

US 20100143997A1

(19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0143997 A1

Buelter et al.

(10) Pub. No.: US 2010/0143997 A1 (43) Pub. Date: Jun. 10, 2010

(54) ENGINEERED MICROORGANISMS CAPABLE OF PRODUCING TARGET COMPOUNDS UNDER ANAEROBIC CONDITIONS

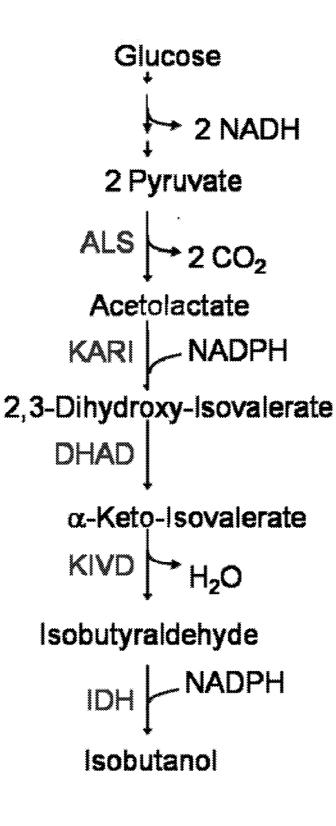
(76) Inventors: Thomas Buelter, Denver, CO (US); Peter Meinhold, Denver, CO (US); Reid M. Renny Feldman, Denver, CO (US); Eva Eckl, Rohrbach (DE); Andrew Hawkins, Parker, CO (US); Aristos Aristidou, Highland Ranch, CO (US); Catherine Asleson Dundon, Englewood, CO (US); Doug Lies, Parker, CO (US); Sabine Bastian, Pasadena, CA (US); Frances Arnold, La Canada, CA (US); Jun Urano, Aurora, CA (US)

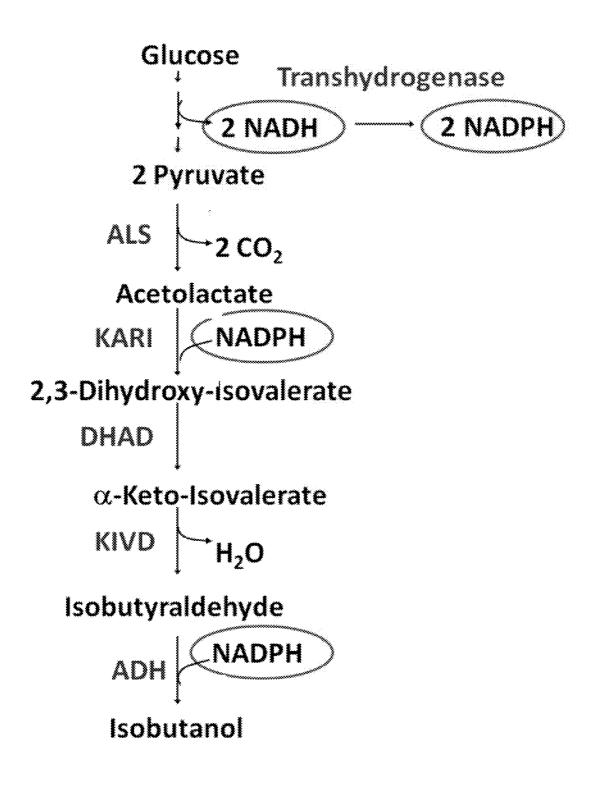
> Correspondence Address: COOLEY GODWARD KRONISH LLP ATTN: Patent Group Suite 1100, 777 - 6th Street, NW WASHINGTON, DC 20001 (US)

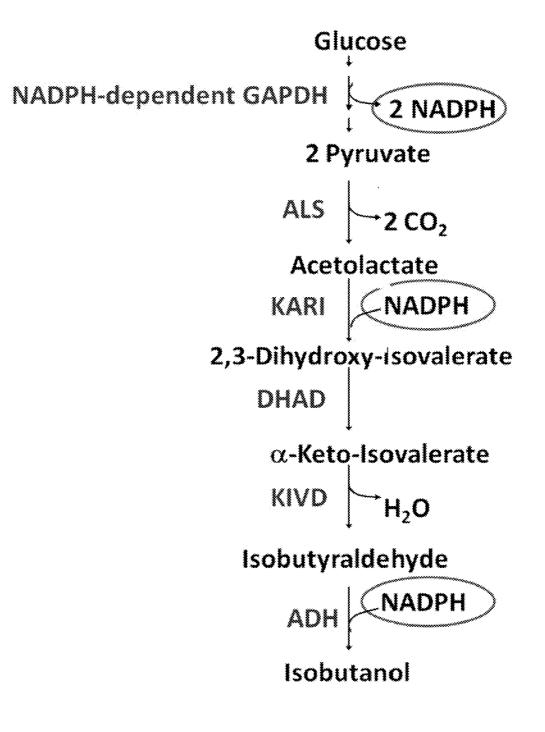
- (21) Appl. No.: 12/610,784
- (22) Filed: Nov. 2, 2009

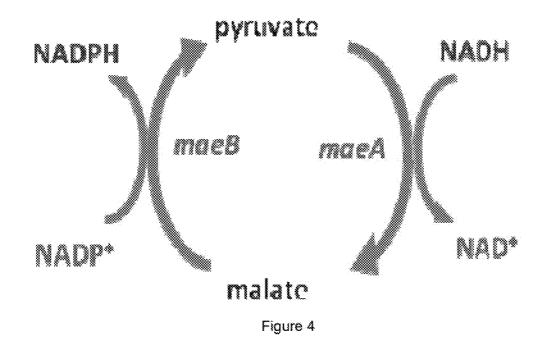
Related U.S. Application Data

(60) Provisional application No. 61/110,543, filed on Oct. 31, 2008, provisional application No. 61/121,830, filed on Dec. 11, 2008, provisional application No. 61/184,580, filed on Jun. 5, 2009, provisional application No. 61/184,605, filed on Jun. 5, 2009, provisional application No. 61/239,618, filed on Sep. 3, 2009.


Publication Classification


(51)	Int. Cl.	
	C12P 7/16	(2006.01)
	C12N 9/02	(2006.01)
	C12N 1/21	(2006.01)
	C12N 1/15	(2006.01)
	C12N 1/19	(2006.01)
		· · · · ·


(52) U.S. Cl. 435/160; 435/189; 435/252.3; 435/254.11; 435/254.2


(57) **ABSTRACT**

The present invention is generally provides recombinant microorganisms comprising engineered metabolic pathways capable of producing C3-C5 alcohols under aerobic and anaerobic conditions. The invention further provides ketol-acid reductoisomerase enzymes which have been mutated or modified to increase their NADH-dependent activity or to switch the cofactor preference from NADPH to NADH and are expressed in the modified microorganisms. In addition, the invention provides isobutyraldehyde dehydrogenase enzymes expressed in modified microorganisms. Also provided are methods of producing beneficial metabolites under aerobic and anaerobic conditions by contacting a suitable substrate with the modified microorganisms of the present invention.

			1 30
S. coli	11×C	$\{\pm\}$	
Vibrio fisherii		$\langle 1 \rangle$	
Gramella forsetti		$\langle 1 \rangle$	
Cytophaga hutohinsonii		(i)	
Suchners aphidicols		(4)	
Zymosoaas mobilis		(2)	
Baccercides cheraloremicros		(2)	
Shevanella sp.		(1)	- one can
Sayahromonas ingrhamali		$\begin{pmatrix} 2 \\ 0 \end{pmatrix}$	***************************************
Cyasobacteria sp.		(1) (3)	***************************************
Methenococcus meripaludia Ignicoccus hospitalis			
Fitrophilus torridus			
Acidophilius cryptum		$\hat{\alpha}$	
Rice		(i)	MAASTYLALSHPYTLANAAAASYAPTAPAAVSYYVSHAACAP
Svinash		(4) (4)	MAATAATTYSLSSSSTSAAASKALKOSPHPSALNLOFLOSSSTIKACKS
Chlamydomonas reinhardtii		$\langle \hat{\alpha} \rangle$	~~~~~~~
Neurospora crassa		(\tilde{a})	KAANN-CINALAP
S. cepevisise		(1)	
S. pombe		121	KOVENSSEA
Lassaria bicolor		$\langle 2 \rangle$	XASLABSL3Q312X
Firanyces sp.		(i)	
Course	10.5 0.5	(3)	
			\$1 100
E. soli		(2)	
Vibrio fisherii		(1)	ARABARAN MANY ANALASA ARABARAN
Granella forsetti		(2)	NINI MARKANA ANA ANA ANA ANA ANA ANA ANA ANA ANA
Cytophaga hutohinsonii		(3)	and a second and a second a se
Suchners aphidicols		(2)	
lynononas mobilis		\odot	· · · · · · · · · · · · · · · · · · ·
Bactercides thereistamicron		(3)	
Shewanella sp. Psychromonas ingrhamali		(1) (1)	
Teyoniosonas inginamali Cyanobaorenia ep.		(1) (1)	7.945, 2, 2, 19 2005 2.17 200
Hethanococcus maripaludis			
Ignicoccus hospitalis		\sim $\tilde{\alpha}$	A A A A A A A A A A A A A A A A A A A
Picrophilus torridus		$\hat{\alpha}$	
Acidophilium cryptum		(1)	***
Rice		(44)	LABRRANTANVAAPPAVUAAMPELDEDISVENKENVEL
Spinsch	rari	(51)	LXRARVLPSGANGGGGALSAQMVSAPSINTPSATTFOFOSSVFFKEFVTL
Chlamydomonas reinherdtii		(29)	Axavryapsgrrsavrysaavhldfwibyfgnehanf
Kennospora orazza		(13)	larqlatpavqertevalasaveasvavkavalparqqvec m tindf
S. cerevisiae		{?}}	ARLICNSRVITAKRIFALATRAAANSRPAARFVNEMITTRO X KQINF
S. pombe		(2,4)	LSTNGGR~~~RLATRONGVMARTIAAPSMRFAPENTAPINQTRO
laccaria bicolor		(15)	SAPPAFRSLARSAVRFTCAASYSLFARAAAANVACTSTANGVRC KVIIIF
Fironyass sp.		(2) 	· · · · · · · · · · · · · · · · · · ·
Conse	msas	(S7)	101 150
S. coli	1.1.1.1	25.25	101 150 LAGLOKCEFMORD FADOASY C-COMMONSCIENCE
e. voli Vibrio fisherii		(14) (14)	
Spamella forsetti		1241	LACL CLAIMELT FINE AND CONTRACT OF A DECIMAL CONTRACT OF
Cytoshaga hutohinsonii		(24)	LICLEVCETNERS FILEVAL -CONTRACTOR LINE
Euchners sphidicols			LINLOWCRITINGFLORENCE - GENERAL SCORE STATE
Zymononas mobilis		(2)	······
Bacteroides thetaiotamicron		<u>{2.5}</u>	GETVENVVINCETPI NARNA - NETRADOVING AND AND AND AND
Shewanella sp.		(24)	LZQLOQCEZЙDES ZÖDGCÖV X-DES X DOCO X DES X D
Fsychrononas ingrhamaii			LNQL GQCFFNDFS FTDG TO A CONTRACT OF GOOD AND A CONTRACT OF
Cyanobactèria sp.		(2)	
Methanococcus maripaludis	rari	(2)	
Ignicoccus hospitalis	Kari	(8)	LARVEVIVAQINA CONSLANDA CONSULTATION CONSTANT
Picrophilus terridus		(1)	KENTERTERTENTER-1858.00000000000000000000000000000000000
Acidophilium cryptum	8883	(∔ }	······································

Figure 6

Rice RARI

 (83)
 NGHENYIVROGENLFFILGEN GIT
 SIAE

 (201)
 NGADEYIVROGENUPLLE SIGNIG
 SIAE

 (57)
 GETSEYIVROGENUPLLE SIGNIG
 SIAE

 (60)
 LURKEYNETALNERAKLLETE -NUT
 SIAE

 (61)
 AGKEYNETALNERAKLLETE -NUT
 SIAE

 (63)
 AGKEYNETALNERAKLLETE -NUT
 SIAE

 (64)
 AGKEYNETALNERAKLLETE -NUT
 SIAE

 (65)
 AGKEYNETALNERAKLLETE -NUT
 SIAE

 (64)
 AGKENNE SUBERAKLT VIT - SIAE
 SIAE

 (65)
 AGKEVYNE SUBERAKLT VIT - SIAE
 SIAE

 (16)
 E
 E
 DUVER VIT SUBERAKLT VIT - SIAE

 (17)
 E
 E
 D
 SIAE

 (18)
 E
 E
 D
 SIAE

 (17)
 E
 E
 D
 SIAE

 (18)
 E
 E
 D
 SIAE

 (17)
 E
 E
 D
 SIAE

 (18)
 E</td Spinach X&RI (101)Chlamydomonas zeinherdtii KARI Neurospora crassa NARI 5. perevisiae MANS S. ponde VARI Lacosria bicolor NARI Firomytes sp. KARI Consensus (101) 3.53 1.00 S. coli iivo Vibrio fisherii KARI Gramella forsetzi KARI Cycophage hutchinsonil KARI (59) --- WICH SYTE MEALDSKPOREN (STATES) Suchners sphidiculs NARI Zynononas mobilis KARI Easteroides thetaictemicron KARI Sbewanella sp. HARI Psychrononas ingrhanail KAPS Oyanobacteria sp. KARI Methanococcus manipaludis NARI Ignicoccus hospitalis MARI Ficrophilas torridus MARI Acidophilics cryptum KARI Rice KARS Spinach KARI Chlamydomouss reinhardtii XADI Neurospora cresse KARI S. cerevisiae XIVS 3. pombe X&RI Lecceris bicolor X&RI Coarts Divolot and Fizoryces sp. NARI Consensus 201 250
 201
 250

 (98)
 CULEUL-SCOTYNI COLORS

 (98)
 CULEUL-SCOTYN COLORS

 (73)
 CULEULSCOTYN COLORS

 (73)
 CULEULSCOTYN COLORS

 (73)
 CULEULSCOTYN COLORS

 (73)
 CULEULSCOTYN COLORS
 Z. coli ilvü Vibris fisheril KARI Gramella forsetti KARI Cytophage batchinscoil NAPI Suchners sphidicols KARS
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 (73)
 <td Lynomona's sobilie MARI Bauteroides thetaictamicron NARI Shewareila sp. KARI Paychromonas ingrhamaii NAFI Cyanobacteria sp. KARI Methanococcus maricalogis XARI Ignicoccus hospitalis NARI Ficrophiles torridus KARI Acidophilium cryptum KARI Rice FARI Spinach MARI Chlamodomonas painhardnii 8881 Neurospora cressa NARI S. cerevisies ILV5 S. pombe MARI Laccaria bicolor HAHI Firmyves sp. KABI Consensus 251 251 (145) - 251 8. 0033 3320 (145) - 11 (125) 22 (37----- 112) 127 (37 (145) - 17 (125) 22 (37----- 112) 1097 23 (145) - 2 (125) 12 (22) 37 (---- 112) 1097 23 (145) - 3 (12) 12 (22) 37 (---- 112) 1097 12 (145) - 3 (12) 1097 12 (22) 37 (---- 112) 1097 11 Vibrio fisherii KARI Srazella forsetti HARI Cytophace hutchipsonil KARS Buchneza achidicola XARI

Figure 6 (CONT.)

lymomones mobilis XARI	(121)	
Sacteroides thetaiotamicrot XARI	(150)	2 71 23 71 23 71 23 71 23 71 23 71 23 71 23 71 23 71 23 71 23 71 </td
Shewanella sp. KARI	$\{145\}$	-FORT CONTRACTOR STERNED CONTRACTOR
Psychrononas ingrhamali KARI	(1.65)	
Cyanobacteria sp. XARI	(121)	
Methanococcus maripaludis XARI	(120)	
Ignicoccus hospitalis XARI	(235)	- Contraction (Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction
Ficrophilus torridus XARJ	12281	
Acidophilium cryptum XARI	10000	
Rice KARI Spinsch KARI	్ క్రమమంచిన - గారాశాశ	STATUS CONTRACTOR CALLS SUCCESSION CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR C
Chlanydomonas reinhardtii KARI	くんせんり してのつく	
Seurospora crassa KARI	24019 33552	
S. cerevisiae 1175	11881	and the second
S. pombe XARI	11831	
Laccaria bicolor KARI	12021	
Fironyces sp. XARI	12381	
Consensus	(251)	NDIDVINVAPKOPS TVR YK G SVPSLIAVNOD T G A
B. seli ilvC	(189)	1991 - 200 200 - 200 201 - 200 201 - 201 - 201 201
Vibria fisherii XARI	(188)	
Gramella forsetti XARI	(189)	
Cytophaga hutohinsonii KASI	(189)	
Buchnera aphidicola NARI	(189)	
Lymomones mobilis XARI	(163)	
Sacteroides thetaistamisron XARI	(193)	
Shewanella sp. XARI	(133)	
Psychromonas ingshamaii XXXI	12083	
Oyanobacteria ap. XARI	31003	
Methanococcus maripaludis XARI	- 31225) - 75005	
Ignicoccus hospitalis XARI Picrophilus vorridus XARI	- 222223 - 2223	
Acidophilian cryptum NARI	- 22023 - 22883	1 1 1 1 1 1
Rice XARI	12333	
Spinsch XARI	12895	
Chlanydomonas reinhardrii KARI	12853	
Neurospora orassa XARI	2381	
3. cerevisise XLV5	(229)	
3. pombe KAFI	(236)	
Laccaria bicolor XARI	(245)	
Pirozyces sp. KARI	(181)	2
Consensus	(801)	DIALAYAVAIGS RAGVL TIF EV SOL GEQ ILOGGLQGL LA FE
E. coli ilvC		KUMZOTDAYAZKI.1270WZTU KALK-200KTLEKOPE MORULAYA
Vibrio fisherii XAR?	(2333)	PRODUCE GYNORILGYGWEDIG ALW-FONTHWEIP NAW WYNFE
Gramella forsetti XARI	<pre>(2333) (3333)</pre>	R. ADOVE NY ARLIGY GRETE CRAFT SOUTHWARK OF ALL FORE
Cytophaga hutchinsonii KARI	- (437) - (437)	N CALENCIA DA LIQIERE VILLERA - NECOLECTION - NOTA - NECOLECTION - NECOLECTION - NECOLECTION - NECOLECTION - NEC
Buchnera aphidicols XARI Iyacmones mobilis XARI	- (433) - /*****	
Bacteroides thetalotamicros XARI	- 588833 - 17255	
Shevanella sp. XARI	(2325)	
Psychromonas ingrhamaii XARI	12395	REAL OF SMAN ASHT, COVANE THE MARKET AGAIN THIN THE MARKET AND THE REAL PROPERTY OF THE PROPERTY OF THE REAL PROPE
Cyanobacteria sp. XXXI	(21.3)	7
Methenococcus maripaludis XARI	(212)	T NAME OF A DESCRIPTION OF
Ignicovcus hospitalis KARI	(227)	NUMBER OF THE ADDRESS
Ficrophilus torridus XARI	(211)	1 CONTRACTOR CONTRACTOR OF STATES
Acidophilium cryptum NARI	(213)	TIMEA BARENART CARRYELS ALSO ALSO AND A MARKENEY
Rice NARI	(313)	RITE, MORENE KATEGITER KTIRKA BLEBA MERENKA
Spinach MARI	(337)	RINGSAMBEDLA KOTZELIRO KOKILBIKO KLALA MARKA KATA KATA
Chlamydomonas reinhardtii XARI	(293)	PYTROMADZEA COSTESIIOS SPIISTKOLS YR SHEAL ALFED
Neurospora orassa KARI	(288)	VIEW CONTRACTOR ALCONTRACTOR ACCOUNTS AND ACCOUNTS
5. cerevisiae 3195	- {277}	A DOVE NYRANE LOYGENES CAN BE THE SEE MEN SUCCESS AND A SU
3. pombe EARI	(204)	V STAR SALING CALLARY STRATES IGKT STRATES

Figure 6 (CONT.)

Leccaria bicolor KARI Piromyces sp. KARI (228) Consensus (351) (226) VIAN CELEVIA ALCSVENCEN DUP 11 (351) LVE GH F AFE VE ILE 1 GI H S SLSNTAR
 431
 453
 455

 (283)
 LS-LOS EL AND CONTRACTOR STRUCTURE
 558 A.M. --MOCKLITHERET

 (283)
 LS-LOS EL AND CONTRACTOR STRUCTURE
 558 A.M. --MOCKLITHERET

 (283)
 LS-LOS EL AND CONTRACTOR STRUCTURE
 569 A.M. --MOCKLITHERET

 (283)
 LS-LOS EL AND CONTRACTOR STRUCTURE
 560 A.M. --MOCKLITHERET

 (283)
 LS-KASTATIANING
 560 A.M. --MOCKLITHERET

 (284)
 LS-KASTATIANING
 560 A.M. --MOCKLITHERET

 (285)
 LS-KASTATIANING
 570 A.M. --MOCKLITHERET

 (286)
 MA-COPHERIC
 720 A.M. --MOCKLITHERET

 (286)
 MA-COPHERIC
 720 A.M. --MOCKLITHERET

 (286)
 LS-KASTATIANING
 720 A.M. --MOCKLITHERET

 (286)
 LS-KASTATIANING
 720 A.M. --MOCKLITHERET

 (286)
 LS-COPHERIC
 720 A.M. --MOCKLITHERET

 (286)
 LS-COPHERIC
 720 A.M. --MOCKLITHERET

 (286)
 LS-COPHERIC
 720 A.M. --MOCKLITHERET

 (286)
 MS-LSE EL AND A.M. --MOCKLITHERET
 720 A.M. --MOCKLITHERET

 (286)
 MS-LSE EL AND A.M. --MOCKLITHERET
 720 A.M. --MOCKLITHERET

 402 466 I. coli ilvC Vibric fisherii NARI Gramella forsetti KARI Cytophega hatchinsonii FARI Suchners aphidicols NARI Symomonas mobilis MARI Barteroides thetaiotamicron KARI Shewanelia sp. KARI Psychromonas ingrhamali XARI Cyanobacteris sp. KARI Methanococcus maripsludis XARI Ignicoccus hospitalis KARI Picrophilus corridus EARE Acidophilium cryptum HARI Rice RARI Spinach HARI (333) AISABIEPA DICE IVE VASCH INSVVQAVQAFOA------PPND (333) WI-PKETAL (327) WI-PKETAL (327) WI-PKETAL (327) WI-PKETAL Chiemydomonas reinherdtii NARI Neurospora crassa ESRI 3. cerevisiae ILV5 (SS4) WT-PRITANG CLERITY CONSTRUCT IN APPRIPERTED
 (S43) WA-PITELANT ZALYS CONSTRUCT FURNING CONSTRUCTION
 (278) WH-DNYYAAN ZELYS CONSTRUCT VALUE POTENAKELKE 3. poste XARI Laccaria bicolor KARI Piromyces sp. XARI Consensus (402) LEMXFLF N DDI SGRFSR N D A ĨŔ. 433 5.66 (888) GRAFTINDOFFORTELETINGELLIANVAGVELAFETNVDBG--II (888) GRAFTINFESDVESEQETFINGILLVANVAGVELAFEANTASG--II Z. coli ilv0 Vibrio fishesii XARI Gramella forsetti NARI (338) E AF TEATSTE PEOEYFIKSVLHVAFVBAGVELAFETHVERG--II (335) E. ATO TEATONE CECTYTIKG LAVARVRAVELARETWYAG--11
 (336) GU AT TERADOV ARCHYTIKG LAVARVRAGVELARETWYAG--11
 (335) C. ATO TERADOV ARCHYTIKG LAVARVRAGVELARETWIAG--11
 (336) C. ATO TERADOV ARCHYTIKG LAVARVRAGVELARETWIAGO Cytophaga hutchinscnii NARI Euchnera aphidicola KARI Tymononas mobilis KARI Bauteroides thetaistamicron KARI Shewanella so. KR&I Psychronomes ingrhamali KARI (316) ANDER (CREENERSTER) (309) GRICERY ARE CLEERE Cyanobasteria sp. KARI Methanococcus maripaludis KARI
 (324)
 KERCAR (KZ Z MELEE

 (304)
 KERCAR (KZ Z MELEE

 (305)
 KERCAR (KZ Z MELEE

 (310)
 AMERICA (KZ MELEE

 (310)
 AMERICA (KZ MELEE

 (310)
 AMERICA (KZ MELEE

 (310)
 AMERICA (KZ MELEE

 (310)
 KAMERICA (KZ MELEE

 (310)
 KAMERICA (KZ MELEE

 (311)
 KZ MELEE

 (312)
 KZ MELEE

 (313)
 KZ MELEE

 (314)
 KZ MELEE

 (317)
 KZ MELEE
 Ignicoccus hospitalis KARI Ficrophilus torridus HARI Acidophilium cryptum NARI Rice NARI Spinach KARI (33) Control of the second seco Chiamydomones reinhardtii KARI Neurospora crassa KARI S. cerevisiae ILVS S. poste KARI Laccaria bisolor XARE Piromyces sp. KANI Consensus (451) (383) EXSAVVESINEIPLIANIIARERLVEMENVISDIAEVONVIFSYACVPLI ã. coli ilvC (383) CENNYESIHELFLIANTVARKELIEMEVVISDTARYANYLFANVATPLI Vibrio fisherii NARI Gramella forsetti HARI (883) EESATTESLHETPLIANTTARKKLIENNNVISDTAETGCTLFUHAANPLV (383) CESAYYESINETPLIANTIARXVLFEMMRVISDJARYCCYLFONACVPLL Cytophaga hutchingonii MARI Buchnera aphidicola KARI (363) EXSAVYESLHELPLIANTIARNELVIENLVISDIAEVGSYLFSHAAIPLL Symomonas mobilis KARI 13463 Bacteroldes thetaiotamicron KARI (366) Shewanella sp. KARI (353) EESAYVESLEETFLIRSTIREEPLYEMSVVISUTREVOCYLFBERAVEML Psychronones ingrhamali KARI (393) AdsayyesleetplikkitarrelyemkyvisjikeysCylfikaakpil Cyanobacteria sp. KARI Methanococcue maripaludis KARI

Figure 6 (CONT.)

\$05

Ignicorcus hospitalis KARI Pierophilus terridus KARI Acidophilium cryptum KARI (340) (469) SEIINESVIESVDSLNPFHRARGVAFNVONCSITARLGSRKWAPRFDYIL Rice RARI (487) SETINESVIEAVOSLNPFMHARGVSFMVDWCSTTARLGSRNWAPRFDYIL Spinach XARI Chlanydomonas reinhardtii XARI (436) SEICNESIIEAVDSINFYMEARGVAFMVDVCSYIARLGSRFWAPRFDYII Neurospora crassa HARI S. cerevisiae ILVS 3. pombe KARI Laccaria bicolor XARI (4) () Piromyces sp. HARI (353) Consensus (5\$1) 5.83 (433) KP-FMAELQPGOLGKAIFE---GAVDNGQLROVNEAIRSHAIEQVGKKLR E. coli ilv0 Vibrio fisherii KARI PERFMPSVETUVIGRGLGE-ASNQVUMATLIAVNDAIRNHPVEYIGEELR 74335 Gramella forsetti KARI (433) KD-YVNELEPEVAGENFGT-DONGVENQKLIHVNODLRSHFVENVGARLR Cytophaga hutchinsonii KARI (433) AN-FEXTVOIDIIGENFRAGEDEVCNOMLIAVNEVLREHPIEIVGAELR (433) KN-FREELOPGOLONKIST---SELONITLYNVNARIESRPIEIIGERLE Suchnera aphidicola MARI (340) lymomonas mobilis RARI Bacteroides thetaiotamicron XARI (368) (433) RD-YVRAMSPEYLGAGLED-SSNNVINLQLIAINDAIRHISVEVIGAELR Shewaneila sp. KARI Psychromonas ingrhamaii HARI (433) AD-FVRALDFEMIGRPLTV-KUNAVONARLIEVNEAIRSHFVEIVORKLR Cyanobacteria sp. XARI Methanococcus maripaludis KARI (331) Ignicorcus hospitalis KARI Picrophilus torridus KARI Acidophilium cryptum NARI (\$19) TQQAFVTVDEDAPINQDLISNFMSDFVHGAIEVCAELRFTVDISVFAM---Rice MARI Spinach XARI (537) SQQALVAVENGAPINQELISNFLSDFVHERIGVCRQLRFSVELSVTAD--Chlamydomonas reinhardtii KARI (486) EQQAFVOIDSGRAACKEVMAEFLARFVRSALATCSSMRPSVDISVGGENS Neurospora crassa MARI S. cerevisiae ILVS (396) 3. pombe XARI 1405) Laccaria bicolor KARI (416)Firomyces sp. KARI (353) Čonsensus (551)862 -620 (479) GYMIDMERIAVAG-----Z. coli ilvC (482) SYMSOMERIAVOG------Vibrio fisherii XARI Gramelia forsetti XARI (481) TARTAMENIYA-----Cytophaga hutchinsonii KARI (482) EAMTEMNAIVS-----Suchners aphidicols NARI (479) LYMISMVPIKIK-----Zymomonas mobilis EARI (340) -----(360) -----Bacteroides thetaiotanicron KARI Shewaneila sp. XARI (481) GYMIEMESIYGA-----Psychromonas ingrhameii KARI (431) GYMTEMKTIITAS-----Cyanobacteria sp. XARI (831) ------Methanococcus maripaludis XARI (331) -----Ignicoccus hospitalis HARI (330) ------Ficrophilus torridus KARI Acidophilium cryptum XARI (S67) -----ADEVRPELROSS----Rice MARI (S85) -----ADEVRPELROA-----Spinach KARI (836) SVGVGAGAARTEFRSTAAKV Chlamydomonas reinhardtii KARI Neurospora crassa RARI (403) -----S. cerevisiae ILVS 3. pombe KARI Laccaria bicclor KARL (416) ------Piromyces sp. XABI (383) Consensus 16013

Figure 6 (CONT.)

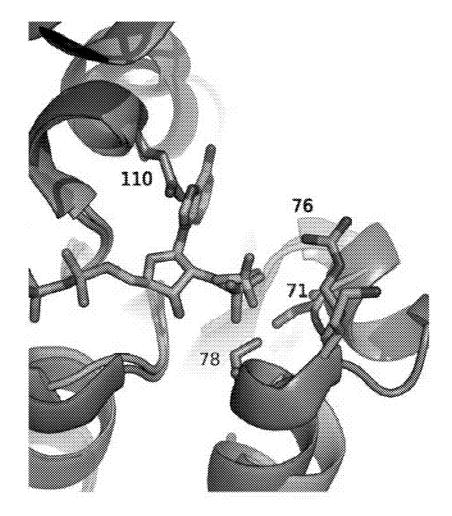


Figure 7

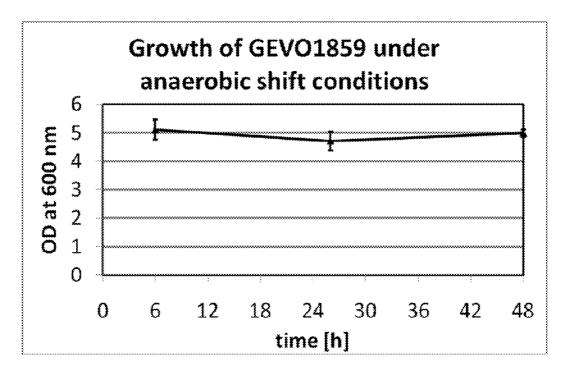
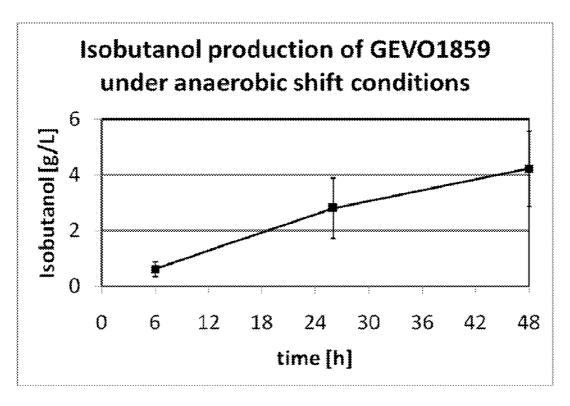
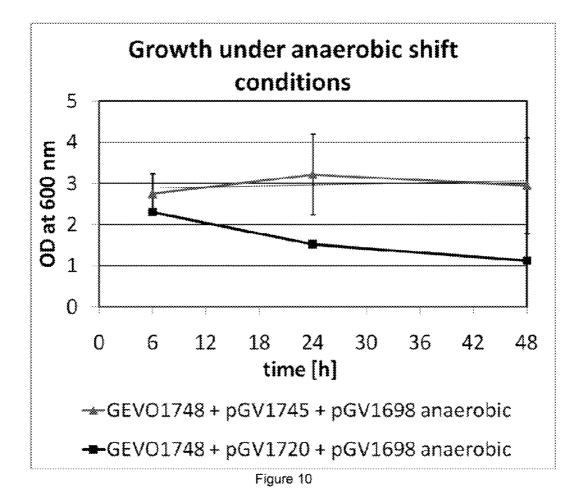
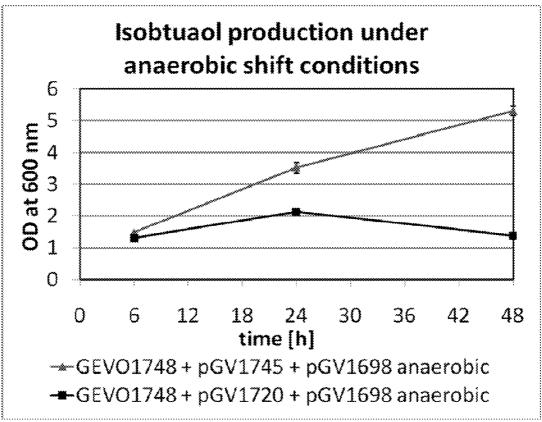
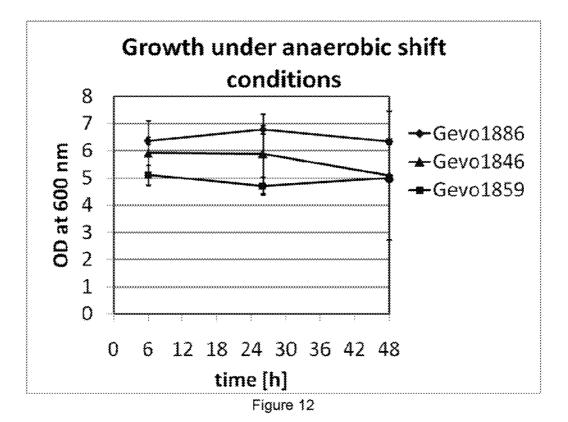






Figure 8

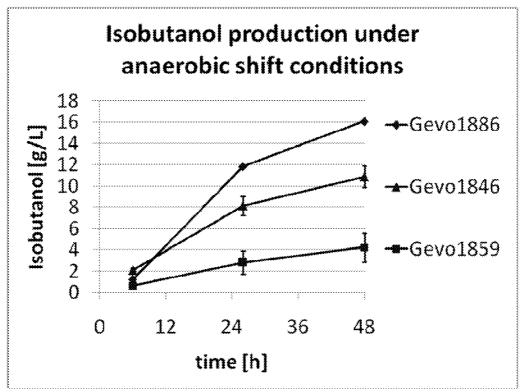


Figure 13

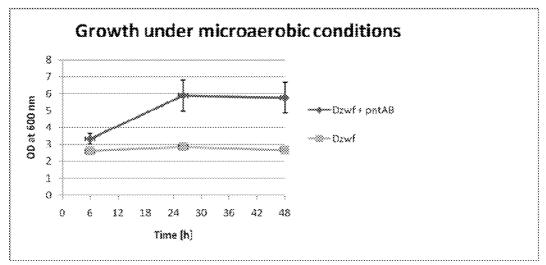


Figure 14

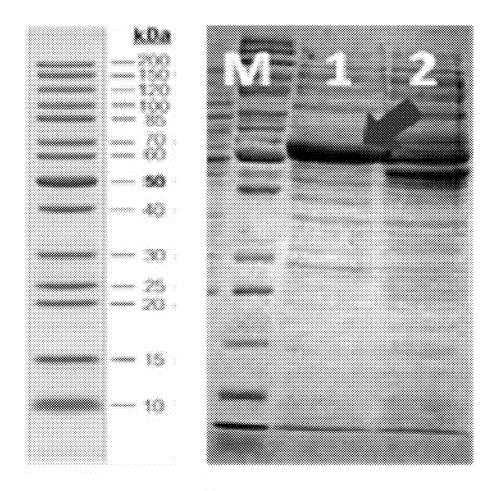
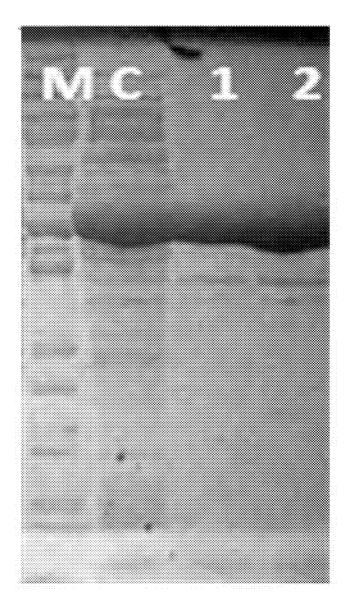



