wO 2007/065019 A2 |10 0 00 0 00 0 I

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T OO0 O

International Bureau

(43) International Publication Date
7 June 2007 (07.06.2007)

(10) International Publication Number

WO 2007/065019 A2

(51) International Patent Classification:
HO4N 9/74 (2006.01) G09G 5/00 (2006.01)
GOG6F 3/00 (2006.01) HO4N 5/445 (2006.01)
GOG6F 13/00 (2006.01)

(21) International Application Number:
PCT/US2006/046302

(22) International Filing Date:
4 December 2006 (04.12.2006)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/741,596
11/325,749

2 December 2005 (02.12.2005)
5 January 2006 (05.01.2006)

Us
Us

(71) Applicant (for all designated States except US): HILL-
CREST LABORATORIES, INC. [US/US]; 15245 Shady
Grove Road, Rockville, MD 20850 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HUNLETH, Frank,
A. [US/US]; 26 Blue Hosta Way, Rockville, MD 20850
(US). SCHEIREY, Stephen [US/US]; 9213 Charterhouse
Road, Urbana, MD 21704 (US). GRITTON, Charles, W.
K. [US/US]; 73 Rutherford Circle, Sterling, VA 20165
(US).

(74) Agent: DUBOIS, Steven, M.; Potomac Patent Group,
PLLC, P.O. Box 270, Fredericksburg, VA 22404 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS,
LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: SCENE TRANSITIONS IN A ZOOMABLE USER INTERFACE USING ZOOMABLE MARKUP LANGUAGE

(57) Abstract: Systems and methods according to the present invention leverage programming language extensions, e.g., for SVG,

to create zoomable user interfaces.

WO 2007/065019 PCT/US2006/046302

SCENE TRANSITIONS IN A ZOOMABLE USER INTERFACE
USING ZOOMABLE MARKUP LANGUAGE

RELATED APPLICATIONS

[06001] This application is related to, and claims priority from, U.S. Patent Application
Serial No. 11/325,749, filed on January S, 2006, entitled “Distributed Software Construction
for User Interfaces™, the disclosure of which is incorporated here by reference. This
application is also related to, and claims priority from, U.S. Provisional Patent Application
Serial No. 60/741,596, filed on December 2, 2003, entitled “Home Multimedia

Environment”, the disclosure of which is incorporated here by reference.

BACKGROUND

[0002] The present invention describes a framework for organizing, selecting and
launching media items. Part of that framework involves the design and operation of graphical
user interfaces with the basic building blocks of point, click, scroll, hover and zoom and,
more particularly, to zoomable user interfaces associated with media items which can be used
with, e.g., a 3D pointing remote.

[0003] Technologies associated with the communication of information have evolved
rapidly over the last several decades. Television, cellular telephony, the Internet and optical
communication techniques (to name just a few things) combine to inundate consumers with

available information and entertainment options. Taking television as an example, the last

WO 2007/065019 PCT/US2006/046302

" 0320-097 PC

three decades have seen the introduction of cable television service, satellite television
service, pay-per-view movies and video-on-demand. Whereas television viewers of the
1960s could typically receive perhaps four or five over-the-air TV channels on their television
sets, today’s TV watchers have the opportunity to select from hundreds and potentially
thousands of channels of: shows and information. Video-on-demand technology, currently
used primarily in hotels and the like, provides the potential for in-home entertainment
selection from among thousands of movie titles. Digital video recording (DVR) equipment
such as offered by TiVo, Inc., 2160 Gold Street, Alviso, CA 95002, further expand the
available choices.

[0004] The technological ability to provide so much information and content to end
users provides both opportunities and challenges to system designers and service providers.
One challenge is that while end users typically prefer having more choices rather than fewer,
this preference is counterweighted by their desire that the selection process be both fast and
simple. Unfortunately, the development of the systems and interfaces by which end users
access media items has resulted in selection processes which are neither fast nor simple.
Consider again the example of television programs. When television was in its infancy,
determining which program to watch was a relatively simple process primarily due to the
small number of choices. One would consult a printed guide which was formatted, for
example, as series of columns and rows which showed the correspondence between (1)
nearby television channels, (2) programs being transmitted on those channels and (3) date and
time. The television was tuned to the desired channel by adjusting a tuner knob and the

viewer watched the selected program. Later, remote control devices were introduced that

WO 2007/065019 PCT/US2006/046302

0320-097 PC

permitted viewers to tune the television from a distance. This addition to the user-television
interface created the phenomenon known as “channel surfing” whereby a viewer could
rapidly view short segments being broadcast on a number of channels to quickly learn what
programs were available at any given time.

[0005] Despite the fact that the number of channels and amount of viewable content
has dramatically increased, the generally available user interface and control device options
and framework for televisions has not changed much over the last 30 yeérs. Printed guides
are still the most prevalent mechanism for conveying progre_lmming information. The
multiple button remote control with simple up and down arrows is still the most prevalent
channel/content selection mechanism. The reaction of those who design and implement the
TV user interface to the increase in available media content has been a straightforward
extension of the existing selection procedures and interface objects. Thus, the number of
rows and col.umns in the printed guides has been increased to accommodate more channels.
The number of buttons on the remote control devices has been increased to support additional
functionality and content handling, e.g., as shown in Figure 1. However, this approach has
significantly increased both the time required for a viewer to review the available information
and the complexity of actions required to implement a selection. Arguably, the cumbersome
nature of the existing interface has hampered commercial implementation of some services,
e.g., video-on-demand, since consumers aré resistant to new services that will add complexity
to an interface that they view as already too slow and complex.

[0006] In addition to increases in bandwidth and content, the user interface bottleneck

problem is being exacerbated by the aggregation of technologies. Consumers are reacting

WO 2007/065019 PCT/US2006/046302

0320-097 PC

positively to having the option of buying integrated systems rather than a number of
segregable components. A good example of this trend is the combination
television/'VCR/DVD in which three previously independent components are frequently sold
today as an integrated unit. This trend is likely to continue, potentially with an end result that
most if not all of the communication devices currently found in the household being packaged
as an integrated unit, e.g., a television/VCR/DVD/internet access/radio/stereo unit. Even
those who buy separate components desire seamless control of and interworking between
them. With this increased aggregation comes the potential for more complexity in the user
interface. For example, when so-called “universal” remote units were introduced, e.g., to
combine the functionality of TV remote units and VCR remote units, the number of buttons
on these universal remote units was typically more than the number of buttons on either the
TV remote unit or VCR remote unit individually. This added number of buttons and
functionality makes it very difficult to control anything but the simplest aspects of a TV or
VCR without hunting for exactly the right button on the remote. Many times, these universal
remotes do not provide enough buttons to access many levels of control or features unique to
certain TVs. In these cases, the original device remote unit is still ngeded, and the original
hassle of handling multiple remotes remains dhe to user interface issues arising from the
complexity of aggregation. Some remote units have addressed this problem by adding “soft”
buttons that can be programmed with the expert commands. These soft buttons sometimes
have accompanying LCD displays to indicate their action. These too have the flaw that they
are difficult to use without looking away from the TV to the remote control. Yet another flaw

in these remote units is the use of modes in an attempt to reduce the number of buttons. In

WO 2007/065019 PCT/US2006/046302

0320-097 PC

thesé “moded” universal remote units, a special button exists to select whether the remote
should communicate with the TV, DVD player, cable set-top box, VCR, etc. This causes
many usability issues including sending commands to the wrong device, forcing the user to
look at the remote to make sure that it is in the right mode, and it does not provide any
simplification to the integration of multiple devices. The most advanced of these universal
remote units provide some integration by allowing the user to program sequences of
commands to multiple devices into the remote. This is such a difficult task that many users
hire professional installers to program their universal remote units.

[0007] Some attempts have also been made to modernize the screen interface between
end users and media systems. Electronic program guides (EPGs) have been developed and
implemented to replace the afore-described media guides. Early EPGs provided what was
essentially an electronic replica of the printed media guides. For example, cable service
operators have provided analog EPGs wherein a dedicated channel displays a slowly scrolling
grid of the channels and their associated programs over a certain time horizon, e.g., the next
two hours. Scrolling through even one hundred channels in this way can be tedious and is not
feasibly scalable to include significant additional content deployment, e.g., video-on-demand.
More sophisticated digital EPGs have also been developed. In digital EPGs, program
schedule information, and optionally applications/system software, is transmitted to dedicated
EPG equipment, e.g., a digital set-top box (STB). Digital EPGs provide more flexibility in
designing the user interface for media systems due to their ability to provide local interactivity
and to interpose one or more interface layers between the user and the selection of the media

items to be viewed. An example of such an interface can be found in U.S. Patent No.

WO 2007/065019 PCT/US2006/046302

0320-097 PC

6,421,067 to Kamen et al., the disclosure of which is incorporated here by reference. Figure 2
depicts a GUI described in the ‘067 patent. Therein, according to the Kamen et al. patent, a
first column 190 lists program channels, a second column 191 depicts programs currently
playing, a column 192 depicts programs playing in the next half-hour, and a fourth column
193 depicts programs playing in the half hour after that. The baseball bat icon 121 spans
columns 191 and 192, thereby indicating that the baseball game is expected to continue into
the time slot corresponding to column 192. However, text block 111 does not extend through
into column 192. This indicates that the football game is not expected to extend into the time
slot corresponding to column 192. As can be seen, a pictogram]§4 indicates that after the
football game, ABC will be showing a horse race. The icons shown in Figure 2 can be
actuated using a cursor, not shown, to implement various features, e.g., to download
information associated with the selected programming. .Other digital EPGs and related
interfaces are described, for example, in U.S. Patent Nos. 6,3 i4,575, 6,412,110, and
6,577,350, the disclosures of which are also incorporated here by reference.

[0008] However, the intérfaces described above suffer from, among other drawbacks,
an inability to easily scale between large collections of media items and small collections of
media items. For example, interfaces which rely on lists of items may work well for small
collections of media items, but are tedious to browse for large collections of media items.
Interfaces which rely on hierarchical navigation (e.g., tree structures) may be more speedy to
traverse than list interfaces for large collections of media items, but are not readily adaptable
to small collections of media items. Additionally, users tend to lose interest in selection

processes wherein the user has to move through three or more layers in a tree structure. For

WO 2007/065019 PCT/US2006/046302

0320-097 PC

all of these cases, current remote units make this selection processor even more tedious by
forcing the user to repeatedly depress the up and down buttons to navigate the list or
hierarchies. When selection skipping controls are available such as page up and page down,
the user usually has to look at the remote to find these special buttons or be trained to know
that they even exist.

[0609] Organizing frameworks, techniques and systems which simplify the control
and screen interface between users and media systems as well as accelerate the selection
process have been described in U.S. Patent Application Serial No. 10/768,432, filed on
January 30, 2004; entitled “A Control Framework with a Zoomable Graphical User Interface
for Organizing, Selecting and Launching Media Items”, the disclosure of which is
incorporated here by reference and which is hereafter referred to as the “432 application™.
Such frameworks permit service providers to take advantage of the increases in available
bandwidth to end user equipment by facilitating the supply of a large number of media items
and new services to the user. One significant feature of such frameworks is the provision of a
spatial relationship between displayed scenes within the interface. This spatial relationship,
conveyed to the user, enables he or she to more easily navigate among what is potentially a
very large number of scenes and selectable media objects provided within the interface.
[0010] Typically software development associated with user interface and application
building associated with, for example, set-top box and TV systems involves a choice between
two extremes. One approach is to develop all of the software as one unified application. This
approach has the advantage that the interaction between the user and the user interface is fully

encapsulated and the performance is fully controlled. The disadvantage of this approach is

WO 2007/065019 PCT/US2006/046302

0320-097 PC

that the development of new features for the user interface is slow because the whole
application is affected whenever something is changed. At the other end of the spectrum,
there is the approach of designing the user interface much 1iké a web browser. Using this
approach, a small machine is built that interprets HTML code to build up the user interface
screens. One advantage of this second approach is that development of applications is very .
quick. Disadvantages of this second approach include (1) that interactions are not fully
encapsulated, (2) bandwidth performance issues are not fully controlled and (3) that the
various programming languages available for building web browser-like applications, ¢.g.,
HTML, XML and SVG, do not provide the needed functionality to describe (and make use
of) spatial relationships between scenes in an application. In these programming languages,
one can build web browser applications having pages which are linked together in various
ways, €.g., hyperlinks, and which may even provide for transition effects wheﬁ a user moves
from one page to the next, but do not provide any mechanism for building up a universe of
scenes having spatial relationships which can then be used to aid a user in navigation.

[0011] Accordingly, it would be desirable to provide user interfaces, methods and

software design constructions which overcome these difficulties.

WO 2007/065019 PCT/US2006/046302

0320-097 PC

SUMMARY
(0012} According to an exemplary embodiment, a zoomable user interface (ZUI)
includes

a collection of scenes displayable on the ZUI including a first scene and a second scene, each
of the scenes being implemented using software written in a programming language, an event
capture mechanism for identifying user inputs to the ZU], including a user input for
requesting a change from the first scene to the second scene; and a transition between the first
scene and the second scene in said collection of scenes, the transition conveying a spatial
relationship between the first scene and the second scene within the ZUI, wherein the
transition is implemented using at least one ZU]I attribute or element added to the
programming language.

[0013] According to another exemplary embodiment, a method for disi)laying scenes
on a zoomable user interface (ZUI) includes displaying a collection of scenes on the ZUI
including a first scene and a second scene, each of the scenes being implemented using
software written in a programming language, identifying user inputs to the ZUI, including a
user input for requesting a change from the first scene to the second scene, and transitioning
between the first scene and the second scene in the collection of scenes, the transition
conveying a spatial relationship between the first scene and the second scene within the ZUI,
wherein the transition step is implemented using at least one ZUI attribute or element added
to the programming language.

[0014] According to still another exemplary embodiment, a system for displaying

WO 2007/065019 PCT/US2006/046302

0320-097 PC

scenes on a zoomable user interface (ZUI) includes means for displaying a collection of
scenes on the ZUT including a first scene and a second scene, each of the scenes being
implemented using software written in a programming language, means for identifying user
inputs to the ZUI, including a user input for requesting a change from the first scene to the
second scene, and means for transitioning between the first scene and the second scene in the
collection of scenes, the transition conveying a spatial relationship between the first scene and
the second scene within the ZUI, wherein the means for transitioning is implemented using at
least one ZUI attribute or element added to the programming language.

[0015] According to yet another exemplary embodiment, a computer-readable
medium contains instructions which, when executed on a computer, perform the steps of
displaying a collection of scenes on the ZUI including a first scene and a second scene, each
of the scenes being implemented using software written in a programming language,
identifying user inputs to the ZUI, including a user input for requesting a change from the first
scene to the second scene, and transitioning between the first scene and the second scene in
the collection of scenes, the transition conveying a spatial relationship between the first scene
and the second scene within the ZUI, wherein the transition step is implemented using at least

one ZUI attribute or element added to the programming language.

10

WO 2007/065019 PCT/US2006/046302

0320-097 PC

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] The accompanying drawings illustrate exemplary embodiments of the present

invention, wherein:

[0017] FIG. 1 depicts a conventional remote control unit for an entertainment system;
[0018] FIG. 2 depicts a conventional graphical user interface for an entertainment
system;

[0019] FIG. 3 depicts an exemplary media system in which exemplary embodiments

of the present invention (both display and remote control) can be implemented;

[0020] FIG. 4 shows a system controller of FIG. 3 in more detail;

[0021] FIG. 5 illustrates a user employing a 3D pointing device to provide input to a
user interface on a television according to an exemplary embodiment of the present invention;
[0022] FIGS. 6-9 depict a graphical user interface for a media system according to an
exemplary embodiment of the present invention;

[0023] FIG. 10 illustrates an exemplary data structure according to an exemplary
embodiment of the present invention;

[0024] FIGS. 11(a) and 11(b) illustrate a zoomed out and a zoomed in version of a
portion of an exemplary GUI created using the data structure of FIG. 10 according to an
exemplary embodiment of the present invention;

[0025] FIG. 12 depicts a doubly linked, ordered list used to generated GUI displays

according to an exemplary embodiment of the present invention;

11

WO 2007/065019 PCT/US2006/046302

0320-097 PC

[0026] FIGS. 13(a) and 13(b) show a zoomed out and a zoomed in version of a
portion of another exemplary GUI used to illustrate operation of a node watching algorithm
according to an exemplary embodiment of the present invention;

[0027] FIGS. 14(a) and 14(b) depict exemplary data structures used to illustrate
operation of the node watching algorithm as it the GUI transitions from the view of FIG.
13(a) to the view of FIG. 13(b) according to an exemplary embodiment of the present
invention;

[0028] FIG. 15 depicts a data structure according to another exemplary embodiment
of the present invention including a virtual camera for use in resolution consistent zooming;
[0029] FIGS. 16(a) and 16(b) show a zoomed out and zoomed in version of a portion
of an exemplary GUI which depict semantic zooming according to an exemplary embodiment
of the present invention;

[0030] FIGS. 17-21 depict a zoomable graphical user interface according to another
exemplary embodiment of the present invention;

[0031] FIG. 22 illustrates an exemblary set of overlay controls which can be provided
according to exemplary embodiments of and the present invention;

[0032] FIG. 23 illustrates an exemplary framework for implementing zoomable
graphical user interfaces according to the present invention;

[0033] FIG. 24 illustrates a GUI screen drawn using a ZML extensions according to
exemplary embodiments of the present inveﬁtion;

[0034] FIG. 25 illustrates a second GUI screen drawn using ZML extensions

according to exemplary embodiments of the present invention;

12

WO 2007/065019 PCT/US2006/046302

0320-097 PC

[06035] - FIG. 26 illustrates a toolkit screen usable to create scenes using ZML
extensions according to exemplary embodiments of the present invention;

[0036] FIG. 27 illustrates a scene drawn using ZML extensions according to another
exemplary embodiment of the present invention;

[0037] FIG. 28 depicts a subscene of the scene depicted in FIG. 27 drawn using ZML
extensions according to an exemplary embodiment of the present invention; and

[0038] FIG. 29 is a flowchart illustrating a method for displaying scenes according to

an exemplary embodiment of the present invention.

DETAILED DESCRIPTION

[0039] The following detailed description of the invention refers to the accompanying
drawings. The same reference numbers in different drawings identify the same or similar
elements. Also, the following detailed description does not limit the invention. Instead, the
scope of the invention is defined by the appended claims.

[0040] In order to provide some context for this discussion, an exemplary aggregated
media system 200 which the present invention can be used to implement will first.be
described with respect to Figures 3-22. Those skilled in the art will appreciate, however, that
the present invention is not restricted to implementati.on in this type of media system and that
more or fewer components can be included therein. Therein, an input/output (I/0) bus 210
connects the system components in the media system 200 together. The I/O bus 210
represents any of a number of different of mechanisms and techniques for routing signals

between the media system components. For example, the I/O bus 210 may include an

13

WO 2007/065019 PCT/US2006/046302

0320-097 PC

appropriate number of independent audio "patch” cables that route audio signals, coaxial
cables that route video signals, two-wire serial lines or infrared or radio frequency
transceivers that route control signals, optical fiber or any other rputing mechanisms that
route other types of signals.

[0041) In this exemplary embodiment, the media system 200 includes a
television/monitor 212, a video cassette recorder (VCR) 214, digital video disk (DVD)
recorder/playback device 216, audio/video tuner 218 and compact disk player 220 coupled to
the 1/0 bus 210. The VCR 214, DVD 216 and compact disk player 220 may be single disk or
single cassette devices, or alternatively may be multiple disk or multiple cassette devices.
They may be independent units or integrated together. In addition, the media system 200
includes a microphone/speaker system 222, video camera 224 and a wireless /O control
device 226. According to exemplary embodiments of the present invention, the wireless I/O
control device 226 is a media system remote céntrol unit that supports free space pointing,
has a minimal number of buttons to support navigation, and communicates with the
entertainment system 200 through RF signals. For example, wireless I/O control device 226
can be a 3D pointing device which uses a gyroscope or other mechanism to define both a
screen position and a motion vector to determine the particular command desired. A set of
buttons can also be included on the wireless I/O device 226 to initiate the “click” primitive
described below as well as a “back” button. In another exemplary embodiment, wireless /O
control device 226 is a media system remote control unit, which communicates with the
components of the entertainment system 200 through IR signals. In yet another embodiment,

wireless I/O control device 134 may be an IR remote control device similar in appearance to a

14

WO 2007/065019 PCT/US2006/046302

0320-097 PC

typical entertainment system remote control with the added feature of a track-ball or other
navigational mechanisms which allows a user to position a cursor on a display of the
entertainment system 100.
[0042] The entertainment system 200 also includes a system controller 228.
According to one exemplary embodiment of the present invention, the system controller 228
operates to store and display entertainment system data available from a plurality of
entertainment system data sources and to control a wide variety of features associated with
each of the system components. As shown in Figure 3, system controller 228 is coupled,
either directly or indirectly, to each of the system components, as necessary, through /O bus
210. In one exem‘plary embodiment, in addition to or in place of /O bus 210, system
controller 228 is configured with a wireless communication transmitter (or transceiver),
which is capable of communicating with the system components via IR signals or RF signals.
Regardless of the control medium, the system controller 228 is configured to control the
media components of the media system 200 via a graphical user interface described below.
[0043] As further illustrated in Figure 3, media system 200 may be configured to
receive medi.a items from various media sources and service providers. In this exemplary
embodiment, media system 200 receives media input from and, optionally, sends information
to, any or all of the following sources: cable broadcast 230, satellite broadcast 232 (e.g., viaa
satellite dish), very high frequency (VHF) or ultra high frequency (UHF) radio frequency
communication of the broadcast television networks 234 (e.g., via an aerial antenna),
telephone network 236 and cable modem 238 (or another source of Internet content). Those

skilled in the art will appreciate that the media components and media sources illustrated and

15

WO 2007/065019 PCT/US2006/046302

0320-097 PC

described with respect to Figure 3 are purely exemplary and that media system 200 may
include more or fewer of both. For example, other types of inputs to the system include
AM/FM radio and satellite radio.

