WO 03/102772 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
11 December 2003 (11.12.2003)

PCT

(10) International Publication Number

WO 03/102772 A2

(51) International Patent Classification”: GO6F 9/46

(21) International Application Number: PCT/US03/17189

(22) International Filing Date: 30 May 2003 (30.05.2003)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10/159,366 31 May 2002 (31.05.2002) US
(71) Applicant: VERITAS SOFTWARE CORPORATION

[US/US]; 350 Ellis Street, Mountain View, CA 94043 (US).

(72) Inventors: JOSHI, Darshan, B.; 16091 Sienna TErrace,
Fremont, CA 94555 (US). DALAL, Kaushal, R.; 1062
Morse Avenue, #4-107, Sunnyvale, CA 94089 (US).
SENICKA, James, A.; 9 Medow Lane, Hampton, VI
23666 (US).

(74) Agent: RIFAIL D’Ann Naylor; Campbell Stephenson As-
colese, LLP, 4807 Spice wood Springs Road,, Building 4,
Suite 201, Austin, Texas 78759 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,

AZ, BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,

CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,

GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,

LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,

MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,

SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC,

VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,

ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,

SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,

GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: BUSINESS CONTINUATION POLICY FOR SERVER CONSOLIDATION ENVIRONMENT

Startup or Failure a;gpi)w;céti;)r; (Er;)up X
310

r;etﬁerminefsél’ of Eligible Systems to ﬁoﬂ
No

Application Group X
Select Host
— Yes — System
-
¥

320
[Determine Priority of Application Group X

Size of
Set>0?
32

No Priority Application
b Groups in Cluster?
Yes
Notify Administrator 4
that Application No Capacity and Resources

[

be Freed to Accommodate

Group X Cannot be
Application Group X?

Started
336

L
Free Sufficient Capacity and Resourceson
Host System
340

)

Start Application Groupﬂ; ;r; VHost System
350

- i

BENPCR

(57) Abstract: A method, computer program product and system
that establishes and maintains a business continuity policy in
a server consolidation environment. Business continuity is
ensured by enabling high availability of applications. When an
application is started, restarted upon failure, or moved due to
an overload situation, a system is selected best fulfilling the
requirements for running the application. These requirements can
include application requirements, such as an amount of available
capacity to handle the load that will be placed on the system by
the application. These requirements can further include system
requirements, such as honoring a system limit of a number of
applications that can be run on a particular system. Respective
priorities of applications can be used to determine whether a
lower-priority application can be moved to free resources for
running a higher-priority application. -

WO 03/102772 A2 | INNII) 0 AOHROO 00RO OO AR

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished — ance Notes on Codes and Abbreviations” appearing at the begin-
upon receipt of that report ning of each regular issue of the PCT Gazette.

WO 03/102772 PCT/US03/17189

10

20

25

30

BUSINESS CONTINUATION POLICY FOR SERVER CONSOLIDATION ENVIRONMENT

Portions of this patent application contain materials that are subject to copyright protection.
The copyright owner has no objection to the facsimile reproduction by anyone of the patent document,
or the patent disclosure, as it appears in the Patent and Trademark Office file or records, but otherwise

reserves all copyright rights whatsoever.

BACKGROUND OF THE INVENTION

As the use of open systems grows, the complexity of managing hundreds or thousands of
servers becomes an increasingly difficult task. In addition, a demand for increased availability of the
applications running on the servers presents a challenge. Many information technology (1T) managers
are working to move from large numbers of small open systems, many running well below their
capacities, to a much smaller number of large-scale enterprise servers running at or near their

capacities. This trend in the IT industry is called “server consolidation.”

One early answer to the demand for increased application availability was to provide one-to-
one backups for each server running a critical application. When the critical application failed at the
primary server, the application was “failed over” (restarted) on the backup server. However, this
solution was very expensive and wasted resources, as the backup servers sat idle. Furthermore, the

solution could not handle cascading failure of both the primary and backup servers.

Another possible solution is “N+1 clustering,” where one enterprise-class server provides
redundancy for multiple active servers. N+1 clustering reduces the cost of redundancy for a given set
of applications and simplifies the choice of a server for failover, as an application running on a failed

server is moved to the one backup server.

However, N+1 clustering is not a complete answer to the need for increased application
availability, particularly in a true server consolidation environment. Enterprises require the ability to
withstand multiple cascading failures, as well as the ability to take some servers offline for
maintenance while maintaining adequate redundancy in the server cluster. Typical cluster management
applications provide only limited flexibility in choosing the proper hosts for potentially tens or
hundreds of application groups. Examples of commercially available cluster management applications
include VERITAS® Global Cluster ManagerTM, VERITAS® Cluster Server, Hewlett-Packard® MC /
Service Guard, and Microsoft® Cluster Server (MSCS).

N-to-N clustering refers to multiple application groups running on multiple servers, with each
application group being capable of failing over to different servers in the cluster. For example, a four-
node cluster of servers could support three critical database instances. Upon failure of any of the four

nodes, each of the three instances can run on a respective server of the three remaining servers, without

WO 03/102772 PCT/US03/17189

10

15

20

25

30

.

overloading one of the three remaining servers. N-to-N clustering expands the concept of N+1
clustering from a “backup system” to a requirement for “backup capacity” within the servers forming

the cluster.

What is needed is a business continuity policy that enables critical enterprise applications to
survive multiple failures by determining suitable systems for starting applications initially,
redistributing applications when systems reach an overloaded condition, and restarting failed

applications.

SUMMARY OF THE INVENTION

The present invention relates to a method, system and computer program product that
establish and maintain a business continuity policy in a server consolidation environment. Business
continuity is ensured by enabling high availability of applications. When an application is started,
restarted upon failure, or moved due to an overload situation, a system is selected best fulfilling the
requirements for running the application. These requirements can include application requirements,
such as an amount of available capacity to handle the load that will be placed on the system by the
application. These requirements can further include system requirements, such as honoring a system
limit of a number of applications that can be run on a particular system. Respective priorities of
applications can be used to determine whether a lower-priority application can be moved or stopped to

free resources for running a higher-priority application.

In one feature, a method includes identifying a set of systems in a cluster, wherein each
system in the set of systems meets a requirement for hosting an application. Identifying the set of
systems can involve including a selected system in the set when the selected system meets a
prerequisite for the first application. Identifying the set of systems can involve including a selected

system in the set when the application does not exceed a limit for the selected system.

When the set of systems is empty, the method further includes using a respective priority for
each of the applications for identifying a resource to free, wherein the resource is one of a plurality of
resources, and each resource is associated with at least one of the systems. Identifying the resource to

free may further include using a respective capacity for each of the systems.

The method can further include freeing the resource such that one of the systems associated
with the resource meets the requirement for hosting the application. The method may include starting
the application on the associated system. Freeing the resource can include stopping another application
that is using the resource, wherein the other application has a lower priority than the priority of the first
application. Freeing the resource can include moving another application that is using the resource to
another system when the other application has a lower respective priority than a respective priority of

the first application.

WO 03/102772 PCT/US03/17189

10

15

20

25

30

_3.

The method can further include determining that the application is to be started. This
determination can be made when detecting that the application failed. Another way to make this
determination is to compare the priority of the application with each priority for applications currently
running on the systems. The application is to be started when the respective priority of the application

is higher than one of the priorities for the applications running on the systems.

In another feature of the invention, an apparatus includes an identifying module to identify a
set of systems in a cluster, wherein each system in the set of systems meets a requirement for hosting
an application. The apparatus further includes a priority module to use a respective priority for each of
the applications for identifying a resource to free when the set of systems is empty. Each resource is
associated with at least one of the systems. The apparatus can further include modules to implement

the features of the method described above.

The foregoing is a summary and thus contains, by necessity, simplifications, generalizations
and omissions of detail; consequently, those skilled in the art will appreciate that the summary is
illustrative only and is not intended to be in any way limiting. Other aspects, inventive features, and
advantages of the present invention, as defined solely by the claims, will become apparent in the non-

limiting detailed description set forth below.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its numerous objects, features and

advantages made apparent to those skilled in the art by referencing the accompanying drawings.

Fig. 1 provides an example of an environment in which the management system and

framework of the present invention operates.

Fig. 2 shows an example of a cluster configuration in a high-availability storage area network.

Fig. 3 is a flowchart of a method for implementing a business continuity policy in a server

consolidation environment.

Fig. 4 is a flowchart of the Determine Set of Eligible Systems to Host Application Group X
step of the flowchart of Fig. 3.

Fig. 5 is a flowchart of the Can Sufficient Capacity and Resources be Freed to Accommodate

Application Group X decision point of the flowchart of Fig. 3.

Figs. 6 through 16 show example configurations and failure scenarios handled by the method

and system of the present invention.

WO 03/102772 PCT/US03/17189

10

20

25

-4-

Fig. 6 shows the calculation of available capacity for a cluster of servers in a server

consolidation environment.

Fig. 7 shows the movement of an application upon failure of one of the servers of Fig. 6 and

the resulting available capacity in the cluster.
Fig. 8 shows the movement of another application in the failure scenario of Fig. 7.
Fig. 9 shows an example configuration of database applications in the cluster of Fig. 6.

Fig. 10 shows movement of database applications in a failure scenario in the configuration of

Fig. 9.
Fig. 11 shows an example of managing application groups using limits and prerequisites.
Fig. 12 shows a failure scenario in which an application group cannot be failed over.

Fig. 13 shows stopping a lower-priority application group to free sufficient resources to enable

a higher-priority application to remain available.
Fig. 14 shows another failure scenario for the configuration of Figs. 12 and 13.

Fig. 15 shows movement of a lower-priority application group to free sufficient resources to

enable a higher-priority application group to remain available.

Fig. 16 shows movement of the higher-priority application group to use the resources freed as

a result of the action shown in Fig. 15.

Fig. 17 is a block diagram illustrating a computer system suitable for implementing

embodiments of the present invention.

The use of the same reference symbols in different drawings indicates similar or identical
items. While the invention is susceptible to various modifications and alternative forms, specific
embodiments thereof are shown by way of example in the Drawings and are described herein in detail.
It should be understood, however, that the Drawings and Detailed Description are not intended to limit
the invention to the particular form disclosed. On the contrary, the intention is to cover all
modifications, equivalents, and alternatives falling within the scope of the present invention as defined

by the appended Claims.

WO 03/102772 PCT/US03/17189

10

15

20

25

30

DETAILED DESCRIPTION

For a thorough understanding of the subject invention, refer to the following Detailed
Description, including the appended Claims, in connection with the above-described Drawings.
Although the present invention is described in connection with several embodiments, the invention is
not intended to be limited to the specific forms set forth herein. On the contrary, it is intended to cover
such alternatives, modifications, and equivalents as can be reasonably included within the scope of the

invention as defined by the appended Claims.

In the following description, for purposes of explanation, numerous specific details are set
forth in order to provide a thorough understanding of the invention. It will be apparent, however, to

one skilled in the art that the invention can be practiced without these specific details.

References in the specification to “one embodiment” or “an embodiment” means that a
particular feature, structure, or characteristic described in connection with the embodiment is included
in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in
various places in the specification are not necessarily all referring to the same embodiment, nor are
separate or alternative embodiments mutually exclusive of other embodiments. Moreover, various
features are described which may be exhibited by some embodiments and not by others. Similarly,
various requirements are described which may be requirements for some embodiments but not other

embodiments.

Introduction

The present invention provides a business continuity policy that proactively determines the
best possible system, typically a server in a cluster of servers, to host an application during startup,
upon an overload condition, or following an application or server fault. The terms server and system
are used interchangeably herein, as one of skill in the art will recognize that the present invention also

applies to systems operating outside a client/server environment.

Fig. 1 provides an example of an environment in which the management system and
framework of the present invention operates. Nodes 110A and 110B at Mountain View (MV) site
130A and nodes 110C and 110D at United Kingdom (UK) site 130B are shown for purposes of
illustration. The invention is not limited to minimum or maximum numbers of nodes and/or sites.
While typically the term “site” describes a collection of nodes concentrated at a data center or on a
campus such that cables can interconnect the nodes and storage devices, geographic concentration is
not a requirement for a site. A site can include one or more clusters of nodes and can be viewed as a

virtual collection of one or more clusters.

MV site 130A and UK site 130B are shown as connected via network 102, which typically

corresponds to a private wide area network or a public distribution network such as the Internet.

WO 03/102772 PCT/US03/17189

10

15

20

25

30

35

-6 -

Common management console 104 is shown to be used for managing nodes and clusters of nodes,

although a common management console is not necessary for operation of the invention.