Figure 15

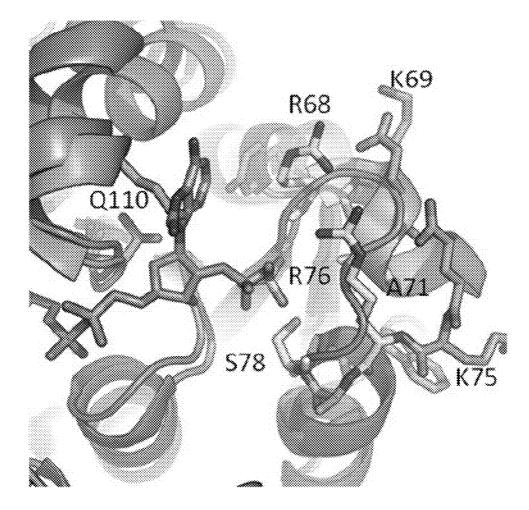
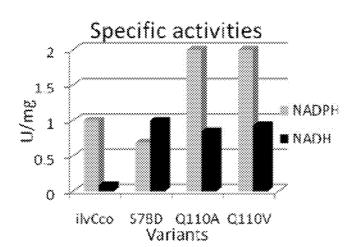



Figure 17

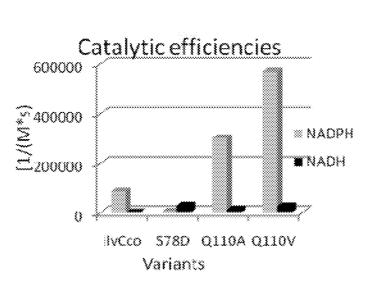


Figure 18

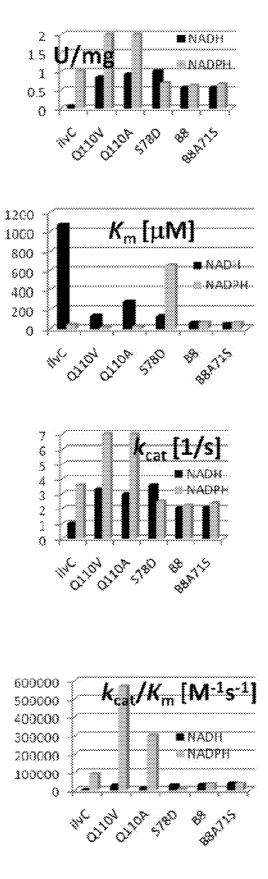


Figure 19

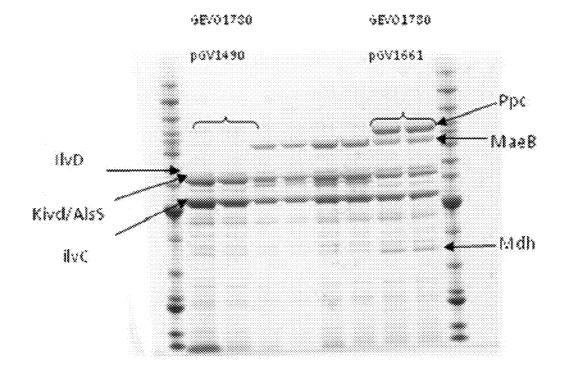


Figure 20

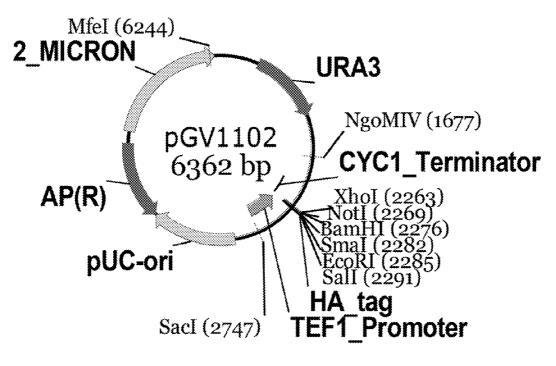
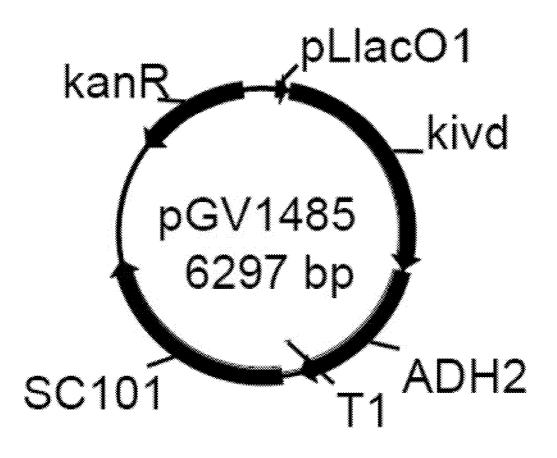
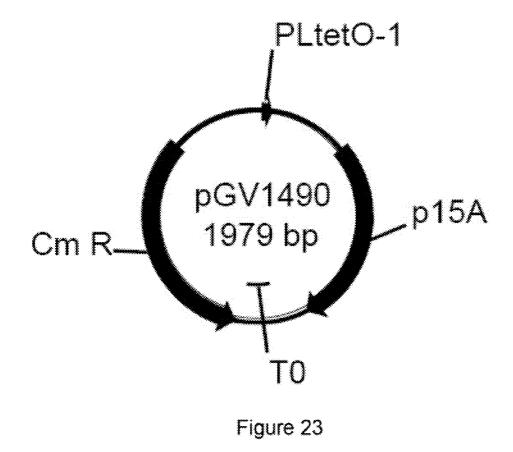
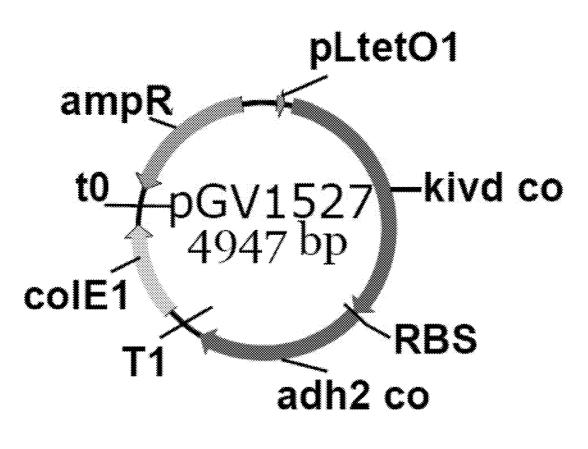
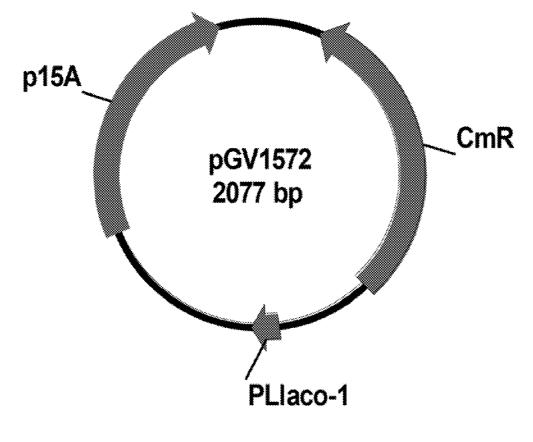
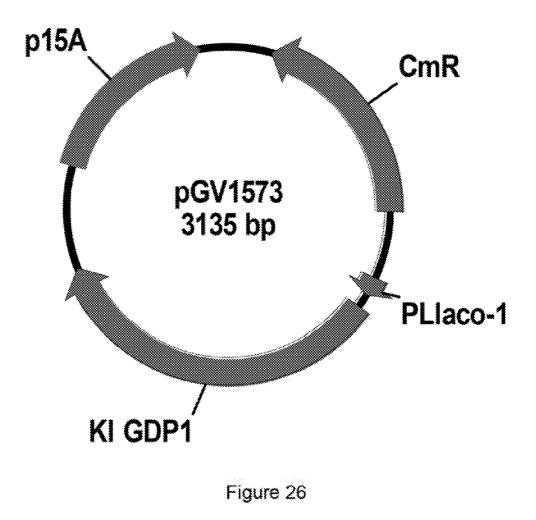
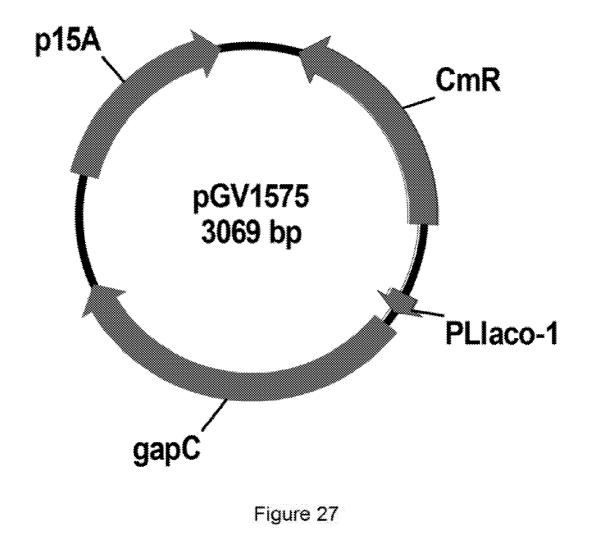
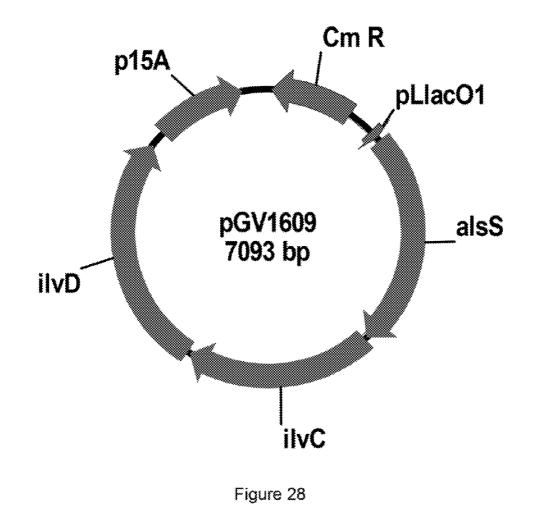
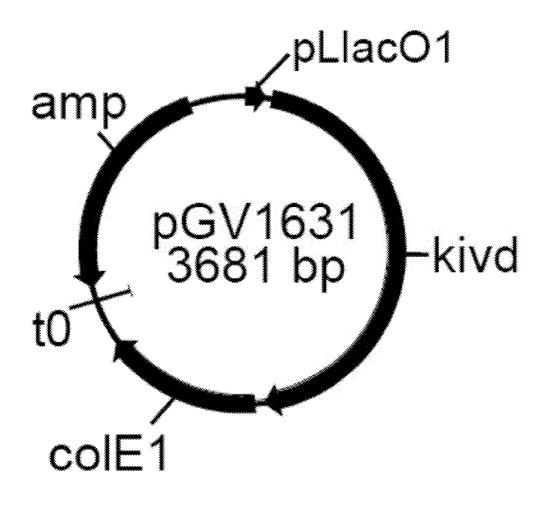
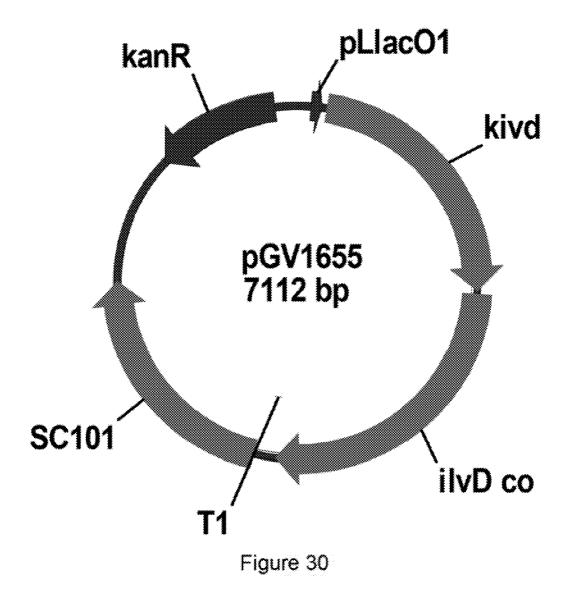
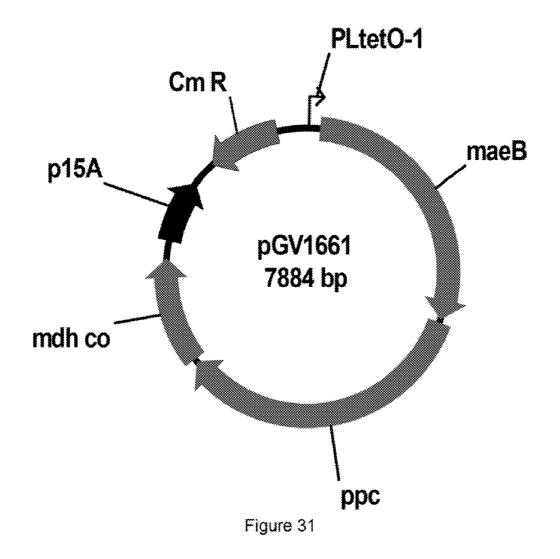
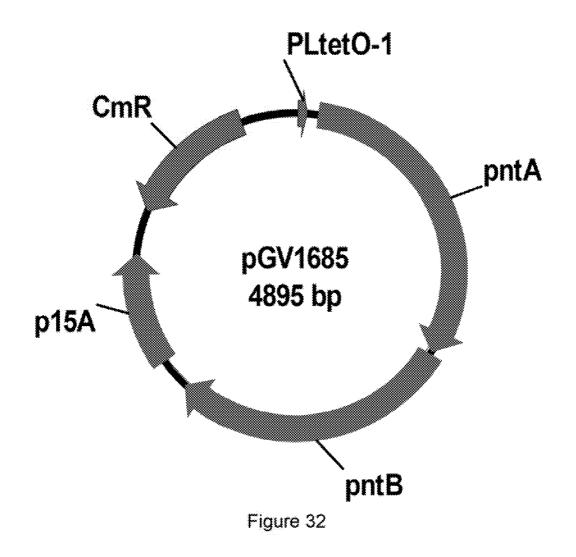





Figure 21


Figure 25





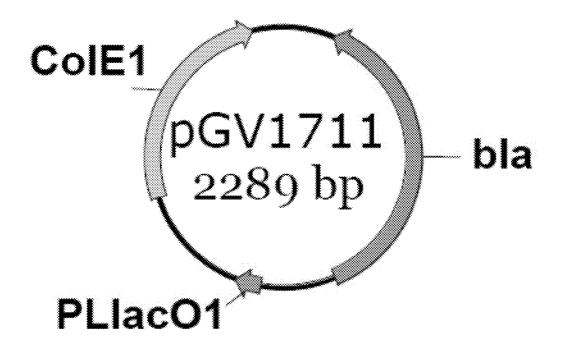
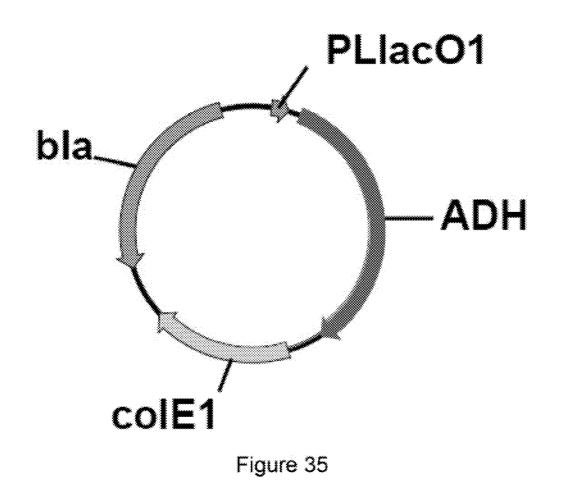



Figure 34

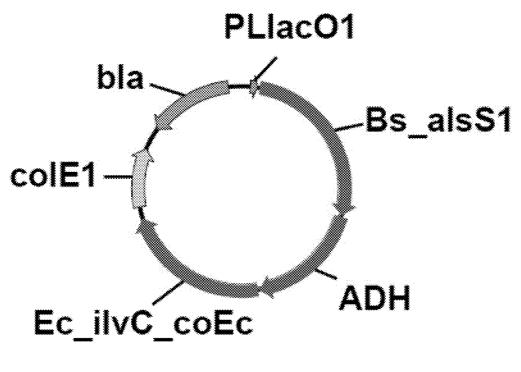


Figure 36

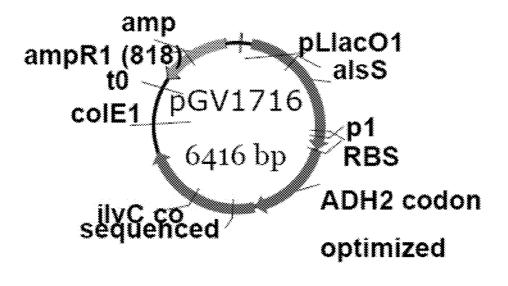


Figure 37

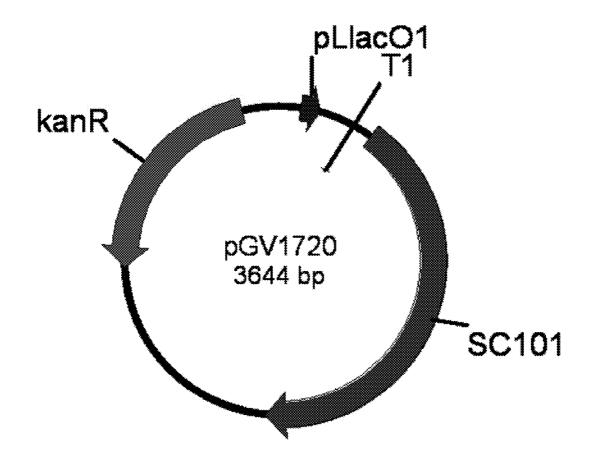


Figure 38

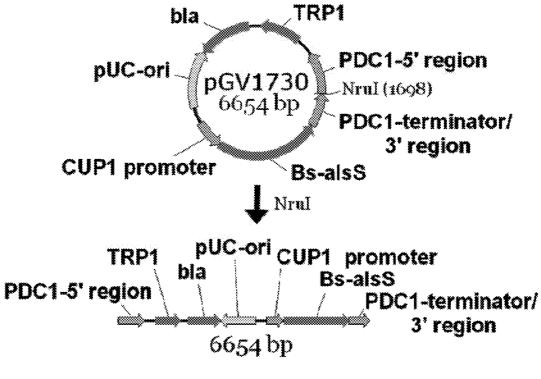


Figure 39

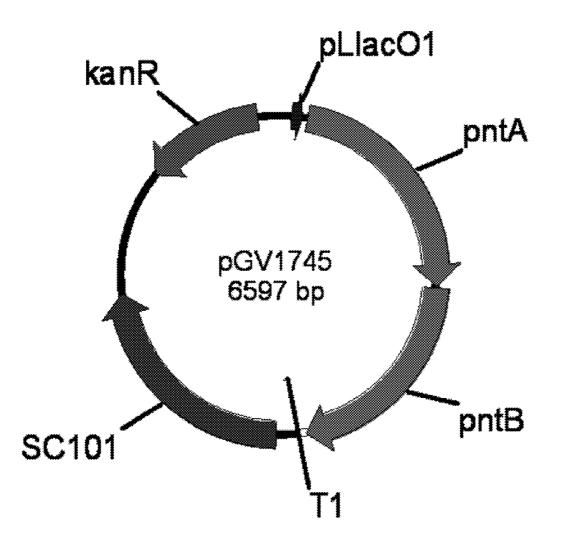


Figure 40

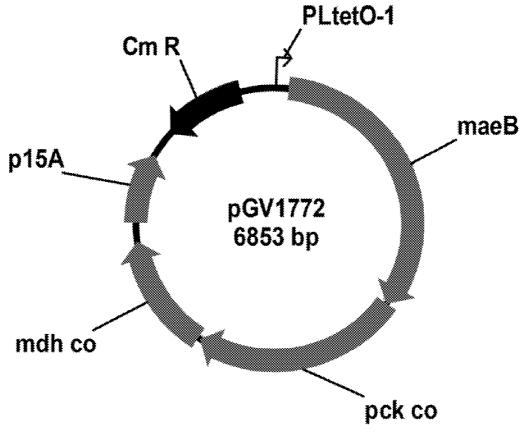


Figure 41

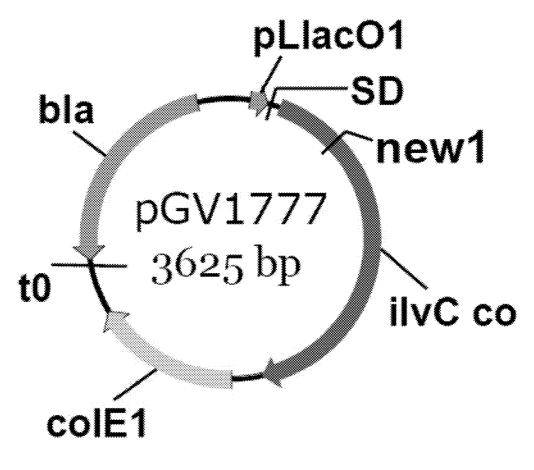


Figure 42

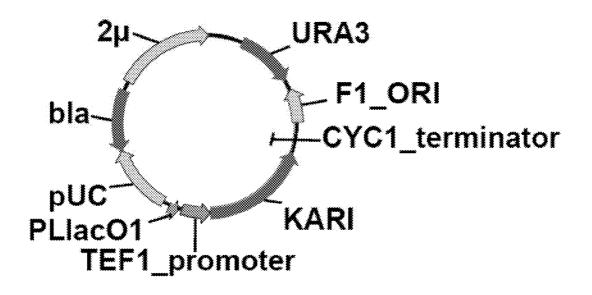


Figure 43

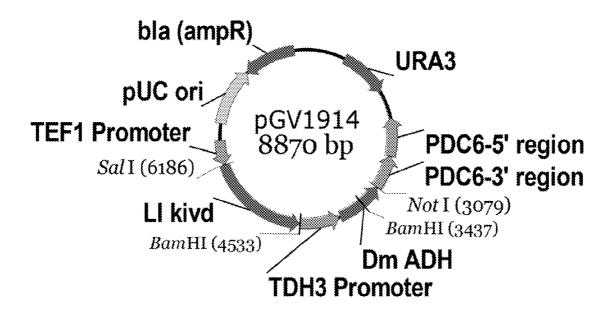


Figure 44

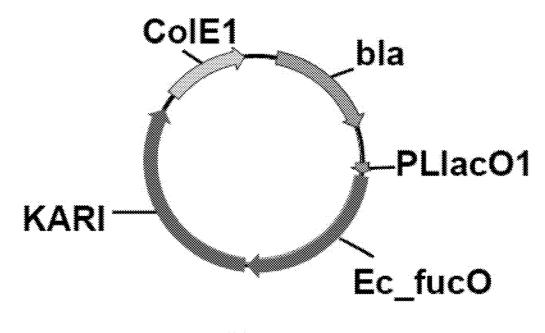


Figure 45

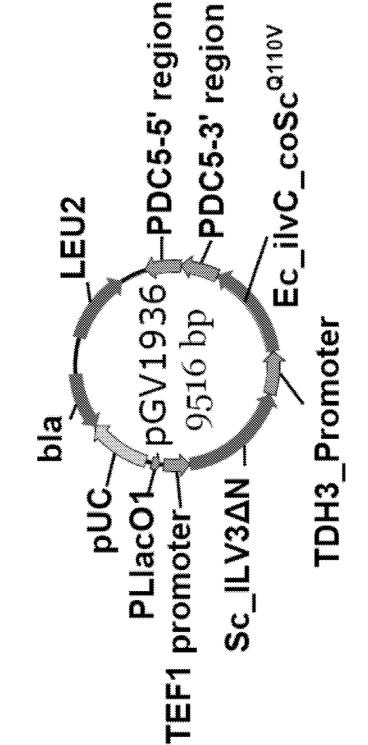


Figure 46

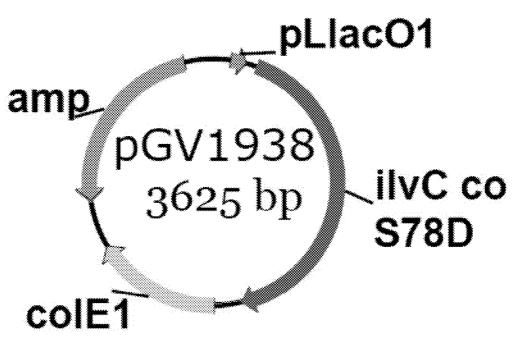
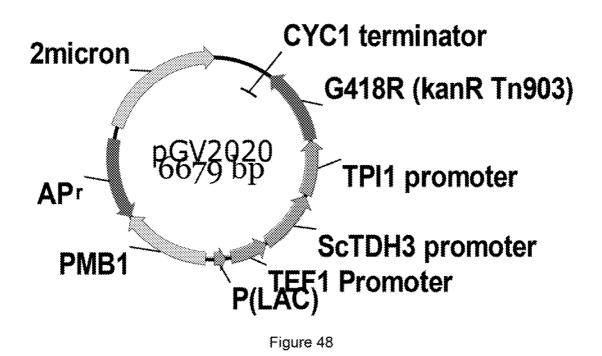



Figure 47

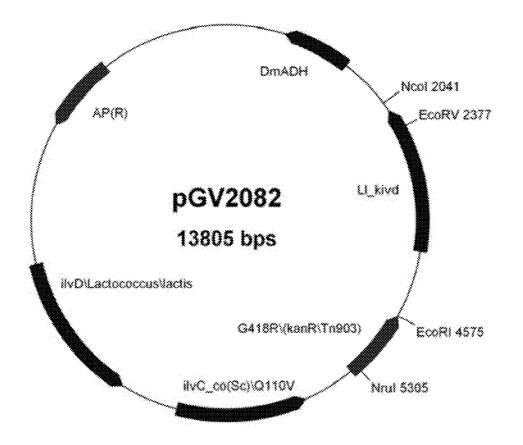


Figure 49

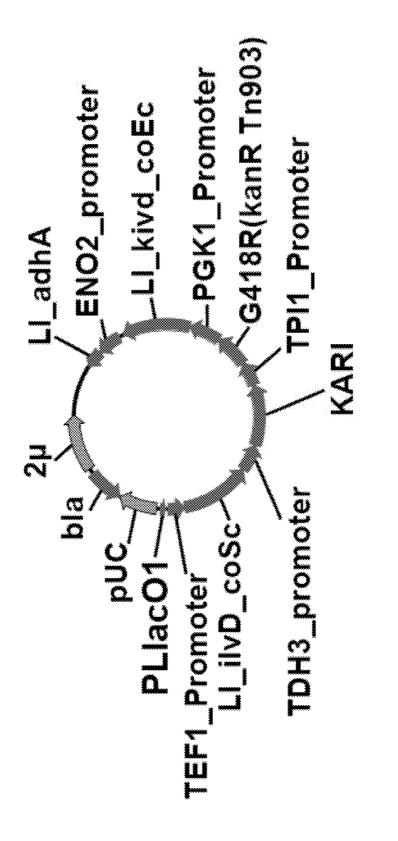


Figure 50

ENGINEERED MICROORGANISMS CAPABLE OF PRODUCING TARGET COMPOUNDS UNDER ANAEROBIC CONDITIONS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Application Ser. No. 61/110,543, filed Oct. 31, 2008; U.S. Provisional Application Ser. No. 61/121,830, filed Dec. 11, 2008; U.S. Provisional Application Ser. No. 61/184,580, filed Jun. 5, 2009; U.S. Provisional Application Ser. No. 61/184, 605, filed Jun. 5, 2009; and U.S. Provisional Application Ser. No. 61/239,618, filed Sep. 3, 2009. This application is related to U.S. patent application Ser. No. 12/263,442, entitled "Methods for the Economical Production of Biofuel Precursors that is also a Biofuel from Biomass," filed Oct. 31, 2008. This application is also related to the U.S. patent application Ser. No. 12/263,436, entitled "Methods for the Economical Production of Biofuel from Biomass," filed Oct. 31, 2008. Accordingly, this application incorporates by reference in its entirety all subject matter of the above-referenced applications to the extent such subject matter is not inconsistent herewith.

STATEMENT REGARDING FEDERALLY FUNDED RESEARCH

[0002] This invention was made with government support under contract DE-FG02-07ER84893, awarded by the Department of Energy. The government has certain rights in the invention.

FIELD OF THE INVENTION

[0003] The present invention is generally related to genetically engineered microorganisms, methods of producing such organisms, and methods of using such organisms for the production of beneficial metabolites, including C3-C5 alcohols such as isobutanol.

BACKGROUND

[0004] Biofuels have a long history ranging back to the beginning of the 20th century. As early as 1900, Rudolf Diesel demonstrated at the World Exhibition in Paris, France, an engine running on peanut oil. Soon thereafter, Henry Ford demonstrated his Model T running on ethanol derived from corn. Petroleum-derived fuels displaced biofuels in the 1930s and 1940s due to increased supply, and efficiency at a lower cost.

[0005] Market fluctuations in the 1970s coupled to the decrease in US oil production led to an increase in crude oil prices and a renewed interest in biofuels. Today, many interest groups, including policy makers, industry planners, aware citizens, and the financial community, are interested in substituting petroleum-derived fuels with biomass-derived biofuels. The leading motivations for developing biofuels are of economical, political, and environmental nature.

[0006] One is the threat of 'peak oil', the point at which the consumption rate of crude oil exceeds the supply rate, thus leading to significantly increased fuel cost results in an increased demand for alternative fuels. In addition, instability in the Middle East and other oil-rich regions has increased the demand for domestically produced biofuels. Also, environmental concerns relating to the possibility of carbon dioxide

related climate change is an important social and ethical driving force which is starting to result in government regulations and policies such as caps on carbon dioxide emissions from automobiles, taxes on carbon dioxide emissions, and tax incentives for the use of biofuels.

[0007] Ethanol is the most abundant biofuel today but has several drawbacks when compared to gasoline. Butanol, in comparison, has several advantages over ethanol as a fuel: it can be made from the same feedstocks as ethanol but, unlike ethanol, it is compatible with gasoline at any ratio and can also be used as a pure fuel in existing combustion engines without modifications. Unlike ethanol, butanol does not absorb water and can thus be stored and distributed in the existing petrochemical infrastructure. Due to its higher energy content which is close to that of gasoline, the fuel economy (miles per gallon) is better than that of ethanol. Also, butanol-gasoline blends have lower vapor pressure than ethanol-gasoline blends, which is important in reducing evaporative hydrocarbon emissions.

[0008] Isobutanol has the same advantages as butanol with the additional advantage of having a higher octane number due to its branched carbon chain. Isobutanol is also useful as a commodity chemical. For example, it is used as the starting material in the manufacture of isobutyl acetate, which is primarily used for the production of lacquer and similar coatings. In addition, isobutanol finds utility in the industrial synthesis of derivative esters. Isobutyl esters such as diisobutyl phthalate (DIBP) are used as plasticizer agents in plastics, rubbers, and other dispersions.

[0009] A number of recent publications have described methods for the production of industrial chemicals such as isobutanol using engineered microorganisms. See, e.g., WO/2007/050671 to Donaldson et al., and WO/2008/098227 to Liao et al., which are herein incorporated by reference in their entireties. These publications disclose recombinant microorganisms that utilize a series of heterologously expressed enzymes to convert sugars into isobutanol. However, the production of isobutanol using these microorganisms is feasible only under aerobic conditions and the maximum yield that can be achieved is limited.

[0010] There is a need, therefore, to provide modified microorganisms capable of producing isobutanol under anaerobic conditions and at close to theoretical yield. The present invention addresses this need by providing modified microorganisms capable of producing isobutanol under anaerobic conditions and at high yields.

SUMMARY OF THE INVENTION

[0011] The present invention provides recombinant microorganisms comprising an engineered metabolic pathway capable of producing one or more C3-C5 alcohols under aerobic and anaerobic conditions. In a preferred embodiment, the recombinant microorganism produces the C3-C5 alcohol under anaerobic conditions at a rate higher than a parental microorganism comprising a native or unmodified metabolic pathway. In another preferred embodiment, the recombinant microorganism produces the C3-C5 alcohol under anaerobic conditions at a rate of at least about 2-fold higher than a parental microorganism comprising a native or unmodified metabolic pathway. In another preferred embodiment, the recombinant microorganism produces the C3-C5 alcohol under anaerobic conditions at a rate of at least about 10-fold, of at least about 50-fold, or of at least about 100-fold higher than a parental microorganism comprising a native or unmodified metabolic pathway.

[0012] In various embodiments described herein, the C3-C5 alcohol may be selected from 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutanol, 2-methyl-1-butanol, 3-methyl-1-butanol, and 1-pentanol. In a preferred embodiment, the C3-C5 alcohol is isobutanol. In another preferred embodiment, isobutanol is produced at a specific productivity of at least about 0.025 gl⁻¹ h⁻¹ OD⁻¹.

[0013] In one aspect, there are provided recombinant microorganisms comprising an engineered metabolic pathway for producing one or more C3-C5 alcohols under anaerobic and aerobic conditions that comprises an overexpressed transhydrogenase that converts NADH to NADPH. In one embodiment, the transhydrogenase is a membrane-bound transhydrogenase. In a specific embodiment, the membrane-bound transhydrogenase is encoded by the *E. coli* pntAB genes or homologues thereof.

[0014] In another aspect, there are provided recombinant microorganisms comprising an engineered metabolic pathway for producing one or more C3-C5 alcohols under anaerobic and aerobic conditions that comprises an NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase. In one embodiment, the NADPH-dependent glyceraldehyde-3phosphate dehydrogenase is encoded by the Clostridium acetobutylicum gapC gene. In another embodiment, the NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase is encoded by the Kluyveromyces lactis GDP1 gene. [0015] In yet another aspect, there are provided recombinant microorganisms comprising an engineered metabolic pathway for producing one or more C3-C5 alcohols under anaerobic and aerobic conditions that comprises one or more enzymes catalyzing conversions in said engineered metabolic pathway that are not catalyzed by glyceraldehyde-3-phosphate dehydrogenase, and wherein said one or more enzymes have increased activity using NADH as a cofactor. In one embodiment, said one or more enzymes are selected from an NADH-dependent ketol-acid reductoisomerase (KARI) and an NADH-dependent alcohol dehydrogenase (ADH). In various embodiments described herein, the KARI and/or ADH enzymes may be engineered to have increased activity with NADH as the cofactor as compared to the wild-type E. coli KARI llvC and a native E. coli ADH YqhD, respectively. In some embodiments, the KARI and/or the ADH are modified or mutated to be NADH-dependent. In other embodiments, the KARI and/or ADH enzymes are identified in nature with increased activity with NADH as the cofactor as compared to the wild-type E. coli KARI llvC and a native E. coli ADH YqhD, respectively.

[0016] In various embodiments described herein, the KARI and/or ADH may show at least a 10-fold higher catalytic efficiency using NADH as a cofactor as compared to the wild-type *E. coli* KARI llvC and the native ADH YqhD, respectively. In a preferred embodiment, the KARI enhances the recombinant microorganism's ability to convert acetolactate to 2,3-dihydroxyisovalerate under anaerobic conditions. In another embodiment, the KARI enhances the recombinant microorganism's ability to utilize NADH from the conversion of acetolactate to 2,3-dihydroxyisovalerate.

[0017] The present invention also provides modified or mutated KARI enzymes that preferentially utilize NADH rather than NADPH, and recombinant microorganisms comprising said modified or mutated KARI enzymes. In general, these modified or mutated KARI enzymes may enhance the cell's ability to produce beneficial metabolites such as isobutanol and enable the production of beneficial metabolites such as isobutanol under anaerobic conditions.

[0018] In certain aspects, the invention includes KARIs which have been modified or mutated to increase the ability to utilize NADH. Examples of such KARIs include enzymes having one or more modifications or mutations at positions corresponding to amino acids selected from the group consisting of: (a) alanine 71 of the wild-type *E. coli* llvC (SEQ ID NO: 13); (b) arginine 76 of the wild-type *E. coli* NC; (c) serine 78 of the wild-type *E. coli* llvC; and (d) glutamine 110 of the wild-type *E. coli* llvC, wherein llvC (SEQ ID NO: 13) is encoded by codon optimized *E. coli* ketol-acid reductoi-somerase (KARI) genes Ec_ilvC_coEc (SEQ ID NO: 11) or Ec_ilvC_coSc (SEQ ID NO: 12).

[0019] In one embodiment, the KARI enzyme contains a modification or mutation at the amino acid corresponding to position 71 of the wild-type *E. coli* llvC (SEQ ID NO: 13). In another embodiment, the KARI enzyme contains a modification or mutation at the amino acid corresponding to position 76 of the wild-type *E. coli* llvC (SEQ ID NO: 13). In yet another embodiment, the KARI enzyme contains a modification or mutation at the amino acid corresponding to position 76 of the wild-type *E. coli* llvC (SEQ ID NO: 13). In yet another embodiment, the KARI enzyme contains a modification or mutation at the amino acid corresponding to position 78 of the wild-type *E. coli* llvC (SEQ ID NO: 13). In yet another embodiment, the KARI enzyme contains a modification or mutation at the amino acid corresponding to position 110 of the wild-type *E. coli* llvC (SEQ ID NO: 13).