[0044] Figure 4 is a block diagram illustrating an embodiment of an exemplary
system controller 228 according to the present invention. System controller 228 can, for
example, be implemented as a set-top box and includes, for example, a processor 300,
memory 302, a display controller 304, other device controllers (e.g., associated with the other
components of system 200), one or more data storage devices 308 and an I/O interface 310.
These components communicate with the processor 300 via bus 312. Those skilled in the art
will appreciate that processor 300 can be implemented using one or more processing units.
Memory device(s) 302 may include, for example, DRAM or SRAM, ROM, some of which
may be designated as cache memory, which store software to be run by processor 300 and/or
data usable by such programs, including software and/or data associated with the graphical
user interfaces described below. Display controller 304 is operable by processor 300 to
control the display of monitor 212 to, among other things, display GUI screens and objects as
described below. Zoomable GUIs according to exemplary embodiments of the present
invention can provide resolution independent zooming, so that monitor 212 can provide
displays at any resolution. Device controllers 306 provide an interface between the other
components of the media system 200 and the processor 300. Data storage 308 may include
one or more of a hard disk drive, a floppy disk drive, a CD-ROM device, or other mass
storage device. Input/output interface 310 may include one or more of a plurality of

interfaces including, for example, a keyboard interface, an RF interface, an IR interface and a

16

WO 2007/065019 PCT/US2006/046302

0320-097 PC

microphone/speech interface. According to one exemplary embodiment of the present
invention, IO interface 310 will include an interface for receiving location information
associated with movement of a wireless pointing device.

[0045] Generation and control of a graphical user interface according to exemplary
embodiments of the present invention to display media item selection information is
performed by the system controller 228 in response to the processor 300 executing sequences
of instructions contained in the memory 302. Such instructions may be read into the memory
302 from other computer-readable mediums such as data storage device(s) 308 or from a
computer connected externally to the media system 200. Execution of the sequences of
instructions contained in the memory 302 causes the processor to generate graphical user
interface objects and controls, among other things, on monitor 212. In alternative
embodiments, hard-wire circuitry may be used in place of or in combination with software
instructions to implement the present invention. As mentioned in the Background section,
conventional interface frameworks associated with the television industry are severely limited
in their ability to provide users with a simple and yet comprehensive selection experience.
Accordingly, control frameworks described herein overcome these limitations and are,
therefore, intended for use with televisions, albeit not exclusively. It is also anticipated that
the revolutionary control frameworks, graphical user interfaces and/or various algorithms
described herein will find applicability to interfaces which may be used with computers and
other non-television devices. In order to distinguish these various applications of exemplary
embodiments of the present invention, the terms “television” and “TV” are used in this

specification to refer to a subset of display devices, whereas the terms “GUI”, “GUI screen”,

17

WO 2007/065019 PCT/US2006/046302

0320-097 PC

“display” and “display screen” are intended to be generic and refer to television displays,
computer displays and any other display device. More specifically, the terms “television” and
“T'V” are intended to refer to the subset of display devices which are able to display television
signals (e.g., NTSC signals, PAL signals or SECAM signals) without using an adapter to
translate television signals into another format (e.g., computer video formats). In addition,
the terms “television™ and “TV™ refer to a subset of display devices that are generally viewed
from a distance of several feet or more (e.g., sofa to a family room TV) whereas computer
displays are generally viewed close-up (e.g., chair to a desktop monitor).

[0046] As one purely illustrative example of an environment in which zoomable user
interfaces according to exemplary embodiments of the present invention can be deployed,
consider the environment illustrated in Figure 5. Therein, a person may be sitting (or
standing) in front of a television 420, holding a 3D pointing device 400 in her or his hand.
The 3D pointing device 400 can be used to provide inputs, e.g., commands, to a user interface;
displayed on the television 420, to select various media items for display. The 3D pointing
device 400 may be used in an unsupported manner, i.e., it may spend at least some period of
time being moved in the air by a user relative to the television 420 to point at various user
interface objects displayed on the television.

[0047] According to some exemplary embodiments of the present invention, 3D
pointing device 400 can have a ring-shaped housing or body as shown in Figure 5 and
described in more detail in U.S. Patent Application Serial No. 11/480,662, entitled “3D
Pointing Devices™, filed on July 3, 2006, the disclosure of which is incorporated here by

‘reference. The 3D pointing device 400 may or may not have one or more buttons, scroll

18

WO 2007/065019 PCT/US2006/046302

0320-097 PC

wheels, or other user-actuable control elements for providing user input. Regardless of the
number and type of user-actuable control elements which are provided on 3D pointing device
400, movement of the device 400 (e.g., in three or more dimensions) is sensed and provided
as user input. For example, as the 3D pointing device 400 moves between different positions,
that movement is detected by one or more sensors (not shown) within 3D pointing device 400
and transmitted to the television 420 (or associated system component, e.g., a set-top box (not
shown)). Movement of the 3D pointing device 400 can, for example, be translated into
movement of a cursor 440 displayed on the television 420 and which i:>; used to interact with a
zoomable user interface as described below.

[0048] Having described exemplary media systems which can be used to implement
control frameworks including zoomable graphical interfaces according to the present
invention, several examples of such interfaces will now be described. According to
exemplary embodiments of the present invention, a user interface displays selectable items
which can be grouped by category. A user points a remote unit at the category or categories
of interest and depresses the selection button to zoom in or the “back” button to zoom back.
Each zoom in, or zoom back, action by a user results in a change in the magnification level
and/or context of the selectable items rendered by the user interface on the screen. More
specifically, according to one exemplary embodiment, zooming provides for the progressive
scaling and display of an object (or a portion thereof) or group of objects that gives the visual
impression of movement of all or part of a display group toward or away from an observer.
According to exemplary embodiments, each change in magnification level can be consistént,

i.e., the changes in magnification level are provided in predetermined steps. Exemplary

19

WO 2007/065019 PCT/US2006/046302

0320-097 PC

embodiments of the present invention also provide for user interfaces which incorporate
several visual techniques to achieve scaling to the very large. These techniques involve a
combination of building blocks and transition techniques that achieve both scalability and
ease-of-use, in particular techniques which adapt the user interface to enhance a user’s visual
memory for rapid re-visiting of user interface objects by providing a spatial relationship
between the various user interface objects.

[0049] The user interface is largely a visual experience. In such an environment
exemplary embodiments of the present invention make use of the capability of the user to
remember the location of objects within the visual environment. This is achieved by
providing a stable, dependable location for user interface selection items. Each object has a
location in the zoomable layout. Once the user has found an object of interest it is natural to
remember which direction was taken to locate the object. If that object is of particular
interest it is likely that the user will re-visit the item more than once, which will reinforce the
user’s memory of the path to the object. User interfaces according to exemplary
embodiments of the present invention provide visual mnemonics that help the user remember
the location of items of interest. Such visual mnemonics include pan and zoom animations,
transition effects which generate a geographic sense of movement across the user interface’s
virtual surface and consistent zooming functionality, among other things which will become
more apparent based on the examples described below. Of particular interest for the purposes
of the present application are exemplary mechanisms described below under the heading

“ZML” which provide a framework for creating such an interface including, among other

20

WO 2007/065019 PCT/US2006/046302

0320-097 PC

things, an ability to generate, track and manipulate zoomable “paths between user interface
objects.

[0050] Referring first to Figures 6-9, an exemplary control framework including a
zoomable graphical user interface according to an exemplary embodiment of the present
invention is described for use in displaying and selecting musical media items. Figure 6
portrays the zoomable GUI at its most zoomed out state. Therein, the interface displays a set
of shapes 500. Displayed within each shape 500 are text 502 and/or a picture 504 that
describe the group of media item selections accessible via that portion of the GUL. As shown
in Figure 6, the shapes 500 are rectangles, and text 502 and/or picture 504 describe the genre
of the media. However, those skilled in the art will appreciate that this first viewed GUI
grouping could represent other aspects of the media selections available to the user e.g., artist,
year produced, area of residence for the artist, length of the item, or any other characteristic of
the selection. Also, the shapes used (o outline the various groupings in the GUI need not be
rectangles. Shrunk down versions of album covers and other icons could be used to provide
further navigational hints to the user in lieu of or in addition to text 502 and/or picture 504
within the shape groupings 500. A background portion of the GUI 506 can be displayed as a
solid color or be a part of a picture such as a map to aid the user in remembering the spatial
location of genres so as to make future uses of the interface require less reading. The
selection pointer (cursor) 508 follows the movements of an input device and indicates the
location to zoom in on when the user presses the button on the device (not shown in Figure

6).

21

WO 2007/065019 PCT/US2006/046302

0320-097 PC

[0051] According to one exemplary embodiment of the present invention, the input
device can be a free space pointing device, e.g., the free space pointing device described in
U.S. Patent Application Serial No. 11/119,683, filed on May 2, 2005, entitled “Free Space
Pointing Devices and Methods”, the disclosure of which is incorporated here by reference and
which is hereafter referred to as the “’683 application”, coupled with a graphical user
interface that supports the point, click, scroll, hover and zoom building blocks which are
described in more detail below. One feature of this exemplary input device that is beneficial
for use in conjunction with the present invention is that it can be implemented with only two
buttons and a scroll wheel, i.e., three input actuation objects. One of the buttons can be
configured as a ZOOM IN (select) button and one can be configured as a ZOOM OUT (back)
button. Compared with the conventional remote control units, e.g., that shown in Figure 1,
the present invention simplifies this aspect of the GUI by greatly reducing the number of
buttons, etc., that a user is confronted with in making his or her media item selection. An
additional preferred, but not required, feature of input devices according to exemplary
embodiments of the present invention is that they provide “3D pointing” capability for the
user. The phrase “3D pointing” is used in this specification to refer to the ability of a user to
freely move the input device in three (or more) dimensions in the air in front of the display
screen and the corresponding ability of the user interface to translate those motions directly
into movement of a cursor on the screen. Thus “3D pointing” differé from conventional
computer mouse pointing techniques which use a surface other than the display screen, e.g., a
desk surface or mousepad, as a proxy surface from which relative movement of the mouse is

translated into cursor movement on the computer display screen. Use of 3D pointing in

22

WO 2007/065019 PCT/US2006/046302

0320-097 PC

control frameworks according to exemplary embodiments of the present invention further
simplifies the user’s selection experience, while at the same time providing an opportunity to
introduce gestures as distingﬁishable inputs to the interface. A gesture can be considered as a
recognizable pattern of movement over time which pattern can be translated into a GUI
command, e.g., a function of movement in the x, y, z, yaw, pitch and roll dimensions or any
subcombination thereof. Those skilled in the art will appreciate, however that any suitable
input device can be used in conjunction with zoomable GUIs according to the present
invention. Other examples of suitable input devices include, but are not limited to, trackballs,
touchpads, conventional TV remote control devices, speech input, any devices which can
communicate/translate a user’s gestures into GUI commands, or any combination thereof, It
is intended that each aspect of the GUI functionality described herein can be actuated in
frameworks according to the present invention using at least one of a gesture and a speech
command. Alternate implementations include using cursor and/or other remote control keys
or even speech input to identify items for selection.

[0052] Figure 7 shows a zoomed in view of Genre 3 that would be displayed if the
user selects Genre 3 from Figure 5, e.g., by moving the cursor 508 over the area encompassed
by the rectangle surrounding Genre 3 on display 212 and depressing a button on the input
device. The interface can animate the zoom from Figure 6 to Figure 7 so that it is clear to the
user that a zoom occurred. An example of such an animated zoom/transition effect is
described below, however the zooming transition effect can be performed by progressive
scaling and displaying of at least some of the UI objects displayed on the current Ul view to

provide a visual impression of movement of those Ul objects toward (or away from) an

23

WO 2007/065019 PCT/US2006/046302

0320-097 PC

observer. Once the shape 516 that contains Genre 3 occupies most of the screen on display
212, the interface reveals the artists that have albums in the genre. In this example, seven
different artists and/or their works are displayed. The unselected génres 515 that were
adjacent to Genre 3 in the zoomed out view of Figure 6 are still adjacent to Genre 3 in the
zoomed in view, but are clipped by the edge of'the display 212. These unselected genres can
be quickly navigated to by selection of them with selection pointer 508. It will be
appreciated, however, that other exemplary embodiments of the present invention can omit
clipping neighboring objects and, instead, present only the unclipped selections. Each of the
artist groups, e.g., group 512, can contain images of shrunk album covers, a picture of the
artist or customizable artwork by the user in the case that the category contains playlists
created by the user.

[0053] A user may then select one of the artist groups for further review and/or
selection. Figure 8 shows a further zoomed in view in response to a user selection of Artist 3
via positioning of cursor 508 and actuation of the input device, in which imageg of album
covers 520 come into view. As with the transition from the GUI screen of Figure 6 and
Figure 7, the unselected, adjacent artists (artists #2, 6 and 7 in this example) are shown
towards the side of the zoomed in display, and the user can click on these with selection
pointer 508 to pan to these artist views. In this portion of the interface, in addition to the
images 520 of album covers, artist information 524 can be displayed as an item in the artist
group. This information may contain, for example, the artist’s picture, biography, trivia,
discography, influences, links to web sites and other pertinent data. Each of the album

images 520 can contain a picture of the album cover and, optionally, textual data. In the case

24

WO 2007/065019 PCT/US2006/046302

0320-097 PC

that the album image SéO includes a user created playlist, the graphical user interface can
display a picture which is selected automatically by the interface or preselected by the user.
[0054] Finally, when the user selects an album cover image 520 from within the group
521, the interface zooms into the album cover as shown in Figure 9. As the zoom progresses, -
the album cover can fade or morph into a view that contains items such as the artist and title
of the album 530, a list of tracks 532, further information about the album 536, a smaller
version of the album cover 528, and controls 534 to play back the content, modify the
categorization, link to the artists web page, or find any other information about the selection.
Neighboring albums 538 are shown that can be selected using selection pointer 508 to cause
the interface to bring them into view. As mentioned above, alternative embodiments of the
present invention can, for example, zoom in to only display the selected object, e.g., album 5,
and omit the clipped portions of the unselected objects, e.g., albums 4 and 6. This final zoom
provides an example of semantic zooming, wherein certain GUI elements are revealed that
werelrllot previously visible at the previous zoom level. Various techniques for performing
semantic zooming according to exemplary embodiments of the present invention are provided
below.

[0055] As illustrated in the Figures 6-9 and the description, this exemplary
embodiment of a graphical user interface provides for navigation of a music collection.
Interfaces according to the present invention can also be used for video collections such as for
DVDs, VHS tapes, other recorded media, video-on-demand, video segments and home

movies. Other audio uses include navigation of radio shows, instructional tapes, historical

25

WO 2007/065019 PCT/US2006/046302

0320-097 PC

archives, and sound clip collections. Print or text media such as news stories and electronic
books can also be organized and accessed using this invention.

[0056] As will be apparent to those skilled in the art from the foregoing description,
zoomable graphical user interfaces according to the present invention provide users with the
capability to browse a large (or small) number of media items rapidly and easily. This
capability is attributable to many characteristics of interfaces according to exemplary
embodiments of the present invention including, but not limited to: (1) the use of images as
all or part of the selection information for a particular media item, (2) the use of zooming to
rapidly provide as much or as little information as a user needs to make a selection and (3) the
use of several GUI techniques which combine to give the usér the sense that the entire
interface resides on a single plane, such that navigation of the GUI can be accomplished, and
remembered, by way of the user’s sense of direction. This latter aspect of GUIs according to
the present invention can be accomplished by, among other things, linking the various GUI
screens together “geographically” by maintaining as much GUI object continuity from one
GUI screen to the next,.e.g., by displaying edges of neighboring, unselected objects around
the border of the current GUI screen. Alternatively, if a cleaner view is desired, and other
GUI techniques provide sufficient geographic feedback, then the clipped objects can be
omitted. As used in this text, the phrase “GUI screen” refers to a set of GUI objects rendered
on one or more display units at the same time. A GUI screen may be rendered on the same
display which outputs media items, or it may be rendered on a different display. The display

can be a TV display, computer monitor or any other suitable GUI output device.

26

WO 2007/065019 PCT/US2006/046302

0320-097 PC

[0057] Another GUI effect which enhances the user’s sense of GUI screen
connectivity is the panning animation effect which can be invoked when a zoom is performed
or when the user selects an adjacent object at the same zoom level as the currently selected
object. For example, panning can be performed by progressive translation and display of at
least some of the user interface objects which are currently displayed in a user interface view
in such a way as to provide the visual impression of lateral movement of those user interface
~ objects to an observer. Returning to the example of Figure 6, as the user is initially viewing
this GUI screen, his or her point-of-view is centered about point 550. However, when he or
she selects Genre 3 for zooming in, his or her point-of-view will shift to point 552.
According to exemplary embodiments of the present invention, the zoom in process is
animated to convey the shifting the POV center from point 550 to 552. This panning
animation can be provided for every GUI change, e.g., from a change in zoom level or a
change from one object to another object on the same GUI zoom level. Thus if, for example,
a user situated in the GUI screen of Figure 7 selected the leftmost unselected genre 515
(Genre 2), a panning animation would occur which would give the user the visual impression
of “moving” left or west. Exemplary embodiments of the present invention employ such
techniques to provide a consistent sense of directional movement between GUI screens
enables users to more rapidly navigate the GUI, both between zoom levels and between media
items at the same zoom level.

[0058] Various data structures and algorithms can be used to implement zoomable
GUIs according to the present invention. For example, data structures and algorithms for

panning and zooming in an image browser which displays photographs have been described,

27

WO 2007/065019 PCT/US2006/046302

0320-097 PC

for example, in the article entitled “Quantum Treemaps and Bubblemaps for a Zoomable
Image Browser” by Benjamin B. Bederson, UIST 2001, ACM Symposium on User Interface
Software and Technology, CHI Letters, 3(2), pp. 71-80, the disclosure of which is
incorporated here by reference. However, in order to provide a GUI for media selection
which can, at a high level, switch between numerous applications and, at a lower level,
provide user controls associated with selected images to perform various media selection
functions, additional data structures, algorithms and programming language extensions are
needed.

[0059] Zoomable GUIs can be conceptualized as supporting panning and zooming
around a scene of user interface components in the view port of a display device. To
accomplish this effect, zoomable GUIs according to exemplary embodiments of the present
invention can be implemented using scene graph data structures. Each node in the scene
graph represents some part of a user interface component, such as a button or a text label or a
group of interface components. Children of a node represent graphical elements (lines, text,
images, etc.) internal to that node. For example, an application can be represented in a scene
graph as a node with children for the various graphical elements in its interface. Two special
types of nodes are referred to herein as cameras and layers. Cameras are nodes Fhat provide a
view port into another part of the scene graph by looking at layer nodes. Under these layer
nodes user interface elements can be found. Control logic for a zoomable interface
programmatically adjusts a cameras view transform to provide the effect of panning and

Zooming.

28

WO 2007/065019 PCT/US2006/046302

0320-097 PC

[0060] " Figure 10 shows a scene graph that contains basic zoomable interface elements
which can be used to implement exemplary embodiments of the present invention,
specifically it contains one camera node 900 and one layer node 902. The dotted line between
the camera node 900 and layer node 902 indicates that the camera node 900 has been
configured to render the children of the layer node‘902 in the camera’s view port. The
attached display device 904 lets the user see the camera’s view port. The layer node 902 has
three children nodes 904 that draw a circle and a pair of ovals. The scene graph further
specifies that a rectangle is drawn within the circle and three triangles within the rectangle by
way of nodes 912-918. The scene graph is ﬁed into other scene graphs in the data structure
by root node 920. Each node 906-918 has the capability of scaling and positioning itself
relative to its parent by using a local coordinate transformation matrix. Exemplary
programming language extensions which provide one mechanism for performing these
functions are described below under the heading “ZML”. Figures 11(a) and 11(b) illustrate
how the scene graph appears when rendered through the camera at a first, zoomed out level of
magnification and a second, zoomed in level of magnification, respectively.

[0061] Rendering the scene graph can be accomplished as follows. Whenever the
display 904 needs to be updated, e.g., when the user triggers a zoom-in from the view of
Figure 11(a) to the view of Figure 11(b), a repaint event calls the camera node 900 attached to
the display 904 to render itself. This, in turn, causes the camera node 900 to notify the layer
node 902 to render the area within the camera’s view port. The layer node 902 renders itself
by notifying its children to render themselves, and so on. The current transformation matrix

and a bounding rectangle for the region to update is passed at each step and optionally

29

WO 2007/065019 PCT/US2006/046302

0320-097 PC

modified to inform each node of the proper scale and offset that they should use for
rendering. Since the scene graphs of applications operating within zoomable GUIs according
to thp present invention may contain thousands of nodes, each node can check the
transformation matrix and the area to be updated to ensure that their drawing operations will
indeed be seen by the user. Although the foregoing example, describes a scene graph
including one camera node and one layer node, it will be appreciated that exemplary
embodiments of the present invention can embed multiple cameras and layers. These
embedded cameras can provide user interface elements such as small zoomed out maps that
indicate the user’s current view location in the whole zoomable interface, and also allow user
interface components to be independently zoomable and pannable.