Cluster 120A includes nodes 110A and 110B at MV site 130A, which are connected via
redundant cluster connections 115AB-1 and 115AB-2. Although only one cluster is shown at MV site
130A, any number of clusters may be included at a site. Node 110A shares common storage 140A
with node 110B. Node 110A is interconnected with storage 140A via interconnection 112A, and node

110B is interconnected with storage 140A via interconnection 112B.

Similarly, cluster 120B includes nodes 110C and 110D at UK site 130B, which are connected
via redundant cluster connections 115CD-1 and 115CD-2. Node 110C shares common storage 140B
with node 110D. Node 110C is interconnected with storage 140B via interconnection 112C and node

110D is interconnected with storage 140B via interconnection 112D.

Fig. 2 shows an example of a cluster configured for high availability in a storage area network.
Cluster servers 210A and 210B are configured as servers for the same application program and serve as
fail over targets for each other. Redundant interconnections 216A and 216B can be redundant
heartbeat private network connections via crossover cables between redundant network interface cards
(NICs) when two nodes form the cluster. When more than two nodes form the cluster, the private
network connection can use a hub. The private network enables fail over software to recognize when a
system or process has failed. Each of clusters 210A and 210B has redundant public network
connections, such as public network connections 242A and 244A for cluster server 210A and public
network connections 242B and 244B for cluster server 210B, to communicate via a public network 240

such as the Intemnet.

Cluster server 210A has redundant connections to a fibre channel storage area network via
fibre channel connection 212A to fibre switch 220A and via fibre channel connection 214A to fibre
switch 220B. Similarly, cluster server 210B is connected to the fibre channel storage area network via
fibre channel connection 212B to fibre switch 220B and via fibre channel connection 214B to fibre

switch 220A.

The fibre channel storage area network provides access by cluster servers 210A and 210B to
each of shared storage arrays 230A and 230B. Storage arrays 230A and 230B may correspond, for
example, to fibre channel RAID arrays. Fibre switch 220A is connected to storage array 230A via fibre
channel connection 222A and to storage array 230B via fibre channel connection 224A. Similarly,
fibre switch 220B is connected to storage array 230B via fibre channel connection 222B and to storage
array 230A via fibre channel connection 224B. Redundant connections from the cluster server to the
switch and from the switch to the storage array ensure that each of cluster servers 210A and 210B has a
connection to a collection of storage devices on the fibre channel network. Redundant power sources

(not shown) also can be included to provide a backup power source in the event of a power failure.

WO 03/102772 PCT/US03/17189

10

15

20

25

30

Cluster Management

To ensure disaster recovery, data loss must be prevented and consistent data maintained even
if hardware or software fatlures occur. Data for a particular application should not be allowed to enter
a state in which the failure of the network or a node would leave that application and corresponding

application data in an inconsistent or unusable state.

Cluster management applications enable administrators to manage multiple, discrete clusters
from a single application. By coordinating events and actions across clusters, cluster management
applications provide a useful tool for managing disaster recovery. For example, a second cluster may
take over an application running on a primary cluster when no node within the primary cluster can run
the application. Examples of commercially available cluster management applications include
VERITAS® Global Cluster ManagerTM, Hewlett-Packard® MC / Service Guard, and Microsoft® Cluster
Server (MSCS).

In some cluster management applications, a process called the site master at each site may
connect to one or more site slave processes within the site. The site master collects all information
about all of the clusters and nodes in that site. In addition, each site master may connect to all other
site masters in the distributed system to share information so all site masters have information about the
entire distributed system. While it is not a requirement that each site have its own master for operation
of the invention, a master must have detailed information, sometimes at the software process level,
about the state of hardware and software resources at the site. The term master refers to a site master

and is also referred to herein as a master process.

Typically, a cluster management application constantly monitors the state of software
applications in multiple clusters and can determine if an entire site becomes unavailable, such that no
node in the clusters at the site is available to run the software application. The cluster management
application may start the software application at a secondary site unaffected by the circumstances that
made the primary site unavailable. A cluster management application may be controlled by a user via a

user interface, or the cluster management application may be configured to act automatically.

In the event that the primary data center is destroyed, the application data must be
immediately available at another site, and the application must be immediately started at the other site.
This level of availability requires replication of the data from the primary site to the other site. Various
data replication applications are available for replicating data across sites, including VERITAS®
Volume ReplicatorTM (VVR), Symmetrix Remote Data Facility (SRDF®) by EMC® Corporation,
Hitachi® Asynchronous Remote Copy (HARC), Sybase® Replication, and Continuous Access by
Hewlett-Packard®.

WO 03/102772 PCT/US03/17189

10

15

20

25

30

-8-

Factors included in the determination of the “best” server to initially start or to re-start an
application include server capacity and finite resource availability. In one embodiment described
herein, the business continuity policy is implemented as a component of a cluster management

application.

FailOver Policy

One component of a business continuity policy is a FailOver Policy. Several different
FailOver Policies are possible, including Priority, Round Robin, and a Load FailOver policy included

with the present invention.

A Priority FailOver Policy is the most basic strategy. The server system with the lowest
priority in a running state is chosen as the failover target. A “failover target” is a system selected to
host the application groups that must be re-started. For example, priority can be set implicitly via
ordering in a SystemList, such as SystemList = {serverl, server2} or explicitly by setting priority in the
SystemList, such as SystemList = {system1=0, system2=1}. The Priority FailOver Policy strategy
works well for a simple two-node cluster, or for a small cluster with a small number of application

groups.

A Round Robin FailOver Policy chooses the server system running the smallest number of
application groups as a failover target. Round Robin FailOver Policy is often used for larger clusters
running a large number of application groups having essentially the same server load characteristics

(for example, servers running similar databases or applications).

The Load FailOver Policy described herein enables a framework for server consolidation at
the data center. In a preferred embodiment, Load FailOver Policy takes into account System Capacity,

Application Group Load, System Limits and Application Group Prerequisites.

Load FailOver Policy: Capacity and Load

In one embodiment, a system Capacity variable, also referred to herein as Capacity, for a
system is set to a fixed value representing the system’s load handling capacity. An application group
Load variable, also referred to herein as Load, for an application is set to a fixed demand (Load) placed
on a processor by the application group. For example, consider a 4-node cluster consisting of two 16-
processor servers and two 8-processor servers. The administrator sets a Capacity value on the 16-CPU
servers to 200 and the 8-CPU servers to 100. These Capacity values can be arbitrarily assigned but

should reflect differences in capacity of the respective systems.

Similarly, each application group running on a system has a predefined Load value. When an
application group is brought online, the application group’s Load is subtracted from the available

capacity of the system.

WO 03/102772 PCT/US03/17189

10

15

20

25

30

-9.

In one embodiment, a cluster management application keeps track of the available capacity of
all systems in the cluster using an AvailableCapacity variable for each system. AvailableCapacity is
determined by subtracting Load of all applications groups online (an application group is considered
online if the application group is fully or partially online) on a system from the system’s Capacity.
When a failover occurs, the cluster management application determines the system with the highest
AvailableCapacity and starts the application group on that system. During a failover scenario
involving multiple application groups, failover decisions can be made serially to facilitate the proper
load-based choice; however, online operations to bring applications online on alternate systems can be

performed in parallel.

Capacity is a soft restriction, indicating that the value of AvailableCapacity can fall below

zero. During a cascading failure scenario, AvailableCapacity can be negative.

Load FailOver Policy: Static Load vs. Dynamic Load

The dynamic load of a server can be calculated using a formula AvailableCapacity = Capacity
— (Sum of Load of all online application groups). An alternative strategy for determining dynamic load
is provided by some cluster management applications, including early versions of VERITAS Cluster
Server (VCS) prior to VCS 2.0. These cluster management applications allow an administrator to
determine a dynamic load of a server with an outside monitoring program and set a DynamicLoad
variable to reflect the value determined. The administrator can run any monitoring package desired,
and then provide an estimated load to the cluster management application. If DynamicLoad is so
provided, this value can be used to override calculated Load values; for example, AvailableCapacity
can be calculated using the formula AvailableCapacity = Capacity — DynamicLoad. This calculation
allows an administrator to control system load more accurately than using estimated application group

loading.

However, the administrator must set up and maintain a load estimation package in addition to
the cluster management application. In some cluster management applications using a Load FailOver

Policy, the system with the lowest value in the DynamicLoad variable is chosen for a failover target.

In summary, available capacity of all systems to host application groups can be calculated

using the following formula:

AvailableCapacity of a system = Capacity — Current System Load

where

Current System Load = Dynamic system load if dynamic system load variable is
specified
OR

Sum of Load of all application groups online on the systen.

WO 03/102772 PCT/US03/17189

10

15

20

25

30

35

-10 -
Load FailOver Policy: Limits and Prerequisites

System Limits and application group Prerequisites can also be used in a business continuity
policy. An administrator can provide the finite resources available on each system (Limits), such as
shared memory segments, semaphores and other system resources. For example, a particular server
may be capable of hosting no more than two database applications. Furthermore, a set of Prerequisites,
each of which corresponds to available system resources and/or capacity, can be established for each
application group. For example, a particular database application may need, and have a Prerequisite

indicating, five shared memory segments and twenty semaphores.

In one embodiment, all of the Prerequisites specified in an application group’s set of
Prerequisites must be met before the application group can be started. In one embodiment, system
Limits cannot be overridden, such that a system cannot be not chosen as a failover target if the system

has already reached it’s allowed Limits.

Under the business continuity policy of the present invention, a set of eligible systems that
meet the failed application group’s Prerequisites, which can be equivalent to the application group’s
Load, is identified. This set can be limited to only those systems that also have sufficient
AvailableCapacity to accept the failed application group and remain within the system’s Limits. From
this set of eligible systems, the least loaded system can be selected as a failover target. A system that
does not meet all the Prerequisites of an application group cannot be selected as a failover target.

When a decision is made to bring an application group online on a particular system, the values of the
set of Prerequisite variables for the system resources required for the application group are subtracted

from the Current Limits of the system to indicate that these system resources are already allocated.

In one embodiment of the invention, administrators first define application group Prerequisites
and then define corresponding Limits for each system. In this embodiment, each system can have
different Limits, and only the Prerequisites and Limits applicable to each application group and system
are required to be defined. If a system has no defined Limits for a given system resource, then a default
value of O can be assumed. Similarly, when Prerequisites are not defined for a given system resource, a

default value of O can be assumed.

As an example of definitions of the Prerequisites and Limits variables, the following
configuration can be established to allow only one group online on a system at a given point in time:

Prerequisites = { GroupWeight=1}

Limits = { GroupWeight =1 }

By specifying a Prerequisite GroupWeight value of one, only one application group can be
online at a given time. In addition, by specifying a Limits GroupWeight value of one for each system,
each system can have only one application group online at a time. The GroupWeight value can be

considered to represent the number of application groups that can be brought online. When the

WO 03/102772 PCT/US03/17189

10

15

S1l -

GroupWeight value is zero, no more application groups can come online on that particular system. For
example, consider a system having two systems, S1 and S2, each specifying a Limit of GroupWeight =
1. The system also has three application groups, G1, G2 and G3. Groups G1 and G2 have
Prerequisites of GroupWeight = 1, and group G3 has no Prerequisites. A Prerequisite of GroupWeight
=] for G1 and G2 indicates that each of G1 and G2 requires one “unit” of GroupWeight to be brought
online. When G1 goes online at S1, S1’s CurrentLimits become GroupWeight = 0, thus preventing G2

from also going online on S1. G3, having no Prerequisites, can go online on either S1 or S2.

Prerequisites and Limits can be used to determine a set of eligible systems on which an
application group can be started during failover or upon startup. Once a set of eligible systems meeting
the Prerequisites and Limits is identified, the established FailOver Policy dictates which of the set of

eligible systems is selected as the failover target.

Example System and Application Group Attributes

Table 1 below provides an example of one embodiment including system attributes that can be
used to implement the business continuity policy of the present invention. Table 2 provides examples

of application group attributes.

Table 1: System attributes

Attribute Data Type Description

Capacity Int Integer value expressing total system load capacity.
This value is relative to other systems in the cluster
and does not reflect any real value associated with a
particular system.

For example, the administrator may assign a value of
200 to a 16-processor machine and 100 to an 8-
processor machine.

Default =1

LoadWamingLevel Int A value, expressed as a percentage of total capacity,
where load has reached a critical limit. For example,
setting LoadWarningLevel = 80 sets the warning level
to 80%.