[0020] In one embodiment, the KARI enzyme contains two or more modifications or mutations at the amino acids corresponding to the positions described above. In another embodiment, the KARI enzyme contains three or more modifications or mutations at the amino acids corresponding to the positions described above. In yet another embodiment, the KARI enzyme contains four modifications or mutations at the amino acids corresponding to the positions described above. **[0021]** In one specific embodiment, the invention is

directed to KARI enzymes wherein the alanine at position 71 is replaced with serine. In another specific embodiment, the invention is directed to KARI enzymes wherein the arginine at position 76 is replaced with aspartic acid. In yet another specific embodiment, the invention is directed to KARI enzymes wherein the serine at position 78 is replaced with aspartic acid. In yet another specific embodiment, the invention is directed to KARI enzymes wherein the glutamine at position 110 is replaced with valine. In yet another specific embodiment, the invention is directed to KARI enzymes wherein the glutamine at position 110 is replaced with alanine. In certain embodiments, the KARI enzyme contains two or more modifications or mutations at the amino acids corresponding to the positions described in these specific embodiments. In certain other embodiments, the KARI enzyme contains three or more modifications or mutations at the amino acids corresponding to the positions described in these specific embodiments. In an exemplary embodiment, the KARI enzyme contains four modifications or mutations at the amino acids corresponding to the positions described in these specific embodiments. In additional embodiments described herein, the KARI may further comprise an amino acid substitution at position 68 of the wild-type E. coli llvC (SEQ ID NO: 13).

[0022] In one embodiment, the modified or mutated KARI is selected from group consisting of SEQ ID NO: 17, SEQ ID

NO: 19, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42 and SEQ ID NO: 44.

[0023] Further included within the scope of the invention are KARI enzymes, other than the *E. coli* llvC (SEQ ID NO: 13), which contain alterations corresponding to those set out above. Such KARI enzymes may include, but are not limited to, the KARI enzymes encoded by the *S. cerevisiae* ILV5 gene, the KARI enzyme encoded by the *E. coli* ilvC gene and the KARI enzymes from *Piromyces* sp., *Buchnera aphidicola, Spinacia oleracea, Oryza sativa, Chlamydomonas reinhardtii, Neurospora crassa, Schizosaccharomyces pombe, Laccaria bicolor, Ignicoccus hospitalis, Picrophilus torridus, Acidiphilium cryptum, Cyanobacteria/Synechococcus sp., Zymomonas mobilis, Bacteroides thetaiotaomicron, Methanococcus maripaludis, Vibrio fischeri, Shewanella sp, Gramella forsetti, Psychromonas ingrhamaii, and Cytophaga hutchinsonii.*

[0024] In certain exemplary embodiments, the KARI to be modified or mutated is a KARI selected from the group consisting of Escherichia coli (GenBank No.: NP_418222, SEQ ID NO 13), Saccharomyces cerevisiae (GenBank No: NP_013459, SEQ ID NO: 70), Methanococcus maripaludis (GenBank No: YP_001097443, SEQ ID NO: 71), Bacillus subtilis (GenBank Nos: CAB14789, SEQ ID NO: 72), Piromyces sp (GenBank No: CAA76356, SEQ ID NO: 73), Buchnera aphidicola (GenBank No: AAF13807, SEQ ID NO: 74), Spinacia oleracea (GenBank Nos: Q1292 and CAA40356, SEQ ID NO: 75), Otyza sativa (GenBank No: NP 001056384, SEO ID NO: 76) Chlamvdomonas reinhardtii (GenBank No: XP_001702649, SEQ ID NO: 77), Neurospora crassa (GenBank No: XP_961335, SEQ ID NO: Schizosaccharomyces pombe (GenBank No: 78). NP_001018845, SEQ ID NO: 79), Laccaria bicolor (Gen-Bank No: XP_001880867, SEQ ID NO: 80), Ignicoccus hospitalis (GenBank No: YP_001435197, SEQ ID NO: 81), Picrophilus torridus (GenBank No: YP_023851, SEQ ID NO: 82), Acidiphilium cryptum (GenBank No: YP 001235669, SEQ ID NO: 83), Cvanobacteria/Svnechococcus sp. (GenBank No: YP_473733, SEQ ID NO: 84), Zymomonas mobilis (GenBank No: YP_162876, SEQ ID NO: 85), Bacteroides thetaiotaomicron (GenBank No: NP_810987, SEQ ID NO: 86), Vibrio fischeri (GenBank No: YP_205911, SEQ ID NO: 87), Shewanella sp (GenBank No: YP_732498, SEQ ID NO: 88), Gramella forsetti (GenBank No: YP_862142, SEQ ID NO: 89), Psychromonas ingrhamaii (GenBank No: YP_942294, SEQ ID NO: 90), and Cytophaga hutchinsonii (GenBank No: YP_677763, SEQ ID NO: 91).

[0025] In various embodiments described herein, the modified or mutated KARI may exhibit an increased catalytic efficiency with NADH as compared to the wild-type KARI. In one embodiment, the KARI has at least about a 5% increased catalytic efficiency with NADH as compared to the wild-type KARI. In another embodiment, the KARI has at least about a 25%, at least about a 50%, at least about a 75%, or at least about a 100% increased catalytic efficiency with NADH as compared to the wild-type KARI.

[0026] In some embodiments described herein, the catalytic efficiency of the modified or mutated KARI with NADH is increased with respect to the catalytic efficiency with NADPH of the wild-type KARI. In one embodiment, the catalytic efficiency of said KARI with NADH is at least about 10% of the catalytic efficiency with NADPH of the wild-type

KARI. In another embodiment, the catalytic efficiency of said KARI with NADH is at least about 25%, at least about 50%, or at least about 75% of the catalytic efficiency with NADPH of the wild-type KARI. In some embodiments, the modified or mutated KARI preferentially utilizes NADH rather than NADPH.

[0027] In one embodiments, the invention is directed to modified or mutated KARI enzymes that demonstrate a switch in cofactor preference from NADPH to NADH. In one embodiment, the modified or mutated KARI has at least about a 2:1 ratio of k_{cat} with NADH over k_{cat} with NADPH. In an exemplary embodiment, the modified or mutated KARI has at least about a 10:1 ratio of k_{cat} with NADH over k_{cat} with NADPH. NADH. In ADPH. In an exemplary embodiment, the modified or mutated KARI has at least about a 10:1 ratio of k_{cat} with NADH over k_{cat} with NADH.

[0028] In one embodiments, the invention is directed to a modified or mutated KARI enzyme that exhibits at least about a 1:10 ratio of catalytic efficiency (k_{cat}/K_M) with NADH over catalytic efficiency with NADPH. In another embodiment, the modified or mutated KARI enzyme exhibits at least about a 1:1 ratio of catalytic efficiency (k_{cat}/K_M) with NADH over catalytic efficiency with NADPH. In yet another embodiment, the modified or mutated KARI enzyme exhibits at least about a ratio of catalytic efficiency (k_{cat}/K_M) with NADH over catalytic efficiency with NADPH. In yet another embodiment, the modified or mutated KARI enzyme exhibits at least about a ratio of catalytic efficiency (k_{cat}/K_M) with NADH over catalytic efficiency with NADPH. In an exemplary embodiment, the modified or mutated KARI enzyme exhibits at least about a 100:1 ratio of catalytic efficiency (k_{cat}/K_M) with NADH over catalytic efficiency with NADPH.

[0029] In some embodiments, the modified or mutated KARI has been modified to be NADH-dependent. In one embodiment, the KARI exhibits at least about a 1:10 ratio of K_M for NADH over K_M for NADPH.

[0030] In additional embodiments, the invention is directed to modified or mutated KARI enzymes that have been codon optimized for expression in certain desirable host organisms, such as yeast and E. coli. In other aspects, the present invention is directed to recombinant host cells (e.g. recombinant microorganisms) comprising a modified or mutated KARI enzyme of the invention. According to this aspect, the present invention is also directed to methods of using the modified or mutated KARI enzymes in any fermentation process where the conversion of acetolactate to 2,3-dihydroxyisovalerate is desired. In one embodiment according to this aspect, the modified or mutated KARI enzymes may be suitable for enhancing a host cell's ability to produce isobutanol and enable the production of isobutanol under anaerobic conditions. In another embodiment according to this aspect, the modified or mutated KARI enzymes may be suitable for enhancing a host cell's ability to produce 3-methyl-1-butanol. [0031] According to this aspect, the present invention is also directed to methods of using the modified or mutated KARI enzymes in any fermentation process where the conversion of 2-aceto-2-hydroxy-butyrate to 2,3-dihydroxy-3methylvalerate is desired. In one embodiment according to this aspect, the modified or mutated KARI enzymes may be suitable for enhancing a host cell's ability to produce 2-methyl-1-butanol and enable the production of 2-methyl-1-butanol under anaerobic conditions.

[0032] In another aspect, there are provided recombinant microorganisms comprising an engineered metabolic pathway for producing one or more C3-C5 alcohols under anaerobic conditions, wherein said engineered metabolic pathway comprises a first dehydrogenase and a second dehydrogenase that catalyze the same reaction, and wherein the first dehydrogenase is NADH-dependent and wherein the second dehydrogenase is NADH-dependent and wherein the second

drogenase is NADPH dependent. In an exemplary embodiment, the first dehydrogenase is encoded by the *E. coli* gene maeA and the second dehydrogenase is encoded by the *E. coli* gene maeB.

[0033] In another aspect, there are provided recombinant microorganisms comprising an engineered metabolic pathway for producing one or more C3-C5 alcohols under anaerobic conditions, wherein said engineered metabolic pathway comprises a replacement of a gene encoding for pyk or homologs thereof with a gene encoding for ppc or pck or homologs thereof. In another embodiment, the engineered metabolic pathway may further comprise the overexpression of the genes mdh and maeB.

[0034] In various embodiments described herein, the recombinant microorganisms may further be engineered to express an isobutanol producing metabolic pathway comprising at least one exogenous gene that catalyzes a step in the conversion of pyruvate to isobutanol. In one embodiment, the recombinant microorganism may be engineered to express an isobutanol producing metabolic pathway comprising at least two exogenous genes. In another embodiment, the recombinant microorganism may be engineered to express an isobutanol producing metabolic pathway comprising at least three exogenous genes. In another embodiment, the recombinant microorganism may be engineered to express an isobutanol producing metabolic pathway comprising at least four exogenous genes. In another embodiment, the recombinant microorganism may be engineered to express an isobutanol producing metabolic pathway comprising five exogenous genes.

[0035] In various embodiments described herein, the isobutanol pathway enzyme(s) may be selected from the group consisting of acetolactate synthase (ALS), ketol-acid reductoisomerase (KARI), dihydroxyacid dehydratase (DHAD), 2-keto-acid decarboxylase (KIVD), and alcohol dehydrogenase (ADH).

[0036] In another embodiment, the recombinant microorganism further comprises a pathway for the fermentation of isobutanol from a pentose sugar. In one embodiment, the pentose sugar is xylose. In one embodiment, the recombinant microorganism is engineered to express a functional xylose isomerase (XI). In another embodiment, the recombinant microorganism further comprises a deletion or disruption of a native gene encoding for an enzyme that catalyzes the conversion of xylose to xylitol. In one embodiment, the native gene is xylose reductase (XR). In another embodiment, the native gene is xylitol dehydrogenase (XDH). In yet another embodiment, both native genes are deleted or disrupted. In yet another embodiment, the recombinant microorganism is engineered to express a xylulose kinase enzyme.

[0037] In another embodiment, the recombinant microorganisms of the present invention may further be engineered to include reduced pyruvate decarboxylase (PDC) activity as compared to a parental microorganism. In one embodiment, PDC activity is eliminated. PDC catalyzes the decarboxylation of pyruvate to acetaldehyde, which is reduced to ethanol by alcohol dehydrogenases via the oxidation of NADH to NAD+. In one embodiment, the recombinant microorganism includes a mutation in at least one PDC gene resulting in a reduction of PDC activity of a polypeptide encoded by said gene. In another embodiment, the recombinant microorganism includes a partial deletion of a PDC gene resulting in a reduction of PDC activity of a polypeptide encoded by said gene. In another embodiment, the recombinant microorganism includes a partial deletion of a PDC gene resulting in a reduction of PDC activity of a polypeptide encoded by said gene. In another embodiment, the recombinant microorganism comprises a complete deletion of a PDC gene resulting in a reduction of PDC activity of a polypeptide encoded by said gene. In yet another embodiment, the recombinant microorganism includes a modification of the regulatory region associated with at least one PDC gene resulting in a reduction of PDC activity of a polypeptide encoded by said gene. In yet another embodiment, the recombinant microorganism comprises a modification of the transcriptional regulator resulting in a reduction of PDC gene transcription. In yet another embodiment, the recombinant microorganism comprises mutations in all PDC genes resulting in a reduction of PDC activity of the polypeptides encoded by said genes.

[0038] In another embodiment, the recombinant microorganisms of the present invention may further be engineered to include reduced glycerol-3-phosphate dehydrogenase (GPD) activity as compared to a parental microorganism. In one embodiment, GPD activity is eliminated. GPD catalyzes the reduction of dihydroxyacetone phosphate (DHAP) to glycerol-3-phosphate (G3P) via the oxidation of NADH to NAD⁺. Glycerol is produced from G3P by Glycerol-3-phosphatase (GPP). In one embodiment, the recombinant microorganism includes a mutation in at least one GPD gene resulting in a reduction of GPD activity of a polypeptide encoded by said gene. In another embodiment, the recombinant microorganism includes a partial deletion of a GPD gene resulting in a reduction of GPD activity of a polypeptide encoded by the gene. In another embodiment, the recombinant microorganism comprises a complete deletion of a GPD gene resulting in a reduction of GPD activity of a polypeptide encoded by the gene. In yet another embodiment, the recombinant microorganism includes a modification of the regulatory region associated with at least one GPD gene resulting in a reduction of GPD activity of a polypeptide encoded by said gene. In yet another embodiment, the recombinant microorganism comprises a modification of the transcriptional regulator resulting in a reduction of GPD gene transcription. In yet another embodiment, the recombinant microorganism comprises mutations in all GPD genes resulting in a reduction of GPD activity of a polypeptide encoded by the gene.

[0039] In various embodiments described herein, the recombinant microorganisms of the invention may produce one or more C3-C5 alcohols under anaerobic conditions at a yield which is at least about the same yield as under aerobic conditions. In additional embodiments described herein, the recombinant microorganisms of the invention may produce one or more C3-C5 alcohols at substantially the same rate under anaerobic conditions as the parental microorganism produces under aerobic conditions. In the various embodiments described herein, the engineered metabolic pathway may be balanced with respect to NADH and NADPH as compared to a native or unmodified metabolic pathway from a corresponding parental microorganism, wherein the native or unmodified metabolic pathway is not balanced with respect to NADH and NADPH.

[0040] In another aspect, the present invention provides a method of producing a C3-C5 alcohol, comprising (a) providing a recombinant microorganism comprising an engineered metabolic pathway capable of producing one or more C3-C5 alcohols under aerobic and anaerobic conditions; (b) cultivating the recombinant microorganism in a culture medium containing a feedstock providing the carbon source, until a recoverable quantity of the C3-C5 alcohol is produced; and (c) recovering the C3-C5 alcohol. In one embodiment, the recombinant microorganism is cultured under anaerobic conditions. In a preferred embodiment, the C3-C5 alcohol is

produced under anaerobic conditions at a yield which is at least about the same yield as under aerobic conditions.

[0041] In various embodiments described herein, a preferred C3-C5 alcohol is isobutanol. In one embodiment, the microorganism produces isobutanol from a carbon source at a yield of at least about 5 percent theoretical. In another embodiment, the microorganism is selected to produce isobutanol at a yield of at least about 10 percent, at least about 15 percent, about least about 20 percent, at least about 25 percent, at least about 30 percent, at least about 35 percent, at least about 40 percent, at least about 45 percent, at least about 50 percent, at least about 55 percent, at least about 60 percent, at least about 65 percent, at least about 70 percent, at least about 75 percent, at least about 80 percent theoretical, at least about 85 percent theoretical, at least about 90 percent theoretical, or at least about 95 percent theoretical. In one embodiment, the C3-C5 alcohol, such as isobutanol, is produced under anaerobic conditions at about the same yield as under aerobic conditions.

[0042] In another aspect, the present invention provides a recombinant microorganism comprising a metabolic pathway for producing a C3-C5 alcohol from a carbon source, wherein said recombinant microorganism comprises a modification that leads to the regeneration of redox co-factors within said recombinant microorganism. In one embodiment according to this aspect, the modification increases the production of a C3-C5 alcohol under anaerobic conditions as compared to the parental or wild-type microorganism. In a preferred embodiment, the fermentation product is isobutanol. In one embodiment, the re-oxidation or re-reduction of said redox co-factors does not require the pentose phosphate pathway, the TCA cycle, or the generation of additional fermentation products. In another embodiment, the re-oxidation or re-reduction of said redox co-factors does not require the production of byproducts or co-products. In yet another embodiment, additional fermentation products are not required for the regeneration of said redox co-factors.

[0043] In another aspect, the present invention provides a method of producing a C3-C5 alcohol, comprising providing a recombinant microorganism comprising a metabolic pathway for producing a C3-C5 alcohol, wherein said recombinant microorganism comprises a modification that leads to the regeneration of redox co-factors within said recombinant microorganism; cultivating the microorganism in a culture medium containing a feedstock providing the carbon source, until a recoverable quantity of said C3-C5 alcohol is produced; and optionally, recovering the C3-C5 alcohol. In one embodiment, said microorganism is cultivated under anaerobic conditions. In another embodiment, the C3-C5 alcohol is produced under anaerobic conditions. In a preferred embodiment, the C3-C5 alcohol is sobutanol.

[0044] In various embodiments described herein, the recombinant microorganisms may be microorganisms of the *Saccharomyces* clade, *Saccharomyces sensu stricto* microorganisms, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.

[0045] In some embodiments, the recombinant microorganisms may be yeast recombinant microorganisms of the *Saccharomyces* clade.

[0046] In some embodiments, the recombinant microorganisms may be *Saccharomyces sensu stricto* microorganisms. In one embodiment, the *Saccharomyces sensu stricto* is selected from the group consisting of *S. cerevisiae*, *S. kudriavzevii*, *S. mikatae*, *S. bayanus*, *S. uvarum*. *S. carocanis* and hybrids thereof.

[0047] In some embodiments, the recombinant microorganisms may be Crabtree-negative recombinant yeast microorganisms. In one embodiment, the Crabtree-negative yeast microorganism is classified into a genera selected from the group consisting of *Kluyveromyces*, *Pichia, Hansenula*, or *Candida*. In additional embodiments, the Crabtree-negative yeast microorganism is selected from *Kluyveromyces lactis*, *Kluyveromyces marxianus*, *Pichia anomala*, *Pichia stipitis*, *Hansenula anomala*, *Candida utilis*, *Issatchenkia orientalis* and *Kluyveromyces waltii*.

[0048] In some embodiments, the recombinant microorganisms may be Crabtree-positive recombinant yeast microorganisms. In one embodiment, the Crabtree-positive yeast microorganism is classified into a genera selected from the group consisting of *Saccharomyces*, *Kluyveromyces*, *Zygosaccharomyces*, *Debaryomyces*, *Candida*, *Pichia* and *Schizosaccharomyces*. In additional embodiments, the Crabtree-positive yeast microorganism is selected from the group consisting of *Saccharomyces cerevisiae*, *Saccharomyces uvarum*, *Saccharomyces bayanus*, *Saccharomyces paradoxus*, *Saccharomyces castelli*, *Saccharomyces kluyveri*, *Kluyveromyces thermotolerans*, *Candida glabrata*, *Z. bailli*, *Z. rouxii*, *Debaryomyces hansenii*, *Pichia pastorius*, *Schizosaccharomyces pombe*, and *Saccharomyces uvarum*.

[0049] In some embodiments, the recombinant microorganisms may be post-WGD (whole genome duplication) yeast recombinant microorganisms. In one embodiment, the post-WGD yeast recombinant microorganism is classified into a genera selected from the group consisting of *Saccharomyces* or *Candida*. In additional embodiments, the post-WGD yeast is selected from the group consisting of *Saccharomyces cerevisiae*, *Saccharomyces uvarum*, *Saccharomyces bayanus*, *Saccharomyces paradoxus*, *Saccharomyces castelli*, and *Candida glabrata*.

[0050] In some embodiments, the recombinant microorganisms may be pre-WGD (whole genome duplication) yeast recombinant microorganisms. In one embodiment, the pre-WGD yeast recombinant microorganism is classified into a genera selected from the group consisting of Saccharomyces, Kluvveromvces. Candida, Pichia, Debaryomyces, Hansenula, Pachysolen, Issatchenkia, Yarrowia and Schizosaccharomyces. In additional embodiments, the pre-WGD yeast is selected from the group consisting of Saccharomyces kluyveri, Kluyveromyces thermotolerans, Kluvveromyces marxianus, Kluyveromyces waltii, Kluyveromyces lactis, Candida tropicalis, Pichia pasto'ris, Pichia anomala, Pichia stipitis, Debaryomyces hansenii, Hansenula anomala, Pachysolen tannophilis, Yarrowia lipolytica, Issatchenkia orientalis, and Schizosaccharomyces pombe.

[0051] In some embodiments, the recombinant microorganisms may be microorganisms that are non-fermenting yeast microorganisms, including, but not limited to those, classified into a genera selected from the group consisting of *Tricosporon, Rhodotorula*, or *Myxozyma*.

[0052] In certain specific embodiments, there are provided recombinant microorganisms comprising an engineered metabolic pathway for producing one or more C3-C5 alcohols under anaerobic conditions, wherein the recombinant

microorganism is selected from GEVO1846, GEVO1886, GEVO1993, GEVO2158, GEVO2302, GEVO1803, GEVO2107, GEVO2710, GEVO2711, GEVO2712. GEVO2799, GEVO2847, GEVO2848, GEVO2849, GEVO2851, GEVO2852, GEVO2854, GEVO2855 and GEVO2856. In another specific embodiment, the present invention provides a plasmid is selected from the group consisting of pGV1698 (SEQ ID NO: 112), pGV1720 (SEQ ID NO: 115), pGV1745 (SEQ ID NO: 117), pGV1655 (SEQ ID NO: 109), pGV1609 (SEQ ID NO: 108), pGV1685 (SEQ ID NO: 111), and pGV1490 (SEQ ID NO: 104).

[0053] In yet another aspect, the present invention provides methods for the conversion of an aldehyde with three to five carbon atoms to the corresponding alcohol is provided. The method includes providing a microorganism comprising a heterologous polynucleotide encoding a polypeptide having NADH-dependent aldehyde reduction activity that is greater than its NADPH-dependent aldehyde reduction activity and having NADH-dependent aldehyde reduction activity that is greater than the endogenous NADPH-dependent aldehyde reduction activity of the microorganism; and contacting the microorganism with the aldehyde.

[0054] In another embodiment, a method for the conversion of an aldehyde derived from the conversion of a 2-ketoacid by a 2-ketoacid decarboxylase is provided. The method includes providing a microorganism comprising a heterologous polynucleotide encoding a polypeptide having NADH-dependent aldehyde reduction activity that is greater than its NADPHdependent aldehyde reduction activity and having NADHdependent aldehyde reduction activity that is greater than the endogenous NADPH-dependent aldehyde reduction activity of the microorganism; and contacting the microorganism with the aldehyde. In various embodiments described herein, the aldehyde may be selected from 1-propanal, 1-butanal, isobutyraldehyde, 2-methyl-1-butanal, or 3-methyl-1-butanal. In a preferred embodiment, the aldehyde is isobutyraldehyde.

[0055] In another embodiment, an microorganism include a heterologous polynucleotide encoding a polypeptide having NADH-dependent aldehyde reduction activity that is greater than its NADPH-dependent aldehyde reduction activity and having NADH-dependent aldehyde reduction activity that is greater than the endogenous NADPH-dependent aldehyde reduction activity of the microorganism is provided. The microorganism converts an aldehyde comprising three to five carbon atoms to the corresponding alcohol.

[0056] In another embodiment, an isolated microorganism is provided. The microorganism includes a heterologous polynucleotide encoding a polypeptide having NADH-dependent aldehyde reduction activity that is greater than its NADPH-dependent aldehyde reduction activity and having NADH-dependent aldehyde reduction activity that is greater than the endogenous NADPH-dependent aldehyde reduction activity of the microorganism. The microorganism converts an aldehyde derived from a 2-ketoacid by a 2-ketoacid decarboxylase. In one embodiment, the polypeptide is encoded by the Drosophila melanogaster ADH gene or homologs thereof. In a preferred embodiment, the Drosophila melanogaster ADH gene is set forth in SEQ ID NO: 60. In an alternative embodiment, the Drosophila melanogaster alcohol dehydrogenase is set forth in SEQ ID NO: 61. In another embodiment, the polypeptide possesses 1,2 propanediol dehydrogenase activity and is encoded by a 1,2 propanediol dehydrogenase gene. In a preferred embodiment, the 1,2propanediol dehydrogenase gene is the *Klebsiella pneumoniae* dhaT gene as set forth in SEQ ID NO: 62. In an alternative embodiment, the 1,2-propanediol dehydrogenase is set forth in SEQ ID NO: 63. In another embodiment, the polypeptide possesses is encoded by a 1,3-propanediol dehydrogenase gene. In a preferred embodiment, the 1,3-propanediol dehydrogenase gene is the *Escherichia coli* fucO gene as set forth in SEQ ID NO: 64. In an alternative embodiment, the 1,3-propanediol dehydrogenase is set forth in SEQ ID NO: 65.

[0057] In yet another aspect, the present invention provides a recombinant microorganism producing isobutanol, wherein said recombinant microorganism i) does not overexpress an alcohol dehydrogenase; and ii) produces isobutanol at a higher rate, titer, and productivity as compared to recombinant microorganism expressing the *S. cerevisiae* alcohol dehydrogenase ADH2.

BRIEF DESCRIPTION OF THE DRAWINGS

[0058] Illustrative embodiments of the invention are illustrated in the drawings, in which:

[0059] FIG. 1 illustrates an exemplary metabolic pathway for the conversion of glucose to isobutanol via pyruvate.

[0060] FIG. **2** illustrates a metabolic pathway for the conversion of glucose to isobutanol via pyruvate in which a transhydrogenase converts NADH from glycolysis to NADPH

[0061] FIG. **3** illustrates a metabolic pathway for the conversion of glucose to isobutanol via pyruvate in which an NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase converts generates NADPH during glycolysis.

[0062] FIG. 4 illustrates a Transhydrogenase cycle converting NADH to NADPH

[0063] FIG. **5** illustrates an exemplary isobutanol pathway; on the left native conversion of PEP to pyruvate; on the right bypass of pyruvate kinase.

[0064] FIG. **6** illustrates an amino acid sequence alignment among various members of the KARI enzyme family.

[0065] FIG. 7 illustrates the structure alignment of *E. coli* KARI with rice KAR1.

[0066] FIG. **8** illustrates growth of GEVO1859 under anaerobic shift conditions over the course of the fermentation.

[0067] FIG. **9** illustrates isobutanol production of GEVO1859 under anaerobic shift conditions over the course of the fermentation.

[0068] FIG. **10** illustrates that microorganisms featuring an overexpressed *E. coli* pntAB operon (pGV1745) increased in OD_{600} from 6 h to 24 h by 0.2-1.1 under anaerobic conditions, while microorganisms lacking *E. coli* pntAB (pGV1720) decreased in OD_{600} by 0.5-1.2.

[0069] FIG. **11** illustrates that microorganisms featuring an overexpressed *E. coli* pntAB operon (pGV1745) continued isobutanol production under anaerobic conditions until the fermentation was stopped at 48 hours while microorganisms lacking *E. coli* pntAB (pGV1720) did not produce isobutanol between 24 and 48 hours

[0070] FIG. **12** illustrates that for strains GEVO1886, GEVO1859 and GEVO1846 stable OD values can be observed under anaerobic shift conditions over the course of the fermentation

[0071] FIG. **13** illustrates that over-expression of *E. coli* pntAB in either strain GEVO1846 or GEVO1886 leads to an improvement in isobutanol production over the course of the

fermentation compared to the control strain GEVO1859 which does not over-express *E. coli* pntAB.

[0072] FIG. **14** illustrates that a strain lacking zwf without *E. coli* pntAB (Δ zwf) grew to an OD of about 3, whereas the samples featuring *E. coli* pntAB (Δ zwf+pntAB) reached OD values of about 5-6.

[0073] FIG. **15** illustrates an SDS PAGE of crude extracts of *E. coli* BL21(DE3) and GEVO1777 containing overexpressed KARI from plasmids pGV1777 and pET22[ilvC_ co], respectively. The arrow highlights the KARI band. The protein marker (M) was an unstained 200 kDa ladder from

Fermentas.

[0074] FIG. **16** illustrates an SDS PAGE of crude extract (C), purified KARI over a linear gradient (1), purified KARI over a step gradient (2), and PageRuler[™]unstained protein ladder (M, Fermentas). KARI was enriched to high purity with just one purification step.

[0075] FIG. **17** illustrates the structure alignment of *E. coli* KARI with spinach KAR1.

[0076] FIG. **18** illustrates the characterization of *E. coli* llvC and three variants resulting from the site saturation libraries: from top to bottom: Specific activities in U/mg, k_{cat} in 1/s, and catalytic efficiencies in $M^{-1}*s^{-1}$. All proteins were purified over a nickel sepharose histrap column.

[0077] FIG. **19** illustrates the characterization of Ec_llvC^{B8-his6} and Ec_llVC^{B8.471S-his6} compared to Ec_llvC^{his6}, Ec_llvC^{Q110V-his6}, Ec_llvC^{Q110A-his6}, and Ec_llvC^{S78D-his6}.

[0078] FIG. **20** illustrates a protein gel of cell lysates from the production strain GEVO1780 harboring the plasmids pGV1490, or pGV1661.

[0079] FIG. **21** illustrates plasmid pGV1102 (SEQ ID NO: 101).

[0080] FIG. **22** illustrates plasmid pGV1485 (SEQ ID NO: 103).

[0081] FIG. **23** illustrates plasmid pGV1490 (SEQ ID NO: 104).

[0082] FIG. 24 illustrates plasmid pGV1527.

[0083] FIG. 25 illustrates plasmid pGV1572 (SEQ ID NO: 105).

[0084] FIG. **26** illustrates plasmid pGV1573 (SEQ ID NO: 106).

[0085] FIG. **27** illustrates plasmid pGV1575 (SEQ ID NO: 107).

[0086] FIG. 28 illustrates plasmid pGV1609 (SEQ ID NO: 108).

[0087] FIG. 29 illustrates plasmid pGV1631.

[0088] FIG. **30** illustrates plasmid pGV1655 (SEQ ID NO: 109).

[0089] FIG. **31** illustrates plasmid pGV1661 (SEQ ID NO: 110).

[0090] FIG. **32** illustrates plasmid pGV1685 (SEQ ID NO: 111).

[0091] FIG. **33** illustrates plasmid pGV1698 (SEQ ID NO: 112).

[0092] FIG. **34** illustrates plasmid pGV1711 (SEQ ID NO: 113).

[0093] FIG. **35** illustrates plasmids pGV1705-A, pGV1748-A, pGV1749-A, and pGV1778-A carrying the ADH genes Ec_yqhD, Ec_fucO, Dm_ADH, and Kp_dhaT, respectively.

[0094] FIG. **36** illustrates plasmids pGV1748, pGV1749, and pGV1778 carrying the ADH genes Ec_fucO, Dm_ADH, and Kp_dhaT, respectively.

[0095] FIG. **37** illustrates plasmid pGV1716 (SEQ ID NO: 114).

[0096] FIG. 38 illustrates plasmid pGV1720 (SEQ ID NO: 115).

[0097] FIG. **39** illustrates plasmid pGV1730 (SEQ ID NO: 116) and linearization for integration by NruI digest (SEQ ID NO: 116).

[0098] FIG. **40** illustrates plasmid pGV1745 (SEQ ID NO: 117).

[0099] FIG. 41 illustrates plasmid pGV1772.

[0100] FIG. **42** illustrates plasmid pGV1777 (SEQ ID NO: 118).

[0101] FIG. **43** illustrates plasmids pGV1824, pGV1994, pGV2193, pGV2238, and pGV2241 carrying the KARI genes Ec_ilvC_coSc, Ec_ilvC_coSc^{6E6}, Ec_ilvC_coSc^{P2D1-} h_{is6} , Ec_ilvC_coSc^{P2D1-A1-his6}, and Ec_ilvC_coSc^{6E6-his6}, respectively.

[0102] FIG. **44** illustrates plasmid pGV1914 (SEQ ID NO: 119).

[0103] FIG. **45** illustrates plasmids pGV1925, pGV1927, pGV1975 and pGV1776 carrying the Ec_fucO in combination with KARI genes Ec_ilvC_coEc, Ec_ilvC_coEc^{578D}, Ec_ilvC_coEc^{6E6} and Ec_ilvC_coEc^{2H10}, respectively.

[0104] FIG. 46 illustrates plasmid pGV1936 (SEQ ID NO: 120).

[0105] FIG. 47 illustrates plasmid pGV1938.

[0106] FIG. **48** illustrates plasmid pGV2020 (SEQ ID NO: 121).

[0107] FIG. **49** illustrates plasmid pGV2082 (SEQ ID NO: 122).

[0108] FIG. **50** illustrates plasmids pGV2227 (SEQ ID NO: 123), pGV2242 (SEQ ID NO: 125) carrying the KARI genes $Ec_ilvC_coScQ110V$ and $Ec_ilvC_coSc^{P2D1}$, respectively.

DETAILED DESCRIPTION

Definitions

[0109] As used herein and in the appended claims, the singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a polynucleotide" includes a plurality of such polynucleotides and reference to "the microorganism" includes reference to one or more microorganisms, and so forth.

[0110] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this disclosure belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice of the disclosed methods and compositions, the exemplary methods, devices and materials are described herein.

[0111] Any publications discussed above and throughout the text are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior disclosure.

[0112] The term "microorganism" includes prokaryotic and eukaryotic microbial species from the Domains Archaea, Bacteria and Eukarya, the latter including yeast and filamentous fungi, protozoa, algae, or higher Protista. The terms "microbial cells" and "microbes" are used interchangeably with the term microorganism.

[0113] The term "prokaryotes" is art recognized and refers to cells which contain no nucleus or other cell organelles. The prokaryotes are generally classified in one of two domains, the Bacteria and the Archaea. The definitive difference between organisms of the Archaea and Bacteria domains is based on fundamental differences in the nucleotide base sequence in the 16S ribosomal RNA.

[0114] The term "Archaea" refers to a categorization of organisms of the division Mendosicutes, typically found in unusual environments and distinguished from the rest of the prokaryotes by several criteria, including the number of ribosomal proteins and the lack of muramic acid in cell walls. On the basis of ssrRNA analysis, the Archaea consist of two phylogenetically-distinct groups: Crenarchaeota and Euryarchaeota. On the basis of their physiology, the Archaea can be organized into three types: methanogens (prokaryotes that produce methane); extreme halophiles (prokaryotes that live at very high concentrations of salt (NaCl); and extreme (hyper) thermophiles (prokaryotes that live at very high temperatures). Besides the unifying archaeal features that distinguish them from Bacteria (i.e., no murein in cell wall, ester-linked membrane lipids, etc.), these prokaryotes exhibit unique structural or biochemical attributes which adapt them to their particular habitats. The Crenarchaeota consist mainly of hyperthermophilic sulfur-dependent prokaryotes and the Euryarchaeota contain the methanogens and extreme halophiles.

[0115] "Bacteria", or "eubacteria", refers to a domain of prokaryotic organisms. Bacteria include at least 11 distinct groups as follows: (1) Gram-positive (gram+) bacteria, of which there are two major subdivisions: (1) high G+C group (*Actinomycetes, Mycobacteria, Micrococcus*, others) (2) low G+C group (*Bacillus, Clostridia, Lactobacillus, Staphylococci, Streptococci, Mycoplasmas*); (2) Proteobacteria, e.g., Purple photosynthetic+non-photosynthetic Gram-negative bacteria (includes most "common" Gram-negative bacteria); (3) *Cyanobacteria*, e.g., oxygenic phototrophs; (4) Spirochetes and related species; (5) Planctomyces; (6) Bacteroides, Flavobacteria; (7) *Chlamydia*; (8) Green sulfur bacteria; (9) Green non-sulfur bacteria (also anaerobic phototrophs); (10) Radioresistant micrococci and relatives; (11) *Thermotoga* and *Thermosipho* thermophiles.

[0116] "Gram-negative bacteria" include cocci, nonenteric rods, and enteric rods. The genera of Gram-negative bacteria include, for example, Neisseria, Spirillum, Pasteurella, Brucella, Yersinia, Francisella, Haemophilus, Bordetella, Escherichia, Salmonella, Shigella, Klebsiella, Proteus, Vibrio, Pseudomonas, Bacteroides, Acetobacter, Aerobacter, Agrobacterium, Azotobacter, Spirilla, Serratia, Vibrio, Rhizobium, Chlamydia, Rickettsia, Treponema, and Fusobacterium.

[0117] "Gram positive bacteria" include cocci, nonsporulating rods, and sporulating rods. The genera of gram positive bacteria include, for example, *Actinomyces, Bacillus, Clostridium, Corynebacterium, Erysipelothrix, Lactobacillus, Listeria, Mycobacterium, Myxococcus, Nocardia, Staphylococcus, Streptococcus, and Streptomyces.*

[0118] The term "genus" is defined as a taxonomic group of related species according to the Taxonomic Outline of Bacteria and Archaea (Garrity, G. M., Lilburn, T. G., Cole, J. R., Harrison, S. H., Euzeby, J., and Tindall, B. J. (2007) The Taxonomic Outline of Bacteria and Archaea. TOBA Release 7.7, March 2007. Michigan State University Board of Trustees. [http://www.taxonomicoutline.org/]).