[0062] When using a zoomable interface to coordinate the operation of multiple
applications, e.g., like the exemplary movie browser described bélow with respect to Figures
15-19, the memory and resource requirements for each application may exceed the total
me;nory available in the media system. This suggests that applications unload some or all of
their code and data when the user is no longer viewing them. However, in zoomable GUIs
according to the present invention it can be desirable to provide the appearance that some or
all of the applications appear active to the user at all times. To satisfy these two competing
objectives, the applications which are “off-screen” ﬁ'om the user’s point of view can be put
into a temporarily suspended state. To achieve this behavior in zoomable GUIs according to
exemplary embodiments of the present invention, events are sent to applications to indicate
when they enter and exit a view port. One way to implement such events is to add logic to

the code that renders a component so that it detects when the user enters a view port.

30

WO 2007/065019 PCT/US2006/046302

0320-097 PC

However, this implies that the notification logic gets invoked at every rendering event and,
more importantly, that it cannot easily detect when the user has navigated the view port away
from the component. Another method for sending events to applications is to incorporate the
notification logic into the GUI navigation elements (such as hyperlinks and buttons), so that
they send notifications to the component when they change the view port of a camera to
include the component of interest. However, this requires the programmer to vigilantly add
notification code to all possible navigation Ul elements.

[0063] According to one exemplary embodiment, a computationally efficient node
watcher algorithm can be used to notify applications regarding when GUI components and/or
applications enter and exit the view of a camera. At a high level, the node watcher algorithm
has three main processing stages: (1) initialization, (2) view port change assessment and (3)
scene graph change assessment. The initialization stage computes node quantities used by the
view port change assessment stage and initializes appropriate data structures. The view port
change assessment stage gets invoked when the view port changes and notifies all watched
nodes that entered or exited thé view port. Finally, the scene graph change assessment stage
updates computations made at the initialization stage that have become invalid due to changes
in the scene graph. For example, if an ancestor node of the watched node changes location in
the scene graph, computations made at initialization may need to be recomputed.

[0064] Ofthese stages, view port change assessment drives the rest of the node
watcher algorithm. To delineate when a node enters and exits a view port, the initialization
step determines the bounding rectangle of the desired node and transforms it from its local

coordinate system to the local coordinate system of the view port. In this way, checking node

31

WO 2007/065019 PCT/US2006/046302

0320-097 PC

entrance does not require a sequence of coordinate transformations at each view port change.
Since the parents of the node may have transform matrices, this initialization step requires
traversing the scene graph from the node up to the camera. As described below, if embedded
cameras are used in the scene graph data structure, then multiple bounding rectangles may be
needed to accommodate the node appearing in multiple places.

[0065] Once the bounding rectangle for each watched node has been computed in the
view port coordinate system, the initialization stage adds the bounding rectangle to the view
port change assessment data structures. The node watcher algorithm uses a basic building
block for each dimension in the scene. In zoomable interfaces according to some exemplary '
embodiments, this includes an x dimension, a y dimension, and a scale dimension. As
described below, however, other exemplary implementations may have additional or different
dimensions. The scale dimension describes the magnification level of the node in the view

port and is described by the following equation:

Where s is the scale, d is the distance from one point of the node to another in the node’s
local coordinates and 4’ is the distance from that point to the other in the view port.

[0066] Figure 12 shows an exemplary building block for detecting scene entrance and
exit in one dimension. The following describes handling in the x dimension, but those skilled
in the art will appreciate that the other dimensions can be handled in a similar manner. The

Region Block 1100 contains references to the transformed bounding rectangle coordinates.

32

WO 2007/065019 PCT/US2006/046302

0320-097 PC

This includes the left and right (top and bottom or minimum and maximum scale) offsets of
the rectangle. The left and right offsets are stored in Transition Blocks 1102 and 1104,
respectively, that are themselves placed in an ordered doubly linked list, such that lower
numbered offsets are towards the beginning. The current view port bounds are stored in the
View Bounds block 1106. Block 1106 has pointers to the Transition Blocks just beyond the
left and right side of the view, e.g., the Transition Block immediately to the right of the one
pointed to by View Left Side is in the view unless that latter block is pointed to by View
Right Side.

[0067] When the view port changes, the following processing occurs for each
dimension. First, the View Left Side and View Right Side pointers are checked to see if they
need to be moved to include or exclude a Transition Block. Next, if one or both of the
pointers need to be moved, they are slid over the Transition Block list to their new locations.
Then, for each Transition Block passed by the View Left Side and View Right Side pointers,
the node watcher algorithm executes the Transition Block notification code described below.
This notification code determines if it is possible that its respective node may have entered or
exited the view port. If so, that node is added to a post processing list. Finally, at the end of
this processing for each dimension, each node on the post processing list is checked that its
view port status actually did change (as opposed to changing and then changing back). Ifa
change did occur, then the algorithm sends an event to the component. Note that if the view
port jumps quickly to a new area of the zoomable interface that the algorithm may detect

more spurious entrance and exit events.

33

WO 2007/065019 PCT/US2006/046302

0320-097 PC

[0068] The Transition Block notification code can be implemented as a table lookup
that determines whether the node moved into or out of the view port for the dimension being

checked. An exemplary table is shown below.

Nodedis Full Intersection
B ENotification
Left Enter
Left Exit
Right None
Right Left Right Exit None
| Left Right Left Exit None
Left Right Right Enter None
Right Right Left None Exit
Right Right Right None Enter

Table 1 - Transition Notification Table

Columns 1, 2 and 3 are the inputs to the Transition Notification Table. Specifically, the node
watcher algorithm addresses the table using a combination of the node side, view side and
view move direction to determine whether the node being evaluated was entered, exited or
not impacted. Column 1 refers to the side of the node represented by the Transition Block
that was passed by the view port pointers. Column 2 refers to the side of the view port and
column 3 refers to the direction that that side of the view port was moving when it passed the
node’s Transition Block. Either output column 4 or 5 is selected depending upon whether the
node should be notified when it is partially or fully in view. For example, in some
implementations it may be desirable to notify an application such as a streaming video
window only after it is fully in view since loading a partially-in-view video window into the
zoomable GUI may be visually disruptive.

[0069] When the output of the table indicates enter or exit, the node watcher

algorithm adds the node to the post processing list. The output columns of Table 1 are

34

WO 2007/065019 PCT/US2006/046302

0320-097 PC

populated based on the following rules. If the node intersects in all dimensions then an enter
notification will be sent in the post processing step. Ifthe node was in the view and now one
or more dimensions have stopped intersecting, then an exit notification will be sent. To
reduce the number of nodes in the post processing list, the Transition Block notification code
checks for intersection with other dimensions before adding the node to the list. This
eliminates the post processing step when only one or two dimensions out of the total number
of dimensions, e.g., three or more, intersect. When a user interface object (e.g., an
application) wants to be notified of its view port status in the GUI, it registers a functioh with
the node watcher algorithm. When the application goes into or out of the view, the node
watcher algorithm calls that application’s registered function with a parameter that indicates
the event which occurred. Alternatively, notification can be performed using message
passing. In this case, each application has an event queue. The application tells the node
watcher algorithm how to communicate with its event queue. For example, it could specify
the queue's address. Then, when the node watcher detects a transition, it creates a data
structure that contains the cause of the notification and places it in the application's queue.
[0070] In addition to using node watcher notifications for application memory
management, this algorithm can also be used for other functions in zoomable GUIs according
to the present invention. For example, the node watcher algorithm can be used to change
application behavior based on the user’s view focus, e.g., by switching the audio output focus
to the currently viewed application. Another application for the node watcher algorithm is to
load and unload higher resolution and composite images when the magnification level

changes. This reduces the computational load on the graphics renderer by having it render

35

WO 2007/065019 PCT/US2006/046302

0320-097 PC

fewer objects whose resolution more closely matches the display. In addition to having the
node watcher algorithm watch a camera’s view port, it is also useful to have it watch the
navigation code that tells the view port where it will end up after an animation. This provides
earlier notification of components that are going to come into view and also enables
zoomable GUIS according to exemplary embodiments of the present invention to avoid
sending notifications to nodes that are flown over due to panning animations.

[0071] To better understand operation of the node watcher algorithm, an example will
now be described with reference to Figures 13(a), 13(b), 14(a) and 14(b). Figures 14(a) and
14(b) depict a portion of a zoomable GUI at two different magnification levels. At the lower
magnification level of Figure lé(a), three nodes are visible: a circle, a triangle and an ellipse.
In Figure 13(b), the view has been zoomed in so much that the ellipse and circle are only
partially visible, and the triangle is entirely outside of the view. These nodes may, for
example, represent applications or user interface components that depend on efficient event
notification and, therefore, are tracked by the node watcher algorithm according to exemplary
embodiments of the present invention. In this example, the bounding rectangles for each
node are explicitly illustrated in Figures 13(a) and 13(b) although those skilled in the art will
appreciate that the bounding rectangles would not typically be displayed on the GUL Each
side of each of the bounding rectangles has been labeled in Figures 13(a) and 13(b), and these
labels will be used to show the correspondence between the bounding rectangle sides and the
transition block data structure which were described above.

[0072] Figure 14(a) shows exemplary node watcher data structures for the horizontal

dimension for the zoomed out view of Figure 13(a). Therein, each side of a node’s bounding

36

WO 2007/065019 PCT/US2006/046302

0320-097 PC

rectangle is represented using a transition block. The horizontal transition blocks are shown
in Figure 14(a) in the order that they appear on the GUI screen from left to right. For
example, the left side of the circle, Cpen, comes first and then the left side of the triangle, Tycq,
and so on until the right side of the ellipse, Erign. Both ends of the list are marked with empty
sentinel transition blocks. Also shown in Figure 14(a) are the region blocks for each node
and their corresponding pointers to their bounding rectangle’s horizontal transition blocks.

At the bottom of Figure 14(a) is the view bounds data structure that contains pointers to the
transition blocks that are just outside of the current view. For the zoomed out view, all nodes
are completely visible, and therefore all of their transition blocks are between the transition
blocks pointed to by the view bounds data structure.

[0073] Figure 14(b) shows the node watcher data structures for the zoomed in view of
Figure 13(b). Therein, it can be seen that the view bounds part of the data structure has
changed so that it now points to the transition blocks for the right side of the triangle, Trights
and the right side of the ellipse, Egjgn , since these two bounding rectangle sides are just
outside of the current (zoomed in) view.

[0074] Given these exemplary data structures and GUI scenes, the associated
processing within the node watcher algorithm while the zoom transition occurs can be
described as follows. Starting with the left side of the view, the node watcher algorithm
moves the view left side pointer to the right until the transition block that is just outside of the
view on the left side is reached. As shown in Figure 14(b), the view left side pointer first
passes the Cpeq transition block. For this example, assume that the circle node represents an

application or other user interface object associated with the zoomable GUI that requires a

37

WO 2007/065019 PCT/US2006/046302

0320-097 PC

notification when it is not fully visible in the view. Given these inputs to the node watcher
algorithm, Table 1 indicates that the circle node should receive an exit notification for the
horizontal dimension. Of course, the node watcher algorithm will typically aggregate
notifications from all dimensions before notifying the node to avoid sending redundant exit
notifications. Next, the view left side pointer passes the left side of the triangle, Trea. If the
triangle node has requested notifications for when it completely leaves the view, then the
node watcher algorithm indicates per Table 1 that no notification is necessary. However,
when the view pointer passes Trign, Table 1 indicates that the triangle has exited the view
entirely and should be notified. The view pointer stops here since the right side of the circle’s
bounding rectangle, Crign, is still visible in the view.

[0075] From the right side, the node watcher algorithm’s processing is similar. The
view right side pointer moves left to the ellipse’s right side Egigy. Depending on whether the
ellipse has requested full or partial notifications, the node watcher algorithm will or will not
send a notification to the ellipse pursuant to Table 1. The vertical dimension can be
processed in a similar manner ﬁsing similar data structures and the top and bottom boundary
rectangle values. Those skilled in the arts will also appreciate that a plurality of boundary
rectangles can be used to approximate non-rectangular nodes when more precise notification
is required. Additionally, the present invention contemplates that movement through other
dimensions can be tracked and processed by the node watcher algorithm, e.g., a third
geometrical (depth or scale) dimension, as well as non-geometrical dimensions such as time,

content rating (adult, PG-13, etc.) and content type (drama, comedy, etc). Depending on the

38

WO 2007/065019 PCT/US2006/046302

0320-097 PC

number of dimensions in use, the algorithm, more accurately, detects intersections of
boundary segments, rectangles, and n-dimensional hypercubes.

[0076] " In addition to the node watcher algorithm described above, exemplary
embodiments of the present invention provide resolution consistent semantic zooming
algorithms which can be used in zoomable GUIs according to exemplary embodiments of the
present invention. Semantic zooming refers to adding, removing or changing details of a
component in a zoomable GUI depending on the magnification level of that component. For
example, in the movie browser interface described below, when the user zooms close enough
to the image of the movie, it changes to show movie metadata and playback controls. The
calculation of the magnification level is based on the number of pixels that the component
uses on the display device. The zoomable GUI can store a threshold magnification level
which indicates when the switch should occur, e.g., from a view without the movie metadata
and playback controls to a view with the movie metadata and playback controls.

[0077] Television and computer displays have widely varying display resolutions.
Some monitors have such a high resolution that graphics and text that is readable on a low
resolution display is so small to become completely unreadable. This also creates a problem
for applications that use semantic zooming, especially on high resolution displays such as
HDTVs. In this environment, semantic zooming code that renders based on the number of
pixels displayed will change the image before the more detailed view is readable.
Programmatically modifying the threshold at which semantic zooming changes component

views can only work for one resolution.

39

WO 2007/065019 PCT/US2006/046302

0320-097 PC

[0078] The desirable result is that semantic zooming occurs consistently across all
monitor resolutions. One solution is to use lower resolution display modes on high resolution
monitors, so that the resolution is identical on all displays. However, the user of a high
resolution monitor would prefer that graphics would be rendered at their best resolution if
semantic zooming would still work as expected. Accordingly, exemplary embodiments of the
present invention provide a semantic zooming technique which supports displays of all
different solutions without the previously stated semantic viewing issues. This can be
accomplished by, for example, creating a virtual display inside of the scene graph. Thisis
shown in Figure 15 by using an embedded virtual camera node 1200 and adding logic to
compensate for the display resolution. The virtual camera node 1200 defines a view port
whose size maps to the user’s view distance and monitor size. For example, a large virtual
camera view port indicates that a user is either sitting close enough to the monitor or has a
large enough monitor to resolve many details. Alternately, a small view port indicates that
the user is farther away from the monitor and requires larger fonts and image. The zoomable
GUI code can base the semantic zooming transitions on the magnification level of
components seen on this virtual camera and using the user’s preferred viewing conditions.
[0079] The main camera node 1202 that is attached to the display device 1204 has its
view port configured so that it displays everything that the virtual camera 1200 is showing.
Since graphics images and text are not mapped to pixels until this main camera 1202, no loss
of quality occurs from the virtual camera. The result of this is that high definition monitors
display higher quality images and do not trigger semantic zooming changes that would make

the display harder to read.

40

WO 2007/065019 PCT/US2006/046302

0320-097 PC

[0080] According to one exemplary embodiment of the present invention, the process
works as follows. Each camera and node in the scene graph has an associated transform
matrix (T to T,,). These matfices transform that node’s local coordinate system to that of the
next node towards the display. In the figure, T, transforms coordinates from its view port to
display coordinates. Likewise, Ta transforms its local coordinate system to the camera’s view
port. If the leaf node 1206 needs to render something on the display, it computes the

following transform matrix:
A=TT, T,

This calculation can be performed while traversing the scene graph. Since the component
changes to support semantic zooming are based on the virtual camera 1200, the following
calculation is performed:

B=T1T;---T,
Typically, T, to Ts can be determined ahead of time by querying the resolution of the monitor
and inspecting the scene graph. Determining B from A is, therefore, accomplished by
inverting these matrices and multiplying as follows:

B= (TIT 215)—l A

For the case when calculating T, to T; ahead of time is problematic, e.g., ifa graphics API
hides additional transformations, logic can be added to the virtual camera to intercept the

transformation matrix that it would have used to render to the display. This intercepted

41

WO 2007/065019 PCT/US2006/046302

0320-097 PC

transformation is then inverted and multiplied as above to compute the semantic zooming
threshold.

[0031] One strength of zoomable interfaces according to exemplary embodiments of
the present invention is the ability to maintain context while navigating the interface. All of
the interface components appear to exist in the zoomable world, and the user just needs to pan
and zoom to reach any of them: The semantic zooming technique described above changes
the appearance‘of a component depending on the zoom or magnification level. Figures 16(a)
and 16(b) provide an example of semantic zooming for a component where the zoomed out
version of the component (Figure 16(a)) is a picture and the zoomed in version (Figure 16(b))
includes the same picture as well as some controls and details. Some more detailed examples
of this are provided below. One challenge associated with semantic zooming is that changes
between views can occur abruptly, and transition techniques sﬁch as alpha blending do not
provide visually pleasing results when transitionir;g between two such views.

[0082] Accordingly, exemplary embodiments of the present invention provide for
some common image or text in all views of a component to provide a focal point for a
transition effect when a semantic zoom is performed. For example, in Figures 16(a) and
16(b), the common element is the picture. The transition effect between the zoomed out
version and the zoomed in version can be triggered using, for example, the above-described
node watcher algorithm as follows. First, a registration with the node watcher can be
performed to receive an event when the main camera’s view port transitions from the
magnification level of the zoomed out version of the component to the zoomed in version.

Then, when the event occurs, an animation can be displayed which shows the common

42

WO 2007/065019 PCT/US2006/046302

0320-097 PC

element(s) shrinking and translating from their location in the zoomed out version to their
location in the zoomed in version. Meanwhile, the camera’s view port continues to zoom into
the component.

[0083] These capabilities of graphical user interfaces according to the present
invention wéll become even more apparent upon review of another exemplary embodiment
described below with respect to Figures 17-21. Therein, a startup GUI screen 1400 displays a
plurality of organizing objects which operate as media group representations. The purely
exemplary media group representations of home video, movies, TV, sports, radio, music and
news could, of course include different, more or fewer media group representations. Upon
actuation of one of these icons by a user, the GUI according to this exemplary embodiment
will then display a plurality of images each grouped into a particular category or genre. For
example, if the “movie” icon in Figure 17 was actuated by a user, the GUI screen of Figure 18
can then be displayed. Therein, a large number, e.g., 120 or more, selection objects are
displayed. These selection objects can be categorized into particular group(s), e.g., action,
classics, comedy, drama, family and new releases. Those skilled in the art will appreciate that
more or fewer categories could be provided. In this exemplary embodiment, the media item
images can be cover art associated with each movie selection. Although the size of the blocks
in Figure 18 is too small to permit detailed illustration of this relatively large group of
selection item images, in implementation, the level of magnification of the images is such that
the identity of the movie can be discerned by its associated image, even if some or all of the

text may be too small to be easily read.

43

WO 2007/065019 PCT/US2006/046302

0320-097 PC

[0084] The cursor (not shown in Figure 18) can then be disposed over a group of the
movie images and the input device actuated to provide a selection indication for one of the
groups. In this example the user selects the drama group and the graphical user interface then
displays a zoomed version of the drama group of images as seen in Figure 19. As with the
previous embodiment, a transition effect can also be displayed as the GUI shifts from the GUI
screen of Figure 18 to the GUI screen of Figure 19, e.g., the GUI may pan the view from the
center of the GUI screen of Figure 18 to the center of the drama group of images during or
prior to the zoom. Note that although the zoomed versién of the drama group of Figure 19
only displays a subset of the total ﬁumber of images in the drama group, that this zoomed
version can alternatively contain all of the images in the selected group. The choice of
whether or not to display all of the images in a selected groub in any given zoomed in version
of a GUI screen can be made based upon, for example, the number of media items in a group
and a minimum desirable magnification level for a media item for a particular zoom level.
This latter characteristic of GUIs according to the present invention can be predetermined by
the system designer/service provider or can be user customizable via software settings in the
GULIL For example, the number of media items in a group and the minimum and/or maximum
magnification levels can be configurable by either or both of the service provider or the end
user. Such features enable those users with, for example, poor eyesight, to increase the
magnification level of media items Being displayed. Conversely, users with especially keen
eyesight may decrease the level of magnification, thereby increasing the number of media

items displayed on a GUI screen at any one time and decrease browsing time.

