremental steps. In the
printer example, an application programmer will not be able to control each stepper motor in the
printer using the provided printer driver; instead, the printer driver will control a number of stepper
motors in the printer in a predetermined sequence as necessary to implement a group of high
level commands.

The software driver model currently used for printers and the like is thus not applicable to
the development of a sequence of control commands for motion control devices.

OBJECTS OF THE INVENTION

From the foregoing, it should be clear that one primary object of the invention is to
provide improved methods and devices for moving objects.

Another more specific object of the present invention is to obtain methods and apparatus
for designing and depioying motion control devices in which these methods and apparatus exhibit
a favorable mix of the following characteristics:

(a) aliow the creation of high-level motion control programs that are hardware
independent, but offer programmability of base motion operations;

(b) hide the complexities of programming for multipie hardware configurations from the
high-level programmer;

(c) can easily be extended to support additional hardware configurations; and

(c) transparently supports industry standard high-level programming environments.

SUMMARY OF THE INVENTION
The present invention is, in one form, a method of moving an object comprising the steps

of developing a high-level motion controi application program comprising a sequence of

10

20

25

30

35

WO 96/38769 PCT/US96/08149

-4-
component functions that describe a desired object path, correlating these component functions
with driver functions, selecting a software driver for the specific hardware configuration being
controlied, generating control commands from the driver functions and the software driver
associated with the hardware configuration being controlled, and controlling a motion control
device based on the control data to move the object along the desired object path.

In another form, the present invention is a method of generating a sequence of control
commands for controlling a motion control devices to move an object along a desired path. An
application program comprising a series of component functions defines a sequence of motion
steps that must be performed by the motion control device to move the object along the desired
path. The component functions contain code that relates the component functions to driver
functions. The driver functions are associated with, or contain, software drivers containing driver
code for implementing the motion steps on a given motion control device. The control
commands are generated based on the application program and the driver code associated with a
given motion control device.)

The use of component functions that are separate from driver functions isolates the
programmer from the complexities of programming to a specific motion control device. This
arrangement also allows a given application program to be used without modification for any
motion control device having a software driver associated therewith.

The driver functions are grouped into core driver functions and extended driver functions.
All software drivers must support the core driver functions; the software drivers may also support
one or more of the extended driver functions, although this is not required.

Where the software drivers do not support the extended driver functions, the functionality
associated with the extended driver functions can normally be simulated using some combination
of core driver functions. In this case, the method of the present invention comprises the steps of
determining which of the extended driver functions are not supported by the software driver and,
where possible, substituting a combination of core driver functions. in some cases, the
functionality of an extended driver function cannot be emulated using core driver functions, and
this functionality is simply unavailable to the programmer.

The use of core driver functions to emulate extended driver functions provides
functionality where none would otherwise exist, but the preferred approach is to provide a
software driver that supports each of the extended driver functions. When an extended driver
function is supported and not emulated, the task being performed will normally be accomplished
more quickly and accurately.

Additionally, to simplify the use of emulated extended driver functions, the method of the
present invention further comprises the steps of determining which, if any, extended driver
functions are not supported by the software driver for a given hardware configuration, developing
a function pointer table of both unsupported extended driver functions and supported extended
driver functions, and consulting the table each time an extended driver function is called to

n

10

20

25

30

35

WO 96/38769 PCT/US96/08149

-5-
determine whether that extended driver function must be emulated. In this manner, the process
of calling the sequence of core driver functions employed to emulate the unsupported extended
driver functions is optimized. |

As the control commands are generated as described above, they may be used to control
a motion control device in real time or they may be stored in a file for later use. Preferably, the
method of the present invention comprises the step of providing a number of streams containing
stream code. Each stream is associated with a destination of control commands, and the stream
code of a given stream dictates how the control commands are to be transferred to the
destination associated with that given stream. The user is thus provided the opportunity to select
one or more streams that dictate the destination of the control commands.

To help isolate the programmer from hardware specific complexities, the method of the
present invention may comprise the additional administrative steps such as selecting a driver
associated with a particular motion control device and/or translating units required to define the
motion control system into the particular system of ur;its employed by a given motion control

device.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a system interaction map of a motion control system constructed in accordance
with, and embodying, the principles of the present invention;

FIG. 2 is a module interaction map of a motion control component of the system shown in
FIG. 1;

FIG. 3 is an object interaction map of the component shown in FIG. 2;

FIGS. 4 through 8 are scenario maps of the component shown in FIG. 2,

FIG. 9 is an interface map of the component shown in FIG. 2;

FIG. 10 is a data map showing one exemplary method of accessing the data necessary to
emulate extended driver functions using core driver functions:

FIG. 11 is a module interaction map of the driver portion of the system shown in FIG. 1;

FIG. 12 is an object interaction map of the driver portion shown in FIG. 11;

FIGS. 13 through 20 are scenario maps related to the driver shown in FIG. 11:

FIG. 21 is an interface map for the driver shown in FIG. 11;

FIG. 22 is a module interaction map of the streams used by the system shown in FIG. 1:

FIG. 23 is an object interaction map of the streams shown in FIG, 22;

FIGS. 24 through 32 are scenario maps of the streams shown in FIG. 22,

FIG. 33 is an interface map of the objects comprising the stream shown in FIG. 22;

FIG. 34 is a module interaction map of the driver stub portion of the system shown in
FIG. 1;

FIG. 35 is an object interaction map of the driver stub shown in FIG. 34;

FIGS. 36 through 38 are scenario maps of the driver stub shown in FIG. 34;

10

15

20

25

WO 96/38769 PCT/US96/08149

-6-

FIG. 39 is an interface map of the driver stub portion shown in FIG. 34,

FIG. 40 is a module interaction map of the driver administrator portion of the system
shown in FIG. 1;

FIG. 41 is an object interaction map of the driver administrator shown in FIG. 40; (N

FIGS. 42 through 49 are scenario maps relating to the driver administrator shown in
FIG. 40;

FIG. 50 is an interface map of the objects that comprise the driver administrator shown in
FIG. 40;

FIG. 51? is a module interaction map of the driver administrator CPL applet portion of the
system shown in FIG. 1:

FIG. 52 is an object interaction map of the driver administrator CPL applet shown in
FIG. 51;

FIGS. 53 through 57 are scenario maps related to the driver administrator CPL applet
shown in FIG. 51:)

FIG. 58 depicts a Module Interaction-Map showing all binary modules that interact with

the driver and how they interact with one another:

FIG. 59 depicts an Object Interaction-Map which corresponds to the module interaction
map of FIG. 58 expanded to display the internal C++ objects making up the language driver 44,
and how these objects interact with one another;

FIGS. 60-85 depict a number of Scenario Maps that display the interactions taking place
between the C++ objects involved during certain processes:

FIG. 66 depicts an interface map that describes the interfaces exposed by the language
driver component 44, all data structures used, and the definitions of each C++ class used; and

FIG. 67 depicts a table illustrating how a typical database employed by the language
driver 44 may be constructed.

i

10

20

30

WO 96/38769 PCT/US96/08149

-7-
DETAILED DESCRIPTION OF THE INVENTION

Referring now to the drawing, depicted therein at 10 in FIG. 1 is a motion control system
constructed in accordance with, and embodying, the principles of the present invention. This
system 10 comprises a personal computer portion 12 having a hardware bus 14, a plurality of
motion control hardware controllers 16a, 16b, and 16¢, and mechanical systems 18a, 18b, and
18c that interact with one or more objects (not shown) to be moved.

The personal computer portion 12 of the system 10 can be any system capable of being
programmed as described herein, but, in the preferred embodiment, is a system capable of
running the Microsoft Windows environment. Such a system will normally comprise a serial port
in addition to the hardware bus 14 shown in FIG. 1.

The hardware bus 14 provides the physical connections necessary for the computer 12 to
communicate with the hardware controliers 16. The hardware controllers 16 control the
mechanical system 18 to move in a predictable manﬁer. The mechanical system 18 comprises a
motor or the like the output shaft of which is coupled to the object to be moved. The combination
of the hardware controllers 16a, 16b, and 16¢ and the mechanical systems 18a, 18b, and 18¢c
forms motion control devices 20a, 20b, and 20c, respectively.

The hardware bus 14, hardware controllers 16, and mechanical systems 18 are ail well-
known in the art and are discussed herein only to the extent necessary to provide a complete
understanding of the present invention.

The personal computer portion 12 contains a software system 22 that aliows an
application user 24 to create software applications 26 that control the motion control devices 20.

More particularly, based on data input by the user 24 and the contents of the application
program 26, the software system 22 generates control commands that are transmitted by one or
more streams such as those indicated at 28a, 28b, 28c, and 28d. The streams 28 transmit control
commands incorporating the hardware specific command language necessary to control a given
motion control device to perform in a desired manner. As will be discussed in more detail below,
the streams 28 implement the communication protocol that allows the control commands to reach
the appropriate motion control device 28 via an appropriate channel (i.e., PC bus, serial port).

Using the system 22, the application program 26 is developed such that it contains no
code that is specific to any one of the exemplary hardware controliers 16. In the normal case, the
application program 26, and thus the user 24 that created the program 26, is completely isolated
from the motion control devices 20. The user 24 thus need know nothing about the hardware
specific command language or communication protocol associated with each of these devices 20:
it may even be possible that the command language of one or more of the hardware controllers
16 was not defined at the time the application program 26 was created.

The software system 22 comprises a combination of elements that allow the application

program 26 to be completely isolated from the hardware controilers 16. In the following

10

20

25

30

(S
thn

WO 96/38769 | PCT/US96/08149

-8-
discussion, the framework of the software system 22 will be described in terms of a method of
moving an object and/or a method of generating control commands. After this general

discussion, each component of the system 22 will be described in detail in a specific operating

environment.

I. Method of Generating Control Commands for Controliing a Motion Control Device to Move an
Object

Initially, it should be noted that, in most situations, the method described in this section
will normally but not necessarily involve the labors of at least two and perhaps three separate
software programmers: a software system designer; a hardware designer familiar with the
intricacies of the motion control device; and a motion control system designer. The application
user 24 discussed above will normally be the motion control system designer, and the roles of the
software system designer and hardware designer will become apparent from the foliowing
discussion.

The software system designer develops the software system 22. The software system
designer initially defines a set of motion control operations that are used to perform motion
control. The motion control operations are not specifically related to any particuiar motion control
device hardware configuration, but are instead abstrar;t operations that all motion control device
hardware configurations must perform in order to function.

Motion control operations may either be primitive operations or non-primitive operations.
Primitive operations are operations that are necessary for motion control and cannot be simulated
using a combination of other motion control operations. Examples of primitive operations inciude
GET POSITION and MOVE RELATIVE, which are necessary for motion control and cannot be
emulated using other motion control operations. Non-primitive operations are motion control
operations that do not meet the definition of a primitive operations. Examples of non-primitive
operations include CONTOUR MOVE, which may be emulated using a combination of primitive
motion control operations.

Given the set of motion control operations as defined above, the software system
designer next defines a service provider interface (SPI) comprising a number of driver functions.
Driver functions may be either core driver functions or extended driver functions. Core driver
functions are associated with primitive operations, while extended driver functions are associated
with non-primitive operations. As with motion control operations, driver functions are not related
to a specific hardware configuration; basically, the driver functions define parameters necessary
to implement motion control operations in a generic sense, but do not attach specific values or
the like to these parameters. The SP! for the exemplary software system 22 is attached hereto as

Appendix A.

10

20

30

WO 96/38769 PCT/US96/08149

-9-

The software system designer next defines an application programming interface (API)
comprising a set of component functions. For these component functions, the software system
designer writes component code that associates at least some of the component functions with at
least some of the driver functions. The relationship between component functions and driver
functions need not be one to one: for example, certain component functions are provided for
administrative purposes and do not have a corresponding driver function. However, most
component functions will have an associated driver function. The API for the exemplary software
system 22 is attached hereto as Appendix B.

The overall software model implemented by the software program 22 thus contains an
API comprising component functions and an SPI comprising driver functions, with the API being
related to the SPI by component code associated with the component functions.

In order for the system 22 to generate the control commands, at least two more
components are needed: the application program 26 and at least one software driver such as the
drivers indicated at 30a, 30b, and 30c in FIG. 1.)

The software drivers 30 are normaily developed by a hardware designer and are each
associated with a single motion control device. The hardware designer writes driver code that
dictates how to generate control commands for controlling the motion control device associated
therewith to perform the motion control operations associated with at least some of the driver
functions. |

In the exemplary software system 22, the software drivers 30a, 30b, and 30c are
associated with the motion control devices 20a, 20b, and 20c, respectively. As a software driver
exists for each of the motion control devices 20a, 20b, and 20c, these devices 20a, 20b, and 20c
form a group of supported motion control devices.

A careful review of the framework of the software system 22 as described above will
illustrate that, of all the components of this system 22, only the software drivers 30 are hardware
dependent.

The motion control system designer, normally also *he user 24, develops the application
program 26. The application program 26 comprises a sequence of component functions arranged
to define the motion control operations necessary to control a motion control device to move an
object in a desired manner. The application program 26 is any application that uses the system
22 by programming the motion control component 35. Applications may program the system 22
either through OLE Automation or by using any of the custom OLE interfaces making up the AP,

As mentioned above, the component code associates many of the component functions
with the driver functions, and the driver functions define the parameters necessary to carry out
the motion control operations. Thus, with appropriately ordered component functions, the
application program 26 contains the logic necessary to move the object in the desired manner.

Once the application program 26 has been written and the software drivers 30 have been

provided, the user 24 selects at least one motion control device from the group of supported

N

10

15

20

25

WO 96/38769 PCT/US96/08149

-10-
motion control devices 20a, 20b, and 20c. Using a driver administrator module 32, the user 24
then selects the software driver associated with the selected motion contro! device. This driver
administrator module 32 is used to install, uninstall, register, and setup each stream.

As currently implemented, the driver administrator 32 aliows only one software drivér to
be selected. In future versions of the software system 22, the driver administrator will aliow the
user to select one or more software drivers.

The software system 22 thus generates control commands based on the component
functions contained in the application program 26, the component code associated with the
component functions, and the driver code associated with the selected software driver 28.

As the control commands are being generated as described above, they may be directly
transmitted to a motion control device to control this device in real time or stored in an output file
for later use. The software system 22 employs the streams 28 to handle the transmission of the
control commands to a desired destination thereof.

in the exemplary system 22, the destinationsQOf the control commands may be one or
more of an output file 34 and/or the controllers 16. Other possible destinations include a debug
monitor or window or other custom output mechanism defined for a specific situation. The
software system designer, or in some cases the hardware system designer, will write transmit
stream code for each stream 28 that determines how the control commands are to be transferred
to a given one of the control command destinations 16 and 34. Using the driver administrator 32,
the user 24 selects one or more of the control command destinations 16 and 34, and, later when
run, the system 22 transfers the control commands to the selected control command destination
16 and/or 34 based on the transmit stream code in the stream 28 associated with the selected
control command destination 16 and/or 34.

Many control command destinations such as 16 and 34 are capable of transmitting data
back to the system 22. Data transmitted from a control command destination back to the system
22 will be referred to as response data. The software system designer thus further writes data
response stream code for each of the streams 28a, 28b, and 28c¢ that determines how response
data is transmitted from the controliers 16 to the system 22. The system 22 thus processes the
response data sent by the controllers 16 based on the data response stream code contained in
the streams 28.

Referring again to FIG. 1, this Figure shows that the system 22 further comprises a
motion control component 35 and a driver stub module 36. The motion control component
module 35 is the portion of the software system 22 that relates the component functions to the
driver functions. The motion control component module 35 thus contains the component code
that makes the association between the component functions contained in the application

program 26 and the driver functions.

10

20

25

30

w
n

WO 96/38769 PCT/US96/08149

- 11 -

The driver stub module 36 is not required to implement the basic software model
implemented by the system 22, but provides the system 22 with significantly greater flexibility to
accommodate diverse motion control hardware configurations with minimal effort.

More particularly, when the driver stub module 36 is employed, the hardware designer
need not develop driver code to implement all of the driver functions: to the contrary, the
hardware designer must write driver code for implementing the core driver functions but need not
write driver code to implement the extended driver functions. The software system designer
provides the motion control driver stub 36 with stub code that identifies the combinations of core
driver functions that are employed to emulate the functionality of extended driver functions.’

The motion control component 24 will determine for the selected software driver 30 which
extended functions, if any, the selected driver 30 supports. For extended functions that are not
supported, referred to herein as non-supported extended driver functions, the motion control
component 35 refers to the driver stub module 36 to determine the appropriate combination of
core driver functions to emulate the functionality of tt;e non-supported extended driver functions.
The system 22 thus generates the control commands necessary to implement the non-supported
extended driver functions using the appropriate combination of core driver functions.

The process of determining when extended driver functions need to be emulated can be
optimized by providing the motion control component 35 with a function pointer table that
contains a pointer to each of extended functions. When building the function pointer table, the
motion control component 35 checks the selected driver module 30 to see if it supports each
extended function. If the selected driver module 30 supports the extended function, the motion
control component module 35 stores a pointer to the function, implemented by the selected driver
module 30, in the table location corresponding to the extended function. In the event that the
selected driver module 30 does not support the extended function, the motion control component
module 35 stores a pointer to the extended function impiementation located in the driver stub
module 36. The driver stub module 36 implementation of the extended function contains calls to
a plurality of core functions implemented by the selected driver module 30.

Therefore, the driver stub module 36 allows the motion control system designer to use,
with minimal time and effort by the hardware designer, a working software driver 28 that contains
driver code to implement only the core functions. The software driver 28 developed to implement
the core driver functions can then be improved by developing driver code to implement extended
driver functions as desired.

The use of driver code specifically designed to implement extended driver functions is, in
general, preferable to relying on the driver stub module 36 to emulate the extended driver
functions; driver code specifically written to implement an extended driver function will aimost
always obtain a more optimized implementation of the driver function than the emulation of that

driver function with a combination of core driver functions.

wn

10

15

20

25

30

WO 96/38769 PCT/US96/08149

-12-
Referring again for a moment to FIG. 1, this Figure illustrates that the system 22
additionally comprises a driver administrator CPL applet 38 and a DDE server 40. The driver
administration CPL applet 38 generates the user interface through which the user 24
communicates with the driver administrator module 32. The DDE server 40 provides the software
interface through which the application program 26 communicates with the motion control
component module 35,

[l. MOTION CONTROL COMPONENT

The motion control component 35 will now be described in further detail with reference to
FIGS. 2-10. The motion control component 35 is used by every application programming the
system 22 to perform motion control operations. The major set of the AP is implemented by this
component. When operating, the motion control component 35 interacts with the driver
administrator 32, to get the current driver, and the driver 30 and driver stub 36, to carry out
motion control operations. Applications, using system 22, only interact with the motion control
component 35.

This section describes the design of the motion control component 35 in three main parts.
First, all binary modules that affect the component 35 are described along with their interactions
with the component 35. Next, the module interaction-'map is drawn in more detail to show the
interactions between all C++ objects used to implement the motion control component 35. Next,
the object interaction-map is tested by displaying the specific interactions that take place during
certain, key process that the component 35 is requested to perform.

The module interaction-map shown in FIG. 2 displays all binary modules and their
interactions with the motion control component 35. As can be seen from the module interaction-
map, applications only communicate with the motion control component 35. From this point, the
component 35 coordinates all interactions between the driver administrator 32, driver 30, and
driver stub 36 componenis.

Breaking the module interaction-map and adding the interactions taking place between all
C++ objects used to implement the motion control component 35, produces the object interaction-
map shown in FIG. 3.

Each object in the diagram is described as follows. The CCmpntDisp object is the
dispatch object used to dispatch exposed interface methods. During the dispatch process, all raw
data is converted into the appropriate C++ form. For example, collections of data passed
between OLE components is usually packaged in a raw block of memory. The CCmpntDisp
object takes care of packing outgoing data and unpacking incoming data. Data packing involves
converting the data between a raw and native C++ format.

The CDriverAdmin object is used to communicate directiy with the driver administrator

component. All OLE related details are encapsulated within this class.

W

10

20

25

30

WO 96/38769 - PCT/US96/08149

-13-

The CDriverMgr object is used to control all unit mapping taking place before calling the
appropriate Driver function. The CUnitMapper object is used to do the actual mapping between
units.

The CUnitMapper object is used to map units between the Part Coordinate System (PCS)
and the Machine Coordinate System (MCS). Both directions of unit mapping are done by this
object.

The CDriver object is used to build the SP! table containing both core and extended
Driver functions. Depending on the level of driver support, the extended functions in the SP!
table may point to functions implemented in either the driver stub 36 or the driver 30.

The following discussion of FIGS 4-8 describes all main scenarios, or operations, that
occur on the motion control component 35. Each scenario-map displays all objects involved, and
the interactions that take place between them in the sequence that they occur.

As shown in FIG. 4, before an application can use the motion control component 35, it
must create an instance of the object, using the ConeateInstance OLE function, and then
initialize the instance calling the exposed Initialize custom interface method implemented by the
component 35. FIG. 4 displays the sequence of events that take place when the Initialize method
is called.

During initialization, the following steps occur. First the application must create an
instance of the motion control component 35 by calling the standard OLE function
CoCreatelnstance. Once loaded, the application must call the component 35's exposed Initiatize
method. When first loaded, the component 35 loads any registration data previously stored.
Next, the component 35 directs the CCmpntDisp to initialize the system. The CCmpntDisp
directs the CDriverAdmin to get the current driver(s) to use. The CDriverAdmin, first, loads the
driver administrator 32 using the standard OLE CoCreatelnstance function. Next, it initializes the
driver administrator. Then, it queries the driver administrator for the driver(s) to use and their SPI
support information. Finally, the driver administrator returns the driver(s) and the support
information to the component 35, and releases all interfaces used from the driver administrator
component 32.

Once receiving the active driver(s) 30 and their support information, the motion control
component 35 passes the driver(s) 30 to the CDriverMgr and directs it to initialize the system.
During its initialization, the CDriverMgr initializes the CUnitMapper. Also while initializing, the
CDriverMgr initializes a CDriver for each driver used. After initializing each CDriver, the support
information is used to build each SP! table inside each CDriver object. When building the SPI
table, all core and supported extended SP! interfaces are queried from the driver. Also, when
building the SPI table, the CDriver queries all interfaces, not supported by the driver 30, from the
driver stub 36.

Referring now to FIG. 5, once the motion control component 35 is initialized, the
application 26 may perform operations on it. There are two types of operations that may take

20

25

30

(9%
I

WO 96/38769 PCT/US96/08149

-14-
place on the component 35: Operations that use core Driver functions, and operations that use
extended Driver functions. Even though the difference between the two is completely invisible to
the application using the component 35, the internal interactions are different between the two.
The following discussion outline these differences.

The following interactions take place when the component 35 performs an operation that
uses core Driver functions only. First the application must request the operation and pass all
pertinent parameters to the component 35. Next, the component 35 directs the CCmpntDisp to
carry out the operation. The CCmpntDisp then directs the CDriverMgr to perform the operation
and passes all pertinent parameters to it. Before carrying out the operation, the CDriverMgr uses
the CUnitMapper to convert ali units to the Machine Coordinate System (MCS). Next, the
CDriverMgr directs the CDriver object to carry out the operation and passes the newly mapped
parameters to it. The CDriver object uses its internal SPI table to communicate directly with the
core Driver function implemented by the driver component.

FIG. 6 shows the sequence of events that occurs when the component 35 is directed to
carry out an operation that happens to use extended SPI not supported by the driver 30. The
following steps occur when the operation is requested.

First the application must request the operation and pass all pertinent parameters to the
component 35. Next, the component 35 directs the CCmpntDisp to carry out the operation. The
CCmpntDisp then directs the CDriverMgr to perform fhe operation and passes all pertinent
parameters to it. Before carrying out the operation, the CDriverMgr uses the CUnitMapper to
convert all units to the Machine Coordinate System (MCS). Next, the CDriverMgr directs the
CDriver object to carry out the operation and passes the newly mapped parameters to it. The
CDriver object uses its internal SPI table to communicate directly with the core Driver function
impiemented by the driver component.

As briefly discussed above, when using the system 22, there are several types of units
and two different coordinate systems used. The process of unit mapping involves converting
measurements between the Part and Machine coordinate systems. FIG. 7 illustrates this process,
and the following steps occur when the operation is requested.

First the application must request the operation and pass all parameters to the
component 35. Note, all parameters are in the PCS. Next, the component 35 directs the
CCmpntDisp to carry out the operation. The CCmpntDisp directs the CDriverMgr to carry out the
operation and passes the PCS parameters to it. The CDriverMgr takes all measurements and
uses the CUnitMapper to convert them to the MCS. The newly mapped parameters are then
passed to the Cdriver. The CDriver directs either the driver or the driver stub component to carry
out the operation.

When the application is finished using the motion control component 35 it directs the
component 35 to free all of its resources by calling its exposed Release method. This process is

depicted in FIG. 8. During the clean-up process, the foliowing steps occur.

10

20

25

30

W
n

WO 96/38769 PCT/US96/08149

-15-

First the application must direct the component 35 to release all of its resources by calling
its Release method. When invoked, the component 35 passes the call on to the CCmpntDisp
object. The CCmpntDisp object directs the CDriverMgr to release any resources it is using. The
CDriverMgr directs each CDriver object to release any of its resources, then deletes the CDriver
objects. First, the CDriver object releases any interfaces it is using from the driver component.
Then, the CDriver object releases any interfaces it is using from the driver stub component.

FIG. 9 is an interface map related to the motion control component 35. FIG. 10 is a data
map showing how data relating to the whether extended driver functions need to be emulated is
stored. Attached hereto as Appendix C is a document that describes the actual OLE Interfaces
exposed, the definitions of the data structures used when passing data around, and the definitions
of each class used internally by the motion control component 35.

ll. SOFTWARE DRIVERS

The driver 30 is used by both the driver administrator 32 and the component 35. Its main
purpose is to implement functionality that generates motion control commands for the specific
hardware supported. For example, the AT6400 driver, used to control the Compumotor AT6400
motion control hardware, generates AT6400 command codes. During the initialization phase of
the system 22, the driver administrator 32 communicétes with each driver 30, allowing the user to
add, remove, or change the configuration of the driver. When an application, using the system
22, is run, the component 35 communicates with the driver 30 directing it to carry out the
appropriate motion control operations.

This section describes the complete design of a generic driver 30. All drivers are
designed from the base design described in this manual. This section is divided into three parts.
First, a module interaction-map that describes all binary modules that interact with the driver 30 is
discussed. Next, the moduie interaction-map is drawn as an object interaction-map, where all the
internals of the driver are exposed. In this map, all C++ obiects, making up the driver, and their
interactions are shown. Next, several scenario-maps are drawn. Each scenario-map displays the
interactions taking place between the C++ objects involved during a certain process. Finally, this
section describes the interfaces exposed by the driver component, all data structures used, and
the definitions of each C++ class used.

Referring now to FIG. 11, the module interaction-map displays all binary modules and
their interactions with the driver 30. There are two modules that interact directly with the driver:
the motion control component 35, and the driver administrator 32. The driver administrator 32
queries and changes the driver settings and the component 35 directs the driver to carry out
motion control operations, such as moving to a certain location in the system. Shown at 42 in
FIG. 11 is the standard Windows registration database, referred to herein as the registry.

W

10

20

25

30

WO 96/38769 | PCT/US96/08149

-16-

Breaking the module interaction-map down into more detail by including the interactions
taking place between all C++ objects used to implement the driver, produces the object
interaction-map. The object interaction-map for the driver 30 is shown in FIG. 12.

Each object in the diagram is described as follows.