Default = 80%

LoadTimeThreshold Int How long the system load must remain at or above
LoadWarningLevel before the Overload warning is
provided.

Default = 900 seconds.

LoadTimeCounter Int (system) System-maintained internal counter of the number of
seconds the system load has been above
LoadWarningLevel. Incremented every 5 seconds.
This value resets to zero when system Load drops
below the value in LoadWarningLevel.

WO 03/102772 PCT/US03/17189

S12-
Attribute Data Type Description
Limits Association An unordered set of name=value pairs denoting

specific resources available on a system. The format
for Limits is as follows: Limits = { Name=Value,
Name2=Value2 }. For example, to configure a
system with 10 shared memory segments and 50
semaphores available, the proper entry is:

Limits = { ShrMemSeg=10,
Semaphores=50 }

Note, the actual names used in setting limits is
arbitrary and is not actually obtained from the system.
This allows the administrator to set up virtually any
value desired.

CurrentLimits Association System-maintained value of current values of limits.
CurrentLimits = Limits — (additive value of all service
group Prerequisites). For example, if
ShrMemSeg=10, and one group is online with a
ShrMemSeg Prerequisite of 5, CurrentLimits equals {
ShrMemSeg=5 }.

(system)

DynamicLoad Int (system) System-maintained value of current dynamic load.
This value can be set by an external monitoring
system.

AuvailableCapacity Int (system) AvailableCapacity = Capacity — Current System Load

Current System Load = DynamicLoad if dynamic
system load is specified OR Current System Load =
Sum of Load of all groups online on that system.

For the purpose of the above calculation, a group is
considered online if it is fully or partially online,
starting or stopping.

Table 2: Application Group Attributes

Attribute Data Type Description

Load Int Integer value expressing total system load
this application group places on a system.

Prerequisites Association An unordered set of name=value pairs
denoting specific resources required by
this application group. The format for
Prerequisites is as follows: Prerequisistes =
{ Name=Value, name2=value2 }. For
example, to configure an application group
to require 10 shared memory segments and
15 semaphores before it can start, the
proper entry is:

Prerequisites = { ShrMemSeg=10,
Semaphores=15 }

WO 03/102772 PCT/US03/17189

Attribute Data Type Description

Note, the actual names used in setting
Prerequisites are arbitrary and are not
actually obtained from the system. Use
care to ensure that names listed in
Prerequisites match the names in Limits.

AutoStartPolicy String Scalar Sets the method for choosing a system to
start an application group when the cluster
comes up. This is only applicable if
multiple systems are listed the in
AutoStartList. In this example
implementation, possible values are Order,
Priority and Load.

Order (default): Systems are chosen in the
order in which they are defined in the
AutoStartList attribute.

Load: Systems are chosen in the order of
their capacity as designated in the
AvailableCapacity system attribute. The
system with the highest capacity is chosen
first.

Priority: Systems are chosen in the order of
their priority in the SystemList attribute.
Systems with the highest priority (having
the lowest value for the Priority variable)
are chosen first.

FailOverPolicy String Scalar Selects one of three possible failover
policies. Possible values are Priority,
Round Robin and Load.

SystemZones Association Indicates the virtual sub-lists within the
SystemList attribute that are preferred
failover targets. Values are string/integer
pairs. The string is the name for a system
in the SystemList attribute, and the integer
is the number of the zone. Systems with
the same zone number are members of the
same zone. If an application group faults
on one system in a zone, systems within
the zone are preferred failover targets,
despite the policy specified by the
FailOverPolicy attribute.

Establishing Application Group and System Configurations

The following configuration file, main.cf, illustrates a system definition and an application

group definition.

WO 03/102772 PCT/US03/17189

15

20

25

30

35

40

_14-

include “types.ct”
cluster SGWM-demo (
)

system LargeSvr1 (
Capacity =200
Limits = { ShriMemSeg=20, Semaphores=100, Processors=12}
LoadWarningLevel = 90
LoadTimeThreshold = 600

)

group G1 (
SystemList = { LgSvrl, LgSvr2, MedSvrl, MedSvr2 }
SystemZones = { LgSvri=0, LgSvi2=0, MedSvrl=1, MedSvr2=1 }
AutoStartPolicy = Load
AutoStartList = { MedSvrl, MedSvr2 }
FailOverPolicy = Load
Load = 100
Prerequisites = { ShrMemSeg=10, Semaphores=50, Processors=6 }

)

Using Capacity and Prerequisites

Using Capacity and Prerequisites together enables determination of a suitable failover system.
In one embodiment, the system meeting the Prerequisites for a given application group and having the
highest AvailableCapacity is selected. If multiple systems satisfy the Prerequisites for the given
application group and have the same AvailableCapacity, the first system in the SystemList can be
chosen. Note that a system meeting the Prerequisites for an application group may not be eligible to
host the application group if the system’s Limits are already met. The system’s Limits are already met
when the Current Limits for the system allow sufficient resources to meet the Prerequisites for the

given application group.

As mentioned earlier, in one embodiment, Capacity is a soft limit. The system with the
highest AvailableCapacity value can be selected, even if a negative AvailableCapacity value is

produced when the application group is started on the system.

Overload Warning

In one embodiment, an overload warning is provided as part of the Load FailOver Policy.
When a server sustains a pre-determined load level set by a LoadWarningLevel variable (statically or
dynamically determined) for a predetermined time, set by a LoadTimeThreshold variable, an overload
warning is initiated. The overload warning can be provided by a user-defined script or application

designed to implement the FailOver Load Policy of a given enterprise. For example, the user-defined

WO 03/102772 PCT/US03/17189

10

15

20

25

30

-15-

script may provide a message on a console for the operator, or the user-defined script may move or shut
down application groups based on user-defined priority values. For example, if Load on a server
running a business critical database reaches and stays above a user-defined threshold, operators can be
immediately notified. The user-defined script could then scan the system for any application groups
with a lower priority than the database, such as an internal Human Resources application, and shut

down or move the lower-priority application to a system with a smaller current Load.

System Zones

In one embodiment, SystemZones are used to designate a preferred subset of systems from
which to select in an initial failover decision. A cluster management application implementing a
business continuity policy tries to re-start an application group within the application group’s zone
before choosing a system in another zone. For example, consider a typical 3-tier application
infrastructure with web servers, application servers and database servers. The application and database
servers can be configured in a single cluster. Using SystemZones enables the cluster management
application for an application group to try to fail to another application zone server if another
application zone server is available. If another application zone server is not available, the cluster
management application can try to failover to the database zone based on Load and Limits. In this
configuration, excess Capacity and Limits available in the database zone are reserved for the larger
load of a database failover, while application servers handle the Load of application groups in the
application zone. During a cascading failure, excess capacity in the cluster remains available to
application groups. The SystemZones feature allows fine tuning application failover decisions, yet

retains the flexibility to failover anywhere in the cluster if necessary.

Load-Based AutoStart

In one embodiment, the concepts of the Load FailOver Policy can also be used to determine
where an application group should come up when the cluster initially starts. Administrators can set an
AutoStartPolicy variable to Load and allow the cluster management application to determine the best
system on which to start the application group. Application groups can be placed in an AutoStart queue
for load-based startup when the cluster management application determines the available systems. As
with failover, a subset of systems is first created that meet the Prerequisites and Limits, then of those

systems, the system with the highest AvailableCapacity can be chosen.

Using AutoStartPolicy = Load and SystemZones together allows the administrator to establish
a list of preferred systems in a cluster to initially run an application group. As mentioned above, in a 3-
tier architecture, the administrator can designate that application groups start first in the application

zone and database groups start in the database zone.

WO 03/102772 PCT/US03/17189

10

15

20

25

30

-16 -
Using Application Priorities in Conjunction with the Load FailOver Policy

By combining the Load FailOver Policy described above with application priorities, a truly
automated business continuity policy for mission/business critical applications is provided. This
business continuity policy adds the necessary business intelligence to the cluster framework to make
policy driven decisions at time of failure to best maintain critical applications and application

performance.

Application group Priorities allow the administrator to specify the relative importance of an
application group over other application groups. During any failure event, the cluster management
application can determine a suitable failover system based on application group Priorities, Load and
Limits. For most single application group or single server failures, most clusters will have adequate
spare capacity. However, in a situation involving multiple failures, or reduced cluster capacity

following a Disaster Recovery event, more difficult decisions may be required.

Application group Priorities effectively provide a mechanism for the cluster to provide triage.
The most critical application groups remain functional, at adequate performance levels, at the possible

expense of lower priority applications.
In one embodiment, the following priorities can be assigned to an application group:
Priority 1 — Mission Critical

Priority 1 application groups must remain online and be restarted immediately upon failure.
The cluster management application can be configured to avoid stopping or moving Priority 1
application groups, unless the application group specifically faults or the operator intervenes. Priority 1

application groups can sustain only the downtime necessary to restart the application group.
Priority 2 — Business Critical

Priority 2 application groups are only slightly less important than Priority 1 application
groups. The cluster management application must keep these application groups online, but may
perform a switchover, moving the Priority 2 application group to another server to maintain cluster

Load characteristics.
Priority 3 — Task Critical

Priority 3 application groups may be moved at will to maintain cluster loading. Priority 3
application groups also may be stopped to maintain adequate Load handling capability in the cluster,

but only if a move is not possible.

WO 03/102772 PCT/US03/17189

10

15

20

25

30

17 -

Priority 4 — Task Non-Critical

Priority 4 Application groups are non-essential applications such as test applications or
various internal support programs. These application groups may be stopped at will to maintain cluster
loading. During any cluster reconfiguration, the cluster management application can remove all
Priority 4 application groups from the calculation and make its best recommendation for
reconfiguration. Priority 4 applications may only be brought online in the cluster if the cluster

management application determines that there is adequate load capacity remaining in the cluster.

Fig. 3 is a flowchart of a method for implementing a business continuity policy in a server
consolidation environment. The method begins upon startup or failure of a given application group,
here called application group X, in Startup or Failure of Application Group X step 310. A set of
systems eligible to host application group X is identified in Determine Set of Eligible Systems to Host
Application Group X step 320. At Size of Set > 0 decision point 322, a determination is made whether
any eligible systems were identified. If so, control proceeds to Select Host System 324 to select a host
system (either an initial system upon startup or a failover target) for running application group X. For
example, the host system can be selected as the eligible system having the highest Available Capacity.
Other policies can also be used to select a host system according to the needs of the business
implementing a business continuity policy. Control then proceeds to Start Application Group X on

Host System step 350 to start application group X on the selected host system.

If at Size of Set > 0 decision point 322, the set includes no eligible systems for hosting
application group X, control proceeds to Determine Priority of Application Group X step 330. A
respective priority for application group X among all application groups running on the cluster is
determined. The priority of a given application group is configurable and can be assigned by an
administrator of the server consolidation environment. For example, to determine the respective
priority for application group X, the priority can be retrieved from data stored for a cluster management

application managing the cluster in the server consolidation environment.

From Determine Priority of Application Group X step 330, control proceeds to Lower Priority
Application Groups in Cluster decision point 332. If no lower priority applications are running, control
proceeds to Notify Administrator that Application Group X Cannot be Started step 336. Because no
eligible systems exist for application group X, application group X cannot be started without pre-
empting another application of the same or higher priority. An administrator can determine whether
Application Group X should be pre-empted. In one embodiment, the process for handling the situation
where an application group cannot be restarted is configurable within a cluster management application

and can be provided as a user-defined script.

WO 03/102772 PCT/US03/17189

15

20

25

30

- 18 -

If at Lower Priority Application Groups in Cluster decision point 332, lower priority
application groups are running, control proceeds to Can Sufficient Capacity and Resources be Freed to
Accommodate Application Group X decision point 338. In Can Sufficient Capacity and Resources be
Freed to Accommodate Application Group X decision point 338, an evaluation of the available
resources in the systems of the cluster is made. This evaluation is discussed in further detail with

reference to Fig. 5.

If sufficient capacity and resources cannot be freed, control proceeds to Notify Administrator
that Application Group X Cannot be Started step 336. If sufficient capacity and resources can be freed,

control proceeds to Free Sufficient Capacity and Resources on Host System step 340.

In Free Sufficient Capacity and Resources on Host System step 340, capacity and resources
are freed on one or more systems to enable sufficient resources for application group X to run on a
given host system. From Free Sufficient Capacity and Resources on Host System step 340, control

proceeds to Start Application Group X on Host System step 350.