44

WO 2007/065019 PCT/US2006/046302

0320-097 PC

[0085] One exemplary transition effect which can be employed in graphical user
interfaces according to the present invention is referred to herein as the “shoe-to-detail” view
effect. When actuated, this transition effect takes a zoomed out image and simultaneously
shrinks and translates the zoomed out image into a smaller view, i.e., the next higher level of
magnification. The transition from the magnification level used in the GUI screen of Figure
18 to the greater magnification level used in the GUI screen of Figure 19 results in additional
details being revealed by the GUI for the images which are displayed in the zoomed in
version of Figure 19. The GUI selectively reveals or hides details at each zoom level based
upon whether or not those details would display well at the currently selected zoom level.
Unlike a camera zoom, which attempts to resolve details regardless of their visibility to the
unaided eye, exemplary embodiments of the present invention provide for a configurable
zoom level parameter that specifies a transition point between when to show the fill image
and when to show a version of the image with details that are withheld. The transition point
can be based upon an internal resolution independent depiction of the image rather the
resolution of TV/Monitor 212. In this way, GUIs according to the present invention are
consistent regardless of the resolution of the display device being used in the media system.
[0086] In this exemplary embodiment, an additional amount of magnification for a
particular image can be provided by passing the cursor over a particular image. This feature
can be seen in Figure 20, wherein the cursor has rolled over the image for the movie “Apollo
13”. Although not depicted in Figure 20, such additional magnification could, for example,
make more legible the quote “Houston, we have a problem” which appears on the cover art of

the associated media item as compared to the corresponding image in the GUI screen of

45

WO 2007/065019 PCT/US2006/046302

0320-097 PC

Figure 19 which is at a lower level of magnification. User selection of this image, e.g., by
depressing a button on the input device, can result in a further zoom to display the details
shown in Figure 21. This provides yet another example of semantic zooming as it was
previously described since various information and control elements are present in the GUI
screen of Figure 21 that were not available in the GUI screen of Figure 20. For example,
information about the movie “Apollo 13” including, among other things, the movie’s runtime,
price and actor information is shown. Those skilled in the art will appreciate that other types
of information could be provided here. Additionally, this GUI screen includes GUI control
objects including, for example, button control objects for buying the movie, watching a trailer
or returning to the previous GUI screen (which could also be accomplished by depressing the
Z0OOM OUT button on the input device). Hyperlinks can also be used to allow the user to
jump to, for example, GUI screens associated with the related movies identified in the lower
right hand corner of the GUI screen of Figure 21 or information associated with the actors in
this movie. In this example, some or all of the film titles under the heading “Filmography”
can be implemented as hyperlinks which, when actuated by the user via the input device, will
cause the GUI to display a GUI screen corresponding to that of Figure 21 for the indicated
movie.

[0087) A transition effect can also be employed when a user actuates a hyperlink.
Since the hyperlinks may be generated at very high magnification levels, simply jumping to
the linked media item may cause the user to lose track of where he or she is in the media item
selection “map”. Accordingly, exemplary embodiments of the present invention provide a

transition effect to aid in maintaining the user’s sense of geographic position when a

46

WO 2007/065019 PCT/US2006/046302

0320-097 PC

hyperlink is actuated. One exemplary transition effect which can be employed for this
purpose is a hop transition. In an initial phase of the transition effect, the GUI zooms out and
pans in the direction of the item pointed to by the hyperlink. As mentioned previously, one
exemplary set of techniques for implementing this type of transition effect is described below
under the heading “ZML”. Zooming out and panning continues until both the destination
image and the origination image are viewable by the user. Using the example of Figure 21
once again, if the user selects the hyperlink for “Saving Private Ryan”, then the first phase of
the hyperlink hop effect would include zooming out and panning toward the image of “Saving
Private Ryan” until both the image for “Saving Private Ryan” and “Apollo 13” were visible to
the user. At this point, the transition effect has provided the user with the visual impression
of being moved upwardly in an arc toward the destination image. Once the destination image
is in view, the second phase of the transition effect gives the user the visual impression of
zooming in and panning to, e.g., on the other half of the arc, the destination image. The hop
time, i.e., the amount of time both phases one and two of this transition effect are displayed,
can be fixed as between any two hyperlinked image items. Alternatively, the hop time may
vary, e.g., based on the distance traveled over the GUL. For example, the hop time can i)e
parameterized as HopTime = A log(zoomed-in scale level/hop apex scale level) + B(distance
between hyperlinked media items) + C, where A, B and C are suitably selected constant
values.

[0088] The node watcher algorithm described above with respect to Figures 10-14(b)
can also be used to aid in the transition between the zoom level depicted in the exemplary

GUI screen of Figure 20 and the exemplary GUI screen of Figure 21. The rendering of GUI

47

WO 2007/065019 PCT/US2006/046302

0320-097 PC

screens containing text and/or control elements which are not visible in other zoom level
versions of the selected image may be more computationally and/or memory intensive than
the images at lower magnification levels. Accordingly, the node watcher algorithm can be
used in exemplary embodiments of the present invention to aid in pre-loading of GUI screens
such as that shown in Figure 21 by watching the navigation code of the GUI to more rapidly
identify the particular media item being zoomed in on.

[0089] Included in exemplary implementations of the present invention are screen-
location and semantically-based navigation controls. These control regions appear when the
user positions the cursor near or in a region associated with those controls on a screen where
those controls are appropriate as shown in Figure 22. For example, when playing a movie,
the so-called trick functions of Fast Forward, Rewind, Pause, Stop and so on are semantically
appropriate. In this exemplary embodiment, the screen region assigned to those functions is
the lower right corner and when the cursor is positioned near or in that region, the set of icons
for those trick functions appear. These icons then disappear when the function engaged is
clearly completed or when the cursor is repositioned elsewhere on the screen. The same
techniques can also be used to cover other navigational features like text search and home
screen selection. In this exemplary implementation, these controls are semantically relevant
on all screens and the region assigned to them is the upper right corner. When the cursor is
positioned near or in that region, the set of icons for those navigational controls appear.
These icons then disappear when the function is activated or the cursor is repositioned

elsewhere on the screen. Note that for user training purposes, the relevant control icons may

48

WO 2007/065019 PCT/US2006/046302

0320-097 PC

initially optionally appear briefly (e.g., 5 seconds) on some or all of the relevant screens in
order to alert the inexperienced user to their presence.

[0090] Having provided some examples of zoomable graphical user interfaces
according to the present invention, exemplary frameworks and infrastructures for using such
interfaces will now be described. Figure 23 provides a framework diagram wherein zoomable
interfaces associated with various high level applications 1900, e.g., movies, television,
music, radio and sports, are supported by primitives 1902 (referred to in the Figure as
“atoms”). In this exemplary embodiment, primitives 1902 include POINT, CLICK, ZOOM,
HOVER and SCROLL, although those skilled in the art will appreciate that other primitives
may be included in this group as well, e.g., PAN and DRAG. As described above the POINT
and CLICK primitives operate to determine cursor location and trigger an event when, for
example, a user actuates the ZOOM IN or ZOOM OUT button on the handheld input device.
These primitives simplify navigation and remove the need for repeated up-down-right-left
button actions. As illustrated above, the ZOOM primitive provides an overview of possible
selections and gives the user context when narrowing his or her choices. This concept
enables the interface to scale to large numbers of media selections and arbitrary display sizes.
The SCROLL primitive handles input from the scroll wheel input device on the exemplary
handheld input device and can be used to, for example, accelerates linear menu navigation.
The HOVER primitive dynamically enlarges the selections underneath the pointer (and/or
changes the content of the selection) to enable the user to browse potential choices without
committing. Each of the aforedescribed primitive operations can be actuated in GUIs

according to the present invention in a number of different ways. For example, each of

49

WO 2007/065019 PCT/US2006/046302

0320-097 PC

POINT, CLICK, HOVER, SCROLL and ZOOM can be associated with a different gesture
which can be performed by a user. This gesture can be communicated to the system via the
input device, whether it be a free space pointer, trackball, touchpad, etc. and translated into an
actuation of the appropriate primitive. Likewise, each of the primitives can be associated
with a respective voice command.

[0091] Between the lower level primitives 1902 and the upper level applications 1900
reside various software and hardware infrastructures 1904 which are involved in generating
the images associated with zoomable GUISs according to the present invention. As seen in
Figure 23, such infrastructures 1904 can include a handheld input device/pointer, application
program interfaces (APIs), zoomable GUI screens, developers’ tools, etc.

[0092] The foregoing exemplary embodiments are purely illustrative in nature. The
number of zoom levels, as well as the particular information and controls provided to the user
at each level may be varied. Those skilled in the art will appreciate that the present invention
provides revolutionary techniques for presenting large and small sets of media items using a
zoomable interface such that a user can easily search through, browse, organize and play back
media items such as movies and music. Graphical user interfaces according to the present
invention organize media item selections on a virtual surface such that similar selections are
grouped together. Initially, the interface presents a zoomed out view of the surface, and in
most cases, the actual selections will not be visible at this level, but rather only their group
names. As the user zooms progressively inward, more details are revealed concerning the
media item groups or selections. At each zoom level, different controls are available so that

the user can play groups of selections, individual selections, or go to another part of the

50

WO 2007/065019 PCT/US2006/046302

0320-097 PC

virtual surface to browse other related media items. Zooming graphical user interfaces
according to exempiary embodiments of the present invention can contain categories of
images nested to an arbitrary depth as well as categories of categories. The media items can
include content which is stored locally, broadcast by a broadcast provider, received via a
direct connection from a content provider or on a peering basis. The media items can be
provided in a scheduling format wherein date/time information is provided at some level of
the GUIL. Additionally, frameworks and GUIs according to exemplary embodiments of the
present invention can also be applied to television commerce wherein the items for selection

are being sold to the user.

ZML (7ZUI Markup Language)

[0093] There are a number of different ways to develop software usable to generate
the GUI screens described above, as well as the other user interface features associated with
such systems. Conceptually, if the number of user interface elements were fixed and
relatively few in number, one could “hard code” each scene and each transition between each
scene. However, hard coding is not particularly desirable, or possibly not even feasible, for
large scale implementations wherein it is desirable for third-party developers to have the
opportunity to add value by way of extensions or applications development within a
zoomable user interface framework. Accordingly, exemplary embodiments of the present
invention provide tools for rendering rich ZUIs which are also easily extensible.

[0094] The term “scene” is used herein in discussing ZUT construction according to

exemplary embodiments of the present invention. A scene describes, for example, the

51

WO 2007/065019 PCT/US2006/046302

0320-097 PC

collective set of ZUI components available to the user between navigation changes, i.c., those
user interface objects available in a particular UI view. As mentioned above, ZUIs according
to exemplary embodiments of the present invention provide the user with navigation
information by, among other things, establishing spatial relationships between scenes which
are conveyed by, among other mechanisms, zooming and panning animations. In order to
implement such ZUTs in a way other than hard coding the interface, the following exemplary
embodiments describe one way in which a programming language (and corresponding
applications program interface (API)) can be extended to enable programmers to develop
these types of ZUIs.

[0095] For example, scenes associated with ZUIs can be generated using a
programming language which is based on the Scalable Vector Graphics (SVG) specification.
SVG is a language which is designed for use in describing two-dimensional graphics in
Extensible Markup Language (XML). SVG is specified in, for example, the “Scalable Vector
Graphics (SVG) 1.1 Specification™, promulgated by the W3C Recommendation 14 January

2003, which can be found at http://www.w3.org/TR/2003/REC-SVG11-20030114/, the

disclosure of which is incorporated here by reference, as well as another version, SVG Tiny

1.2, which can be found at

hitp://www.w3.org/TR/SVGMobilel2/coords.html#InitialCoordinateSystem , the disclosure

of which is also incorporated here by reference. Among other things, SVG provides for three
types of graphic objects: vector graphic shapes (e.g., paths consisting of straight lines and
curves), images and text. Graphical objects can be grouped, styled, transformed and

composed into previously rendered objects. The feature set includes nested transformations,

52

WO 2007/065019 PCT/US2006/046302

0320-097 PC

clipping paths, alpha masks, filter effects and template objects. Many of the features
available in SVG can be used to generate scenes for creating zoomable user interfaces, such
as those described above. However, extensions to the SVG language have been developed
according to exemplary embodiments of the present invention in order to provide some ZUI
functionality, including the capability to establish and manipulate spatial relationships
between scenes. These exemplary extensions to SVG include both new elements, as well as
new attributes associated with conventional elements which are currently provided for in the
SVG language, some examples of which are provided below for functionality associated with
describing scenes and scene transitions in zoomable user interfaces. Therein, element names
denoted in the form “zui:name” identify element extensions to SVG. After describing the
various SVG extension elements and attributes, some further examples relating to how these
extensions can be used to generate ZUIs according to exemplary embodiments will be
provided.

[0096] <a>

The hyperlink tag <a> creates a hyperlink to another scene in the zoomable user interface.
This is similar in concept to the hyperlink tag used in web pages but the syntax for specifying
a hyperlink reference (xlink:hret) follows ZML protocols, namely “zuipath” and “zuichild”.
A scene specified with a “zuichild” path name is treated as a child of the current scene. The
child scene is placed below the parent scene in the tree, and the variable scope of the parent
scene extends to the child scene. When a user clicks the link in the ZUI associated with the
hyperlink tag, the view moves to the new scene, using any transition specified. Because the
new scene is a child of the previous scene, variables specified in the parent scene are

available to the new scene.

53

WO 2007/065019 PCT/US2006/046302

0320-097 PC

A scene specified with a “zuipath” path name is not a child of the original scene, instead there
is no relationship at all. The variable scope is not shared, so the new scene has no access to
the prior scene’s variables. One or more locatable elements (or a zui:brick that includes such

elerﬁents) may be enclosed within the <a> tag; these specify what users click to activate the

link.

]id Alpha- User-defined values can make JavaScript clearer.
numeric
string
xlink:href URL Allow auto-assignment of this value; Possible prefixes include “zuichild”
for subscenes/bricks, “zuipath” for hyperlinks.
zui:metadata | Variable Variable or database expression that resolves to the URL destination.
The result will automatically update when the value of the expression
changes.
zuizduration | Integer "| If a zui:duration of 0 is specified this overrides any other transition
specified and turns the link into an immediate flash cut or teleport. Do
not use other values with zui:duration.

Table 2 — <a> Tag Attributes
[0097] <g>

The grouping tag <g> allows a ZUI programmer to group a set of nodes together. These nodes
become child elements of the grouping node. The grouping tag permits the programmer to
easily move, enable/disable, or modify related objects by simply modifying the grouping node
since many attributes set on the grouping node are inherited by or applied to the grouping
node’s children. Attributes that are inherited include: pointer-events, visibility, zui:internal-
node and zui:informational. Changes to the grouping node’s transform attribute are applied
to the children of the node rather than inherited, but the effect is the same. In contrast to the
SVG Tiny Specification, style attributes such as color are not inherited according to this

exemplary embodiment.

54

WO 2007/065019 PCT/US2006/046302

0320-097 PC

id Alpha-numeric string User-defined values can make

JavaScript clearer.
Transform “TransformlList” as defined | To manipulate the transform attribute
in the SVG Tiny spec. In use getTraitMatrix() to return an object
practice, usually consists of type “SVGMatrix”, which has a
of a “matrix(x,x,x,x,x,x)" number of convenience methods as
string. described in the spec.
“transform.js” in the “scripts” directory
contains a standard set of methods for
manipulating the transform in
JavaScript.
pointer-events none | zui:all Use none to disable 3D pointer events;

Use zui:all to enable; Hidden/invisible
elements will receive pointer events
unless this attribute is set to none
Visibility hidden | visible Use hidden to hide an element; Use
-visible to make it visible; Visibility has no
effect on user input. Use the pointer-
events attribute instead.

zuilayer null | background | [Alpha- | Use the layer attribute to associate an
numeric string] element with a layer in the scene; A null
value is associated with the default layer
{the foreground); Non-null values that do
not equal “background” become
overlays.

zuicinformational | true | false if true, the node should be ignored by
the framework. This is useful for
including placement artwork and
backgrounds that should not be
displayed at run time.
zuitinternal-node | true | false Used to specify the destination for
placement swap effects. A group that
will act as the destination location for a
swap effect should be marked as
internal-node = true.

Zui:cursor URL to a cursor image | Used to specify the cursor image.
arrow | hand “arrow” and “hand” are the standard
system cursors, which can be specific to
a customer implementation
environment.

Table 3 — <g> Tag Attributes
[0098] <image>

The <image> element loads an image into the scene. Static and placehoider images use the
href attribute, while the zui:metadata tag is used to replace placeholder artwork with metadata

defined images/cover art.

55

WO 2007/065019

0320-097 PC

PCT/US2006/046302

id Alpha-numeric string | User-defined values can make
JavaScript clearer
transform “TransformList” as defined To manipulate the transform
in the SVG Tiny spec. In attribute use getTraitMatrix() to return
practice, usually consists an object of type "SVGMatrix”, which
of a "matrix(x,x,x,x,x,x)" has a number of convenience
string. methods as described in the spec.
“transform.js” in the “scripts” directory
contains a standard set of methods
for manipulating the transform in
JavaScript.
X Float Horizontal position to render the text
relative to the top left of the screen.
y Float Vertical position to render the text
relative to the top left of the screen.
width Float The width of the node.
height Float The height of the node.
pointer-events none | zuizall Use none to disable 3D pointer
events; Use zui:all to enable;
Hiddenl/invisible elements will receive
3D pointer events unless this attribute
is set to none
visibility hidden | visible Use hidden to hide an element; Use
visible to make it visible. Visibility has
no effect on user input in itself; set
pointer-events to none to keep a
hidden image from responding to 3D
pointer events.
preserveAspectRatio | [xMinYMin | xMidYMin | This atiribute consists of two
xMaxYMin | xMinYMid | enumerated string values with a
xMidYMid | xMaxYMid | space between them. The first
xMinYMax | xMidYMax | determines the anchor point for
xMaxYMax | preserving the aspect ratio and the
none} point at which hoverzooms occur
: (xMidYMid is the typical value); The
[meet | slice] second determines how to handle
scaling (meet is the typical value) See
the preserveAspectRatio attribute in
the SVG Tiny spec.
Xlink:href URL The URL of the image to display. This

image will be used if no zui:metadata
attribute is specified, or if the
zutmetadata request fails to resolve.
In practice the image URL is relative
to the SVG, as the image directory is
located in a child directory of the SVG
directory.

56

WO 2007/065019

0320-097 PC

34

Zui:metadata

MQL expression

PCT/US2006/046302

cHptio

An expression in MQL that is
evaluated to determine the image to
display. The result of the expression
should be a URL to the image to
display. The image will be updated
every time the resuit of the
expression changes.

zui:layer

null | background | [Alpha-
numeric string]

Use the layer attribute to associate an
element with a layer in the scene; A
null value is associated with the
default layer (the foreground); Non-
null values that do not equal
“background” become overlays

zuitinformational

true | false

If true, the node should be ignored by
the framework; This is useful for
including placement artwork and
backgrounds that should not be
displayed at run time.

zuiiinternal-node

true | false

Used to specify the destination for
placement swap effects. A group that
will act as the destination location for
a swap effect should be marked as
internal-node = true.

zui:cursor

URL to a cursor image |
arrow | hand

Used to specify the cursor image.
“arrow” and “hand” are the standard
system cursors, which can be specific
to a customer implementation
environment.

[0099]

The <rect> element defines a rectangle that will be drawn on the scene, which may be useful

Table 4 — <image> Tag Attributes

<rect>

for debugging. In the API, <rect> tags are typically hidden and can be used to define

boundaries for various widgets (e.g., a global navigation activation region).

id

User-defined values can make
JavaScript clearer

transform

“TransformList” as defined
in the SVG Tiny spec. In
practice, usually consists of
a “matrix(x,x,x,x,x,x)" string

To manipulate the transform attribute use
getTraitMatrix() to return an object of type
“*SVGMatrix®, which has a number of
convenience methods as described in the
spec.

“transform.js” in the “scripts” directory
contains a standard set of methods for
manipulating the transform in JavaScript.

57

WO 2007/065019

0320-097 PC

PCT/US2006/046302

Hori;;\tal posi-tion of the upper left
comer relative to the top left of the
screen.

y Float Vertical position of the upper left corner
relative to the top left of the screen.

width Float The width of the node.

height Float The height of the node.

fill Color value The color to fill the rectangle with.

stroke Color value The color to outline the rectangle with.

pointer-events none | zui:all Use none to disable 3D pointer events;
Use zui:all to enable. Hidden/invisible
elements will receive pointer events
unless this attribute is set to none

visibility hidden | visible Use hidden to hide an element; Use
visible to make it visible. Visibility has no
effect on user input in itself; set pointer-
events to none to keep a hidden
rectangle from responding to pointer
events.

2uilayer null | background | [Alpha- Use the layer attribute to associate an

numeric string}

element with a layer in the scene; A null

value is associated with the default layer
(the foreground); Non-null values that do
not equal “background” become overlays

2uicinformational true | false If true, the node should be ignored by the
framework; This is useful for including
placement artwork and backgrounds that
should not be displayed.

zuiinternal-node true | false Used to specify the destination for

placement swap effects. A group that will
act as the destination location for a swap
effect should be marked as internal-node
= true.

2ui:cursor URL to a cursor image | Used to specify the cursor image.
arrow | hand “arrow” and “hand” are the standard
system cursors, which can be specific to
a customer implementation environment.
Table S — <rect> Tag Attributes
[0100] <script>

The <script> element denotes which JavaScript files the system should load to add

interactivity to the ZML. Typically, one JavaScript file is included in the ZML using the

script tag and all dependencies are loaded in the JavaScript file using the

58

WO 2007/065019 PCT/US2006/046302

0320-097 PC

document.include(<file>) function.

o X@%Si? 5 22
Language | Alpha-numeric The language that the referenced script file is written in.
string “application/ecmascript” is supported by the framework.
“javascript” is also supported for backward compatibility.
xlink:href | URL The URL of the script to load.]