CDriverDisp is the dispatch object used to dispatch exposed interface methods. During
the dispatch process, all raw data is converted into the appropriate C++ form. For example,
coliections of data passed between OLE components is usually packaged in a raw block of
memory. The CDriverDisp object takes care of packing outgoing data and unpacking incoming
data. Data packing involves converting the data between a raw and native C++ format.

The CStreamMgr object is responsible for managing the set of streams registered with
the driver. Streams, may be added, removed, and enabled. Only enabled streams are sent data.
The CLSID and enabled status of each stream registered, is stored in the registration database.
When communicating to streams, the CStreamMgr is used to send the command string to all
enabled streams.)

The CCommandMgr object is used to build commands sent to the stream, and extracting
responses received from the stream. The CCommandMgr is the controliing object that manages
the CResponse, CCommandList, and CStream objects.

The CCommandList object stores the complete list of commands making up the motion
control command language. Such commands may be stored as text resources or in a text file.

The CCommand object builds command strings that are then sent to the CStream. Each
command built is a complete motion control command string.

The CResponseList object builds CResponse objects that are initialized with the parsing
format for the expected response.

The CResponse object converts raw response strings, returned by the CStream, and
converts them into C++ data types. For example, a response string containing position data may
be converted into a set of double values.

The CStream object is used to communicate directly with the underlying stream
component.

Figures 14-20 contain scenario maps that describe all main scenarios, or operations, that
occur on the driver 30. Each scenario-map displays all objects involved, and the interactions that
take place between them in the sequence that they occur.

There are two types of operations that occur on the driver 30. First, the driver
administrator 32 may initiate operations, such as adding streams or configuring the driver. Next,
the motion control component 35 may initiate operations on the driver when an application is
actually running. The following discussion describes each perspective, starting with the
operations directed by the Driver Administrator; all operations made on the driver by the driver
administrator are discussed in the order that they may occur when using the driver. '

10

20

30

(95
il

WO 96/38769 PCT/US96/08149

-17-

Before a driver may be used, it must be registered in the OLE system. In order to
register a driver the driver administrator first verifies that the module being registered is actually
an driver 30, then it calls the DLLRegisterServer exported function to register the driver. Each
module of the system 22 exports a function called DLLGetModuleType. This function is used to
verify that the module is an driver 30 component. FIG. 13 displays the interactions that take
place when registering a driver.

During the registration process shown in FIG. 13, the following steps occur. First, the
driver administrator must load the DLL, containing the stream component, verify that the module
is an driver 30. To do so, the driver administrator calis the DLLGetModuleType function,
exported by the driver. If the function returns a value that contains the value XMC_DRIVER_MT
in the high byte, then the driver administrator proceeds and registers the driver by calling its
exported function, DLLRegisterServer. When called, the implementation of the
DLLRegisterServer writes all OLE 2.0 registration information to the Windows registration
database.)

Referring now to Figure 14, after the driver is registered, the driver administrator can load
the component 35 using the OLE CoCreatelnstance function. During the initialization process,
the driver loads all registration data and initializes both the CDriverDisp and CStreamMgr C++
objects.

During initialization, the following steps occur. |

Before loading the driver component, the driver administrator must query the driver
module for its CLSID. Calling the driver's exported function, DLLGetCLSID, returns the CLSID.
Once it has the CLSID, the driver administrator may create an instance of the driver by calling the
standard OLE function CoCreatelnstance. When first loaded, the driver loads any registration
data previously stored. Next, the driver directs the CDriverDisp object to initialize the system.
When notified, the CDriverDisp object initializes itself and then directs the CStreamMgr to
initialize itself. During its initiaiization, the CStreamMgr loads all stream settings from the
registration database. For example, the CLSID and enabled state of all streams previously
registered with the driver, are loaded.

After initializing the driver, the driver administrator may perform operations on it. For
example, the driver administrator may request the driver to add or remove a stream. FIG. 15
displays the sequence of events occurring when the driver is requested to add a new stream.
When adding a stream, the following steps occur.

First the driver administrator directs the stream to add a new stream and passes CLSID
of the stream, to be added, to the driver. The driver then passes the CLSID to the CDriverDisp
object and directs it to add the stream. The CDriverDisp object passes the information on to the
CStreamMgr and directs it to add the stream. In the final step, the CStreamMgr assumes that the
module is a valid stream component 28 and adds the CLSID to the drivers set of information in

the registration database.

wn

10

20

25

30

WO 96/38769 PCT/US96/08149

- 18 -

Another operation requested of the driver, after initialization, is that of querying it for its
current settings. Before displaying information about the driver, like the name of the hardware it
supports, the driver administrator must query the driver for the information. For example, FIG. 16
displays the process of querying the driver for an enumeration of the streams registered with it.
When querying the driver for information, the following steps occur.

First the driver administrator, calls the interface method used to query the driver's stream
enumeration. Next, the driver directs the CDriverDisp to create the stream enumeration. The
CDriverDisp object then directs the CStreamMgr to prepare the stream enumeration. The
CStreamMgr checks the registration database and makes sure its internal state is in sync with the
data stored in the registry. Next, it sets a lock that will cause all stream management operations,
such as adding or removing streams, to fail. The CStreamMgr prepares the list of streams and
loads them into memory using the CStream object. The CStream object loads the stream
component using the OLE CoCreatelnstance API.) ‘

After the driver administrator is done using th.e driver, it must release the driver by calling
its exposed Release method. Calling this method, directs the driver to release all resources used.
FIG. 17 displays the process of releasing the driver component. During the clean-up process, the
following steps occur.

First the driver administrator must direct the driver component to clean itself up by calling
its Release method. When invoked, the driver compdnent passes the call on to the CDriverDisp
object. The CDriverDisp object then directs the CStreamMgr to save all data. The CStreamMgr
saves all data, including the state of each stream, in the registration database. Finally, the driver
saves all internal data in the registration database.

After a driver is successfully installed into the system 22 and configured using the driver
administrator, it is ready for use by the motion control component 35. The component 35 uses
the driver 30 when performing motion contro! operations requested from the application using the
component 35. The following discussion describes the component 35 directed operations that
can take place on the driver.

Before using the driver, it must be initialized by the component 35. This operation is
different from the driver initialization taking place on the driver when used by the driver
administrator because the system must be prepared for sending and receiving commands. In
order to prepare for the data communication, the stream must be initialized and then opened.
FIG. 18 describes the initialization process. The following steps occur during the initialization
process.

First the component 35 must direct the driver to initialize itself. This is usually a two step
process. In the first step, the component 35 creates and instance of the driver using the standard
OLE CoCreatelnstance function. Next, the tnitialize method, exposed by the driver, is called to
prepare the driver for data transmissions. When the Initialize method is called, the driver first

loads any internal data stored in the registration database 42. Next, the driver directs the

10

20

30

WO 96/38769 PCT/US96/08149

-19-
CDriverDisp to initialize the internal system. The CDriverDisp then directs the CStreamMgr to
initialize the streams. Next, the CStreamMgr ioads all data from the registration database,
including the set of all CLSID's and enabled status' for all streams registered with the driver.
Then the CStreamMgr loads each enabled stream by creating a new CStream object for each
enabled stream. When creating each CStream object, the CLSID for the underlying stream is
passed to the CStream object. When each CStream object is created and attached to a stream
component it loads the component 35 by calling the standard OLE CoCreatelnstance function.
Once the CStreamMgr is done, the CDriverDisp directs the CCommandMgr to initialize itself.
During its initialization process, the CCommandMgr initializes and loads the CCommandList.
Also, when the CCommandMgr is initializing, it loads the CResponseList corresponding to the
CCommandList.

Once the system is initialized, the motion control component 35 can direct the driver to
carry out certain command operations. Command operations are standard motion control
operations such as moving to a specific location in the system, or querying the system for the
current position. FIG. 19 describes the process of commanding the driver to carry out a certain
operation. When commanding the driver to perform a certain operation the following steps occur

First, the component 35 directs the driver to perform the operation, such as moving to a
position or querying the system for the current position. Next, the driver directs the CDriverDisp
object to perform the operation. The CDriverDisp objéct then directs the CCommandMgr to build
the appropriate command. Any parameters related to the command are passed to the
CCommandMgr. For example, when directing the driver to move to a certain position, the
position information is passed to the CCommandMgr. Next, the CCommandMgr requests the
CResponselList to create a CResponse object. The CResponselList looks up the response format
and uses it to create a new CResponse object that is returned to the CCommandMgr. Then, the
CCommandMgr directs the CCommandList to create the command. Any parameters related to
the command are passed to the CCommandList. The CCommandList creates a new CCommand
object, looks up the raw command string, and passes it and the command parameters to the
CCommand object who then builds the command string.

The CCommandMgr, then passes the CCommand object, returned by the
CCommandList, and the previously created CResponse object to the CStreamMgr object. The
CStreamMgr object is directed to process the objects. The CStreamMgr passes the CCommand
and CResponse objects to all enabled CStream objects. The CStream object queries the
CCommand object for the full command string in raw text form. The raw text command is passed
to the stream component. Next, the CStream object waits for the response, then reads the raw
text response into a buffer. The raw text response is then passed to the CResponse object. Next
the CRETONNE object is returned to the CStreamMagr, who returns it to the CCommandMgr, who
returns it to the CDriverDisp object. Eventually the CResponse returns to the CDriverDisp object,

10

15

WO 96/38769 PCT/US96/08149

-20-
who then directs the CResponse to convert the response into a generic C++ type. The generic
type is returned to the motion control component 35.

Once the component 35 is finished using the driver, the driver must be released by
calling its Release method. Releasing the driver frees all resources used by the driver. FIG. 20
describes the process of releasing the driver. The following steps occur when cleaning up and
freeing all resources used by the driver.

First, the component 35 must call the driver's Release method. When called, the driver
directs the CDriverDisp object to release any resources used. The CDriverDisp then directs the
CStreamMgr to free any resources used. The CStreamMgr then frees all active CStream objects.
Each CStream object releases all stream component interfaces used. Next the CDriverDisp
directs the CCommandMgr to free all of its resources. During its clean-up, the CCommandMgr
frees the CCommandList object. To complete its clean-up, the CCommandMgr frees the
CResponsel.ist object. _

Attached hereto as Appendix D is a document that describes the actual OLE interfaces
exposed, the definitions of the data structures used when passing data around, and the definitions
of each class used internally by the driver.

W

10

20

30

35

WO 96/38769 PCT/US96/08149

-21-
IV. STREAMS

This section describes the stream component 28 used as the data transport layer between
the driver 30 component and the destination output location such as the motion control device 20
and/or the output file 34. For example, when using motion contro! hardware that is connected to
the PC Bus, the driver 30 Component will communicate with the PC Bus stream component 28.

The design of a stream component 28 will be discussed in three parts. First, a Module
Interaction-Map describes the modules that are involved, with respect to the stream, and how
they interact with one another. Next, the Object Interaction-Map breaks the Module Interaction-
Map down into a more detailed view that not only displays the interactions occurring between
modules, but also the interactions taking place between the C++ objects within the stream
component 28. Then, the Object Interaction-Map is "tested" by running it through several
Scenario-Maps. Each Scenario-Map displays the object interactions taking place during a certain
operation.)

The Module Interaction-Map shown in FIG. 22 displays all modules that interact with the
stream component 28. Interactions begin from two different perspectives. First, the driver
administrator 32 interacts with the stream component 28 when installing, removing, and
configuring the stream. Next, when used, each driver 30 interacts with the stream while sending
and retrieving data to and from the destination. For eXampIe, when a driver writes data to a text
file stream, the stream takes care of writing the data out to the file. Or, if the driver reads data
from a PC Bus stream, the stream does the actual read from the hardware and passes the data
back to the driver.

Drivers only communicate with streams that have been specifically connected to the
driver. Once connected, the stream is used to communicate with the destination object, like the
PC Bus, serial /O connection, text file, or debug monitor.

The stream component 28 shown in FIG. 22 is the object that operates as the data
transport layer for each driver. Each stream has a different target that defines the type of the
stream. The foliowing are the current stream targets.

PC Bus/WInNT - This Windows NT stream uses a Windows NT .SYS device
driver to communicate directly with the motion control hardware connected to the PC

Bus.

PC Bus/Wing5 - This Windows 95 stream uses a Windows 85 VxD to
communicate directly with the motion control hardware connected to the PC Bus.

PC Bus/Win 3.1 - This Windows 3.1 stream communicates directly with the
motion control hardware connected to the PC Bus.

Serial - This stream uses the COMM AP! to communicate with the motion control
hardware connected to the serial port.

Text File - This stream is write-only and sends all data to a text file.

10

20

30

WO 96/38769 PCT/US96/08149

-22-
Debug Monitor - This stream is write only and sends all data to the debug
monitor.

Custom - This is a custom stream that sends data to an unknown location.

Similar to the Module interaction-Map, the Object Interaction-Map displays interactions
between modules. In addition, this map, shows all interactions taking place between each C++
object within the stream component 28. FIG. 23 is the Object Interaction-Map for the stream
component 28.

Each object in the diagram is described as foliows. The CStreamDisp object is the
dispatch object used to dispatch exposed interface methods. During the dispatch process, all raw
data is converted into the appropriate C++ form. For example, collections of data passed
between OLE components is usually packaged in a raw block of memory. The CStreamDisp
object takes care of packing outgoing data and unpacking incoming data. Data packing involves
converting the data between a raw and native C++ fo.rmat.

The CRegistryMgr object takes care of managing all data stored in the registration
database. Since many streams of the same type may exist at the same time, each stream is
assigned a handie. The handie assigned, is used by the stream to look up the location it uses to
load and store data in the registration database, much as an library index is used to locate a
library book. -

All input and output is funnelled through the CIOMgr manager. Management of input and
output operations consists of buffering data and controlling primitives used to transport data to
and from the target location.

The CIOHAL object is the input/output hardware abstraction layer. With in this object lay
all hardware dependent code such as calls to inp and outp. Each different type of stream
contains a different implementation of this object.

Scenario-Maps are specialized Object Interaction-Maps that display how each module
and the objects inside the stream component interact with one another during the operation
described by the map. The Scenario-Maps in FIGS. 24-32 are broken into two different
categories; those that are initiated by the driver administrator 32, and those that are initiated by
the driver 30.

Operations directed by the driver administrator are usually related to initializing,
uninitializing, and configuring the stream. The following sections describe all operations, directed
by the driver administrator, that take place on the stream.

Before a stream component can be used by anyone, it must be registered in the Windows
registration database. Registration is a standard OLE 2.0 operation required in order to use any
OLE 2.0 component, such as the stream component. FIG. 24 describes this process. During the

registration process, the foliowing steps occur.

10

20

30

W
N

WO 96/38769 PCT/US96/08149

-23-

First, the driver administrator must load the DLL, containing the stream component, verify
that the module is an stream component 28. To do so, the driver administrator calls the
DLLGetModuleType function, exported by the stream. If the high byte in the return value
contains the value XMC_STREAM_MT, then the driver administrator proceeds and registers the
stream by calling its exported function, DLLRegisterServer. When called, the implementation of
the DLLRegisterServer writes all OLE 2.0 registration information to the Windows registration
database.

After the stream component is successfully registered, it is ready for initialization. During
initialization, the stream component not only initializes itself, but also initializes any device drivers
used by registering the driver with the operating system. For example, the Windows NT stream
component registers the Windows NT .SYS driver with Windows NT and starts the service. FIG.
25 describes this process. During initialization, the following steps occur.

First the driver administrator must direct the stream to initialize itself. When making this
call, the name and location of the driver used, and thé handle of the stream are passed into the
method as arguments. Once directed to initialize itself, the stream component calls the
CStreamDisp and directs it to initialize the system. The CStreamDisp object then directs the
CRegistryMgr to load all pertinent data for the stream using the handie passed toit. The
CRegistryMgr loads all data from the registration database. After all information is loaded from
the registry, the CStreamDisp directs the CIOMgr to régister the appropriate driver with the
operating system. The CIOMgr directs the CIOHAL to register the driver, if appropriate. |f
running in Windows NT, the CIOHAL registers the .SYS driver with the Windows NT operating
system and starts the driver. If running in Windows 95, the VxD integrity is verified with a quick,
dynamic, load and unload.

After initializing the stream component, it may be queried for its current settings or
directed to set new settings. Since both operations are very similar, only changing settings will be
described. Stream settings include data such as: port addresses, IRQ levels, file names, etc.
Any data needed to communicate with the output/input target are included in the stream settings.
FIG. 26 describes the process of changing the streams settings. During the setup process, the
following steps occur.

First the driver administrator directs the stream to use the data passed to change its
internal data. Once directed, the stream component passes the interface method invocation to
the CStreamDisp object. The CStreamDisp object then directs the CRegistryMgr to store the new
settings. The CRegistryMgr stores the new values in the registration database.

When the driver administrator is done using a stream component, it must clean up the
resources used. FIG. 27 describes this process. During the clean-up process, the following steps
occur. First the driver administrator must direct the stream component to clean itself up by

calling its Release method. When invoked, the stream component passes the call on to the

h

10

20

30

w
T

WO 96/38769 PCT/US96/08149

-24-
CStreamDisp object. The CStreamDisp object then directs the CRegistryMgr to save all data. All
persistent data is saved to the registration database by the CRegistryMgr.

Driver directed operations occur when each driver 30 uses the stream component 28
connected to it. Remember, each stream component is used as the data transport layer. Each
driver uses the stream to transfer the motion control command data, it generates, to the output
target. Streams are also used to transfer data back to the driver when read operations occur.
Only certain streams are readable.

Before the driver can perform operations on the stream, the stream must be initialized.
Initialization occurs in two steps. First the OLE stream component must be loaded, and then
once it is, the stream must be explicitly initialized. FIG. 28 describes the second portion of the
initialization process. The following steps occur during the initialization process.

First the driver must invoke the Initialize methods exported by one of the stream
interfaces. When calling Initialize, the driver passes to the stream, the stream handle. Next, the
stream passes the directive on to the CStreamDisp of)ject for dispatching. The CStreamDisp
object first directs the CRegistryMgr to load all settings stored in the location defined by the
stream handle. The CRegistryMgr reads in the data stored in the registry at the handle. After the
data is loaded, the CStreamDisp, directs the CIOMgr to initialize itself. As part of its initialization,
the CIOMgr initializes the CIOHAL object that it is using.

Once a stream has been initialized, it must be'opened. Opening a stream places the
stream in a state where it can pass data between the driver and the target. FIG. 29 describes the
process of opening a stream. When opening a stream, the following steps occur.

First the driver directs the stream to open itself, by calling the Open exposed interface
method. Once directed, the stream passes the call on to the CStreamDisp object. Next, the
CStreamDisp object directs the CIOMgr to open the stream. At this time, the CIOMgr prepares
any buffers that will later be used when transferring data through the stream. After the buffers are
ready, the CIOMgr directs the CIOHAL object to interact with the target and open it. CIOHAL
directly communicates with the target or with a device driver and opens the stream. When
operating with hardware streams, the device driver, or Serial 10 directly communicates with the
hardware and prepares it for operation.

After opening a stream, it is ready to perform data transport operations. There are two
main data transport operations available: Reading data, and writing data. FIG. 30 describes the
process of writing data to the stream. When writing to the stream, the following steps occur. First
the driver directs the stream to write data to the target and passes the data to the stream. Next,
the stream passes the data to the CStreamDisp object. The CStreamDisp object passes the
block of data to the CIOMgr and directs it to write it to the target. The CIOMgr object either
passes the complete block of data to the CIOHAL object, or stores the block in an internal buffer
and then passes pieces of the buffer to the CIOHAL object until the complete buffer is sent. The
CIOHAL object takes the data passed to it and either sends it directly to the target, passes it io a

10

20

25

WO 96/38769 PCT/US96/08149

-25-
device driver, or calls COMM AP to send the data to the Serial IO port. The device driver or
COMM API sends the data directly to the hardware controlied.

Certain streams, like the PC Bus and Serial |O streams, return data after write operations
occur on them. The data returned may be specific to a previous request for data, or status
describing the success or failure of the previous write operation. FIG. 31 describes the process of
reading data from the stream. It should be noted that not all streams are readable. Currently, the
only readable streams are the PC Bus and Serial streams. During the operation of reading data
from the target, the following steps occur.

First the driver directs the stream to read data from the target. The stream passes the
call on to the CStreamDisp object. The CStreamDisp object directs the CIOMgr to perform the
read. Depending on how the stream is implemented, the CIOMgr may either make one call or
multiple calls to the CIOHAL object. If multiple calls are made, all data read is stored in CIOMgr
internal buffers. The CIOHAL object either directly communicates to the hardware, uses the
COMM AP, or a device driver to read the data. If a device driver or the COMM API are used,
they directly communicate with the hardware to read the data.

Once the driver is done using the stream, it must direct the stream to ciean-up all
resources used. To do so, the driver calls the standard Release method. FIG. 32 displays the
sequence of events taking place after the Release method is called. The following steps occur
when cleaning up and freeing all resources used by the stream.

First the driver must call the stream's Release method. Next, the stream directs the
CStreamDisp object to release all resources used. The CStreamDisp object then directs the
ClOMgr to free any resources used in buffers, etc. Next, the CIOMgr directs the CIOHAL to free
any resources used. During its clean-up and depending on the type of stream, the CIOHAL will
delete text files used, close the debug monitor, shut-down the hardware, or direct any device
drivers to shut-down the hardware. If device drivers or the COMM AP are used, they direct the
hardware to shut-down.

FIG. 33 depicts an interface map for the stream 28. Attached hereto in Appendix E is a
document that describes the actual OLE Interfaces exposed, the definitions of the data structures
used when passing data around, and the definitions of each class used internally by the stream.

10

15

20

25

30

35

WO 96/38769 PCT/US96/08149

-26-
V. DRIVER STUB MODULE

The driver stub module 36 is used to fill in the extended Driver functions that the driver
30 is unabie to support or implement. By simulating the extended SPI, applications are able to
use a larger set of motion control functionality than would be available if the application directly
programmed the motion control hardware. In order to implement the extended SPI, the driver
stub uses software algorithms that call core SP! interface methods implemented by the driver 30.
During the initialization of the driver stub, the driver 30 to use is registered with the driver stub.

This section describes all aspects of the driver stub 36 in three basic parts. The first part
of this section describes all binary modules affecting the driver stub. Next, a more detailed view,
that includes all C++ objects used inside the driver stub, is described. Then several processes
that take place on the driver stub are described.

The module interaction-map displays all binary modules and their interactions with the
driver stub 36. As can be seen from FIG. 34, the driver stub is used by the component 35. More
or less, the driver stub acts as a helper to the component 35 by filling in all extended Driver
functionality possible.

By taking the module interaction-map in FIG. 34 and displaying all interactions taking
place with all C++ objects implementing the driver stub, we produce what is called the object
interaction-map. FIG. 35 is the object interaction-map for the driver stub 36 combonent.

Each object in the diagram is described as follows.

The CDriverStubDisp object is the dispatch object used to dispatch exposed
interface methods. During the dispatch process, all raw data is converted into the
appropriate C++ form. For example, collections of data passed between OLE
components is usually packaged in a raw biock of memory. The CDriverStubDisp object
takes care of packing outgoing data and unpacking incoming data. Data packing involves
converting the data between a raw and native C++ format.

The CSPIMgr object is responsible for managing all SPI issues such as managing
the CSimpleDriver by directing it to connect to the appropriate SP!I core interfaces
exposed by the driver.

The CSimpleDriver object is used to directly communicate with the driver
implementing the SPI core interfaces. The CSimpleDriver only communicates with the

core SP| interfaces implemented by the driver.

The following discussion describes all main scenarios, or operations, that occur on the
driver stub 36. Each scenario-map displays all objects involved, and the interactions that take
place between them in the sequence that they occur. All operations on the driver stub originate
from the motion control component 35. In addition to the motion control component 35, the XMC
Setup Component interacts with the driver stub when installing the system 22. it should be noted

10

20

30

WO 96/38769 PCT/US96/08149

-27-
that ail scenarios below assume that the driver stub 36 has already been registered in the OLE
system. Registering this component is the responsibility of the setup application and setup
component. '

This discussion describes all operations made on the driver stub by the motion control
component 35. Each section is discussed in the order that they may occur when using the driver.

As shown in FIG. 36, before using the driver stub 36, the motion control component 35
must initialize it by creating an instance of the driver stub, and then initializing the instance
created. Caliing the standard OLE function CoCreatelnstance co}npletes the first step. After an
instance is created, the component 35 must call the driver stub exposed Initialize interface
method. During initialization, the following steps occur.

The component creates an instance of the driver stub by calling the standard OLE
function CoCreatelnstance. Once loaded, the CLSID of the driver to use is passed to the driver
stub when calling its initialize exposed interface method. When first loaded, the driver loads any
registration data previousty stored. Next, the compoﬁent 35 passes the CLSID, of the driver to
use, to the CDriverStubDisp object and directs it to initialize the system. The CDriverStubDisp
object then directs the CSPIMgr to initialize itself and passes the driver CLSID to it. The
CSPIMgr passes the CLSID to the CSimpleDriver and directs it to only query the core SPI
interfaces exposed by the driver. The CSimpleDriver loads an instance of the driver then queries
all core interfaces exposed by the driver. A

Once the driver stub is initialized, it is ready to perform operations such as performing
extended Driver functions. FIG. 37 describes the steps that occur when the component 35 directs
the driver stub to perform an extended SPI operation. The foliowing steps occur when the
operation is requested.

First the component 35 must request the operation and pass all pertinent parameters to
the driver stub. Next, the driver stub directs the CDriverStubDisp to handle the operation. The
CDriverStubDisp then directs the CSPIMgr to perform the SPI extended function and passes the
appropriate XMC_EXT_SPI identifier as a parameter. The CSPIMgr calls the appropriate function
corresponding to the XMC_EXT_SPI identifier. The function simulates the extended Driver
function and calls the CSimpleDriver for core operations. When directed, the CSimpleDriver
performs SP!I core functions by directly calling the exposed interfaces implemented by the driver.

When the motion control component 35 is finished using the driver stub 36, it must
release it by calling the exposed Release method. Calling the Release method causes the driver
stub to free all the resources it uses. FIG. 38 displays this sequence of events. During the clean-
up process, the following steps occur.

First the component 35 must direct the driver stub to release all of its resources by calling
its Release method. When invoked, the driver component passes the call on to the
CDriverStubDisp object. The CDriverStubDisp object then directs the CSPIMgr to release any

WO 96/38769 PCT/US96/08149

-28-
resources that it was using. The CSPIMgr releases all resources including the CSimpleDriver
object used. When freed, the CSimpleDriver releases any interfaces used from the driver.
FIG. 39 is an interface map of the driver stub module 36. Attached hereto as Appendix F
is a document that describes the actual OLE Interfaces exposed, the definitions of the data
structures used when passing data around, and the definitions of each class used internally by the

driver.

W

10

20

25

30

35

WO 96/38769 PCT/US96/08149

-29-
VI. DRIVER ADMINISTRATOR MODULE

The driver administrator 32 is used from two different perspectives. When the driver
administrator Control Panel Applet 38 is used to configure the system, the applet directs the
driver administrator 32 to carry out the operations. The applet 38 simply provides the user-
interface, and the component 35 does the real work of managing drivers and streams used with
the system 22. Using the driver administrator component with the control panel applet is the first
perspective on using the component 35.

In the second perspective, the motion control component 35 uses the driver administrator
component to query for the current set of enabled the driver 30. It should be noted that, currently,
only single driver operation is allowed. Clearly, the system 22 may support multiple drivers that
are virtualized. For example, if two, four axis, drivers are installed, applications using the system
could act as though they were using an eight axis system.

This section describes the driver administrato} 32 in three main parts. First, all modules
interacting with the driver administrator component are described along with their interactions.
Next, the module interaction-map is expanded to display all interactions taking place between the
C++ objects used to implement the driver administrator 32 Component. This description is called
the object interaction-map. Then, the object interaction-map is tested by running it through
several scenarios, or scenario-maps. Each scenario-rhap dispiays the events and the order in
which they occur in a certain process taking place on the driver administrator component.