Fig. 4 is a flowchart of the Determine Set of Eligible Systems to Host Application Group X
step 320 of Fig. 3. In Select System from Cluster step 410, a system within the cluster of systems not
previously evaluated is selected to determine whether the system is eligible. Control then proceeds to
Selected System Meets Application Requirements decision point 412. If the selected system does not
meet the requirements for application group X, such as a prerequisite for application group X, control
proceeds to Systems Not Considered Remain decision point 422 to determine whether another system

is available for evaluation.

If the selected system meets the requirements for application group X, control proceeds to
Selected System Meets System Requirements decision point 414. For example, a determination
whether the selected system is within its Limits can be made by adding the system’s Current Limits to
the Prerequisites for Application Group X. The sum must be less than the Limits of the Selected
System to meet the Limits criterion. As another example, a system requirement may be that a
particular CPU remains below a certain utilization percentage. If the selected system does not meet the
system requirements, control proceeds to Systems Not Considered Remain decision point 422 to

determine whether another system is available for evaluation.

If the selected system meets the system requirements at Selected System Meets System
Requirements decision point 414, control proceeds to Add Selected System to Set of Eligible Systems
step 420. Control then proceeds to Systems Not Considered Remain decision point 422 to determine

whether another system is available for evaluation.

In Systems Not Considered Remain decision point 422, a determination is made whether any

systems not already considered remain in the cluster. If so, control proceeds to Select System step 410

WO 03/102772 PCT/US03/17189

10

15

20

25

30

35

-19-

to select another system. If not, the set of eligible systems is complete and control returns to Size of

Set > 0 deciston point 322 of Fig. 3.

Fig. 5 is a flowchart of the Can Sufficient Capacity and Resources be Freed to Accommodate
Application Group X decision point 338 of Fig. 3. The initial decision is made at Can Sufficient
Priority 4 Resources be Stopped decision point 510. If sufficient Priority 4 resources can be stopped,
control proceeds to Select Host System and Priority 4 Resources to Free step 520. In this step, a
system with sufficient Priority 4 resources is selected as the system to host application group X.
Control proceeds to Indicate Sufficient Resources can be Freed step 565. The flowchart of Fig. 5 is

completed and an indication that sufficient resources can be freed is made.

If at Can Sufficient Priority 4 Resources be Stopped decision point 510, sufficient Priority 4
resources cannot be freed, control proceeds to Can Sufficient Priority 4 Resources be Stopped and
Priority 3 Resources Moved decision point 530. If priority 4 applications can be stopped and sufficient
resources for Application Group X freed on a system by moving priority 3 applications to other
systems, then control proceeds to Determine Appropriate Priority 3 and 4 Resources to Free and Select
Host System step 540. At Determine Appropriate Priority 3 and 4 Resources to Free and Select Host
System step 540, the decision of which priority 4 applications to stop and which priority 3 applications
to move is made. Preferably, when several different scenarios can free the necessary resources, a
configuration can be selected such that a minimum number of resources are stopped and/or moved to
enable the largest number of high-priority applications to run. Control then proceeds to Indicate
Sufficient Resources can be Freed step 565. The flowchart of Fig. 5 1s completed and an indication that

sufficient resources can be freed is made.

If at Can Sufficient Priority 4 Resources be Stopped and Priority 3 Resources Moved decision
point 530, sufficient resources are not available, control proceeds to Can Sufficient Priority 4
Resources be Stopped and Priority 2 and 3 Resources Moved decision point 550. If so, control
proceeds to Determine Appropriate Priority 2, 3 and 4 Resources to Free and Select Host System step
560. Again, preferably minimal resources are stopped and moved to enable the largest number of
high-priority applications to run. Control then proceeds to Indicate Sufficient Resources can be Freed
step 565. The flowchart of Fig. 5 is completed and indication that sufficient resources can be freed is

made.

If at Determine Appropriate Priority 2, 3 and 4 Resources to be Freed and Select Host System
step 560, sufficient resources are not available in the cluster, control proceeds to Indicate Sufficient
Resources Cannot be Freed step 570. The flowchart of Fig. 5 is completed and an indication that

sufficient resources cannot be freed is made.

Figs. 6 through 16 describe multiple scenarios that are within the scope of the business

continuity policy of the present invention.

WO 03/102772 PCT/US03/17189

10

15

20

25

30

220 -

Fig. 6 shows the calculation of available capacity for a cluster of servers in a server
consolidation environment. Servers 610A, 610B, 610C and 610D form a cluster. Servers 610A, 610B
and 610C each have a capacity of 300, and server 610D has a capacity of 150. Server 610A is running
Microsoft Exchange (XCH) version 5.5, which places a Load of 100 on server 610A. Server 610A is
also running a database application group, Oracle 8i, which places a Load of 150 on server 610A, for a
total Load of 250. Server 610B is running SQL 2000 server, which places a Load of 125 on server
610B. Server 610C is running a file sharing application group FileSharel, which places a Load of 75
on Server 610C. Server 610D is running two file sharing application groups, Fileshare2 and
Fileshare3, placing a load of 150 on server 610D. By subtracting the respective Load for each
application group running on a given server from the Capacity of the given server, Available Capacity
is calculated as 50 for server 610A, 175 for server 610B, 225 for server 610C, and zero for server

610D. With an available capacity of 225, server 610C has the highest available capacity in the cluster.

Fig. 7 shows the movement of an application upon failure of one of the servers of Fig. 6 and
the resulting available capacity in the cluster. Server 610D fails, leaving file sharing applications
Filesharel and Fileshare2 to be redistributed if possible to other servers in the cluster. Fig. 7 shows the
movement of Fileshare2 to server 610C, which is selected because server 610C offers the highest
available capacity. As a result of the movement of Fileshare2 to server 610C, the Load on server 610C
increases to 150, and the available capacity of server 610C reduces to 150. Server 610B, with an

available capacity of 175, now has the highest available capacity in the cluster.

Fig. 8 shows the movement of another application in the failure scenario of Fig. 7. Fileshare3
is moved from server 610D to the server having the highest available capacity, server 610B. Asa
result of this move, the Load placed on server 610B is increased to 200 and the available capacity of

server 610B is reduced to 100.

Fig. 9 shows an example configuration of database applications in the cluster of Fig. 6, with
each of servers 610A through 610D configured with a capacity of 300. Server 610A is running two
SQL 2000 database application groups, SQL 2000 Database A and SQL 2000 Database B. Each of
SQL 2000 Database A and SQL 2000 Database B places a load of 100 on server 610A. Server 610A is
configured with an SQL limit of 2, indicating that server 610A can run no more than two SQL

databases at one time. The available capacity on server 610A is 300 — 200 = 100.

Server 610B similarly has a SQL limit of 2 and is running SQL 2000 Database C, placing a
load of 100 on server 610B. Server 610B has an available capacity of 200. Server 610C is running
SQL 2000 Database E, placing a load of 100 on server 610C. Server 610C also has an available
capacity of 200. Server 610D has a SQL limit of 3 and is running SQL 2000 Database D, which places
a Load of 150 on server 610D. Server 610D has an available capacity of 150.

WO 03/102772 PCT/US03/17189

10

20

25

30

35

221 -

Fig. 10 shows movement of database applications in a failure scenario in the configuration of
Fig. 9. Server 610C fails, leaving SQL 2000 Database E to be restarted on another server. SQL 2000
Database E places a Load of 100 on a server. Server 610A cannot host SQL 2000 Database E because
sever 610A has already reached its limit of 2 server SQL applications. Neither server 610B or server
610D has reached its limit of the number of SQL applications that it can host, and both server 610B
and server 610D have sufficient available capacity to run SQL 2000 Database E. In the example
scenario shown, server 610B is selected because, of the two eligible systems, server 610B has the
highest available capacity. After SQL 2000 Database E is moved, the load placed on server 610B

increases to 200 and the available capacity of server 610B reduces to 100.

Fig. 11 shows an example of managing application groups using limits and prerequisites.
Four application groups are given in this example, including application group G1, a file sharing
application; application group G2, a test application; application group G3, a Microsoft Exchange
application; and application group G4, a SQL server application group. Application group G1, a
priority three application group, requires that a GroupWeight variable for the server have a value of 1
before application group G1 can be run on that server. Application group G2, a priority four
application group, requires that a GroupWeight variable for the server have a value of 2 before
application group G2 can be run on that server. Application group G3, a priority one application group,
requires that a GroupWeight variable for the server have a value of 2 before application group G3 can
be run on that server. Finally, application group G4, a priority two application group, requires that a
GroupWeight variable for the server have a value of 2 before application group G4 can be run on that

server.

Servers 610A through 610D run applications G1 through G4, respectively. With these
running application groups, servers 610A through 610D have Limits of 2, 3, 2 and 3, respectively.
Servers 610A through 610D have CurrentLimits values of 1, 1, 0, and 1, respectively.

Fig. 12 shows a failure scenario in which an application group cannot be failed over. Server
610C fails, and no server has a CurrentLimits value of 2, which is a prerequisite for application group
G3 to be started on another server. When an application group cannot be failed over, priorities of the
running applications are examined to determine whether sufficient resources can be freed in the cluster
to run the application group. Application group G3 is a priority one application, and each of
application groups G2 through G4 is a lower priority application group. First, a determination is made
whether sufficient priority 4 resources exist to free sufficient resources for application group G3.
Application group G2 is a priority 4 resource, and it consumes two GroupWeight units. 1f application
group G2 is freed, the two GroupWeight units necessary to run application group G3 are freed, and

application group G3 can be started on server 610B.

Fig. 13 shows stopping a lower-priority application group to free sufficient resources to enable

a higher-priority application group to remain available. In the scenario of Fig. 12, application group

WO 03/102772 PCT/US03/17189

10

15

20

25

30

S22 -

G2 was determined to provide sufficient resources to allow application group G3 to run. Application
group G2 is stopped, and application group G3 is moved to server 610B. The CurrentLimits value for

server 610B is recalculated, now having a value of 1.

Fig. 14 shows another failure scenario for the configuration of Figs. 12 and 13. Assume that
now server 610D fails, leaving application G4 to be restarted. Application group G4 requires a
GroupWeight value of 2 to be started on another server. Neither of the remaining servers 610A or
610B provides a GroupWeight value of 2. A determination is then made whether sufficient resources
can be freed to enable application group G4 to remain available. Lower priority resources are

examined to make this determination.

Fig. 15 shows movement of a lower-priority application group to free sufficient resources to
enable a higher-priority application group to remain available. Application group G1, a priority three
application, has a lower priority than application group G4, with a priority of two. Furthermore, by
moving application group G1, the value of GroupWeight for server 610A can be raised to two, which
meets the prerequisite for application group G4. The prerequisites for application group G1 are a
GroupWeight value of 1, which is provided by server 610B. Application group G1 is moved to server
610B to free resources on server 610A. The result of the movement is that server 610A has a

GroupWeight value of 2, and server 610B has a GroupWeight value of zero.

Fig. 16 shows movement of the higher-priority application group to use the resources freed as
a result of the action shown in Fig. 15. After the movement of application group Gl1, server 610A has
sufficient resources to host application group G4. The prerequisite for application group G4, that
GroupWeight have a value of 2, is true. After the movement of application group G4, server 610A has

a GroupWeight value of zero.

The above scenarios are examples of multiple failure situations that can be handled by the
business continuity policy described herein. Many variations of these scenarios, and alternative
variables for implementing the business continuity policy, are envisioned as part of the present
invention and fall within its scope. Further example scenarios are provided in the “Additional

Examples” section of this document.

Resource Manager Integration

Most major operating systems have a corresponding resource manager, such as Solaris
resource manager, HP Process Resource Manager and AIX Resource manager. These resource
managers, collectively called xRM here, allow an administrator to control CPU and memory utilization.
However, typically xRM packages are only aware of the system on which the xRM package is running,

and not of other systems within the cluster. Preferably, a cluster management application supporting

10

15

20

25

30

WO 03/102772 PCT/US03/17189

-23-

the business continuity policy of the present invention is integrated with xRM packages and controls

resource utilization, and therefore Load, on all systems in the cluster.

Each operating system vendor provides a different interface and different capabilities in the
platform’s resource manager. For example, Solaris 9 supports the concept of a “Task-ID,” which ties a
specific process launched under the Task-ID to limits imposed in a “projects” database. To maintain
maximum flexibility and keep operations across the operating system platforms identical, a cluster
management application provides an API layer to communicate with the various xRM packages. Ata
minimum, the Load FailOver policy can be used. If the cluster management application is also running
on an operating system platform capable of xXRM integration, then full enforcement of Load and Limits

is possible.