Table 6 — <script> Tag Attributes

[0101] <svg>

The <svg> element is used as the outermost tag of an SVG file. It can, therefore, be used to

denote the size (bounds) of the scene, the onload JavaScript event, and very high level

attributes of the scene.

A

User-defined values can make JavaScript clearer

id Alpha-

numeric string
Width Float The width of the node.
Height Float The height of the node.
Onload JavaScript The JavaScript function to call when the system processes

function name | the onload event for the scene. This attribute is created by the
Toolkit, along with the corresponding function in the js file for
the scene.

xmins:<namespace> | URL The URL that describes the specified namespace. Several
required xmins attributes are generated by the Toolkit. There
should be no need to alter these.

zuitop true | false true if clicking thie top button in global navigation should stop
on this scene; false if the system should bypass this scene
when navigating to top.

Table 7 — <svg> Tag Attributes
[0102] <view>

The view tag can be used to add a new view to the scene. In a Java framework, every scene
by default has a view with the id “everything”. This “everything” view is defined as the

entire scene.

59

WO 2007/065019 PCT/US2006/046302

0320-097 PC

JavaScript clearer

viewBox (x. y, width, height) Specifies the size of the view and
where it is located within the scene,
subject to value of

preserveAspectRatio.
preserveAspectRatio [XMinYMin | xMidYMin | This attribute consists of two
xMaxYMin | xMinYMid | enumerated string values with a
xMidYMid | xMaxYMid | space between them. The first
xMinYMax | xMidYMax | determines the anchor point for
XxMaxYMax | none] preserving the aspect ratio and the
[meet | slice] point at which hoverzooms occur

{(xMidYMid is the typical value);
The second determines how to
handie scaling {meet is the typical
value). See the
preserveAspectRatio attribute in
the SVG Tiny spec.
zui:transition fherest_teleport | Similar to scene transitions. This
hcrest_swap_effect | attribute specifies how the
transition into the view should look.
It can either use a system defined
herest_placement_swap_effe transition (usually “hcrest_view”

ct|
. which would animate into the view
herest_view | N and record history) or a custom
non_system_transition_id] | transition. Fora custom transition,
specify the id of a <zui:transition>
element elsewhere in the SVG file.
Table 8 — <view> Tag Attributes
[0103] <zui:background-transition>

The zui:background-transition tag specifies how the to scene background should transition to

the from scene background.

scription:

Alpha-numeric User-defined values can make JavaScript clearer
string

effect [cunéin | cross This attribute specifies what framework-supported effect to run
fade | slide left | on the background during the transition. Things like a curtain
slide right | etc] effect, cross fade, etc. would be supported.

effect-start Integer This attribute specifies when to start the background effect.

This value is a percentage in terms the actual transition
duration. Valid values range from 0 to 100 inclusive.

60

WO 2007/065019

0320-097 PC

Integer

PCT/US2006/046302

This attribute specifies when the background effect should end.
This value is a percentage in terms of the actual transition
duration and should always be greater than the effect-start
attribute value. Valid values range from 0 to 100 inclusive.

start

Integer

This attribute specifies the start time when the swap between
the 'to’ and ‘from’ backgrounds should occur. This value is a
percentage in terms of the actual transition duration. Valid
values range from 0 to 100 inclusive.

end

Integer

This attribute specifies the end time when the swap between
the 'to’ and ‘from’ backgrounds should occur. This value is a
percentage in terms of the actual transition duration and should
be greater than or equal to the start attribute. Valid values
range from 0 to 100 inclusive.

inherits

Alpha-numeric
string

The element id that this background transition should inherit
behavior from. If null, use default values. If set, use the values
set in the other element as the defaulis for this transition.

[0104]

Table

9 — <zui:background> Tag Attributes

<zui:brick>

The zui:brick tag inserts another ZML/SVG file into the scene at the specified location. A

new variable scope is created for the brick and the user can pass variables into the brick using

child zui:variable tags.

Alpha-numeric string;
must start with an
alpha character, may
include underscore

User-defined values can make JavaScript clearer

character
width Float The width of the node.
height Float The height of the node.
transform “TransformList” as To manipulate the transform attribute use
defined in the SVG getTraitMatrix() to return an object of type “SVGMatrix”,
Tiny spec. In practice, | which has a number of convenience methods.as
usually consists of a described in the SVG Tiny spec.
“matrix(x,x,x,x,x,x)" “transform.js” in the “scripts” directory contains a
string. standard set of methods for manipulating the transform
in JavaScript.
pointer- none | zui:all Use none to disable 3D pointer events; Use zui:all to
events enable; Hidden/invisible elements will receive pointer
events unless this attribute is set to none
visibility hidden | visible Use hidden to hide an element; Use visible to make it

visible; Visibility has no effect on user input. Visibility
has no effect on user input in itself; set pointer-events
to none to keep a hidden brick from responding to
pointer events.

61

WO 2007/065019 PCT/US2006/046302

0320-097'PC

xlink:href URL Thé URL of the ZML/SVG file to load as a brick.

zui:layer null | background | Use the layer attribute to associate an element with a
[Alpha-numeric string] | layer in the scene; A null value is associated with the
default layer (the foreground); Non-null values that do
not equal “background” become overlays. Do not
creaie overlays in bricks in the C++ Framework.

Zuicursor URL to a cursor image | Used to specify the cursor image. “arrow” and “hand”
| arrow | hand are the standard system cursors, which can be specific
to a customer implementation environment.

Table 10 — <zui:brick> Tag Attributes

[0105] <zui:clipRect>

The zui:clipRect element is similar to the grouping tag and functions in the same way with
one exception: the zui:clipRect element will clip all children to its bounds and will not permit

children to draw outside of its stated area. This is useful for enforcing layouts, creating

thermometer effects, and the like.

id Alpha-numeric string | User-defined values can make JavaScript
) clearer

X Float Horizontal position of the upper left corner
relative to the top left of the screen.

y Float ‘| Vertical position of the upper left corner relative
to the top left of the screen.

width Float The width of the node.

height Float The height of the node.

transform “TransformList” as To manipulate the transform attribute use

defined in the SVG getTraitMatrix() to return an object of type

Tiny spec. In practice, | “SVGMatrix”, which has a number of

usually consists of a convenience methods as described in the spec.
"matrix(x,x,x,x,x,x)"
string. “transform.js” in the “scripts” directory contains
a standard set of methods for manipulating the
transform in JavaScript.

pointer-events none | zui:all Use none to disable 3D pointer events; Use
zui:all to enable; Hidden/invisible elements will
receive pointer events unless this attribute is
set to none

62

WO 2007/065019 PCT/US2006/046302

0320-097 PC

visibility Use hidden to hide an element; Use visible to
make it visible; Visibility has no effect on user
input. Visibility has no effect on user input in
itself, set pointer-events to none to keep a
hidden clipRect from responding to pointer
events. .

zuilayer null | background | Use the layer attribute to associate an element
[Alpha-numeric string] | with a layer in the scene; A null value is
associated with the default layer (the
foreground); Non-null values that do not equal
“background” become overlays. If the selected
layer is not the foreground layer, all children will
be forced in the same layer as this element
automatically.

zuitinformational true | false If true, the node should be ignored by the
framework; This is useful for including
placement artwork and backgrounds that
should not be displayed at run time.

zuisinternal-node true | false Used to specify the destination for placement
swap effects. A group that will act as the
destination location for a swap effect should be
marked as internal-node = true.

Table 11 ~ <zui:clipRect> Tag Attributes

[01066] <zui:scene>

The zui:scene extension element to SVG specifies that the system should place a scene as a
child of the current scene. This element differs from a brick in that the brick is a component

of the scene and appears within the current scene. Elements of the scene do not appear until

the new scene is transitioned into.

User-defined values can make JavaScript
start with an alpha character, | clearer

may inciude underscore
character

X Float Horizontal position of the upper left corner of
the scene placement bounds relative to the
upper left corner of the screen.

y Float Vertical position of the upper left corner of
the scene placement bounds relative to the
upper left corner of the screen.

width Float The width of the placement.
height Float The height of the placement.

63

WO 2007/065019 PCT/US2006/046302

0320-097 PC

b okcr

xlink:href URL The URL of the scene to load.
zui:transition | [herest_teleport | Similar to scene transitions. This attribute
hcrest_swap_effect | specifies how the transition intq the
herest_placement_swap_effe subscene should lock. It can either use a
ct| - - - system defined transition (usually

. “herest_view” which would animate into the

hcrest_view | e subscene and record history) or a custom
non_system_transition_id] transition. For a custom transition, specify
the id of a <zui:transition> element
elsewhere in the SVG file.

Table 12 - <zui:scene> Tag Attributes

[0107] . <zui:scene-swap>

This sets up scene swap transition effects for scene transitions. Cover is the only mandatory

attribute in this exemplary implementation.

: : : %
Alpha- User-defined values can make JavaScript clearer

numeric
string

cover Alpha- The id of the cover (element) to use for the scene swap effect.
numeric This should be the id of an element in the same SVG file. That
string element should have its <zuiiinternal> tag set to “true”.

start Integer The start time when the swap should start in terms of the

percent of the transition duration. 0 is an instant swap, and 100
is a swap at the very end of the transition.

| end Integer The end time when the swap should finish in terms of the
percent of the transition duration. Should always be greater than
or equal to start.

inherits Alpha- The element id this transition should inherit behavior from, OR a

numeric literal string specifying one of the system transition names (j.e.,
string *herest_teleport”, “hecrest_swap_effect”, “hcrest_view”, or

hcrest_placement_swap_effect). If null, use default values. If
set to en element id, use the values specified in that element as
the defaults for the transition. Otherwise use the named
transition effect.

Table 13 - <zui:scene-swap> Tag Attributes

[0108] <zui:text-rect>

The zui:text-rect node displays text, and provides the user with the ability to determine the

64

WO 2007/065019 PCT/US2006/046302

0320-097 PC

bounds in which to render text. Optionally, the text can be justified or capitalized. The node
will truncate text and add a “...” if it is not possible to render the text within the specified
font size boundaries. Wrapping is done automatically for the user on word boundaries. The
developer can provide default display text within the start and end tags. Any XML control
characters will need to be escaped as entities. F;)r example, to display “Bob & Sue”, the
XML text content will contain “Bob & Sue”. Alternatively, the text can be placed in a
CDATA section to simplify the escaping rules. For example, <!|[CDATA[Bob & Sue]]>. Ifa

zui:metadata attribute is provided, the result of its expression will be used to replace the text

content.

s AR R Beh: A P I S 01 S s S 3 Rl
id Alpha- User-defined values can make JavaScript clearer
numeric
string
X Float Horizontal position of the upper left corner of the
text bounds relative to the top left of the screen.
y Float Vertical position of the upper left corner of the
text bounds relative to the top left of the screen.
width Float The width of the text bounds.
height Float The height of the text bounds.
font-family Font name Name of the font to use (e.g. HelveticaNeue LT
67 Medium Condensed). Only TrueType fonts
are supported by the client. UX standards specify
font and color for many UX elements.
fill Color value Color to render the font in (e.g “#FFFFFF")
font-size Length Font size to render the text. This acts as the
upper bound font size.
pointer-events none | zui:all | Use none to disable 3D pointer events; Use
zui:all to enable; Hidden/invisible elements will
receive pointer events unless this attribute is set
to none
visibility hidden | Use hidden to hide an element; Use visible to
visible make it visible; Visibility has no effect on user
input. Visibility has no effect on user input in itself;
set pointer-events to none to keep a hidden text-
rec from responding to pointer events.

65

WO 2007/065019

0320-097 PC

[xMinYMin |

PCT/US2006/046302

This attribute consists of two enumerated string

preserveAspectRatio
xMidYMin | values with a space between them. The first
xMaxYMin | determines the anchor point for preserving the
xMinYMid | aspect ratio and the point at which hoverzooms
xMidYMid | occur (xMidYMid is the typical value); The second
xMaxYMid | determines how to handle scaling (meet is the
xMinYMax | typical value) See the preserveAspectRatio
xMidYMax | attribute in the SVG Tiny spec.
xMaxYMax |
nonej
[meet | slice]
zui:metadata MQL An expression in MQL that is evaluated to
expression determine the text to display. Updating variables
(asynchronously) will cause the text to change to
the evaluated result of the metadata property.
zui:layer null | Use the layer attribute to associate an element
background | | with a layer in the scene; A null value is
[Alpha- associated with the default layer (the foreground);
numeric Non-null values that do not equal “background”
string] become overlays
2uiinformational true | false If true, the node should be ignored by the
framework; This is useful for including placement
artwork and backgrounds that should not be
displayed.
Zuiinternal-node true | false Used to specify the destination for placement
. swap effects. A group that will act as the
destination location for a swap effect should be
marked as internal-node = true.
2ui:text-justification left | center left causes text to be left justified; center causes
text to be center justified; right justification is
currently not supported by the system
2ui:text-allcaps null | original | | nulfl or original preserves the user or metadata
uppercase | casing of the text; lowercase forces all text in the
lowercase node to lowercase; uppercase forces all text in
the node to uppercase
zui:min-font-size Length The minimum font size to render text at; Only
used if the text does not fit the bounds at the full
‘font-size’ size. If text still overflows at this font
size, itis truncated and is post-pended with an
ellipse (“...")
zui:cursor URL to a Used to specify the cursor image. “arrow” and
cursor image | “hand” are the standard system cursors, which
| arrow | hand | can be specific to a customer implementation
environment.
Table 14 — <zni:text-rect> Tag Attributes
[0109] <zui:transition>

The parent node for all transition parameter elements, including zui:camera-transition,

66

WO 2007/065019 PCT/US2006/046302

0320-097 PC

zui:scene-swap, zui:transition-param, and zui:background-transition.

g s g

User-defined values can make JavaScript clearer

duration integer The duration of the transition described by this element (in milliseconds).

history true | false | true if this transition should be recorded in history; false if it should be
omitted. [f the history tag is not specified, the transition is inserted into
history.

background- | true | false | true if the transition should use the classic zooming background behavior;
zoom false otherwise.

inherits Alpha- The element id this transition should inherit behavior from,-OR a literal
numeric string specifying one of the system transition names (i.e.,
string “hcrest_teleport”, “hcrest_swap_effect”, “herest_view”, or

hecrest_placement_swap_effect). If null, use default values. If set to en
element id, use the values specified in that element as the defauits for
the transition. Otherwise use the named transition effect.

Table 15 ~ <zui:transition> Tag Attribuntes

[0110]<zui:transition-param>

Reserved for future extensions of the transition system.

User-defined values can make JavaScript clearer

Table 16 — <zui:transition-param> Tag Attributes

[0111] <zui:variable>

Sets the specified variable in the current scope to the specified value. Variable scopes are

automatically created by the svg, zui:scene, and zui:brick tags, and are inherited by their

children.

o

JavaScript clearer, though the

Alpha-numeric User-defined values can make

string name of the variable is more useful for this purpose.
name String The name of the variable to set.
value Variable The value of the variable to set.

Table 17 — <zui:variable> Tag Attributes

67

WO 2007/065019 PCT/US2006/046302

0320-097 PC

[0112] <zui:video>

Creates a node that is capable of playing video and other multimedia content.

Alpha-numeric User-defined values can make JavaScript

string clearer
X Float Horizontal position to render the video
relative to the top left of the screen.
y . Float Vertical position to render the video relative
to the top left of the screen.
width Float The width of the node.
height Float The height of the node.
state play | stop | Sends the appropriate signal to the
pause | underlying video player to move to the
skipForward | specified state.
skipBackward
playbackRate Double The playback rate of the video player.
feed . Alpha-numeric The name of the video feed that should be
string played in this video node. (e.g. “LIVE TV”,
“DVD?”, etc.). These are defined as part of
the framework.
pointer-events none | zui:all Use none to disable 3D pointer events; Use
zui:all to enable; Hidden/invisible elements
will receive pointer events unless this
attribute is set to none
visibility - Hidden | visible Use hidden to hide an element; Use visible to
make it visible; Visibility has no effect on user
input
zui:layer null | background | Use the layer attribute to associate an
| [Alpha-numeric element with a layer in the scene; A null vailue
string] is associated with the default layer (the
foreground); Non-nuil values that do not
equal “background” become overlays
zuicinformational true | false If true, the node should be ignored by the
framework; This is useful for including
placement artwork and backgrounds that
should not be displayed.
zuisinternal-node true | false Used to specify the destination for placement
swap effects. A group that will act as the
destination location for a swap effect shoutd
be marked as intemal-node = true.

68

WO 2007/065019 PCT/US2006/046302

0320-097 PC

p

preserveAspectRatio XMinYMin | This attribute consists of two enumerated

xMidYMin | string values with a space between them.
xMaxYMin | The first determines the anchor point for
xMinYMid | preserving the aspect ratio and the point at
xMidYMid | which hoverzooms occur (xMidYMid is the
xMaxYMid | typical value); The second determines how to
xMin¥YMax | handle scaling (meet is the typical value) See
xMidYMax | the preserveAspectRatio attribute in the SVG
xMaxYMax | Tiny spec.
none}
[meet | slice]

zui:metadata MQL expression | An expressionin MQL that is evaluated to

determine the video to play. Updating
variables will cause the xlink:href to change
to the evaluated result of the metadata
property. If both xlink:href and zui:metadata
are present, the zui:metadata specification
takes precedence.

xlink:href URL The URL of the media file to play. This value

may be overwritten by the result of the
Zui:metadata attribute,

zui:cursor URL to a cursor Used to specify the cursor image. “arrow”
image | arrow | and “hand” are the standard system cursors,
hand which can be specific to an implementation

environment.

Table 18 — <zni:video> Tag Attributes

[0113] Of particular interest among the foregoing XML extensions are the zui:scene
element and the zuipath URI. These elements can be used, for example, as core components
that form the geographic hierarchy through separate SVG files that are used to make
exemplary ZUI’s according to these exemplary embodiments. Also noteworthy are the
extensions to the g element and zui:transition described above which aid in making the
zooming transitions appear as desired. For example, the zooming transitions according to
exemplary embodiments animate several things on the screen at once that can be individually
controlled. These include, for example, animating a scene’s background, foreground, and any
overlays independently. For example, according to one exemplary embodiment, the

background image of a scene usually doesn’t zoom on a transition, the foreground image of a

69

WO 2007/065019 PCT/US2006/046302

0320-097 PC

scene almost always zooms in and out, and the overlays associated with a scene zoom out
when a user navigates “above” them, but either don’t change or disappear when a user zooms
in. The zui:layer attribute on the g element described above specifies the layer (background,
foreground, or overlay) of its child elements. The zui:transition element describes how the
transition animation occurs, e.g., how the camera zooms the foreground layer (rate,
interpolation curve), what happens to the background (zoom or fade), and how to animate
elements from the source scene to the destination scene. The latter description is how
exemplary embodiments specify placement swap effect animations where the cover art image
from the bookshelf scene translates and scales down to a location on the detail view — all
while the main zooming transition is happening.

[0114] As mentioned earlier, the system maintains a scene graph, that is, a type of tree
locating scenes in relation\to one another, which defines the ZUI. All scenes have parents
(except the home scene) and many scenes have children. Scenes may be siblings to one
another, i.e,, lying at the same level of the tree and sharing a set of parents. The zuipath to a
scene instance may reflect the entire tree of parents (using the zuipath: protocol), or may be
relative to the scene from which the zuipath is specified (by using the zuichild: protocol).
Each scene has a set of bounds and an internal transform used for placing elements within the
scene; these amount to a kind of local coordinate space. When scenes are invoked, they are
placed in a location relative to other scenes. This placement may occur in real time or be
calculated ahead of time for all scenes with the information stored on the server. In either
case, when a user moves from one scene to another the transform and the resulting graphical

transitions are calculated internally according to the type of transition specified by the

70

WO 2007/065019 PCT/US2006/046302

developer in the <zui:transition> and <zui:scene_swap> elemeﬁts. Various standard
transition types and swap effects can be defined.

[0115] Views within a scene also have locations; these are specified as part of
defining the view. Transitions from the entire scene to a view, from view to view, or from
view to the entire scene are calculated by the framework based on these locations and the
standard effect specifications. The use of the afore-described extensions to SVG to provide
programming constructs which are particularly useful in generating zoomable user interfaces,
€.8., those described above, will be better understood by considering a purely illustrative
example provided below with respect to Fiéures 24-26. Figure 24 depicts a first zoomable
display level of an exemplary user interface associated with music selections. Therein, a GUI
screen displays six groups (music shelves) each of which contains 25 selectable music items
grouped by category (e.g., 5x5 music cover art images). Each group is implemented as a
brick which includes a title hover effect, e.g., as shown in Figure 24 the user’s cursor (not
shown) is positioned over the group entitled “Rock & Pop” such that the title of that group
and the elements of that group are slightly magnified relative to the other five groups shown
on this GUI screen. To generate this GUI screen, the software code associated with this brick
is passed a variable named “music” which is a query to the user’s music collection with the
genre of Rock sortea by title, as illustrated by the highlighted portion of the exemplary

software code below.