The module interaction-map shown in FIG. 40 displays all binary modules and their
interactions with the driver administrator 32 Component. Both the driver administrator CPL 38
and the motion control component 35 are the main modules that interact with the driver
administrator 32 Component.

The driver administrator CPL module 38 provides the user-interface that allows the user
to add, configure, and remove drivers and streams in the system 22. The driver administrator 32
handles all driver and stream management. Even though the control panel applet provides the
user-interface, this module 32 does the actual management work.

In addition, the driver administrator is used by the component 35 to access the current
driver(s) to use when carrying out motion control operations. For example, if the AT6400 driver is
selected as the current driver when the component 35 queries the driver administrator, the driver
administrator returns the CLSID of the AT6400 driver.

Taking the driver administrator 32, displayed in the module interaction-map, and
displaying all interactions occurring between the C++ objects used to implement the administrator
34, produces the object interaction-map therefor. The object interaction-map for the driver
administrator 32 is shown in FIG. 41.

Each object in the diagram is described as foliows.

10

20

30

35

WO 96/38769 PCT/US96/08149

-30-

The CDriverAdminDisp object is the dispatch object used to dispatch exposed interface
methods. During the dispatch process, all raw data is converted into the appropriate C++ form.
For example, collections of data passed between OLE components is usually packaged in a raw
block of memory. The CDriverAdminDisp object takes care of packing outgoing data and
unpacking incoming data. Data packing involves converting the data between a raw and native
C++ format.

The CDriverinfoMap object is used to build the information used by the driver
administrator CPL 38 when displaying information about each driver or stream.

The CModuleMgr object is responsible for managing all stream and driver modules in the
system. A list of all drivers registered are stored persistently in the registration database by the
CModuleMgr. Each time a driver or stream is accessed the CModuleMgr is used to get the
module.

The CSimpleDriver object is used to directly communicate with the driver component. All
OLE specific details are encapsutated within this objéct.

The CSimpleStream object is used to directly communicate with the stream component.
All OLE specific details are encapsulated within this object.

FIGS. 42-49 describe all main scenarios, or operations, that occur on the driver
administrator 32. Each scenario-map displays all objects involved, and the interactions that take
place between them in the sequence that they occur.'

Referring now to FIG. 42, before using the driver administrator component, it must be
initialized. FIG. 42 describes the process of initializing the driver administrator component from
either the driver administrator control panel applet or the motion control component. During
initialization, the following steps occur.

First, either the control panel applet or the motion control component must create an
instance of the driver administrator component by calling the standard OLE function
CoCreateinstance. Next, the exposed Initialize interface method must be called. When the
Initialize method is called, the driver administrator component directs the CDriverAdminDisp to
initialize the system. Next, the CDriverAdminDisp directs the CModuleMgr to initialize itself and
any modules that it is managing. The CModuleMgr, first, loads all information from the
registration database. Then for each driver registered, the CModuleMgr creates an instance of
the driver by calling the standard OLE function CoCreatelnstance. Next, the CModuleMgr calls
each drivers Initialize method, passing to the method the CLSID of the driver component to
attach. The CSimpleDriver attaches to the driver component by calling the standard OLE
function CoCreatelnstance.

The driver administrator 32 can register both drivers and streams. Registering drivers is
very direct, since the driver administrator manages the drivers registered in the system.
Registering streams, on the other hand, is more complex, since each stream must be registered

10

15

20

30

w
™!

WO 96/38769 PCT/US96/08149

-31-
with a driver and the driver manages the streams registered with it, not the driver administrator.
The following discussion describes the process of registering both drivers and streams.

Registering a driver entails verifying that the module is actually a driver, verifying that the
driver can be loaded, and storing the driver information in a persistent location. FIG. 43
describes this process. When registering a driver, the following steps occur.

First, the driver administrator CPL passes the name of the driver and directs the driver
administrator component to register it. Next, the driver administrator component passes the
driver name to the CDriverAdminDisp and directs it to register the module. The
CDriverAdminDisp directs the CModuleMgr to register the new driver. The CModuleMgr creates
a new CSimpleDriver and requests it to register the driver. First the CSimpleDriver verifies that
the driver is valid by calling its DLLGetModuleType exported function. If the function returns
XMC_DRIVER_MT the CSimpleDriver then calls the driver's exported function
DLLRegisterServer to register the module in the OLE system. Next the CLSID is queried from
the module by caliing its exported DLLGetCLSID function. The CLSID returned is then used to
load the driver by calling the standard OLE function CoCreatelnstance. If the CSimpleDriver is
successful, the CModuleMgr stores the driver CLSID in the registration database.

Registering a stream is similar to registering a driver, but a little more complex, since
each stream must be registered with a specific driver. FIG. 44 displays the process of registering
a stream. When registering a stream, the following sieps occur.

First, the driver administrator CPL passes the CLSID of the driver and the filename of the
stream to register with the driver, to the driver administrator component. The driver administrator
component directs the CDriverAdminDisp to register the stream. The CDriverAdminDisp object
directs the CModuleMgr to register the stream and passes the CLSID of the driver and the name
of the stream along to it. First, the CModuleMgr verifies that the CLSID of the driver one of the
registered drivers. If it is not, the driver is registered as discussed above.

Next, the CModuleMgr creates a new CSimpleStream object and directs it to verify and
load the stream component. The CSimpleStream first verifies that the module is actually an
stream component 28 by caliing its exported DLLGetModuleType function. [f the function returns
XMC_STREAM_MT, the CSimpleStream continues and registers the stream component by
calling its DLLRegisterServer exported function. Finally, the CSimpleStream object queries the
new module for its CLSID by calling the module's exported DLLGetCLSID function. The new
CLSID is used, by the CSimpleStream, to load the stream component using the standard OLE
function CoCreateinstance. If the CSimpleStream succeeds, the CLSID of the stream is passed
along to the CSimpleDriver who is directed to register the stream. The CSimpleDriver passes the
CLSID to the driver component and directs it to register the stream.

The following discussion describes setting information in either a driver or stream. When
the user edits information in the driver administrator control panei applet 38, the applet 38 directs

10

—
wh

20

25

30

WO 96/38769 PCT/US96/08149

-32-
the driver administrator 32 to edit the settings for the stream or driver being edited. The following
discussion describes how this configuration process works.

Editing the settings of a driver takes place when the user changes the driver settings
displayed in the driver administrator CPL. Changing these settings causes the process described
in FIG. 45 to occur within the driver administrator component. The foliowing steps occur when
setting the driver configuration.

When driver settings are changed in the CPL 38, the driver administrator CPL directs the
driver administrator component to make the appropriate changes to the driver corresponding to
the driver handle. A XMC_DRIVER_INFO structure is passed to the component 35, describing
the new values for the driver. The driver administrator component takes the
XMC_DRIVER_INFO structure and the handle to the driver and passes the information to the
CDriverAdminDisp object, directing it to change the settings in the driver. The CDriverAdminDisp
object directs the CModuleMgr to edit the driver corresponding to the driver handle. The
CModuleMgr locates the CSimpleDriver with the handle and directs it to change its settings to
those stored in the XMC_DRIVER_INFO structure. The CSimpleDriver passes the
XMC_DRIVER_INFO structure to the driver component and directs it to change its settings.

As shown in FIG. 46, when the user edits stream settings in the driver administrator CPL
38, the following steps occur.

After the user changes settings for the stream'in the CPL, the driver administrator CPL
directs the driver administrator component to change the stream's settings and passes a handle to
the driver containing the stream, a handle to the stream, and a XMC_STREAM_INFO structure
describing the new values. The driver administrator component directs the CDriverAdminDisp
object to change the streams settings. The CDriverAdminDisp object directs the CModuleMgr to
change the settings of the stream corresponding to the handle.

First, the CModuleMgr locates the driver corresponding to the driver handle. Next, it
requests the CSimpleDriver to change the settings for the stream corresponding to the stream
handle. The CSimpleDriver searches for the stream corresnonding to the stream handle and
directs it to change its settings to those stored in the XMC_STREAM_INFO structure. The
CSimpleStream directly communicates with the stream component and directs it to change its
settings to those in the XMC_STREAM_INFO structure.

There are two different types of information that may be queried from the driver
administrator 32: the enumeration of all drivers registered, and the driver information map. The
motion control component 35 uses the driver enumeration when selecting the set of drivers to use
and control during motion control operations. The driver information map, on the other hand, is
used by the driver administrator CPL 38 to update the user-interface display describing all drivers
and streams registered in the system. The following discussion describes the process of querying
for both the driver enumeration and the driver information map. Querying for the driver

enumeration occurs during the initialization of the motion control component 35. When

10

15

20

30

v
n

WO 96/38769 PCT/US96/08149

-33-
initializing, the component 35 must know what drivers to use when performing motion control
operations. The driver administrator 32 Component is used for that very purpose. Querying the
driver enumeration just returns a pointer to the IXMC_EnumDriver interface exposed by the driver
administrator 32 Component. FIG. 47 displays the events that occur when using the interface to
get each driver in the enumeration. Using the interface causes, the following steps occur.

First, the motion control component 35 queries the driver administrator 32 Component for
the next driver. Next, the driver administrator 32 Component directs the CDriverAdminDisp to get
the next driver supported. The CDriverAdminDisp directs the CModuleMgr to get the next driver.
The CModuIeMgrthen directs the CSimpleDriver to either return the CLSID or a pointer to the
IUnknown interface for the driver, depending on the parameters of the enumeration. If the
CSimpleDriver is requested to return a pointer to the IUnknown interface, the interface is queried
from the driver component.

Another set of information that may be queried from the driver administrator 32 consists
of the driver information map. This data is used by the driver administrator CPL 38 when
displaying information describing the drivers and streams registered in the system. As shown in
FIG. 48, when querying the system for the driver interface map, the following steps occur.

First, the driver administrator CPL 38 queries the driver administrator 32 Component for
the current driver information map. When queried, the driver administrator component directs the
CDriverAdminDisp to create and load a CDriverinfoMap class. The CDriverAdminDisp creates
the CDriverinfoMap. Next, the CDriverAdminDisp passes the CDriverinfoMap to the
CModuleMgr and directs it to load the information map. The CModuleMgr queries each driver
registered for its internal information. Each CSimpleDriver communicates directly with the driver
component and queries it for all pertinent driver information. Next, the CModuleMgr queries each
driver for a list of all streams registered with the driver. Using the stream enumeration, each
CSimpleDriver creates an array of CSimpleStream objects and returns the array to the
CModuleMgr. For each CSimpleStream object in each array, the CModuleMgr queries for all
pertinent stream information. Each CSimpleStream communicates directly with the stream
component and queries it for all information describing the stream.

After the driver administrator CPL 38 or the motion control component 35 are finished
using the driver administrator 32, they must release the component 35 to free any resources it
was using. FIG. 49 describes this process. When cleaning up after a call to the Release method,
the following steps occur.

First, either the driver administrator CPL 38 or the motion control component 35 must
direct the driver administrator 32 Component to release itself by calling its Release method.

Next, the driver administrator component directs the CDriverAdminDisp object to free all
resources used in the system. The CDriverAdminDisp then directs the CModuleMgr to free any
resources that it is using. First, the CModuleMgr traces through all CSimpleDriver objects,
querying each for their CLSID and enabled state. Next, each CSimpleDriver is freed. Each

WO 96/38769 PCT/US96/08149

-34-
CSimpleDriver object freed, frees ali arrays of CSimpleStream objects registered with it. When
freed, each CSimpleStream object releases all interfaces that it was using from the stream
component. In its final clean-up, each CSimpleDriver releases all interfaces that it was using
from the driver component. All CLSID and enabled state information is stored persistently in the
registration database.

FIG. 50 depicts an interface map for the driver administrator 32. Also, attached hereto as

Appendix G is a document that describes the actual OLE Interfaces exposed, the definitions of
the data structures used when passing data around, and the definitions of each class used

internally by the driver administrator 32 component.

10

20

25

30

35

WO 96/38769 PCT/US96/08149

-35-
VII. DRIVER ADMINISTRATOR CPL APPLET

This document describes the design of the driver administrator control panel applet 38
(CPL) that is used by the user to add, configure, and remove both drivers 30 and stream
components 28 later used by the component 35 when directed to carry out motion control
operations. With regard to design, there are three main types of "views" used to look at how the
control panet applet works.

First, a module interaction map shown in FIG. displays all main executable and user-
interactable items, or modules, that the CPL uses and interacts with. For example, when a dialog
is displayed by the CPL executable, both the dialog and the CPL modules are considered to
interact with one another. Technically, the dialog is not a module since it is a figment displayed
on the screen, but none the less, module interaction maps classify them as such since they are
key destination points for user-input.)

Second, an object interaction map shown in ﬁlG. 52 displays all main objects making up
the modules described in the module interaction map. Objects consist of the actual instances of
C++ classes defining each object. All interactions between the objects are drawn out in this
interaction map.

Finally, FIGS. 53-57 display a set of scenario maps are drawn out using the object
interaction map as a basis. Scenario interaction-mapé describe the interactions taking plaée
during a specific operation. Initialization, Adding a driver to the system, and Viewing the support
offered by a driver, are all examples of a scenario interaction-map.

The design goals for the driver administrator 32 are the following:

1. User-Interface separation - Implement all user-interface elements used to control

the driver administrator 32 Component.

2. Upgradable to OCX Client - Eventually each driver and stream may implement

all Ul elements with an OCX that then passes all input to the corresponding driver or

stream. The driver administrator CPL 38 must be designed in a way that is easy to
upgrade to become an OCX client.

3. Provide Stream Independence - drivers 30 should not be required to use streams

28 in order to operate. The design of the driver administrator 32 must make amends to

ensure that it is not dependent on stream component 28 operations to operate.

4, Use Windows 85 Ul - When ever possible, Windows 95 Ul elements should be

used. For example, TreeViews, ImageLists, Button Bars, Tab Dialogs and any other Ul

elements should be put to use to ensure a Windows 95 look-and-feel.

The following discussion describes the module interaction map for the control panel
applet 38. A module is defined as either an executable binary, an external data file, or a main

10

20

25

30

WO 96/38769 PCT/US96/08149

-36-
user-interface element used when interacting with the user. FIG. 51 is a drawing of all modules
that interact with each other when running the driver administrator control panel applet.

The driver administrator CPL 38 is a control panel applet. And, a control panel applet is a
special DLL that exports several functions allowing the Windows Control Panel to communicate
with the applet.

The Driver Administrator Dialog is the main dialog that appears when selecting the
control panel applet icon from the Windows Control Panel.

The Browse Dialog is used to query the user for a filename. For example when adding a
new stream or driver, the driver administrator uses this dialog to ask the user for the location of
the new driver or stream to add.

The View Support Dialog displays the support provided by the selected driver 30. Each
driver may support a different set of extended functionality. This dialog shows the user exactly
how much support is provided by each driver allowing them to determine which functions within
their application may not operate when using the driver.

Unlike the Module Interaction-Map described above, the Object Interaction-Map shown in
FIG. 52 describes how the actual instances of C++ objects interact with one another within each
moduie.

Other than showing that each dialog is managed by the object, whose name is displayed
in the dialog, the main difference from the module IA-map are both the CComCPL and
CDriverAdmin C++ objects. Both objects are described below.

As the description of each dialog class is fairly straight forward and very similar to the
dialog description above they will not be described in this section. This section will describe all
other C++ objects.

The CComCPL is a C++ object that is generated by the COMBuilder application from a
template. It is used to handle all Windows messages sent from the Control Panel Application.

The CDriverAdmin object is used to drive, control, and manage the use of the driver
administrator 32 Component. For example, all OLE 2.0 interface management and data
translation is handled by this object. Data translation involves translating data from a standard
C++ format to a raw format that is handled easily with the OLE 2.0 data transfer mechanisms.

Scenario Interaction-Maps are almost identical to object interaction-maps but they only
display the objects and interactions taking p'art in a specific operation. Also, each interaction is
numbered by the sequence in which they occur while the operation is running. The following
discussion describes several key operations that occur while running the driver administrator CPL
38 Applet.

Initialization occurs when the user first runs the CPL Applet. During this process all other
objects are initialized and several modules are loaded. There are two steps that take place during
the initialization process: First the application is initialized, and second the dialog is initialized

W

10

20

25

30

35

WO 96/38769 PCT/US96/08149

-37-
with values queried from the driver administrator 32 Component. The following sections describe
each.

Initializing the application, which is shown in FIG. 53, occurs when the application is first
run and the main dialog has not yet been displayed. When initializing the application, the
following steps occur.

Through a Windows message, Windows notifies the CComCPL object that the Control
Panel Applet has just been loaded. CComCPL then loads the CDriverAdminDialog and tells it to
do any dialog prepping before going modal. Next, CDriverAdminDialog loads any settings stored
in the Registraiion Database. For example, the current window position and active tab may be
stored in the database. CDriverAdminDialog then Loads the CDriverAdmin class and directs it to
initialize itself. During initialization, CDriverAdminDialog creates an instance of the driver
administrator 32 and queries all interfaces that will be used.

Once the application is initialized, the default settings to be displayed in the dialog must
be set. These values are set when the dialog is initia]ized, just before displaying it. FIG. 54
describes this process. During the process of initializing the dialog, the following steps occur.

During the dialog preparation that occurs before the DoModal call, CDriverAdminDialog
queries the CDriverAdmin object for the driver enumeration to be used when setting initial values
to be displayed in the dialog box. CDriverAdmin uses the driver administrator 32 Component to
query for the driver information map, which is then péssed back to the CDriverAdminDialog.
Once receiving the driver information map, the CDriverAdminDialog uses the information to
update all user-interface items related to either drivers or streams.

Adding a driver to the system 22 can be broken down into two steps. First, the module
name must be added to the system. Next, the driver administrator 32 main dialog must update
itself to reflect the new driver just added.

Adding a driver occurs when the user presses the "Add..." button on the driver
administrator 32's main dialog. FIG. 55 describes this process. When adding a new driver, the
following steps occur. '

When adding a driver, first the user must press the "Add..." button. After pressing the
button, CDriverAdminDialog opens up the common open file dialog. The user must enter in the
filename of the driver to add and close the dialog. CDriverAdminDialog then passes the filename
to the CDriverAdmin object and calls the RegisterDriver method passing in the name of the
module to register as a driver. CDriverAdmin then passes the driver filename to the driver
administrator 32 Component and directs it to register the driver in the system 22.

The prdcess of updating the main dialog is identical to the process of initializing the
dialog discussed ébove.

Similar to the process of adding a new driver, removing a driver involves both removing
the driver from the system and then updating the main dialog. Pressing the "Remove" button

W

10

20

WO 96/38769 PCT/US96/08149

-38-
removes a driver from the XMC software system. FIG. 56 describes this process. The following
steps occur when removing a driver.

To remove a driver, the user must first select the "Remove" button. After pressing the
button, the selected driver or parent driver to the selected stream will be removed. A
CDriverAdminDialog passes the XMC_HDRIVER of the driver to the CDriverAdmin and directs it
to remove the driver by calling its UnRegister method. CDriverAdmin passes the
XMC_HDRIVER to the driver administrator 32 Component and directs it to UnRegister the driver.

The process of updating the main dialog is identical to the process of initializing the
dialog discussed above.

Viewing Support involves viewing the level of support implemented by the selected
driver. FIG. 57 describes the process of providing this information to the user via the View
Support Dialog. The following steps occur when viewing the support provided by the driver.

First the user must select the "View Support” button on the driver administrator main
dialog. When selected, CDriverAdminDialog queries.CDriverAdmin for the driver support
information. CDriverAdmin passes the query on to the driver administrator 32 component who
actually fills out the information. Once the queried information is returned, the
CDriverAdminDialog passes it on to CViewSupportDialog. CViewSupportDialog initializes itself
using the driver support information.

Attached hereto as Appendix H is a documeht that describes the actual OLE Interfaces
exposed, the definitions of the data structures used when passing data around, and the definitions
of each class used internally by the driver administrator 32.

10

20

25

30

WO 96/38769 PCT/US96/08149

-39-
Viil. DRIVER ADMINISTRATOR CPL APPLET

This section contains a description of the driver administrator control panel applet 38.
When using the driver administrator 32 to configure the motion control system, there are two
main items that the user will work with: drivers and streams. Each driver 30 generates the
hardware specific, control codes that are then sent to the selected stream component 28.
Streams facilitate the data transport layer between the driver and the control-code destination.

Depending on the current hardware setup, different streams may be used. For example,
if the hardware is connected to the PC Bus, a PC Bus stream will be used to communicate to it.
On the other hand, if the hardware is connected through a serial cable to a serial I/O Port, the
serial stream will be used. Finally, all hardware configurations may use the file stream. When
using the file stream, all control-codes are sent to the specified file that can be downloaded to the
hardware at a later time.)

This section describes both drivers and strea}ns, and how each is configured. This
section initially describes the driver items and all property pages used to edit them. This section
also contains a description of the streams and their property pages. Finally, this section describes
the about box containing details on the Sbftware.

The main purpose of each driver is to generate the hardware-specific control-codes
directing the hardware to carry out specific motion control actions. For example, such actions
may include querying the hardware for the current position or directing the hardware to move to a
predetermined location in the system. The following discussion describes the property pages
used to configure each driver.

There are two types of properties affecting each driver. First, a set of defaults may be set
that are used by the motion control component 35 as recommended values. The scaling and
units used are several example default values. In addition to setting default values, if the driver
supports more advanced configuration, pressing the Advanced... button will display a dialog box
used to set the driver configuration. For example, if a driver does not support streams, the
advanced configuration dialog, provided by the driver, will allow the user to set the /O Port and
IRQ settings.

The properties affecting drivers 30 are as follows.

Scaling - Setting the scaling property affects the default scéling used on all axes
within the motion control system. The range for scaling values is (0.0, 1.0]. Default
setting may be overridden when programming XMC by using the IXMC_StaticState
interface.

Units - Setting the units property affects all coordinates used when programming

the system 22.

10

20

30

35

WO 96/38769 PCT/US96/08149

-40-

The unit descriptions are as follows:

MM_ENGLISH - Inches are used as the base unit for all coordinates

MM_METRIC - Millimeters are used as the base unit for all coordinates.

MM_NATIVE - The native coordinates defined by the hardware system are used.

Coordinates used to program XMC are mapped 1:1 to the hardware coordinates.

Advanced... - Pressing this button will display a dialog used to edit any advanced

properties for the driver that may be edited by the user.

In addition to allowing the user to set properties, each driver property page displays the full
names of both the hardware supported and the hardware vendor who makes the hardware.

The buttons along the bottom of the windows work with the selected driver or stream.
The following discussion describes each button and what it does.

Pressing the Make Default button selects the current driver to be the default. If a stream
is selected, its parent driver becomes the default driver. The default driver is later used by the
motion control component 35)

Selecting the Add... button, displays the Add Module dialog. This dialog is used to add
new drivers and streams to the system 22. Once selected, the new driver or stream will be
displayed in the Driver tree view. When adding a stream, the stream is added under the currently
selected driver. To enable the stream, you must select the enable check box located in the
streams property page. |

Selecting the Remove button, removes the current driver or stream selected. If a driver
is removed all of its streams are also removed.

Selecting the View Support... button displays a dialog used to view the ievel of XMC
support impiemented by the driver. For example, all APl interfaces and subsequent methods are
displayed. If a lack of implementation within the driver prohibits an AP interface from operating,
the driver stub 36 is used. If the lack of implementation within the driver 30 cannot be replaced
by operations within the driver stub 386, the interface or method is disabled.

The following are descriptions of each graphic found in the XMC Support View Dialog.

D - This graphic means that the interface or method is implemented by the driver 30.

S - This graphic means that the interface or method is implemented within the driver stub

36.

X - This graphic means that the interface or method is disabled because of a lack of

implementation within the driver 30.

Like the properties page, a debug page is also provided to set all debugging settings for
the driver. Each driver may specify that all API calls used to control the driver are logged. The
logging settings only affect the current driver selected. The Output field allows you to select the
output stream where all debug information is sent. When Streams is enabled, debug information

is sent to the specified text file. When Debug Monitor is enabled, debug information is sent to the

10

20

25

30

35

WO 96/38769 PCT/US96/08149

-41] -
debug monitor if it is running. Using Enable to enable a stream turns it‘ on causing all debug
information generated to be sent to the stream. More than one stream may be enabled at one
time.

Stream Settings are available for each debug stream supported. Text File allows the
name of the text file may be set. The Debug Monitor can only be enabled and disabled.

A stream is the transport layer used by the driver to pass data to the destination location.
The destination location may be the actual motion control hardware or even a text file. Usually
the control language used by a hardware vendor is supported by several different flavors of their
motion control hardware. For example, some vendors have both PC Bus based and Serial I/O
based motion control hardware that understand the same control language. In such a case, the
same driver would be used for each hardware setup but it would communicate with different
streams depending on the specific hardware setup. Graphically, each stream is listed below each
driver that uses the stream. .

This section describes the streams supponed. by the system 22 and how they are
configured.

The PC Bus stream sends all data directly to a PC Bus based motion control hardware
system by writing to the specified I/O Ports and IRQ's defined by the hardware. This section
describes both the properties and debug settings available for the PC Bus Stream.

Stream properties only affect the currently selected stream. The user is required to select
certain settings, such as the I/O Port and IRQ. Without setting these values, the PC Bus Stream
will not be able to communicate with the hardware. The properties affecting PC Bus Streams are
described below.

The I/O Port is the base port used to communicate with the motion control hardware that
the stream is to send data to.

The IRQ is the interrupt request level used by the hardware.

Pressing the Advanced... button will display a dialog allowing the user to edit more
advanced stream options. For example, if the stream supports a Port I/0O map that the user can
edit, the port map would be displayed in this dialog. This button is only enabled for streams
supporting advanced features that the user may edit.

When debugging an application program it may be useful to see what codes are actually
sent to the hardware. The Debug Settings page for streams allows the user to enable and disable
both the Cmd and Bit Streams. The Cmd Stream is used to log all command-codes sent to the
hardware. If this level of detail does not provide you with enough information, the Bit Stream may
be used. When enabled, the Bit Stream logs all values sent through each hardware port. All
values read from and written to each port used by the hardware are logged. Note, when enabled,
both streams may significantly slow down the application programming the motion control system.

Serial RS-232 Streams are used to send data from the driver to motion control hardware
connected to the computer through the serial /O port. Both property and debug settings only

W

10

20

25

30

35

WO 96/38769 PCT/US96/08149

-42-
affect the selected Serial RS-232 Stream. The foliowing discussion describes the available
settings in each in detail.

All Serial RS-232 property settings must be set by the user for they let the stream know
what I/O port and communication protocol to use when communicating with the hardware. The
properties affecting Serial RS-232 Streams are as described below.

The Port is the serial port that the hardware is connected to. COM1 - COM4 are valid
ports that can be used.

The Baud Rate is the speed of data transmission supported by the hardware.

When Hardware is selected a more efficient, but less compatible, communication
protocol is used to communicate to the hardware. If errors occur when this protocol is selected,
use the XON/XOFF communication protocol.

When the XON/XOFF communication p‘rotocol is selected a simpie and more compatible
communication protocol is used. .

Debug settings for the Serial RS-232 Stream~are very similar to those supported by the
PC Bus Stream. Serial RS-232 Streams only support command logging through the Cmd Stream
and do not support bit logging.

The Text File Stream is used to build control-code programs for later use. Using this
stream facilitates running the XMC software in code-generation-mode. No motion control actions
take place when running in this mode. Instead, control-code programs may be built and stored to
file. Later, after programs are built and saved, they may be downloaded to the motion contro!
hardware and run. The following discussion describes the property and debug settings for the
Text File Stream.