In one embodiment, administrators can configure resource utilization parameters once in the
cluster definition, rather than on individual systems. The cluster management application, in
conjunction with xRM-specific agents on each system, controls resource allocation to specific
application groups when the application groups are started on a system. This allows a single point of

administration as well as greater control of load distribution in the cluster.

By changing values for application group Load, the administrator sets both the overall load an
application group is expected to place on a system, as well as the share of a system the application
group is expected to receive. For example, if three application groups with a Load of 200 each were
running on a server with a capacity of 800, each application group effectively receives 1/3 of the
available resources. In this scenario, raising the Load value for a specific application group to 400
accomplishes several things. First, raising the load value increases the resource allocation for the
modified application group. This application group receives 50% of available CPU and memory, and
the remaining two application groups receive 25% each. Second, raising the Load Value places the
server at a 100% load level, reducing AvailableCapacity to 0. This situation produces an overload
warning. Raising a Load value not only tells the cluster management application that a system is

loaded more heavily, it also functions to increase the performance of the application.

Modeling and Simulation Engine

A modeling and simulation engine (MSE) can provide the capability for the cluster
management application to determine the best possible configuration for application groups based on a
“what-if” model. Rather than choose a system based solely on current load and limits, the cluster
management application determines how to reconfigure the cluster to provide application groups with
the best possible performance. Re-configuration takes into account the various application group
priorities to determine the application groups that can and cannot be moved. Various parameters can

also be supplied to the MSE, such as “maximum performance” and “minimum switches,” to allow the

WO 03/102772 PCT/US03/17189

10

15

20

25

30

.24 -

cluster management application to determine whether to perform a cluster reconfiguration to maximize

performance. or whether to minimize downtime for application groups.

The MSE can also include simulation capabilities to allow administrators to run a complete

what-if scenario for any cluster reconfiguration. For example:

What if | take 32 CPU server-1 out of the cluster? What is the best performance
reconfiguration model? What applications will be stopped due to the shutdown? What applications will

be stopped due to reconfiguration moves? What if I allow Priority 1 moves during this evolution?

What if | add an additional four 16-CPU commodity servers to my cluster and storage area
network? What is the best performance configuration? What applications will be stopped during the

move? How much spare capacity will this configuration provide?

" I want to online a large database. Where is the best location? What reconfiguration would

provide the best fit?

The MSE can rigidly enforce the current concepts of Load and Limits, and also allows
reconfiguration to better utilize the FailOver Policy. For example, to add a large database (shared
memory and semaphores X2) and no system has adequate capacity within the Limits, the proposed
FailOver Policy provides an error. The MSE could determine that two systems provide available
adequate resources, but each is running a small database (shared memory and semaphores. The cluster
management application can recommend a consolidation of the two smaller databases to one server and

free the second server for the large database.

Cluster Reconfiguration

Cluster Reconfiguration, either manual or automatic, refers to the capability provided by the
cluster management application to re-allocate application groups, and therefore loads across the cluster,
to better balance system Load. This re-configuration can be in response to a failure, server additions
and deletions, or application group additions or removals. Cluster reconfiguration can be performed by
an MSE component of the cluster management application to allocate fixed cluster resources. The
cluster reconfiguration module can be allowed to perform automatically if moving Priority 3 and
Priority 4 application groups, and possibly automatically on Priority 2 application groups if specific

parameters are set and manual (operator-acknowledged) for Priority 1 groups.

Cluster reconfiguration capabilities can intervene when a manual application group online or
switchover is requested. If a user requests to move or bring an application group online, the MSE can
inform the user that it is acceptable or recommend a reconfiguration sequence to better allocate

resources.

WO 03/102772 PCT/US03/17189

10

15

20

25

30

35

40

-25-
Additional Examples

The following example uses Limits and Prerequisites to control the total number of
application groups that may run on a system. The cluster consists of four similar servers. There are five
application groups, which are roughly equivalent in requirements for processing power and in the
amount of Load each application group requires of a system. Each server can host two such application
groups. This example does not use application group Load and system Capacity. Also, the application

groups use a default AutoStartPolicy and FailOverPolicy.
Example Configuration File with Limits

system Svrl (
Limits = {GroupWeight = 2}
)

system Svr2 (
Limits = {GroupWeight = 2}
)

system Svr3 (
Limits = {GroupWeight = 2}
)

system Svr4 (
Limits = {GroupWeight = 2}
)

group G1 (

SystemList = { Svrl, Svr2, Svr3, Srv4}
AutoStartList = { Svrl, Svr2 }
Prerequisites = { GroupWeight =1}

)

group G2 (

SystemList = { Svrl, Svr2, Svr3, Svr4}
AutoStartList = { Svr2, Svr3 }
Prerequisites = { GroupWeight =1 }

)

group G3 (

SystemList = { Svrl, Svr2, Svr3, Svr4}
AutoStartList = {Svr3, Svr4 }
Prerequisites = { GroupWeight =1}

)

group G4 (

SystemList = { Svrl, Svr2, Svr3, Svr4}
AutoStartList = { Svr4, Svr! }
Prerequisites = { GroupWeight =1 }

)

10

15

20

25

30

WO 03/102772 PCT/US03/17189

226 -

group G5 (

SystemList = { Svrl, Svr2, Svr3, Svrd}
AutoStartList = { Svr2, Svi3 }
Prerequisites = { GroupWeight =1 }

)

AutoStart Operation

This example uses the default AutoStartPolicy = Order. Application groups are brought
online on the first system available in the AutoStartList. In this way, G1 will start on Svrl, G2 on Svr2,

and so on. G5 will start on Svr2.
Normal Operation

An example cluster configuration (assuming all systems are running) is provided below:

Svrl
CurrentLimits = {GroupWeight=1}
(Group G1)

Svr2
CurrentLimits = {GroupWeight=0}
(Groups G2 and GS)

Svr3
CurrentLimits = {GroupWeight=1}
(Group G3)

Svr4

CurrentLimits = {GroupWeight=1}
(Group G4)

Failure Scenario

In the first failure scenario, assume Svr2 fails. With application groups G2 and G5 configured
with an identical SystemList, both application groups can run on any system. The cluster management
application can serialize the choice of failover nodes for the two groups. G2, being canonically first, is
started on Svrl, the lowest priority in the SystemList, thereby exhausting the Limits for Svrl. G5 is
then started on the next system in the order of the SystemList for group G5. GS goes online on Svr3.

Following the first failure, the cluster now looks like the following:

Svrl

CurrentLimits = {GroupWeight=0 }
(Groups G1 and G2)

WO 03/102772 PCT/US03/17189

10

15

20

25

30

35

-27-

Svr3

CurrentLimits = {GroupWeight=0}
(Groups G3 and G5)

Svr4
CurrentLimits = {GroupWeight=1}
(Group G4)

Cascading Failures

Assuming Svr2 cannot immediately repaired, the cluster can tolerate the failure of an

individual application group on Svrl or Svr3, but no further node failures.

Load-Based example

The following sample cluster shows the use of simple load based startup and failover.

SystemZones, Limits and Prerequisites are not used.

The cluster consists of four identical systems, each with the same capacity. Eight application

groups, G1-G8, with various loads run in the cluster.

Example Configuration File

include “types.cf”
cluster SGWM-demo

system Svrl (

Capacity = 100
)

system Svr2 (
Capacity = 100
)

system Svr3 (
Capacity = 100
)

system Svr4 (
Capacity = 100
)

group G1 (

SystemList = { Svrl, Svr2, Svr4, Svr4 }
AutoStartPolicy = Load

AutoStartList = { Svrl, Svr2, Svr3, Svr4 }
FailOverPolicy = Load

Load =20

)

WO 03/102772

10

15

20

25

30

35

40

=28 -

group G2 (

SystemList = { Svrl, Svr2, Svr4, Svr4 |
AutoStartPolicy = Load

AutoStartList = { Svrl, Svr2, Svr3, Svi4 |
FailOverPolicy = Load

Load =40

)

group G3 (

SystemList = { Svrl, Svr2, Svr4, Svr4 }
AutoStartPolicy = Load

AutoStartList = { Svrl, Svr2, Svr3, Svr4 }
FailOverPolicy = Load

Load = 30

)

group G4 (

SystemList = { Svrl, Svi2, Svr4, Svr4 }
AutoStartPolicy = Load

AutoStartList = { Svrl, Svr2, Svr3, Svr4 }
FailOverPolicy = Load

Load =10

)

group G5 (

SystemList = { Svrl, Svr2, Svr4, Svr4 }
AutoStartPolicy = Load

AutoStartList = { Svrl, Svi2, Svr3, Svr4 }
FailOverPolicy = Load

Load =50

)

group G6 (

SystemList = { Svrl, Svr2, Svr4, Svr4 }
AutoStartPolicy = Load

AutoStartList = { Svrl, Svr2, Svr3, Svr4 }
FailOverPolicy = Load

Load =30

)

group G7 (

SystemList = { Svrl, Svr2, Svr4, Svr4 }
AutoStartPolicy = Load

AutoStartList = { Svrl, Svr2, Svr3, Svr4 }
FailOverPolicy = Load

Load =20

)

PCT/US03/17189

WO 03/102772 PCT/US03/17189

10

15

20

25

30

229 -
group G8 (

SystemList = { Svrl, Svr2, Svr4, Svr4 |
AutoStartPolicy = Load

AutoStartList = { Svrl, Svr2, Svr3, Svr4 }
FailOverPolicy = Load

Load =40

)

AutoStart Operation

As mentioned above, application groups can be placed in a queue as soon as they are started
on a system. For the purposes of this example, application groups are placed into the queue in the same

order that the application groups are described, G1 through G8.

G1 is started on the system with the highest AvailableCapacity. Since the systems are equal,
Svrl is chosen since it is canonically first. G2-G4 start on Svr2 through Svr4. At this time, with the

first 4 group startup decisions made, the cluster looks as follows:

Svrl

AvailableCapacity=80
Svr2

AvailableCapacity=60
Svr3

AvailableCapacity=70
Svr4

AvailableCapacity=90

As the remaining application groups are brought online, G5 starts on Svr4, as it has the highest
AvailableCapacity. G6 are brought starts on Svrl, with 80 remaining. G7 starts on Svr3, with
AvailableCapacity=70. G8 starts on Svr2, with AvailableCapacity=60.

Normal Operation
The final cluster configuration (assuming the original queue of G1-G8) is shown below:

Svrl
AvailableCapacity=50
(Groups G1 and G6)

Svr2

AvailableCapacity=20
(Groups G2 and G8)

WO 03/102772 PCT/US03/17189

10

15

20

25

30

230-

Svr3
AvailableCapacity=50
(Groups G3 and G7)
Svr4
AvailableCapacity=40
(Groups G4 and GS5)
In this configuration, an overload warning is provided for Svr2 after the default 900 seconds

since Svr2 has a default LoadWarningLevel of 80%.
Failure Scenario

In the first failure scenario, assume Svr4 fails, immediately queuing G4 and G5 for failure
decision. G4 starts on Svrl, as Svrl and Svr3 have AvailableCapacity=50 and Svr1 is canonically first.
GS goes online on Svr3. Svrl Failure decisions are made serially, actual online and offline operations
are not. Serializing the failover choice allows complete load-based control, and, in one embodiment,

adds less than one second to total failover time.

Following the first failure, the cluster configuration is shown below:

Svrl
AvailableCapacity=40
(Groups G1, G6 and G4)
Svr2
AvailableCapacity=20
(Groups G2 and Gg)
Svr3

AvailableCapacity=0
(Groups G3, G7 and G5)
In this configuration, an overload warning is provided for Svr3 to notify an operator or
administrator that Svr3 is overloaded. The operator can switch G7 to Svrl to balance loading across
G1 and G3. As soon as Svr4 is repaired, Svr4 rejoins the cluster with an AvailableCapacity=100. Svr4

can then server as a failover target for further failures.
Cascading Failures

Assuming Svr4 is not immediately repaired, further failures are possible. For this example,
assume Svr3 now fails. Each application group G3, G5 and G7 is re-started on respective server Svrl,

Svr2, and Svrl These re-starts result in the following configuration:

WO 03/102772 PCT/US03/17189

20

25

30

35

-31-

Svrl
AvailableCapacity= -10
(Groups G1, G6, G4, G3 and G7)

Svr2
AvailableCapacity= -30
(Groups G2 and G8 and G5)

This example shows that AvailableCapacity is a soft limit, and can fall below zero.