[0119] The term "species" is defined as a collection of closely related organisms with greater than 97% 16S ribosomal RNA sequence homology and greater than 70% genomic hybridization and sufficiently different from all other organisms so as to be recognized as a distinct unit.

[0120] The terms "modified microorganism," "recombinant microorganism" and "recombinant host cell" are used by inserting, expressing or overexpressing endogenous polynucleotides, by expressing or overexpressing heterologous polynucleotides, such as those included in a vector, by introducing a mutations into the microorganism or by altering the expression of an endogenous gene. The polynucleotide generally encodes a target enzyme involved in a metabolic pathway for producing a desired metabolite. It is understood that the terms "recombinant microorganism" and "recombinant host cell" refer not only to the particular recombinant microorganism but to the progeny or potential progeny of such a microorganism. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

[0121] The term "wild-type microorganism" describes a cell that occurs in nature, i.e. a cell that has not been genetically modified. A wild-type microorganism can be genetically modified to express or overexpress a first target enzyme. This microorganism can act as a parental microorganism in the generation of a microorganism modified to express or overexpress a second target enzyme. In turn, the microorganism modified to express or overexpress a first and a second target enzyme can be modified to express or overexpress a third target enzyme.

[0122] Accordingly, a "parental microorganism" functions as a reference cell for successive genetic modification events. Each modification event can be accomplished by introducing a nucleic acid molecule into the reference cell. The introduction facilitates the expression or overexpression of a target enzyme. It is understood that the term "facilitates" encompasses the activation of endogenous polynucleotides encoding a target enzyme through genetic modification of e.g., a promoter sequence in a parental microorganism. It is further understood that the term "facilitates" encompasses the introduction of heterologous polynucleotides encoding a target enzyme in to a parental microorganism.

[0123] The term "mutation" as used herein indicates any modification of a nucleic acid and/or polypeptide which results in an altered nucleic acid or polypeptide. Mutations include, for example, point mutations, deletions, or insertions of single or multiple residues in a polynucleotide, which includes alterations arising within a protein-encoding region of a gene as well as alterations in regions outside of a proteinencoding sequence, such as, but not limited to, regulatory or promoter sequences. A genetic alteration may be a mutation of any type. For instance, the mutation may constitute a point mutation, a frame-shift mutation, an insertion, or a deletion of part or all of a gene. In addition, in some embodiments of the modified microorganism, a portion of the microorganism genome has been replaced with a heterologous polynucleotide. In some embodiments, the mutations are naturallyoccurring. In other embodiments, the mutations are the results of artificial mutation pressure. In still other embodiments, the mutations in the microorganism genome are the result of genetic engineering.

[0124] The term "biosynthetic pathway", also referred to as "metabolic pathway", refers to a set of anabolic or catabolic biochemical reactions for converting one chemical species into another. Gene products belong to the same "metabolic pathway" if they, in parallel or in series, act on the same substrate, produce the same product, or act on or produce a metabolic intermediate (i.e., metabolite) between the same substrate and metabolite end product.

[0125] The term "heterologous" as used herein with reference to molecules and in particular enzymes and polynucleotides, indicates molecules that are expressed in an organism other than the organism from which they originated or are found in nature, independently on the level of expression that can be lower, equal or higher than the level of expression of the molecule in the native microorganism.

[0126] On the other hand, the term "native" or "endogenous" as used herein with reference to molecules, and in particular enzymes and polynucleotides, indicates molecules that are expressed in the organism in which they originated or are found in nature, independently on the level of expression that can be lower equal or higher than the level of expression of the molecule in the native microorganism. It is understood that expression of native enzymes or polynucleotides may be modified in recombinant microorganisms.

[0127] The term "carbon source" generally refers to a substance suitable to be used as a source of carbon for prokaryotic or eukaryotic cell growth. Carbon sources include, but are not limited to, biomass hydrolysates, starch, sucrose, cellulose, hemicellulose, xylose, and lignin, as well as monomeric components of these substrates. Carbon sources can comprise various organic compounds in various forms, including, but not limited to polymers, carbohydrates, acids, alcohols, aldehydes, ketones, amino acids, peptides, etc. These include, for example, various monosaccharides such as glucose, dextrose (D-glucose), maltose, oligosaccharides, polysaccharides, saturated or unsaturated fatty acids, succinate, lactate, acetate, ethanol, etc., or mixtures thereof. Photosynthetic organisms can additionally produce a carbon source as a product of photosynthesis. In some embodiments, carbon sources may be selected from biomass hydrolysates and glucose. The term "substrate" or "suitable substrate" refers to any substance or compound that is converted or meant to be converted into another compound by the action of an enzyme. The term includes not only a single compound, but also combinations of compounds, such as solutions, mixtures and other materials which contain at least one substrate, or derivatives thereof. Further, the term "substrate" encompasses not only compounds that provide a carbon source suitable for use as a starting material, such as any biomass derived sugar, but also intermediate and end product metabolites used in a pathway associated with a modified microorganism as described herein.

[0128] The term "volumetric productivity" or "production rate" is defined as the amount of product formed per volume of medium per unit of time. Volumetric productivity is reported in gram per liter per hour (g/L/h).

[0129] The term "specific productivity" is defined as the rate of formation of the product. To describe productivity as an inherent parameter of the microorganism or microorganism and not of the fermentation process, productivity is herein further defined as the specific productivity in gram product per unit of cells, typically measured spectroscopically as absorbance units at 600 nm (OD₆₀₀ or OD) per hour (g/L/h/OD).

[0130] The term "yield" is defined as the amount of product obtained per unit weight of raw material and may be expressed as a percentage of the theoretical yield. "Theoretical yield" is defined as the maximum amount of product that can be generated per a given amount of substrate as dictated by the stoichiometry of the metabolic pathway used to make the product. For example, the theoretical yield for one typical conversion of glucose to isobutanol is 0.41 g/g. As such, a yield of butanol from glucose of 0.39 g/g would be expressed as 95% of theoretical yield.

[0131] The term "titre" or "titer" is defined as the strength of a solution or the concentration of a substance in solution. For example, the titre of a biofuel in a fermentation broth is described as g of biofuel in solution per liter of fermentation broth (g/L).

[0132] The term "total titer" is defined as the sum of all biofuel produced in a process, including but not limited to the biofuel in solution, the biofuel in gas phase, and any biofuel removed from the process and recovered relative to the initial volume in the process or the operating volume in the process. **[0133]** A "facultative anaerobic organism" or a "facultative anaerobic microorganism" is defined as an organism that can grow in either the presence or in the absence of oxygen.

[0134] A "strictly anaerobic organism" or a "strictly anaerobic microorganism" is defined as an organism that cannot grow in the presence of oxygen and which does not survive exposure to any concentration of oxygen.

[0135] An "anaerobic organism" or an "anaerobic microorganism" is defined as an organism that cannot grow in the presence of oxygen.

[0136] "Aerobic conditions" are defined as conditions under which the oxygen concentration in the fermentation medium is sufficiently high for an aerobic or facultative anaerobic microorganism to use as a terminal electron acceptor.

[0137] In contrast, "Anaerobic conditions" are defined as conditions under which the oxygen concentration in the fermentation medium is too low for the microorganism to use as a terminal electron acceptor. Anaerobic conditions may be achieved by sparging a fermentation medium with an inert gas such as nitrogen until oxygen is no longer available to the microorganism as a terminal electron acceptor. Alternatively, anaerobic conditions may be achieved by the microorganism consuming the available oxygen of the fermentation until oxygen is unavailable to the microorganism as a terminal electron acceptor. "Anaerobic conditions" are further defined as conditions under which no or small amounts of oxygen are added to the medium at rates of <3 mmol/L/h, preferably <2.5 mmol/L/h, more preferably <2 mmol/L/h and most preferably <1.5 mmol/L/h. "Anaerobic conditions" means in particular completely oxygen-free (=0 mmol/L/h oxygen) or with small amounts of oxygen added to the medium at rates of e.g. <0.5 to <1 mmol/L/h.

[0138] "Dissolved oxygen," abbreviated as "DO" is expressed throughout as the percentage of saturating concentration of oxygen in water.

[0139] "Aerobic metabolism" refers to a biochemical process in which oxygen is used as a terminal electron acceptor to make energy, typically in the form of ATP, from carbohydrates. Aerobic metabolism occurs e.g. via glycolysis and the TCA cycle, wherein a single glucose molecule is metabolized completely into carbon dioxide in the presence of oxygen.

[0140] In contrast, "anaerobic metabolism" refers to a biochemical process in which oxygen is not the final acceptor of electrons contained in NADH. Anaerobic metabolism can be divided into anaerobic respiration, in which compounds other than oxygen serve as the terminal electron acceptor, and substrate level phosphorylation, in which the electrons from NADH are utilized to generate a reduced product via a "fermentative pathway."

[0141] In "fermentative pathways," NAD(P)H donates its electrons to a molecule produced by the same metabolic pathway that produced the electrons carried in NAD(P)H. For example, in one of the fermentative pathways of certain yeast strains, NAD(P)H generated through glycolysis transfers its electrons to pyruvate, yielding lactate. Fermentative pathways are usually active under anaerobic conditions but may also occur under aerobic conditions, under conditions where NADH is not fully oxidized via the respiratory chain. For example, above certain glucose concentrations, crabtree positive yeasts produce large amounts of ethanol under aerobic conditions.

[0142] The term "fermentation product" means any main product plus its coupled product. A "coupled product" is produced as part of the stoichiometric conversion of the carbon source to the main fermentation product. An example for a coupled product is the two molecules of CO_2 that are produced with every molecule of isobutanol during production of isobutanol from glucose according the biosynthetic pathway described herein.

[0143] The term "byproduct" means an undesired product related to the production of a biofuel. Byproducts are generally disposed as waste, adding cost to a biofuel process.

[0144] The term "co-product" means a secondary or incidental product related to the production of biofuel. Co-products have potential commercial value that increases the overall value of biofuel production, and may be the deciding factor as to the viability of a particular biofuel production process. **[0145]** The term "non-fermenting yeast" is a yeast species that fails to demonstrate an anaerobic metabolism in which the electrons from NADH are utilized to generate a reduced product via a fermentative pathway such as the production of ethanol and CO_2 from glucose. Non-fermentative yeast can be identified by the "Durham Tube Test" (J. A. Barnett, R. W. Payne, and D. Yarrow. 2000. Yeasts Characteristics and Identification. 3^{rd} edition. p. 28-29. Cambridge University Press, Cambridge, UK.) or by monitoring the production of fermentation productions such as ethanol and CO_2 .

[0146] The term "polynucleotide" is used herein interchangeably with the term "nucleic acid" and refers to an organic polymer composed of two or more monomers including nucleotides, nucleosides or analogs thereof, including but not limited to single stranded or double stranded, sense or antisense deoxyribonucleic acid (DNA) of any length and, where appropriate, single stranded or double stranded, sense or antisense ribonucleic acid (RNA) of any length, including siRNA. The term "nucleotide" refers to any of several compounds that consist of a ribose or deoxyribose sugar joined to a purine or a pyrimidine base and to a phosphate group, and that are the basic structural units of nucleic acids. The term "nucleoside" refers to a compound (as guanosine or adenosine) that consists of a purine or pyrimidine base combined with deoxyribose or ribose and is found especially in nucleic acids. The term "nucleotide analog" or "nucleoside analog" refers, respectively, to a nucleotide or nucleoside in which one or more individual atoms have been replaced with a different atom or with a different functional group. Accordingly, the term polynucleotide includes nucleic acids of any length, DNA, RNA, analogs and fragments thereof. A polynucleotide of three or more nucleotides is also called nucleotidic oligomer or oligonucleotide.

[0147] It is understood that the polynucleotides described herein include "genes" and that the nucleic acid molecules described herein include "vectors" or "plasmids." Accordingly, the term "gene", also called a "structural gene" refers to a polynucleotide that codes for a particular sequence of amino acids, which comprise all or part of one or more proteins or enzymes, and may include regulatory (non-transcribed) DNA sequences, such as promoter sequences, which determine for example the conditions under which the gene is expressed. The transcribed region of the gene may include untranslated regions, including introns, 5'-untranslated region (UTR), and 3'-UTR, as well as the coding sequence.

[0148] The term "expression" with respect to a gene sequence refers to transcription of the gene and, as appropriate, translation of the resulting mRNA transcript to a protein. Thus, as will be clear from the context, expression of a protein results from transcription and translation of the open reading frame sequence.

[0149] The term "operon" refers two or more genes which are transcribed as a single transcriptional unit from a common promoter. In some embodiments, the genes comprising the operon are contiguous genes. It is understood that transcription of an entire operon can be modified (i.e., increased, decreased, or eliminated) by modifying the common promoter. Alternatively, any gene or combination of genes in an operon can be modified to alter the function or activity of the encoded polypeptide. The modification can result in an increase in the activity of the encoded polypeptide. Further, the modification can impart new activities on the encoded polypeptide. Exemplary new activities include the use of alternative substrates and/or the ability to function in alternative environmental conditions.

[0150] A "vector" is any means by which a nucleic acid can be propagated and/or transferred between organisms, cells, or cellular components. Vectors include viruses, bacteriophage, pro-viruses, plasmids, phagemids, transposons, and artificial chromosomes such as YACs (yeast artificial chromosomes), BACs (bacterial artificial chromosomes), and PLACs (plant artificial chromosomes), and the like, that are "episomes," that is, that replicate autonomously or can integrate into a chromosome of a host cell. A vector can also be a naked RNA polynucleotide, a naked DNA polynucleotide, a polynucleotide composed of both DNA and RNA within the same strand, a poly-lysine-conjugated DNA or RNA, a peptideconjugated DNA or RNA, a liposome-conjugated DNA, or the like, that are not episomal in nature, or it can be an organism which comprises one or more of the above polynucleotide constructs such as an agrobacterium or a bacterium.

[0151] "Transformation" refers to the process by which a vector is introduced into a host cell. Transformation (or transduction, or transfection), can be achieved by any one of a number of means including electroporation, microinjection, biolistics (or particle bombardment-mediated delivery), or *agrobacterium* mediated transformation.

[0152] The term "enzyme" as used herein refers to any substance that catalyzes or promotes one or more chemical or biochemical reactions, which usually includes enzymes

totally or partially composed of a polypeptide, but can include enzymes composed of a different molecule including polynucleotides.

[0153] The term "protein" or "polypeptide" as used herein indicates an organic polymer composed of two or more amino acidic monomers and/or analogs thereof. As used herein, the term "amino acid" or "amino acidic monomer" refers to any natural and/or synthetic amino acids including glycine and both D or L optical isomers. The term "amino acid analog" refers to an amino acid in which one or more individual atoms have been replaced, either with a different atom, or with a different functional group. Accordingly, the term polypeptide includes amino acidic polymer of any length including full length proteins, and peptides as well as analogs and fragments thereof. A polypeptide of three or more amino acids is also called a protein oligomer or oligopeptide

[0154] The term "homologs" used with respect to an original enzyme or gene of a first family or species refers to distinct enzymes or genes of a second family or species which are determined by functional, structural or genomic analyses to be an enzyme or gene of the second family or species which corresponds to the original enzyme or gene of the first family or species. Most often, homologs will have functional, structural or genomic similarities. Techniques are known by which homologs of an enzyme or gene can readily be cloned using genetic probes and PCR. Identity of cloned sequences as homolog can be confirmed using functional assays and/or by genomic mapping of the genes.

[0155] A protein has "homology" or is "homologous" to a second protein if the nucleic acid sequence that encodes the protein has a similar sequence to the nucleic acid sequence that encodes the second protein. Alternatively, a protein has homology to a second protein if the two proteins have "similar" amino acid sequences. (Thus, the term "homologous proteins" is defined to mean that the two proteins have similar amino acid sequences).

[0156] The term "analog" or "analogous" refers to nucleic acid or protein sequences or protein structures that are related to one another in function only and are not from common descent or do not share a common ancestral sequence. Analogs may differ in sequence but may share a similar structure, due to convergent evolution. For example, two enzymes are analogs or analogous if the enzymes catalyze the same reaction of conversion of a substrate to a product, are unrelated in sequence, and irrespective of whether the two enzymes are related in structure.

The Microorganism in General

[0157] Microorganism Characterized by Producing C3-C5 Alcohols from Pyruvate Via an Overexpressed Metabolic Pathway

[0158] Native producers of butanol, and more specifically 1-butaanol, such as *Clostridium acetobutylicum*, are known, but these organisms generate byproducts such as acetone, ethanol, and butyrate during fermentations. Furthermore, these microorganisms are relatively difficult to manipulate, with significantly fewer tools available than in more commonly used production hosts such as *E. coli*. Additionally, the physiology and metabolic regulation of these native producers are much less well understood, impeding rapid progress towards high-efficiency production. Furthermore, no native microorganisms have been identified that can metabolize glucose into isobutanol in industrially relevant quantities or yields.

[0159] The production of isobutanol and other fusel alcohols by various yeast species, including Saccharomyces cerevisiae is of special interest to the distillers of alcoholic beverages, for whom fusel alcohols constitute often undesirable off-notes. Production of isobutanol in wild-type yeasts has been documented on various growth media, ranging from grape must from winemaking (Romano, et al., Metabolic diversity of Saccharomyces cerevisiae strains from spontaneously fermented grape musts, 19:311-315, 2003), in which 12-219 mg/L isobutanol were produced, supplemented to minimal media (Oliviera, et al. (2005) World Journal of Microbiology and Biotechnology 21:1569-1576), producing 16-34 mg/L isobutanol. Work from Dickinson, et al. (J Biol. Chem. 272(43):26871-8, 1997) has identified the enzymatic steps utilized in an endogenous S. cerevisiae pathway converting branch-chain amino acids (e.g., valine or leucine) to isobutanol.

[0160] A number of recent publications have described methods for the production of industrial chemicals such as C3-C5 alcohols such as isobutanol using engineered microorganisms. See, e.g., WO/2007/050671 to Donaldson et al., and WO/2008/098227 to Liao et al., which are herein incorporated by reference in their entireties. These publications disclose recombinant microorganisms that utilize a series of heterologously expressed enzymes to convert sugars into isobutanol. However, the production of isobutanol using these microorganisms is feasible only under aerobic conditions and the maximum yield that can be achieved is limited.

[0161] Recombinant microorganisms provided herein can express a plurality of target enzymes involved in pathways for the production isobutanol from a suitable carbon source under anaerobic conditions.

[0162] Accordingly, "engineered" or "modified" microorganisms are produced via the introduction of genetic material into a host or parental microorganism of choice thereby modifying or altering the cellular physiology and biochemistry of the microorganism. Through the introduction of genetic material the parental microorganism acquires new properties, e.g. the ability to produce a new, or greater quantities of, an intracellular metabolite under anaerobic conditions. As described herein, the introduction of genetic material into a parental microorganism results in a new or modified ability to produce isobutanol under anaerobic conditions. The genetic material introduced into the parental microorganism contains gene(s), or parts of genes, coding for one or more of the enzymes involved in a biosynthetic pathway for the production of isobutanol under anaerobic conditions and may also include additional elements for the expression and/or regulation of expression of these genes, e.g. promoter sequences.

[0163] An engineered or modified microorganism can also include in the alternative or in addition to the introduction of a genetic material into a host or parental microorganism, the disruption, deletion or knocking out of a gene or polynucleotide to alter the cellular physiology and biochemistry of the microorganism. Through the reduction, disruption or knocking out of a gene or polynucleotide the microorganism acquires new or improved properties (e.g., the ability to produce a new metabolite or greater quantities of an intracellular metabolite, improve the flux of a metabolite down a desired pathway, and/or reduce the production of undesirable byproducts).

[0164] Microorganisms provided herein are modified to produce under anaerobic conditions metabolites in quantities not available in the parental microorganism. A "metabolite"

refers to any substance produced by metabolism or a substance necessary for or taking part in a particular metabolic process. A metabolite can be an organic compound that is a starting material (e.g., glucose or pyruvate), an intermediate (e.g., 2-ketoisovalerate), or an end product (e.g., isobutanol) of metabolism. Metabolites can be used to construct more complex molecules, or they can be broken down into simpler ones. Intermediate metabolites may be synthesized from other metabolites, perhaps used to make more complex substances, or broken down into simpler compounds, often with the release of chemical energy.

[0165] Exemplary metabolites include glucose, pyruvate, and C3-C5 alcohols, including isobutanol. The metabolite isobutanol can be produced by a recombinant microorganism engineered to express or over-express metabolic pathway that converts pyruvate to isobutanol. An exemplary metabolic pathway that converts pyruvate to isobutanol may be comprised of a acetohydroxy acid synthase (ALS) enzyme encoded by, for example, alsS from *B. subtilis*, a ketolacid reductoisomerase (KARI) encoded by, for example ilvC from *E. coli*, a dihyroxy-acid dehydratase (DHAD), encoded by, for example ilvD from *E. coli*, a 2-keto-acid decarboxylase (KIVD) encoded by, for example kivd from *L. lactis*, and an alcohol dehydrogenase (ADH), encoded by, for example, by a native *E. coli* alcohol dehydrogenase gene, like Ec_yqhD.

[0166] Accordingly, provided herein are recombinant microorganisms that produce isobutanol and in some aspects may include the elevated expression of target enzymes such as ALS (encoded e.g. by the ilvIH operon from *E. coli* or by alsS from *Bacillus subtilis*), KARI (encoded e.g. by ilvC from *E. coli*), DHAD (encoded, e.g. by ilvD from *E. coli*, or by ILV3 from *S. cerevisiae*, and KIVD (encoded, e.g. by, ARO10 from *S. cerevisiae*, THI3 from *S. cerevisiae*, kivd from *L. lactis*).

[0167] The recombinant microorganism may further include the deletion or reduction of the activity of enzymes that (a) directly consume a precursor of the product, e.g. an isobutanol precursor, (b) indirectly consume a precursor of the product, e.g. of isobutanol, or (c) repress the expression or function of a pathway that supplies a precursor of the product, e.g. of isobutanol. These enzymes include pyruvate decarboxylase (encoded, e.g. by PDC1, PDC2, PDC3, PDC5, or PDC6 of S. cerevisiae), glycerol-3-phosphate dehydrogenase (encoded, e.g. by GPD1 or GPD2 of S. cerevisiae) an alcohol dehydrogenase (encoded, e.g., by adhE of E. coli or ADH1, ADH2, ADH3, ADH4, ADH5, ADH6, or ADH7 of S. cerevisiae), lacate dehydrogenase (encoded, e.g., by IdhA of E. coli), fumarate reductase (encoded, e.g., by frdB, frdC or frdBC of E. coli), FNR (encoded, e.g. by fnr of E. coli), 2-isopropylmalate synthase (encoded, e.g. by leuA of E. coli or by LEU4 or LEU9 of S. cerevisiae), valine transaminase (encoded, e.g. by ilvE of E. coli or by BAT1 or BAT2 of S. *cerevisiae*), pyruvate oxidase (e.g. encoded by poxB of E. coli), Threonine deaminase (encoded, e.g. by ilvA of E. coli or CHA1 or ILV1 of S. cerevisiae), pyruvate-formate-lyase (encoded, e.g. by pflB of E. coli), or phosphate acetyltransferase (encoded, e.g. by pta of E. coli), or any combination thereof, to increase the availability of pyruvate or reduce enzymes that compete for a metabolite in a desired biosynthetic pathway.

[0168] In yeast microorganisms, pyruvate decarboxylase (PDC) is a major competitor for pyruvate. During anaerobic fermentation, the main pathway to oxidize the NADH from glycolysis is through the production of ethanol. Ethanol is

produced by alcohol dehydrogenase (ADH) via the reduction of acetaldehyde, which is generated from pyruvate by pyruvate decarboxylase (PDC). Thus, most of the pyruvate produced by glycolysis is consumed by PDC and is not available for the isobutanol pathway. Another pathway for NADH oxidation is through the production of glycerol. Dihydroxyacetone-phospate, an intermediate of glycolysis is reduced to glycerol 3-phosphate by glycerol 3-phosphate dehydrogenase (GPD). Glycerol 3-phosphatase (GPP) converts glycerol 3-phosphate to glycerol. This pathway consumes carbon from glucose as well as reducing equivalents (NADH) resulting in less pyruvate and reducing equivalents available for the isobutanol pathway. These pathways contribute to low yield and low productivity of C3-C5 alcohols, including isobutanol. Accordingly, deletion or reduction of the activity of PDC and GPD may increase yield and productivity of C3-C5 alcohols, including isobutanol.

[0169] Reduction of PDC activity can be accomplished by 1) mutation or deletion of a positive transcriptional regulator for the structural genes encoding for PDC or 2) mutation or deletion of all PDC genes in a given organism. The term "transcriptional regulator" can specify a protein or nucleic acid that works in trans to increase or to decrease the transcription of a different locus in the genome. For example, in *S. cerevisiae*, the PDC2 gene, which encodes for a positive transcriptional regulator of PDC1,5,6 genes can be deleted; a *S. cerevisiae* in which the PDC2 gene is deleted is reported to have only ~10% of wildtype PDC activity (Hohmann, *Mol Gen Genet*, 241:657-666 (1993)). Alternatively, for example, all structural genes for PDC (e.g. in *S. cerevisiae*, PDC1, PDC5, and PDC6, or in *K. lactis*, PDC1) are deleted.

[0170] Crabtree-positive yeast strains such as *Saccharomyces cerevisiae* strain that contains disruptions in all three of the PDC alleles no longer produce ethanol by fermentation. However, a downstream product of the reaction catalyzed by PDC, acetyl-CoA, is needed for anabolic production of necessary molecules. Therefore, the Pdc-mutant is unable to grow solely on glucose, and requires a two-carbon carbon source, either ethanol or acetate, to synthesize acetyl-CoA. (Flikweert MT, de Swaaf M, van Dijken J P, Pronk J T. FEMS Microbiol Lett. 1999 May 1; 174(1):73-9. PMID:10234824 and van Maris A J, Geertman J M, Vermeulen A, Groothuizen M K, Winkler AA, Piper M D, van Dijken J P, Pronk J T. Appl Environ Microbiol. 2004 January; 70(1):159-66. PMID: 14711638).

[0171] Thus, in an embodiment, such a Crabtree-positive yeast strain may be evolved to generate variants of the PDC mutant yeast that do not have the requirement for a two-carbon molecule and has a growth rate similar to wild type on glucose. Any method, including chemostat evolution or serial dilution may be utilized to generate variants of strains with deletion of three PDC alleles that can grow on glucose as the sole carbon source at a rate similar to wild type (van Maris et al., Directed Evolution of Pyruvate Decarboxylase-Negative *Saccharomyces cerevisiae, Yielding a C2*-Independent, Glucose-Tolerant, and Pyruvate-Hyperproducing Yeast, Applied and Environmental Microbiology, 2004, 70(1), 159-166).

[0172] Another byproduct that would decrease yield of isobutanol is glycerol. Glycerol is produced by 1) the reduction of the glycolysis intermediate, dihydroxyacetone phosphate (DHAP), to glycerol-3-phosphate (G3P) via the oxidation of NADH to NAD⁺ by Glycerol-3-phosphate dehydrogenase (GPD) followed by 2) the dephosphorylation of glycerol-3-phosphate to glycerol by glycerol-3-phos-

phatase (GPP). Production of glycerol results in loss of carbons as well as reducing equivalents. Reduction of GPD activity would increase yield of isobutanol. Reduction of GPD activity in addition to PDC activity would further increase yield of isobutanol. Reduction of glycerol production has been reported to increase yield of ethanol production (Nissen et al., Anaerobic and aerobic batch cultivation of *Saccharomyces cerevisiae* mutants impaired in glycerol synthesis, Yeast, 2000, 16, 463-474; Nevoigt et al., Method of modifying a yeast cell for the production of ethanol, WO 2009/056984). Disruption of this pathway has also been reported to increase yield of lactate in a yeast engineered to produce lactate instead of ethanol (Dundon et al., Yeast cells having disrupted pathway from dihydroxyacetone phosphate to glycerol, US 2009/0053782).

[0173] In one embodiment, the microorganism is a crabtree positive yeast with reduced or no GPD activity. In another embodiment, the microorganism is a crab-tree positive yeast with reduced or no GPD activity, and expresses an isobutanol biosynthetic pathway and produces isobutanol. In yet another embodiment, the microorganism is a crab-tree positive yeast with reduced or no GPD activity and with reduced or no PDC activity. In another embodiment, the microorganism is a crabtree positive yeast with reduced or no GPD activity, with reduced or no PDC activity, and expresses an isobutanol biosynthetic pathway and produces isobutanol.

[0174] In another embodiment, the microorganism is a crab-tree negative yeast with reduced or no GPD activity. In another embodiment, the microorganism is a crab-tree negative yeast with reduced or no GPD activity, expresses the isobutanol biosynthetic pathway and produces isobutanol. In yet another embodiment, the microorganism is a crab-tree negative yeast with reduced or no GPD activity and with reduced or no PDC activity. In another embodiment, the microorganism is a crab-tree negative yeast with reduced or no GPD activity and with reduced or no GPD activity, with reduced or no GPD activity, expresses an an isobutanol biosynthetic pathway and produces isobutanol biosynthetic pathway and produces isobutanol.

[0175] Any method can be used to identify genes that encode for enzymes with pyruvate decarboxylase (PDC) activity. PDC catalyzes the decarboxylation of pyruvate to form acetaldehyde. Generally, homologous or similar PDC genes and/or homologous or similar PDC enzymes can be identified by functional, structural, and/or genetic analysis. In most cases, homologous or similar PDC genes and/or homologous or similar PDC enzymes will have functional, structural, or genetic similarities. Techniques known to those skilled in the art may be suitable to identify homologous genes and homologous enzymes. Generally, analogous genes and/or analogous enzymes can be identified by functional analysis and will have functional similarities. Techniques known to those skilled in the art may be suitable to identify analogous genes and analogous enzymes. For example, to identify homologous or analogous genes, proteins, or enzymes, techniques may include, but not limited to, cloning a PDC gene by PCR using primers based on a published sequence of a gene/enzyme or by degenerate PCR using degenerate primers designed to amplify a conserved region among PDC genes. Further, one skilled in the art can use techniques to identify homologous or analogous genes, proteins, or enzymes with functional homology or similarity. Techniques include examining a cell or cell culture for the catalytic activity of an enzyme through in vitro enzyme assays for said activity, then isolating the enzyme with said activity through purification, determining the protein sequence of the enzyme through techniques such as Edman degradation, design of PCR primers to the likely nucleic acid sequence, amplification of said DNA sequence through PCR, and cloning of said nucleic acid sequence. To identify homologous or similar genes and/or homologous or similar enzymes, analogous genes and/or analogous enzymes or proteins, techniques also include comparison of data concerning a candidate gene or enzyme with databases such as BRENDA, KEGG, or MetaCYC. The candidate gene or enzyme may be identified within the above mentioned databases in accordance with the teachings herein. Furthermore, PDC activity can be determined phenotypically. For example, ethanol production under fermentative conditions can be assessed. A lack of ethanol production may be indicative of a yeast microorganism with no PDC activity.

[0176] Any method can be used to identify genes that encode for enzymes with glycerol-3-phosphate dehydrogenase (GPD) activity. GPD catalyzes the reduction of dihydroxyacetone phosphate (DHAP) to glycerol-3-phosphate (G3P) with the corresponding oxidation of NADH to NAD+. Generally, homologous or similar GPD genes and/or homologous or similar GPD enzymes can be identified by functional, structural, and/or genetic analysis. In most cases, homologous or similar GPD genes and/or homologous or similar GPD enzymes will have functional, structural, or genetic similarities. Techniques known to those skilled in the art may be suitable to identify homologous genes and homologous enzymes. Generally, analogous genes and/or analogous enzymes can be identified by functional analysis and will have functional similarities. Techniques known to those skilled in the art may be suitable to identify analogous genes and analogous enzymes. For example, to identify homologous or analogous genes, proteins, or enzymes, techniques may include, but not limited to, cloning a GPD gene by PCR using primers based on a published sequence of a gene/enzyme or by degenerate PCR using degenerate primers designed to amplify a conserved region among GPD genes. Further, one skilled in the art can use techniques to identify homologous or analogous genes, proteins, or enzymes with functional homology or similarity. Techniques include examining a cell or cell culture for the catalytic activity of an enzyme through in vitro enzyme assays for said activity, then isolating the enzyme with said activity through purification, determining the protein sequence of the enzyme through techniques such as Edman degradation, design of PCR primers to the likely nucleic acid sequence, amplification of said DNA sequence through PCR, and cloning of said nucleic acid sequence. To identify homologous or similar genes and/or homologous or similar enzymes, analogous genes and/or analogous enzymes or proteins, techniques also include comparison of data concerning a candidate gene or enzyme with databases such as BRENDA, KEGG, or MetaCYC. The candidate gene or enzyme may be identified within the above mentioned databases in accordance with the teachings herein. Furthermore, GPD activity can be determined phenotypically. For example, glycerol production under fermentative conditions can be assessed. A lack of glycerol production may be indicative of a yeast microorganism with no GPD activity. [0177] The recombinant microorganism may further include metabolic pathways for the fermentation of a C3-C5 alcohols from five-carbon (pentose) sugars including xylose. Most yeast species metabolize xylose via a complex route, in which xylose is first reduced to xylitol via a xylose reductase

(XR) enzyme. The xylitol is then oxidized to xylulose via a xylitol dehydrogenase (XDH) enzyme. The xylulose is then phosphorylated via an xylulokinase (XK) enzyme. This pathway operates inefficiently in yeast species because it introduces a redox imbalance in the cell. The xylose-to-xylitol step uses NADH as a cofactor, whereas the xylitol-to-xylulose step uses NADPH as a cofactor. Other processes must operate to restore the redox imbalance within the cell. This often means that the organism cannot grow anaerobically on xylose or other pentose sugar. Accordingly, a yeast species that can efficiently ferment xylose and other pentose sugars into a desired fermentation product is therefore very desirable.

[0178] Thus, in one aspect, the recombinant microorganism is engineered to express a functional exogenous xylose isomerase. Exogenous xylose isomerases functional in yeast are known in the art. See, e.g., Rajgarhia et al, US20060234364, which is herein incorporated by reference in its entirety. In an embodiment according to this aspect, the exogenous xylose isomerase gene is operatively linked to promoter and terminator sequences that are functional in the yeast cell. In a preferred embodiment, the recombinant microorganism further has a deletion or disruption of a native gene that encodes for an enzyme (e.g. XR and/or XDH) that catalyzes the conversion of xylose to xylitol. In a further preferred embodiment, the recombinant microorganism also contains a functional, exogenous xylulokinase (XK) gene operatively linked to promoter and terminator sequences that are functional in the yeast cell. In one embodiment, the xylulokinase (XK) gene is overexpressed.

[0179] The disclosure identifies specific genes useful in the methods, compositions and organisms of the disclosure; however it will be recognized that absolute identity to such genes is not necessary. For example, changes in a particular gene or polynucleotide comprising a sequence encoding a polypeptide or enzyme can be performed and screened for activity. Typically such changes comprise conservative mutation and silent mutations. Such modified or mutated polynucleotides and polypeptides can be screened for expression of a functional enzyme using methods known in the art.

[0180] Due to the inherent degeneracy of the genetic code, other polynucleotides which encode substantially the same or a functionally equivalent polypeptide can also be used to clone and express the polynucleotides encoding such enzymes.

[0181] As will be understood by those of skill in the art, it can be advantageous to modify a coding sequence to enhance its expression in a particular host. The genetic code is redundant with 64 possible codons, but most organisms typically use a subset of these codons. The codons that are utilized most often in a species are called optimal codons, and those not utilized very often are classified as rare or low-usage codons. Codons can be substituted to reflect the preferred codon usage of the host, a process sometimes called "codon optimization" or "controlling for species codon bias."

[0182] Optimized coding sequences containing codons preferred by a particular prokaryotic or eukaryotic host (see also, Murray et al. (1989) Nucl. Acids Res. 17:477-508) can be prepared, for example, to increase the rate of translation or to produce recombinant RNA transcripts having desirable properties, such as a longer half-life, as compared with transcripts produced from a non-optimize sequence. Translation stop codons can also be modified to reflect host preference. For example, typical stop codons for *S. cerevisiae* and mammals are UAA and UGA, respectively. The typical stop codon

for monocotyledonous plants is UGA, whereas insects and E. *coli* commonly use UAA as the stop codon (Dalphin et al. (1996) Nucl. Acids Res. 24: 216-218). Methodology for optimizing a nucleotide sequence for expression in a plant is provided, for example, in U.S. Pat. No. 6,015,891, and the references cited therein.

[0183] Those of skill in the art will recognize that, due to the degenerate nature of the genetic code, a variety of DNA compounds differing in their nucleotide sequences can be used to encode a given enzyme of the disclosure. The native DNA sequence encoding the biosynthetic enzymes described above are referenced herein merely to illustrate an embodiment of the disclosure, and the disclosure includes DNA compounds of any sequence that encode the amino acid sequences of the polypeptides and proteins of the enzymes utilized in the methods of the disclosure. In similar fashion, a polypeptide can typically tolerate one or more amino acid substitutions, deletions, and insertions in its amino acid sequence without loss or significant loss of a desired activity. The disclosure includes such polypeptides with different amino acid sequences than the specific proteins described herein so long as they modified or variant polypeptides have the enzymatic anabolic or catabolic activity of the reference polypeptide. Furthermore, the amino acid sequences encoded by the DNA sequences shown herein merely illustrate embodiments of the disclosure.