The main property set, when configuring a Text File Stream, is the actual name and
location of the file to use. Once set, the stream is ready for use.

The following properties may be configured for the Text File Stream:

Filename is the filename and location of the file used to store all control-codes generated
by the driver 30 selected. Pressing the Browse... button displays a dialog allowing you to
graphically select the location and filename to use.

No debug settings are available for the Text File Stream.
IX. LANGUAGE DRIVER

FIG. 58 contains a module interaction map depicting a language driver 44 and iliustrating
how that language driver 44 interacts with the streams 28, the driver administrator 32, the motion

control component 35, and the registry 42.

As with the software drivers 30 described above, one language driver 44 is used for each
of the motion control devices 20 of the group of supported motion control devices. The language

drivers 44 perform the same basic function as the software drivers 30 described above with

v

10

15

20

25

30

WO 96/38769 PCT/US96/08149

-43-
reference to FIGS. 1 and 12-21. To the software system 22, the tanguage drivers 44 are
accessed and respond in the same manner as the software drivers 30; the differences between

the language drivers 44 and the software drivers 30 are entirely internal.

The primary difference between these drivers 30 and 44 is that the language drivers 44
use a database the key fields of which are an index field, a command format field, and a

response format field. Each record or row in the database corresponds to a given Driver function.

The purpose of the command and response format templates is to formalize and simplify
the process of constructing command data strings and format data strings which contain
commands and parameters to be transmitted to the motion control devices 20. The format
templates define how, for a given SPI command, the software system 22 communicates with a
vendor specific hardware command language associated with a given motion control device 20
associated with a given language driver 44. Accordingly, one database containing command
format templates and response format templates will be created for each such language.

The command format field contains a command format template, and the response
format field contains a response format template. Each of these templates comprises a

sequence of data type identifiers, macro identifiers, syntax characters, and/or ASCII characters.

The index field contains a value unique to each Driver function that facilitates the process
of looking up the command and response format templates associated with a given Driver
function.

The software system designer defines the data type identifiers, macro identifiers, and
syntax characters discussed above. In general, the data type identifiers and syntax characters
are common to both the command format template and the response format template.

The macro identifiers will normally correspond to macros that are associated with either
the command format templates or the response format templates. The ASCII characters are
defined by the Driver function and the particular motion control device 20 with which a given

language driver 44 is associated.

An Excel spreadsheet may be used as an organizational tool that facilitates creation of
the database used by the language driver 44. An example of a Excel spreadsheet that may be
used for this purpose is shown in FIG. 67. The spreadsheet shown in FIG. 67 is saved as a tab-
delimited file and then copied into the SP| database shown in FIG. 59.

The spreadsheet shown in FIG. 67 is simply an organizational tool and will not be
described herein in detail. But it should be noted that the exemplary spreadsheet shown in FIG.
67 sets forth a list of typical command and response data type identifiers. along with descriptions
thereof, and lists of command and response macros. These will be suppiemented by an

10

15

20

25

30

WO 96/38769 PCT/US96/08149

-44-
additional STRUCT data type that allows the programmer to define a data type that combines the
other primitive data types as necessary for a given template.

The language drivers thus operate generally as follows. As described above, the motion
component 35 will call the driver function implemented by the language driver 44 and, in many
cases, will pass parameters necessary to carry out that function. The language driver 44 will use
the index for that driver function to look up the command format template and the response
format template associated with the appropriate driver function.

Using the command format tempiate, the language driver 44 will construct a command
data string containing ASCII characters. The command data string carries the commands and
parameters necessary to implement the given driver function in a desired manner on the motion
control device 20 associated with the language driver 44.

Similarly, the language driver 44 uses the response format template to parse a response
data string sent by the particular motion control devic;e 20 in response to the command data
string. The response format template thus allows the language driver 44 to pass from the motion
contro! device 20 to the motion control component 35 any commands and/or parameters
necessary to enable the controliing application 26 to function as intended.

The following sets forth examples of the process of generating a command data string
and parsing a response data string given a set of command and response format templates

associated with a single SPI.
EXAMPLE 1

The first example illustrates how the language driver 44 might deal with the Driver
function IXMC_DrvExt_Test::Move.

Cmd Format: D%d,+:@[snd)GO%b+:@][snd]
Rsp Format: @lcrif>@[rev]@]crif]>@[rcv]
Driver function Call: pXMCDrvExtTest->Move(20.0, 30.0)

This function call directs the motion control device to move 20 units in the x direction and

30 units in the y direction.
The driver communicates with the stream as follows:

Step 1. Perform the operation in the command format template up to the first @ symbol.
This builds a raw command string of “D20.0,30.0:"

Step 2. After the first @ symbol is the send command, which sends the string that was
built in step 1. The language driver has now reached the G in the command format template.

W

10

15

20

25

30

WO 96/38769 PCT/US96/08149

-45-
Step 3. After the send command, the language driver reads a response from the stream
to confirm that the command string was received and processed correctly. The response string
received from the stream is as foliows: “\r\n>". '

Step 4. The language driver next uses the response format template to parse the raw
response string to verify operation and extract data. The language driver then picks up at the G
in the command format template and constructs the next raw command string of “GO11", leaving
off at the last macro.

Step 5., The language driver, picking up at last macro in the command format template,
then sends the raw command string created in step 4 to the stream, completing the command
format template.

Step 6. Again, after the send command the language driver receives a response data
string from the stream as follows: “\r\n>".

Step 7. The language driver next parses the response data string received in step 6.
EXAMPLE 2

The second example illustrates how the language driver 44 might deal with the Driver
function IXMC_DrvExt_Test::SetVelocity.

Cmd Format: V%If,+.@[snd]
Rsp Format: @lcrlf]>@ifrev]
Driver function Call: pXMCDrvExtTest->SetVelocity(NOP, 22.0)
Explanation Set the velocity of the y axis to 22.0.
Raw Command String: "V,22.0:"
Raw Response String: "\n\n>" (expected)
EXAMPLE 3

The third example illustrates how the language driver 44 might deal with the Driver

function

IXMC_DrvExt_Test::GetVelocity.

Cmd Format: GV%b+:@[snd]

Rsp Format: %d,+@[crif]l>@frcv)

Driver function Call: pXMCDrvExtTest->GetVelocity(NOP, &dfY_Vel)
Explanation Get the velocity set for the y axis.

Raw Command String: "GV01:"

w

10

20

30

WO 96/38769 PCT/US96/08149

-46-
Raw Response String: ",44.0\r\n>" (expected)

dfY_Vel = 44.0
EXAMPLE 4

The fourth example illustrates how the language driver 44 might deal with the Driver function
IXMC_DrvExt_Test::Reset.

Cmd Format: IRESET:@{[snd]MAO0:MCO:LHO:@[snd]

Rsp Format: . @[crf]*'VENDOR NAME - MODEL@|[rcv]@[crif}>@]rcv)
Driver function Call: pXMCDrvExtTest->Reset()

Explanation Reset the hardware.

Raw Command String1:"IRESET:"

Raw Response String1: "\\n*VENDOR NAME - MO!iEL" (expected)

Raw Command String2: "MAQ:MCO;LHO:"

Raw Response String2: "\r\n>" (expected)

While the language driver 44 is of particular importance in the context of the software
system 22 described above, this technology may have broader application to any hardware in
which ASCII strings are employed to transmit commands to and receive responses from

hardware.

The language driver 44 will now be described in more detail. The language driver 44 is
used by both the driver administration 32 and the motion control component 35. Its main purpose
is to implement functionality that generates motion control commands for the specific hardware
supported.

For example, the AT6400 driver used to control the Compumotor AT6400 motion contro!
hardware, generates AT6400 command codes. During the initialization phase of the system 22,
the driver administrator 32 communicates with each language driver 44, allowing the user to add,
remove, or change the configuration of the driver 44. When an application using the system 22 is
run, the component 35 communicates with the language driver 35 directing it to carry out the
appropriate motion control operations.

Unlike the driver 30 described above, which communicates with motion control devices
20 by directly sending binary codes, the language driver 44 sends ASCI| text to the stream 28,

which then sends the information on to the motion control device 20.

This section makes reference to a number of drawings to describe the features
implemented in the language driver 44: (a) the Module Interaction-Map in FIG. 58 that displays all
binary modules that interact with the driver and how they interact with one another; (b) an Object

N

10

20

25

WO 96/38769 PCT/US96/08149

-47-
Interaction-Map (FIG. 59), which corresponds to the module interaction map expanded to dispiay
the internal C++ objects making up the language driver 44, and how these objects interact with
one another; (c)a number of Scenario Maps (FIGS. 60-65) that display the interactions taking
place between the C++ objects involved during a certain process; (d) an interface map that
describes the interfaces exposed by the language driver component 44, all data structures used,
and the definitions of each C++ class used: and (b) a table illustrating how a typical database
employed by the language driver 44 is constructed (FIG. 87).

The module interaction-map in FIG. 58 displays all binary modules and their interactions
with the Languége Driver 44. There are two modules that interact directly with the driver 44: the
Motion Control Component 35, and the Driver Administrator 32. The driver administrator 32
queries and changes the drivers settings and the component 35 directs the driver 44 to carry out

motion control operations, such as moving to a certain location in the system.

Mores specifically, the module interaction-mép shown in FIG. 58 contains the following
modules:

The Driver Administrator module 32 is used to install, uninstall, register,
and setup each driver and stream module.

The Motion Component is the motion control component 35 used by applications
26. The component 35 communicates with the current driver 44 passed to it by the driver
administrator 32 to carry out motion control operations requested by the application 26.

The Language Driver 44 generates the ASCII codes making up the hardware
command language. A given language driver 44 only communicates with a stream 28 that has
been specifically connected to that driver 44. Once connected, the stream 28 is used to
communicate with the destination object, such as the PC Bus, serial /O connection, text file, or
debug monitor.

The Streams 28 are the actual objects that operate as the data transport layer for
each driver 44. Each stream 28 has a different target that defines the type of the stream.

The Registry 42 is the standard Windows registration database.
The object interaction-map in FIG. 59 breaks the module interaction-map shown in FIG.
58 down into more detail by including the interactions taking place between all C++ objects used
to implement the driver 44.

Each object in the diagram is described as follows.

CDriverObject This is the main C++ object that implements all OLE specific
functionality including the function shells for all OLE interfaces exposed by the object.

10

15

20

25

30

WO 96/38769 PCT/US96/08149

-48-
CDrvCoreDisp This is the C++ object used to dispatch all core SPI OLE
interface functions to their respective internal implementations. In addition to the methods
inherited from the CLangDrvCoreDisp object, this object dispatches driver specific SPI, such as
the core XMCSP! OLE interface methods.

CLangDrvCoreDisp All language driver core functionality is dispatched
through this object to its internal implementation. For exampie, the generic language driver
implementation for initialization is dispatched through this object to its implementation residing in
the LANG_DRYV basecode library.

CDrvExtDisp This is the C++ object used to dispatch all extended SPI OLE
interface functions to their respective internal implementations. In addition to the methods
inherited from the CLangDrvEXxtDisp object, this object dispatches driver specific SPI, such as the
extended XMCSPI OLE interface methods.

CLangDrvExtDisp All language driver extended functionality is dispatched
through this object to its internal impiementation. For example, all stream handling is dispatched
through this object to its implementation residing in the LANG_DRV basecode library.

CCommandMgrThis object is used to build commands sent to the stream, and
extracting responses received from the stream. The CCommandMgr is the controliing object that
manages the CCommand, CResponse, and CCommandDatabase objects.

CCommand The CCommand object builds command strings that are then
sent to the CSimpleStream. Each command built is a complete motion control command string.

CResponse This object converts raw response strings, returned by the
CSimpleStream, and converts them into C++ data types. For example, a response string

containing position data may be converted into a set of double values.

CCommandDatabase This object stores tile complete database of commands
making up the motion control command language. The database may be represented as an
actual external database (such as a SQL database), a text file, or stored inside the driver as a
custom resource. Currently, the language driver only supports databases stored as a custom

resource within the driver module.

CSPlinfo This object makes up one database entry stored within the

CCommandDatabase object.

CStreamMgr This object is responsible for managing the set of streams
registered with the driver. Streams, may be added, removed, and enabled. Only enabled
streams actually send data to their targets. For example, only an enabled PCBus stream will

send data to the motion control card plugged into the PCBus.

th

10

20

25

(9]
h

WO 96/38769 PCT/US96/08149

-49-
CSimpleStream This object is used to initialize, create, and communicate directly
with the underlying stream component.

CDriverinfoMgr This object is responsible for creating the CDriverlnfo object.

CDriverinfo This object contains the complete set of state data making up the
Language driver 44. All driver settings and a list of all XMC Streams used are stored within this
object. Basic queries are routed directly to this object. More compiex operations are handied by
one of the various manager objects, who connect to this object, perform the operation, and then

disconnect from it.

CRegistryMgr This object is used to save and load the information, stored
within the CDriverinfo object, to and from the registration database. In specific, contains the code
called when the ICOM_PersistRegDB interface is invoked.

CRegistry This object performs.ali registration database operations such as
creating keys, saving values, and querying values.

All main scenarios, or operations, that occur on the Language Driver 44 will now be
described with reference to FIGS. 60-66. Each scenario-map contained in these figures displays
all objects involved and the interactions that take place between them in the sequence that they
occur. '

There are two types of operations that occur on the Language driver 44. First, the Driver
administrator 32 may initiate operations, such as adding streams or configuring the driver. And
second, the Motion control component 35 may initiate operations on the driver when an
application is actually running.

Referring now to FIGS. 60-64, all operations made on the driver 44 by the driver
administrator 32 will be described. Each figure is discussed in the order that it may occur when
using the driver 44.

Before a driver may be used by the XMC Motion Component, it must be registered in the
OLE system. As shown in FIG. 60, in order to register a driver the driver administrator, first
verifies that the module being registered is actually an appropriate language driver, then it calis
the DLLRegisterServer exported function to register the driver. Each module of the system 22
exports a function called DLLGetModuleType. This function is used to verify that the module is

an appropriate driver component.

Next, the driver administrator can load the component using the OLE CoCreatelnstance
function. During the initialization process, the driver loads all registration data and initializes the
CDriverinfo and all C++ manager objects.

The following describes in detait each of the steps set forth in FIG. 60.

1. During initialization, the driver administrator must load the DLL, containing the

stream component, verify that the module is an XMC Driver. To do so, the driver administrator

20

25

30

WO 96/38769 PCT/US96/08149

-50-
calls the DLLGetModuleType function, exported by the driver. If the function returns a value that
contains the value XMC_DRIVER_MT in the high byte, then the driver administrator proceeds
and registers the driver by calling its exported function, DLLRegisterServer. When called, the
implementation of the DLLRegisterServer writes all OLE 2.0 registration information, needed to
register the OLE component, to the Windows registration database.

2. Next, the driver administrator must query the driver module for its CLSID.
Calling the driver's exported function, DLLGetCLSID, returns the CLSID. Once it has the CLSID,
the driver administrator may create an instance of the driver by calling the standard OLE function

CoCreatelnstance.

3. CoCreatelnstance automatically initializes the component by calling the

ICOM_Base::initialize method implemented by the CDriverObject.

4. The implementation of ICOM_Base::]nitialize directs both the CDrvCoreDisp to

initialize itself.

5. Within its initialization, the CDrvCoreDisp object initializes each of its manager
objects, starting with the CcommandMgr.

6. During its initialization, the CCommandMgr directs the CCommandDatabase to
load itself.
7. To load the database, the CCommandDatabase object reads in the database and

builds the CSPlinfo list of database elements.

8. After initializing the CCommandMgr, the CDrvCoreDisp object directs the
CDriverinfoMgr object to create the CDriverlnfo object, that will later store the internal state of the

Language driver 44 component.

9. The CDriverinfoMgr object creates the CDriverinfo object and passes it back to
the dispatch object. The pointer to this object is later stored in the components state handie,
when the CDriverObject calls ICOM_Base2::SetStateHandle.

10. Next, the CDrvCoreDisp object initializes the CStreamMgr, that is used to

perform all stream operations.

1. Next, the CDrvCoreDisp object initializes the CRegistryMgr, that is used to

perform all registration database operations.
12. Finally, the CDriverObject initializes the CDrvExtDisp object.

It should be noted that all initialization is initiated through the COM Auto-Init mechanism.
Auto-init occurs when creating an object. When calling either CoCreatelnstance, or calling the

IClassFactory::Createlnstance method, the internal COM implementation calls the

10

20

25

30

WO 96/38769 PCT/US96/08149

-51-
ICOM_Base::Initialize method. This method triggers the complete initialization process described
in this section.
After initializing the driver, the driver administrator may perform operations on it. For
example, the driver administrator may request the driver to add or remove a stream. Figure 61
displays the sequence of events occurring when the driver is requested to add a new stream.

When adding a stream, the following steps occur:

1. The driver administrator directs the driver to add a new stream and passes the
filename and CLSID of the stream, to be added, to the driver.

2. The driver then passes the filename and CLSID to the CDriverObject object and
directs it to add the stream by caliing its CLNGStreamMgmt::AddStream embedded C++ class
method.

3. The embedded C++ object, that implements the OLE interface, directs the

CDrvExtDisp object to add the stream, passing it a handle of the component state data.

4. The CDrvExiDisp object first typecasts the component state data into a pointer to
the CDriverinfo object.

5. Next, the CStreamMgr, is connected to the CDriverinfo object pointer, and
directed to add a new stream.

6. in order to add the new stream, the CStreamMgr, uses a CSimpleStream to load
and create the stream component.

7. The CSimpleStream object first sets function pointers to the DIIGetCLSID,
DliGetModuleType and DIIRegisterServer functions exported by the component. Before loading
the module, the CSimpleStream, first makes sure that the module is actually an XMC Stream by
comparing its module type with the XMC_STREAM_MT module type. If it is, the component is
registered in the registration database as a n OLE component.

8. Using the DIiGetCLSID queried in the previous step, the CSimpleStream gets the
components CLSID and calls CoCreatelnstance to load an instance of the OLE object.

9. After the CSimpleStream completes, the CStreamMgr adds the stream to the
CDriverinfo's stream array.

Another operation requested from the driver, after initialization, is that of querying it for its
current settings. Before displaying information about the driver, like the name of the hardware it
supports, the driver administrator must query the driver for the information. FIG. 62 dispiays an
exemplary process of querying the driver for its driver settings.

When querying the driver for information, the following steps are performed.

10

15

20

25

WO 96/38769 PCT/US96/08149

-52-
1. The driver administrator, calls the interface method used to query the driver's
information and passes the call a pointer to the XMC_DRIVER_INFO structure.

2. The call is handled by the implementation of the OLE interface method,
implemented by on of the CDriverObject's embedded C++ classes.

3. The embedded C++ object, used to handle the interface, directs either the
CDrvCoreDisp or CDrvExtDisp object to carry out the operation, and passes the object th handle
to the component state data.

4. The dispatch object type casts the state handle to a CDriverlnfo object pointer.
Once converted, the CDriverinfo object is queried for the appropriate data.

Upon request, the driver may either save or ioad its entire configuration to or from the
registration database. This operation is used by the XMC Driver Administration component who
stores all XMC configuration data in the registration database. FIG. 63 displays the sequence of
events that take place when the XMC Driver Administration component directs the driver to load
its information from the registry.

During the registration process, the following steps occur.

1. First, using the ICOM_PersistRegDB OLE interface, exposed by the driver, the
driver administrator directs the component to load its configuration data.

2. The CDriverObject's embedded object, used to handle all ICOM_PersistRegDB
calls, is invoked and performs the operation.

3. Once invoked, the embedded object directs the CDrvCoreDisp object to perform
the load, and passes it a handle to the components state data.

4. The CDrvCoreDisp object, first typecasts the state handle to a CDriverinfo object

pointer.

5. Next, the CRegistryMgr is connected to the CDriverinfo pointer, and directed to
load its contents to or from the registration database.

6. The CRegistryMgr ioads all general driver information and fills out the drivers
XMC_DRIVER_INFO data structure, stored in the CDriverinfo object.

7. If the driver has any streams information stored, the CRegistryMgr loads the
stream information and fills out an XMC_STREAM_INFO structure. The structure is then used to

create a new CSimpleStream object.

8. When creating the stream, the CSimpleStream object first queries and calls the
DliGetModuleType exported function and verifies that the module is in fact a stream component.
If the moduie is, the CSimpleStream then queries and calls the DLLRegisterServer function

exported by the component to register the component.

W

10

20

25

30

WO 96/38769 PCT/US96/08149

-53-
9. After registering the component, the CSimpleStream object queries and calls the
DliGetCLSID exported function to get the components CLSID. Using the CLSID,
CoCreatelnstance is called to create an instance of the OLE object.

10. Once the CSimpleStream completes, the CRegistryMgr connects a temporary
instance of the CStreamMgr to the CDriverinfo object pointer, and directs it to add the new
stream.

11. The CStreamMgr directly manipulates the CDriverinfo's stream array to add the
new stream. When added, a new instance of the CSimpleStream object is created and attached
to the CSimpleStream passed to the CStreamMgr.

12. When attaching itself to the stream, the new CSimpleStream queries the
IXMC_Streaminit interface, passed to it, for all interfaces used it bump up the reference counts
for the component.

After the driver administrator is done using the driver, it must release the driver by calling
its exposed Release method. Calling this method, directs the driver to release all resources used.
FIG. 64 displays the process of releasing the driver component.

During the clean-up process, the foliowing steps occur.

1. First, either the XMC Driver Administrator, or the XMC Motion Component call
the final IUnknown::Release.

2. When invoked, the IUnknown::Release method implemented by the
CDriverObject is called. After calling this method causes the internal OLE reference count to go

to zero, driver calls its implementation of ICOM_Base::Uninitialize to clean up all resources used.

3. First, ICOM_Base::Uninitialize directs the CDrvExtDisp to clean up any resources
that it was using.

4. Next, ICOM_Base::Uninitialize directs the CDrvCoreDisp object to clean up any
resources that it was using.

5. Since the CDrvCoreDisp object contains instances of all manager objects, it
begins cleaning them up by first directing the CCommandMgr to destroy any resources that it was
using. Internally, the CcommandMgr destroys the CCommandDatabase and all of its contents.

6. Next, the CDrvCoreDisp object implicitly destroys all other manager objects by
calling their destructors.

7. And as a final step, the ICOM_Base::Uninitialize method deletes the state handle
containing a pointer to the CDriverinfo object. When destroyed, the CDriverinfo object deletes
each CSimpleStream object, which in turn release their instance of the XMC Stream component.

20

25

30

WO 96/38769 PCT/US96/08149

-54-
Upon releasing the final instance of the XMC Stream component, the component dli is freed from
memory.

After a driver is successfully installed into the XMC system and configured using the
driver administrator, it is ready for use by the XMC Motion Control Component. The component
uses the driver when performing motion control operations requested from the application using
the component. FIG. 85 describes the component directed operations that can take place on the
driver.

Before operating, the XMC Motion Component must query the Driver administrator 32
component for its driver enumeration. The enumeration returned is used to access all enabled
drivers that are directed to perform XMC SP| operations by the XMC Motion Component.

Once the driver enumeration is acquired, the Motion control component 35 can direct the
enabled driver, or drivers, to carry out certain command operations. Command operations are
standard motion control operations such as moving td a specific location in the system, or
querying the system for the current position. FIG 65 describes the process of commanding the
driver to carry out a certain operation.

When commanding the driver to perform a certain operation, the following steps occur

1. First, the motion component directs the driver to perform the operation, such as

moving to a position or querying the system for the current position.

2. The XMCSPI invocation is handied by the CDriverObject who implements all
OLE interfaces exposed by the component.

3. The CDriverObject directs either the CDrvCoreDisp, or CDrvExtDisp object to
perform the operation, depending on whether the operation is a core or extended XMCSP!. The
component state handle is passed to the dispatch object when called.

4. The dispatch object then typecasts the state handle into a CDriverinfo object

pointer.

5. Next, the dispatch object connects the CCommandMgr to the CDriverinfo object
pointer and directs it to carry out the operation corresponding to the database index sent. The
database index corresponds to the XMCSP| called and is used to locate the language database
entry for that SPI call.

6. The CCommandMgr searches the CCommandDatabase for the index and builds
a CCommand object corresponding to the XMCSPI operation.

- 7. Next, the CCommandMgr directly accesses the CDriverinfo and passes the
command string, built by the CCommand object, to all enabled streams.

10

15

20

25

30

WO 96/38769 PCT/US96/08149

-55-
8. Each enabled stream sends the ASCII text to its target. For example, the PCBus
steam sends its data to the motion control card located on the PCBus. The text file stream, on
the other hand, sends its data to its associated text file.

9. If directed, the CCommandMgr then queries the first readable stream for the
results of the commands sent to it'.

10. The CSimpleStream reads the raw response from the target and returns it to the
CCommandMgr.
11. © Once receiving the raw response, the CCommandMgr uses the CResponse

object to parse the raw response based on the response format corresponding to the XMCSPI
database entry. All response parameters are returned back up the calling chain, and eventually
end up in the hands of the original caller, the XMC Motion Component.

The clean-up initiated by the XMC Motion Component by releasing the XMC Driver
component is the same as that which occurs when the Driver administrator 32 object releases the
component.

The following discussion describes the actual OLE Interfaces exposed, the definitions of
the data structures used when passing data around, and the definitions of each class used
internally by the driver.

The following diagram describes all interfaces exposed by the driver specific to driver-
component interpretability. FIG. 66 graphically displays the interfaces exposed by the
component.

Other than the two standard interfaces exposed, such as 1Unknown and IClassFactory,
there are three categories of interfaces exposed by the component. The three categories are as

follows.

COM: Allinterface names with the COM_ prefix, impiement general COM
functionality. For example, the ICOM_Base, ICOM_Base2, ICOM_Persist2, and
ICOM_PersistRegDB interfaces all fall into this category.

LNG: All interface names with the LNG_ prefix, implement general language
driver functionality. For example, the ILNG_DrvCore_lnit, and the ILNG_DrvExt_StreamMgmt
interfaces fall into this category.

XMC: All interfaces name with the XMC_ prefix, implement XMCSP| (driver)

functionality.

10

20

25

30

WO 96/38769 PCT/US96/08149

-56-

The following sections describe the interfaces falling into both the COM and LNG
categories. All other interfaces are XMCSP! specific and are used for the sole purpose of
performing motion control operations. '

The following exposed methods in the ICOM_Base interface are used when intializing
and uninitializing the component. Each of these methods call the hidden initialize and uninitialize
interface methods implemented by all of the component's interfaces.

DECLARE_INTERFACE_(ICOM_Base, lUnknown)

{
STDMETHOD (Initialize)(THIS_ LPVOID plnitinfo) PURE;
STDMETHOD (Uninitialize)(THIS) PURE;

The ICOM_Base2 interface inherits from the ICOM_Base interface and adds several
methods used to manage the internal component state handie. In addition, a method aliows the
user to translate any HRESULT returned by the component into a human readable text string
The following is a description of the ICOM_Base?2 interface.

DECLARE_INTERFACE_(ICOM_Base2, ICOM_Base)

{
STDMETHOD (SetStateData)(THIS_ COM_STATEHANDLE hState) PURE;
STDMETHOD (GetStateData)(THIS_ LPCOM_STATEHANDLE phState) PURE:;
STDMETHOD (GetErrorString)(THIS_ HRESULT hr, LPSTR pszErr, DIVORD dwMax) PURE.

The ICOM_Persist2 interface inherits from the IPersist standard OLE interface and adds
several methods used to query the CLSID and module type. The following is a description of the
ICOM_Persist2 interface.