<?xml version="1.0" encoding="UTF-8" standalone="no" 72>

<IDOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"hetp://www.w3.org/Graphics/SVG/1.1/DTD/svgll.dtd">

<svg height="720" id="svg" onload="music_shelf system_onload{evt)" width="1280"
xmlns="http://www.w3.0rg/2000/svg" xmlns:xlink="http://www.w3.0rg/1999/x1ink"
¥xmlns:zi="http://ns.hcrest.com/ZUIIllustratorExtensions/1.0"
xmlns:zui="http://ns.hcrest.com/ZUIExtensions/1.0" zui:top="true">

<script language="javascript" xlink:href=". /music_shelf.js"/>

<g id="bkgd">

71

WO 2007/065019 PCT/US2006/046302

0320-097 PC

<image height="720" id="musicbkgd® preserveAspectRatio="xMidYMid meet"
transform="matrix(1.000, 0.000, 0.000, 1.000, 1, 0)" width="1280"
xlink:href="../background/hdtv/music_hdtv.png" zui:layer="background"/>

<text fill="#ffffff" font-family="HelveticaNeue LT 87 Heavy Condensed" font-
size="38" id="glob_121" transform="matrix(0.S984, 0.000, 0.000, 1.000, 16, O)"
x="1020" y="103">

<! [CDATA[All Musicl]l>
</text>
<zui:brick height="306" id="svg 123" transform="matrix(0.660, 0.000, 0.000,
0.669, 245, 129)" width="262" xlink:href="./brick_shelf.svg"
zi :cursoxControl="truea">
<zui :variable id="var_ 0" name="music" ,
value="com.hcrest.music.mds:albums (genres contains 'Rock & Pop’',
@sort='title') ¥ />

</zui:brick>
<zui:brick height="306" id="glob_ 124" transform="matrix(0.660, 0.000, 0.000,
0.669, 522, 129)" width="262" xlink:href="./brick_shelf.svg">
<zui:variable id="var_26" name="music"
value="com.hcrest.music.mds:albums (genres contains 'Jazz Vocal', @sort='title')"/>
</zui:brick> .
<zui:brick height="306" id="glob_170" transform="matrix(0.660, 0.000, 0.000,
0.669, 245, 391)" width="262" xlink:href="./brick_shelf.svg">
<zui:variable id="var 78" name="music"
value="com.hcrest.music.mds:albums (genres contains 'International’,
@sort='title')"/>
</zui:brick>
<zui:brick height="306" id="glob_169" transform="matrix(0.660, 0.000, 0.000,
0.669, 522, 391)" width="262" xlink:href="./brick_shelf.svg">
<zui:variable id="var_104" name="music"
value="com.hcrest.music.mds:albums (genres contains 'Blues', @sort='title’)"/>
</zui:brick>
<zui:brick height="306" id="glob_ 168" transform="matrix(0.660, 0.000, 0.000,
0.669, 799, 391)" width="262" xlink:href="./brick_shelf.svg">
<zui:variable id="var_130" name="music"
value="com.hcrest.music.mds:albums {genres contains 'Country', @sort='title')"/>
</zui:brick>
<zui:brick height="365" id="svg_ 0" transform="matrix(0.660, 0.000, 0.000,
0.660, 799, 127)" width="350" xlink:href="./brick shelf soundtrackv2.svg">
<zui:variable id="var_51" name="music"
value="com.hcrest.music.mds:albums {genres contains 'Soundtracks', @sort="title')"/>
</zui:brick>
</g>

<g id="Layer_ 3">
<zui:brick height="720" id="playlistBrick" transform="matrix (1.000, 0.000,
0.000, 1.000, 0, -56)" width="1280"
xlink:href="../playlistBrick/playlist_brick.svg" zui:layer="playlistOverlay">
<zul:variable id="var_156" name="playlistGroup" value="'music'"/>
<zui:variable id="var_157" name="playlistType" value=""'music'"/>
<zui:variable id="var_ 158" name="cover_ art field" value="'album.image.uri'"/>
<zui:variable id="var_159" name="title_ field" value="'title'"/>
<zui:variable id="var_ 160" name="watch_uri_field"” value="'uri'"/>
</zui:brick>
<g id="screw_you button_ 6_state_andjoe">
<g id="new_slideshow">
<image height="67" id="new_slideshow_on" preserveAspectRatio="xMidYMid
meet"” transform="matrix(0.342, 0.000, 0.000, 1.221, 1071, 376)" width="257"
xlink:href="../playlistBrick/images/create playlist_normal_over.png"/>
<image height="65" id="new_slideshow off" preserveAspectRatio="xMid¥YMid
meet" transform="matrix(0.342, 0.000, 0.000, 1.221, 1071, 377)" width="257"
xlink:href="../playlistBrick/images/create_playlist normal.png"/>
</g>
</g>
<g id="createplaylist” zi:p6Base="createplaylist-off"

72

WO 2007/065019 PCT/US2006/046302

zi:p6Down="createplaylist-down" zi:p6Label="true" zi:p6Over="createplaylist-over"
zi:p6Sel="createplaylist-sel" zi:p65elDown="createplaylist-sel_down"
zi:p6SelOver="createplaylist-sel_ ovex">
. <image height="226" id="createplaylist—sel_down"

preserveAspectRatio="xMidYMid meet" transform="matrix(0.734, 0.000, 0.000, 0.734,
1081, 463)" visibility="hidden" width="124" xlink:href=",/images/createplaylist-
over.png"/>

<image height="226" id="createplaylist-sel_over"
preserveRAspectRatio="xMidYMid meet" transform="matrix(0.734, 0.000, 0.000, 0.734,
1081, 463)" visibility="hidden" width="124" xlink:href="./images/createplaylist~
over.png"/>

<image height="226" id="createplaylist-sel" preserveAspectRatio="xMid¥YMid
meet"” transform="matrix(0.734, 0.000, 0.000, 0.734, 1081, 463)" visibility="hidden"
width="124" xlink:href="./images/createplaylist-off.png"/>

<image height="226" id="createplaylist-down" preserveAspectRatio="xMidyMid
meet” transform="matrix(0.734, 0.000, 0.000, 0.734, 1081, 463)" visibility="hidden"
width="124" xlink:href="./images/createplaylist-over.png"/>

<image height="226" id="createplaylist-over" preserveAspectRatio="xMidyMid
meet" transform="matrixz(0.734, 0.000, 0.000, 0.734, 1081, 463)" visibility="hidden"
width="124" xlink:href="./images/createplaylist-over.png"/>

<image height="226" id="createplaylist-off" preserveAspectRatio="xMidyYMid
meet" transform="matrix(0.734, 0.000, 0.000, 0.734, 1081, 463)" width="124"
xlink:href="./images/createplaylist-off.png"/>

</g>
</g>

</svg>

[0116] Each ZUI element (cover art image) within each group is also coded as a brick
according to exemplary embodiments of the present invention. Thus, as shown in Figure 25,
when a user pauses a cursor over one of the 25 elements within the “Rock&Pop” group, this
causes that element (in this example an image of an album cover “Parachutes”™) to be

magnified. Exemplary brick code for implementing this ZUI screen is provided below.

<2xml version="1.0" encoding="UTF-8" standalone="no" 7>

<IDOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1. 1/DTD/svgl1.dtd">
<svg height="365" onload="brick_shelf_system_onload(evt)" width="350" xmins="http://www.w3.0rg/2000/svg"
xmins:xlink="htp://www.w3.0rg/1999/xlink" xmlns:zi="http://ns.hcrest.com/ZUIIllustratorExtensions/1.0"
xmlns:zui="http://ns.hcrest.com/ZUIExtensions/1.0">

<script language="javascript" xlink:href="./brick_shelf,js"/>

<g id="Layer_1">
<zui:brick height="46" id="svg24" transform="matrix(1.305, 0.000, 0.000, 1.239, 277, 290)" width="47"
xlink:href=""./albumCoverEffect.svg">
<zuivariable id="var_0" name="this" value=""music[24]"/>

</zui:brick>
<zuizbrick height="46" id="svg23" transform="matrix(1.305, 0.000, 0.000, 1.239, 210, 290)" width="47"
xlink:href="./albumCoverEffect.svg">
<zui:variable id="var_1" name="this" value="music[23]"/>
</zui:brick> ’
<zuizbrick height="46" id="svg22" transform="matrix(1.305, 0.000, 0.000, 1.239, 144, 290)" width="47"
xlink:href="./albumCoverEffect.svg">
<zui:variable id="var._2" name="this" value="music{22]"/>

73

WO 2007/065019 PCT/US2006/046302

0320-097 PC

</zui:brick>
<zui:brick height="46" id="svg21" transform="matrix(1.305, 0.000, 0.000, 1.239, 77, 290)" width="47"
xlink:href="./albumCoverEffect.svg">
<zui:variable id="var_3" name="this" value="music[21]"/~>
</zui:brick>
<zui:brick height="46" id="svg20" transform="matrix(1.305, 0.000, 0.000, 1.239, 11, 290)" width="47"
xlink:href="./albumCoverEffect.svg">
<zui:variable id="var_4" name="this" value="music[20]"/>
</zui:brick>
<zuizbrick height="46" id="svg19" transform="matrix(1.305, 0.000, 0.000, 1.239, 278, 228)" width="47"
xlink:href="./albumCoverEffect.svg">
<zui:variable id="var_5" name="this" value="music[19]"/>
</zui:brick>
<zui:brick height="46" jd="svg 18" transform="matrix(1.305, 0.000, 0.000, 1.239, 210, 228)" width="47"
xlink:href="./albumCoverEffect.svg">
<zui:variable id="var_6" name="this" value="music[18]"/>
</zui:brick>
<zui:brick height="46" id="svg17" transform="matrix(1.305, 0.000, 0.000, 1.239, 144, 228)" width="47"
xlink:href="./albumCoverE ffect.svg">
<zui:variable id="var_7" name="this" value="music[17]"/>
</zui:brick>
<zui:brick height="46" id="svg16" transform="matrix(1.305, 0.000, 0.000, 1.239, 77, 228)" width="47"
xlink:href="./albumCoverEffect.svg">
<zui:variable id="var_8" name="this" value="music{16]"/>
</zui:brick>
<zui:brick height="46" id="svg15" transform="mairix(1.305, 0.000, 0.000, 1.239, 11, 228)" width="47"
xlink:href="./albumCoverEffect.svg">
<zui:variable id="var_9" name="this" value="music[15]"/>
</zui:brick>
<zui:brick height="46" id="svg14" transform="matrix(1.305, 0.000, 0.000, 1.239, 278, 165)" width="47"
xlink:href="./albumCoverEffect.svg">
<zui:variable id="var_10" name="this" value="music[14]"/>
</zui:brick>
<zui:brick height="46" id="svg13" transform="matrix(1.305, 0.000, 0.000, 1.239, 210, 165)" width="47"
xlink:href="./albumCoverE ffect.svg">
<zui:variable id="var_11" name="this" value="music[13]"/>
</zui:brick> .
<zui:brick height="46" id="svg12" transform="matrix(1.305, 0.000, 0.000, 1.239, 144, 165)" width="47"
xlink:href="/albumCoverEffect.svg'>
<zui:variable id="var_12" name="this" value="music{12]"/>
</zui:brick>
<zui:brick height="46" id="svgl1" transform="matrix(1.305, 0.000, 0.000, 1.239, 77, 165)" width="47"
xlink:href="./albumCoverEffect.svg">
<zui:variable id="var_13" name="this" value="music[11]"/>
</zui:brick>
<zui:brick height="46" id="svg10" transform="matrix(1.305, 0.000, 0.000, 1.239, 11, 165)" width="47"
xlink:href="/albumCoverEffect.svg">
<zui:variable id="var_14" name="this" value="music[10]"/>
</zui:brick>
<zui:brick height="46" id="svg9" transform="matrix(1.305, 0.000, 0.000, 1.239, 278, 101)" width="47"
xlink:href="/albumCoverEffect.svg">
<zui:variable id="var_15" name="this" value="music[9]"/>
</zui:brick>
<zui:brick height="46" id="svg8" transform="matrix(1.305, 0.000, 0.000, 1.239, 210, }01)" width="47"
xlink:href="/albumCoverEffect.svg"™
<zui:variable id="var_16" name="this" value="music[8]"/>
</zui:brick>
<zui:brick height="46" id="svg7" transform="matrix(1.305, 0.000, 0.000, 1.239, 144, 101)" width="47"
xlink:href=".JalbumCoverE ffect.svg">
<zui:variable id="var_17" name="this" value="music[7]"/>
</zui:brick>

74

WO 2007/065019 PCT/US2006/046302

0320-097 PC

<zui:brick height="46" id="svg6" transform="matrix(1.305, 0.000, 0.000, 1.239, 77, 101)" width="47"
xlink:href="./albumCoverEffect.svg">
<zui:variable id="var_18" name="this" value="music[6]"/>
</zui:brick>
<zui:brick height="46" id="svg5" transform="matrix(1.305, 0.000, 0.000, 1.239, 11, 101)" width="47"
xlink:href="/albumCoverEffect.svg">
<zui:variable id="var_19" name="this" value="music[5]"/>
</zui:brick>
<zuizbrick height="46" id="svg4" transform="matrix(1.305, 0.000, 0.000, 1.239, 278, 36)" width="47"
xlink:href="./albumCoverEffect.svg">
<zui:variable id="var_20" name="this" value="music[4]"/>
</zui:brick>
<zuibrick height="46" id="svg3" transform="matrix(1.305, 0.000, 0.000, 1.239, 210, 36)" width="47"
xlink:href="./albumCoverEffect.svg™>
<zui:variable id="var_21" name="this" value="music[3]"/>
</zui:brick>
<zui:brick height="46" id="svg2" transform="matrix(1.305, 0.000, 0,000, 1.239, 144, 36)" width="47"
xlink:href="./albumCoverEffect.svg™>
<zui:variable id="var_22" name="this" value="music[2]"/>
</zui:brick>
<zui:brick height="46" id="svg1" transform="matrix(1.305, 0.000, 0.000, 1.239, 77, 36)" width="47"
xlink:href="./albumCoverEffect.svg">
<zui:variable id="var_23" name="this" value="music[1]"/>
</zui:brick>
<zui:brick height="46" id="svg0" transform="matrix(1.305, 0.000, 0.000, 1.239, 11, 36)" width="47"
xlink:href="./albumCoverEffect.svg">
<zui:variable id="var_24" name="this" value="music[0]"/>
</zui:brick>
<g id="more" visibility="hidden" zi:p6Base="more-off" zi:p6 Down="more-down" zi:p6Label="true" zi:p60ver="more-
over" zi:p6Sel="more-sel" zi:p6SelDown="more-se]_down" zi:p6SelOver="more-sel_over">
<image height="84" id="more-sel_down" preserveAspectRatio="xMidYMid meet" transform="matrix(0.274, 0.000,
0.000, 0.274, 281, 9)" visibility="hidden" width="213" xlink:href="../movielink/images/homescreen/more-over.png"/>
<image height="84" id="more-sel_over" preserveAspectRatio="xMid YMid meet" transform="matrix(0.274, 0.000,
0.000, 0.274, 281, 9)" visibility="hidden" width="213" xlink:hrcf="../moviclinklimages/homescreen/more-over.png"b
<image height="84" jd="more-sel" preserveAspectRatio="xMid YMid meet" transform="matrix(0.274, 0.000, 0.000,
0.274, 281, 9)” visibility="hidden" width="213" xlink:href-—-"../movielink/images/homescreen/more-oﬂ'.png"/>
<image height="'84" id="more-down" preserveAspectRatio="xMidYMid meet" transform="matrix(0.274, 0.000, 0.000,
0.274, 281, 9)" visibility="hidden" width="213" xlink:hrcf="../movielink/images/homescrccn/more-over.png"/>
<image height="84" id="more-over" preserveAspectRatio="xMid YMid meet" transform="matrix(0.274, 0.000, 0.000,
0.274, 281, 9)" visibility="hidden" width="213" xlink:href="../movielink/images/l'lomescreen/more-over.png"/>
<image height="84" id&="more-off" preserveAspectRatio="xMidYMid meet" transform="matrix(0.274, 0.000, 0.000,
0.274, 281, 9)" width="213" xlink:href="../movielink/images/homescreen/more-off. png"/>
</g>
<zuiztext-rect fill="#fff{{f" font-family="HelveticaNeue LT 67 Medium Condensed" font-size="24" height="23"
id="genre" pointer-evenis="none" width="235" x="10" y="9" zui:metadata="music[0].genres[0]" zui:text-allcaps="original"
zui:text-justification="left">

<{[CDATA[Genre]}>
</zuitext-rect>
<view id="top" viewBox="(-71, -30, 493, 302)" zui:transition="hcrest_view"/>

<rect height="302" id="top_rect_1" width="493" x=".71" y="-30"/>

<view id="bottom" viewBox="(-71, 97, 493, 302)" zuiztransition="hcrest_view"/>

<rect height="302" id="bottom_rect_1" width="493" x="-71" y="97"/>

<rect height="188" id="autopan_up" stroke="#ff0000" visibility="hidden" width="399" x="_24" y="-23"/>
<rect height="167" id="autopan_down" stroke="#00ff00" visibility="hidden" width="399" x=".24" y="222">
</g>

75

WO 2007/065019 PCT/US2006/046302

0320-097 PC

<zui:scene height="48" id="trans_xx_25" width="47" x="8" xlink:href="music_detail.svg" y="37">
<zui:scene height="48" id="trans_xx_26" width="47" x="8" xlink:href="music_detail.svg" y="37"/>
<zui:scene height="48" id="trans_xx_27" width="47" x="8§" xlink:href="music_detail.svg"” y="37"/>
<zui:scene height="48" id="trans_xx_28" width="47" x="8" xlink:href="music_detail svg" y="37"/>
<zui:scene height="48" id="trans_xx_29" width="47" x="§" xlink:href="music_detail .svg" y="37"/>
<zui:scene height="48" id="trans_xx_30" width="47" x="8" xlink:href="music_detail.svg" y="37"/>
<zui:scene height="48" id="trans_xx_31" width="47" x="8" xlink:href="music_detail.svg" y="37"/>
<zui:scene height="48" id="trans_xx_32" width="47" x="8" xlink:href="music_detail.svg" y="37"/>
<zui:scene height="48" id="trans_xx_33" width="47" x="8" xlink-href="music_detail.svg" y="37"/>
<zuizscene height="48" id="trans_xx_34" width="47" x="8" xlink:href="music_detail svg" y="37"/>
<zui:scene height="48" id="trans_xx_35" width="47" x="g" xlink:href="music_detail.svg" y="37"/>
<zui:scene height="48" id="trans_xx_36" width="47" x="8" xlink:href="music_detail.svg" y="37"/>
<zui:scene height="48" id="trans_xx_37" width="47" x="8" xlink:href="music_detail.svg" y="37"/>
<zui:scene height="48" id="trans_xx_38" width="47" x="g8" xlink:href="music_detail.svg" y="37"/>
<zui:scene height="48" id="trans_xx_39" width="47" x="8" xlink:href~"music_detail.svg" y="37"/>

</svg>
[0117] Note that the bolded code in the above example above refers to the 25™
element of the variable music which was set up in the parent SVG brick (music_shelf.svg).
The prior music query returns up to 25 elements. Then the music element (in this example an
album) is passed into the child brick called albumCoverEffect.svg using a variable named
“this”. The two code snippets above, and corresponding ZUI screens (scenes) of Figures 24
and 25, serve to illustrate two beneficial characteristics associated with the reusable
extensions to SVG according to exemplary embodiments of the present invention, described
herein for use in generating zoomable graphical user interfaces. First, SVG bricks provide a
programming construct which provides code that is reusable from GUI screen to GUI screen

(scene to scene). In this context, the brick code used to generate the GUI screen of Figure 24

76

WO 2007/065019 PCT/US2006/046302

is reused to generate the GUI screen of Figure 25. Additionally, the bricks are parameterized
in the sense that at least some of the graphical display content which they generate is drawn
from metadata, which may change over time. This means that the same program code can be
used to generate user interfaces to select, e.g., on demand movies, as those movies change
over time and that the content of the user interface portrayed on any given zoom level of an
interface according to the present invention may also change accordingly over time.