Complex 4-system Example

The following example shows a 4-system cluster using multiple system Capacities and various
Limits. The cluster consists of two large Enterprise servers (LgSvrl and LgSvr2) and two Medium
servers (MedSvr] and MedSvr2). Four application groups, G1 through G4, are provided with various
Loads and Prerequisites. G1 and G2 are database application groups, with specific shared memory and
semaphore requirements. G3 and G4 are middle-tier application groups with no specific memory or

semaphore requirements and simply add load to a given system.
Example Configuration File

include “types.ct”
cluster Demo (

)

system LgSvrl (

Capacity = 200

Limits = { ShrMemSeg=20, Semaphores=100, Processors=12}
LoadWarningLevel = 90

LoadTimeThreshold = 600

)

system LgSvr2 (

Capacity = 200

Limits = { ShrMemSeg=20, Semaphores=100, Processors=12 }
LoadWarningLevel=70

LoadTimeThreshold=300

)

system MedSvr1 (

Capacity = 100
Limits = { ShriMemSeg=10, Semaphores=50, Processors=6}
)

system MedSvr2 (

Capacity = 100
Limits = { ShrMemSeg=10, Semaphores=50, Processors=6 }
)

WO 03/102772 PCT/US03/17189

10

15

20

25

30

35

40

_32.

group G1 (

SystemList = { LgSvrl, LgSvr2, MedSvr1, MedSvr2 |
SystemZones = { LgSvr1=0, LgSvr2=0, MedSvr1=1, MedSvr2=1 }
AutoStartPolicy = Load

AutoStartList = { LgSvrl, LgSvr2 }

FailOverPolicy = Load

Load = 100
Prerequisites = { ShrMemSeg=10, Semaphores=50, Processors=6 }
)
group G2 (

SystemList = { LgSvrl, LgSvr2, MedSvrl, MedSvr2 }
SystemZones = { LgSvr1=0, LgSvr2=0, MedSvri=1, MedSvr2=1 }
AutoStartPolicy = Load

AutoStartList = { LgSvrl, LgSvr2 }

FailOverPolicy = Load

Load = 100

Prerequisites = { ShrMemSeg=10, Semaphores=50, Processors=6 }

)
group G3 (
SystemList = { LgSvrl, LgSvr2, MedSvrl, MedSvr2 }
SystemZones = { LgSvr1=0, LgSvr2=0, MedSvr1=1, MedSvr2=1 }
AutoStartPolicy = Load
AutoStartList = { MedSvrl, MedSvr2 }
FailOverPolicy = Load
Load =30
)
group G4 (

SystemList = { LgSvrl, LgSvr2, MedSvrl, MedSvr2 }
SystemZones = { LgSvr1=0, LgSvr2=0, MedSvr1=1, MedSvr2=1 }
AutoStartPolicy = Load
AutoStartList = { MedSvrl, MedSvr2 }
FailOverPolicy = Load
Load =20

)

AutoStart Operation

Using the main.cf example above, the following is one possible outcome of the AutoStart
operation:

G1 - LgSvrl

G2 - LgSvr2

G3 — MedSvrl

G4 - MedSvr2

All application groups are assigned to a system when the cluster starts. Application groups

G1 and G2 have an AutoStartList of LgSvrl and LgSvr2. G1 and G2 are queued to go online on one of
these servers, based on highest AvailableCapacity. Assuming G1 starts first, G1 is started on LgSvrl

WO 03/102772 PCT/US03/17189

~33-

because LgSvrl and LgSvr2 both have an initial AvailableCapacity of 200, and LgSvrl is lexically

first.

10

15

Application groups G3 and G4 are started, respectively, on MedSvrl and MedSvr2.
Normal Operation
After starting application groups G1 through G4, the resulting configuration is shown below:

LgSvrl

AvailableCapacity=100

CurrentLimits = { ShrMemSeg=10, Semaphores=50, Processors=6 }
LgSvr2

AvailableCapacity=100

CurrentLimits = { ShrMemSeg=10, Semaphores=50, Processors=6}
MedSvrl

AvailableCapacity=70

CurrentLimits = { ShrMemSeg=10, Semaphores=50, Processors=6 }
MedSvr2

AvailableCapacity=80

CurrentLimits = { ShrMemSeg=10, Semaphores=50, Processors=6}

Failure Scenario

For the first failure example, assume system LgSvr2 fails. The cluster management

20 application scans available systems in G2’s SystemList having the same SystemZones grouping as

LgSvr2. The cluster management application then creates a subset of systems meeting the application

group’s Prerequisites. In this case, LgSvrl meets all necessary Limits. G2 is brought online on

LgSvrl, resulting in the following configuration:

25

30

LgSvrl

AvailableCapacity=0

CurrentLimits = { ShrMemSeg=0, Semaphores=0, Processors=0 }
MedSvrl

AvailableCapacity=70

CurrentLimits = { ShrMemSeg=10, Semaphores=50, Processors=6 }
MedSvr2

AvailableCapacity=80

CurrentLimits = { ShrMemSeg=10, Semaphores=50, Processors=6}

After 10 minutes, (LoadTimeThreshold = 600) the overload warning on LgSvrl is provided

because LoadWarningLevel exceeds 90%.

WO 03/102772 PCT/US03/17189

15

20

25

30

35

_34 -

Cuscading Failure Scenario

In this scenario, a further failure of a system can be tolerated, as each system has remaining

Limits sufficient to accommodate the application group running on the peer system.

For example, if a failure were to occur with either MedSvrl or MedSvr2, the other system
would be selected as a failover target, as application groups running on the failed system have

MedSvrl and MedSvr2 in their respective SystemZones.

If a failure instead occurred with LgSvrl, with LgSvr2 still offline, the failover of the
application groups G1 and G2 are serialized for the failover decision process. In this case, no systems
exist in the database zone. The first group canonically, G1, will be started on MedSvr2, as MedSvr2
meets all Limits and has the highest AvailableCapacity. Group G2 will be started on MedSvrl, as

MedSvrl1 is the only remaining system meeting the Limits.

Server Consolidation Example

The following example shows a complex 8-node cluster running multiple applications and
several large databases. The database servers are all large enterprise systems, LgSvrl, LgSvr2 and
LgSvr3. The middle-tier servers running multiple applications are MedSvrl, MedSvr2, MedSvr3,
MedSvr4 and MedSvrs5.

Example Configuration File

include “types.cf”
cluster Demo (

)

system LgSvrl (

Capacity = 200

Limits = { ShrMemSeg=15, Semaphores=30, Processors=18}
LoadWarningLevel = 80

LoadTimeThreshold = 900

)

system LgSvr2 (

Capacity = 200

Limits = { ShrMemSeg=15, Semaphores=30, Processors=18 }
LoadWarningLevel=80

LoadTimeThreshold=900

)

system LgSvr3 (

Capacity = 200

Limits = { ShrMemSeg=15, Semaphores=30, Processors=18 }
LoadWarninglevel=80

LoadTimeThreshold=900

)

WO 03/102772

10

15

20

25

30

35

40

system MedSvrl (

Capacity = 100
Limits = { ShrMemSeg=5, Semaphores=10, Processors=6|
)

system MedSvr2 (

Capacity = 100
Limits = { ShrMemSeg=5, Semaphores=10, Processors=6 }
)

system MedSvr3 (

Capacity = 100
Limits = { ShrMemSeg=>5, Semaphores=10, Processors=6 }
)

system MedSvr4 (

Capacity = 100
Limits = { ShriMemSeg=5, Semaphores=10, Processors=6 }

)

system MedSvr5 (

Capacity = 100
Limits = { ShrMemSeg=5, Semaphores=10, Processors=6 }
)

group Databasel (

PCT/US03/17189

SystemList = { LgSvrl, LgSvr2, LgSvr3, MedSvrl, MedSvr2, MedSvr3,

MedSvr4, MedSvr5 }

SystemZones = { LgSvr1=0, LgSvr2=0, LgSvr3=0, MedSvrl=1, MedSvr2=1,

MedSvr3=1, MedSvrd4=1, MedSvr5=1 }
AutoStartPolicy = Load
AutoStartList = { LgSvrl, LgSvr2, LgSvr3 }
FailOverPolicy = Load
Load = 100

Prerequisites = { ShrMemSeg=>5, Semaphores=10, Processors=6 }

)

group Database2 (

SystemList = { LgSvrl, LgSvi2, LgSvr3, MedSvrl, MedSvr2, MedSvr3,

MedSvr4, MedSvr5 }

SystemZones = { LgSvr1=0, LgSvr2=0, LgSvr3=0, MedSvrl=1, MedSvr2=1,

MedSvr3=1, MedSvr4=1, MedSvr5=1 }
AutoStartPolicy = Load
AutoStartList = { LgSvrl, LgSvr2, LgSvr3 }
FailOverPolicy = Load
Load = 100

Prerequisites = { ShrMemSeg=>5, Semaphores=10, Processors=6 }

)

WO 03/102772

10

15

20

25

30

35

40

45

50

-36 -

group Database3 (
SystemList = { LgSvrl, LgSvr2, LgSvr3, MedSvrl, MedSvr2, MedSvr3,
MedSvr4, MedSvr5 }
SystemZones = { LgSvr1=0, LgSvr2=0, LgSvr3=0, MedSvrl=1, MedSvr2=1,
MedSvr3=1, MedSvr4=1, MedSvr5=1 }
AutoStartPolicy = Load
AutoStartList = { LgSvrl, LgSvr2, LgSvr3 }
FailOverPolicy = Load
Load =100
Prerequisites = { ShrMemSeg=5, Semaphores=10, Processors=6 }

)

group Applicationl (
SystemList = { LgSvrl, LgSvr2, LgSvr3, MedSvrl, MedSvr2, MedSvr3,
MedSvr4, MedSvi5 }
SystemZones = { LgSvr1=0, LgSvr2=0, LgSvr3=0, MedSvrl=1, MedSvr2=1,
MedSvr3=1, MedSvr4=1, MedSvr5=1 }
AutoStartPolicy = Load
AutoStartList = { MedSvrl, MedSvr2, MedSvr3, MedSvr4, MedSvr5 }
FailOverPolicy = Load
Load =50

)

group Application2 (
SystemList = { LgSvrl, LgSvr2, LgSvr3, MedSvrl, MedSvr2, MedSvr3,
MedSvr4, MedSvr5 }
SystemZones = { LgSvr1=0, LgSvr2=0, LgSvr3=0, MedSvrl=1, MedSvr2=1,
MedSvr3=1, MedSvr4=1, MedSvr5=1 }
AutoStartPolicy = Load
AutoStartList = { MedSvrl, MedSvr2, MedSvr3, MedSvr4, MedSvrS }
FailOverPolicy = Load
Load =50

)

group Application3 (
SystemList = { LgSvrl, LgSvr2, LgSvr3, MedSvr1, MedSvr2, MedSvr3,
MedSvr4, MedSvr5 }
SystemZones = { LgSvr1=0, LgSvr2=0, LgSvr3=0, MedSvrl=1, MedSvr2=1,
MedSvr3=1, MedSvr4=1, MedSvr5=1 }
AutoStartPolicy = Load
AutoStartList = { MedSvrl, MedSvr2, MedSvr3, MedSvrd4, MedSvrS }
FailOverPolicy = Load
Load =50

)

group Applicationd (
SystemList = { LgSvrl, LgSvr2, LgSvr3, MedSvrl, MedSvr2, MedSvr3,
MedSvr4, MedSvrS }
SystemZones = { LgSvr1=0, LgSvr2=0, LgSvr3=0, MedSvrl=1, MedSvr2=1,
MedSvr3=1, MedSvrd=1, MedSvr5=1 }
AutoStartPolicy = Load
AutoStartList = { MedSvr1, MedSvr2, MedSvr3, MedSvr4, MedSvr$ }
FailOverPolicy = Load
Load = 50

)

PCT/US03/17189

WO 03/102772

10

15

20

25

30

35

40

PCT/US03/17189

group Application$ (

SystemList = { LgSvrl, LgSvr2, LgSvr3, MedSvrl, MedSvr2, MedSvr3,
MedSvr4, MedSvr5 }
SystemZones = { LgSvr1=0, LgSvr2=0, LgSvr3=0, MedSvri=1, MedSvr2=1,
MedSvr3=1, MedSvrd=1, MedSvr5=1 }
AutoStartPolicy = Load
AutoStartList = { MedSvrl, MedSvr2, MedSvr3, MedSvr4, MedSvr5 }
FailOverPolicy = Load
Load =50
)