DECLARE_INTERFACE_(ICOM_Persist2, IPersist)

{
STDMETHOD (GetID)(THIS_ LPDWORD pdwlID) PURE;
STDMETHOD (GetModuleType)(THIS_ LPDWORD pdwMT) PURE;

The ICOM_PersistRegDB interface implements similar functionality to that provided by
the IPersistFile standard OLE interface. Instead of saving and loading data to and from a file, the
ICOM_PersistRegDB operates on the registration database. The following is a description of the
ICOM_PersistRegDB interface.

DECLARE_INTERFACE_(ICOM_PersistRegDB, {Unknown)

{
STDMETHOD (IsDirty)(THIS) PURE;

10

15

20

25

30

35

WO 96/38769 ‘ PCT/US96/08149

-57-
STDMETHOD (Load)(THIS_ HKEY hKey) PURE;
STDMETHOD (Save)(THIS_ HKEY hKey) PURE;
STDMETHOD (Ciear)(THIS_ HKEY hKey) PURE;

The ILNG_DrvCore_lnit interface is used to initialize the language driver component.

The following is a description of the ILNG_DrvCore_Init interface.
DECLARE_INTERFACE_(ILNG_DrvCore_lnit, IUnknown)

{

STDMETHOD (Create)(THIS_ LPLNG_DRIVER_INFO pDI) PURE:
STDMETHOD (Destroy)(THIS) PURE;

STDMETHOD (Setup)(THIS_ LPLNG_DRIVER_INFO pDI) PURE:
STDMETHOD (Stat)(THIS_ LPLNG_DRIVER_INFO pD!) PURE:
STDMETHOD (Register)(THIS) PURE;

STDMETHOD (UnRegister)(THIS) PURE;

STDMETHOD (IsRegistered)(THIS_ LPBOOL pbRegistered) PURE:
STDMETHOD (Enable)(THIS_ BOOL fEnable) PURE;
STDMETHOD (IsEnabled)(THIS_ LPBOOL pbEnabled) PURE;

The ILNG_DrvExt_StreamMgmt interface is used to perform all stream operations. The

following is a description of the LNG_DrvExt_StreamMgmt interface.
DECLARE_INTERFACE_(ILNG_DrvExt_StreamMgmt, IUnknown)

{

STDMETHOD (GetStreamEnumeration)(THIS_ LPENUMUNKNOWN FAR *ppEnumStream)
PURE;

STDMETHOD (GetStreamCount)(THIS_ LPDWORD pdwCount) PURE:
STDMETHOD (GetStreamlnit)(THIS_ XMC_STREAMID idStream,
LPXMCSTREAMINIT FAR *ppStreaminit) PURE;

STDMETHOD (GetStreamInitAt)(THIS_ DWORD dwldx,

LPXMCSTREAMINIT FAR *ppStreaminit) PURE;

STDMETHOD (AddStream)(THIS_ LPXMCSTREAMINIT pStreamlnit) PURE:;
STDMETHOD (RemoveStream)(THIS_ LPXMCSTREAMINIT pStreaminit,

BOOL bDestroy) PURE;

STDMETHOD (RemoveStream)(THIS_ XMC_STREAMID idStream, BOOL bDestroy)
PURE;

STDMETHOD (RemoveAllStreams)(TH!S_ BOOL bDestroy) PURE;

STDMETHOD (EnabledStreamsOnly)(TH!IS_ BOOL bEnabledOnly,

LPBOOL pbOldEnabledOnly) PURE;

w

10

20

30

WO 96/38769 PCT/US96/08149

-58-
The foliowing are the functions exported by the driver DLL.

XMC_DRIVER_MODULETYPE DLLGetModuleType(void);

LPCLSID DLLGetCLSID(void);
BOOL DLLRegisterServer(void);
BOOL DLLUnRegisterServer(void);

The following discusion defines all structures, enumerations, and defines used by the
driver.:

The XMC_DRIVER_MODULETYPE enumeration defines the type of drivers available.
Each driver must return its type when the user calls the exported DLLGetModuleType function.
enum XMC_DRIVER_MODULETYPE

{
XMC_DRIVER_MT = 0x4000,
XMC_DRIVER_MT_AT6400 = 0x4001,
XMC_DRIVER_MT_DMC1000 = 0x4002,
XMC_DRIVER_MT_DT2000 = 0x4003,
XMC_DRIVER_MT_CUSTOM = 0x4004
h

The XMC_DRVCORE_CMD enumeration defines an identifier for every command known
to the XMC Driver. For example, every core Driver function has a corresponding
XMC_DRVCORE_CMD identifier. This index is used to look up the string biock for the command.
The definition of the enumeration is as follows.

enum XMC_DRVCORE_CMD

{
XMC_DCC_MOTION_MOVEABS,
XMC_DCC_MOTION_KILL,

The XMC_DRVEXT_CMD enumeration defines an identifier for every extended
command known to the XMC Driver. Even though the identifiers exist, the driver may or may not
implement the set of commands. For example, every extended Driver function has a
corresponding XMC_DRVEXT_CMD identifier. This index is used to look up the string block for
the command (if the driver implements the command). The definition of the enumeration is as

follows.

enum XMC_DRVEXT_CMD
{

W

10

15

20

25

30

WO 96/38769 PCT/US96/08149

-59-
XMC_DCE_MOTION_MOVEREL,

The LNG_PARAM_DATATYPE enumeration defines all types of data blocks that may be
parsed from response strings returned by stream targets.

typedef enum _LNG_PARAM_DATATYPE

{
LNG_ADT_NOP,
LNG_ADT_NOTYPE,
LNG_ADT_NUMBER,
LNG_ADT_STAT_STRING,
LNG_ADT_MEM_STRING

} LNG_PARAM_DATATYPE;

The LNG_PARAM_DATA structure stores all types of data that describe a parameter
either built into a command, or parsed from a response.

struct LNG_PARAM_DATA
{

//~--- Constructor & Destructor ----

LNG_PARAM_DATA(void);
~LNG_PARAM_DATA(void);

/i---- Data -
LNG_PARAM_DATATYPE adt:

union

{
double df;
LPTSTR psz;

10

20

25

30

35

WO 96/38769 PCT/US96/08149

-60-
The LNG_DRIVER_INFO structure is used when setting up and querying the state of the
driver.
typedef struct _LNG_DRIVER_INFO
R
DWORD m_mt;
LNG_DRIVERID m_ID;
TCHAR m_szName[LNG_DRIVER_NAME_LEN+1]
TCHAR - m_szDescription[LNG_DRIVER_DESC_LEN+1];
TCHAR m_szHWVendor[LNG_DRIVER_NAME_LEN+1 |;

} LNG_DRIVER_INFO;

Each XMC Driver is responsible for managing all streams used. In order to manage each
stream over time in a persistent manner each driver and stream module implement the persistent
functionality exposed through the ICOM_PersistRegDB interface. When the driver's
implementation of ICOM_PersistRegDB::Save is caIIéd, the data is saved to the registry in the
following order.

XMCDriverAdminObject.100
|- Drivers

|---- dwCount = <# of drivers>

|---- XMCDrv_0
|---- CLSID = {clsid}
|---- dwFlags = <driver flags>
[=--- dwID = <driver ID>
|---- dwModuleType = XMC_DRIVER_MT_xxx
|---- szDescription = <user desc of the driver>

[---- Streams

f---- XMCStrm_0

| {---- CLSID = {clsid}

| f---- dwlID = <strm id>

f---- dwModuleType = XMC_STREAM_MT_xxx

|
I
I
|
I
|
| j---- Count = <# of streams>
I
I
I
I
| |---- <stream specific values>

I
I
I I

| f===- XMCStrm_<n>
! —
I

I

---- XMCDrv_<n>

e

WO 96/38769 PCT/US96/08149

-61-

it should be clear from the foregoing that the present invention may be embodied in other
specific forms without departing from the essential characteristics thereof. The present
embodiments are therefore to be considered in all respects as illustrative and not restrictive, the
scope of the invention being indicated by the appe‘nded claims rather than by the foregoing
description; all changes which come within the meaning and range of equivalency of the claims
are therefore intended to be embréced therein.

WO 96/38769 PCT/US96/08149

- 62 -

XMC Motion Control

XMCSPI Reference

Ravision: Third Draft

Author: Dave Brown

Date: Weanesday, Feb 22, 1995

Description: This document is the XMCAPI reference describing all functions, standard OLE interfaces, and

custom OLE interfaces making up the XMCAP!.

Revision History: 4/15/94 (DB) - First Draft: Initial writing.
7/1/94 (DB) - Second Draft: Split design off small business pian, incorporated suggestions.
2/22/35 (DB) - Third Draft - Split XMCAPI reference off design guide.

ROY-G-BIV Corporation Confidential

© 1985 ROY-G-BIV Corporation. Al rights reserved.

WO 96/38769 PCT/US96/08149

- 63 -

XMC Motion Control XMCSPi Referenca 1.0 Overview

1.0 Overview
The XMCSPI is the Service Provider Interface (SPI) implemented by every XMC Driver. This
layer of software, used by the XMC Motion Component, controls the specific motion control
hardware corresponding to the current XMC Driver. Four categories of custom OLE 2.0
interfaces make up the complete XMCSPI layer. Out of the four categories, all XMC Drivers are
required to implement one category of interfaces called core interfaces. Implementing the other
three interface categories, called extended interfaces, is recommended, but not required to
participate in the XMC software model. Implementing all extended interfaces is recommended
for it makes the current driver-hardware interaction more precise and more efficient. Since not all
hardware will support all extended interfaces, implementing them is not required.

This manual describes all core and extended interfaces making up the complete set of XMCSPI
custom OLE interfaces. Chapter 2.0 XMCSPI Interface Categories discusses the purpose of each
category and lists the interfaces that fall in each. Chapter 3.0 extends this discussion by
describing each interface and the methods they contain.

ROY-G-BIV Corporation Confidential 3/15/85
© 1895 ROY-G-BIV Corporation, All Rights Reserved.

WO 96/38769 PCT/US96/08149

- 64 -

XMC Motion Control XMCSP! Reference 2.0 XMCSP!I Interface Catsgories

2.0 XMCSPI Interface Categories

This section describes the categorical grouping of the OLE interfaces found in the XMCSPI. Both
standard and custom OLE interfaces are used in the XMCSPI. OLE 2.0 requires the
implementation of all interfaces listed in Section 2./ Standard OLE Interfaces. XMC requires the
implementation of all interfaces listed in section 2./ Core interfaces.

2.1 Standard OLE Interfaces

The following standard OLE interfaces must be supported by each Motion Control Driver. For
more information on each interface, see section 2.0 Standard OLE Interfaces in the XMCAPI

Reference manual.

Standard Interfaces
IClassFactory
IUnknown

2.2 Core Interfaces (Core)
Any absolutely essential functions to motion control problems are in the core set of functions. All
motion control XMCSPI drivers must implement these core functions. None of these functions
are not allowed to use user-interface objects.

The following custom OLE 2.0 interfaces are in the core set of XMCSPI functions:

Custom Core Interfaces
IXMC_DrvCore AnalogIO
IXMC_DrvCore DigitallO
IXMC DrvCore_DynamicState
IXMC DrvCore_Encoder
IXMC_DrvCore_EnumInterfaceSupport
IXMC_DrvCore_IO (Abstract)
IXMC_DrvCore_Limits _
IXMC_DrvCore_Motiony{Dependent)
IXMC_Derore_Servo
IXMC_DrvCore_StaticState
IXMC_DrvCore_Stepper

NOTE: The IXMC_DrvCore_Servo interface is only required if the motion control hardware controlied by the
driver has servo motor support. The same follows for the IXMC_DrvCore_Stepper interface with stepper

motors. :

Abstract interfaces are only used by other interfaces as an inheritance base. For example. since
the IXMC_DrvCore_DigitallO interface inherits from the IXMC_DrvCore_IO interface, its
implementation contains all methods in both interfaces. See section 2.7./ Inheritance
Relationships for more information on inheritance relationships between interfaces.

Dependent interfaces are only used after the interfaces they are dependent on have performed
certain operations. For example, the IXMC_DrvCore_Motion interface is dependent on either
the IXMC_DrvCore_Servo or the IXMC_DrvCore_Stepper interfaces initializing the motion
system. See section 2.7.2 Dependency Relationships for more information on dependency
relationships between interfaces.

2.3 Extended Interface Categories
All non-core interfaces in the XMCSPI fall into one of the three extended interface categories.
XMC Drivers are not required to implement any of the extended XMCSPI functions. A stub
driver, called the XMC Driver Stub, implements all extended interfaces, not supported by the

ROY-G-BIV Corporation Confidential : 3115195
© 1995 ROY-G-BIV Corporation. .All Rights Reserved,

WO 96/38769 PCT/US96/08149

- 65 -

XMC Motion Control XMCSP! Reference 2.0 XMCSPI Interface Categories

current driver, that can be emulated using a software algorithm which calls core functions. For
more information on how the XMC Driver Stub is used, see Section 7.0 Driver Administrator,
Component, Driver Relationship in the XMC User Guide manual. Implementing extended
interfaces directly in the driver can improve the precision and efficiency of the operation, for the
driver implementation has more direct control over the motion control hardware than the XMC
Motion Control Component. Even greater precision and performance improvements occur when
the driver can direct the motion control hardware to directly perform a procedure defined in one of

the extended interfaces.

2.3.1 Extended Interfaces (Ext)

This set of functions consists of all non core functions that do not use user-interface objects such
as dialog boxes or message boxes. The following custom OLE 2.0 interfaces are in the set of

extended XMCSPI functions:

Custom Ext Interfaces
IXMC_DrvExt_Counter
IXMC_DrvExt_Debug (Private)
IXMC_DrvExt_ DynamicState
IXMC_DrvExt_Encoder
IXMC_DrvE:xt_Interrupt
IXMC_DrvExt_IO (Abstract)
IXMC_DrvExt_Joystick
IXMC DrvExt Limits
IXMC_DrvExt_Motion (Dependent)
IXMC DrvExt_StaticState
IXMC_DrvExt_Timer

2.3.2 Extended UI Interfaces (ExtUI)

This XMCSPI set consists of all extended XMCSPI functions that require user-interface objects
such as dialog boxes or message boxes. For example, when an application requests to tune the
Servo motors, special input may be needed from the user to complete the process. Because uning
the servo motors is not a required Motion control function and may need input from the user, it is
in the Extended Ul XMCSPI set of functions.

The following custom OLE 2.0 interfaces are in the extended user-interface set of XMCSPI
functions:

Custom ExtUI Interfaces
IXMC_DrvEx:UI__AnalogIO
IXMC_DrvExtUI_Base
IXMC_DrvExtUI_DigitallIO
IXMC_DrvExtUI_DynamicState
IXMC_DrvEx:UI_Servo
IXMC_DrvExtUI_StaticState

2.3.3 Extended Code Generation Interfaces (ExtCG)

These XMCSPI functions consist of all methods used for code generation only. Most core and
extended methods generate code also generate code when the XMC software is run in code-
generation mode. But, where core and extended functions may also be used in real-time and
mixed modes, code-generation functions cannot. Code-generation functions are only used when
running in code-generation mode.

ROY-G-BIV Corporation Confidential 315195

© 1985 ROY-G-BIV Corporation, All Rights Reserved.

WO 96/38769 PCT/US96/08149

-66 -

XMC Motion Control XMCSP| Reference 2,0 XMCSP! interface Categories

The following custom OLE 2.0 interfaces are in the set of code-generation XMCSPI functions:

Custom ExtCG Interfaces
IXMC_DrvExtCG_ProgramElow
IXMC_DrvExtCG_Operator
IXMC_DrvExtCG_Program
IXMC_DrvExtCG_ProgramMgmt
IXMC_DrvExtCG_Subroutine
IXMC _DrvExtCG_Variable

2.4 Vendor Specific Interfaces (ExtVS) _
These functions are not part of the set of XMCSP! interfaces. No XMCAPI interface methods call
these functions for they are provided by each vendor as a pass-through method giving vendors
access to new hardware features not yet supported by the XMC software model. Each
implementation of vendor specific custom OLE Interfaces depend on the needs of the hardware
vendor. Applications may communicate directly with these interfaces, but in doing so, they
automatically become dependent on the specific Motion Control Driver and therefore become
hardware-dependent. But, allowing vendor-specific functions to exist gives the software model a
flexible way to evolve. For example, if one hardware vendor adds a new feature to their motion
control hardware, not provided by any other vendors, they may gain access to the new fearure by
adding a vendor specific SPI interface to their driver and then directly programming to the SPI
interface from within the application. Of course, other drivers will not work with applications that
call the hardware dependent SPI interface, for they will not implement the interface. As the
feature becomes more useful over time, other hardware vendors will probably add the feature to
their hardware. After the feature gains a critical mass of support within the companies supporting
the XMC software model, the feature will be added to the XMC software model by becoming a
part of both the XMCSPI and XMCAPI. For more information on vendor specific interfaces, see
the appropriate XMC Motion Control Extension manual describing the specific XMC Driver
which includes a reference for each hardware-dependent driver interface.

2.5 Interface Map
The following table displays all Mdtion Control Driver, XMCSPI interfaces and the categories
they fall in:
Core Ext ExtUI ExtCG
“IXMCDrvCore_” “IXMCDrvExt_” “IXMCDrvExtUI_” “IXMCDrvExtCG_”
AnaloglO AnaloglO AnaloglO*
Base ’

Counter Counter=*

Debug (Private)
DigitallO Digital]lO DigitallO DigitallO*
DynamicState DynamicState DynamicState
Encoder Encoder Encoder*
Enuminterface

Interrupt Interrupt*® o
IO (Abstract) [0 (Abstract) 10*

Joystick Joystick*
Limits Limits Limits*
Motion (Abstract) Motion (Abstract) Motion*
Servo Servo Servo Servo*
StaticState StaticState StaticState
Stepper Stepper*

Timer Timers .

ROY-G-BIV Corporation Confidentlal 3/15/95

© 1885 ROY-G-BIV Corporation. All Rights Reserved.

WO 96/38769 PCT/US96/08149

- 67 -

XMC Motion Control XMCSP! Reference 2.0 XMCSPI Interface Categories

Operator

Program
ProgramFlow

ProgramMgmt
Subroutine

Variable

* These interfaces generate code implicitly. Calling methods, that xmmedxatcly cause an action on
the hardware when run in real-time mode, generate code when run in code-generation mode.

2.6 Interface Relationships
This section describes how closely coupled XMCSPI interfaces relate to one another. There are
two ways interfaces relate to one another. Interfaces can inherit from each other and can be
dependent on one another. The following sections describe these relationships and the interfaces

using them.

2.6.1 Inheritance Relationships

C++ inheritance is used to combine two interfaces in such a way that the derived interface
“inherits” all method definitions in the base interface. Only the method definitions within the base
interface are inherited. The resuiting interface contains implementations of all methods in both
the derived and the base interface. The following are the inheritance relationships found in the

XMCSPI:

Inheritance Tree
IXMC_Derore_IO

|
| === IXMC_DrvCore_DigitalIO
=== IXMC DrvCore_AnalogIO

IXMC_DrvExtUI Base

f=== IXNC DrvExtUI _AnalogIO
f~-- IXMC_DrvExtUI_DigitallO
f=—- IXMC DrvE:xtUT _DynamicState
| === IXMC DrvExtUI_Servo

f=—- IXMC DrvExtUI . _StaticState

2.6.2 Dependency Relationships

Unlike inheritance relationships, dependency relationships are between two interface
implementations. When an interface is dependent on another interface, it needs the interface to
perform an operation before it can continue one of its own operations. For example, the
IXMC_DrvCore_Motion interface is dependent on the [XMC_DrvCore_Stepper interface
initialization routine. Before using the IXMC_DrvCore_Motion interface, the
IXMC_DrvCore_Stepper interface must be used to initialize the stepper system. The following
are the dependency relationships found in the XMCSPI:

Dependency Tree
IXMC_DrvCore Motion --| (dependent on)
IXMC _DrvExt Motion =---|
B - By v
t=--- IXMC_DrvCore_Stepper
=== IXMC DrvCore_Servo

ROY-G-BIV Corporation Confidential 3115195
© 1995 ROY-G-BIV Corporation. All Rights Reserved.

WO 96/38769 PCT/US96/08149

- 68 -

XMC Motion Control XMCSP! Reference 3.0 XMCSP! Refsrence

3.0 XMCSPI] Reference

3.1 XMC Core Interfaces (Core)
Core functions are the lowest level primitive motion control functions implemented by all
hardware vendors that software cannot duplicate in an algorithm that uses other methods, such as
those in the Motion Control Driver Stub. This section describes each custom OLE 2.0 interface

within the set of core interfaces.

3.1.1 IXMC_DrvCore_AnalogIO Interface

The IXMC_DrvCore_AnalogIO interface inherits from the IXMC_DrvCore_IO interface and
implements all of its methods. This interface take care of initializing the analog I/O system used.
All /O work is carried out by the IXMC_DrvCore_IO interface.

inheritance
IXMC_DrvCore_IO

| m————— IXMC DrvCore_AnalogIO

Configuration
(*pDrvCore_AnalogIO)->Initialize()

3.1.2 IXMC_DrvCore_DigitallO Interface

Similar to the IXMC_DrvCore_AnaloglO interface, the IXMC_DrvCore_DigitallO interface is
also inherits from the IXMC_DrvCore_IO interface. The IXMC_DrvCore_DigitallO interface
takes care of initializing the digital VO system, and the IXMC_DrvCore_lO interface takes care

of all other operations.

Inheritance
IXMC DrvCore_IO
I 1.:'

fmm———— IXMC_DrvCore DigitalIO

Configuration
(*oDrvCore_DigitallIO)->Initialize()

ROY-G-BIV Corporation Confidential 3/15/95
© 1985 ROY-G-BIV Corporation. All Rights Reserved.

WO 96/38769 PCT/US96/08149

- 09 -

3.0 XMCSP! Reference

XMC Motion Control XMCSP! Reference

3.1.3IXMC_DrvCore_DynamicState Interface

The IXMC_DrvCore_DynamicState interface manages the overall state of the motion control
system. Included in its management tasks are initializing and shutting down the system. The
current state information may be queried or changed at any time after the system is initialized,

State Information
typedef struct _XMC_DYNAMICSTATEINFO

XMC_STATICSTATE *pXMCDC;

double dfActualPosition:;
double dfCommandedPosition;
double dfActualVelocity;
double dfCommandedVelocity;
double dfPositionError;
double dfAcceleration:
double dfDeceleration;
HRESULT hErrorStatus;
XMC_OP_MODE operatingMode;
XMC_AXI S_DATA *pLeftlimitData;
XMC_AXIS DATA *pRightLimitData;

} XMC_DYNAMICSTATEINFO:

Configuration
(*pDrvCore_DynSt)->Reset ()
(*pDrvCore_DynSt)->Initialize()
(*pDrvCore_DynSt) ->ShutDown ()

Querying Attributes
(*pDrvCore_DynSt)~->GetErrorStatus ()
(*pDrvCore_DynSt)->GetState ()

Setting Attributes
(*pDrvCore_DynSt)->ClearErrors ()
(*pDrvCore_DynSt)->SetState()

3.1.4 IXMC_DrvCore_Encoder Interface

The IXMC_DrvCore_Encoder interface implements severai optimized functions used to query
positions. Calling the LXYMC_DrvCore_DynamicState: :GetState() method will also collect the
position information, but at the expense of collecting all other current state data. The methods
specified by this interface only collect the data requested.

Querying Attributes
(*pDrvCore Motion)->GetPositionActual ()
(*pDrvCore_Motion)->GetPositionError ()

NOTE: Currently, this interface is classified as a core set of XMCSPI, but it may be changed to an extended
set of XMCSP! instead.

ROY-G-BiV Corporation Confidential 3115195

© 1995 ROY-G-BIV Comoration.. All Rights. Reserved. .

WO 96/38769 PCT/US96/08149

- 70 -

XMC Motion Control XMCSPI Reference 3.0 XMCSP! Reference

3.1.5 IXMC_DrvCore_EnumInterfaceSupport Interface

The IXMC_DrvCore_EnumIinterfaceSupport interface is used to query a list of interfaces
meeting the specific search criteria set with the
IXMC_DrvC ore_EnuminterfaceSupport::SetSearchCriteria() method..

Inheritance
IEnumX
!
{=-- IXMC_DrvCore_EnumInterfaceSupport
Setting Attributes

(*pPrvCore_EnumIFace)->SetSearchCriteria ()

3.1.6 IXMC_DrvCore_IO Interface

This interface consists of all digital input and output related functions. The following methods are
available from each Motion Control Driver in the IXMC_DrvCore_DigitallO interface:

Configuration
(*pDrvCore_IO)->Initialize()

Actions
(*pDrvCore_IO)->Read()
(*pDrvCore_IO)~->Write()

3.1.7 IXMC_DrvCore_Limits Interface

The IXMC_DrvCore_Limits interface is used to set software limits for a set of axes. When
setting limit values, two arrays containing AXIS_DATA elements are used to transfer the sertings
to the method.

Setting Attributes
(*pDrvCore_Limits)->SetLimitPositions ()
o

NOTE: Cumently, this interface is classified as a core set of XMCSPI, but it may be changed to an extended
set of XMCSP! instead.

RQOY-G-BIV Corporation Confidential 3/15/95
© 1985 ROY-G-BIV Comparation. All Rights Reserved.

WO 96/38769 PCT/US96/08149

- 71 -

XMC Motion Control XMCSP! Reference 3.0 XMCSP1 Reference

3.1.8 IXMC_DrvCore_Motion Interface

This IXMC_DrvCore_Motion interface is a dependant interface in that it may only be used after
either the' IXMC_DrvCore_Stepper or IXMC_DrvCore_Servo interfaces are used to initialize
the system. All primitive motion control functions that are absolutely necessary to solve motion
control software problems are placed in this interface. Also, each function in this set should be a
primitive that can not be duplicated through a software algorithm built on top of other primitive
functions. The following methods are available from each Motion Control Driver in the

IXMC_DrvCore_MotionControl interface:

Querying Attributes
(*pDrvCore_Motion)->GetCommandedPosition ()
(*pDrvCore_Motion)->GetActualPosition ()
(*pDrvCore_Motion) ->GetCommandedVelocity ()
(*pDrvCore_Motion)->GetActualVe locity()

Setting Attributes
(*pDrvCore_Motion) ->SetVelocity ()
(*pDrvCore_Motion)->SetPosition()

Actions
(*pDrvCore Motion)->Kill ()
(*pDrvCore Motion)->Movedbs {)
(*pDrvCore_Motion)->MoveContinous ()
(*pDrvCore_Motion)=->Stop()

3.1.9 IXMC_DrvCore_Servo Interface

The IXMC_DrvCore_Servo interface handles all operations specific to servo motors. All motion
operations are performed by the IXMC_DrvCore_Motion interface. The following methods are
in the IXMC_DrvCore_Servo interface:

Dependency
IXMC_DrvCore Motion
I b
=== IXMC_DrvCore_Servo

Configuration
(*pDrvCore_Servo)->Initialize()
("pDrvCore_Servo)->Tune ()

ROY-G-BIV Corporation Confidentia| 3/15/95
. ©1885 ROY-G-BIV Corporation. All Rights Reserved.

WO 96/38769 PCT/US96/08149

- 72 -
XMC Motion Control XMCSP! Reference 3.0 XMCSPI Reference

3.1.10 IXMC_DrvCore_StaticState Interface

The IXMC_DrvCore_StaticState interface manages all static state information defining the
system. Like the current state information, the device context information may be queried at any
time after the system is initialized. But, unlike the current state information, the device context
information is only set during the initial setup of the system.