[0118] The brick code itself can be generated using, for example, a visual
programming interface (also referred to herein as a “toolkit”), an example of which is
illustrated in Figure 26, wherein a music element 2600 (album cover image brick) is being

coded. Some exemplary code associated with this toolkit function is provided below.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">

<svg height="46" onload="albumCoverEffect_system onload(evt)" width="47"
xmlns="http://www.w3.0rg/2000/svg" xmlns:xlink="http://www.w3.0rg/1999/x1ink"
xmins:zi="http://ns.hcrest.com/2UIIllustratorExtensions/1.0"

xmlns: zui="http://ns.hcrest.com/2UIExtensions/1.0">

<script language="javascript" Xlink:href="./albumCoverEffect.js"/>

<g id="layer">

<g id="cover">
<image height="150.00" id="image" presarveAspectRatio="xMidyMid neat"
transform="matrix(0.313, 0.000, 0.000, 0.307, 0.000, -0.050)" width="150.00"
xlink :href=". ./placeholders/cdcover.png" zui:metadata="this.image.uri"/>
<g id="title">
<rect £ill="#000000" height="15" id="rect._ 0" width="47" x="0" y="31"/>
<zui:text-rect £ill="#fFfEfEff" font-family="HelveticaNeue LT 67 Maedium
Condensed" font-size="6" height="14" id="textrect 0" width="45" x="1" y=t32"
Zui:metadata="this._title" zui:text-allecaps="original" zui:text-
justification="left">

<! [CDATA[album title
line twol]>
</zui:text-rect>
</g>
</g>

</g>

<zui:scene height="46" id="trans 0" transition="trans_O_transition" width="47"
x="0" xlink:href="music_detail.svg” y="0">
<zui:variable name="this" value="this" usage="musicDetail" />
</zui :scene>

<zui:transition id="trans_0_transition" inherits="hcrest_placement_swap_effect">

77

WO 2007/065019 PCT/US2006/046302

0320-097 PC

<zui:scene-~swap cover="cover"/>
</zui:transition>

</svg>

Also see albumCoverAffectjs This file is a companion file to the SVG. The javascript is what actually creates the title
hover effect.

document.include("../scripts/Hoverzoom.js");
document.include("../scripts/Cursor.js");
function albumCoverEffect_user_onload_pre(evt) {
createCursorController (document.getElementById("cover")):
createHoverzoomTitleEffect (document .getElementById{"cover"),
0.400000,
250.000000,
document .getElementById{"title"));
}

// @Toolkit-begin (pseudo-tag for Toolkit-generated code) //
1177777777770 7770717277777777777777727777777777777277777727777

!1! The prior function albumCoverEffect_user_onload_pre is what actually creates
the title hover effect.

/**
* AUTO GENERATED CODE : DO NOT EDIT
*/

function albumCoverEffect_system onload{evt) {
if ("albumCoverEffect_user_onload pre" in this) {
albumCoverEffect_user_ onload pre(evt);
}

if ("albumCoverEffect_user onload post" in this) {
albumCoverEffect_user_onload_post{evt);
}
}
// @Toolkit-end (pseudo-tag for Toolkit-generated code) //
L10L111720077007707227777707777077777777772727777777177777

[0119] In the bolded portion of the above software éode example, there is an element
called “cover”. The cover element is the image metadata associated with the album cover to
be portrayed by this brick at a particular location on the GUI screen. Also note therein the
program line that says “zui:metadata="this.image.uri>”. This was setup in the first code
example (parent SVG) which is the album of interest, i.e., the album is passed into this brick
and the associated cover art is referenced by this variable.

[0120] Another example will serve to further illustrate how the foregoing described

extensions to SVG can be used to generate ZUIs according to exemplary embodiments of the

78

WO 2007/065019 PCT/US2006/046302

0320-097 PC

present invention. Consider the example in Figure 27 which depicts a visual menu screen that
provides users with access to various settings functions. This “Settings” scene can be reached
from, for example, the home scene shown in Figure 5 by clicking the settings icon, and
displays a set of graphics that function as buttons, each linked to a different setting option in

its own scene. The following extended SVG program code can be used, according to a purely

illustrative exemplary embodiment, to generate the scene illustrated in Figure 27.

79

WO 2007/065019 PCT/US2006/046302

0320-097 PC

// an,&ho

s

80

WO 2007/065019 PCT/US2006/046302

0320-097 PC

[0121] Some description of the afore-described exemplary program code will further
illuminate the manner in which the afore-described exemplary extensions to SVG can be used
to create ZUIs according to exemplary embodiments of the present invention. Therein,
program code lines 1-2 declare the doctype and invoke the SVG definitions. These can, for
example, be generated by the toolkit and appear in all ZVG/ZML files. The <zi> namespace
contains extensions used for toolkit-generated code, while the <zui> namespace contains
framework extensions. Program code line 4 is the <svg> tag. Also generated by the toolkit,
the <svg> tag establishes the size limits (in user coordinate space) of the SVG file, invokes
the custom namespaces required by ZML, and sets up an onload function to be executed in a
JavaScript file. These namespaces can be declared as standard URLs with http:// notation.
Program code line 60: at the end of the file closes the SVG file with an </svg> tag.

[0122] Program code line 6, generated by the toolkit, links this SVG file to a
JavaScript file (not illustrated) that provides its script and interactivity. According to this
example, the main script file shares the name of the SVG file, but appends the .js extension
and resides in the same directory as the SVG file such that the xlink:href can be expressed in
relative notation, as here. Program code lines 8-10 above create the background over which

the various settings icons shown in Figure 27 are rendered, as the id attribute implies. The

81

WO 2007/065019 PCT/US2006/046302

0320-097 PC

<g> tag encloses an <image> tag that displays the actual background (no background image is
shown in Figure 27). It is the same size as the SVG, and uses an image file located in an
images directory under the main directory for this scene, again following convention and
using relative notation. The zui:l'ayer="background" attribute places the image on the
background layer. By default the image is visible and captures pointer events.

[0123] Program code lines 12-34 set up and display the icon layer group (id =
“iconlayer™). This is the set of clickable items in the scene, €.g., a button labeled “Display
Settings™, a second button labeled “Channel Lineup”, etc., each of which is set down as an
anchor (<a> tag) with similar properties and which form a single layer. Consider the first
anchor in the program code in detail, set forth in program code lines 13-15, and excerpted

below.

Therein, program code line 13 opens the anchor tag, gives it an id (“anchor_1”) that can be

used to refer to the anchor, and establishes the destination. The destination is a scene referred
to by its id (“t rans_1"). That ID belongs to the scene tag at line 36: So a user who selects
this anchor, i.e., clicks on this displayed button, will g0 to the scene named in the xlink:href
attribute of the scene tag which is --/herest.ux.alerts.settings/index_1280x720.svg. Because
the xlink:href attribute of the anchor includes the “zuichild” prefix, the link will go to the new
scene as a child of this scene, meaning that the new tree is placed in the existing scene tree

below this scene and shares a variable scope with the parent scene. The <image> tag in

82

WO 2007/065019 PCT/US2006/046302

0320-097 PC

program code line 14 displays the graphic that acts as the button, which is found in the images
subdirectory of the directory of this SVG file. Other attributes of the image tag can be created
by the toolkit. The three “zi:” attributes relate to the hoverzoom effect associated with cursor
interaction with this button in the ZUI. Using toolkit defaults, the programmer set up this
image so that when the cursor is positioned over this button, the button image will increase in
size by 20% and stay enlarged for 250 milliseconds. The hoverzoom effect is illustrated, for
example, in Figure 20 and described above.

[0124] Program code lines 36-58 place the subscenes and define the transition from

the main scene to each one. Consider the second subscene/transition pair, detailed above in

program code lines 42-46 and excerpted below.

This portion of the program code defines what will occur if the user positions a cursor over
the “Channel Lineup” button shown in Figure 27 and executes a click command (or other
selection input). Therein, program code line 42: is the scene tag for the new scene that will
be rendered when the “Channel Lineup” button is actuated by a user. Figure 28 illustrates the
subscene that will be rendered using this exemplary program code. This scene tag defines the
scene dimensions, names the file where the scene SVG file is stored, using relative notation
for the path to the SVG file. The directory name indicates the scene function while the

filename follows the convention of naming the main scene SVG “index” concatenated with a

83

WO 2007/065019 PCT/US2006/046302

0320-097 PC

reference to the display size for which the SVG was designed. The transition attribute
indicates that the transition with id “trans_2_transition” will be used when moving from the
current scene (Figure 27) into the subscene (Figure 28). That transition is defined in the
transition tag in lines 44: — 46: Along with the id, the transition inherits a standard swap
effect (“hcrest_swap_effect”) defined as part of the framework. The “cover” attribute of the
zui:scene-swap tag defines which image will be used as the destination location for the effect,
[0125] It will be appreciated based upon the foregoing discussion that exemplary
embodiments of the present invention extend programming languages, e.g., SVG, and
leverage those extensions to facilitate the creation and usage of ZUIs. Thus, a generalized
method for displaying scenes on a zoomable user interface (ZUI) includes the steps illustrated
in the flowchart of Figure 29. Therein, a collection of scenes on is provided for display on the
ZUI including a first scene and a second scene, (e.g., Figure 18 and 24, respectively) each of
the scenes being implemented using software written in a programming language (e.g., SVG)
at step 2900. When a user input is received that requests a change from the first scene to the
second scene (step 2910), a transition is performed which conveys a spatial relationship
between the first scene and the second scene (e.g., using zooming and/or panning) at step
2920. The transition is implemented using at least one ZUI attribute or element added to the
programming language, e.g., the layer attribute added to the grouping tag or the zui:scene-
swap element as described above.

[0126] According to exemplary embodiments of the present invention, events are used
to drive the system. For example, there are can be two types of events: input events and

scene events. Input events are those generated by the user, such as cursor movement, button

84

WO 2007/065019 PCT/US2006/046302

clicks, and scroll wheel movements and are sometimes referred to herein as “user events”.
Scene events are generated by the framework and exposed to the JavaScript, e.g., when the
user is entering or leaving a scene. An event is created (thrown), either by the system or in
the code and then the event is received and processed. According to exemplary embodiments
of the present invention, events can be caught by, for example, (1) setting up an event listener
(attached to a ZUI element) and executing the function named in the event listener, (2) using
a handleEvent function, or (3) using the onevent attributes. For example, to capture all
mouseup events on an element, the attribute onmouseup="myfunction (event) ” can
be added in the SVG file or set from JavaScript using setAttribute. To receive a pointer event,
an element can have its pointer-events attribute set to zui:all. Otherwise the event is passed to
any element under that element, to the brick or scene if there is no element underneath or that
element does not handle pointer events. Some pointer events are handled by the system
framework rather than in JavaScript. For example, when users click the right mouse button
or the back button, the framework takes care of sending the user to the prévious scene.

[0127] The majority of events processed in the system are user-generated events such
as mouse clicks, scroll wheel movements, mouse movements, and keystrokes. Table 19 lists
input events according to an exemplary embodiment of the present invention. A ZUI element

receives pointer events (e.g., 2D or 3D pointer inputs) if its pointer-events attribute is set to

“zui:all™.

i
focusin An object has received the focus (based on user inputs via, e.g., the 3D
pointing device)
focusout An object has lost the focus.
keyup A key on the (physical) keyboard is released.
mouseup User has released the mouse/loop button or the scrollwheel over an object.
mouse2up User has released the scroll wheel button.

85

WO 2007/065019 PCT/US2006/046302

0320-097 PC

X RN T S ShE AR ok es"c
mousedown User has pressed a mouse/loop button.
mousedrag User has moved the mouse while an object is selected
mousemove User has moved the mouse/loop and thus the cursor.
mouseout Cursor is no longer over an object it formerly was over.
mouseover Cursor is over an object.
scrollwheel User has rotated the scroll wheel.
wheel User has rotated the scroll wheel
activated Pointer click/maybe up maybe down depending on situation - result is object is
selected.
selected Pointer click/maybe up maybe down depending on situation - result is object is
selected

Table 19
These events are generated automatically by the system and sent for processing. For

pointer/cursor events, the event is sent first to the relevant element (the element over which
the mouse was pressed, for example). If pointer-events was set to zui:all for that element and
if that element has an event listener, the function named in the event listener or the element’s
handleEvent function runs.

[0128] Another significant extension to the SVG programming language discussed
above involves variables, variable dependencies and associated asynchronous processing.
ZML variables according to exemplary embodiments of the present invention are assi gned
and updated asynchronously. This prevents execution from stalling while server-dependent
variables are resolved behind the scenes. Variable values can, for example, be changed in

these ways:

<zui:variable>value At creation time, in the SVG. The
attribute: value attribute may be an expression.

If the expression includes another
variable, a dependency is set up, and
the zui:variable is updated whenever
the variable it depends on changes.

assignZuivVariable: At any time, in the JavaScript.
Breaks any previous dependency; sets
up a new one if the variable is
assigned to an expression including
another variable.

86

WO 2007/065019 PCT/US2006/046302

0320-097 PC

Zzui :metadata: When a zui:text-rec or other element
that displays text is created it may
display text that is based on meta-
data via some expression; when the
nmeta—-data changes (probably as a
result of JavaScript statements being
executed), the displayed text changes
asynchronously in response.

processAsynch: The expression resolved may result in
updating one or more variables
(asynchronously) . So can the function
called. Any variables that depend on
the changed variables will change
(asynchronously) as well when the
dependency fires.

addValueChangeListener: When a variable changes, the function
specified for execution via
addvValueChangeListener may include
setting variables.
addMetadataChangeListener When underlying metadata changes, the
function specified for execution via
addMetadataChangelistener may include
setting variable values.

Table 20 - Ways to Change Variable Values

To set the value of a variable directly after the variable is created, a programmer of a ZUI
according to exemplary embodiments can use the assignZuiVariable statement. When an
assignZuiVariable statement is encountered, the variable is set to that value as soon as
possible and any callback function is executed without waiting for server-dependent data.
Similarly, any other statement that changes a variable value is preferably carried out as soon
as possible.

[0129] According to exemplary embodiments of the present invention, variables used
in ZUI program code are scoped. Variable scopes are created by the tags <svg>, <zui:scene>
and <zui:brick>, which were described above. Thus, all variables created will have a scope
defined by the <svg> tag that they were created under. Any sub-scopes created by the <svg>
tag, the <zui:scene> tag, or the <zui:brick> tag will have access to these variables. This is
because variable lookup starts in the local scope and then moves up through the parents until

the variable identifier of interest is found for the first time, or the lookup runs out of parents.

87

WO 2007/065019 PCT/US2006/046302

0320-097 PC

An identifier is in scope if it exists in the current scope or any of the parent scopes. Thus,
when a zuiVariable is created, its scope is set to the current scope, which defaults to the
innermost element where the variable is defined. For example, if the zui:variable tag is
within a brick, the variable is accessible and meaningful only within the scope of that brick
and any bricks the brick invokes. Alternatively, if the tag is within a <scene> tag, the variable
is accessible and meaningful within that scene and any other scenes or bricks also enclosed
within the parent scene. Moreover, variable scopes according to these exemplary
embodiments are inherited. This means that any code executed within, for example, the brick
that refers to a zuiVariable defined in the enclosing SVG program code can successfully
access that zuiVariable.

[0130] Although the foregoing exemplary embodiments are described in terms of
extensions to SVG which facilitate the generation of ZU]Is, those skilled in the art will
appreciate that the present invention is not so limited. Similar extensions can be made to
other programming languages used to create ZUIs including, but not limited to, HTML, non-
SVG versions of XML, Flash and the like. Moreover, it will be understood that the phrase
“zoomable user interface” and its acronym “ZUI” are intended to refer herein to user
interfaces which employ zooming and/or camera zooming transitions between at least some
of the scenes within the user interface. Similarly, the phrase “spatial relationship” as it refers
to navigation between scenes in a user interface is intended to refer to any such relationship
includiné, but not limited to, lateral relationships, depth relationships, etc.

[0131] Systems and methods for processing data according to exemplary

embodiments of the present invention can be performed by one or more processors executing

88

WO 2007/065019 PCT/US2006/046302

0320-097 PC

sequences of instructions contained in a memory device. Such instructions may be read into
the memory device from other computer-readable mediums such as secondary data storage
device(s). Execution of the sequences of instructions contained in the memory device causes
the processor to operate, for example, as described above. In alternative embodiments, hard-
wire circuitry may be used in place of or in combination with software instructions to

implement the present invention.

[0132] The above-described exemplary embodiments are intended to be illustrative in
all respects, rather than restrictive, of the present invention. Thus the present invention is
capable of many variations in detailed implementation that can be derived from the
description contained herein by a person skilled in the art. All such variations and
modifications are considered to be within the scope and spirit of the present invention as
defined by the following claims. No element, act, or instruction used in the description of the
present application should be construed as critical or essential to the invention unless
explicitly described as such. Also, as used herein, the article “a” is intended to include one or

more items.

89

WO 2007/065019 PCT/US2006/046302

0320-097 PC

WHAT IS CLAIMED IS:

1. A zoomable user interface (ZUI) comprising:

a collection of scenes displayable on said ZUI including a first scene and a second
scene, each of said scenes being implemented using sofiware written in a programming
language;

an event capture mechanism for identifying user inputs to said ZUI, including a user
input for requesting a change from said first scene to said second scene; and

a transition between said first scene and said second scene in said collection of scenes,
said transition conveying a spatial relationship between said first scene and said second scene
within said ZU]I,

wherein said transition is implemented using at least one ZUI attribute or element

added to said programming language.

2. The ZUI of claim 1 wherein said programming language is one of SVG, HTML, XML and

Flash.

3. The ZUI of claim 1, wherein said at least one ZUI attribute or element added to said
programming language is a metadata attribute added to at least one of a hyperlink tag and an

image tag..

4, The ZUI of claim 1, wherein said at least one ZUI attribute or element added to said

90

WO 2007/065019 PCT/US2006/046302

0320-097 PC

programming language is a duration attribute added to a hyperlink tag.

5. The ZUI of claim 1, wherein said at least one ZUI attribute or element added to said
programming language is a layer attribute added to at least one of a grouping tag and an

image tag, a rectangle tag , said layer attribute associating an element with a layer in a scene.

6. The ZUI of claim 1, wherein said at least one ZUI attribute or element added to said
programming language is an internal node attribute added to at least one of a grouping tag and
an image tag, rectangle tag, said internal node attribute specifying a destination for placement

swap effects.

7. The ZUI of claim 1, wherein said at least one ZUI attribute or element added to said
programming language is a cursor attribute added to at least one of a grouping tag and an

image tag, rectangle tag, said cursor attribute identifying a cursor image.

8. The ZUI of claim 1, wherein said at least one ZUI attribute or element added to said
programming language is an informational attribute added to at least one of a grouping tag, an
image tag, and a rectangle tag, said informational attribute indicating whether said ZUI should

ignore a particular node.

9. The ZUI of claim 1, wherein said at least one ZUI attribute or element added to said

programming language is a top attribute added to a script element, said top attribute

91

WO 2007/065019 PCT/US2006/046302

0320-097 PC

indicating whether said ZUI should bypass a particular scene when navigating to a top scene

in said ZUI.

10. The ZUI of claim 1, wherein said at least one ZUI attribute or element added to said
programming language is a transition attribute added to a view element, said transition

attribute specifying a manner in which a transition into a view of said ZUI will occur.

11. The ZUI of claim 1, wherein said at least one ZUI attribute or element added to said
programming language is a background transition element which specifies a manner in which
a background will transition from a first background associated with a current scene to a

second background associated with a scene to which the ZUI is zooming.

12. The ZUI of claim 11, wherein said background transition element includes at least one
of: an effect attribute which specifies an effect to run duriﬁg a background transition, an effect
start attribute which specifies when said effect is to begin during said background transition,
an effect end attribute which specifies when said effect is to end during said background
transition, a start attribute which specifies when said first background is to begin being
swapped with said second background, an end attribute which specifies when said first
background is to end being swapped with said second background and an inherits attribute

which specifies which element the background transition is to inherit behavior from.

92

WO 2007/065019 PCT/US2006/046302

0320-097 PC

13. The ZUI of claim 1, wherein said at least one ZUI attribute or element added to said
programming language is a brick tag element, said brick tag element indicating that another

file is to be inserted into a scene at a specified location.

14. The ZUI of claim 13, wherein said brick tag element includes at least one of: a width
attribute, a height attribute, a transform attribute, a pointer-events attribute, a visibility

attribute, a link attribute, a layer attribute and a cursor attribute.

15. The ZUI of claim 1, wherein said at least one ZUI attribute or element added to said
programming language is a clip rectangle element, said clip rectangle element specifying that

child scenes are clipped to said clip rectangle element’s bounds.

16. The ZUI of claim 13, wherein said clip rectangle element includes at least one of: an x
position attribute, a y position attribute, a width attribute, a height attribute, a transform
attribute, a pointer-events attribute, a visibility attribute, a layer attribute, an informational

attribute and an internal node attribute.

17. The ZUI of claim 1, wherein said at least one ZUI attribute or element added to said
programming language is a scene element, said scene element specifying that said ZUTI is to

place a scene as a child of a current scene.

93

WO 2007/065019 PCT/US2006/046302

0320-097 PC

18. The ZUI of claim 13, wherein said scene element includes at least one of: an x position
attribute, a y position attribute, a width attribute, a height attribute, a link attribute and a
transition attribute, wherein said transition attribute specifies a type of transition effect to use

for a subscene.

19. The ZUI of claim 1, wherein said at least one ZUI attribute or element added to said
programming language is a scene swap element, said scene swap element sets up transition

effects between a first scene and a second scene of said ZUIL

20. The ZUI of claim 19, wherein said scene swap element includes at least one of: a cover
attribute which identifies an element to use in a scene swap effect, a start attribute which
specifies when said first scene is to begin being swapped with said second scene, an end
attribute which specifies when said scene background is to finish being swapped with said
second scene and an inherits attribute which specifies which element the scene swap

transition is to inherit behavior from.
21. The ZUI of claim 1, wherein said at least one ZUI attribute or element added to said
programming language is a text rectangle element, said text rectangle element specifying

bounds in which to render text in said ZUI.