AutoStart Operation

Using the example configuration file above, the following AutoStart Sequence is possible:

Databasel — LgSvrl
Database2 — LgSvr2
Database3 — LgSvr3
Application! — MedSvrl
Application2 — MedSvr2
Application3 — MedSvr3
Application4 — MedSvr4
Application5 — MedSvrS

Normal Operation

Assuming the above configuration, the following can be determined:

LgSvrl

LgSvr2

LgSvr3

AvailableCapacity=100
CurrentLimits = { ShriMemSeg=10, Semaphores=20, Processors=12 }

AvailableCapacity=100
CurrentLimits = { ShrMemSeg=10, Semaphores=20, Processors=12 }

AvailableCapacity=100
CurrentLimits = { ShrMemSeg=10, Semaphores=20, Processors=12 }

MedSvrl

AvailableCapacity=50
CurrentLimits = { ShriMemSeg=5, Semaphores=10, Processors=6 }

MedSvr2

AvailableCapacity=50
CurrentLimits = { ShriMemSeg=5, Semaphores=10, Processors=6 }

MedSvr3

AvailableCapacity=50
CurrentLimits = { ShrMemSeg=5, Semaphores=10, Processors=6 }

MedSvr4

AvailableCapacity=50
CurrentLimits = { ShrMemSeg=>5, Semaphores=10, Processors=6 }

WO 03/102772 PCT/US03/17189

15

20

25

30

-38 -

MedSvr5
AvailableCapacity=50
CurrentLimits = { ShrMemSeg=5, Semaphores=10, Processors=6 }

Failure Scenario

The configuration above shows FailOverPolicy=Load and SystemZones. The database zone
(System Zone 0) is capable of handling up to two failures. Each server has adequate Limits to support
up to three database application groups (with an expected performance drop when all database
application groups are running on one server). Similarly, the application zone has excess capacity built

into each system.

In this example, each of MedSvr1 through MedSvr5 specifies Limits to support one database,
even though the application groups G4 through G8 do not specify Prerequisites. This configuration
allows a database to fail across SystemZones if absolutely necessary and run on the least loaded

application zone machine.

For the first failure example, assume system LgSvr3 fails. The cluster management
application scans all available systems in Database2’s SystemList, with the same SystemZones
grouping as LgSvr3. The cluster management application then creates a subset of systems meeting the
application group’s Prerequisites. In this case, LgSvrl and LgSvr2 meet ail necessary Limits, and

Databasel is brought online on LgSvrl. The following configuration for the database zone is

produced:
LgSvrl
AvailableCapacity=0
CurrentLimits = { ShrMemSeg=5, Semaphores=10, Processors=6 }
LgSvr2

AvailableCapacity=100
CurrentLimits = { ShriMemSeg=10, Semaphores=15, Processors=12 }
In this scenario, a further failure of a database can be tolerated, as each system has remaining

Limits sufficient to accommodate the database application group running on the peer system.
Cascading Failure Scenario

If the performance of a specific database is unacceptable with two database groups running on
one server (or three following a second failure), the SystemZones policy has another helpful effect.
Failing a database group into the application zone has the effect of resetting its preferred zone. For
example, in the above scenario, Databasel has been moved to LgSvr!. The administrator could
reconfigure the application zone to move two application groups to one system. Then the database

application can be switched to the empty application server (MedSvr1-MedSvr5). This will place

10

15

20

25

30

35

WO 03/102772 PCT/US03/17189

-39 .

Databasel in Zonel (the application zone). If a failure occurs in Databasel, the least-loaded server in

the Application zone meeting its Prerequisites is selected as the failover target.

System Suitable for Implementing the Present Invention

Fig. 17 depicts a block diagram of a computer system 10 suitable for implementing the present
invention. Computer system 10 includes a bus 12 which interconnects major subsystems of computer
system 10 such as a central processor 14, a system memory 16 (typically RAM, but which may also
include ROM, flash RAM, or the like), an input/output controller 18, an external audio device such as a
speaker system 20 via an audio output interface 22, an external device such as a display screen 24 via
display adapter 26, serial ports 28 and 30, a keyboard 32 (interfaced with a keyboard controller 33), a
storage interface 34, a floppy disk drive 36 operative to receive a floppy disk 38, and a CD-ROM drive
40 operative to receive a CD-ROM 42. Also included are a mouse 46 (or other point-and-click device,
coupled to bus 12 via serial port 28), a modem 47 (coupled to bus 12 via serial port 30) and a network

interface 48 (coupled directly to bus 12).

Bus 12 allows data communication between central processor 14 and system memory 16,
which may include both read only memory (ROM) or flash memory (neither shown), and random
access memory (RAM) (not shown), as previously noted. The RAM is generally the main memory into
which the operating system and application programs are loaded and typically affords at least 16
megabytes of memory space. The ROM or flash memory may contain, among other code, the Basic
Input-Output system (BIOS) which controls basic hardware operation such as the interaction with
peripheral components. Applications resident with computer system 10 are generally stored on and
accessed via a computer readable medium, such as a hard disk drive (e.g., fixed disk 44), an optical
drive (e.g., CD-ROM drive 40), floppy disk unit 36 or other storage medium. Additionally,
applications may be in the form of electronic signals modulated in accordance with the application and

data communication technology when accessed via network modem 47 or interface 48.

Storage interface 34, as with the other storage interfaces of computer system 10, may connect
to a standard computer readable medium for storage and/or retrieval of information, such as a fixed
disk drive 44. Fixed disk drive 44 may be a part of computer system 10 or may be separate and
accessed through other interface systems. Many other devices can be connected such as a mouse 46
connected to bus 12 via serial port 28, a modem 47 connected to bus 12 via serial port 30 and a network
interface 48 connected directly to bus 12. Modem 47 may provide a direct connection to a remote
server via a telephone link or to the Internet via an internet service provider (ISP). Network interface
48 may provide a direct connection to a remote server via a direct network link to the Internet via a
POP (point of presence). Network interface 48 may provide such connection using wireless
techniques, including digital cellular telephone connection, Cellular Digital Packet Data (CDPD)

connection, digital satellite data connection or the like.

WO 03/102772 PCT/US03/17189

10

15

20

25

30

35

40 -

Many other devices or subsystems (not shown) may be connected in a similar manner (e.g.,
bar code readers, document scanners, digital cameras and so on). Conversely, it is not necessary for all
of the devices shown in Fig. 17 to be present to practice the present invention. The devices and
subsystems may be interconnected in different ways from that shown in Fig. 17. The operation of a
computer system such as that shown in Fig. 17 is readily known in the art and is not discussed in detail
in this application. Code to implement the present invention may be stored in computer-readable
storage media such as one or more of system memory 16, fixed disk 44, CD-ROM 42, or floppy disk
38. Additionally, computer system 10 may be any kind of computing device, and so includes personal
data assistants (PDAs), network appliances, X-window terminals or other such computing devices.
The operating system provided on computer system 10 may be MS-DOS®, MS-WINDOWS®, 0S/2®,
UNIX®, Linux® or other known operating system. Computer system 10 also supports a number of
Internet access tools, including, for example, an HTTP-compliant web browser having a JavaScript

interpreter, such as Netscape Navigator® 3.0, Microsoft Explorer® 3.0 and the like.

Moreover, regarding the messages and/or data signals described herein, those skilled in the art
will recognize that a signal may be directly transmitted from a first block to a second block, or a signal
may be modified (e.g., amplified, attenuated, delayed, latched, buffered, inverted, filtered or otherwise
modified) between the blocks. Although the signals of the above described embodiment are
characterized as transmitted from one block to the next, other embodiments of the present invention
may include modified signals in place of such directly transmitted signals as long as the informational
and/or functional aspect of the signal is transmitted between blocks. To some extent, a signal input at a
second block may be conceptualized as a second signal derived from a first signal output from a first
block due to physical limitations of the circuitry involved (e.g., there will inevitably be some
attenuation and delay). Therefore, as used herein, a second signal derived from a first signal includes
the first signal or any modifications to the first signal, whether due to circuit limitations or due to
passage through other circuit elements which do not change the informational and/or final functional

aspect of the first signal.

Other Embodiments

The present invention is well adapted to attain the advantages mentioned as well as others
inherent therein. While the present invention has been depicted, described, and is defined by reference
to particular embodiments of the invention, such references do not imply a limitation on the invention,
and no such limitation is to be inferred. The invention is capable of considerable modification,
alteration, and equivalents in form and function, as will occur to those ordinarily skilled in the pertinent
arts. The depicted and described embodiments are examples only, and are not exhaustive of the scope

of the invention.

The foregoing described embodiments include components contained within other

components. [t is to be understood that such architectures are merely examples, and that in fact many

WO 03/102772 PCT/US03/17189

10

15

20

25

30

35

_41 -

other architectures can be implemented which achieve the same functionality. [n an abstract but still
definite sense, any arrangement of components to achieve the same functionality is effectively
"associated" such that the desired functionality is achieved. Hence, any two components herein
combined to achieve a particular functionality can be seen as "associated with" each other such that the
desired functionality is achieved, irrespective of architectures or intermediate components. Likewise,
any two components so associated can also be viewed as being "operably connected," or "operably

coupled,” to each other to achieve the desired functionality.

The foregoing detailed description has set forth various embodiments of the present invention
via the use of block diagrams, flowcharts, and examples. It will be understood by those within the art
that each block diagram component, flowchart step, operation and/or component illustrated by the use
of examples can be implemented, individually and/or collectively, by a wide range of hardware,

software, firmware, or any combination thereof.

The present invention has been described in the context of fully functional computer systems;
however, those skilled in the art will appreciate that the present invention is capable of being
distributed as a program product in a variety of forms, and that the present invention applies equally
regardless of the particular type of signal bearing media used to actually carry out the distribution.
Examples of signal bearing media include recordable media such as floppy disks and CD-ROM,
transmission type media such as digital and analog communications links, as well as media storage and

distribution systems developed in the future.

The above-discussed embodiments may be implemented by software modules that perform
certain tasks. The software modules discussed herein may include script, batch, or other executable
files. The software modules may be stored on a machine-readable or computer-readable storage
medium such as a disk drive. Storage devices used for storing software modules in accordance with an
embodiment of the invention may be magnetic floppy disks, hard disks, or optical discs such as CD-
ROMs or CD-Rs, for example. A storage device used for storing firmware or hardware modules in
accordance with an embodiment of the invention may also include a semiconductor-based memory,
which may be permanently, removably or remotely coupled to a microprocessor/memory system.
Thus, the modules may be stored within a computer system memory to configure the computer system
to perform the functions of the module. Other new and various types of computer-readable storage

media may be used to store the modules discussed herein.

The above description is intended to be illustrative of the invention and should not be taken to
be limiting. Other embodiments within the scope of the present invention are possible. Those skilled
in the art will readily implement the steps necessary to provide the structures and the methods disclosed
herein, and will understand that the process parameters and sequence of steps are given by way of

example only and can be varied to achieve the desired structure as well as modifications that are within

WO 03/102772 PCT/US03/17189

_47 -

the scope of the invention. Variations and modifications of the embodiments disclosed herein can be

made based on the description set forth herein, without departing from the scope of the invention.

Consequently, the invention is intended to be limited only by the scope of the appended

claims, giving full cognizance to equivalents in all respects.

—

O 0 3 N W N

WO 03/102772 PCT/US03/17189

WHAT IS CLAIMED IS:

1. A method comprising:
identifying a set of systems of a plurality of systems, wherein
each system in the set of systems meets a requirement for hosting a first application of a plurality of
applications, and
the systems form at least one cluster; and
when the set of systems is empty,
using a respective priority for each of the applications for identifying a resource to free, wherein
the resource is one of a plurality of resources, and

each resource is associated with at least one of the systems.

2. The method of claim 1 wherein
the identifying the resource further comprises

using a respective capacity for each of the systems for identifying the resource.

3. The method of claim 1 further comprising:
freeing the resource such that an associated system of the systems meets the requirement for hosting the first

application.

4. The method of claim 3 further comprising:

starting the first application on the associated system.

5. The method of claim 3 wherein
the freeing the resource comprises stopping a second application that is using the resource, wherein the second

application has a lower respective priority than a respective priority of the first application.

6. The method of claim 3 wherein
the freeing the resource comprises moving a second application that is using the resource to a second system of
the systems, wherein

the second application has a lower respective priority than a respective priority of the first application.