[0184] In addition, homologs of enzymes useful for generating metabolites are encompassed by the microorganisms and methods provided herein.

[0185] As used herein, two proteins (or a region of the proteins) are substantially homologous when the amino acid sequences have at least about 30%, 40%, 50% 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity. To determine the percent identity of two amino acid sequences, or of two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). In one embodiment, the length of a reference sequence aligned for comparison purposes is at least 30%, typically at least 40%, more typically at least 50%, even more typically at least 60%, and even more typically at least 70%, 80%, 90%, 100% of the length of the reference sequence. The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position (as used herein amino acid or nucleic acid "identity" is equivalent to amino acid or nucleic acid "homology"). The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.

[0186] When "homologous" is used in reference to proteins or peptides, it is recognized that residue positions that are not identical often differ by conservative amino acid substitutions. A "conservative amino acid substitution" is one in which an amino acid residue is substituted by another amino acid residue having a side chain (R group) with similar chemical properties (e.g., charge or hydrophobicity). In general, a conservative amino acid substitution will not substantially

change the functional properties of a protein. In cases where two or more amino acid sequences differ from each other by conservative substitutions, the percent sequence identity or degree of homology may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well known to those of skill in the art (see, e.g., Pearson et al., 1994, hereby incorporated herein by reference).

[0187] The following six groups each contain amino acids that are conservative substitutions for one another: 1) Serine (S), Threonine (T); 2) Aspartic Acid (D), Glutamic Acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) Isoleucine (I), Leucine (L), Methionine (M), Alanine (A), Valine (V), and 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W).

[0188] Sequence homology for polypeptides, which is also referred to as percent sequence identity, is typically measured using sequence analysis software. See, e.g., the Sequence Analysis Software Package of the Genetics Computer Group (GCG), University of Wisconsin Biotechnology Center, 910 University Avenue, Madison, Wis. 53705. Protein analysis software matches similar sequences using measure of homology assigned to various substitutions, deletions and other modifications, including conservative amino acid substitutions. For instance, GCG contains programs such as "Gap" and "Bestfit" which can be used with default parameters to determine sequence homology or sequence identity between closely related polypeptides, such as homologous polypeptides from different species of organisms or between a wild type protein and a mutein thereof. See, e.g., GCG Version 6.1. [0189] A typical algorithm used comparing a molecule sequence to a database containing a large number of sequences from different organisms is the computer program BLAST (Altschul, S. F., et al. (1990) "Basic local alignment search tool." J. Mol. Biol. 215:403-410; Gish, W. and States, D. J. (1993) "Identification of protein coding regions by database similarity search." Nature Genet. 3:266-272; Madden, T. L., et al. (1996) "Applications of network BLAST server" Meth. Enzymol. 266:131-141; Altschul, S. F., et al. (1997) "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs." Nucleic Acids Res. 25:3389-3402; Zhang, J. and Madden, T. L. (1997) "PowerBLAST: A new network BLAST application for interactive or automated sequence analysis and annotation." Genome Res. 7:649-656), especially blastp or tblastn (Altschul, S. F., et al. (1997) "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs." Nucleic Acids Res. 25:3389-3402). Typical parameters for BLASTp are: Expectation value: 10 (default); Filter: seg (default); Cost to open a gap: 11 (default); Cost to extend a gap: 1 (default); Max. alignments: 100 (default); Word size: 11 (default); No. of descriptions: 100 (default); Penalty Matrix: BLOWSUM62.

[0190] When searching a database containing sequences from a large number of different organisms, it is typical to compare amino acid sequences. Database searching using amino acid sequences can be measured by algorithms other than blastp known in the art. For instance, polypeptide sequences can be compared using FASTA, a program in GCG Version 6.1. FASTA provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences (Pearson, W. R. (1990) "Rapid and Sensitive Sequence Comparison with FASTP and FASTA" Meth. Enzymol. 183:63-98). For example, percent sequence identity between amino acid sequences can be

determined using FASTA with its default parameters (a word size of 2 and the PAM250 scoring matrix), as provided in GCG Version 6.1, hereby incorporated herein by reference.

[0191] It is understood that a range of microorganisms can be modified to include recombinant metabolic pathways suitable for the production of C3-C5 alcohols, including isobutanol. In various embodiments, microorganisms may be selected from bacterial or yeast microorganisms. Microorganisms for the production of C3-C5 alcohols, including isobutanol may be selected based on certain characteristics: [0192] One characteristic may include the ability to metabolize a carbon source in the presence of a C3-C5 alcohol, including isobutanol. A microorganism capable of metabolizing a carbon source at a high isobutanol concentration is more suitable as a production microorganism compared to a microorganism capable of metabolizing a carbon source at a low isobutanol concentration. Another characteristic may include the property that the microorganism is selected to convert various carbon sources into C3-C5 alcohols, including isobutanol. Accordingly, in one embodiment, the recombinant microorganism herein disclosed can convert a variety of carbon sources to products, including but not limited to glucose, galactose, mannose, xylose, arabinose, lactose, sucrose, and mixtures thereof.

[0193] Another characteristic specific to a yeast microorganism may include the property that the microorganism is able to metabolize a carbon source in the absence of pyruvate decarboxylase (PDC). In an embodiment, it is preferable that the yeast microorganism is able to metabolize 5- and 6-carbon sugar in the absence of PDC. In one embodiment, it is even more preferred that a yeast microorganism is able to grow on 5- and 6-carbon sugars in the absence of PDC.

[0194] Another characteristic may include the property that the wild-type or parental microorganism is non-fermenting. In other words, it cannot metabolize a carbon source anaerobically while the yeast is able to metabolize a carbon source in the presence of oxygen. Non-fermenting yeast refers to both naturally occurring yeasts as well as genetically modified yeast. During anaerobic fermentation with fermentative yeast, the main pathway to oxidize the NADH from glycolysis is through the production of ethanol. Ethanol is produced by alcohol dehydrogenase (ADH) via the reduction of acetaldehyde, which is generated from pyruvate by pyruvate decarboxylase (PDC).

[0195] Thus, in one embodiment, a fermentative yeast can be engineered to be non-fermentative by the reduction or elimination of the native PDC activity. Thus, most of the pyruvate produced by glycolysis is not consumed by PDC and is available for the isobutanol pathway. Deletion of this pathway increases the pyruvate and the reducing equivalents available for the isobutanol pathway. Fermentative pathways contribute to low yield and low productivity of isobutanol. Accordingly, deletion of PDC may increase yield and productivity of isobutanol. In one embodiment, the yeast microorganisms may be selected from the "Saccharomyces Yeast Clade", defined as an ascomycetous yeast taxonomic class by Kurtzman and Robnett in 1998 ("Identification and phylogeny of ascomycetous yeast from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences." Antonie van Leeuwenhoek 73: 331-371, see FIG. 2 of Leeuwenhook reference). They were able to determine the relatedness of yeast of approximately 500 yeast species by comparing the nucleotide sequence of the D1/D2 domain at the 5' end of the gene encoding the large ribosomal subunit 26S. In pair-wise

comparisons of the D1/D2 nucleotide sequence of *S. cerevisiae* and the two most distant yeast in the *Saccharomyces* clade: *K. lactic* and *K. marxianus*, yeast from this clade share greater than 80% identity.

[0196] An ancient whole genome duplication (WGD) event occurred during the evolution of hemiascomycete yeast was discovered using comparative genomics tools (Kellis et al 2004 "Proof and evolutionary analysis of ancient genome duplication in the yeast *S. cerevisiae.*" *Nature* 428:617-624. Dujon et al 2004 "Genome evolution in yeasts." *Nature* 430: 35-44. Langkjaer et al 2003 "Yeast genome duplication was followed by asynchronous differentiation of duplicated genes." *Nature* 428:848-852. Wolfe and Shields 1997 "Molecular evidence for an ancient duplication of the entire yeast genome." *Nature* 387:708-713.) Using this major evolutionary event, yeast can be divided into species that diverged from a common ancestor following the WGD event (termed "post-WGD yeast" herein) and species that diverged from the yeast lineage prior to the WGD event (termed "pre-WGD yeast" herein).

[0197] Accordingly, in one embodiment, the yeast microorganism may be selected from a post-WGD yeast genus, including but not limited to *Saccharomyces* and *Candida*. The favored post-WGD yeast species include: *S. cerevisiae*, *S. uvarum*, *S. bayanus*, *S. paradoxus*, *S. castelli*, and *C. glabrata*.

[0198] In another embodiment, a method provided herein includes a recombinant organism that is a *Saccharomyces* sensu stricto yeast microorganism. In one aspect, a *Saccharomyces* sensu stricto yeast microorganism is selected from one of the species: *S. cerevisiae*, *S. cerevisiae*, *S. kudriavzevii*, *S. mikatae*, *S. bayanus*, *S. uvarum*, *S. carocanis* or hybrids thereof.

[0199] In another embodiment, the yeast microorganism may be selected from a pre-whole genome duplication (pre-WBD) yeast genus including but not limited to *Saccharomyces, Kluyveromyces, Issatchenkia, Candida, Pichia, Debaryomyces, Hansenula, Pachysolen, Yarrowia* and, *Schizosaccharomyces*. Representative pre-WGD yeast species include: *S. kluyveri, K. thermotolerans, K. marxianus, K. waltii, K. lactis, C. tropicalis, P. pastoris, P. anomala, P. stipitis, D. hansenii, H. anomala, P. tannophilis, I. orientalis, Y. lipolytica, and S. pombe.*

[0200] A yeast microorganism may be either Crabtreenegative or Crabtree-positive. A yeast cell having a Crabtreenegative phenotype is any yeast cell that does not exhibit the Crabtree effect. The term "Crabtree-negative" refers to both naturally occurring and genetically modified organisms. Briefly, the Crabtree effect is defined as the inhibition of oxygen consumption by a microorganism when cultured under aerobic conditions due to the presence of a high concentration of glucose (e.g., 50 g-glucose L⁻¹). In other words, a yeast cell having a Crabtree-positive phenotype continues to ferment irrespective of oxygen availability due to the presence of glucose, while a yeast cell having a Crabtree-negative phenotype does not exhibit glucose mediated inhibition of oxygen consumption.

[0201] Accordingly, in one embodiment the yeast microorganism may be selected from a yeast with a Crabtree-negative phenotype including but not limited to the following genera: *Kluyveromyces, Pichia, Issatchenkia, Hansenula,* and *Candida.* Crabtree-negative species include but are not limited to: *K. lactis, K. marxianus, P. anomala, P. stipitis, H. anomala, I. orientalis,* and *C. utilis.* **[0202]** In another embodiment, the yeast microorganism may be selected from a yeast with a Crabtree-positive phenotype, including but not limited to *Saccharomyces, Kluyveromyces, Zygosaccharomyces, Debaryomyces, Pichia* and *Schizosaccharomyces.* Crabtree-positive yeast species include but are not limited to: *S. cerevisiae, S. uvarum, S. bayanus, S. paradoxus, S. castelli, S. kluyveri, K. thermotolerans, C. glabrata, Z. bailli, Z. rouxii, D. hansenii, P. pastorius,* and *S. pombe.*

[0203] Bacterial Microorganisms may be selected from a number of genera, including but not limited to *Arthrobacter*, *Bacillus, Brevibacterium, Clostridium, Corynebacterium, Cyanobacterium, Escherichia, Gluconobacter, Lactobacillus, Nocardia, Pseudomonas, Rhodococcus, Saccharomyces, Shewanella, Streptomyces, Xanthomonas, and Zymomonas. In another embodiment, such hosts are <i>Corynebacterium, Cyanobacterium, E. coli* or *Pseudomonas.* In another embodiment, such hosts are *E. coli* W3110, *E. coli* B, *Pseudomonas oleovorans, Pseudomonas fluorescens,* or *Pseudomonas putida.*

[0204] One exemplary metabolic pathway for the conversion of a carbon source to a C3-C5 alcohol via pyruvate begins with the conversion of glucose to pyruvate via glycolysis. Glycolysis also produces 2 moles of NADH and 2 moles of ATP. Two moles of pyruvate are then used to produce one mole of isobutanol (PCT/US2006/041602, PCT/US2008/053514). Alternative isobutanol pathways have been described in International Patent Application No PCT/US2006/041602 and in Dickinson et al., *Journal of Biological Chemistry* 273:25751-15756 (1998).

[0205] Accordingly, the engineered isobutanol pathway to convert pyruvate to isobutanol can be, but is not limited to, the following reactions:

1. 2 pyruvate \rightarrow acetolactate+CO₂

2. acetolactate+NADPH→2,3-dihydroxyisovalerate+ NADP⁺

3. 2,3-dihydroxyisovalerate->alpha-ketoisovalerate

4. alpha-ketoisovalerate \rightarrow isobutyraldehyde+CO₂

5. isobutyraldehyde+NADPH→isobutanol+NADP+

[0206] These reactions are carried out by the enzymes 1) Acetolactate Synthase (ALS), 2) Ketol-acid Reducto-Isomerase (KARI), 3) Dihydroxy-acid dehydratase (DHAD), 4) Keto-isovalerate decarboxylase (KIVD), and 5) an Alcohol Dehydrogenase (ADH).

[0207] In another embodiment, the microorganism is engineered to overexpress these enzymes. For example, ALS can be encoded by the alsS gene of *B. subtilis*, alsS of *L. lactis*, or the ilvK gene of *K. pneumonia*. For example, KARI can be encoded by the ilvC genes of *E. coli*, *C. glutamicum*, *M. maripaludis*, or *Piromyces* sp E2. For example, DHAD can be encoded by the ilvD genes of *E. coli*, *L. lactis*, or *C. glutamicum*, or by the ILV3 gene from *S. cerevisiae*. KIVD can be encoded by the kivd gene of *L. lactis*. ADH can be encoded by ADH2, ADH6, or ADH7 of *S. cerevisiae*, by the adhA gene product of *L. lactis*, or by an ADH from *D. melanogaster*.

[0208] The microorganism of the invention may be engineered to have increased ability to convert pyruvate to a C3-C5 alcohol, including isobutanol. In one embodiment, the microorganism may be engineered to have increased ability to convert pyruvate to isobutyraldehyde. In another embodiment, the microorganism may be engineered to have increased ability to convert pyruvate to keto-isovalerate. In another embodiment, the microorganism may be engineered to have increased ability to convert pyruvate to keto-isovalerate. In another embodiment, the microorganism may be engineered to have increased ability to convert pyruvate to keto-isovalerate.

to have increased ability to convert pyruvate to 2,3-dihydroxyisovalerate. In another embodiment, the microorganism may be engineered to have increased ability to convert pyruvate to acetolactate.

[0209] Furthermore, any of the genes encoding the foregoing enzymes (or any others mentioned herein (or any of the regulatory elements that control or modulate expression thereof)) may be optimized by genetic/protein engineering techniques, such as directed evolution or rational mutagenesis.

[0210] It is understood that various microorganisms can act as "sources" for genetic material encoding target enzymes suitable for use in a recombinant microorganism provided herein. For example, In addition, genes encoding these enzymes can be identified from other fungal and bacterial species and can be expressed for the modulation of this pathway. A variety of eukaryotic organisms could serve as sources for these enzymes, including, but not limited to, Drosophila spp., including D. melanogaster, Saccharomyces spp., including S. cerevisiae and S. uvarum, Kluyveromyces spp., including K. thermotolerans, K. lactis, and K. marxianus, Pichia spp., Hansenula spp., including H. polymorpha, Candida spp., Trichosporon spp., Yamadazyma spp., including Y stipitis, Torulaspora pretoriensis, Schizosaccharomyces spp., including S. pombe, Cryptococcus spp., Aspergillus spp., Neurospora spp., or Ustilago spp. Sources of genes from anaerobic fungi include, but not limited to, Piromyces spp., Orpinomyces spp., or Neocallimastix spp. Sources of prokaryotic enzymes that are useful include, but not limited to, Escherichia coli, Klebsiella spp., including K. pneumoniae, Zymomonas mobilis, Staphylococcus aureus, Bacillus spp., Clostridium spp., Corynebacterium spp., Pseudomonas spp., Lactococcus spp., Enterobacter spp., and Salmonella spp.

Methods in General

Gene Expression

[0211] In another embodiment a method of producing a recombinant microorganism that converts a suitable carbon substrate to C3-C5 alcohols such as isobutanol is provided. The method includes transforming a microorganism with one or more recombinant polynucleotides encoding polypeptides that include but are not limited to, for example, ALS, KARI, DHAD, KIVD, ADH and a transhydrogenase. Polynucleotides that encode enzymes useful for generating metabolites including homologs, variants, fragments, related fusion proteins, or functional equivalents thereof, are used in recombinant nucleic acid molecules that direct the expression of such polypeptides in appropriate host cells, such as bacterial or yeast cells. It is understood that the addition of sequences which do not alter the encoded activity of a polynucleotide, such as the addition of a non-functional or non-coding sequence, is a conservative variation of the basic nucleic acid. The "activity" of an enzyme is a measure of its ability to catalyze a reaction resulting in a metabolite, i.e., to "function", and may be expressed as the rate at which the metabolite of the reaction is produced. For example, enzyme activity can be represented as the amount of metabolite produced per unit of time or per unit of enzyme (e.g., concentration or weight), or in terms of affinity or dissociation constants.

[0212] Those of skill in the art will recognize that, due to the degenerate nature of the genetic code, a variety of DNA compounds differing in their nucleotide sequences can be

used to encode a given amino acid sequence of the disclosure. The native DNA sequence encoding the biosynthetic enzymes described herein are referenced herein merely to illustrate an embodiment of the disclosure, and the disclosure includes DNA compounds of any sequence that encode the amino acid sequences of the polypeptides and proteins of the enzymes utilized in the methods of the disclosure. In similar fashion, a polypeptide can typically tolerate one or more amino acid substitutions, deletions, and insertions in its amino acid sequence without loss or significant loss of a desired activity. The disclosure includes such polypeptides with alternate amino acid sequences, and the amino acid sequences encoded by the DNA sequences shown herein merely illustrate embodiments of the disclosure.

[0213] The disclosure provides nucleic acid molecules in the form of recombinant DNA expression vectors or plasmids, as described in more detail below, that encode one or more target enzymes. Generally, such vectors can either replicate in the cytoplasm of the host microorganism or integrate into the chromosomal DNA of the host microorganism. In either case, the vector can be a stable vector (i.e., the vector remains present over many cell divisions, even if only with selective pressure) or a transient vector (i.e., the vector is gradually lost by host microorganisms with increasing numbers of cell divisions). The disclosure provides DNA molecules in isolated (i.e., not pure, but existing in a preparation in an abundance and/or concentration not found in nature) and purified (i.e., substantially free of contaminating materials or substantially free of materials with which the corresponding DNA would be found in nature) forms.

[0214] Provided herein are methods for the expression of one or more of the genes involved in the production of beneficial metabolites and recombinant DNA expression vectors useful in the method. Thus, included within the scope of the disclosure are recombinant expression vectors that include such nucleic acids. The term expression vector refers to a nucleic acid that can be introduced into a host microorganism or cell-free transcription and translation system. An expression vector can be maintained permanently or transiently in a microorganism, whether as part of the chromosomal or other DNA in the microorganism or in any cellular compartment, such as a replicating vector in the cytoplasm. An expression vector also comprises a promoter that drives expression of an RNA, which typically is translated into a polypeptide in the microorganism or cell extract. For efficient translation of RNA into protein, the expression vector also typically contains a ribosome-binding site sequence positioned upstream of the start codon of the coding sequence of the gene to be expressed. Other elements, such as enhancers, secretion signal sequences, transcription termination sequences, and one or more marker genes by which host microorganisms containing the vector can be identified and/or selected, may also be present in an expression vector. Selectable markers, i.e., genes that confer antibiotic resistance or sensitivity, are used and confer a selectable phenotype on transformed cells when the cells are grown in an appropriate selective medium.

[0215] The various components of an expression vector can vary widely, depending on the intended use of the vector and the host cell(s) in which the vector is intended to replicate or drive expression. Expression vector components suitable for the expression of genes and maintenance of vectors in *E. coli*, yeast, *Streptomyces*, and other commonly used cells are widely known and commercially available. For example, suitable promoters for inclusion in the expression vectors of the

disclosure include those that function in eukaryotic or prokaryotic host microorganisms. Promoters can comprise regulatory sequences that allow for regulation of expression relative to the growth of the host microorganism or that cause the expression of a gene to be turned on or off in response to a chemical or physical stimulus. For *E. coli* and certain other bacterial host cells, promoters derived from genes for biosynthetic enzymes, antibiotic-resistance conferring enzymes, and phage proteins can be used and include, for example, the galactose, lactose (lac), maltose, tryptophan (trp), beta-lactamase (bla), bacteriophage lambda PL, and T5 promoters. In addition, synthetic promoters, such as the tac promoter (U.S. Pat. No. 4,551,433), can also be used. For *E. coli* expression vectors, it is useful to include an *E. coli* origin of replication, such as from pUC, p1P, p1, and pBR.

[0216] Thus, recombinant expression vectors contain at least one expression system, which, in turn, is composed of at least a portion of PKS and/or other biosynthetic gene coding sequences operably linked to a promoter and optionally termination sequences that operate to effect expression of the coding sequence in compatible host cells. The host cells are modified by transformation with the recombinant DNA expression vectors of the disclosure to contain the expression system sequences either as extrachromosomal elements or integrated into the chromosome.

[0217] Moreover, methods for expressing a polypeptide from a nucleic acid molecule that are specific to yeast microorganisms are well known. For example, nucleic acid constructs that are used for the expression of heterologous polypeptides within Kluvveromyces and Saccharomyces are well known (see, e.g., U.S. Pat. Nos. 4,859,596 and 4,943, 529, each of which is incorporated by reference herein in its entirety for Kluyveromyces and, e.g., Gellissen et al., Gene 190(1):87-97 (1997) for Saccharomyces. Yeast plasmids have a selectable marker and an origin of replication, also known as Autonomously Replicating Sequences (ARS). In addition certain plasmids may also contain a centromeric sequence. These centromeric plasmids are generally a single or low copy plasmid. Plasmids without a centromeric sequence and utilizing either a 2 micron (S. cerevisiae) or 1.6 micron (K. lactis) replication origin are high copy plasmids. The selectable marker can be either prototrophic, such as HIS3, TRP1, LEU2, URA3 or ADE2, or antibiotic resistance, such as, bar, ble, hph, or kan.

[0218] A nucleic acid of the disclosure can be amplified using cDNA, mRNA or alternatively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques and those procedures described in the Examples section below. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to nucleotide sequences can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.

[0219] It is also understood that an isolated nucleic acid molecule encoding a polypeptide homologous to the enzymes described herein can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence encoding the particular polypeptide, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced into the polynucleotide by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. In contrast to those positions where it may be

desirable to make a non-conservative amino acid substitutions (see above), in some positions it is preferable to make conservative amino acid substitutions. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan); beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). [0220] Although the effect of an amino acid change varies depending upon factors such as phosphorylation, glycosylation, intra-chain linkages, tertiary structure, and the role of the amino acid in the active site or a possible allosteric site, it is generally preferred that the substituted amino acid is from the same group as the amino acid being replaced. To some extent the following groups contain amino acids which are interchangeable: the basic amino acids lysine, arginine, and histidine; the acidic amino acids aspartic and glutamic acids; the neutral polar amino acids serine, threonine, cysteine, glutamine, asparagine and, to a lesser extent, methionine; the nonpolar aliphatic amino acids glycine, alanine, valine, isoleucine, and leucine (however, because of size, glycine and alanine are more closely related and valine, isoleucine and leucine are more closely related); and the aromatic amino acids phenylalanine, tryptophan, and tyrosine. In addition, although classified in different categories, alanine, glycine, and serine seem to be interchangeable to some extent, and cysteine additionally fits into this group, or may be classified with the polar neutral amino acids.

Overexpression of Heterologous Genes

[0221] Methods for overexpressing a polypeptide from a native or heterologous nucleic acid molecule are well known. Such methods include, without limitation, constructing a nucleic acid sequence such that a regulatory element promotes the expression of a nucleic acid sequence that encodes the desired polypeptide. Typically, regulatory elements are DNA sequences that regulate the expression of other DNA sequences at the level of transcription. Thus, regulatory elements include, without limitation, promoters, enhancers, and the like. For example, the exogenous genes can be under the control of an inducible promoter or a constitutive promoter. Moreover, methods for expressing a polypeptide from an exogenous nucleic acid molecule in yeast are well known. For example, nucleic acid constructs that are used for the expression of exogenous polypeptides within Kluyveromyces and Saccharomyces are well known (see, e.g., U.S. Pat. Nos. 4,859,596 and 4,943,529, for Kluyveromyces and, e.g., Gellissen et al., Gene 190(1):87-97 (1997) for Saccharomyces). Yeast plasmids have a selectable marker and an origin of replication. In addition certain plasmids may also contain a centromeric sequence. These centromeric plasmids are generally a single or low copy plasmid. Plasmids without a centromeric sequence and utilizing either a 2 micron (S. cerevisiae) or 1.6 micron (K. lactis) replication origin are high copy plasmids. The selectable marker can be either prototrophic, such as HIS3, TRP1, LEU2, URA3 or ADE2, or antibiotic resistance, such as, bar, ble, hph, or kan.

[0222] In another embodiment, heterologous control elements can be used to activate or repress expression of endogenous genes. Additionally, when expression is to be repressed or eliminated, the gene for the relevant enzyme, protein or RNA can be eliminated by known deletion techniques.

[0223] As described herein, any microorganism within the scope of the disclosure can be identified by selection techniques specific to the particular enzyme being expressed, over-expressed or repressed. Methods of identifying the strains with the desired phenotype are well known to those skilled in the art. Such methods include, without limitation, PCR. RT-PCR. and nucleic acid hybridization techniques such as Northern and Southern analysis, altered growth capabilities on a particular substrate or in the presence of a particular substrate, a chemical compound, a selection agent and the like. In some cases, immunohistochemistry and biochemical techniques can be used to determine if a cell contains a particular nucleic acid by detecting the expression of the encoded polypeptide. For example, an antibody having specificity for an encoded enzyme can be used to determine whether or not a particular microorganism contains that encoded enzyme. Further, biochemical techniques can be used to determine if a cell contains a particular nucleic acid molecule encoding an enzymatic polypeptide by detecting a product produced as a result of the expression of the enzymatic polypeptide. For example, transforming a cell with a vector encoding acetolactate synthase and detecting increased cytosolic acetolactate concentrations compared to a cell without the vector indicates that the vector is both present and that the gene product is active. Methods for detecting specific enzymatic activities or the presence of particular products are well known to those skilled in the art. For example, the presence of acetolactate can be determined as described by Hugenholtz and Starrenburg, Appl. Microbiol. Biotechnol. 38:17-22 (1992).

Identification of Genes in a Host Microorganism

[0224] Any method can be used to identify genes that encode for enzymes with a specific activity. Generally, homologous or analogous genes with similar activity can be identified by functional, structural, and/or genetic analysis. In most cases, homologous or analogous genes with similar activity will have functional, structural, or genetic similarities. Techniques known to those skilled in the art may be suitable to identify homologous genes and homologous enzymes. Generally, analogous genes and/or analogous enzymes can be identified by functional analysis and will have functional similarities. Techniques known to those skilled in the art may be suitable to identify analogous genes and analogous enzymes. For example, to identify homologous or analogous genes, proteins, or enzymes, techniques may include, but not limited to, cloning a gene by PCR using primers based on a published sequence of a gene/enzyme or by degenerate PCR using degenerate primers designed to amplify a conserved region among a gene. Further, one skilled in the art can use techniques to identify homologous or analogous genes, proteins, or enzymes with functional homology or similarity. Techniques include examining a cell or cell culture for the catalytic activity of an enzyme through in vitro enzyme assays for said activity, then isolating the enzyme with said activity through purification, determining the protein sequence of the enzyme through techniques such as Edman degradation, design of PCR primers to the likely nucleic acid sequence, amplification of said DNA sequence through PCR, and cloning of said nucleic acid sequence. To identify homologous or analogous genes with similar activity, techniques also include comparison of data concerning a candidate gene or enzyme with databases such as BRENDA, KEGG, or MetaCYC. The candidate gene or enzyme may be identified within the above mentioned databases in accordance with the teachings herein. Furthermore, enzymatic activity can be determined phenotypically. For example, ethanol production under fermentative conditions can be assessed. A lack of ethanol production may be indicative of a microorganism lacking an alcohol dehydrogenase capable of reducing acetaldehyde to ethanol.

Genetic Insertions and Deletions

[0225] Any method can be used to introduce a nucleic acid molecule into the chromosomal DNA of a microorganism and many such methods are well known. For example, lithium acetate transformation and electroporation are common methods for introducing nucleic acid into yeast microorganisms. See, e.g., Gietz et al., Nucleic Acids Res. 27:69-74 (1992); Ito et al., J. Bacterol. 153:163-168 (1983); and Becker and Guarente, Methods in Enzymology 194:182-187 (1991). [0226] In an embodiment, the deletion of a gene of interest in a bacterial microorganism, including an E. coli microorganism occurs according to the principle of homologous recombination. According to this embodiment, an integration cassette containing a module comprising at least one marker gene is flanked on either side by DNA fragments homologous to those of the ends of the targeted integration site. After transforming the host microorganism with the cassette by appropriate methods, homologous recombination between the flanking sequences may result in the marker replacing the chromosomal region in between the two sites of the genome corresponding to flanking sequences of the integration cassette. The homologous recombination event may be facilitated by a recombinase enzyme that may be native to the host microorganism or may be heterologous and transiently overexpressed (Datsenko and Wanner, Proc. Natl. Acad. Sci. USA 97, 6640-6645, 2000).

[0227] In an embodiment, the integration of a gene of interest into a DNA fragment or target gene of a yeast microorganism occurs according to the principle of homologous recombination. According to this embodiment, an integration cassette containing a module comprising at least one yeast marker gene and/or the gene to be integrated (internal module) is flanked on either side by DNA fragments homologous to those of the ends of the targeted integration site (recombinogenic sequences). After transforming the yeast with the cassette by appropriate methods, a homologous recombination between the recombinogenic sequences may result in the internal module replacing the chromosomal region in between the two sites of the genome corresponding to the recombinogenic sequences of the integration cassette. (Orr-Weaver et al., Proc Natl Acad Sci USA 78:6354-6358 (1981)) [0228] In an embodiment, the integration cassette for integration of a gene of interest into a yeast microorganism includes the heterologous gene under the control of an appropriate promoter and terminator together with the selectable marker flanked by recombinogenic sequences for integration of a heterologous gene into the yeast chromosome. In an embodiment, the heterologous gene includes an appropriate native gene desired to increase the copy number of a native gene(s). The selectable marker gene can be any marker gene used in yeast, including but not limited to, HIS3, TRP1,

LEU2, URA3, bar, ble, hph, and kan. The recombinogenic sequences can be chosen at will, depending on the desired integration site suitable for the desired application.

[0229] Additionally, in an embodiment pertaining to yeast microorganisms, certain introduced marker genes are removed from the genome using techniques well known to those skilled in the art. For example, URA3 marker loss can be obtained by plating URA3 containing cells in FOA (5-fluoro-orotic acid) containing medium and selecting for FOA resistant colonies (Boeke, J. et al, 1984, *Mol. Gen. Genet*, 197, 345-47).

[0230] Integration of all the genes of a metabolic pathway that lead to a product into the genome of the production strain eliminates the need of a plasmid expression system, as the enzymes are produced from the chromosome. The integration of pathway genes avoids loss of productivity over time due to plasmid loss. This is important for long fermentation times and for fermentations in large scale where the seed train is long and the production strain has to go through many doublings from the first inoculation to the end of the large scale fermentation.

[0231] Integrated genes are maintained in the strain without selection. This allows the construction of production strains that are free of marker genes which are commonly used for maintenance of plasmids. Production strains with integrated pathway genes can contain minimal amounts of foreign DNA since there are no origins of replication and other non coding DNA necessary that have to be in plasmid based systems. The biocatalyst with integrated pathway genes improves the performance of a production process because it avoids energy and carbon requiring processes. These processes are the replication of many copies of plasmids and the production of non-pathway active proteins like marker proteins in the production strain.

[0232] The expression of pathway genes on multi-copy plasmids can lead to overexpression phenotypes for certain genes. These phenotypes can be growth retardation, inclusion bodies, and cell death. Therefore the expression levels of genes on multi copy plasmids has to be controlled effectively by using inducible expression systems, optimizing the time of induction of said expression system, and optimizing the amount of inducer provided. The time of induction has to be correlated to the growth phase of the biocatalyst, which can be followed by measuring of optical density in the fermentation broth.

[0233] A biocatalyst that has all pathway genes integrated on its chromosome is far more likely to allow constitutive expression since the lower number of gene copies may avoid overexpression phenotypes.

[0234] Plasmids disclosed herein were generally based upon parental plasmids described previously (Lutz, R. & Bujard, H. (1997) Nucleic Acids Research 25(6):1203-1210). Plasmids pGV1698 (SEQ ID NO: 112) and pGV1655 (SEQ ID NO: 109) produce optimized levels of isobutanol pathway enzymes in a production host when compared to other expression systems in the art. Compared to the expression of the isobutanol pathway from pSA55 and pSA69 as described in (WO 2008/098227) BIOFUEL PRODUCTION BY RECOMBINANT MICROORGANISMS, pGV1698 and pGV1655 lead to higher expression of *E. coli* llvC and *Bacillus subtilis* AlsS and lower expression levels for *Lactococcus* lactis Kivd and *E. coli* ilvD. These changes are the result of differences in plasmid copy numbers. Also the genes coding for *E. coli* llvD and *E. coli* llvC were codon optimized for *E.*

coli. This leads to optimized expression of the genes and it also avoids recombination of these genes with their native copies on the *E. coli* chromosome, thus stabilizing the production strain. The combination of two plasmids with the pSC101 and the ColE1 origin of replication in one cell as realized in a production strain carrying pGV1698 and pGV1655 is known to be more stable than the combination of two plasmids with p15A and ColE1 origins respectively as was used in the prior art (WO 2008/098227—BIOFUEL PRODUCTION BY RECOMBINANT MICROORGAN-ISMS).

Reduction of Enzymatic Activity

[0235] Host microorganisms within the scope of the invention may have reduced enzymatic activity such as reduced alcohol dehydrogenase activity. The term "reduced" as used herein with respect to a particular enzymatic activity refers to a lower level of enzymatic activity than that measured in a comparable host cell of the same species. Thus, host cells lacking alcohol dehydrogenase activity are considered to have reduced alcohol dehydrogenase activity since most, if not all, comparable host cells of the same species have at least some alcohol dehydrogenase activity. Such reduced enzymatic activities can be the result of lower enzyme expression level, lower specific activity of an enzyme, or a combination thereof. Many different methods can be used to make host cells having reduced enzymatic activity. For example, a host cell can be engineered to have a disrupted enzyme-encoding locus using common mutagenesis or knock-out technology. See, e.g., Methods in Yeast Genetics (1997 edition), Adams, Gottschling, Kaiser, and Stems, Cold Spring Harbor Press (1998), Datsenko and Wanner, Proc. Natl. Acad. Sci. USA 97, 6640-6645, 2000.

[0236] In addition, certain point-mutation(s) can be introduced which results in an enzyme with reduced activity.

[0237] Alternatively, antisense technology can be used to reduce enzymatic activity. For example, host cells can be engineered to contain a cDNA that encodes an antisense molecule that prevents an enzyme from being made. The term "antisense molecule" as used herein encompasses any nucleic acid molecule that contains sequences that correspond to the coding strand of an endogenous polypeptide. An antisense molecule also can have flanking sequences (e.g., regulatory sequences). Thus antisense molecules can be ribozymes or antisense oligonucleotides. A ribozyme can have any general structure including, without limitation, hairpin, hammerhead, or axhead structures, provided the molecule cleaves RNA.

[0238] Host cells having a reduced enzymatic activity can be identified using many methods. For example, host cells having reduced alcohol dehydrogenase activity can be easily identified using common methods, which may include, for example, measuring ethanol formation via gas chromatography.

Increase of Enzymatic Activity

[0239] Host microorganisms of the invention may be further engineered to have increased activity of enzymes. The term "increased" as used herein with respect to a particular enzymatic activity refers to a higher level of enzymatic activity than that measured in a comparable yeast cell of the same species. For example, overexpression of a specific enzyme can lead to an increased level of activity in the cells for that enzyme. Increased activities for enzymes involved in glycolysis or the isobutanol pathway would result in increased productivity and yield of isobutanol.

[0240] Methods to increase enzymatic activity are known to those skilled in the art. Such techniques may include increasing the expression of the enzyme by increasing plasmid copy number and/or use of a stronger promoter and/or use of activating riboswitches, introduction of mutations to relieve negative regulation of the enzyme, introduction of specific mutations to increase specific activity and/or decrease the K_M for the substrate, or by directed evolution. See, e.g., Methods in Molecular Biology (vol. 231), ed. Arnold and Georgiou, Humana Press (2003).

Microorganism in Detail

Microorganism Characterized by the Ability to Produce Isobutanol Under Anaerobic Conditions

[0241] Economic studies indicate that the aeration of a fermentation process leads to increased operating and capital expenses and thus makes such a fermentation process less desirable compared to a fermentation process that operates under anaerobic conditions. In addition, yield and aeration conditions are closely related. For example, oxygen used as the terminal electron acceptor in respiration leads to undesired loss of carbon in the form of carbon dioxide, resulting in a reduced yield of the target compound.

[0242] As exemplified in the examples below, the present inventors have overcome the problem of an oxygen requirement for the production of a fermentation product. For example isobutanol was produced anaerobically at rates, titers and yields comparable to those achieved under microaerobic conditions.