22. The ZUI of claim 21, wherein said text rectangle element includes at least one of: an x

position attribute, a y position attribute, a width attribute, a height attribute, a font-family

94

WO 2007/065019 PCT/US2006/046302

0320-097 PC

attribute, a fill attribute, a font-size attribute, a pointer-events attribute, a visibility attribute, a
preserve aspect ratio attribute, a metadata attribute, a layer attribute, an informational
attribute, an internal node attribute, a text justification attribute, a text allcaps attribute, a

minimum font size attribute and a cursor attribute.

23. The ZUI of claim 1, wherein said at least one ZUI attribute or element added to said
programming language is a transition element, said transition element specifies a parent node

for transition parameter elements.

24. The ZUI of claim 23, wherein said transition element includes at least one of: a duration

attribute, a history attribute, a background-zoom attribute, and an inherits attribute.

25. The ZUI of claim 1, wherein said at least one ZUI attribute or element added to said
programming language is a video element, said video element specifies a node capable of

playing video and other multimedia content.

26. The ZUI of claim 25, wherein said video element includes at least one of: an X position
attribute, a y position attribute, a width attribute, a height attribute, a state attribute, a
playback rate attribute, a feed attribute, a pointer-events attribute, a visibility attribute, a layer
attribute, an informational attribute, an internal node attribute, a preserve aspect ration

atiribute, a metadata attribute, a link attribute and a cursor attribute.

95

WO 2007/065019 PCT/US2006/046302

0320-097 PC

27. A method for displaying scenes on a zoomable user interface (ZUT) comprising:
providing a collection of scenes for display on said ZUI including a first scene and a
Asecond scene, each of said scenes being implemented using software written in a
programming language;
identifying user inputs to said ZUI, including a user input for requesting a change
from said first scene to said second scene; and
transitioning between said first scene and said second scene in said collection of
scenes, said transition conveying a spatial relationship between said first scene and said
second scene within said ZUI,
wherein said transition step is implemented using at least one ZUI attribute or element

added to said programming language.

28. The method of claim 27, wherein said programming language is one of SVG, HTML,

XML and Flash.
29. The method of claim 27, wherein said at least one ZUI attribute or element added to said
programming language is a metadata attribute added to at least one of a hyperlink tag and an

image tag..

30. The method of claim 27, wherein said at least one ZUI attribute or element added to said

programming language is a duration attribute added to a hyperlink tag.

96

WO 2007/065019 PCT/US2006/046302

0320-097 PC

31. The method of claim 27, wherein said at least one ZU] attribute or element added to said
programming language is a layer attribute added to at least one of a grouping tag and an

image tag, a rectangle tag, said layer attribute associating an element with a layer in a scene.

32. The method of claim 27, wherein said at least one ZUI attribute or element added to said
programming language is an internal node attribute added to at least one of a grouping tag and
an image tag, rectangle tag, said internal node attribute specifying a destination for placement

swap effects.

33. The method of claim 27, wherein said at least one ZUI attribute or element added to said
programming language is a cursor attribute added to at least one of a grouping tag and an

image tag, rectangle tag, said cursor attribute identifying a cursor image.

34. The method of claim 27, wherein said at least one ZU] attribute or element added to said
programming language is an informational attribute added to at least one of a grouping tag, an
image tag, and a rectangle tag, said informational attribute indicating whether said ZUI should

ignore a particular node.

35. The method of claim 27, wherein said at least one ZUI attribute or element added to said
programming language is a top attribute added to a script element, said top attribute
indicating whether said ZUI should bypass a particular scene when navigating to a top scene

in said ZUI,

97

WO 2007/065019 PCT/US2006/046302

0320-097 PC

36. The method of claim 27, wherein said at least one ZUI attribute or element added to said
programming language is a transition attribute added to a view element, said transition

attribute specifying a manner in which a transition into a view of said ZUI will occur.

37. The method of claim 27, wherein said at least one ZUI attribute or element added to said
programming language is a background transition element which specifies a manner in which
a background will transition from a first background associated with a current scene to a

second background associated with a scene to which the ZUTI is zooming.

38. The method of claim 37, wherein said background transition element includes at least
one of: an effect attribute which specifies an effect to run during a background transition, an
effect start attribute which specifies when said effect is to begin during said background
transition, an effect end attribute which specifies when said effect is to end during said
background transition, a start attribute which specifies when said first background is to begin
being swapped with said second background, an end attribute which specifies when said first
background is to end being swapped with said second background and an inherits attribute

which specifies which element the background transition is to inherit behavior from.
39. The method of claim 27, wherein said at least one ZUI attribute or element added to said

programming language is a brick tag element, said brick tag element indicating that another

file is to be inserted into a scene at a specified location.

98

WO 2007/065019 PCT/US2006/046302

0320-097 PC

40. The method of claim 39, wherein said brick tag element includes at least one of: a width
attribute, a height attribute, a transform attribute, a pointer-events attribute, a visibility

attribute, a link attribute, a layer attribute and a cursor attribute.

41. The method of claim 27, wherein said at least one ZUI attribute or element added to said
programming language is a clip rectangle element, said clip rectangle element specifying that

child scenes are clipped to said clip rectangle element’s bounds.

42. The method of claim 41, wherein said clip rectangle element includes at least one of: an x
position attribute, a y position attribute, a width attribute, a height attribute, a transform
attribute, a pointer-events attribute, a visibility attribute, a layer attribute, an informational

attribute and an internal node attribute.

43. The method of claim 27, wherein said at least one ZUI attribute or element added to said
programming language is a scene element, said scene element specifying that said ZUT is to

place a scene as a child of a current scene.

44, The method of claim 43, wherein said scene element includes at least one of* an x
position attribute, a y position attribute, a width attribute, a height attribute, a link attribute
and a transition attribute, wherein said transition attribute specifies a type of transition effect

to use for a subscene.

99

WO 2007/065019 PCT/US2006/046302

0320-097 PC

45, The method of claim 27, wherein said at least one ZUI attribute or element added to said
programming language is a scene swap element, said scene swap element sets up transition

effects between a first scene and a second scene of said ZUI.

46. The method of claim 45, wherein said scene swap element includes at least one of: a
cover attribute which identifies an element to use in a scene swap effect, a start attribute
which specifies when said first scene is to begin being swapped with said second scene, an
end attribute which specifies when said scene background is to finish being swapped with
said second scene and an inherits attribute which specifies which element the scene swap

transition is to inherit behavior from.

47. The method of claim 27, wherein said at least one ZUI attribute or element added to said
programming language is a text rectangle element, said text rectangle element specifying

bounds in which to render text in said ZUI.

48. The method of claim 47, wherein said text rectangle element includes at least one of: an x
position attribute, a y position attribute, a width attribute, a height attribute, a font-family
attribute, a fill attribute, a font-size attribute, a pointer-events attribute, a visibility attribute, a
preserve aspect ratio attribute, a metadata attribute, a layer attribute, an informational
attribute, an internal node attribute, a text justification attribute, a text allcaps attribute, a

minimum font size attribute and a cursor attribute.

100

WO 2007/065019 PCT/US2006/046302

0320-097 PC

49. The method of claim 27, wherein said at least one ZUI attribute or element added to said
programming language is a transition element, said transition element specifies a parent node

for transition parameter elements.

50. The method of claim 49, wherein said transition element includes at least one of: a

duration attribute, a history attribute, a background-zoom attribute, and an inherits attribute.

51. The method of claim 27, wherein said at least one ZU]I attribute or element added to said
programming language is a video element, said video element specifies a node capable of

playing video and other multimedia content.

52. The method of claim 51, wherein said video element includes at least one of: an x
position attribute, a y position attribute, a width attribute, a height attribute, a state attribute, a
playback rate attribute, a feed attribute, a pointer-events attribute, a visibility attribute, a layer
attribute, an informational attribute, an internal node attribute, a preserve aspect ration

attribute, a metadata attribute, a link attribute and a cursor attribute.

53. A system for displaying scenes on a zoomable user interface (ZUI) comprising:
means for providing a collection of scenes for display on said ZUI including a first
I
scene and a second scene, each of said scenes being implemented using software written in a

programming language;

101

WO 2007/065019 PCT/US2006/046302

0320-097 PC

means for identifying user inputs to said ZUI, including a user input for requesting a
change from said first scene to said second scene; and

means for transitioning between said first scene and said second scene in said
collection of scenes, said transition conveying a spatial relationship between said first scene
and said second scene within said ZUI,

means for wherein said transition step is implemented using at least one ZUI attribute

or element added to said programming language.

54. A computer-readable medium containing instructions which, when executed on a
computer, perform the steps of:

providing a collection of scenes for display on said ZUI including a first scene and a
second scene, each of said scenes being implemented using software written in a
programming language;

identifying user inputs to said ZU], including a user input for requesting a change
from said first scene to said second scene; and

transitioning between said first scene and said second scene in said collection of
scenes, said transition conveying a spatial relationship between said first scene and said
second scene within said ZUI,

wherein said transition step is implemented using at least one ZUI attribute or element

added to said programming language.

102

WO 2007/065019 PCT/US2006/046302

1/24

FlG. 1

(Prior Art)

,f,L___JW
—'—POWER‘5§§‘
CABLE TV

——FUNCTION ——
CABLE W DSS

CODE_SET FAVORITE

_Dsi/

SUBSTITUTE SHEET (RULE 26)

WO 2007/065019 PCT/US2006/046302

2/24
FIG. 2

(Prior Art)

190 191 192 102
/]] I ~

-~]] [
(PROG/W LISTINGS’ TODAY | /7-93 QW 510
y [4 Y

CHANNEL | | 7:00 PM || 7: 30 PM 800 PM
11

7 .
NFL — .
abe DAY @% JEOPARDY!

194

100

FOX STAR TREK

!

121 Murder

CBS V60 Minutes vfffffte
_ J

@

FlG. 4

300

Processor /

312

) S)

Y Y y * . ‘ ‘L
Display Device Data’ /0
Memory Controller Controllers Storagé INT.

302 J 304 —J 306 —'J 308 -J 370—)

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/046302

WO 2007/065019

3/24

g Old
pndur
jndur wapopy
auoydsja 3/900
. . . -~ 967 P - . H.%M,N -
92z |V zze 0zz vez cic
ﬂ — C C C
7 .@: S19409dS gwm wm\wn‘ DIALID?) J0)IUOH
o/I 7 ;
SSapelI auoydooipy 1o0dwoY oo M
y b V
\ y y) Y 1 :
i snd o/I |
7 ‘ |
0lc 15 ! A Y
y¥s1q 19piodady
Jauinj 08pIA 8]19SsD) gm&mw@\ﬂmo
oapip/oipny 1o3bIa 03pIA
J / / (
8l 9iZ viZ : gcc
12X74ad AYAd 05C
jndug pndury pndup
MID\...\\.S 3}1/|810S Jspopoolig
9/qo7 -
00

SUBSTITUTE SHEET (RULE 26)

WO 2007/065019 PCT/US2006/046302

4/24

_J

il

Fo Y CY -
@010

@ QO
CED@D
=
420

FIG. 5

SUBSTITUTE SHEET (RULE 26)

WO 2007/065019

FlG. 6

5/24

PCT/US2006/046302

550
\
Genre 5
Genre 1 Ge’;’[e
/ Genre 6
[
502 < |
F_\G‘enre 2 Genre 3 Genre
504 — 7
[%
s\ / \ d
AR
506 500 552 508
FIG. 7
515 510 512 515 515
N) e
Genre 3
Artist 1 r Artist 2 Artist 3 508
s ™
.y Artist 4 | | Artist 5 Artist 6 | |Artist 6 o15
515 : -
|
— / J\ 7 .
| \ [r
514 552 516 506

SUBSTITUTE SHEET (RULE 26)

WO 2007/065019

6,24

PCT/US2006/046302

FIG. 8
524 520
) \
Artist 3 /N
/ \
| Artist Album Album Album | | +—520
Artist Info / 2 3 |
2 ,
Album Album Album Album
500 11— 5 ; 7 |- 520
77 % 1
y { 1
Artist 6 / Artist 7))
7 | 1 !
520 508 520 521
FIG. 9
528 530 532
\ \ J
\ (/
\
< Artist — Title {
\ Tracks
Album 4 Song 1 Album 6
Song 2
am— TR =
ore Info S0ng n
l i '
{
1\ \
el \
506 536 534 508

SUBSTITUTE SHEET (RULE 26)

WO 2007/065019 PCT/US2006/046302

7/24

FiG. 10

|~ 920
Root

900 /\ 902
/) I

904

Display

Camera

Layer

Node
(Circle)

Node
(Oval)

\

906

Node

(Rectangle)

<
908

_—~ 912

s

Node
(Triangle)

Node
(Triangle)

Node

(Triangle)

914

.

916

.

g18 .

SUBSTITUTE SHEET (RULE 26)

WO 2007/065019

8/24

FIG. 11(a)

B <

O

FIG. 11(b)

AN

VAN

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/046302

PCT/US2006/046302

WO 2007/065019

9/24

spunog M3IA

90U
\

S$y00]g UOISUDL] N

suoIsusWIlg 4840
6 19SHO 1ybIy MaIA
v 9SHO HIT MAIA

apIS Jybiy MaIA
\m 8pIS 187 M

A

vOLl bty 8pIS

Yo7 epis

/ 19S50 G 1S40
3517 pasepig paxyul Ajqnog
suoisuswiq 18410
/Du 9S40 Yo7
=1 19540 14b1Y
cl Dld \ yo0jg uoibay
0011

SUBSTITUTE SHEET (RULE 26)

WO 2007/065019 PCT/US2006/046302

10/24

FIG. 13(a)

£ Bottom

1

cBottom

FiG. 13(b)

Eleft

Cright

E Bottom

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/046302

WO 2007/065019

11/24

spunog MaiA

suoIsuawig BYi0
0Z 39540 YD1y MaIA
0 19SH0O Nmﬁ M3IIA
] 9PIS 1ybly maip
[l 9PIS ¥o7 M

L]

[t

Bl AR P

p m:o.\mtmE.\Q 2Y10
19510 Mo
19540 14Dy

yoolg uoibsy 9sdljj7

-gloisuawiq 49430

18840 HBT |~

19540 -2uybiy

yoolg uocibsy ajbubiif

(e)vl "Old

“suoIsuawI(q 49410
o 19510 Y37

=1 19540 141y

yoojg uoibay 8joil)

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/046302

WO 2007/065019

12/24

[] Ee=2F

spunog MaIA

SUOISURWI] 48430
91 39540 14bIy M
L 13SHO HOT Ma
=1 P 1ybiy M

10T °PIS 197 #a

SO e == I T = B A e e

NG = e e T

'suoisuawlq 48430
198440 19
19540 141y

~glioisusawiq 42430

19840 HT ™

198440 14Dy

19540 #21

W.:m:&m:mE.S 240
=1 1980 1ybiy

yoolg uoibay asdijF

yoojg uoibay sfbuoly

(Q)vl "Old

Yoojg uoibay 3/oJ19)

SUBSTITUTE SHEET (RULE 26)

WO 2007/065019 PCT/US2006/046302

13/24

FiG. 15

Root

Display Camera -4 Layer
g I T2
. o2 |
12
1204 Virtual [
Camera . [7777 . Layer .
1 4.
1200 /
Node

Leaf Node | —1206
il

SUBSTITUTE SHEET (RULE 26)

WO 2007/065019 PCT/US2006/046302

14/24
FiG. 16(a) FIG. 16(b)
Details
Picture Details
Picture Details
Controls and Details
FiG. 17

Welcome HoME ™

B o
HOME VIDEO

MOVIES

@

NEWS
v
O
mMusIc SPORTS
RADIO

SUBSTITUTE SHEET (RULE 26)

WO 2007/065019 PCT/US2006/046302

15/24

[72]
L
(72]
o
> L T,
| S — | I—
a) = o —— e e
g =
3 z
L | L
- —_—-—————T—_—-_—
o
W v
= IS | B > _
< =
—d
o =
T TN T, | eSS ——————.———..... .——l L
] —] - i
’ =Z | I | —— | — < N | E——
5 | =
\)

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/046302

WO 2007/065019

16,/24

=8
v sy psan3oan | | SOLVIAVTIO
OO<UHIO Lﬂl
%,@w
Wi
© 7
- =
ol =
\%D@WM Y
.
LHV3HIAVYHE oY SO £ oTiodv LAIRHIS Lnoav
VNV Hd

6l Old

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/046302

WO 2007/065019

17/24

N \ N ™

V4947 JOSANIOIT

S]

JOLVIAVIO

09VYIHOD
7

)

NOOY ¥IIOE 7
1¥VIHIAVYS _ N NIWHIS Lnoay
¢l 071104V
VNV H(
0Oc D4

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/046302

WO 2007/065019

18,/24

Aomy 1s0)

£10)S Koy
oiydiapoliyd

¢l ojlody

uollipiad 01 pooy
dwng 31sa.1104

SlIN usaiy ay|
uoky o310Al4 buiapg

"(G861) sieajuniop ul pauoaddp

8y WOUM U}IM ‘UOS|ify D}Y SSS4}OD 0] PaLLIDW Si
SYUDH °/661 480100 Ul swi] (Y JO SID}S BIAON 0O
do| ayj jo jno yyz| so auizobop asdw3y Aq pajoy

VO ‘pJOdu0) ul ‘ggpl ‘6 AjNp ulog Dwisuld
ubouswy Aipiodwajuod ul siojs Jojndod jsows ayy Jo

)

Aydo.Bowi) 3UO BWO028q SDY SHUDH wo] 4030 bulppa) ubsuBWY AT
SYUDH wo|
SLUDH P3 ‘asiuig AUDS) 'UOIDE UIABY ‘UOIXD |if ‘SYUDH WOJ :SI0)OY
's0|da poOMA|jOH |DOIdA} oI J,UOp OyM 3SOY} O} UBAD Py
jpaddp $1910DiDYD padojaasp—||op 'S}09y9 [D1dads pup ssuadsns 6 supy o) Kofus
0} YONW ‘uoissiw aopds Jaybsip—ipau jo buieyes peood-3spy ‘ipjndoed Ajpalssop
66'C$ 90ud ssinuiy Ozt :yibue h
(ova /¥T1Ival HoLVM /AnG) (S661) €1 0TI0dV £LoTiodY
VINY A0

ic Old

SUBSTITUTE SHEET (RULE 26)

WO 2007/065019 PCT/US2006/046302

19/24

FIG. 22

P ()

Underlying Image

00:16 / 02:04:13 ad Dﬂﬂ
/ o o

FlG. 23

: Applications
%
8D £ S
& e O
o | :
1400
Infrastructure
<D
p———— Z o —
| Q °
L ol
A e o 9 DevTools
1904 /" Hoandheld ol 7T .
- ,
"Atoms” L—mﬂ-]
1902 7~ |

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/046302

WO 2007/065019

20/24

1STIAV1d
EINZE) __
|
15TV Eg® A13uno) san|g {puUOI}DUIBIUT
| __
__ |
| | |
$)00J3puUnos |pooA zzop ;
dod % 300y
QISNI IV |
ve 9ld

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/046302

WO 2007/065019

21/24

| waa

I owut.

A
oS

ole

heq yaa/)

SA0Y NIIND

00 53 m. SXNI YOITIVIAN
\h\nwl\ I.N S83NYSDID
.\vvr! =4
Ol ThrEr

SISOY N _SNID

C

Od ® 1904

gc Old

SUBSTITUTE SHEET (RULE 26)

WO 2007/065019 PCT/US2006/046302

22/24

el I
)

15

=)

=——_—_1]
1

O)2

[«]")

Qo

oo

Q

[?)

[e |
———3

o [} O

o
o
o 43
o J

T\
)
o 0 Oc=

2600
é
album title
line two

RN R ERER G ENE
e /\o%pumhodﬁgg

FIG. 26
=

SUBSTITUTE SHEET (RULE 26)

WO 2007/065019 PCT/US2006/046302

23/24

FlG. 27

Settings

(=0) W

DISPLAY SETTINGS CHANNEL LINEUP ~ RECORDINGS PARENTAL CONTROLS

O /AR X

FAVORITES ALERTS SYSTEM STATUS SETUP WIZARD

FIG. 28

— Channel Lineup

Update your ZIP code.

| CLEAR || 20850 [acCEPT]
L2l)iedls]ie]lz]ielle]lo]

SUBSTITUTE SHEET (RULE 26)

WO 2007/065019

24/24

(START)

1

PCT/US2006/046302

Provide collection of scenes including
first and second scenes using
software written in predetermined
programming language

l 2900

Y

Receive user input requesting a
change from the first scene to the
second scene

l 2910

4

Performing a transition that conveys
a spatial relationship between the
first scene and the second scene

using at least one ZUI atitribute or
element added to the programming

language

l 2820

Y

END

FIG. 29

SUBSTITUTE SHEET (RULE 26)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - description
	Page 88 - description
	Page 89 - description
	Page 90 - description
	Page 91 - claims
	Page 92 - claims
	Page 93 - claims
	Page 94 - claims
	Page 95 - claims
	Page 96 - claims
	Page 97 - claims
	Page 98 - claims
	Page 99 - claims
	Page 100 - claims
	Page 101 - claims
	Page 102 - claims
	Page 103 - claims
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings
	Page 117 - drawings
	Page 118 - drawings
	Page 119 - drawings
	Page 120 - drawings
	Page 121 - drawings
	Page 122 - drawings
	Page 123 - drawings
	Page 124 - drawings
	Page 125 - drawings
	Page 126 - drawings
	Page 127 - drawings