State Information
typedef struct _XMC_STATICSTATEINFO

{
double dfEncoderCountsPerRevolution;

double dfMMPerRevolution:;
int cbAxisCount;
int cbAxisMax:
XMCMOTORTYPE motorType;
} XMC_STATICSTATEINFO:

Querying Attributes
(*pDrvCore_StatSt)->GetState()

Setting Attributes
(*pDrvCore_StatSt)->SetState() -

3.1.11 IXMC_DrvCore_Stepper Interface

The IXMC_DrvCore_Stepper interface handles all operations specific to stepper motors. All
motion operations are performed by the IXMC_DrvCore_Motion interface. The following
methods are in the IXMC_DrvCore_Stepper interface:

Dependency
IXMC DrvCore_Motion

| m———— IXMC_DrvCore_Stepper

-~

Configuration o
{*pDrvCore_Stepper)->Initialize()

3.2 XMC Extended Interfaces (Ext)
Extended interfaces contain methods that are not required. These interfaces are either duplicated
by the Motion Control Driver Stub or contain functionality not essential in most motion control
problems. However, implementing these interfaces will optimize the performance of the motion
control system for a particular set of hardware. This section describes all extended interfaces

within XMCSPI.

3.2.1 IXMC_DrvExt_Counter Interface
The IXMC_DrvExt_Counter interface is used to operate a counter implemented by the motion
control hardware.

Querying Attributes
(*pDrvExt_Counter)->GetCounter ()

Actions
(*pOrvExt_Counter)->Enablelnterrupt()
(*pDrvExt Counter)->Reset ()
(*POrVvExt_Counter)->Start ()
(*pDrvExt_Counter)->Stop()

ROY-G-BIV Corporation Confidential 3/15/85
© 1985 ROY-G-BIV Comoration.. All Riahts Reserved. —— .

PCT/US96/08149

WO 96/38769

XMC Motion Control XMCSP| Reference

-73-

3.0 XMCSP! Reference

3.2.2 IXMC_DrvExt_Debug Interface (Private)

The IXMC_DrvExt_Debug interface is a private interface used by the Motion Control
Component, if available. When implemented, the interface is used when debugging the Motion
Control Driver.

Setting Attributes
(*pDrvExt_Debug) ~>SetRawDataInDumpFile ()
(*pDrvExt_Debug) ->SetRawDataOutDumpFile ()
(*pDrvExt_Debug) ->SetXMCSPILogFile()

Actions
(*pDrvExt_Debug) ->EnableRawDataDump ()
(*pDrvExt_Debug) ~->EnableXMCSPILogging ()

3.2.3 IXMC_DrvExt_DynamicState Interface

The IXMC_DrvExt_DynamicState interface manages the extended, dynamic state of the motion
control system. The extended current state information may be queried or changed at any time
after the system is initialized.

State Information
typedef struct _XMC_EXTDYNAMICSTATEINFO

{

DWORD dwSupportedPoperties;
XMC_EXTSTATICSTATEINFO *pEXtXMCDC;

double dfLimitDeceleration;
double dfJogVelocityHigh;
double dfJogVelocityLow;
double dfJoystickVelocityHigh;
double dfJoystickVelocityLow;
double dfFeedRate;

POS_DATA *pHomePosition:
POS_DATA *pZeroPosition;
POS_DATA *pLimitSWFwdPosition;
POS_DATA *pLimitSWBwdPosition;
double dfLimitDeceleration;
BOOL bJoystick;

BOCL bAxisScaling;

BOOL bPathScaling;

BOOL bDataCapture;

BOOL bFeedRate;

BOOL bInterpolation;

BOOL bLimitSW;

BOOL bLimitHW;

BOOL bIODataCapture:

} XMC_EXTDYNAMICSTATEINFO:

Querying Attributes
(*pDrvCore_DynSt)->GetState ()

Setting Attributes
(*pDrvCore_DynSt)->SetState ()

ROY-G-BIV Corporation Confidential 3/15/95
© 1885 ROY-G-BIV Corporation. All Rights Reserved.

WO 96/38769 PCT/US96/08149

-74-

XMC Motion Control XMCSP! Reference 3.0 XMCSPI Reference

3.2.4 IXMC_DrvExt_DigitallO Interface
The IXMC_DrvExt_DigitallO interface handles all extended IO functionaly.

Actions
(*pDrvExt_DigitalIO)->EnablelnputFunctions ()
(*pDrvExt_DigitalIO)->EnableQutputFunctions ()

Setting Attributes
(*pDrvExt_DigitallIO)->SetInputFunction()
(*pDrvExt_DigitalIO)->SetInputDebounceTime ()
(*pOrvExt_DigitallO)->SetInputActivelevel ()
(*pDrvExt_DigitallIO)->SetOutputFunction()
(*pDrvExt_DigitallQ)->SetOutputActivelLevel ()
(*pDrvExt_DigitalIO)->SetOutputStates ()

3.2.5 IXMC_DrvExt_Encoder Interface
The IXMC_DrvExt_Encoder interface is used to manipulate encoders in the motion control
system.

Setting Attributes -
(*pDrvExt_Encoder)->SetOutputAbsPosition ()

(*pDrvExt_Encoder)->SetOutputRelPosition ()

3.2.6 IXMC_DrvExt_Interrupt Interface

The IXMC_DrvExt_Interrupt interface is used to set, get, and enable interrupt handlers

Querying Attributes ‘
(*pDrvExt_Int)->GetHandler ()

Setting Attributes
(*pDrvExt_Int)->SetHandler()
W7
Actions
(*pDrvExt_Int)->Enable()

3.2.7 IXMC_DrvExt_IO Interface

This interface consists of all digital input and output related functions. The following methods are
available from each Motion Control Driver in the IXMC_DrvExt_DigitallO interface:

Actions
(voDrvExt_IO)->EnableDataCapture();

ROY-G-BIV Corporation Confidential 3115195

© 1895 ROY.G.RIV. Corporationa All,Rights; Resarved,

WO 96/38769 PCT/US96/08149

-75-

XMC Motion Control XMCSP! Reference 3.0 XMCSPI Refersnce

3.2.8 IXMC_DrvExt_Joystick Interface

The IXMC_DrvExt_Joystick interface is used to enable and disable a hardware joystick. When
enabled, all other motion operations are disabled. The following methods are in this interface:

Setting Attributes
{*pDrvExt_Joystick)->SetVelocityHigh ()
(‘pDrvExt_Joystick)->SetVelocityLow()
(*pDrvExt_Joystick)~->SetupElectronics ()

' Actions
(*pDrvExt_Joystick)~>Enable ()

3.2.9 IXMC_DrvExt_Limits Interface
The IXMC_DrvExt_Limits interface is used to manipulate both hardware and software limits.
The following methods are in this interface:

Querying Attributes
(*pDrvExt_Limits)->GetSoftwareLimitPositions()

Setting Attributes
('pDrvExt_Limits)->SetSoftwareLimitPositions()

(*PDrvExt_Limits)->SetDeceleration ()}

Actions
{(*pDrvExt_Limits)->EnableHardwarelimits ()
(*pDrvExt_Limits)~->EnableSoftwarelimits ()

3.2.10 IXMC_DrvExt_Motion Interface

This interface consists of extra motion control functions that may or may not be implemented by
the motion control hardware. If a hardware implementation is unavailable for a particular
function, the Motion Component calls the Motion Control Driver Stub, which implements the
functionality in software. The following methods are available from either the Motion Control
Driver or the Motion Control Driver Stub in the IXMC_DrvExt_MotionControl interface:

Querying Attributes
(*pDrvExt_Motion)->GetFeedRate ()
(*pDrvExt_Motion)->GetAxisScaling()
(*pDrvExt_Motion)->GetPathScaling()
(*pDrvExt_Motion)~->GetMaxAcceleration()
(*pDrvExt_Motion)->GetMaxDeceleration ()
("pDrvExt_Motion)->GetMaxVelocity ()
(*pDrvExt_Motion)->GetHomePosition ()
(*pDrvExt_Motion)->IsDataCaptureOn ()
(*pDrvExt_Motion)->IsFeedRateOn()
(*pDrvExt_Motion)->IsAxisScalingOn()
(*pOxvExt_Motion)->IsPathScalingOn ()
(*pDrvExt_Moticn)->IsInterpolationOn()

Setting Attributes
(*pDrvExt_Motion)->SetJogVelocityHigh()
(*pOrvExt_Motion)->SetJogVelocityLow ()
(*pDrvExt_Motion)->SetFeedRate ()
(*pDrvExt_Motion)~->SetAxisScaling()
(*pDrvExt_Motion)->SetPathScaling()
(*pDrvExt_Motion)->SetMaxAcceleration()
(*pDrvExt_Motion)->SetMaxDeceleration()
(*pDrvExt_Motion)->SetMaxVelocity ()
(*pDrvExt_Motion)->SetZeroPosition()
(*pDrvExt_Motion)~>SetHomePosition ()

ROY-G-BIV Corporation Confidential 3/15/95
- © 1995 ROY-G-BIV Corporation. All Riohts Reserved,

WO 96/38769

-76-

XMC Motion Control XMCSP! Referance

PCT/US96/08149

3.0 XMCSP! Reference

Action

(*pDrvExt_Motion)->EnableFeedRate()
(*pDrvExt_Motion)->EnablelInterpolation()

_{*pDrvExt_Motion)-~>EnableAxisScaling ()

(*pDrvExt_Motion)->EnablePathScaling()
(*pPDrvExt_Motion) ->GoHome ()
(*pDrvExt_Motion)->GoZero()
(*pDrvExt_Motion)->MoveRel ()

Geometric Moves

(*pDrvExt_Motion)->Arc{()
(*pDrvExt_Motion)->Path()

3.2.11 IXMC_DrvExt_StaticState Interface

The IXMC_DrvExt_StaticState interface manages all extended static state information defining
the system. Like the current state information, the device context information may be queried at
any time after the system is initialized. But, unlike the current state information, the device

context information is only set during the initial setup of the system.

State Information
typedef struct _XMC_EXTSTATICSTATEINFO

{

DWORD dwSupportedProperties;
double dfAxisScalingFactor;
double) dfPathScalingFactor:;
double dfMaxAcceleration;
double dfMaxDeceleration;
double dfMaxVelocity:

} XMC_EXTSTATICSTATEINFO:

Querying Attributes

(*pDrvCore_ DC)->GetState ()

Setting Attributes

(*pDrvCore_DC) -yBetState ()

3.2.12 IXMC_DrvExt_Timer Interface

The IXMC_DrvExt_Timer interface is used to manipulate a timer on the motion control

hardware.

Querying Attributes

(*pDrvExt_Timer)->GetTime ()
(*pDrvExt_Timer)->GetDelay ()
(*pDrvExt_Timer)->GetResolution()

Setting Attributes

("pPOrvExt_Timer)->SetDelay()

Actions

(*pDrvExt_Timer)->DoDelay ()
(*oDrvExt_Timer)->EnableInterrupt ()
(*pDrvExt_Timer)->Resect ()
{*pDrvExt_Timer)->Startc()
(*pDrvExt_Timer)->Stop()
(*p0rvExt_Timer)->TriggerInterrupt ()

ROY-G-BIV Corporation Confidential
- ©1885 ROY-G-BIV Corporation. All Rights Reserved.

3/15/135

WO 96/38769 PCT/US96/08149

-77-

XMC Motion Control XMCSP! Reference 3.0 XMCSPI Reference

3.3 XMC Extended Ul interfaces (ExtU])

All extended Ul custom OLE 2.0 interfaces use user-interface resources such as dialog boxes or
windows to interact with the user. Some interfaces may gather information from the user, where

others may just display information.

3.3.1 IXMC_DrvExtUI_AnalogIO Interface

The IXMC_DrvExtUI_AnaloglO interface allows the user to interactively view and set the
parameters used when initializing the analog IO system.

Inheritance
IXMC_DrvCo re_IO

fmm———— IXMC_DrvCore_DigitallO

3.3.2 IXMC_DrvExtUI_AnaloglO Interface

The IXMC_DrvExtUI_AnalogIO interface allows the user to interactively view and set the
parameters used when initializing the analog IO system.

Inheritance
IXMC__DrvExtUI_Base

[=~ IXMC_DrvExtUI_AnalogIO

3.3.3 IXMC_DrvExtUI_Base Interface

The IXMC_DrvExtUI_Base interface is an abstract base derived off by all other Extened Ul
interfaces. The two methods defined in this interface, implemented by the deriving interface, are
used to initialize and view data.

Configuration
(*pDrvExtUI_Base)->Initialize()
(*pDrvExtUI_Basef->View()

3.3.4 IXMC_DrvExtUI_DynamicState Interface

The IXMC_DrvExtUI_DynamicState interface allows the user to interactively view and set al]
dynamic parameters used in the motion control system.

Inheritance
IXMC_DrvExtUI_Base

| === IXMC_DrvExtUI_DynamicState

3.3.5 IXMC_DrvExtUI_StaticState Interface

The IXMC_DrvExtUI_StaticState interface allows the user to interactively view and ser all
static system parameters used when initializing the motion control system.

Inheritance
IXMC_DrvExcUI_Base

fomm——- IXMC_DrvEx:UI_s:acicStace

ROY-G-BIV Corporation Confidential 3/15/95
© 1985 ROY-G-BIV Corporation, All Rights Reserved, . :

WO 96/38769 PCT/US96/08149

-78-

XMC Motion Control XMCSP! Refsrence 3.0 XMCSP! Reference

3.3.6 IXMC_DrvExtUI_DigitalIO Interface

The IXMC_DrvExtUI_DigitallO interface allows the user to intéractivcly view and set the
parameters used when initializing the digital IO system.

Inheritance
IXMC_DrvExtUI_Base

| em———— IXMC_DrvExtUI_DigitalIO

3.3.7 D{M.C_DrvExtU"I_Servo Interface

The IXMC_DrvExtUI_Servo interface aliows the user to interactively view and set the servo
system parameters. Also, the interface allows the user to interactively tune the PID settings used.

Inheritance
IXMC_DrvE‘.xtUI_Base

== IXMC_DrvExtUI_Servo

Configuration
(*pDrvExt_Motion)->Tune ()

3.4 XMC Extended Code Generation Interfaces (ExtCG)

Code generation interfaces are used by the Motion Control Component to generate the appropriate
vendor-specific control-codes used to create a motion control program. Unlike other interface
supported by each Motion Control Driver, the code-generation interfaces are never used in real-

time mode.

NOTE: Currently, the implementations of all code generation interfaces are a direct mapping of the Motion
Control Component code generation interfaces and are under investigation.

3.4.1 IXMC_DrvExtCG_Ogperator Interface

The IXMC_DrvExtCG_Operator interface is used to generate general program code such as
boolean, logical, simple conditional, and mathematical operators. The following methods are in

the interface;

Bitwise
(*pDrvExtCG_Op)->BitAnd()
(*oDrvExtCG_Op)->BitNot ()
{(*pDrvEXtCG_Op) ->BitOr ()
(*pDrvExtCG_Op)~->BitShiftL()
{*pDrvExtCG_Op) ->BitShiftR()
(*pDrvExtCG_Op) ->BitXOr ()

Logical
(*pDrvExtCG_Op) ->And()
(*pDrvExtCG_Op) ->Not ()
(*pDrvExtCG_Op) ->0r ()

Mathematical

(*pDrvExtCG_Op) ->Add ()
(*pDrvExtCG_Op)->Bit ()
(*2DrvExtCG Op)->Div{()
('pDrvExtCG:Op)->LeftParen()
(*pOrvExtCG_Op)->Mult ()
(*pOrvExtCG_Op) ->RightParen()
(*pDrvExtCG_Op)->Sqre ()
(*pDzvEXtCG_Op) ~>Sub ()

ROY-G-BIV Corporation Confidential 3/15/95
© 1895 ROY-G-BIV Corporation:- All Rights Reserved. - . .

WO 96/38769 PCT/US96/08149

-79-

XMC Motion Control XMCSPI Reference 3.0 XMCSP! Reference

Trigonometric
(*pDrvEXtCG_Op)->ACos ()
(*pDrvEXtCG_Op) ->ASin()
(*pDrvExtCG_Op) ->ATan()
(*pDrvExXtCG_Op) ->Cos ()
{*pDrvExtCG_Op)->Sin()
{*pDrvEXtCG_Op) ->Tan()

Labels/Strings/Comments
(*pDrvExtCG_Op) ->ASCIIChar ()
(*pDrvExtCG_Op)->Comment ()
(*pDrvExtCG_Op)->Declarlabel ()
(*pPDrvExtCG_Op)~>String()

Conditional
('pDrvExtCG_Op)->Equal()
(*pDrvExtCG_Op)->GreaterThan ()
(*pDrvExtCG_Op) ~>GreaterThanEqual ()
(*pDrvExtCG_Op)~>LessThan()
(*pDrvExtCG_Op)~>LessThanEqual ()
(*pDrvExtCG_Op)->NotEqual ()

3.4.2 IXMC_DrvExtCG_Program Interface

The IXMC_DrvExtCG_Program interface is used to generate a program shell using the
appropriate vendor-specific control-codes. The following methods are in the interface:

Programmming
(*pDrvExtCG_Prog)~>Define ()
(*PDXvEXtCG_Prog)->End{)
(*PDrvExXtCG_Prog) ->Exit ()
(*pPDrvEXtCG_Prog)->Sleep()

3.4.3 IXMC_DrvExtCG_ProgramFlow Interface

The IXMC_DrvExtCG_ProgramFidw interface is used to generate program flow code. Loops and
if/then statements are several examples of contitional code generated. The following methods are

in the interface;

If/Eise
(*pDrvEXtCG_Progflow)->IfOpen()
(*pDrvExtCG_ProgFlow)->IfClose ()
(*pDrvEXtCG_ProgFlow) ->Else()
(*pDrvEXtCG_ProgFlow)->EndIf ()

While
("pDrvExtCG_ProgFlow) ~>WhileOpen ()
(*pPOrvExtCG_ProgFlow) ->WhileClose ()
(*pDrvExtCG_ProgFlow)->EndWhile ()

Repeat
(*pDrvExtCG_ProgFlow) ->Repeat ()
(*pDrvExtCG_ProgFlow)->UntilOpen ()
(*pDrvExtCG_ProgFlow)->UnzilClose ()

Loops
{(*pDrvExtCG_ProgFlow)->Loop ()
(*pDrvEXtCG_ProgFlow) ->EndLoop ()

Misc.
(*PDrvEXtCG_ProgFlow)->Break()
(*PDrvExtCG_ProgFlow)->GoTo ()

ROY-G-BIV Corporation Confidentlal 3/15/95
© 1895 ROY-G-BIV Corporation:. All Rights Reserved;.. - - .

WO 96/38769 PCT/US96/08149

-80-

XMC Motion Control XMCSP! Reference 3.0 XMCSP! Reference

3.4.4 IXMC_DrvExtCG_ProgramMgmt Interface

The IXMC_DrvExtCG_ProgramFlow interface is used to generate program flow code. Loops and
if/then statements are several examples of contitional code generated. The following methods are

in the interface:

Programming
(*pDrvExtCG_ProgMgmt) ~>Run ()
(*pDrvExtCG_ProgMgmt)->Stop()

- Output
(*pDrvExtCG_ProgMgmt) ~>EnableQutput ()
(*pDrvExtCG_ProgMgmt) ->SetOutput ()

3.4.5 IXMC_DrvExtCG_Subroutine Interface

The IXMC_DrvExtCG_Subroutine interface is used to generate subroutines and calls to
subroutines. The following methods are in the IXMC_DrvExtCG_Subroutine interface;

General
(*pDrvExtCG_Sub)->Define ()
(*pDrvEXtCG_Sub)->Call()
(*pDrvEXtCG_Sub)->End ()

3.4.6 IXMC_DrvExtCG_Variable Interface

The IXMC_DrvExtCG_Variable interface is used to define and assign values to variables. The
following methods are included in the interface:

Definition
(*pDrvE.xt:CG_Yar) ~>Define()

Assignment
(*pDrvExtCG_Var)->AssignNumeric()
(*pDrvExtCG_Var)s>AssignBinary()
(*pDrvExtCG_VarF->AssignString()

ROY-G-BIV Corporation Confidential 3/15/85
©:1985 ROY-G-BIV. Corporation, All Rights Reserved.: -

WO 96/38769 PCT/US96/08149

-81-

XMC Motion Control XMCSP! Refsrence Appendix A

Appendix A

A.1 Reviewer Feedback

All feedback is important in order to evolve the specification into a standard software model for
motion control hardware. Please, at a minimum, respond to the following issues:

Which areas, ideas, or concepts within the specification seem confusing to you?

Are there any main features missing from the specification that you would find useful?
Are there any specific scenario-maps you would like to see in the next revision?

Are there any specific C or C++ code examples you would like to see?

Are there any specific Visual Basic code examples you would like 10 see?

[V N g

A.1.1 Correspondence
If possible, piease send all feedback over email to the following address:

Dave Brown

ROY-G-BIV Corporation

Compuserve: 72103,2235

Internet: 72103.2235@compuserve.com

Otherwise, if you do not have access to email, please mail all correspondence to the following
address:

Dave Brown

ROY-G-BIV Corporation
P.O. Box 1278

White Salmon, WA. 98672

ROY-G-BIV Corporation Confidential J/15/385
© 1895 ROY-G-BIV Corporation.. All Rights Reserved,

WO 96/38769 PCT/US96/08149

-82-

XMC Motion Control

XMCAPI Reference

Revision: Third Dratt

Author: Dave Brown

Date: Wednesaay, Feb 22, 1995

Description: This aocument is the XMCAPI reference gescnbing all functions, standard OLE interfaces, and

custom OLE interfaces making up the XMCAP|.

Revision History: 4/15/94 (DB) - First Oraft: Initial wnting.
7/1/194 (DB) - Second Draft: Sput aesign off small business pian. incorporated suggestions.
2/22/95 (DB) - Third Draft - Split XMCAP! reference off design guide.

ROY-G-BIV Corporation Confidential

© 1995 ROY-G-BIV Comoration, All rights reserved.

WO 96/38769 PCT/US96/08149

-83-

XMC Motion Control XMCAP! Refsrence 1.0 Overview

1.0 Overview
To use XMC, applications call the methods defined by the XMCAPI OLE interfaces to perform
the motion controi services needed. The full XMCAPI comprises a set of OLE interfaces
corresponding with common objects found in a motion control system. For example, a motion
control system may contain servo and stepper motors, encoders, limit switches, and a Jjoystick.
Within the XMCAPI are interfaces corresponding to each of these objects. The full XMCAP!
contains implementations of both standard OLE 2.0 interfaces and a rich set of custom OLE

interfaces designed specifically for motion control. :

This reference manual describes all OLE interfaces in the XMCAPI. Each section discussing an
interfaces starts with a description of the interface and how it is used. Next, all functions in the

interface are listed by catagory.

Chapter 2.0 Standard OLE Interfaces, describes all standard interfaces exposed in the XMCAP].
Next, Chapter 3.0 XMC Driver Administrator, discusses both the standard and custom
interfaces exposed by the Driver Administrator that make up a small portion of the X(MCAPI.
Finally, Chapter 4.0 XMC Motion Control Component, discusses the standard and custom
interfaces exposed by the Motion Control Component. The Motion Control Component
implements and exposes the majority of the XMCAPI. Together, the Motion Control Component
and the Driver Administrator implement and expose the full set of interfaces defined by the

XMCAPL

RQOY-G-BIV Corporation Confidential 311598

© 1995 ROY-G-BIV Corporation. Al Rights Reserved.

PCT/US96/08149

WO 96/38769
-84-

XMC Motion Control XMCAP| Refsrence 2.0 Standard OLE interfaces

2.0 Standard OLE Interfaces
Several standard OLE interfaces must be supported when following the OLE software mode!.
Both the [Unknown and IClassFactory interfaces are examples of required interfaces. The
IDataObject interface is used when transferring or caching data. The IDispatch is provided to
support OLE Automation berween processes. This section describes all standard OLE interfaces
used by the Driver Administrator, Motion Control Component, and Motion Control Drivers.

2.1 IClassFactory Interface

The IClassFactory interface is used to create an instance of an object and return to the caller a
pointer to an interface.

General
(*pCF) ~>Createlnstance()

(*pCF) ~>LockServer ()

2.2 IDispatch Interface
The IDispatch interface is used to support OLE Automation. Normally, this interface is used by
the OLE Automation engine, not the C/C++ application developer.

General
{*pDisp) ->GetIDsOfNames ()
(*pDisp)->GetTypelnfo()
(*pDisp)->GetTypelnfoCount ()
(*pDisp)->Invoke ()

2.3 [EnumX Interface
The IEnumX interface is a generic OLE interface that other enumeration interfaces always inhent
from. This interface is used to create and move through an enumeration of data. The
IXMC_Enuminterface interface inherits from IEnumX to implement the interface support

querying functionality.

General
(*pEnum) ->Nexct ()
(*PEnum) ->Skip()
(*pEnum) ->Reset ()
(*pEnum) ->Clone ()

2.4 lUnknown Interface
The IUnknown interface is a standard OLE interface exposed by all OLE objects. In a way itis a

common base interface.

General
(*pUnk) ->Querylnterface()
(*oUnk) ->AddRef ()
(*pUnk) ->Relesase ()

ROY-G-BIV Corporation Confidential 3/18/95

© 1995 ROY-G-BIV Corporation. All Rights Reserved.

WO 96/38769 PCT/US96/08149

-85-

XMC Motion Control XMCAP| Refsrence 3.0 XMC Driver Administrator

3.0 XMC Driver Administrator

The Driver Administrator, which implements a small subset of the XMCAPI set of functions, is
used by both the user and the Motion Control Component. It is used by the user to add new
Motion Control Drivers, ¢onfigure existing drivers. and remove old ones. Later when an
application uses the Motion Control Component, the component queries the Driver Administrator
for the current driver to use.

NOTE: OLE 2.0 interfaces are used to implement all functions in the XMCAPI.

The following OLE 2.0 interfaces are custom OLE interfaces in the XMCAPI supported by the

Driver Administrator. '

IXMC_DriverAdmin

3.1 Standard OLE Interfaces

The following standard OLE interfaces are supported by the Driver Administrator. For more
information on each interface, see section 6.0 Standard OLE Interfaces.

IClassFactory
IDispatch
IUnknown

3.2 Custom OLE Interfaces
The following custom interface is a part of the XMCAPI and an extension to the OLE2.0
software model.

3.2.1 IXMC_DriverAdmin

This interface is used to manipulate and query the Driver Administrator settings. The Driver
Administrator application, run by th& user. manipulates the administator’s settings. And, the
Motion Control Component queries the administrator for a pointer to the current driver to use,

Querying Attributes
(*pXMCDrvAdmin) ->GetSelectedDrivers ()
(*oXMCDrvAdmin) ~>IsDiagnosticTestingOn ()
(*pXMCDrvAdmin) ->IsAPILoggingOn ()
(*pXMCDrvAdmin) ->IsCmdLoggingOn ()
(*2XMCDrvAdmin) ->IsBitLoggingOn()

Setting Attributes
(*pXNMCDrvAdmin) ~>Set2?IStream()
(*pXMCDrvAdmin) ->SetCmdStream()
(*cXMCDrvAdmin) ~->Set8itStream()

Actions
(*pXMCDrvAdmin) ->EnableAPILogging ()
{"pDXMCDrvAamin) ->EnablieCadLoggiag ()
{*oXMCDrvAdmin} ->Enable8:tlogging ()
(*DXMCDrvAdmin) ->EnableDiagnosctics ()
{*oXMCDrvAcmin) ->ViewInterfaceSuppore ()

ROY-G-BIV Corporation Confidential 3/18/95

© 1995 ROY-G-8IV Corporation. All Rights Reserved.