[0243] Thus, in one embodiment, a modified microorganism may produce said fermentation product under anaerobic conditions, conditions at higher rates, and yields, as compared to a the wild-type or parental microorganism.

[0244] In one embodiment, said modified microorganism may be engineered to balance cofactor usage during the production of said fermentation product under anaerobic conditions.

[0245] In a specific aspect, a modified microorganism in which cofactor usage is balanced during the production of isobutanol may allow the microorganism to produce said isobutanol under anaerobic conditions at higher rates and yields as compared to a modified microorganism in which the cofactor usage in not balanced during production of isobutanol. One compound to be produced by the recombinant microorganism according to the present invention is isobutanol. However, the present invention is not limited to isobutanol. The invention may be applicable to any metabolic pathway that is imbalanced with respect to cofactor usage. One of skill in the art is able identify pathways that are imbalanced with respect to cofactor usage and apply this invention to provide recombinant microorganisms in which the same pathway is balanced with respect to cofactor usage. [0246] Any method, including the methods described herein may be used to provide a modified microorganism with

a metabolic pathway for the production of a target compound in which the cofactor usage is balanced; i.e. said metabolic pathway utilizes the same cofactor that is produced during glycolysis.

[0247] In one embodiment, the microorganism may converts glucose, which can be derived from biomass into a target compound under anaerobic conditions with a yield of greater

than 75% of theoretical. In another embodiment, the yield is greater than 80% of theoretical. In another embodiment the yield is greater than 85% of theoretical. In another embodiment, the yield is greater than 90% of theoretical. In another embodiment, the yield is greater than 95% of theoretical. In another embodiment, the yield is greater than 97% of theoretical. In another embodiment, the yield is greater than 97% of theoretical. In another embodiment, the yield is greater than 98% of theoretical. In yet another embodiment, the yield is greater than 98% of theoretical. In still another embodiment, the yield is greater than 99% of theoretical. In still another embodiment, the yield is greater than 99% of theoretical.

[0248] In one aspect, the microorganism may convert glucose, which can be derived from biomass into isobutanol under anaerobic conditions with a yield of greater than 50% of theoretical. In one embodiment, the yield is greater than 60% theoretical. In another embodiment, the yield is greater than 70% of theoretical. In yet another embodiment the yield is greater than 80% of theoretical. In yet another embodiment, the yield is greater than 85% of theoretical. In another embodiment, the yield is greater than 90% of theoretical. In yet another embodiment, the yield is greater than 95% of theoretical. In yet another embodiment, the yield is greater than 97% of theoretical. In yet another embodiment the yield is greater than 98% of theoretical. In yet another embodiment, the yield is greater than 99% of theoretical. In still another embodiment, the yield is approximately 100% of theoretical. [0249] It is understood that while in the present disclosure the yield is exemplified for glucose as a carbon source, the invention can be applied to other carbon sources and the yield may vary depending on the carbon source used. One skilled in the art can calculate yields on various carbon sources. Other carbon sources, such as including but not limited to galactose, mannose, xylose, arabinose, sucrose, lactose, may be used. Further, oligomers or polymers of these and other sugars may be used as a carbon source.

Microorganism Characterized by an Increased Product Yield

[0250] Economic studies indicate that the predominant factor accounting for the production cost for commodity chemicals and fuels from fermentation processes is attributed to the feedstock cost. In fact, as much as 60% of the variable cash operating costs or more may be attributable to feedstock costs. An important measure of the process economics is therefore the product yield. For a biocatalyst to produce a biofuel most economically, a single product is desired. Extra products reduce primary product yield increasing capital and operating costs, particularly if those extra, undesired products, or byproducts have little or no value. Extra products or byproducts also require additional capital and operating costs to separate these products from the product or biofuel of interest or may require additional cost for disposal.

[0251] As exemplified in the examples below, the present inventors have shown that, achieving cofactor balance increases the yield of fermentation products as compared to wild-type or parental organisms.

[0252] In an embodiment, a microorganism is provided in which cofactor usage is balanced during the production of a fermentation product and the microorganism produces the fermentation product at a higher yield compared to a modified microorganism in which the cofactor usage in not balanced. **[0253]** In a specific aspect of the present invention, a microorganism is provided in which cofactor usage is balanced during the production of isobutanol and the microorganism produces isobutanol at a higher yield compared to a modified microorganism in which the cofactor usage in not balanced during the production of isobutanol and the microorganism produces isobutanol at a higher yield compared to a modified microorganism in which the cofactor usage in not balanced.

[0254] One compound to be produced by the recombinant microorganism according to the present invention is isobutanol. However, the present invention is not limited to isobutanol. The invention may be applicable to any microorganism comprising a metabolic pathway that leads to an imbalance with respect to cofactor usage. One of skill in the art is able to identify microorganisms comprising metabolic pathways that lead to an imbalance with respect to cofactor usage and apply this invention to provide recombinant microorganisms in which the microorganism comprising the same metabolic pathway is balanced with respect to cofactor usage.

[0255] Any method, including the methods described herein may be used to provide a modified microorganism with a metabolic pathway for the production of a target compound in which the cofactor usage is balanced; i.e. said metabolic pathway utilizes the same cofactor that is produced during glycolysis.

[0256] In one embodiment, the microorganism may convert glucose, which can be derived from biomass into a target compound with a yield of greater than 75% of theoretical. In another embodiment, the yield is greater than 80% of theoretical. In another embodiment the yield is greater than 85% of theoretical. In another embodiment, the yield is greater than 90% of theoretical. In another embodiment, the yield is greater than 90% of theoretical. In another embodiment, the yield is greater than 95% of theoretical. In another embodiment, the yield is greater than 95% of theoretical. In another embodiment, the yield is greater than 95% of theoretical. In another embodiment, the yield is greater than 97% of theoretical. In another embodiment, the yield is greater than 98% of theoretical. In yet another embodiment, the yield is greater than 99% of theoretical. In still another embodiment, the yield is approximately 100% of theoretical

[0257] In one aspect, the microorganism may convert glucose, which can be derived from biomass into isobutanol with a yield of greater than 75% of theoretical. In one embodiment, the yield is greater than 80% of theoretical. In one embodiment the yield is greater than 85% of theoretical. In another embodiment, the yield is greater than 90% of theoretical. In yet another embodiment, the yield is greater than 95% of theoretical. In yet another embodiment, the yield is greater than 97% of theoretical. In yet another embodiment the yield is greater than 98% of theoretical. In yet another embodiment, the yield is greater than 99% of theoretical. In still another embodiment, the yield is approximately 100% of theoretical. [0258] It is understood that while in the present disclosure the yield is exemplified for glucose as a carbon source, the invention can be applied to other carbon sources and the yield may vary depending on the carbon source used. One skilled in the art can calculate yields on various carbon sources. Other carbon sources, such as including but not limited to galactose, mannose, xylose, arabinose, sucrose, lactose, may be used. Further, oligomers or polymers of these and other sugars may be used as a carbon source.

Microorganism Characterized by Balancing Cofactor Usage

[0259] The ideal production microorganism produces a desirable product at close to theoretical yield. For example the ideal isobutanol producing organism produces isobutanol according to the following equation:

1 glucose→isobutanol+2 CO₂+H₂O

[0260] Accordingly, 66% of the glucose carbon results in isobutanol, while 33% is lost as CO_2 . In exemplary metabolic pathways for the conversion of pyruvate to isobutanol described by Atsumi et al. (Atsumi et al., Nature, 2008 Jan. 3; 451(7174):86-9, which is herein incorporated by reference;

International Patent Application No PCT/US2008/053514, which is herein incorporated by reference) two of the five enzymes used to convert pyruvate into isobutanol according to the metabolic pathway outlined in FIG. 1 require the reduced cofactor nicotinamide adenine dinucleotide phosphate (NADPH). NADPH is produced only sparingly by the cell—the reduced cofactor nicotinamide adenine dinucleotide (NADH) is the preferred equivalent. Respiration is required to produce NADPH in the large quantities required to support high-level production of isobutanol.

[0261] Even If competing pathways can be eliminated or reduced in activity by metabolic engineering, yield is limited to about 83% of theoretical. Carbon loss to carbon dioxide (CO_2) remains the main limitation on yield in the aforementioned metabolic pathway for the production of isobutanol. Reducing the oxygen uptake rate (OUR) of the cells should decrease the loss of carbon to CO_2 because it decreases the metabolic flux through the CO_2 -generating tricarboxylic acid (TCA) cycle and/or pentose phosphate pathway (PPP). However, a modified microorganism utilizing the aforementioned metabolic pathway for the production of isobutanol exhibits drastically decreased specific productivity under conditions where the OUR is decreased and isobutanol production under anaerobic conditions may not be possible.

[0262] The decreased yield and the loss of productivity upon O_2 limitation indicate that the strain uses one or more metabolic pathways to generate the NADPH needed to support isobutanol production. In a modified cell utilizing the aforementioned metabolic pathway the production of isobutanol from glucose results in an imbalance between the cofactors reduced during glycolysis and the cofactors oxidized during the conversion of pyruvate to isobutanol pathway consumes two moles of NADH, the isobutanol pathway consumes two moles of NADPH. This leads to a deficit of two moles of NADPH and overproduction of two moles of NADH per isobutanol molecule produced, a state described henceforth as cofactor imbalance.

[0263] The terms "cofactor balance" or "balanced with respect to cofactor usage" refer to a recombinant microorganism comprising a metabolic pathway converting a carbon source to a fermentation product and a modification that leads to the regeneration of all redox cofactors within the recombinant microorganism producing said fermentation product from a carbon source and wherein the re-oxidation or re-reduction of said redox cofactors does not require the pentose phosphate pathway, the TCA cycle or the generation of additional fermentation products.

[0264] Stated another way, the terms "cofactor balance" or "balanced with respect to cofactor usage" can refer to an advantageous modification that leads to the regeneration of all redox cofactors within the recombinant microorganism producing a fermentation product from a carbon source and wherein said re-oxidation or re-reduction of all redox cofactors does not require the production of byproducts or co-products.

[0265] Stated another way, the terms "cofactor balance" or "balanced with respect to cofactor usage" can refer to an advantageous modification that leads to the regeneration of all redox cofactors within the recombinant microorganism producing a fermentation product from a carbon source under anaerobic conditions and wherein the production of additional fermentation products is not required for re-oxidation or re-reduction of redox cofactors.

[0266] Stated another way, the terms "cofactor balance" or "balanced with respect to cofactor usage" can refer to an advantageous modification that leads to the regeneration of all redox cofactors within the recombinant microorganism producing a fermentation product from a carbon source and wherein said modification increases production of said fermentation product under anaerobic conditions compared to the parental or wild type microorganism and wherein additional fermentation products are not required for the regeneration of said redox cofactors.

[0267] The cell has several options for resolving a cofactor imbalance. One is to change the relative fluxes going from glucose through glycolysis and through the pentose phosphate pathway (PPP). For each glucose molecule metabolized through the PPP, two moles of NADPH are generated in addition to the two moles of NADH that are generated through glycolysis (a total of 4 reducing equivalents). Therefore, use of the PPP results in the generation of excess reducing equivalents since only two moles are consumed during the production of isobutanol. Under anaerobic conditions, and without an alternate electron acceptor, the cell has no way to reoxidize or regenerate these extra cofactors to NADP+ and metabolism thus stops. The excess reducing equivalents must instead be utilized for energy production through aerobic respiration which is only possible under aerobic conditions or for the production of byproducts. Another result of the flux through the PPP is that one additional molecule of CO_2 is lost per molecule of glucose consumed, which limits the yield of isobutanol that can be achieved under aerobic conditions.

[0268] Another way the cell can generate NADPH is via the TCA cycle. Flux through the TCA cycle results in carbon loss through CO_2 and in production of NADH in addition to the NADPH required for the isobutanol pathway. The NADH would have to be utilized for energy production through respiration under aerobic conditions (and without an alternate electron acceptor) or for the production of byproducts. In addition, the TCA cycle likely is not functional under anaerobic conditions and is therefore unsuitable for the production of stoichiometric amounts of NADPH in an anaerobic isobutanol process.

[0269] An economically competitive isobutanol process requires a high yield from a carbon source. Lower yield means that more feedstock is required to produce the same amount of isobutanol. Feedstock cost is the major component of the overall operating cost, regardless of the nature of the feedstock and its current market price. From an economical perspective, this is important because the cost of isobutanol is dependent on the cost of the biomass-derived sugars. An increase in feedstock cost results in an increase in isobutanol cost. Thus, it is desirable to utilize NADH-dependent enzymes for the conversion of pyruvate to isobutanol.

[0270] An enzyme is "NADH-dependent" if it catalyzes the reduction of a substrate coupled to the oxidation of NADH with a catalytic efficiency that is greater than the reduction of the same substrate coupled to the oxidation of NADPH at equal substrate and cofactor concentrations.

[0271] Thus, in one embodiment of the invention, a microorganism is provided in which cofactor usage is balanced during the production of a fermentation product.

[0272] In a specific aspect, a microorganism is provided in which cofactor usage is balanced during the production of isobutanol, in this case, production of isobutanol from pyruvate utilizes the same cofactor that is produced during glycolysis.

[0273] In another embodiment, a microorganism is provided in which cofactor usage is balanced during the production of a fermentation product and the microorganism produces the fermentation product at a higher yield compared to a modified microorganism in which the cofactor usage in not balanced.

[0274] In a specific aspect, a microorganism is provided in which cofactor usage is balanced during the production of isobutanol and the microorganism produces isobutanol at a higher yield compared to a modified microorganism in which the cofactor usage in not balanced.

[0275] In yet another embodiment, a modified microorganism in which cofactor usage is balanced during the production of a fermentation product may allow the microorganism to produce said fermentation product under anaerobic conditions at higher rates, and yields as compared to a modified microorganism in which the cofactor usage in not balanced during production of a fermentation product.

[0276] In a specific aspect, a modified microorganism in which cofactor usage is balanced during the production of isobutanol may allow the microorganism to produce isobutanol under anaerobic conditions at higher rates, and yields as compared to a modified microorganism in which the cofactor usage is not balanced during production of isobutanol.

[0277] One compound to be produced by the recombinant microorganism according to the present invention is isobutanol. However, the present invention is not limited to isobutanol. The invention may be applicable to any metabolic pathway that is imbalanced with respect to cofactor usage. One skilled in the art is able to identify pathways that are imbalanced with respect to cofactor usage and apply this invention to provide recombinant microorganisms in which the same pathway is balanced with respect to cofactor usage. One skilled in the art will recognize that the identified pathways may be of longer or shorter length, contain more or fewer genes or proteins, and require more or fewer cofactors than the exemplary isobutanol pathway. Further, one skilled in the art will recognize that in certain embodiments, such as a recombinant microbial host that produces an excess of NADPH, certain embodiments of the present invention may be adapted to convert NADPH to NADH.

Microorganism Characterized by Providing Cofactor Balance Via Overexpression of a Transhydrogenase

[0278] Conversion of glucose to pyruvate via glycolysis in *E. coli* leads to the production of two moles of NADH. A metabolic pathway that converts pyruvate to a target product that consumes either two moles of NADPH or one mole of NADH and one mole of NADPH leads to cofactor imbalance. For example, the isobutanol metabolic pathway that converts glucose to two moles of pyruvate via glycolysis to 1 mole of isobutanol generates two moles of NADH and consumes two moles of NADPH and thus is imbalanced with respect to cofactor usage.

[0279] The different ways in which the cell can provide NADPH to the isobutanol pathway show that utilization of the TCA cycle as well as the PPP has to be avoided to maximize the yield of the isobutanol process. Loss of CO_2 as a byproduct in isobutanol producing microorganism described in the prior art (Atsumi et al., Nature, 2008 Jan. 3; 451(7174):86-9; International Patent Application No PCT/US2008/053514; International Patent Application No PCT/US2006/041602) indicates that either or both of these two yield-limiting pathways are currently active.

[0280] A Nicotinamide dinucleotide transhydrogenase (hereinafter may be referred to simply as "transhydrogenase") that catalyzes the interconversion of NADH and NADPH as disclosed herein may be used to provide cofactor balance in a metabolic pathway for the production of a target compound that is otherwise imbalanced with respect to cofactor usage and thus decrease the yield loss to CO_2 in such a pathway (FIG. **2**)

[0281] A preferred transhydrogenase under conditions in which the reduced cofactor NADPH is limiting is one that preferentially catalyzes the conversion of NADH to NADPH. For example, membrane-bound transhydrogenases have been described in bacteria that catalyze this reaction. Membrane bound transhydrogenases require energy in form of proton translocation to catalyze the reaction. As long as there is enough energy available to maintain the proton gradient across the cell membrane a transhydrogenase may thus be used to balance an otherwise imbalanced metabolic pathway. However, in some circumstances, a transhydrogenase that catalyzes the conversion of NADPH to NADH may be preferred. However, a preferred transhydrogenase under conditions in which the reduced cofactor NADH is limiting is one that preferentially catalyzes the conversion of NADPH to NADH.

[0282] The expression and specific activity of an endogenously expressed membrane-bound transhydrogenase might not be sufficient to maintain the high metabolic flux through the metabolic pathway for the production of a fermentation product (e.g. for isobutanol) that is required in a commercial process.

[0283] Thus, in one embodiment, the insufficient activity of the membrane-bound transhydrogenase may be compensated by overexpression of the coding genes of a membrane bound transhydrogenase.

[0284] In a preferred embodiment, the *E. coli* pntA (SEQ ID NO: 1) and pntB genes (SEQ ID NO: 3), encoding for the PntA (SEQ ID NO: 2) and PntB (SEQ ID NO: 4) enzymes respectively or homologs thereof may be overexpressed. These genes have been overexpressed in *E. coli* before for characterization of the enzyme (Clarke, D. M. and P. D. Bragg, Journal of Bacteriology, 1985. 162(1): p. 367-373) and have been used to regenerate NADPH cofactor in the production of chiral alcohols from ketones using a whole cell biocatalyst (Weckbecker, A. and W. Hummel, Biotechnology Letters, 2004. 26(22): p. 1739-1744) or to increase production of biosynthesized products that rely on NADPH-dependent biosynthetic pathways (U.S. Pat. No. 5,830,716).

[0285] In one embodiment, the *E. coli* pntAB operon (SEQ ID NO: 1 and SEQ ID NO: 3) is expressed in the presence of the isobutanol pathway. The *E. coli* pntAB operon may be cloned on a medium copy plasmid (p15A origin of replication) under the control of the LtetOl promoter, for example pGV1685 (SEQ ID NO: 111). The high level expression of membrane proteins can lead to the buildup of toxic intermediates and to inclusion bodies. Thus, in another embodiment, different copy numbers of the *E. coli* pntAB operons may be tested to find the optimum expression level of this membrane transhydrogenase.

[0286] In another embodiment, the *E. coli* pntAB operon may be integrated into the chromosome of the microorganism. For example, *E. coli* pntAB may be integrated into the *E. coli* genome.

[0287] In one aspect of the present invention, the pntAB operon may be integrated into the sthA locus of *E. coli* or the

corresponding locus in another microorganism. The sthA gene codes for the soluble transhydrogenase of *E. coli* and has previously been shown to be utilized by the cell for the conversion of NADPH to NADH. To avoid the generation of a futile cycle *E. coli* pntAB may be integrated at the sthA site, thus removing the sthA gene and eliminating this reverse reaction.

[0288] The *E. coli* pntAB operon may be integrated into a wild-type *E. coli* W3110 and then transduced into a recombinant microorganism that produces a product via a metabolic pathway that is imbalanced with respect to cofactor usage. For example, the *E. coli* pntAB operon may be integrated into an isobutanol producing strain in which the isobutanol pathway is integrated into the chromosome.

[0289] For example the *E. coli* pntAB operon may be integrated into the isobutanol pathway strain GEVO1859 which has the pathway genes Bs_alsS1 and Ec_ilvC_coEc integrated into the pflB site and has L1_kivd1 and Ec_ilvD_coEc genes integrated into the adhE site. All genes may be under the control of the LlacOl promoter.

[0290] The soluble E. coli transhydrogenase coded by sthA has been shown to be utilized by the cell for the conversion of NADPH to NADH. However overexpression of sthA was demonstrated to increase the yield of poly(3-hydroxybutyrate) production in E. coli. These results indicate that if a pathway is present in E. coli that consumes NADPH effectively, the soluble transhydrogenase can function in the direction of NADPH production. The advantages of using SthA as opposed to E. coli PntAB are that the soluble protein might be easier to overexpress and that this enzyme is energy independent. The sthA gene may be cloned into pGV1685, replacing E. coli pntAB. Decisive for the success of this approach is the affinity of E. coli llvC (KARI enzyme) for its cofactor and the steady state concentrations of NADH and NADPH in the cell that allow SthA to run "backwards" or in the direction of converting NADH to NADPH. It is to be expected that the concentration of the reduced cofactor NADPH has to be low in order for SthA to supply this cofactor. If this concentration is low enough to limit the activity of E. coli llvC and therefore the flux through the isobutanol pathway then this approach is not suitable for the isobutanol production strain without further modifications. These modifications could be identification of a KARI with a lower K_M for NADPH, or mutagenesis and directed evolution to increase the affinity of E. coli llvC for its cofactor.

[0291] This approach may be used to provide cofactor balance in a metabolic pathway otherwise imbalanced with respect to cofactor usage if the steady state concentrations of NADH and NADPH in the cell are appropriate to allow SthA to run "backwards" or in the direction of converting NADH to NADPH. It is to be expected that the concentration of the reduced cofactor NADPH has to be low in order for SthA to supply this cofactor.

[0292] This embodiment may enable higher yields of a fermentation product in a microorganism. Further, this embodiment may enable economical anaerobic production of a fermentation product, which was not possible without the teachings of this embodiment. Further, this embodiment may enable aerobic production of a fermentation product at higher yield, which was not possible without the teachings of this embodiment.

Microorganism Characterized by Providing Cofactor Balance Via Overexpression of an NADPH-Dependent GAPDH

[0293] Conversion of glucose to pyruvate via glycolysis in *E. coli* leads to the production of two moles of NADH. A

metabolic pathway that converts pyruvate to a target product that consumes either two moles of NADPH or one mole of NADH and one mole of NADPH leads to cofactor imbalance. For example, the isobutanol metabolic pathway that converts glucose to two moles of pyruvate via glycolysis to 1 mole of isobutanol generates two moles of NADH and consumes two moles of NADPH and thus is imbalanced with respect to cofactor usage.

[0294] GAPDH catalyzes the conversion of glyceraldehyde 3-phosphate (GAP) to 1,3-diphosphate glycerate as part of glycolysis. For example, in *E. coli* GAPDH is encoded by gapA which is NADH-dependent and is active in glycolysis as well as in gluconeogenesis [DellaSeta, F., et al., *Characterization of Escherichia coli strains with gapA and gapB genes deleted.* Journal of Bacteriology, 1997. 179(16): p. 5218-5221.]. GAPDH proteins from other organisms vary in their cofactor requirements.

[0295] Thus in an embodiment, a recombinant microorganism that produces a compound may express a GAPDH is that uses the same cofactor as the fermentative pathway for the production of said compound. For example, in case of an isobutanol biosynthetic pathway that consumes two moles of NADPH per mole of pyruvate an NADPH-dependent GAPDH may be utilized to provide a metabolic pathway that is balanced with respect to cofactor usage (FIG. **3**). In such an embodiment, it may also be desirable to increase the concentration of NADPH in the cell by overexpression of other enzymes for the metabolic synthesis of NADPH cofactor. In other embodiments, it may also be desirable to increase the concentration of NADPH in the cell by overexpression of other enzymes for the metabolic synthesis of NADPH cofactor. In other enzymes for the metabolic synthesis of NADPH cofactor.

[0296] Thus, such an NADPH-dependent GAPDH may be expressed in a recombinant microorganism. NADPH-dependent GAPDH enzymes may be identified by analysis with an in vitro enzyme assay. Further, some NADPH-dependent GAPDH enzymes may be identified by analysis of protein identity, similarity, or homology. Further, genes that encode NADPH-dependent GAPDH enzymes may be identified by analysis of gene identity, similarity, or homology.

[0297] One NADPH-dependent GAPDH according to the present invention with reported high activity with NADPH is Gdp1 from Kluyveromyces lactis [Verho, R., et al., Identification of the first fungal NADP-GAPDH from Kluyveromyces lactis. Biochemistry, 2002. 41(46): p. 13833-13838.]. Gdp1 has been expressed in Saccharomyces cerevisiae to improve ethanol fermentations on xylose as a substrate [Verho, R., et al., Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2003. 69(10): p. 5892-5897.] Expression of Gdp1 improved the yield of the fermentation from 18 to 23% and from 24 to 41% when it was coupled to a zwf1 deletion which forces more flux through glycolysis. Purified Gdp1 was shown in the literature to be as active with NAD+ as it is with NADP+. Thus, the intracellular concentrations and more importantly the redox ratio of the cofactors in a recombinant microorganism according to the present invention will dictate which cofactor is used in glycolysis.

[0298] Another NADPH accepting GAPDH is found in *Clostridium acetobutylicum* and is coded by the gene gapC. Additional homologs of NADPH-dependent GAPDH

enzymes may be found in thermotolerant bacteria. Other alternatives of such GAPDH enzymes are those found in cyanobacteria.

[0299] A different class of enzymes that can be used to generate NADPH from glucose during glycolysis is comprised of the NADP+-dependent GAPDH (non-phosphory-lating). Such enzymes are designated as GapN. However, use of this enzyme results in a loss of one ATP per pyruvate produced. Thus, the production of one NADPH is coupled to a reduction of ATP yield by 1 ATP.

[0300] To provide cofactor balance in a recombinant microorganism via an NADPH-dependent GAPDH, it may be necessary to deactivate the native NADH-dependent GAPDH. For example, in the host strain *E. coli* the gapA gene may be deleted.

[0301] Another way to force the cell to produce NADPH with GDP1 is the elimination of flux through the PPP. This can be accomplished by deletion of the gene that encodes 6-Phosphogluconate dehydrogenase or decreasing the activity of 6-Phosphogluconate dehydrogenase. For example, in *E. coli* 6-Phosphogluconate dehydrogenase is encoded by zwf. The mutation of zwf eliminates flux through the PPP and may force the microorganism to utilize glycolysis in which the heterologously expressed GAPDH will utilize the cofactor NADP+ instead of NADH.

[0302] Alternatively, cofactor imbalance in a recombinant microorganism Alternatively, cofactor imbalance in a recombinant microorganism that produces a fermentation product may be alleviated by engineering the native GAPDH to accept NADPH as cofactor. A crystal structure is available from the Palinurus versicolor GAPDH which can be used to model the structures of GDP1, GapA (*E. coli*) and other GAPDH enzymes with different cofactor specificities. It is known that an aspartate residue in the NAD binding site is conserved among the NAD dependent GAPDHs. This residue is replaced by asparagine in GDP1.

[0303] Additional target amino acids may be found using sequence alignments and structure modeling for site directed mutagenesis. The gapA gene can be mutated using saturation mutagenesis or random mutagenesis according to protein engineering methods known to those skilled in the art. The library of mutant genes may be transformed into microorganisms carrying a zwf deletion and expressing a metabolic pathway genes. Mutant enzymes that are NADPH-dependent may be identified in those microorganism that grow on a growth medium. In certain embodiments, it may not be necessary to delete the zwf gene. Alternate genes known to an effect inhibits flux through the pentose phosphate pathway.

[0304] This embodiment may enable higher yields of a fermentation product in a microorganism. Further, this embodiment may enable anaerobic production of a fermentation product, which was not possible without the teachings of this embodiment. Further, this embodiment may enable anaerobic production of a fermentation product at higher yield, which was not possible without the teachings of this embodiment.

Microorganism Characterized by Providing Cofactor Balance Via a Transhydrogenase Cycle

[0305] Conversion of glucose to pyruvate via glycolysis in *E. coli* leads to the production of two moles of NADH. A metabolic pathway that converts pyruvate to a target product

that consumes either two moles of NADPH or one mole of NADH and one mole of NADPH leads to cofactor imbalance. For example, the isobutanol metabolic pathway that converts glucose to two moles of pyruvate via glycolysis to 1 mole of isobutanol generates two moles of NADH and consumes two moles of NADPH and thus is imbalanced with respect to cofactor usage.

[0306] This cofactor imbalance may be resolved using two dehydrogenase enzymes that catalyze the same reaction but use different cofactors. One example for such a pair of enzymes are the malic enzymes MaeA and MaeB. MaeA is NADH-dependent and MaeB is NADPH-dependent and both catalyze the conversion of malate to pyruvate [Bologna, F. P., C. S. Andreo, and M. F. Drincovich, Escherichia coli malic enzymes: Two isoforms with substantial differences in kinetic properties, metabolic regulation, and structure. Journal of Bacteriology, 2007. 189(16): p. 5937-5946.]. The reaction catalyzed by each of these two enzymes is reversible. The kinetics of the two malic enzymes and the different concentrations and redox ratios of the cofactors they use might allow the NADH-dependent enzyme to run in the oxidative direction while the NADPH-dependent enzyme catalyses the reductive direction of the same conversion. In effect the enzymes would catalyze the interconversion of pyruvate and malate coupled to the consumption of NADH and the generation of NADPH (FIG. 4).

[0307] Thus the two malic enzymes may function like a transhydrogenase. This cofactor conversion cycle is dependent on the redox ratios of the cofactors which depends on the kinetics of the enzymes in an metabolic pathway that is imbalanced with respect to cofactor, for example the isobutanol pathway enzyme *E. coli* llvc as well as GapA and the malic enzymes. Homologs of malic enzymes can be identified by those skilled in the art. Those enzymes may be used which show kinetic properties favoring the oxidative conversion with NAD+ as cofactor and the reductive conversion with NADPH. The *E. coli* enzymes may to perform these reactions but enzymes with more favorable kinetics may increase the performance of the cofactor conversion.

[0308] This embodiment may enable higher yields of a fermentation product in a microorganism. Further, this embodiment may enable anaerobic production of a fermentation product, which was not possible without the teachings of this embodiment. Further, this embodiment may enable anaerobic production of a fermentation product at higher yield, which was not possible without the teachings of this embodiment.

Microorganism Characterized by Providing Cofactor Balance Via Metabolic Transhydrogenation Via Ppc or Pyc

[0309] Conversion of glucose to pyruvate via glycolysis in *E. coli* leads to the production of two moles of NADH. A metabolic pathway that converts pyruvate to a target product that consumes either two moles of NADPH or one mole of NADPH and one mole of NADPH leads to cofactor imbalance. For example, the isobutanol metabolic pathway that converts glucose to two moles of pyruvate via glycolysis to 1 mole of isobutanol generates two moles of NADH and consumes two moles of NADPH and thus is imbalanced with respect to cofactor usage.

[0310] To resolve this cofactor imbalance the metabolic flux may be diverted to allow the conversion of at least one mole of NADH into NADPH. Looking at the stoichiometric

network in *E. coli* points to a pathway that allows such a conversion of cofactors (FIG. **5**).

[0311] Flux from PEP to pyruvate can be replaced by flux from PEP to oxaloacetate, to malate, to pyruvate. To redirect the flux in such a way the native conversion from PEP to pyruvate has to be removed from the network by deletion of the genes coding for pyruvate kinase (pykA, pykF). The other enzymes required are phosphoenolpyruvate carboxylase (Ppc) or phosphoenolpyruvate carboxykinase (Pck) for the conversion of PEP to oxaloacetate, malate dehydrogenase (mdh) for the conversion of oxaloacetate to malate and MaeB for the conversion of malate to pyruvate. The choice whether to use ppc or pck for the conversion of PEP to oxaloacetate depends on the energy load of the isobutanol production strain. With the deletion of Pyk the ATP yield of the strain is reduced if Ppc is used. If Pck is used instead the ATP yield is the same as when the flux goes from PEP to pyruvate using Pyk. Under production condition the strain will only need limited amounts of ATP for cell maintenance. This energy requirement might be lower than the two ATP per glucose generated by glycolysis. By overexpressing ppc, pck or both enzymes the energy yield of the conversion of PEP to pyruvate can be varied between one and two moles of ATP.

[0312] The native expression levels of some or all of the enzymes used in the above described conversion from PEP to pyruvate is expected to be insufficient to sustain the high glycolytic flux necessary in the isobutanol production strain. As an example the expression level of mdh is reduced in the presence of glucose and it is further reduced two-fold under anaerobic conditions. Therefore these enzymes may be overexpressed. To allow conversion of 50% of the NADH generated through glycolysis to NADPH the NADH-dependent malic enzyme MaeA may be deleted. Further the enzyme Mgo was reported to catalyze the conversion of malate to oxaloacetate and may be deleted to allow maximum flux in the opposite direction. The thermodynamic equilibrium of the conversion of malate to oxaloacetate lies on the malate side and Mdh catalyzes the reduction of oxaloacetate under anaerobic respiration and under fermentative conditions.

[0313] Flux through the PPP may be avoided by adding the deletion of zwf to the strain which eliminates glucose 6-phosphate 1-dehydrogenase the first committed step of the oxidative PPP.

[0314] This embodiment may enable higher yields of a fermentation product in a microorganism. Further, this embodiment may enable anaerobic production of a fermentation product, which was not possible without the teachings of this embodiment. Further, this embodiment may enable anaerobic production of a fermentation product at higher yield, which was not possible without the teachings of this embodiment.

Yeast Microorganism Characterized by Providing Cofactor Balance

[0315] The aforementioned methods to provide cofactor balance are generally applicable to many microorganisms, including yeast microorganisms. Specifically, however, in yeast, metabolic transhydrogenation may accomplished by introduction of NADPH dependent malic enzyme into yeast. If the conversion of phosphoenol pyruvate to pyruvate by pyruvate kinase is disrupted then the carbon flux can go through a pyruvate kinase bypass that goes from PEP to oxaloacetate to malate and from there to pyruvate. The conversion of oxaloacetate to malate by Mdh consumes one

NADH and the conversion of malate to pyruvate by the heterologous malic enzyme produces one NADPH. NADPH dependent malic enzymes are common in bacteria and one example is E. coli MaeB. If the NADPH cofactor is needed in the mitochondria the malic enzyme expression can be directed into this organelle instead of the cytoplasm by addition of mitochondrial targeting sequence to the N-terminus or C-terminus of the gene. Also, the yeast enzyme Mae1, which is physiologically localized in the mitochondria can be overexpressed. Malate as well as pyruvate is shuttled across the mitochondrial membranes enabling the pyruvate bypass to effectively convert one cytoplasmic NADH into a mitochondrial NADPH. In yeast the complete carbon flux can be diverted in this way since there is no phosphotransferase (pts) system for glucose import and all PEP generated by glycolysis is available. However, one ATP is lost per NADPH produced through the yeast pyruvate kinase bypass.

[0316] Yeast do not have transhydrogenases. The heterologous expression of bacterial, plant or other eukaryotic transhydrogenases in yeast can be used to provide cofactor balance. The transhydrogenases that natively convert NADH to NADPH are generally membrane proteins that use the proton motive force to drive the reaction they are catalyzing. Bacterial transhydrogenases are in the cell membrane while plant and mammalian transhydrogenases are located in the inner mitochondrial membrane. For the heterologous transhydrogenase expression these enzymes can be targeted either to the cytoplasmic membrane or to the mitochondrial membrane in yeast. To achieve this leader sequences have to be added to the heterologous proteins. The mechanisms of membrane targeting are well understood and the direction of normally cytosolic proteins to the mitochondrium has been demonstrated. These targeting mechanisms are well conserved throughout the eukaryotes, which was demonstrated by the use of plant mitochondrial targeting sequences in yeast. Eukaryotic transhydrogenases are expressed in yeast with their native targeting and sorting sequences. Bacterial transhydrogenases are fused to mitochondrial targeting and membrane sorting sequences that have been characterized in yeast membrane proteins.

[0317] An alternative approach for the production of NADPH is the use of biosynthetic pathway enzymes. An NADH kinase could phosphorylate NADH to NADPH. Then the NADP+ needs to be dephosphorylated to NAD+ to maintain NAD+ pool. This can be carried out by an NADP phosphatase.

Microorganisms Characterized by Providing Cofactor Balance Via Engineered Enzymes

[0318] Conversion of one mole of glucose to two moles of pyruvate via glycolysis leads to the production of two moles of NADH. A metabolic pathway that converts pyruvate to a target product that consumes either two moles of NADPH or one mole of NADH and one mole of NADPH leads to cofactor imbalance. One example of such a metabolic pathway is the isobutanol metabolic pathway described by Atsumi et al., (Atsumi et al., 2008, *Nature* 451(7174): 86-9) which converts two moles of pyruvate to one mole of isobutanol. In this five enzyme pathway, two enzymes are dependent upon NADPH: (1) KARI and (2) ADH, encoded by the *E. coli* ilvC and *E. coli* yqhD, respectively.

[0319] To resolve this cofactor imbalance, the present invention provides a recombinant microorganism in which the NADPH-dependent enzymes KARI and ADH are

replaced with enzymes that preferentially depend on NADH (i.e. KARI and ADH enzymes that are NADH-dependent).

[0320] To further resolve this cofactor imbalance, the present invention in another embodiment provides recombinant microorganisms wherein the NADH-dependent KARI and ADH enzymes are overexpressed.

[0321] In one aspect, such enzymes may be identified in nature. In an alternative aspect, such enzymes may be generated by protein engineering techniques including but not limited to directed evolution or site-directed mutagenesis.