7. The method of claim 1 further comprising:

determining that the first application is to be started.

8. The method of claim 7 wherein
the determining that the first application is to be started comprises

detecting that the first application failed.

~N N s W N

HOW N

BN

—

O 00 ~1 N W A WN

WO 03/102772 PCT/US03/17189

_44 -

9. The method of claim 7 wherein
the determining that the first application is to be started comprises
comparing a respective priority of the first application with each of a set of respective priorities for a
set of the applications running on the systems, and
determining that the first application is to be started when the respective priority of the first application
is higher than one of the set of respective priorities for the set of applications running on the

systems.

10. The method of claim 1 wherein
the identifying the set of systems comprises
including a selected system in the set of systems when the selected system meets a prerequisite for the

first application.

11. The method of claim 1 wherein
the identifying the set of systems comprises
including a selected system in the set of systems when the first application does not exceed a limit for

the selected system.

12. An apparatus comprising:
an identifying module to identify a set of systems of a plurality of systems, wherein
each system in the set of systems meets a requirement for hosting a first application of a plurality of
applications, and
the systems form at least one cluster; and
a priority module to use a respective priority for each of the applications for identifying a resource to free when
the set of systems is empty, wherein
the resource is one of a plurality of resources, and

each resource is associated with at least one of the systems.

13. The apparatus of claim 12 wherein

the priority module further uses a respective capacity for each of the systems for identifying the resource.

14. The apparatus of claim 12 further comprising:
a freeing module to free the resource such that an associated system of the systems meets the requirement for

hosting the first application.

15. The apparatus of claim 14 further comprising:

a starting module to start the first application on the associated system.

A W AW N e

XX N N U R WN =

p—t BW N =

A W N

WO 03/102772 PCT/US03/17189

-45 .

16. The apparatus of claim 14 wherein
the freeing module comprises a stopping module to stop a second application that is using the resource. wherein

the second application has a lower respective priority than a respective priority of the first application.

17. The apparatus of claim 14 wherein
the freeing module comprises
a moving module to move a second application that is using the resource to a second system of the
systems, wherein
the second application has a lower respective priority than a respective priority of the first

application.

18. The apparatus of claim 12 further comprising:

a determining module to determine that the first application is to be started.

19. The apparatus of claim 18 wherein
the determining module comprises

a detecting module to detect that the first application failed.

20. The apparatus of claim 18 wherein
the determining module comprises
a comparing module to compare a respective priority of the first application with each of a set of
respective priorities for a set of the applications running on the systems,
wherein
the determining module determines that the first application is to be started when the respective priority
of the first application is higher than one of the set of respective priorities for the set of

applications running on the systems.

21. The apparatus of claim 12 wherein
the identifying module comprises
an including module to include a selected system in the set of systems when the selected system meets

a prerequisite for the first application.

22. The apparatus of claim 12 wherein
the identifying module comprises
an including module to include a selected system in the set of systems when the first application does

not exceed a limit for the selected system.

PCT/US03/17189

WO 03/102772

| "9
JUBLLIUOIIAUT Judwabeuey

g

gov) ebe.0)s

0€l SHS MN

J / g0z} 131sn|o

¢-aosil

I

aotl -~ 1-aostl

|

20k

VOEL SUS AW

Vov| ebeloys

42

el

/ Y0Z1 4818nio

YIOMIBN

—a——

N 0014

aoLi

c-avsll

L

1-avall

]

=

N

0l 810Su0Y Juswabeuepy \

LLIL

PCT/US03/17189

WO 03/102772

¢ Ol4

5272~ 1000000 - ~poooono—
00001 10000]
vole | o5z
——grre—] |L__] aviz Vrve
wm V¥ie B
[Ce=]| —8CI¢ e
mo&\ K== vZiz L= /<9N
JoNIBS N - JaN8S
Jo1sn|n 8IsnN|D
a0zz _lomv._ _oooooo o FOI_ _oooooo _Iou_ _ v0zZ
UYOUMS B1q14 L | yoms 2uq
avee
qcee Yccc
Ve
M —
D ————™
goge Aewy [0 == e V0€EZ Aeuy
obelo)s (] —] — abeioig
LLIC

WO 03/102772

PCT/US03/17189

Startup or Failure of Application Group X
310

y

Determine Set of Eligible Systems to Host
Application Group X

Yes —»

Select Host
System
324

Determine Priority of Application Group X
330

Priority Application

Groups in Cluster?

Yes

Can Sufficien
Capacity and Resources

3/17

FIG. 3
No

Notify Administrator

that Application No

Group X Cannot be [*

Started
336

be Freed to Accommodate
Application Group X?

Yes
4

Free Sufficient Capacity and Resourceson
Host System
340

Y

Start Application Group X on Host System |

350

WO 03/102772

PCT/US03/17189

4/17

Determine Set of Eligible Systems to Host Application Group X

320
(start >

\

yes

Select System from Cluster
410

System Meets
Prerequisites?

Selected
System Within
Limits?

414

yes

t

Add Selected System to Setof
Eligible Systems
420

Systems
Not Considered

|

Remain?
422

FIG. 4

WO 03/102772

5117
338

Sufficient
Priority 4 Resources
be Stopped?
510

yes ——»

PCT/US03/17189

Can Sufficient Capacity and Resources be Freedt
Accommodate Application Group X?

Select Host System
and Priority 4

Resources to Free
520

Priority 4 Resources be
Stopped and Priority 3

Determine Appropriate Priority
3 and 4 Resources to Free
and Select Host System
540

Priority 4 Resources be
Stopped and Priority 2 and 3
Resources Moved?

Determine Appropriate Priority
2, 3, 4 Resources o Free
and Select Host System
560

Indicate Sufficient
Resources cannot
be Freed
570

Y
Indicate Sufficient
Resources can
be Freed
565

FIG. 5

PCT/US03/17189

WO 03/102772

9 °9l4

0 Ce D sl 06 Ayoedes
a|qe|ieAy =
G146/ Gl (74 051+001 peo] -
Sl 00 00¢ 00 foede)
peO 52] [|peo 62] - peo 06l
] :c81eysa|l4 u 1} aleyss|lq u 18 919810
M peo Gl peo ¢z} peo 00}
~ :Zaleysaji4 —— —— 10002 TOS ——)66 HOX
aoi9 \ \ \
2049 9019 V019
ZLI9

PCT/US03/17189

WO 03/102772

L O

X 051 05 fyoeden
@ 3|qe|iBAY =
Gl Gl4G. o4} 052 peoq -
051 00¢ 00¢ 00¢ foede)

peol g/ B |peOT 6L B peo oG}

caleysall4 o —1:}91eyssjiq - 18 9joel0

peoi g/ ol PEOTSL peoi Gzl peov 0ol

:Zaleysa)i4 ===/" | .zeleyss|l4 —e— :000Z 08 '6'G HOX

2019 \ g019 \ V019 \
LilZ

PCT/US03/17189

WO 03/102772

8 'Old

AN

o019

LLI8

Rl

8019

X 051 001 05 fyoeded
d|qe|leAy =
0 0S1 614521 0sZ peo] -
051 00¢ 00¢ 00¢ fyoede)
peo gL 0 [{peo gy peo g/ B peo oGl
‘goleysa)l4] | 8Jeysa|i4 ‘galeyssll4] |18 8joeIQ
H
peo gl peoi gzl peo1 00l
===/ |.zeseyssjid 10002 10S —— '6'G HOX

Y0I9 \

PCT/US03/17189

WO 03/102772

6 O

00¢

00¢

001

ogl
Ryoeden
a|qe|leAY =

01

001

001

00

peoq -

00¢

00€

00¢

00¢€

Ryoeden

€
w08

z
Jwr oS

aois

0G} = peo
Q eseqeleq
0002 108

[4
Juwn os

4
W Tos

001 = peaT
3 eseqeje(
000¢ TOS

00} = peo]
9 eseqeleq

i

019

0002 108

4019 \

LEI6

00} = peoT
g aseqeieq
000¢ 108

001 = peo
Vv aseqejeq
000¢ 108

1
Y0L9 \

PCT/US03/17189

WO 03/102772

0} 'O
0Sl
00} < e 004 Ayoede)
alqge|lBAY =
0s1 0 001+001<-00} 002 peoy} -
00¢ 00¢ 00¢ 00¢ fyoede)
¢ [4 4 4
nwrt o8 Hwr o8 W oS Jwn 108
H00} = peon — H — 00} = peo
i 3 sseqgeleq - - J 8seqeleq | g sseqgeleq
{ ﬁ 0002 108 000Z 108 000¢ 108
— 00} = peo] 00l = peoT
q eseqeleq 0002 108 000Z 10S
2019 JLI0L a0l9 V0i9

PCT/US03/17189

WO 03/102772

IO
L=MO 0=M9 b=MO b=M9 spwn
uauNY
€=MO =M9 £€=M9 =M9 sywn
|
Z Auoud | Auoud p Auond ¢ 'Auoild
MI Z=Mo :sbaisig Z=M9 :shalald Z=M9 :sbhaialg , L=MO :sbalaid
T~ J8M8g70Ss OHIX 1S81 8leyse|l4
m 1) £9 29 19
aote \ \
o019 8019 <o_‘o\
LEILE

PCT/US03/17189

WO 03/102772

¢l O
b=MO X b=MO b=M9 spwi
juaiIng
£=M9 7=M9 £=M9 Z=M9 spwip
¢ Auond | Ayuond v :Ajloud ¢ :Auond
- Z=M9 :sbaisld Z=M9 :sbslald Z=M9 :sbalaid =M9 :shalaid
18AIBST0S OHOX Js8] —— || |eseysa4
\ 9 £9 29 19
aol9

o019 \

VA4

4019

M

voL9 \

PCT/US03/17189

WO 03/102772

aote

&L 'O
b=MO I=MO b=M9 sywn
LNy
€=M9 €=M9 Z=M9 sywr
| :Auond
2=MO :shalaig
OHOX
€9
Z ‘Apoud | Aiold ¢ 'Auoud
M 2=No :shalaid Z=M9 :sbalaig L=M9 :sbalaig
18n18g10S OHOX aleysa|lq
\ ¥o €9 %3

PCT/US03/17189

WO 03/102772

vl O
X X =MD =MD sywn
juaung
£=M9O Z=MD £=M9 Z=M9 spwn
z Ruougd | Auoud ¢ Auoud
7=MO :sbaiald Z2=N9 :sbasaid L=MO :sbasely
189S TOS =l |9HOX ——|| |e:eusany
$9 %3] 19
aol9 \ \ \
0019 8019 Y019
LLIVE

PCT/US03/17189

WO 03/102772

Gl 94
X X 0=M9 <= =M9 Z=M9 <= |=M9 sjwn
juaun)
£=M9 Z=M9 €=M9 Z=M9 sjwi
¢ ‘Aoud
L=M9 :sbaiaid <
aleyss|l4
1O
Z :Auoud | :Ajold ¢ Auond
Z=NO :sbalald Z=Mo :shalald L=MO :sbalaig
18AIBST0S OHOX = 8.eyse|l4
L) ; €9 19
aoi9 \ \ \
2019 g0i9 V019
LLIGE

PCT/US03/17189

WO 03/102772

9, '9H
X X 0=M9 0=M9 sywi
Wauny
£=M9O ¢=M9 £€=M9 Z=M9 sywn
¢ :Auoiid
L=MO sbaisid
aleysa|l4
1O
. Z Auold
| Auond Z=M9 :shaseid
Z=M9 :sbasly M9G8
——| |9HOX —ll |9
\ . £9
aol9 \ \ \
019 g019 Y019
LEI9}

PCT/US03/17189

WO 03/102772

2 Ll 'Ol
¥siq 1eando
0c
wa)sAs
loyeads o W 76 % b7
/: anuqg ysig [eondo ¥s1q paxid4 pleoghey asnop usalog Aejdsig
3 y 2
A y
44 ve 33 8 4
aoBLsU| OIpNY aoeps)u| abeio}g 1ojo[uo9) pieoghay Hod jeuss lsydepy Aejdsig
A
< \ A A .
< 7 / K Y ﬁ >
— — ¢l
yun ¥sig Addoj4 od [eues A)
(57 8l 9l v
aoep8)u| YIomiBN 18j|04uo0) O/ Kiowspy weysAg 10858201 [BAJUBD
)i \4
8¢ Wepan 0l
y¥s1q Addoj4 wa)sAg Jsyndwon

LLILL

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