WO 96/38769 PCT/US96/08149

-86-

XMC Motion Control XMCAP! Reference 3.0 XMC Driver Administrator

3.2.1 IXMC_EnumDriver

The IXMC_EnumDriver interface is used by the XMC Motion Control Component when
building the interface enumeration describing the level of XMC support provided by each driver.
This interface inherits from the standard IEnumX OLE interface.

ROY-G-81V Corporation Confidential 3/115/85
© 1995 ROY-G-BIV Corporation. All Rights Reserved.

WO 96/38769 PCT/US96/08149
-87-

XMC Motion Control XMCAP! Reference 4.0 XMC Motion Control Component

4.0 XMC Motion Control Component

The Motion Control Component, which impiements the majority of the XMCAPI set of functions,
is used by applications. As a complete set, the OLE interfaces in the XMCAPI are separated into

the four catagories below.

l. Standard - Standard OLE interfaces.
2. Motion Control - Custom OLE interfaces used for motion control and code generation.

Code Generation - Custom OLE interfaces used for code generation only.

3.
4. Diagnostic - Custom OLE interfaces used for debugging the system.

XMCAPI interfaces follow the standard OLE 2.0 COM Object software model. The following
OLE 2.0 interfaces make up the XMCAPI set of functions implemented by the Motion Control

Component:

Standard
IClassFactory
IDataObject
IDispatch
IEnumX
IUnknown

Motion Contro
IXMC_Counter
IXMC_Display
IXMC DynamicState
IXMC_Encoder
IXMC_Enumlnterface
IXMC_IO
IXMC_Joystick
IXMC_Limits
IXMC_Motion
IXMC_staticState
IXMC Timer

Code Generation
IXMC_Operator
IXMC_Program
“IXMC_ProgramfFlow
IXMC_ProgramMgmc
IXMC_Subroutine
IXMC_Variable

Diagnostic
IXMC_Zrror
IXMC_Debug

4.1 Standard OLE Interfaces
The following standard OLE interfaces are supported by the Motion Control Component. For
more information on each interface. see section 6.0 Standard OLE Interfaces.

IClassFaczory
IDataObject
IDispatcn
IEnumX
IUnknown

ROY-G-BIV Corporation Confidential 3115195

© 1985 ROY-G-BIV Corporation. All Rights Reserved.

WO 96/38769 PCT/US96/08149

-88-

XMC Motion Control XMCAP! Reference 4.0 XMC Motion Control Component

4.2 Custom OLE Interfaces - Motion Control
The general set of interfaces is made up from all main motion control interfaces. Most interfaces
resemble objects found within the motion control system.

4.2.1 IXMC_Counter Interface
The IXMC_Counter interface allows the programmer to manipulate a hardware counter.

Actions
(*pCounter) ~>Advise ()
(*pCounter)->AttachEncoder ()
(*pCounter)->DetachEncoder ()
(*pCounter)->Enable()
(*pCounter)->Reset ()
(*pCounter) ->UnAdvise ()

Querying Attributes
(*pCounter) ->GetCount ()

4.2.2 IXMC_DynamicState Interface

The IXMC_DynamicState interface manages high level system tasks, such as initialization, and
allows the user to get all state information describing the motion control system. When queried,
other interfaces use an internal pointer to the IXMC_DynamicState interface to retrieve state
values, which are returned to the caller. The following methods make up the

IXMC_DynamicState interface:

Configuration
(*pOynSt)->InitializeEx()
(*pDynSt) ->Intialize()
(*pDynsSt) ->Reset ()
(*pDynSt) ->ShutDown ()

Querying Attributes
(*pDynSt) ->AreHargwarelLimitsOn ()
(*pDynSt) ~>AreSoftwareLimitsOn ()
(*pDynSt) ->GetAcceleration()
(*pDynSt) ->GetActualPosition()
(*pDynSt) ~>GetActualVelocity ()
-(*pDynSt) ~>GetCommandedPosition ()
(*pDynSt) ~>GetCommandedVelocity ()
(*pDynsSt) ~->GetCount ()
(*pDynSt) ->GetDeceleration()
(*pDynSt) ~->GetErrorsStatus()
(*pDynSt) ->GetHomePosition ()
(*pDynSt) ->GetEncoderResolution()
(*oDynSt) ->GetJogVelocityHigh()
{*pDynSt) ->GetJogVelocityLow()
(*pDynSt) ->GetJoystickVelocityHigh ()
(*pDynSt) ->GetJoystickVelocrtyLow()
(*pDynSt) ~->GetJoystickAcceleration()
(*pbynSt) ->GetJoystickDeceleration()
(*pDynSt) ->GetLimitDeceleration()
(*pDynSt)->GetSoftwareLimitPositions ()
(*pDynSt) ->GetMapMode ()
(*oDynSt) ->GetPosition()
(*pDynSt) ->GetTimerTick()
(*pDynsSt) ~->GetUnits ()
(*pDynSt) ->GetVelocity ()
(*pDynSt)->GetZeroPosition()
{*pDynSt) ->IsCounterOn ()
(*p0ynSt)->IsInMotion()
(*pOynSt)->IslnterpolacionoOn()

ROY-G-BIV Comoration Confidential 318195

© 1995 ROY-G-BIV Corporation. All Rights Reserved,

WO 96/38769 PCT/US96/08149

-89-

XMC Motion Control XMCAP! Refersnce 4.0 XMC Motion Contro| Component

(*pDynSt)->IsJoystickOn ()

(*pDynSt) ->IsMotionOn ()
(*pDynsSt)->IsPositionErrorCorrectionOn()
(*pDynsSt)->IsTimerOn(}

(*pDynSt) ->IsI0OutputOn ()
(*pOynsSt)->IsIOInputOn()

Setting Attributes
(*pDynsSt) ->ClearErrors ()

Actions
(*pDynSt) ->GetCS ()
(*pDynsSt) ->ReleaseCS ()

4.2.3 IXMC_Encoder Interface

The IXMC_Encoder interface is used when working with encoder hardware. Once initialized, a
pointer to an IXMC_Encoder interface may be artached to an IXMC_Motion interface which
allows them to work together. Once attached, the IXMC_Motion interface uses the
IXMC_Encoder interface position reiated functions, like setting the home position or querying
the current position.

Querying Attributes
(*pEncoder)->GetErrorStartus ()
(*PEncoder) ->GetHomePosition ()
(*PEncoder) ->GetPosition ()
(*pEncoder) ->GetZeroPosition ()
(*pEncoder)->GetResolution()

Setting Attributes
(*pEncoder)->SetHomePosition ()
(*pPEncoder) ->SetHomePositionEx ()
(*pEncoder)->SetZeroPosition ()
(*pEncoder)~>SetZeroPositionEx ()
(*pEncoder)->SetResolution ()

4.2.4 IXMC_EnumlinterfaceInterface

The IXMC_EnumInterface interface is used to access the list of the XMCAPI interface names
and a description of their implementations. For example, if the motion control hardware or
software driver tontrolling the hardware do not support code generation, ali code generation
interfaces in the enumeration would be listed as “NOT IMPLEMENTED". Knowing what
interfaces are and are not supported allow particular programs to decide what drivers are actually
capable of running with the application. This interface inherits from the standard IEnumX OLE

interface,

Inheritance
IEnumX
|
t=--- IXMC_EnumInterrface

ROY-G-8IV Corporation Confidential 3/15/85

© 1995 ROY-G-Biv Corporation. All Rights Reserved.

WO 96/38769 PCT/US96/08149

-90-

XMC Motion Control XMCAP! Reference 4.0 XMC Motion Control Component

4.2.5 IXMC_IO Interface

This interface is used by applications to manipulate both digital and analog I/O support iocated on
the motion control hardware. The following methods are available from the Motion Component

in the IXMC_IO interface:

Configuration
(*pI0)~>Initialize()
(*pIO)=>InitializeEx()

Querying Attrributes
(*pI0)->GetErrorStatus()
(*pI0)=>IsIntputEnabled()
(*pI0)->IsOutputEnabled()

Actions
(*pI0)->Advise()
(*pI0)->AttachMotion()
(*pI0) ~>DetachMotion()
(*pI0)->Enablelnput ()
(*pI0)->EnableQutput ()
(*pIO)->Read ()
(*pI0)->UnAdvise ()
(*pIO)=>Write()

4.2.6 IXMC_Joystick Interface _
The IXMC_Joystick interface is used to manipulate a hardware joystick. When the joystick is
enabled, all instances of the IXMC_Motion interface will be disabled.

Querying Attributes
(*pJS) ->GetAcceleration()
(*pJS) ->GetDeceleration()
(*pJS)->GetErrorStatus ()
(*pJS)->GetVelocityHigh()
(*pJS) ->GetVelocitylow ()
(*pJS)=->IsEnabled()

Setting Attributes
—{*pJS) ->SetAcceleration|()
(*pJS) ->SetDeceleration()
(*pJS)->SetVelocityHigh()
(*pJS)->SetVelocityLow()
(*pJs)->SetZero()

Actions
(*pJS)->AttachAnaloglIO()
{*2JS) ->AttachLimics ()
{*2JS)->DetachAnaloglIO()
(*8JS) ->Dectachlimycs ()
t*pJS)->Enable()

4.2.7 IXMC_Limits Interface

The IXMC_Limits interface is used to set software limit positions. The IXMC_Limits,
IXMC_Joystick, and IXMC_Motion interfaces work together to impiement the software limits.

Querying Attributes
{*PLim)~>GetErrorStatus ()
{(*olim)->GetlimicPosizions ()
(*plim) ->GetDeceleration()
{“plim)~>AreSoftwarelLimitsOn ()

ROY-G-BIV Corporation Confidential V1595

© 1995 ROY-G-BIV Corporation. All Rights Resarved.

WO 96/38769 PCT/US96/08149

-91.

XMC Motion Control XMCAP! Reference 4.0 XMC Motion Control Component

(*pLim) ->AreHardwareLimitsOn()

Setting Attributes
(*pLim) ->SetLimitPositions ()
{(*plim)~->SetDeceleration()

Actions
(*pLim)->EnableSoftwarelLimits ()
(*pLim) ~>EnableHardwarelimits ()

4.2.8 IXMC_Motion Interface

The IXMC_Motion interface is used to perform movement operations. Most functions are passed
an array of AXIS_DATA specifying the appropriate axis data.

Configuration
(*pMotion)->Initialize()
(*pMotion)->Tune ()
(*pMotion) ->TunekEx ()

Querying Attributes
(*pMotion) ~>GetAcceleration (]
(*pMotion)~>GetDeceleration()
(*pMotion)~->GetErrorStatus () i
(*pMotion) ->GetVelocity ()
(*pMotion)->GetPosition()

(*pMotion)->GetUnits ()
(*pMotion) ->IsMotionOn() .
(*pMotion)->IsInterpolationOn{)

Setting Attributes
(*pMotion)->AttachEncoder ()
(*pMotion)->AttachLimits ()
(*pMotion)->DetachEncoder ()
(*pMotion) ->DetachLimits ()
(*pMotion)->SetAcceleration()
(*pMotion)->SetDeceleration()
{*oMotion) ->SetPosition()
(*pMotion) ->SetVelocity ()
(*pMotion)~->SetJogVelocityHigh()
(*pMotion) ->SectJogVelocityLow()

Actions
(*pMotion) ~->Advise ()
(*pMotion) ~>CreatePath ()
(*pMotion)->Enablelnterpolation()
(*oMotion) ~->EnableMotion ()
(*pMotion) ->EnablePositiontrsorCorrection()
(*pMotion) ->GoHome ()
{(*pMotion) ->GoZero ()
(*pMotion) ~->Jog ()
(*pMotion)->Kill()
(*oMotion) ~->MoveADbs ()
(*pMotion) ->MoveContinous ()
(*pMotion) ->MoveRes ()
(*pMotion)->Stop()
(*oMotion}~->TraceArc (!
(*pMotion) ->TracePath()
(*pMotion) ->UnAdvise(}

ROY-G-BIV Corporation Confidential 318/95

© 1395 ROY-G-BIV Cormporation, All Rights Reserved,

WO 96/38769 PCT/US96/08149

-92-

XMC Motion Control XMCAP! Reference 4.0 XMC Motion Control Component

4.2.9 IXMC_StaticState Interface

The IXMC_StaticState interface manages all static data in the motion control system, such as
scaling factors, maximum velocities and maximum accelerations. The following methods make

up the IXMC_StaticState interface:

Configuration
(*pStatsSt)->InitializeEx()
(*pStatSt)->Intialize()

Querying Attributes

© (*pStatSt)->GetAxisScaling ()
(*pStatSt) ->GetMaxAcceleration ()
{(*pStatsSt)->GetMaxDeceleration()
(*pStatst) ~>GetMaxVelocity ()
(*pStatst)->GetPathScaling ()
(*pStatsSt) ->GetOperatingMode ()

Setting Attributes
(*pStatsSt)->SetAxisScaling{()
(*pStatsSt) ->SetMaxAcceleration()
(*pStatsSt) ~->SetMaxDeceleration()
(*pStatsSt) ->SetMaxVelocity ()
(*pStacsSt)->SetPathScaling()
(*pStatSt) ->SetOperatingMode ()

Actions
(*pStatSt)->CommitState()
(*pStatSt)->EnableScalingFactors ()
(*pStatSt)->GetState()
(*pStatSt)~->ReleaseState()

4.2.10 IXMC_Timer Interface

The IXMC_Timer interface allows the programmer to manipulate a hardware timer.

Querying Attributes ~
(*pTimer)->GetDelay()
(*pTimer) ->GetErrorStatus ()
(*pTimer) ->GetElapsedTime ()

_{*pTimer)->GetResolution ()
(*pTimer)->IsInDelay()

Setting Attributes
(*pTimer)->SetDelay()

Actions
(*pTimer) ->Advise ()
(*pTimer)->DoDelay()
(*pTimer)~>Enable()
(oTimer)->Reset()
(*pTimer)->Starc()
(*pTimer)->Stop()
(*pTimer)->UnAdvise ()

4.3 Custom OLE Interfaces - Code Generation
Unlike the set of general interfaces, that may either run in either real-time or generating code
modes, the code generation interfaces are only used when generating code. When used in
conjunction with other general interfaces, complete motion control programs may be generated.
This section discusses each of the code generation interfaces.

ROY-G-BIV Corporation Confidential U15/185

© 1985 ROY-G-BIV Corporauon. All Rights Reserved.

WO 96/38769 PCT/US96/08149

-93-

XMC Motion Control XMCAP! Refsrence 4.0 XMC Motion Control Component

4.3.1 IXMC_Operator Interface

The IXMC_Operator interface contains general program statement generating functions
including bitwise operations, mathematical operations, logical operations, and general conditional
operations. The following functions are in the IXMC_Operator interface:

Constants
CE_PI

Bitwise
(*pOper) ~->BitAnd ()
(*pOper) ->BitNot ()
(*pOper) ->BitOr ()
(*pOper)->BitShiftL()
(*pOper)->BitShiftR()
(*pOper) ->BitXOr()

Logical
(*pOper)->And ()
(*pOper) =>Not ()
(*pOper) ->0r ()

Mathematical

(*pOper) ->Add ()
(*pOper) ->Bit ()
(*pOper) ->Div ()
(*pOper)->LeftParen()
(*pOper) ->Mult ()
(*pOper)->RightParen ()
(*pOper) ->Sqrt ()
(*pOper)->Sub()

Trigonometric
(*pOper) ~>ACos ()
(*pOper)=->ASin()
(*pOper) ->ATan()
(*pOper) ->Cos ()
(*pOper)->Sin() &
(*pOper)->Tan()

Labets/Strings/Comments
—t*pOper)~>ASCIIChar()
(*pOper) ->Comment ()
(*pOper) ->DeclLabel ()
(*pOper)->String ()

Conditional
(*pOper)->Equal ()
(*pOper)->GreaterThan()
(*pOper) ->GreaterThanEqual ()
(*pOper)->LessThan()
(*pOper)~>LessThanEqual ()
(*pOper)->NotEqual ()

4.3.2 IXMC_Program Interface

The IXMC_Program interface is used to generate the general program shell. Several other
program flow functions like causing the program to sieep for a specified amount of time are also
included. The following methods make up the interface:

Program Fiow
(*pProg)->Combine ()
(*DProg)~->Define()
(*pProg) ->Download()

ROY-G-BIV Corporation Confidental 3/15/95

© 1995 ROY-G-BIV Corporation. Al Rights Reserved.

WO 96/38769 PCT/US96/08149

-94-

XMC Motion Control XMCAP! Reference 4.0 XMC Motion Control Component

(*pProg)->End()
(*pProg)->Exit ()

(*pProg) ->RenderAsTexct ()
(*pProg) ->Run()
(*pProg)->Sleep()
("pProg)->Stop|()

4.3.3 IXMC_ProgramFlow Interface

The IXMC_ProgramFlow interface is used to generate code used to control the flow of a
program. Methods are available to generate if-cise and general looping statements. The following
methods are in the IXMC_ProgramFlow interface:

If/Else
(*pProgFlow)->I£f0Open()
{(*pProgFlow)=>IfClose()
(*pProgFlow)~->Else()
(*pProgFlow)->EndIf ()

While
(*pProgFlow) ->WhileOpen ()
{(*pProgFlow)->WhileClose ()
(*pProgFlow)->EndWhile ()

Repeat
{*pProgFlow) ~->Repeat ()
{*pProgFlow)->UntilOpen/()
(*pProgFlow)->UntilClose ()

Loops
(*pProgFlow) ->Loop ()
(*pProgFlow) ->EndLoop ()

Misc.
(*PProgFlow) ->Break()
(*pProgFlow) ->GoTo ()

4.3.4 IXMC_ProgramMgm¢Interface

The IXMC_ProgramMgmt interface is used when working with programs on a high level.
Running and saving programs are a few operations included in this interface. The followin

methods make up the interface: '

Program Management
(*pProgMgmt) ->Download ()
(*pProgMgmt) ->Upload ()
(*pProgMgmt) ->SetOutput ()
(*pProgMgmt) ->OpenQutput ()
(*pProgMgmt) ->CloseQutpuc ()
(*pProgMgmt) ->FlushOutpuc ()

ROY-G-BIV Corporation Confidential J/18/95
© 1995 ROY-G-BIV Corporation. All Rights Reserved.

WO 96/38769 PCT/US96/08149

-95.

XMC Motion Control XMCAP! Reference 4.0 XMC Motion Control Component

4.3.5 IXMC_Subroutine Interface

The IXMC_Subroutine interface is used to generate and subroutines and calls to subroutines
- generated. The following methods are in the IXMC_Subroutine interface:

General .
(*pSub) =>Define()
(*pSub) =->End ()
(*pSub) =>Call ()

4.3.6 IXMC_Variable Interface

The IXMC_Variable interface is used to define and assign values to variables. The following
methods are included in the interface:

Definition
(*pVar)->Define ()

Assignment
(*pVar)->AssignNumeric ()
(*pVar)->AssignBinary()
(*pVar)->AssignString()

4.4 Custom OLE Interfaces - Diagnostic
Diagnostic interfaces may be used by the application developer when debugging the system. The
methods in the interface provide the user with logs of information generated when running the
XMC software model. Logs may be created for XMCAPI calls, and.all information flowing in
and out of specified ports.)

4.4.1 IXMC_Error Interface

The IXMC_Error interface is provided to give the application developer a consistant method of
dispiaying and logging all XMC errors based on the HRESULT value returned by functions that
fail. The following methods are in fite interface:

Setting Attributes
(*pExror)->Setoutput ()

Actions
(*pError)->Display()
(*pError)->Log()
(*pError)->StringFromHRESULT ()

4.4.2 IXMC_Debug Interface

The IXMC_Debug interface gives the application developer conmrol over several log files that
may be generated to help debug an application using the XMC software model. The following
methods are in the interface:

Setting Attributes
(*pDebug) ~>SetXMCAPILogFile ()
(*pDebug) ~>SetXMCAPIStream()

Actions
(*pDebug) ->EnableXMCAPILogging ()
(*pDebug) ~->EnableDiagnostics ()

ROY-G-BiV Corporation Confidential /16195
© 1995 ROY-G-BIV Corporation. All Rights Reserved.

WO 96/38769 PCT/US96/08149

-96-

Motion Control Component Specification AppendiIx A

Appendix A

A.1 Reviewer Feedback
All feedback is important in order to evolve the specification into a standard software model for
motion control hardware. Please, at a minimum, respond to the following issues:

Which areas, ideas, or concepts within the specification seem confusing to you?

Do you see any unresolved issues, other than those listed above?

Are there any main features missing from the specification that you would find useful?
Are there any specific scenario-maps you would like to see in the next revision?

Are there any specific C or C++ code exampies you would like to see?

Are there any specific Visual Basic code examples you would like to see?

RN

A.l.1 Correspondence _
If possible, please send all feedback over email to the following address:

Dave Brown

ROY-G-BIV Corporation
Compuserve:72103,2235

Internet: 72103.2235@compuserve.com

Otherwise, if you do not have access to email, please mail all correspondence to the following
address:

Dave Brown

ROY-G-BIV Corporation
P.O. Box 1278

White Saimon, WA. 98672

ROY-G-BIV Corporation Confidential 31895
© 1995 ROY-G-BIV Corporation, All Rights Reserved,

10

15

20

25

30

Iy
N

WO 96/38769 PCT/US96/08149

-97-

| claim:
1. A method of moving an object in a desired manner, comprising the steps of:
defining a set of motion control operations, where each motion control operation
is either a primitive operation that is necessary to perform motion control and that cannot be
simulated using other motion control operations or a non-primitive operation that does not meet
the definition of a primitive operation;
defining a core set of core driver functions, where each core driver function is
associated with one of the primitive operations;
~ defining an extended set of extended driver functions, where each extended
driver function is associated with one of the non-primitive operations;
defining a set of component functions:
providing component code for each of the component functions, where the
component code associates at least some of the component functions with at least some of the
driver functions; "
developing a set of software drivers, where (i) each software driver is associated
with one motion control device in a supported group of motion control devices and (i) each
software driver comprises driver code for implementing the motion control operations associated
with at least some of the driver functions:
providing an application program comprising a series of component functions,
where the application program defines the motion steps necessary to move the object in the
desired manner;
selecting one motion control device from the group of supported motion control
devices;
attaching the object to the selected motion control device;
selecting from the set of software drivers the software driver associated with the
selected motion control device;
generating control commands based on the component functions of the
application program, the component code associated with the component functions, and the
driver code associated with the selected software driver; and
operating the selected motion control device based on the control commands to
move the object in the desired manner.

2. A method as recited in claim 1, in which the step of providing the set of software
drivers comprises the step of developing driver code to implement all of the core driver functions.
3. A method as recited in claim 2, in which the step of developing the set of
software drivers further comprises the step of developing driver code to implement at least some

of the extended driver functions.

4. A method as recited in claim 3, in which:

W

10

20

25

30

WO 96/38769 PCT/US96/08149

-98-

non-supported extended driver functions are extended driver functions having no
driver code associated therewith; and

the step of generating control commands comprises the step of generating the
control commands based on the driver code associated with a combination of the core driver
functions to emulate the plurality of incremental motion steps associated with at least some of the
non-supported extended driver functions.

5. A method as recited in claim 4, in which the step of generating the control

commands further comprises the steps of:

- developing an extended function pointer table that maps the non-supported
extended driver functions to the combination of core driver functions employed to emulate the
non-supported extended functions: and

generating the control commands further based on the contents of the stub table.
6. A method as recited in claim 5, in which the extended function pointer table
contains pointers for both supported and non-supportéd extended driver functions, where the
pointers for the supported extended driver functions point to driver code for implementing the
supported extended driver functions and the pointers for the non-supported extended driver
functions point to the combination of core driver functions that emulate the non-supported
extended functions.
7. A method as recited in claim 1, further comprising the step of:
determining a first unit system employed by the software drivers: wherein
the step of generating the control commands further comprises the step of
converting a second unit system employed by the application program into the first unit system.
8. A method as recited in claim 1, further comprising the steps of:
providing a piurality of destinations of control commands:
providing a plurality of streams, where each stream contains transmit stream
code that determines how the control commands are to be transferred to at least one of the
destinations of control commands:
selecting at least one of the destinations of control commands; and
transferring the control commands to the selected destination of control
commands based on the‘ transmit stream code contained by the stream associated with the
selected destination of control commands.
9. A method as recited in claim 8, in which certain of the destinations of contro!
commands generate response data, the method further comprising the steps of:
providing response stream code for the streams associated with the destinations
of control commands that generate response data; and
processing the response data based on the response stream code.

10. A method of moving an object in a desired manner, comprising the steps of:

10

15

20

25

30

35

WO 96/38769 PCT/US96/08149
-99-

defining a first set of first driver functions and a second set of second driver
functions, where each first driver function is associated with an incremental motion step
performed by motion control devices and each second driver function is associated with a
plurality of such incremental motion steps;
providing a plurality of software drivers, where each software driver compfises
driver code and is associated with one motion control device selected from a group of supported
motion control devices;
providing an application program comprising a sequence of program instructions;
~ selecting a motion control device from the supported group of motion control
devices;
mounting the object on the selected motion control device:
selecting the software driver associated with the selected motion control device;
generating control commands based on the application program, the first and
second driver functions, and the driver code associatéd with the selected software driver; and
operating the selected motion control device based on the control commands to
move the object in the desired manner.
11. A method as recited in claim 10, in which the step of providing the set of software
drivers comprises the step of developing driver code to impiement all of the first driver functions.
12. A method as recited in claim 11, in which the step of developing the set of
software drivers further comprises the step of developing driver code to implement at least some
of the second driver functions.
13. A method as recited in claim 12, in which:
non-supported second driver functions are second driver functions having no
driver code associated therewith; and
the step of generating control commands comprises the step of generating the
control commands based on the driver code associated with a combination of the first driver
functions to emulate the plurality of incremental motion steps associated with at least some of the
non-supported second driver functions.
14. A method as recited in claim 13, in which the step of generating the control
commands further comprises the steps of: |
developing an extended function pointer table that maps the non-supported
extended driver functions to the combination of core driver functions employed to emulate the
non-supported extended functions; and
generating the control commands further based on the contents of the stub table.
15. A method as recited in claim 14, in which the extended function pointer table
contains pointers for both supported and non-supported extended driver functions, where the
pointers for the supported extended driver functions point to driver code for implementing the
supported extended driver functions and the pointers for the non-supported extended driver

10

20

25

30

(93]
n

WO 96/38769 PCT/US96/08149

-100-

functions point to the combination of core driver functions that emulate the non-supported
extended functions.
16. A method as recited in claim 10, further comprising the step of:

determining a first unit system employed by the software drivers: wherein

the step of generating the control commands further comprises the step of
converting a second unit system employed by the application program into the first unit system.

17. A method of generating a sequence of control commands for controlling a motion

control device to perform a given series of motion steps based on an application program defining
the given series of motion steps, the method comprising the steps of:

defining a set of motion control operations, where each motion contro! operation
is either a primitive operation that is necessary to perform motion control and that cannot be
simulated using other motion control operations or a non-primitive operation that does not meet
the definition of a primitive operation;

defining a core set of core driver functions, where each core driver function is
associated with one of the primitive operations;

defining an extended set of extended driver functions, where each extended
driver function is associated with one of the non-primitive operations;

defining a set of component functions;

providing component code for each of the component functions, where the
bomponent code associates at least some of the component functions with at least some of the
driver functions;

developing a set of software drivers, where (i) each software driver is associated
with one motion control device in a supported group of motion control devices and (i) each
software driver comprises driver code for implementing the motion control operations associated
with at least some of the driver functions;

selecting one motion control device from the group of supported motion control
devices;

selecting from the set of software drivers the software driver associated with the
selected motion control device; and

generating control commands based on the application program, the component
code, and the driver code associated with the selected software driver.