[0322] In one embodiment, the two NADPH-dependent enzymes within an isobutanol biosynthetic pathway that converts pyruvate to isobutanol may be replaced with ones that utilize NADH. These two enzymes may be KARI and an alcohol dehydrogenase (ADH).

[0323] In another embodiment, two NADH-dependent enzymes that catalyze the same reaction as the NADH-dependent enzymes are overexpressed. These two enzymes may be KARI and an alcohol dehydrogenase.

[0324] In one aspect, NADH-dependent KARI and ADH enzymes are identified in nature. In another aspect, the NADPH-dependent KARI and ADH enzymes may be engineered using protein engineering techniques including but not limited to directed evolution and site-directed mutagenesis.

[0325] There exist two basic options for engineering NADH-dependent isobutyraldehyde dehydrogenases or ketol-acid reductoisomerases: (1) increase the NADH-dependent activity of an NADPH-dependent enzyme that is active towards the substrate of interest and/or (2) increase the activity of an NADH-dependent enzyme that is not sufficiently active towards the substrate of interest.

NADH-Dependent KARI Enzymes

[0326] As shown in FIG. 1, the ketol-acid reductoisomerase (KARI) enzyme of the isobutanol biosynthetic pathway as disclosed by Atsumi et al (Atsumi et al., 2008, Nature 451(7174): 86-9, herein incorporated by reference in its entirety), requires the cofactor nicotinamide dinucleotide phosphate (NADPH) to convert acetolactate to 2,3-dihydroxyisovalerate. However, under anaerobic conditions, NADPH is produced only sparingly by the cell-nicotinamide adenine dinucleotide (NADH) is the preferred equivalent. Therefore, oxygen is required to produce NADPH in the large quantities to support high-level production of isobutanol. Thus, the production of isobutanol is feasible only under aerobic conditions and the maximum yield that can be achieved with this pathway is limited. Accordingly, KARI enzymes that preferentially utilize NADH rather than NADPH are desirable.

[0327] Other biosynthetic pathways utilize KARI enzymes for the conversion of acetolactate to 2-3-dihydroxyisovalerate. For example, KARI enzymes convert acetolactate to 2-3dihydroxyisovalerate as part of the biosynthetic pathway for the production of 3-methyl-1-butanol (Atsumi et al., 2008, Nature 451(7174): 86-9, herein incorporated by reference in its entirety).

[0328] Yet other biosynthetic pathways utilize KARI to convert 2-aceto-2-hydroxy-butyrate to 2,3-dihydroxy-3-me-thylvalerate. This reaction is part of the biosynthetic pathway for the production of 2-methyl-1-butanol. (Atsumi et al., 2008, Nature 451(7174): 86-9, herein incorporated by reference in its entirety).

[0329] As used herein, the term "KARI" or "KARI enzyme" or "ketol-acid reductoisomerase" are used interchangeably herein to refer to an enzyme that catalyzes the conversion of acetolactate to 2,3-dihydroxyisovalerate and/or the conversion of 2-aceto-2-hydroxy-butyrate to 2,3-dihydroxy-3-methylvalerate. Moreover, these terms can be used interchangeably herein with the terms "acetohydroxy acid isomeroreductase" and "acetohydroxy acid reductoi-somerase."

[0330] Enzymes for use in the compositions and methods of the invention include any enzyme having the ability to convert acetolactate to 2,3-dihydroxyisovalerate and/or the ability to convert 2-aceto-2-hydroxy-butyrate to 2,3-dihydroxy-3-methylvalerate. Such enzymes include, but are not limited to, the *E. coli* ilvC gene product and the *S. cerevisiae* ilv5 gene product, and the KARI enzyme from *Piromyces* sp, *Buchnera aphidicola, Spinacia oleracea, Oryza sativa, Chlamydomonas reinhardtii, Neurospora crassa, Schizosaccharomyces pombe, Laccaria bicolor, Ignicoccus hospitalis, Picrophilus torridus, Acidiphilium cryptum, Cyanobacteria/Synechococcus sp., Zymomonas mobilis, Bacteroides thetaiotaomicron, Methanococcus maripaludis, Vibrio fischeri, Shewanella sp, Gramella forsetti, Psychromonas ingrhamaii, and Cytophaga hutchinsonii.*

[0331] Preferred KARI enzymes are known by the EC number 1.1.1.86 and sequences are available from a vast array of microorganisms, including, but not limited to, Escherichia coli (GenBank Nos: NP_418222 and NC_000913, Saccharomyces cerevisiae (GenBank Nos: NP_013459 and NC 001144. Methanococcus maripaludis (GenBank Nos: CAF30210 and BX957220, and Bacillus subtilis (GenBank Nos: CAB14789 and Z99118) and the KARI enzymes from Piromyces sp (GenBank No: CAA76356), Buchnera aphidicola (GenBank No: AAF13807), Spinacia oleracea (Gen-Bank Nos: Q01292 and CAA40356), Oryza sativa (GenBank No: NP_001056384) Chlamydomonas reinhardtii (Gen-Bank No: XP_001702649), Neurospora crassa (GenBank No: XP_961335), Schizosaccharomyces pombe (GenBank No: NP 001018845), Laccaria bicolor (GenBank No: XP_001880867), Ignicoccus hospitalis (GenBank No: YP_001435197), Picrophilus torridus (GenBank No: YP_023851), Acidiphilium cryptutm (GenBank No: YP_001235669), Cyanobacteria/Synechococcus sp. (Gen-Bank No: YP_473733), Zymomonas mobilis (GenBank No: YP_162876), Bacteroides thetaiotaomicron (GenBank No: NP_810987), Methanococcus maripaludis (GenBank No: YP_001097443), Vibrio fischeri (GenBank No: YP_205911), Shewanella sp (GenBank No: YP_732498), Gramella forsetti (GenBank No: YP_862142), Psychromonas ingrhamaii (GenBank No: YP_942294), and Cytophaga hutchinsonii (GenBank No: YP_677763).

[0332] As will be understood by one of ordinary skill in the art, modified KARI enzymes may be obtained by recombinant or genetic engineering techniques that are routine and well-known in the art. Mutant KARI enzymes can, for example, be obtained by mutating the gene or genes encoding the KARI enzyme of interest by site-directed or random mutagenesis. Such mutations may include point mutations, deletion mutations and insertional mutations. For example, one or more point mutations (e.g., substitution of one or more amino acids with one or more different amino acids) may be used to construct mutant KARI enzymes of the invention.

[0333] Ketol-acid reductoisomerase (KARI; EC 1.1.1.86) catalyzes the reduction of acetolactate to 2,3-dihydroxyisov-

alerate. The two-step reaction involves an alkyl migration and a ketone reduction that occurs at a single active site on the enzyme without dissociation of any reaction intermediates. The enzyme is NADPH-dependent. The cofactor specificity may be expanded or switched so that it will utilize both cofactors and preferentially NADH during the production of isobutanol. A study published in 1997 (Rane, M. J. and K. C. Calvo, Archives of Biochemistry and Biophysics, 1997. 338 (1): p. 83-89) describes a supposed cofactor-switched KARI quadruplet variant of the *E. coli* ilvC gene product with mutations R68D, K69L, K75V and R76D). However, in-house studies indicate that although the ratio NADH/NADPH was 2.5, the specific activity of this variant on NADH was actually worse than wild-type (Table 25), rendering this enzyme not suited for the purpose of this disclosure.

Modified or Mutated KARI Enzymes

[0334] In accordance with the invention, any number of mutations can be made to the KARI enzymes, and in a preferred aspect, multiple mutations can be made to result in an increased ability to utilize NADH for the conversion of aceto-lactate to 2,3-dihydroxyisovalerate. Such mutations include point mutations, frame shift mutations, deletions, and insertions, with one or more (e.g., one, two, three, or four, etc.) point mutations preferred.

[0335] Mutations may be introduced into the KARI enzymes of the present invention using any methodology known to those skilled in the art. Mutations may be introduced randomly by, for example, conducting a PCR reaction in the presence of manganese as a divalent metal ion cofactor. Alternatively, oligonucleotide directed mutagenesis may be used to create the mutant KARI enzymes which allows for all possible classes of base pair changes at any determined site along the encoding DNA molecule. In general, this technique involves annealing an oligonucleotide complementary (except for one or more mismatches) to a single stranded nucleotide sequence coding for the KARI enzyme of interest. The mismatched oligonucleotide is then extended by DNA polymerase, generating a double-stranded DNA molecule which contains the desired change in sequence in one strand. The changes in sequence can, for example, result in the deletion, substitution, or insertion of an amino acid. The doublestranded polynucleotide can then be inserted into an appropriate expression vector, and a mutant or modified polypeptide can thus be produced. The above-described oligonucleotide directed mutagenesis can, for example, be carried out via PCR.

[0336] The invention further includes homologous KARI enzymes which are 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical at the amino acid level to a wild-type KARI enzyme (e.g., encoded by the Ec_ilvC gene or *S. cerevisiae* llv5 gene) and exhibit an increased ability to utilize NADH for the conversion of acetolactate to 2,3-dihydroxyisovalerate. Also included within the invention are KARI enzymes which are 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical at the amino acid level to a KARI enzyme comprising the amino acid sequence set out in SEQ ID NO: 13 and exhibit an increased ability to utilize NADH for the conversion of acetolactate to 2,3-dihydroxyisovalerate. The invention also includes nucleic acid molecules which encode the above described KARI enzymes.

[0337] The invention also includes fragments of KARI enzymes which comprise at least 50, 100, 150, 200, 250, 300,

350, 400, 450, 500, 550, or 600 amino acid residues and retain one or more activities associated with KARI enzymes. Such fragments may be obtained by deletion mutation, by recombinant techniques that are routine and well-known in the art, or by enzymatic digestion of the KARI enzyme(s) of interest using any of a number of well-known proteolytic enzymes. The invention further includes nucleic acid molecules which encode the above described mutant KARI enzymes and KARI enzyme fragments.

[0338] By a protein or protein fragment having an amino acid sequence at least, for example, 50% "identical" to a reference amino acid sequence it is intended that the amino acid sequence of the protein is identical to the reference sequence except that the protein sequence may include up to 50 amino acid alterations per each 100 amino acids of the amino acid sequence of the reference protein. In other words, to obtain a protein having an amino acid sequence at least 50% identical to a reference amino acid sequence, up to 50% of the amino acid residues in the reference sequence may be deleted or substituted with another amino acid, or a number of amino acids up to 50% of the total amino acid residues in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the amino (N-) and/or carboxy (C-) terminal positions of the reference amino acid sequence and/or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence and/or in one or more contiguous groups within the reference sequence. As a practical matter, whether a given amino acid sequence is, for example, at least 50% identical to the amino acid sequence of a reference protein can be determined conventionally using known computer programs such as those described above for nucleic acid sequence identity determinations, or using the CLUSTAL W program (Thompson, J. D., et al., Nucleic Acids Res. 22:4673 4680 (1994)).

[0339] In one aspect, amino acid substitutions are made at one or more of the above identified positions (i.e., amino acid positions equivalent or corresponding to A71, R76, S78, or Q110 of *E. coli* llvC). Thus, the amino acids at these positions may be substituted with any other amino acid including Ala, Asn, Arg, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, and Val. A specific example of a KARI enzyme which exhibits an increased ability to utilize NADH includes an *E. coli* llvC KARI enzyme in which (1) the alanine at position 71 has been replaced with a serine, (2) the arginine at position 76 has been replaced with an aspartic acid, (3) the serine at position 78 has been replaced with an aspartic acid, and/or (4) the glutamine at position 110 has been replaced with valine.

[0340] Polypeptides having the ability to convert acetolactate to 2,3-dihydroxyisovalerate and/or 2-aceto-2-hydroxybutyrate to 2,3-dihydroxy-3-methylvalerate for use in the invention may be isolated from their natural prokaryotic or eukaryotic sources according to standard procedures for isolating and purifying natural proteins that are well-known to one of ordinary skill in the art (see, e.g., Houts, G. E., et al., J. Virol. 29:517 (1979)). In addition, polypeptides having the ability to convert acetolactate to 2,3-dihydroxyisovalerate and/or 2-aceto-2-hydroxy-butyrate to 2,3-dihydroxy-3-methylvalerate may be prepared by recombinant DNA techniques that are familiar to one of ordinary skill in the art (see, e.g., Kotewicz, M. L., et al., *Nucl. Acids Res.* 16:265 (1988); Soltis, D. A., and Skalka, A. M., *Proc. Natl. Acad. Sci. USA* 85:3372 3376 (1988)). [0341] In accordance with the invention, one or more mutations may be made in any KARI enzyme of interest in order to increase the ability of the enzyme to utilize NADH, or confer other properties described herein upon the enzyme, in accordance with the invention. Such mutations include point mutations, frame shift mutations, deletions and insertions. Preferably, one or more point mutations, resulting in one or more amino acid substitutions, are used to produce KARI enzymes having an enhanced or increased ability to utilize NADH, particularly to facilitate the conversion of acetolactate to 2,3dihydroxyisovalerate and/or the conversion of 2-aceto-2-hydroxy-butyrate to 2,3-dihydroxy-3-methylvalerate. In a preferred aspect of the invention, one or more mutations at positions equivalent or corresponding to position A71 (e.g., A71S), R76 (e.g., R76D), S78 (e.g. S78D), and/or Q110 (e.g. Q110V) and/or D146 (e.g. D146G), and/or G185 (e.g. G185R) and/or K433 (e.g. K433E) of the E. coli llvC KARI enzyme may be made to produce the desired result in other KARI enzymes of interest.

[0342] The corresponding positions of the KARI enzymes identified herein (e.g. *E. coli* llvC may be readily identified for other KARI enzymes by one of skill in the art. Thus, given the defined region and the assays described in the present application, one with skill in the art can make one or a number of modifications which would result in an increased ability to utilize NADH, particularly for the conversion of acetolactate to 2,3-dihydroxyisovalerate, in any KARI enzyme of interest. Residues to be modified in accordance with the present invention may include those described in Examples 14, 15, and 16.

[0343] In a preferred embodiment, the modified or mutated KARI enzymes have from 1 to 4 amino acid substitutions in amino acid regions involved in cofactor specificity as compared to the wild-type KARI enzyme proteins. In other embodiments, the modified or mutated KARI enzymes have additional amino acid substitutions at other positions as compared to the respective wild-type KARI enzymes. Thus, modified or mutated KARI enzymes may have at least about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 different residues in other positions as compared to the respective wild-type KARI enzymes. As will be appreciated by those of skill in the art, the number of additional positions that may have amino acid substitutions will depend on the wild-type KARI enzyme used to generate the variants. Thus, in some instances, up to 50 different positions may have amino acid substitutions.

[0344] The nucleotide sequences for several KARI enzymes are known. For instance, the sequences of KARI enzymes are available from a vast array of microorganisms, including, but not limited to, Escherichia coli (GenBank No: NP_418222), Saccharomyces cerevisiae (GenBank Nos: NP_013459, Methanococcus maripaludis (GenBank No: YP 001097443), Bacillus subtilis (GenBank Nos: CAB14789), and the KARI enzymes from Piromyces sp (GenBank No: CAA76356), Buchnera aphidicola (GenBank No: AAF13807), Spinacia oleracea (GenBank Nos: Q01292 and CAA40356), Oryza sativa (GenBank No: NP 001056384) Chlamydomonas reinhardtii (GenBank No: XP_001702649), Neurospora crassa (GenBank No: XP_961335), Schizosaccharomyces pombe (GenBank No: NP 001018845), Laccaria bicolor (GenBank No: XP_001880867), Ignicoccus hospitalis (GenBank No: YP_001435197), Picrophilus torridus (GenBank No: YP_023851), Acidiphilium cryptum (GenBank No: YP_001235669), Cyanobacteria/Synechococcus sp. (Gen-Bank No: YP_473733), Zymomonas mobilis (GenBank No: YP_162876), Bacteroides thetaiotaomicron (GenBank No: NP_810987), Methanococcus maripaludis (GenBank No: YP_001097443), Vibrio fischeri (GenBank No: YP_205911), Shewanella sp (GenBank No: YP_732498), Gramella forsetti (GenBank No: YP_862142), Psychromonas ingrhamaii (GenBank No: YP_942294), and Cytophaga hutchinsonii (GenBank No: YP_677763).

Improved NADH-Dependent Activity

[0345] In one aspect, the NADH-dependent activity of the modified or mutated KARI enzyme is increased.

[0346] In a preferred embodiment, the catalytic efficiency of the modified or mutated KARI enzyme is improved for the cofactor NADH. Preferably, the catalytic efficiency of the modified or mutated KARI enzyme is improved by at least about 5% as compared to the wild-type or parental KARI for NADH. More preferably the catalytic efficiency of the modified or mutated KARI enzyme is improved by at least about 15% as compared to the wild-type or parental KARI for NADH. More preferably, the catalytic efficiency of the modified or mutated KARI enzyme is improved by at least about 25% as compared to the wild-type or parental KARI for NADH. More preferably, the catalytic efficiency of the modified or mutated KARI enzyme is improved by at least about 50% as compared to the wild-type or parental KARI for NADH. More preferably, the catalytic efficiency of the modified or mutated KARI, enzyme is improved by at least about 75% as compared to the wild-type or parental KARI for NADH. More preferably, the catalytic efficiency of the modified or mutated KARI enzyme is improved by at least about 100% as compared to the wild-type or parental KARI for NADH. More preferably, the catalytic efficiency of the modified or mutated KARI enzyme is improved by at least about 300% as compared to the wild-type or parental KARI for NADH. More preferably, the catalytic efficiency of the modified or mutated KARI enzyme is improved by at least about 500% as compared to the wild-type or parental KARI for NADH. More preferably, the catalytic efficiency of the modified or mutated KARI enzyme is improved by at least about 1000% as compared to the wild-type or parental KARI for NADH. More preferably, the catalytic efficiency of the modified or mutated KARI enzyme is improved by at least about 5000% as compared to the wild-type or parental KARI for NADH.

[0347] In a preferred embodiment, the catalytic efficiency of the modified or mutated KARI enzyme with NADH is increased with respect to the catalytic efficiency of the wildtype or parental enzyme with NADPH. Preferably, the catalytic efficiency of the modified or mutated KARI enzyme is at least about 10% of the catalytic efficiency of the wild-type or parental KARI enzyme for NADPH. More preferably, the catalytic efficiency of the modified or mutated KARI enzyme is at least about 25% of the catalytic efficiency of the wildtype or parental KARI enzyme for NADPH. More preferably, the catalytic efficiency of the modified or mutated KARI enzyme is at least about 50% of the catalytic efficiency of the wild-type or parental KARI enzyme for NADPH. More preferably, the catalytic efficiency of the modified or mutated KARI enzyme is at least about 75%, 85%, 95% of the catalytic efficiency of the wild-type or parental KARI enzyme for NADPH.

[0348] In a preferred embodiment, the K_M of the KARI enzyme for NADH is decreased relative to the wild-type or parental enzyme. A change in K_M is evidenced by at least a 5% or greater increase or decrease in K_M compared to the wild-type KARI enzyme. In certain embodiments, modified or mutated KARI enzymes of the present invention may show greater than 10 times decreased K_M for NADH compared to the wild-type or parental KARI enzyme. In certain embodiments, modified or mutated KARI enzyme of the present invention may show greater than 30 times decreased K_M for NADH compared to the wild-type or parental to the wild-type or parental KARI enzyme.

[0349] In a preferred embodiment, the k_{cat} of the KARI enzyme with NADH is increased relative to the wild-type or parental enzyme. A change in k_{cat} is evidenced by at least a 5% or greater increase or decrease in K_M compared to the wild-type KARI enzyme. In certain embodiments, modified or mutated KARI enzymes of the present invention may show greater than 50% increased k_M for NADH compared to the wild-type or parental KARI enzyme. In certain embodiments, modified or mutated KARI enzyme of the present invention may show greater than 100% increased k_{cat} for NADH compared to the wild-type or parental KARI enzymes of the present invention may show greater than 100% increased k_{cat} for NADH compared to the wild-type or parental KARI enzyme. In certain embodiments, modified or mutated KARI enzyme of the present invention for NADH compared to the wild-type or parental to the wild-type or parental KARI enzyme. In certain embodiments, modified or mutated KARI enzyme. In certain enzyme. In certain embodiments, modified or mutated KARI enzyme or parental KARI enzyme. In certain embodiments, modified or mutated KARI enzyme. In certain embodiments, modified or mutated KARI enzyme. In certain embodiments, modified or mutated KARI enzyme or parental KARI enzyme. In certain embodiments, modified or mutated KARI enzyme or parental KARI enzyme.

Cofactor Switch

[0350] In preferred embodiments, the cofactor specificity of the modified or mutated KARI enzyme is altered such that there is a cofactor switch from NADPH to NADH. In other words, these modified or mutated KARI enzymes will have an increase in NADH-dependent activity and a substantially simultaneous decrease in NADPH dependent activity. Thus, the methods of the present invention can be used to change the cofactor preference from NADPH to NADH.

[0351] "Cofactor specificity" is a measure of the specificity of an enzyme for one cofactor over another. Thus, the methods of the present invention may be used to alter the cofactor preference of the target enzyme, such that the preference for the less favored cofactor is increased by 20%, 50%, 100%, 300%, 500%, 1000%, up to 2000%. For example, a number of reductase enzymes have been described that favor NADPH over NADH (see WO 02/22526; WO 02/29019; Mittl, P R., et al., (1994) Protein Sci., 3: 1504 14; Banta, S., et al., (2002) Protein Eng., 15:131 140; all of which are hereby incorporated by reference in their entirety). As the availability of NADPH is often limiting, both in vivo and in vitro, the overall activity of the target protein is often limited. For target proteins that prefer NADPH as a cofactor, it would be desirable to alter the cofactor specificity of the target protein (e.g. a KARI enzyme) to a cofactor that is more readily available, such as NADH.

[0352] In a preferred embodiment, the cofactor specificity of the KARI enzyme is switched. By "switched" herein is meant, that the cofactor preference (in terms of catalytic efficiency (k_{cat}/K_M) of the KARI enzyme is changed to another cofactor Preferably, in one embodiment, by switching cofactor specificity, activity in terms of catalytic efficiency (k_{cat}/K_M) with the cofactor preferred by the wild-type KARI enzyme is reduced, while the activity with the less preferred cofactor is increased. This can be achieved, for example by increasing the k_{cat} for less preferred cofactor over

the preferred cofactor or by decreasing K_M for the less preferred cofactor over the preferred cofactor or both.

[0353] In a preferred embodiment, the KARI enzyme is modified or a mutated to become NADH-dependent. The term "NADH-dependent" refers to the property of an enzyme to preferentially use NADH as the redox cofactor. An NADH-dependent enzyme has a higher catalytic efficiency (k_{cat}/K_M) with the cofactor NADH than with the cofactor NADPH as determined by in vitro enzyme activity assays. Accordingly, the term "NADPH-dependent" refers to the property of an enzyme to preferentially use NADPH as the redox cofactor. An NADPH-dependent" refers to the property of an enzyme to preferentially use NADPH as the redox cofactor. An NADPH dependent enzyme has a higher catalytic efficiency (k_{cat}/K_M) with the cofactor NADPH than with the cofactor NADPH as determined by in vitro enzyme activity assays.

[0354] In a preferred embodiment, the catalytic efficiency of the KARI enzyme for NADH is enhanced relative to the catalytic efficiency with NADPH. The term "catalytic efficiency" describes the ratio of the rate constant \mathbf{k}_{cat} over the Michaelis-Menten constant K_{M} . In one embodiment, the invention is directed to a modified or mutated KARI enzyme that exhibits at least about a 1:10 ratio of catalytic efficiency (k_{cat}/K_M) with NADH over catalytic efficiency with NADPH. In another embodiment, the modified or mutated KARI enzyme exhibits at least about a 1:1 ratio of catalytic efficiency (k_{cat}/K_M) with NADH over catalytic efficiency with NADPH. In yet another embodiment, the modified or mutated KARI enzyme exhibits at least about a 10:1 ratio of catalytic efficiency (k_{cat}/K_M) with NADH over catalytic efficiency with NADPH. In yet another embodiment, the modified or mutated KARI enzyme exhibits at least about a 100:1 ratio of catalytic efficiency (k_{cat}/K_M) with NADH over catalytic efficiency with NADPH. In an exemplary embodiment, the modified or mutated KARI enzyme exhibits at least about a 100:1 ratio of catalytic efficiency (k_{cat}/K_M) with NADH over catalytic efficiency with NADPH.

[0355] In a preferred embodiment, the K_M of the KARI enzyme for NADH is decreased relative to the K_M of the KARI enzyme for NADPH. In one embodiment, the invention is directed to a modified or mutated KARI enzyme that exhibits at least about a 10:1 ratio of K_M for NADH over K_M for NADPH. In one embodiment, the invention is directed to a modified or mutated KARI enzyme that exhibits at least about a 1:1 ratio of K_M for NADH over K_M for NADPH. In one embodiment, the invention is directed to a modified or mutated KARI enzyme that exhibits at least about a 1:1 ratio of K_M for NADH over K_M for NADPH. In a preferred embodiment, the invention is directed to a modified or mutated KARI enzyme that exhibits at least about a 1:10 ratio of K_M for NADH over K_M for NADPH. In yet another embodiment, the invention is directed to a modified or mutated KARI enzyme that exhibits at least about a 1:20, 1:1000 ratio of K_M for NADH over K_M for NADH.

[0356] In another preferred embodiment, the k_{cat} of the KARI enzyme with NADH is increased relative to k_{cat} with NADPH. In certain embodiments, modified or mutated KARI enzymes of the present invention may show greater than 0.8:1 ratio of k_{cat} with NADH over k_{cat} with NADPH. In certain embodiments, modified or mutated KARI enzymes of the present invention may show greater than 1:1 ratio of k_{cat} with NADPH. In certain embodiments, modified or mutated KARI enzymes of the present invention may show greater than 1:1 ratio of k_{cat} with NADPH. In a preferred embodiments, modified or mutated KARI enzymes of the present invention may show greater than 10:1 ratio of k_{cat} with NADPH. In certain embodiments, modified or mutated KARI enzymes of the present invention may show greater than 10:1 ratio of k_{cat} with NADPH. In certain embodiments, modified or mutated

KARI enzymes of the present invention may show greater than 100:1 ratio of k_{cat} with NADH over k_{cat} with NADPH

Identification of Corresponding Amino Acid Substitutions in Homologous Enzymes

[0357] An amino acid sequence alignment of 22 KARIs (including *E. coli* llvC, spinach KARI and rice KARI) was performed (FIG. 6). Some KARIs aligned with the *E. coli* KARI sequence at amino acid positions 71, 76, 78, and 110 and this allows to conclude that the beneficial mutations found for *E. coli* KARI confer the same effects in these KARI enzymes. Other sequences show deletions at about these positions and the sequence alignment is not sufficient to make any predictions.

[0358] A structure alignment of *E. coli* KARI (PDB ID NO. 1YRL) with rice KARI (PDB ID NO. 3FR8) as a representative of the shorter loop group was performed (FIG. 7). The sites of useful mutations in the *E. coli* context corresponded reasonably well with specific residues in the context of the shorter loop: Ser165, Lys166, and Ser167. Ser165 of (corresponding to A71 in *E. coli*) therefore may be substituted with aspartate. A charge reversal at position K166 (corresponding to position R76D) may yield the same result. Ser167 may correspond to Ser78 and a mutation to aspartate may be beneficial Mutations at 0110 may be transferable in all 22 KARIs aligned.

[0359] In the case of D146 (e.g. D146G), G185 (e.g. G185R), and K433 (e.g. K433E), surface charge changes took place. Glycine at position 185 and Lysine at position 433 are highly conserved among other KARIs. These mutations may therefore be transferable to other KARIs with a similar effect. Aspartate at position 146 is not as highly conserved.

NADH-Dependent ADH Enzymes

[0360] Several alcohol dehydrogenases may be suitable candidates for conversion into an NADH-dependent isobutyraldehyde dehydrogenase. Among the preferred enzymes for conversion are *S. cerevisiae* ADH1, *Zymomonas mobilis* ADHII, *E. coli* YqhD, herein referred to as Ec_YqhD, and *S. cerevisiae* ADH7.

[0361] As described in the prior art in PCT/US2008/ 053514, the S. cerevisiae ADH2 gene is expected to be functionally expressed from pSA55 and required for catalyzing the final step of the isobutanol biosynthetic pathway, namely the conversion of isobutyraldehyde to isobutanol. Thus, no isobutanol should be produced with the plasmid combination lacking ADH2 as adhE is deleted in JCL260. However, as exemplified in Example 10, the results of a fermentation using a strain without overexpression of any gene encoding an enzyme with ADH activity for the conversion of isobutyraldehyde to isobutanol showed that overexpression of an ADH enzyme is not required for isobutanol production in E. *coli*. In fact, isobutanol production for the system lacking ADH2 was higher than for the system with ADH2 expression. Volumetric productivity and titer showed 42% increase, specific productivity showed 18% increase and yield 12% increase. This suggests strongly that a native E. coli dehydrogenase is responsible for the conversion of isobutyraldehyde to isobutanol.

[0362] Surprisingly, this last step of the isobutanol biosynthetic pathway was found to be carried out by a native *E. coli* dehydrogenase in the aforementioned strains, as exemplified in Example 11: Approximately ~80% of the isobutyraldehyde

reduction activity is due to Ec_YqhD under certain culture conditions. Available literature on Ec_YqhD suggests that while it does prefer long-chain alcohols, it also utilizes NADPH (versus NADH) (Perez, J. M., et al., Journal of Biological Chemistry, 2008. 283(12): p. 7346-7353).

[0363] Switching the cofactor specificity of an NADPHdependent alcohol dehydrogenase may be complicated by the fact that cofactor binding induces a conformational change, resulting in an anhydrous binding pocket that facilitates hydride transfer from the reduced cofactor to the aldehyde (Leskovac, V., S. Trivic, and D. Pricin, Fems Yeast Research, 2002. 2: p. 481-494; Reid, M. F. and C. A. Fewson, Critical Reviews in Microbiology, 1994. 20(1): p. 13-56). Mutations that are beneficial for binding NADH may have deleterious effects with respect to this conformational change.

[0364] Alternatively, isobutyraldehyde reduction activity of an NADH-dependent enzyme with little native activity towards this substrate may be increased. This approach has the advantages that (1) several specialized enzymes exist in nature that are highly active under fermentative conditions, (2) the binding sites of several of these enzymes are known, (3) mutational studies indicate that substrate specificity can easily be altered to achieve high activity on a new substrate. [0365] Several alcohol dehydrogenase enzymes may be suitable candidates for conversion into an NADH-dependent isobutyraldehyde dehydrogenase: S. cerevisiae ADH1 and Zymomonas mobilis ADHII are NADH-dependent enzymes responsible for the conversion of acetaldehyde to ethanol under anaerobic conditions. These enzymes are highly active. The substrate specificity for these enzymes has been analyzed (Leskovac, V., S. Trivic, and D. Pricin, Ferns Yeast Research, 2002. 2: p. 481-494; Rellos, P., J. Ma, and R. K. Scopes, Protein Expression and Purification, 1997. 9: p. 89-90), the amino acid residues comprising the substrate binding pocket are known (Leskovac, V., S. Trivic, and D. Pricin, Ferns Yeast Research, 2002. 2: p. 481-494; Rellos, P., J. Ma, and R. K. Scopes, Protein Expression and Purification, 1997. 9: p. 89-90), and attempts to alter the substrate specificity by mutation have revealed that the substrate specificity can be altered (Rellos, P., J. Ma, and R. K. Scopes, Protein Expression and Purification, 1997. 9: p. 89-90; Green, D. W., H. Suns, and B. V. Plapp, Journal of Biological Chemistry, 1993. 268(11): p. 7792-7798). Ec_YqhD and S. cerevisiae ADH7 are NADPHdependent enzymes whose physiological functions are not as well understood. Ec_YqhD has been implicated in the protection of the cell from peroxide-derived aldehydes (Perez, J. M., et al., Journal of Biological Chemistry, 2008. 283(12): p. 7346-7353). The substrate specificity of both enzymes is understood, and amino acids lining the substrate binding pocket are known (Perez, J. M., et al., Journal of Biological Chemistry, 2008. 283(12): p. 7346-7353). Based on the known amino acid residues implicated in substrate binding (S. cerevisiae ADH1, Z. mobills ADHII) or the cofactor binding site (Ec_yqhD), sites with the highest likelihood of affecting desired enzyme features such as substrate specificity or cofactor specificity may be mutated to generate the desired function.

[0366] One approach to increase activity of enzymes with NADH as the cofactor may be saturation mutagenesis with NNK libraries at each of the residues that interact with the cofactor. These libraries may be screened for activity in the presence of NADPH and NADH in order to identify which single mutations contribute to increased activity on NADH and altered specificity for NADH over NADPH. Combina-

tions of mutations at aforementioned residues may be investigated by any method. For example, a combinatorial library of mutants may be designed based on the results of the saturation mutagenesis studies. For example, a combinatorial library of mutants may be designed including only those mutations that do not lead to decrease in NADH-dependent activity.

[0367] Another approach to increase the NADH-dependent activity of the enzyme is to perform saturation mutagenesis of a first amino acid that interacts with the cofactor, then isolate the mutant with the highest activity using NADH as the cofactor, then perform saturation mutagenesis of a second amino acid that interacts with the cofactor, and so on. Similarly, a limited number of amino acids that interact with the cofactor may be targeted for randomization simultaneously and then be screened for improved activity with NADH as the cofactor. The selected, best mutant can then be subjected to the same procedure again and this approach may be repeated iteratively until the desired result is achieved.

[0368] Another approach is to use random oligonucleotide mutagenesis to generate diversity by incorporating random mutations, encoded on a synthetic oligonucleotide, into the cofactor binding region of the enzyme. The number of mutations in individual enzymes within the population may be controlled by varying the length of the target sequence and the degree of randomization during synthesis of the oligonucleotides. The advantages of this more defined approach are that all possible amino acid mutations and also coupled mutations can be found.

[0369] If the best variants from the experiments described above are not sufficiently active with NADH as the cofactor, directed evolution via error-prone PCR may be used to obtain further improvements. Error-prone PCR mutagenesis of the first domain containing the cofactor binding pocket may be performed followed by screening for ADH activity with NADH and/or increased specificity for NADH over NADPH as the cofactor.

[0370] Surprisingly, alcohol dehydrogenase enzymes that are not known to catalyze the reduction of isobutyraldehyde to isobutanol were identified that catalyze this reaction. Thus, in another aspect, such an alcohol dehydrogenase may be encoded by an NADH-dependent 1,3-propanediol dehydrogenase. In yet another aspect, such an alcohol dehydrogenase may be encoded by an NADH-dependent 1,2-propanediol dehydrogenase. Preferred enzymes of this disclosure include enzymes listed in Table 1. These enzymes exhibit NADH-dependent isobutyraldehyde reduction activity, measured as Unit per minute per mg of crude cell lysate (U min^{-1 mg-1}) that is approximately six-fold to seven-fold greater than the corresponding NADPH-dependent isobutyraldehyde reduction activity (Tables 2 and 23).

[0371] In addition to exhibiting increased activity with NADH as the cofactor as compared to the NADPH, alcohol dehydrogenases of the present invention may further be more active as compared to the native *E. coli* alcohol dehydrogenase Ec_YqhD. In particular, alcohol dehydrogenases of the present invention may exhibit increased activity and/or decreased K_M values with NADH as the cofactor as compared to Ec_YqhD with NADPH as the cofactor. Exemplary enzymes that exhibit greater NADH-dependent alcohol dehydrogenase activity are listed in Table 1; activity values are listed in Table 2 and Table 23.

TABLE 1

ADH genes tested in the following fermentations, and rationale for inclusion of each

GENE		Accession	
NAME	SEQ ID NO	Number	Rationale for inclusion
Drosophila melanogaster ADH	60 (nucleotide sequence) 61 (amino acid sequence)	NT_033779, REGION: 14615555 14618902	NADH-dependent, broad substrate specificity, well- expressed in bacterial expression systems. Different class of enzyme versus others tested (short- chain, non-metal binding)
<i>Lactococcus lactis</i> adhA	66 (nucleotide sequence) 67 (amino acid sequence)		NADH-dependent alcohol dehydrogenase with activity using isobutyraldehyde as the substrate (Atsumi et al., Appl. Microbiol. Biotechnol. 2009, DOI 10.1007/s00253- 009-2085-6)
<i>Klebsiella pneumoniae</i> dhaT	62 (nucleotide sequence) 63 (amino acid sequence)	NC_011283	NADH-utilizing 1,2- propanediol dehydrogenase
Escherichia coli fucO	64 (nucleotide sequence) 65 (amino acid sequence)	NC_000913.2 (29298872931038, complement)	Homolog of <i>K. pneumoniae</i> dhaT, NADH-dependent 1,3- propanediol dehydrogenase

TABLE 2

Kinetic parameters for the conversion of isobutyraldehyde to isobutanol by Ec_YqhD, Ec_FucO, Dm_Adh, and Kp_DhaT								
			NADH		NADPH			
Plasmid	Adh	K _M (mM)	$\begin{array}{c} \text{Activity} \\ (\text{U/min}^{-1}\text{mg}^{-1} \\ \text{crude} \\ \text{lysate} \end{array}$	K _M (mM)	Activity (U/min ⁻¹ mg ⁻¹ crude lysate)			
pGV1705-A pGV1748-A pGV1749-A pGV1778-A	Ec_FucO Dm_Adh	n.d. 0.8 0.9 1.3	n.d. 0.23 6.60 0.56	0.25 0.2 2.7 0.6	0.09 0.04 1.70 0.08			

[0372] Alcohol dehydrogenases of the present disclosure may also be utilized in metabolically-modified microorganisms that include recombinant biochemical pathways useful for producing additional alcohols such as 2-methyl-1-butanol, 3-methyl-1-butanol, 2-phenylethanol, 1-propanol, or 1-butanol via conversion of a suitable substrate by a modified microorganism.