18. A method as recited in claim 17, in which the step of providing the set of software
drivers comprises the step of developing driver code to implement all of the core driver functions.
19. A method as recited in claim 18, in which the step of developing the set of
software drivers further comprises the step of developing driver code to implement at least some

of the extended driver functions.
20. A method as recited in claim 19, in which:

10

20

25

30

WO 96/38769 PCT/US96/08149

- 101 -

non-supported extended driver functions are extended driver functions having no
driver code associated therewith; and

the step of generating control commands comprises the step of generating the
control commands based on the driver code associated with a combination of the core driver
functions to emulate the plurality of incremental motion steps associated with at least some of the
non-supported extended driver functions.

21. A method as recited in claim 20, in which the step of generating the control

commands further comprises the steps of:

* developing an extended function pointer table that maps the non-supported
extended driver functions to the combination of core driver functions employed to emulate the
non-supported extended functions; and

generating the control commands further based on the contents of the stub table
22. A method as recited in claim 21, in which the extended function pointer table
contains pointers for both supported and non-supportéd extended driver functions, where the
pointers for the supported extended driver functions point to driver code for implementing the
supported extended driver functions and the pointers for the non-supported extended driver
functions point to the combination of core driver functions that emulate the non-supported
extended functions.
23. A method as recited in claim 17, further comprising the step of:
determining a first unit system employed by the software drivers: wherein
the step of generating the control commands further comprises the step of
converting a second unit system employed by the application program into the first unit system.
24, A method as recited in claim 17, further comprising the steps of:
providing a plurality of destinations of controi commands;
providing a plurality of streams, where each stream contains transmit stream
code that determines how the control commands are to be transferred to at least one of the
destinations of control commands;
selecting at least one of the destinations of control commands; and
transferring the control commands to the selected destination of control
commands based on the transmit stream code contained by the stream associated with the
selected destination of control commands.
25, A method as recited in claim 24, in which certain of the destinations of control
commands generate response data, the method further comprising the steps of:
providing response stream code for the streams associated with the destinations
of control commands that generate response data; and
processing the response data based on the response stream code.

10

20

WO 96/38769 PCT/US96/08149

- 102-

26. A method of generating a software driver for allowing a software system to
control a hardware system to perform a desired operation based on an application program
defining the desired operation, the method comprising the steps of:

defining at least one driver function for implementing the desired operation;

defining a command format template and a response format template for each
driver function;,

generating command data strings based on the command format template and
the application program; and

parsing response data strings based on the response format template and the

application program.

27. A method as recited in claim 17, in which the step of generating the control
commands further comprises the steps of: *
defining a command format template and a response format template for each
driver function;
generating command data strings based on the command format template and
the application program; and
parsing response data strings based on the response format template and the

application program.

WO 96/38769

XMC Motion Control - System interaction-Map

1/37

PCT/US96/08149

| Personal Computer Software 3 S
H prn—.

CPL

]i % —~ Ulser .

£xcel Apphicatbn +

Wrnewn
T Dive é;mm FUALO! v

\)

3z

> Driver Admin

() Stoncierd OLE Mteviaces
() Citmom OLE mmortoce)

&

A

i
| ”w
M

| Vmsuat Basic App
C++ Appacation P
Ve

M
Stancerd OLE imenace: c\:_‘
Exonced imerisces ¢!
Exonced Ut mmeniece: oy |

———

/
Motion Control |
_Component ’

Motion Control t
Driver Stub

““m“’""“‘O-J oo & o
Vendor Specec wmerteces ¢\ . D

-

Vencor Spechnc imersces (..

Lnsbisd Driver h«-m—\—/
3
\\
7" Wannewn /" wnmewn
v 5 v
Swncerd OLE . S1en0erO OLE Mretscescy -, Stencent OLE mieneces [a——
Com imentaces 5./ Motion Control Com mmnsces) - ‘Motion Control ¢ Com menaces | Motion Control
Emmuo_ Driver gmmumo_ Driver : Exwaced kwenteces 0| Driver 5
Exonced Ul inertaces 0_1 A Exonced Ui menaces o B H Exronced Ul itenaces ¢, [od i
r Code Gonerwtion interiates vy C Longuane |
; Cvemmore

Motion Control
Text File
Stream

Motion Centrol

PCBus PC Bus

Stream Zga Stream

<o 1
Pvmacy

| e

Sreendy
| Metion Controt

ot

/ 30c
yeo-

| Motion Control |
| Haroware C

t
PC Bus Stream ~

! Soeew PC inn ’;\-2 &
Camveruntoren Protecy

l Mechanical

|
Mechanical | Mechanical
System A i System A System A l
.; | —~§c
' N i]
! / | !
Motion Control Motdion Control Motion Contro!
Device A Device B Deviee C

“Figaret XMC System Interaction-Map

F

20
[$b

G |

20¢

K/O

ROY-G-BIV Corporation Confidential

5/30/95

WO 96/38769 PCT/US96/08149

2/37

32

Administrator

20 IXMC_iuAPlO_If Component —F

0
/ S—
Driver Stub

IXMC_UDxxxSPI

Figure 3 Object Interaction-Map.

ROY-G-BIV CORPORATION CONFIDENTIAL 5/30/96

WO 96/38769 PCT/US96/08149

3/37

[P=—comemmmmseais, Svw——
CCmpntDisp

3

o
¥ T orover

Figure 5 Scenario-Map - Core SPI Opcration.

ROY-G-BIV CORPORATION CONFIDENTIAL 5/30/96

WO 96/38769 PCT/US96/08149

4/37

IXMC_xnAR, Component

[t s ST .
CDrivet

[corkerr
)

Figure 6 Scenario-Map - Unit Mapping.

Figure 7 Scenario-Map - Extended SPI Operation.

ROY-G-BIV CORPORATION CONFIDENTIAL 5/30/96

WO 96/38769 PCT/US96/08149

5/37

Applications
(VB apps,
VC++ apps,
BCW apps, etc)

Figure 8 Scenario-Map - Clean-up.

ROY-G-BIV CORPORATION CONFIDENTIAL 5/30/96

WO 96/38769 PCT /US96/08149

6/37

IUnknown

IClassFactory

IDispatch

IXMC_API_1 ~

XMCAPI Interface #1

T e

IXMC_API_2 1 xpmeapt intertace #2

IXMC_API_n

Figure 9 Intcrface-Map

‘Struct DRVEXT INTERFACE INFO
i -enum DRVEXT_Xn METHODIDS
{

DRVEXT_Xn_METHOD1
DRVEXT_Xn_METHOD2

DRVEXT_Xn_METHODn

IXMC_DrvExt_X1,
IXMC_DrvExt_X2

Methodinfo 1

| struct DRVEXT METHOD_ INFO
{
YMC_SUPPORTTYPE m_st;
CString m_strName;

Methodinfo 2

Methodinfo n

LPFNDRVEXT m_pfnMethod;

Figure 10 Data-Map - CDriver class with XMCSPI table.

ROY-G-BIV CORPORATION CONFIDENTIAL

5/30/96

WO 96/38769 PCT/US96/08149

7/37

{Unknown

Unknown

IXMC_xxxAPI

Component

IXMC_XxxAP! Driver

Administrator

3 ‘ IXMC_xxxSFI ¢y

1Unknown
o)

D IXMC_xxxUDSPI o
: Stream

Figure 11 Module Interaction-Map.

ROY-G-BIV CORPORATION CONFIDENTIAL 5/30/96

WO 96/38769 PCT/US96/08149
8/37

Driver
Administrator

Administrater

Figure 13 Scenario-Map -
Registration.

ROY-G-BIV CORPORATION CONFIDENTIAL §/30/96

WO 96/38769 PCT/US96/08149

9/37

1Uninown

DOMC_rocAPi | Driver
| Administrator

Driver

=

3 S
; CStreamMgr |

Figure 14 Scenario-Map - Initialization by Driver
Administrator.

Driver

(\ﬁmem) ‘)
A —
i CDriverDisp CStreamMgr

Figure 15 Scenario-Map - Adding a
Stream.

ROY-G-BIV CORPORATION CONFIDENTIAL 5/30/96

WO 96/38769

10/37

CStream

Figure 16 Scenario-Map - Query

Operation.

1Unkrown
¢

IXMC_xxxSB
o_l Driver
v

@

i

r Y
l CDriverDisp

CStreamMgrv

Figure 17 Scenario-Map - G

lean-up by Driver Administrator.

PCT/US96/08149

ROY-G-BIV CORPORATION CONFIDENTIAL

5/30/96

WO 96/38769

11/37

Unknown

Figure 18 Scenario-Map - Initialization by Component.

IXMC_xxxSPIg>

Driver

(g (&
CResponseList =§;@ PCCommandList
,_ur
> CResppnse

CCo and

—G
CStream

Figure 19 Scenario-Map - Command Operations.

ROY-G-BIV CORPORATION CONFIDENTIAL

PCT/US96/08149

5/30/96

WO 96/38769 PCT/US96/08149
12/37

Figure 20 Scenario-Map - Clean-up by Component.

1Unknown

IClassFactory ()

DR

| SPI - Core Interfaces

:/ TALome! myNGOS 80 EDECHC T MO SNIC Siele U0 Wi WOrking
IXMC_DrvCore_StaticState () . win moion coneel

’ i *Alohe: meroos are poecic D nouym:cnhmnmnwalum
IXMC_DrvCore_DynamicState O wh motonconyo

IXMC_DrvCore_SPI_3 ()
IXMC_DrvCore_SP|_4 (

-

Nnnun s
.

IXMC_DrvCore_SPi_n ("

XMCSP intarface #n
BECIN _
| SP1 - Extended Imerfacs. N AT IR
IXMC_DrvExt_StreamMgmt EoumSyeam

IXMC_DrvExt_SPI_2

IXMC_DrVEXt_SPI_3 "\ sascSPt intetace 43

e

IXMC_DrvExt_SPI_n ("t sacsei intertace #n

SXTAIRNELAL A H0 N HEINNTINUREANUEAA RN ANV AN TN RIS A AR AN KRR A NN A SAANN NN AN YA 4474 S N €N RN TN N N a1 4N

Figure 21 Interface-Map.

ROY.-G-BIV CORPORATION CONFIDENTIAL §/30/96

WO 96/38769 PCT/US96/08149

13/37

IXMC_xxxAP1 ¢y

Driver
Administrator

IXMC_xxxSP!

Debug
Monitor

N
IXMC_xxxUDSPI ¢y

Figure 22 Module 1A-Map.

ROY-G-BIV CORPORATION CONFIDENTIAL 5/30/96

WO 96/38769 PCT/US96/08149
14/37

| Administrator

IXMC_x00SPI,

IXMC_xxxUDSP}

Figure 23 Object 1A-Map.

ROY-G-BIV CORPORATION CONFIDENTIAL 5/30/96

WO 96/38769 PCT/US96/08149
15/37

1Uniknown

DXMC._ooPlo Drtver)

Adminlstrator

IXMC_xxxUDSP!

Figure 24 Scenario-Map - Initialization

ROY-G-BIV CORPORATION CONFIDENTIAL 5/30/96

WO 96/38769

PCT/US96/08149
16/37

IXMC_xxxUDSPI
Stream

IXMC_xxxUDSP!

I
&)
A4

REEICERTTER. AN PR S
[CStreambisp CRegistiyMgr

Figure 26 Scenario-Map - Setup

D(MC_mAP/o_(

|
|

Driver
Administrator

O

IXMC_xxxUDSP}
Stream
A .

@
- hd ‘
Y -
! CStreamDisp S

Figure 27 Scenario-Map - Clean-up

ROY-G-BIV CORPORATION CONFIDENTIAL

§/30/96

WO 96/38769 _ ' PCT/US96/08149

17/37

Unknown

j

SOAPI (| Driver
Administrator

Stream

- \4’ 4/
LCStrea

v.<:|or‘|uAL‘
@
N

Figure 29 Scenario-Map - Opening the Stream

ROY-G-BIV CORPORATION CONFIDENTIAL 5/30/96

WO 96/38769 PCT/US96/08149

18/37

Figure 31 Scenario-Map - Reading Data.

ROY-G-BIV CORPORATION CONFIDENTIAL §/30/96

WO 96/38769 , PCT/US96/08149

19/37

Figure 32 Scenario-Map - Clean-up.

1Unknown

IClassFactory

| SPI - UnDocumented '

) N\
SR \\.\

e Y

1 Read IsEnabled
Wirite Stat
i Enable

A e

IXMC_Stream 0O

¥ initialize CreateStream

IXMC_Streaminit ~{ open Stat
i Close Setup
& \\\\&b\i\\x\\\\\«m\\&\x\\w&sw\\x\\\\‘waiw:«w&\\“\\\\\:>';v,avs\w\\w)«m\\\\\x«i&\\\«mﬁmm&mﬂm\\\\\m«\v\\“\\xw‘\\mmm 5K RS0

Figure 33 Interface-Map.

ROY-G-BIV CORPORATION CONFIDENTIAL 5/30/96

WO 96/38769 PCT/US96/08149

20/37

Unknown
QO

IXMC_xxxAP!
- 9 Component

Driver

fUnknown

Figure 35 Object Interaction-Map.

ROY-G-BIV CORPORATION CONFIDENTIAL 5/30/96

WO 96/38769 PCT/US96/08149

21/37

Figure 36 Scenario-Map - Initialization.

1Unknown
Q

IXMC_DrvExt_oxSPIO
Driver Stub

Figure 37 Scenario-Map - Operations.

ROY-G-BIV CORPORATION CONFIDENTIAL 5/30/96

WO 96/38769 PCT/US96/08149

22/37

= O‘(Componsnt

IXMC_DrvEx)_xxxSPY
Driver Stub

Figure 38 Scenario-Map - Clean-up.

1Unknown

| CDriverStubObject

IClassFactory

i Stub Specific Interfaces

SN DN i\&%{&‘&%&\\\\\ DR D \\Q RN .\J\\&\

Y Reglsteanver
IXMC_DrvStub C—f UnRegisterDriver

R

i SP] - Extended interfaces

N ‘ HRHR

e

/' XMCSP! Interface #1

WA

IXMC_DrvExt_SPI_1

AR R IR IR RO R R A RO RN IR RO A

IXMC_DrvExt_SPI_2

IXMC_DrvEXt_SPI_n O xmcsel interface #n

N\ &
AR S5 AN SN U 200 R R R A 7 S R N R SR AR P NN

Figure 39 Interface-Map.

ROY-G-BIV CORPORATION CONFIDENTIAL §/30/96

WO 96/38769 PCT/US96/08149

23/37

Unknown

IXMC_UDxxxSP NereeeeL

Driver
Administrator

7
MC2APO~ Component

'

i
i
!

\nmm, pDrverhnfo
hSream, pStresminfo’

Administrator

CM.odl.

b Cs'implestream
CSim{pIeDriver L, EsimpleStlr,’ea
CSirﬁpleDriver L Esimplesﬁe

/ W
i |

Driver

; CSimPleDriver

Figure 41 Object Interaction-Map.

ROY-G-BIV CORPORATION CONFIDENTIAL 5/30/96

WO 96/38769 PCT/US96/08149

24/37

Driver Admin CP

Administrator |

N L CSimpleDriver

Figure 42 Scenario-Map - Initialization.

IUnknown

Driver g -
Administrator g Registry §

IXMC_xxx AP/

river Admin CPL

CModuieMar

}——— CSimpleDriver

Figure 43 Scenario-Map - Registering a Driver.

ROY-G-BIV CORPORATION CONFIDENTIAL 5§/30/96

WO 96/38769

- T
Driver Admin CPL,

pDnvrrIW(w;\

25/37

\pDnwerCLSID. IpszStreamFueName
¥

e o T
river Admin CPL|

Driver
Administrator

PCT/US96/08149

DMC_soarSPI O—y

Driver

L CSimpleDriver
L.CSimpleDriver

-G’)__CSimp leDriver

Figure 45 Scenario-Map - Setting Driver Information.

ROY-G-BIV CORPORATION CONFIDENTIAL

§/30/96

WO 96/38769 PCT/US96/08149

26/37

Driver g
Administrator |

4

DriverAc

CModuleMgr

b CSimpleStream
b CSimpleStrea
> CSimpleStrea

CSimpleDriver

CSimpleDriver

CSimpleDriver

Figure 46 Scenario-Map - Setting Stream Information.

Driver
Administrator

] CSimpleDriver

CSimpleDriver

‘ CSimpleDriver

DXMC_2000SPi ()

Figure 47 Scenario-Map - Querying the Driver Enumeration.

ROY-G-BIV CORPORATION CONFIDENTIAL 5/130/96

WO 96/38769 PCT/US96/08149

27/37

Oriver Admin CPL,

pDriverinfoMap T

IXMC_xxxAPI¥ Driver

Administrator

CModuleMgr

=

9,

CSimpleDriver b CSimpleStream

CSimpleDriver X e?SimpleSt‘ream

D> ESimpIeS)fream

CSimpleDriver

Figure 48 Séenario-Map - Querying the Driver Info Map.

ROY-G-BIV CORPORATION CONFIDENTIAL 5/30/96

WO 96/38769 PCT/US96/08149

28/37

1Unknown
Q

Regr\stry

Driver
Administrator

A\

@

\&/

-------- CorverAlminDis

CModuleMgr
CSimpleDriver Y CSimpleStream
CSimpleDriver b CSimpleStream
CSimpleDriver

Figure 49 Scenario-Map - Clean-up.

IUnknown

IClassFactory ()

IDispatch
3 N
Specific Standard Interfoces RN \ \\ _\i\\>§ N
IXMC_EnumDriver y §
as AN
=T . ,

i X / i i * parameters delermmne whether cbject manipuisted is o Stream or Draer. |

IXMC_DriverAdmin Register E:;t.)n eD ver o manipuisted is & Stream or Drer.

EnuminterfaceSupport

EnabieDiagnosticTesting * EnableLogging, SmLogging and IsLoggmgOn work on API, CMD, and
BIT logging. A parameter cescnbes the type of logging on which 1o

operate

i EnableLogging
SetLoggingStream IsDiagnosticT estingOn

IXMC_DriverAdminDebug (-

0N A A D A A e A N O A A 2 R DI ORI RN RS

Figure 50 Interface-Map.

ROY-G-BIV CORPORATION CONFIDENTIAL §/30/96

WO 96/38769 PCT/US96/08149

29/37

‘Brow se Dialog
{OpenfFile)

g Regisn'y,'\ }

(k) Gancel) .
: Driver
. Administrator
Dialog
View Support Dialog (oK

" hDnver, pDaveringo
hSream, pSreaninfo
.

Driver Admin CPL

Ok ||Cancel

pDriverin, ﬁ.M:\p

~, IUninown

N\

IXMC_XxxAR G, f

|
L

Driver
Administrator

Figure 51 Module 1A-Map.

COpenFileDialog -«
{standard*MFC)

i >
Ok | (Cancel) w}. R
) - B CDriverAdminDialog " Chriverino
g : E > sDmer.oDmernie |, ICStreaminfo
CViewSupportDialog y HStraam. pSimams
© PP .g & A { ok Cancel O\
o A rprr—— " CDriverinfoMap
c Cancel
- 2 |tz pommernt, Weinown
2 b, CComCPL -} || cDriverAdmi Adminlstrator

ADnver, pDnverinfo
AStream pSreamin

ﬁr Registry : §

L P W]

Figure 52 Object 1A-Map.

ROY-G-BIV CORPORATION CONFIDENTIAL 5/30/96

WO 96/38769 PCT/US96/08149

30/37

" o Registry
" CDriverAdminDialog i
2
[«
-]
c
- Administrator
;_ CComCPL

Figure 53 Initializing the Application.

CDriverAdminDialog

"(Cok Jcancel) P\ amrmmme—
mrme—= | CDriverinfoMap
%

PpDriverinfoMap

| cDriv

COpenFileDialog <
(standard MFC)

ok Cancel) w Tt
—————@)] CDriverAdminDialog -

Ok

Driver
Administrator

Figure 55 Adding a Driver.

ROY-G-BIV CORPORATION CONFIDENTIAL 5/30/96

WO 96/38769 PCT/US96/08149

31/37

CDriverAdminDialog

) ;

CViewSupportDialog };
&

v Ok Cancel] . §

@ oo

Driver
Administrator

CDrivi

Figure 57 View Support.

ROY-G-BIV CORPORATION CONFIDENTIAL §/30/96

WO 96/38769 PCT/US96/08149
32/37

1Unknown

{Unknown
O

* 1COM_xxx
IXMC_XxxAP}

Motion

ICOM_xxx O
Component

IXMC_xxxAP{ O

Driver
Administrator

1COM_xxx
ILNG_xxx
IXMC_xxxSPI

Language
Driver

1COM_xxx
IXMC_xxxUDSP!

Stream

Figure 58 Module Interaction-Map.

CSimpleStream Tx [CSimpleStreamd=

i
oz § F— { repry_{
DXMC_ 0o IOSP ! Siream

Figure 59 Object Interaction-Map.

ROY-G-BIV CORPORATION CONFIDENTIAL 5/30/96

WO 96/38769

PCT/US96/08149

33/37

w

E MRS, NI,

V=SNNTRRT I,
L CDrvExtDisp 3
P AR MR t Ty~
CLangDrvExtDisp

SPI
Database

N
\ CDrvCoreDisp

i

‘ CCommandegr

SPI
Database

i CStrean

Figure 61 Scenario-Map - Adding a Stream.

ROY-G-BIV CORPORATION CONFIDENTIAL

§/30/96

WO 96/38769 PCT/US96/08149

34/37

. SPI
Database

Figure 63 Scenario-Map - Registration loading.

ROY-G-BIV CORPORATION CONFIDENTIAL 5/30/96

WO 96/38769 PCT/US96/08149

35/37

o | [onem T
Database 1 CLangDrvExtDisp
Figure 64 Scenario-Map - Clean-up.

ROY-G-BIV CORPORATION CONFIDENTIAL §/30/96

WO 96/38769 PCT/US96/08149

36/37

m—g@

CDriverObject T

Figure 65 Scenario-Map - Command Operations.

ROY-G-BIV CORPORATION CONFIDENTIAL 5/30/96

WO 96/38769 37/37

{Unknown

222885

-
SRR

PCT/US96/08149

”%ﬁm%uﬂi.«wmwa

T

AN
/COM Base2 (lmll-In| g&lg:::':‘::;l: GOIEITOISINNG + mawts o ICOM_Bass and uaed 10 wesrs ams wretow me a0
- - Uningislize
ICOM Porsist2 (O—{ GeicClanid g°:'3m' Type *mrwis GR (B w900 Bromows More modure i melon
- - e i
- Ci .
ICOM_PorsistRegDB (o~ Oty UNad10 800 000 seveibe T seings 1om and (0 1he Ae00

OO,

Be RN
» C'“Iu Register Enlnlu * Usud 10 cresie ine lenguape Onver sad yel Danc seiinge
Destroy UnRegister isEnabied
ILNG_DrvCore_init O~ squp IsRegistered
A Stat
GetStreamEnumerstion AddStresm R
GelStresmCount RemovaStresm * Used 0 mensgw sl sb sem cowrations
ILNG—DNEXT—S'Na’"Mgmt GetStreamint RemoveAliSireams
A GetSlrumlmw EnsbledStreamsOnly
RN “‘\»\M\\\\\ RN AR N ST
J‘Pl Camlnmface: N
y Stat * All Olhay MeiNOd3 o8 SORCIC 10 I1Re SI9IC S ele UTed when working
IXMC_DrvCore_StaticState wth motion control

lrgmllze wtn moixn control

IXMC_DrvCore_DynarnicState

IXMC_DrvCore_SPI_3 { XMCSP! intertace #3

* A/t Other meINOdS 8@ SORCHX 10 INe Qynamsc siale u1ed when workng

IXMC_DrvCore_SPI_4 O—{ xMCSP! intertaca 14

Figure 66 Interface-Map.

Language Driver TPL: User Guide

4.0 Adding Custom SP1 Tutorial

<Cy'stom_> SPI Database | !

i {Command Data Types |Response Data Types 1Function Type limgl, Method
| {%s = stnng 1%s3 = stnng ‘CORE ‘NO_IMPL
. c""P"‘Y‘, H 19%H = doudle 1%11 = double EXT EMULATED
rare> 1%y = ULONG or DWORD %Iy » ULONG or OWORD IDIRECT
%u = WORD i%u = WORD
%d =int {%d = int i
- ! %b = BOOL (1 or 0 %b = BOOL (1 or 0) i
l ! + = continue previous type® + w cantinue previous type’ N
— ! : I :
| i (Command Macros IRe3pONSe Macros i
“NOTE. Ths '« “opamior drects the parser lo continue using the prevous ®(sna) @frev| i !
type until ather: a.) Tha end of the format stang 13 reached, o b.) the next @lcr] i ;
type changes lrom number 1o string or vice-verss. i @[\f] { i
X { @fcnf | '
i { |
TODO: |Replace the ICustom::Foo entry with your own SPI Imerlnce(s) save the file 8s 8 Ted delimited text file. and import just the SPI data of 1
the text file into your Resource F:Ie | | | '
! ! ! ! |
NOTE: iARer copying the data below ibetweon the COPY THIS DATA and END OF COPY} into your xxx :mdb bin rasource file. you MUST make sure '
that 4 \0x0a" character bilowed by a4 \0x0d' character are at the very of the data. In other words, when copymg the data from the taxt !
/de. MAKE SURE to stan your copy just after the last >’ characterinthe '...>> COPY THIS DATA >> .. laxt. : '
i | | |
index inteTace Name Punction Name « |MW Command Fivk- HW Responas Fmt TYPE IMPLEMENTATION
2COPY THS DAY SUR{SIATE: 4 a2 O iy Mo 5

Foo

NOP@®(snd]

Excel Command Database Spreadsheet.

@frev|

DIRECT

INTERNATIONAL SEARCH REPORT International application No.
PCT/US96/08149

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GOSB 19/18
US CL :364/167.01
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

US. : 364/167.01, 191,474.21,474.22,474.23 ; 395/500

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
NONE

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
MAYA

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y,P US, A, 5,453,933 (WRIGHT ET AL.) 26 SEPTEMBER 1995 { 1-4,8,10,12 -
SEE FIGURES 1 AND 2 ; COL. 5 LINES 51-67; COL. 6 LINES| 14,16-20, 24-
13-67 ; COL.8 LINES 5-15 ; COL. 11 LINES 51-67 ; COL.| 27

12 LINES 1-12

Y,P US, A, 5,491,813 (BONDY ET AL.) 13 FEBRUARY 1996 5-7,11,16 21-
SEE COL. 6 LINES 7-17 22

D Further documents are listed in the continuation of Box C. D See patent family annex.

* Special ulcgories of cited documents: T later d published after the international filing date or priority
date and not in conflict with the application but cited to understand the
A" d ing the g | state of the art which is not considered principle or theory underlying the invention
to be part of pameulnr relevance
ocum : . . °X* d of particul ' ; the claimed invention cannot be
carlier d eat published on or after the international filing date considered novel or canuotbe conudewd to involve an inventive step
document which may throw doubts on priority claim(s) or which is whea the document is taken alone
cited mmm“ h the publication date of her citation or other °Y* docum t f pamcular nlevance the claimed invention cannot be
eat of 3
special (e specnfed) d to lve an ive step when the document is
‘o* document referring to an oral disclosure, use, exhibition or other combined with one or more other such dc such
means being obvious to a person skilled in the art
Pt document published prior to the international filing date but later than =g+ document member of the same patent family
the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
30 JULY 1996 27 MG 1406
Name and mailing address of the ISA/US Authorized o ofﬁccr
Commissioner of Patents and Trademarks 83N Z/d o
Box PCT J
Washington, D.C. 20231 ROY N. EN ALL R ey
Facsimile No. (703) 305-3230 Telephone No. (703) 305—9706

Form PCT/ISA/210 (second sheet)(July 1992)*

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