[0373] Microorganisms producing such compounds have been described (PCT/US2008/053514). For example, these alcohols can be 1-propanol, 1-butanol, 2-methyl-1-butanol, 3-methyl-1-butanol or 2-phenylethanol and are generally produced from a metabolite comprising a 2-keto acid. In some aspects, the 2-keto acid includes 2-ketobutyrate, 2-ketovalerate, 2-keto-3-methylvalerate, 2-keto-4-methyl-pentanoate, or phenylpyruvate. The 2-ketoacid is converted to the respective aldehyde by a 2-ketoacid decarboxylase. For example, 2-ketobutyrate is converted to 1-propanal, 2-ketovalerate is converted to 1-butanal, 2-keto-3-methylvalerate is converted to 2-methyl-1-butanol, 2-keto-4-methyl-pentanoate is converted to 3-methyl-1-butanal, and phenylpyruvate is converted to phenylethanal by a 2-ketoacid decarboxylase. Thus, the recombinant microorganism includes elevated expression or activity of a 2-keto-acid decarboxylase, as compared to a parental microorganism. The 2-keto-acid decarboxylase may be encoded by kivd from *Lactococcus lactis*, or homologs thereof. The 2-keto-acid decarboxylase can be encoded by a polynucleotide derived from a gene selected from kivd from *L. lactis*, or homologs thereof.

[0374] In earlier publications (PCT/US2008/053514, Atsumi et al., Nature, 2008 Jan. 3; 451(7174):86-9), only NADPH-dependent alcohol dehydrogenases are described that convert the aforementioned aldehyde to an alcohol. In particular, *S. cerevisiae* Adh2p is described that converts the aldehyde to the respective aldehyde.

[0375] Thus, in one embodiment of this disclosure, a microorganism is provided in which the cofactor dependent final step for the conversion of the aldehyde to the respective alcohol is catalyzed by an NADH-dependent alcohol dehydrogenase. In particular, NADH-dependent alcohol dehydrogenases are disclosed that catalyze the reduction aldehydes to alcohols, for example, of 1-propanal to 1propanol, 1-butanal to 1-butanol, 2-methyl-1-butanal to 2-methyl-1-butanol, 3-methyl-1-butanol, or phenylethanal to phenylethanol.

[0376] In a specific aspect, such an alcohol dehydrogenase may be encoded by the *Drosophila melanogaster* alcohol dehydrogenase Dm_Adh or homologs thereof. In another specific aspect, such an alcohol dehydrogenase may be encoded by the *Lactococcus lactis* alcohol dehydrogenase Ll_AdhA (SEQ ID NO: 67), as described by Atsumi et al. (Atsumi et al., Appl. Microbiol. Biotechnol., 2009, DOI 10.1007/s00253-009-2085-6) or homologs thereof.

[0377] Surprisingly, alcohol dehydrogenase enzymes that are not known to catalyze the reduction of isobutyraldehyde to isobutanol were identified that catalyze this reaction. Thus, in another aspect, such an alcohol dehydrogenase may be encoded by an NADH-dependent 1,3-propanediol dehydrogenase. In yet another aspect, such an alcohol dehydrogenase

may be encoded by an NADH-dependent 1,2-propanediol dehydrogenase. Preferred enzymes of this disclosure include enzymes listed in Table 1.

[0378] In another embodiment, a method of producing an alcohol is provided. The method includes providing a recombinant microorganism provided herein; culturing the microorganism of in the presence of a suitable substrate or metabolic intermediate and under conditions suitable for the conversion of the substrate to an alcohol; and detecting the production of the alcohol. In various aspects, the alcohol is selected from 1-propanol, 1-butanol, 2-methyl 1-butanol, 3-methyl 1-butanol, and 2-phenylethanol. In another aspect, the substrate or metabolic intermediate includes a 2-keto acid-derived aldehyde, such as 1-propanal, 1-butanal, 2-methyl-1-butanal, 3-methyl-1-butanal, or phenylethanal.

Recombinant Host Cells Comprising a NADH-Dependent KARI and/or ADH Enzymes

[0379] In an additional aspect, the present invention is directed to recombinant host cells (i.e. metabolically "engineered" or "modified" microorganisms) comprising NADH-dependent KARI and/or ADH enzymes of the invention. Recombinant microorganisms provided herein can express a plurality of additional heterologous and/or native target enzymes involved in pathways for the production of beneficial metabolites such as isobutanol from a suitable carbon source.

[0380] Accordingly, metabolically "engineered" or "modified" microorganisms are produced via the introduction of genetic material (i.e. a NADH-dependent KARI and/or ADH enzymes) into a host or parental microorganism of choice, thereby modifying or altering the cellular physiology and biochemistry of the microorganism. Through the introduction of genetic material and/or the modification of the expression of native genes the parental microorganism acquires new properties, e.g. the ability to produce a new, or greater quantities of, an intracellular metabolite. As described herein, the introduction of genetic material and/or the modification of the expression of native genes into a parental microorganism results in a new or modified ability to produce beneficial metabolites such as isobutanol. The genetic material introduced into and/or the genes modified for expression in the parental microorganism contains gene(s), or parts of genes, coding for one or more of the enzymes involved in a biosynthetic pathway for the production of isobutanol and may also include additional elements for the expression and/or regulation of expression of these genes, e.g. promoter sequences.

[0381] Recombinant microorganisms provided herein may also produce metabolites in quantities not available in the parental microorganism. A "metabolite" refers to any substance produced by metabolism or a substance necessary for or taking part in a particular metabolic process. A metabolite can be an organic compound that is a starting material (e.g., glucose or pyruvate), an intermediate (e.g., 2-ketoisovalerate), or an end product (e.g., 1-propanol, 1-butanol, isobutanol, 2-methyl-1-butanol, 3-methyl-1-butanol) of metabolism. Metabolites can be used to construct more complex molecules, or they can be broken down into simpler ones. Intermediate metabolites may be synthesized from other metabolites, perhaps used to make more complex substances, or broken down into simpler compounds, often with the release of chemical energy.

[0382] Exemplary metabolites include glucose, pyruvate, 1-propanol, 1-butanol, isobutanol, 2-methyl-1-butanol, and 3-methyl-1-butanol.

[0383] The metabolite 1-propanol can be produced by a recombinant microorganism engineered to express or overexpress a metabolic pathway that converts pyruvate to 1-propanol. An exemplary metabolic pathway that converts pyruvate to 1-propanol has been described in WO/2008/098227 and by Atsumi et al. (Atsumi et al., 2008, *Nature* 451(7174): 86-9), the disclosures of which are herein incorporated by reference in their entireties. In a preferred embodiment, metabolic pathway comprises a KARI and/or an ADH enzyme of the present invention.

[0384] The metabolite 1-butanol can be produced by a recombinant microorganism engineered to express or overexpress a metabolic pathway that converts pyruvate to 3-methyl-1-butanol. An exemplary metabolic pathway that converts pyruvate to 3-methyl-1-butanol has been described in WO/2008/098227 and by Atsumi et al. (Atsumi et al., 2008, *Nature* 451(7174): 86-9), the disclosures of which are herein incorporated by reference in their entireties. In a preferred embodiment, metabolic pathway comprises a KARI and/or an ADH enzyme of the present invention.

[0385] The metabolite isobutanol can be produced by a recombinant microorganism engineered to express or overexpress a metabolic pathway that converts pyruvate to isobutanol. An exemplary metabolic pathway that converts pyruvate to isobutanol may be comprised of a acetohydroxy acid synthase (ALS) enzyme encoded by, for example, alsS from *B. subtilis*, a ketolacid reductoisomerase (KARI) of the present invention, a dihydroxy-acid dehydratase (DHAD), encoded by, for example ilvD from *E. coli*, a 2-keto-acid decarboxylase (KIVD) encoded by, for example kivd from *L. lactis*, and an alcohol dehydrogenase (ADH) of the present invention.

[0386] The metabolite 3-methyl-1-butanol can be produced by a recombinant microorganism engineered to express or over-express a metabolic pathway that converts pyruvate to 3-methyl-1-butanol. An exemplary metabolic pathway that converts pyruvate to 3-methyl-1-butanol has been described in WO/2008/098227 and by Atsumi et al. (Atsumi et al., 2008, *Nature* 451(7174): 86-9), the disclosures of which are herein incorporated by reference in their entireties. In a preferred embodiment, metabolic pathway comprises a KARI and/or an ADH enzyme of the present invention.

[0387] The metabolite 2-methyl-1-butanol can be produced by a recombinant microorganism engineered to express or over-express a metabolic pathway that converts pyruvate to 2-methyl-1-butanol. An exemplary metabolic pathway that converts pyruvate to 2-methyl-1-butanol has been described in WO/2008/098227 and by Atsumi et al. (Atsumi et al., 2008, *Nature* 451(7174): 86-9), the disclosures of which are herein incorporated by reference in their entireties. In a preferred embodiment, metabolic pathway comprises a KARI and/or an ADH enzyme of the present invention.

[0388] The disclosure identifies specific genes useful in the methods, compositions and organisms of the disclosure; however it will be recognized that absolute identity to such genes is not necessary. For example, changes in a particular gene or polynucleotide comprising a sequence encoding a polypeptide or enzyme can be performed and screened for activity. Typically such changes comprise conservative mutation and silent mutations. Such modified or mutated polynucleotides and polypeptides can be screened for expression of a functional enzyme using methods known in the art. In addition, homologs of enzymes useful for generating metabolites are encompassed by the microorganisms and methods provided herein.

Method of Using Microorganism for Anaerobic Isobutanol Fermentation

[0389] In a method to produce a target compound from a carbon source at high yield a modified microorganism subject to this invention is cultured in an appropriate culture medium containing a carbon source.

[0390] An exemplary embodiment provide a method for producing isobutanol comprising a modified microorganism of the invention in a suitable culture medium containing a carbon source that can be converted to isobutanol by the microorganism of the invention.

[0391] In certain embodiments, the method further includes isolating said target compound from the culture medium. For example, isobutanol may be isolated from the culture medium by any method, in particular a method known to those skilled in the art, such as distillation, pervaporation, or liquid-liquid extraction.

[0392] This invention is further illustrated by the following examples that should not be construed as limiting. The contents of all references, patents, and published patent applications cited throughout this application, as well as the Figures and the Sequence Listing, are incorporated herein by reference for all purposes.

EXAMPLES

[0393] The following provides examples that demonstrate that microorganisms modified to resolve a cofactor imbalance produce a target compound at higher yield under conditions that include anaerobic conditions. One compound to be produced by the recombinant microorganism according to the present invention is isobutanol. The present invention is not limited to isobutanol. The invention may be applicable to any metabolic pathway that is imbalanced with respect to cofactor usage. One skilled in the art is able identify pathways that are imbalanced with respect to cofactor usage and apply this invention to provide recombinant microorganisms in which the same pathway is balanced with respect to cofactor usage.

Sample Preparation

[0394] Generally, samples (2 mL) from fermentation experiments performed in shake flasks were stored at 4° C. for later substrate and product analysis. Prior to analysis, samples were centrifuged at 14,000×g for 10 min. The supernatant was filtered through a 0.2 μ m filter. Analysis of substrates and products was performed using authentic standards (>99%, obtained from Sigma-Aldrich), and a 5-point calibration curve (with 1-pentanol as an internal standard for analysis by gas chromatography).

Determination of Optical Density

[0395] The optical density of the yeast cultures was determined at 600 nm using a DU 800 spectrophotometer (Beckman-Coulter, Fullerton, Calif., USA). Samples were diluted as necessary to yield an optical density of between 0.1 and 0.8.

Gas Chromatography

[0396] Analysis of volatile organic compounds, including ethanol and isobutanol was performed on a HP 5890 gas

chromatograph fitted with an HP 7673 Autosampler, a DB-FFAP column (J&W; 30 m length, 0.32 mm ID, 0.25 μ M film thickness) or equivalent connected to a flame ionization detector (FID). The temperature program was as follows: 200° C. for the injector, 300° C. for the detector, 100° C. oven for 1 minute, 70° C./minute gradient to 235° C., and then hold for 2.5 min.

[0397] Analysis was performed using authentic standards (>99%, obtained from Sigma-Aldrich), and a 5-point calibration curve with 1-pentanol as the internal standard.

High Performance Liquid Chromatography

[0398] Analysis of glucose and organic acids was performed on a HP-1100 High Performance Liquid Chromatography system equipped with an Aminex HPX-87H Ion Exclusion column (Bio-Rad, 300×7.8 mm) or equivalent and an H⁺ cation guard column (Bio-Rad) or equivalent. Organic acids were detected using an HP-1100 UV detector (210 nm, 8 nm 360 nm reference) while glucose was detected using an HP-1100 refractive index detector. The column temperature was 60° C. This method was Isocratic with 0.008N sulfuric acid in water as mobile phase. Flow was set at 0.6 mL/min. Injection size was 20 μ L and the run time was 30 minutes.

Molecular Biology and Bacterial Cell Culture

[0399] Standard molecular biology methods for cloning and plasmid construction were generally used, unless otherwise noted (Sambrook, J., Russel, D. W. *Molecular Cloning, A Laboratory Manual.* 3 ed. 2001, Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press).

[0400] Standard recombinant DNA and molecular biology techniques used in the Examples are well known in the art and are described by Sambrook, J., Russel, D. W. *Molecular Cloning, A Laboratory Manual.* 3 ed. 2001, Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press; and by T. J. Silhavy, M. L. Bennan, and L. W. Enquist, *Experiments with Gene Fusions*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1984) and by Ausubel, F. M. et al., *Current Protocols in Molecular Biology*, pub. by Greene Publishing Assoc. and Wiley-Interscience (1987).

[0401] General materials and methods suitable for the routine maintenance and growth of bacterial cultures are well known in the art. Techniques suitable for use in the following examples may be found as set out in *Manual of Methods for General Bacteriology* (Phillipp Gerhardt, R. G. E. Murray, Ralph N. Costilow, Eugene W. Nester, Willis A. Wood, Noel R. Krieg and G. Briggs Phillips, eds.), American Society for Microbiology, Washington, D.C. (1994)) or by Thomas D. Brock in *Biotechnology: A Textbook of Industrial Microbiology*, Second Edition, Sinauer Associates, Inc., Sunderland, Mass. (1989).

Preparation of Electrocompetent E. coli Cells and Transformation

[0402] The acceptor strain culture was grown in SOB-medium (Sambrook, J., Russel, D. W. *Molecular Cloning, A Laboratory Manual.* 3 ed. 2001, Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press) to an OD₆₀₀ of about 0.6 to 0.8. The culture was concentrated 100-fold, washed once with ice cold water and 3 times with ice cold 10% glycerol. The cells were then resuspended in 150 μ L of icecold 10% glycerol and aliquoted into 50 μ L portions. These aliquots were used immediately for standard transformation or stored at -80° C. These cells were transformed with the desired plasmid(s) via electroporation. After electroporation, SOC medium (Sambrook, J., Russel, D. W. *Molecular Cloning, A Laboratory Manual.* 3 ed. 2001, Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press) was immediately added to the cells. After incubation for an hour at 37° C. the cells were plated onto LB-plates containing the appropriate antibiotics and incubated overnight at 37° C.

Transformation of S. cerevisiae Cells

[0403] S. cerevisiae strains were transformed by the Lithium Acetate method (Gietz et al., Nucleic Acids Res. 27:69-74 (1992): Cells from 50 mL YPD cultures (YPGaI for valine auxotrophs) were collected by centrifugation (2700 rcf, 2 minutes, 25° C.) once the cultures reached an OD₆₀₀ of 1.0. The cells were washed cells with 50 mL sterile water and collected by centrifugation at 2700 rcf for 2 minutes at 25° C. The cells were washed again with 25 mL sterile water and collected cells by centrifugation at 2700 rcf for 2 minutes at 25° C. The cells were resuspended in 1 mL of 100 mM lithium acetate and transferred to a 1.5 mL eppendorf tube. The cells were collected cells by centrifugation for 20 sec at 18,000 rcf, 25° C. The cells were resuspended cells in a volume of 100 mM lithium acetate that was approximately 4× the volume of the cell pellet. A mixture of DNA (final volume of 15 µl with sterile water), 72 µl 50% PEG, 10 µl 1 M lithium acetate, and 3 µl denatured salmon sperm DNA was prepared for each transformation. In a 1.5 mL tube, 15 μ l of the cell suspension was added to the DNA mixture (85 µl), and the transformation suspension was vortexed with 5 short pulses. The transformation was incubated at 30 minutes at 30° C., followed by incubation for 22 minutes at 42° C. The cells were collected by centrifugation for 20 sec at 18,000 rcf, 25° C. The cells were resuspended in 100 µl SOS (1 M sorbitol, 34% (v/v) YP (1% yeast extract, 2% peptone), 6.5 mM CaCl₂) or 100 µl YP (1% yeast extract, 2% peptone) and spread over an appropriate selective plate.

Sporulation of Diploid *S. cerevisiae* and Germination to Obtain Haploids

[0404] Random spore analysis was used to identify desired haploid segregants of relevant diploid strains. Diploid strains were sporulated by pre-culturing in YPD for 24 hrs and then transferring the cells into 5 mL of sporulation medium (1% wt/vol potassium acetate). After 4-5 days, the culture was examined microscopically for the presence of visible sporecontaining asci. To the 5 mL sporulation culture, 0.5 mL of 1 mg/mL Zymolyase-T (Seikagaku Biobusiness, Tokyo, Japan) and 10 μ L of β -mercaptoethanol were added, and the cells were incubated overnight at 30° C. while shaking slowly (60 rpm). The next day, 5 mL of 1.5% IGEPAL-CA-630 [reference] were added and the mixture incubated on ice for 15 minutes. The cell suspension was then sonicated (3 rounds, 30 seconds per round, 50% power) with 2 minutes on ice between sonications. The suspension was centrifuged (1200× g, 10 min), the liquid poured off, 5 mL of 1.5% IGEPAL-CA-630 (Sigma-Aldrich Co., St. Louis, Mo.) were added, and the centrifugation and resuspension step repeated once more. The cell suspension was again sonicated as described above, after which it was centrifuged and washed as described above except that instead of IGEPAL, sterile water was used to resuspend the cells. The cells were finally resuspended in 1 mL of sterile water, and 0.1 mL of a 1:10, 1:100, 1:100, and 1:10,000 dilution of the initial 1 mL cell suspension were plated onto SCE-Trp, Leu, Ura (for full-pathway integrants strains) or SCD-Trp, Ura (for partial-pathway integrant strains) media and the plates incubated at 30° C. until colonies appeared (typically, 4-5 days).

Yeast Colony PCR

[0405] Colony PCR was carried out using the FailSafe mix (Epicentre Biotechnologies, Madison, Wis.). Specifically, 15 L of FailSafe Mix "E" were combined with 13 μ L sterile water, 0.35 μ L of each primer (from a 100 μ M solution), and 0.6 μ L FailSafe polymerase. For template, a small dab of yeast cells sufficient to just turn the solution turbid was swirled into each individual reaction mixture. The PCR reactions were incubated as follows: 1 cycle of 94° C.×2 min; 40 cycles of 94° C.×15 sec, 53° C.×15 sec, 72° C.×1 min; 1 cycle of 72° C.×8 min.

qRT-PCR

[0406] Performed by isolating RNA, synthesizing cDNA by reverse transcription and performing qPCR using protocols described below.

RNA Isolation for Reverse Transcription (RT)

[0407] 3 mlYPD cell cultures were incubated at 30° C., 250 RPM until they reached OD_{600} 's of 0.7 to 1.5. 2 OD_{600} 's (e.g. 1 mL of a culture at 2 OD_{600}) of cells were then harvested from each culture in 1.5 ml tubes by centrifugation at full speed in a microfuge for 2 minutes. The cell pellet was stored overnight at -20° C. RNA was isolated using the YeaStar RNAKit[™] (Zymo Research Corp. Orange, Calif. 92867 USA). Following the protocol provided with the kit, cells were resuspended in 80 µl of YR Digestion Buffer and 5 µl of ZymolyaseTM. The pellet was completely resuspended by repeated pipetting. The suspension was incubated at 37° C. for 60 minutes. 160 µl of YR Lysis Buffer was added to the suspension, which was then mixed thoroughly by vortexing. The mixture was centrifuged at $>4,000 \times g$ for 2 minutes in the microfuge, and the supernatant was transferred to a Zymo-Spin Column in a Collection Tube. The column was centrifuged at >10,000×g for 1 minute in the microfuge. To the column, 200 µl RNA Wash Buffer was added, and the column was centrifuged for 1 minute at 14,000 RPM in the microfuge. The flow-through was discarded and 200 µl RNA Wash Buffer was added to the column. The column was centrifuged for 1 minute at >10,000×g. The Zymo-Spin Column was transferred to a new RNase-free 1.5 ml centrifuge tube, and 60 µl of DNase/RNase-Free Water was added directly to the column membrane. The RNA was eluted by centrifugation for 30 seconds at $>10,000 \times g$ in the microfuge.

cDNA Synthesis (Reverse Transcription) for qPCR

[0408] Using the qScriptTM cDNA SuperMix kit provided by Quanta BiosciencesTM (Gaithersburg, Md.), cDNA was prepared following the protocol provided with the kit. First, the concentration of RNA was measured for the preparations from each transformant candidate and control strain. A final solution of 300 ng of RNA in sterile water was prepared in a volume of 16 μ l in 0.2 ml PCR tube (RNase-free). To each sample, 4 μ l of qScript cDNA Supermix was added. The reactions were incubated on a thermocycler for 5 minutes at 25° C., 30 minutes at 42° C., and 5 minutes at 85° C.

[0409] Each reaction contained: 10 μ L of PerfeCTaTM SYBR® Green SuperMix kit (Quanta BiosciencesTM Gaithersburg, Md.), 1 μ l of cDNA, 1 μ l of a 5 μ M (each) mix of forward and reverse primers and 8 μ l of sterile water. Each reaction was assembled in a well of a 0.2 ml 96-well plate, and

a clear plastic sheet was carefully (to avoid the introduction of warped surface or fingerprints or smudges) and firmly placed over the 96-well plate. The reactions were incubated in an Eppendorf Mastercycler ep thermocycler (Eppendorf, Hamburg, Germany) using the following conditions: 95° C. for 2 minutes, 40 cycles of 95° C. for 15 seconds and 60° C. for 45 seconds, 95° C. for 15 seconds, 60° C. for 15 seconds, and a 20 minute slow ramping up of the temperature until it reaches 95° C. Finally, it was incubated at 95° for 15 seconds. The fluorescence emitted by the SYBR dye was measured at the 60° C. incubation step during each of the 40 cycles, as well as during the ramping up to 95° C. for melting curve analysis of the primer sets.

Construction of E. coli Strains

[0410] GEVO1385 was constructed by integrating the Z1 module into the chromosome of JCL260 by P1 transduction from the strain *E. coli* W3110,Z1 (Lutz, R, Bujard, H Nucleic Acids Research (1997) 25, 1203-1210).

[0411] GEVO1399: The gene zwf was deleted according to the standard protocol for gene deletion using the Wanner method (Datsenko, K. and Wanner, B. One-step Inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. PNAS 2000). Primers 73 and 74 were used to amplify the Kan resistance cassette from pKD13. The linear PCR product was transformed into *E. coli* W3110 pKD46 electro competent cells and the knock-out of zwf was verified by PCR. Lysate of the new strain (*E. coli* W3110, Δ zwf::FRT: Kan::FRT) was prepared and the knock-out was transferred into JCL260 by P1 transduction. Removal of the Kan resistance cassette from this strain using transient expression of FLP recombinase yielded GEVO1399.

[0412] GEVO1608: The gene Ec_yqhD (SEQ ID NO: 68) was deleted according to the standard protocol for gene deletion using the Wanner method (Datsenko, K and Wanner, B, "One-step Inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products," *PNAS* 2000, 97:6640-6645). Primers 1155 and 1156 were used to amplify the Kan resistance cassette from pKD13. The linear PCR product was transformed into *E. coli* W3110 pKD46 electro competent cells and the knock-out of Ec_yqhD was verified by PCR. A lysate of the new strain (*E. coli* W3110, ΔyqhD::FRT::Kan:: FRT) was prepared and the knock-out was transferred into JCL260 by P1 transduction yielding GEVO1608.

[0413] GEVO1745: Removal of the Kan resistance cassette from GEVO1608 using transient expression of FLP recombinase yielded GEVO1745.

[0414] GEVO1748 and GEVO1749 are derivatives of JCL260. For the construction of GEVO1748, PLlacO1:L1 kiv1:Ec ilvD coEc was integrated into the ilvC locus on the E. coli chromosome. In particular primers 869 and 1030 were used to amplify the kanamycin resistance cassette (Kan) from pKD13, and primers 1031 and 1032 were used to amplify PLlacO1::L1_kivdt:Ec_ilvD_coEc from pGV1655 (SEQ ID NO: 109). For the construction of GEVO1749 PLlacO1:Ll_ kivd1::Ec_ilvD_coEc was integrated into the adhE locus on the E. coli chromosome. In particular primers 50 and 1030 were used to amplify the kanamycin resistance cassette from pKD13, and primers 1031 and 1205 were used to amplify PLlacO1:L1_kivd1::Ec_ilvD_coEc from pGV1655 (SEQ ID NO: 109). Afterwards, SOE (splicing by overlap extension) (Horton, R M, Cai, Z L, Ho, S N, et al. Biotechniques Vol. 8 (1990) pp 528) reactions were done to connect the gene expression cassettes to the resistance cassette using primers 1032 and 869 for the ilvC locus and primers 1205 and 50 for

the adhE locus. The linear PCR products were transformed into W3110 pKD46 electro competent cells and the knock ins of PLlacO1:L1_kivd1::Ec_ilvD_coEc::FRT::Kan::FRT were verified by PCR. The knock ins were further verified by sequencing. Lysates of the new strains *E. coli* W3110, Δ ilvC:: PLlacO1::L1_kivd1::Ec_ilvD_coEc::FRT::Kan::FRT) and *E. coli* W3110, Δ adhE::PLlacO1:L1_kivd1:: Ec_ilvD_coEc:: FRT::Kan::FRT) were prepared and the knock ins were transferred to JCL260 by P1 transduction. Removal of the Kan resistance cassette from this strain using expression of FLP recombinase yielded GEVO1748 and GEVO1749.

[0415] GEV01725, GEV01750, GEV01751: The gene maeA was deleted according to the standard protocol for gene deletion using the Wanner method (Datsenko, K. and Wanner, B. One-step Inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. PNAS 2000). Primers 116 and 117 were used to amplify the Kan resistance cassette from pKD13. The linear PCR product was transformed into E. coli W3110 pKD46 electro competent cells and the knockout of maeA was verified by PCR. Lysate of the new strain (E. coli W3110, ΔmaeA::FRT::Kan::FRT) was prepared and the knock-out was transferred into JCL260 by P1 transduction. The Kan resistance cassette was removed from this strain using transient expression of FLP recombinase. The resulting strain was transduced with the Z1 cassette yielding GEVO1750, and the same strain was transduced with a lysate conferring a pykA deletion. The pykA deletion lysate was prepared from W3110, L\pykA::FRT::Kan::FRT, which was created using homologous recombination according to the Wanner method using primers 1187 and 1188 for the amplification of the Kan cassette from pKD13. The Kan resistance cassette was removed from this strain using transient expression of FLP recombinase. The resulting strain was transduced with a lysate conferring a pykF deletion. The pykF deletion lysate was prepared from W3110, ApykF::FRT::Kan::FRT, which was created using homologous recombination according to the Wanner method using primers 1191 and 1192 for the amplification of the Kan cassette from pKD13. Removal of the Kan resistance cassette from this strain using transient expression of FLP recombinase yielded GEVO1725. For the construction of GEVO1751 strain GEVO1725 was transduced with a lysate of W3110Z1. The resulting strain was GEV01751.

[0416] For the construction of GEVO1777 ilvC was deleted according to the standard protocol for gene deletion using the Wanner method. Primers 868 and 869 were used to amplify the Kan resistance cassette from pKD13. The linear PCR product was transformed into *E. coli* W3110 pKD46 electro competent cells and the knock-out of ilvC was verified by PCR. The Kan resistance cassette was removed from this strain using transient expression of FLP recombinase. The resulting strain was transduced with the Z1 cassette yielding GEVO1777.

[0417] GEVO1780 was constructed by transforming JCL260 with plasmids pGV1655 (SEQ ID NO: 109) and pGV1698 (SEQ ID NO: 112).

[0418] GEVO1844: An *E. coli* sthA deletion strain was obtained from the Keio collection and the deletion of sthA was verified. The sthA deletion was transferred to GEVO1748 by P1 phage transduction and after removal of the Kan resistance cassette by transient expression of FLP recombinase the resulting strain GEVO1844 was verified for the sthA deletion.

[0419] GEVO1846 was constructed by transforming strain GEVO1748 with plasmids pGV1745 (SEQ ID NO: 117) and pGV1698 (SEQ ID NO: 112).

[0420] GEVO1859 was constructed according to the standard protocol for gene integration using the Wanner method (Datsenko, K. and Wanner, B. One-step Inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. PNAS 2000). Primers 1219 and 1485 were used to amplify PLlacO1::Bs_alsS1::Ec_ilvC_coEc from pGV1698 (SEQ ID NO: 112). Primers 1218 and 1486 were used to amplify the Kan resistance cassette from pKD13. SOE (splicing by overlap extension) was used to combine the two pieces to one integration cassette. The linear PCR product was transformed into E. coli W3110 pKD46 electro competent cells and the knock-in of PLlacO1::Bs_alsS1::Ec_ilvC_coEc::FRT::Kan:: FRT into the pflB locus was verified by PCR. The knock-in was further verified by sequencing. Lysate of the new strain (E. coli W3110, ΔpflB:: PLlacO1::Bs_alsS1::Ec_ilvC_ coEc::FRT::Kan::FRT) was prepared and the knock-in was transferred into GEVO1749 by P1 transduction. Removal of the Kan resistance cassette from this strain using transient expression of FLP recombinase yielded GEVO1859.

[0421] GEVO1886 was constructed according to the standard protocol for gene integration using the Wanner method (Datsenko, K. and Wanner, B. One-step Inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. PNAS 2000). Primers 1562 and 1539 were used to amplify PLlacO1::pntAB from pGV1745 (SEQ ID NO: 117). Primers 1479 and 1561 were used to amplify the Kan resistance cassette from pKD13. SOE was used to combine the two pieces to one integration cassette. The linear PCR product was transformed into E. coli W3110 pKD46 electro competent cells and the knock-in of PLlacO1::pntAB::FRT::Kan::FRT into the sthA locus was verified by PCR. The knock-in was further verified by sequencing. Lysate of the new strain (E. coli W3110, AsthA:: PLlacO1::pntAB::FRT::Kan::FRT) was prepared and the knock-in was transferred into GEVO1859 by P1 transduction. Removal of the Kan resistance cassette from this strain using transient expression of FLP recombinase yielded GEVO1886.

[0422] GEVO1993 is a derivative of GEVO1748. For the construction of GEVO1993, PLlacO1::Bs_alsS1 was integrated into the pta locus on the E. coli chromosome. In particular primers 1526 and 474 were used to amplify the kanamycin resistance cassette (Kan) from pKD13, and primers 1563 and 1527 were used to amplify PLlacO1:: Bs_alsS1 from pGV1698. Afterwards, SOE (splicing by overlap extension) reactions were done to connect the gene expression cassette to the resistance cassette using primers 1563 and 474. The linear PCR products were transformed into E. coli W3110 pKD46 electro competent cells and the knock-ins of PLlacO1::Bsa/sS1::FRT::Kan::FRT were verified by PCR. The knock-ins were further verified by sequencing. Lysate of the new strain E. coli W3110, Δpta::PLlacO1::Bs_alsS1:: FRT::Kan::FRT was prepared and the knock-in was transferred to GEVO1748 by P1 transduction yielding GEVO1993. The integration into the pta locus in GEVO1993 was verified by PCR.

Construction of Saccharomyces cerevisiae Strains

[0423] A PDC deletion variant *S. cerevisiae*, GEVO2302, was evolved so that it does not have the requirement for a two-carbon molecule and has a growth rate similar to the parental strain on glucose.

[0424] GEVO1186 is S. cerevisiae CEN.PK2

[0425] GEVO1803 was made by transforming GEVO1186 with the 6.7 kb pGV1730 (SEQ ID NO: 116) (contains *S. cerevisiae* TRP1 marker and the CUP1 promoter-driven Bs_alsS2) that had been linearized by digestion with NruI. Completion of the digest was confirmed by running a small sample on a gel. The digested DNA was then purified using Zymo Research DNA Clean and Concentrator and used in the transformation. Trp+clones were confirmed for the correct integration into the PDC1 locus by colony PCR using primer pairs 1440+1441 and 1442+1443 for the 5' and 3' junctions, respectively. Expression of Bs_alsS2 was confirmed by qRT-PCR using primer pairs 1323+1324.

[0426] GEVO2107 was made by transforming GEVO1803 with linearized, Hpal-digested pGV1914 (SEQ ID NO: 119). Correct integration of pGV1914 at the PDC6 locus was confirmed by analyzing candidate Ura+colonies by colony PCR using primers 1440 plus 1441, or 1443 plus 1633, to detect the 5' and 3' junctions of the integrated construct, respectively. Expression of all transgenes were confirmed by qRT-PCR using primer pairs 1321 plus 1322, 1587 plus 1588, and 1633 plus 1634 to examine Bs_alsS2, Ll_kivd2 coEc, and Dm_ADH transcript levels, respectively.

[0427] GEVO2158 was made by transforming GEVO2107 with NruI-digested pGV1936 (SEQ ID NO: 120). Correct integration of pGV1936 at the PDC5 locus was confirmed by analyzing candidate Ura+, Leu+colonies by colony PCR using primers primers 1436 plus 1437, or 1595 plus 1439, to detect the 5' and 3' junctions of the integrated construct, respectively. Expression of all transgenes were confirmed by qRT-PCR using primer pairs 1321 plus 1322, 1597 plus 1598, 1566 plus 1567, 1587 plus 1588, 1633 plus 1634, and 1341 plus 1342 to examine levels of Bs_alsS2, Ec_ilvC_ coSc^{Q110V}, Sc_ilv3 Δ N, Ll_kivd2_coEc, Dm_ADH, and ACT1, respectively.

[0428] GEVO2302 was constructed by sporulating GEVO2158. Haploid spores were prepared for random spores analysis (as described above), and the spores were plated onto SCE-Trp,Leu,Ura medium (14 g/L Sigma™ Synthetic Dropout Media supplement (includes amino acids and nutrients excluding histidine, tryptophan, uracil, and leucine), 6.7 g/L DifcoTM Yeast Nitrogen Base without amino acids. 0.076 g/L histidine and 25 mL/L 100% ethanol). Candidate colonies were patched onto SCE-Trp, Leu, Ura plates (Plate version of the above medium was prepared using 20 g/L agar) and then replica plated onto YPD (10 g/L yeast extract, 20 g/L peptone, 20 g/L glucose) and YPE (10 g/L yeast extract, 20 g/L peptone, 25 mL/L 100% ethanol) plates. Patches that grew on YPE but failed to grow on YPD were further analyzed by colony PCR to confirm mating type (and, hence, their status as haploid). Several verified haploid candidates were further analyzed for transgene expression by qRT-PCR. GEVO2302 contains the full isobutanol pathway with ALS, KARI, DHAD, KIVD, and ADH being encoded by Bs_alsS2, Ec_ilvC_coSc^{Q110V}, Sc_ilv3ΔN, L1_kivd2_coEc, Dm_ADH, respectively.

[0429] GEVO2710, GEVO2711, GEVO2712 and GEVO2799 are C2-independent, glucose de-repressed derivatives of GEVO2302, which were constructed via chemostat evolution: A DasGip fermentor vessel was sterilized and filled with 1 L of YNB+histidine medium (Yeast Nitrogen Base+histidine, containing per liter of distilled water: 6.7 g YNB without amino acids from Difco and 0.076 g histidine; the medium was adjusted to pH 5 by adding a few

drops of HCL or KOH) and contained 2% w/v ethanol. The vessel was installed and all probes were calibrated according to DasGip instructions. The vessel was also attached to an off-gas analyzer of the DasGip system, as well as to a mass spectrometer. Online measurements of oxygen, carbon dioxide, isobutanol, and ethanol were taken throughout the experiment. The two probes that were inside the vessel measured pH and dissolved oxygen levels at all times. A medium inlet and an outlet were also set up on the vessel. The outlet tube was placed at a height just above the 1 L level, and the pump rate was set to maximum. This arrangement helped maintain the volume in the vessel at 1 L. Air was sparged into the fermentor at 12 standard liters per hour (slph) at all times. The temperature of the vessel was held constant at 30.0° C. and the agitation rate was set at a minimum of 500 rpm, with a cascade control to adjust the agitation to maintain 50% dissolved oxygen in the culture. The off-gas was analyzed for CO₂, O₂, ethanol and isobutanol concentrations. The amount of carbon dioxide (Xc_{O2}) and oxygen (X_{O2}) levels in the off-gas were used to assess the metabolic state of the cells. An increase in X_{CO2} levels and decrease in X_{O2} levels indicated an increase in growth rate and glucose consumption rate. The ethanol levels were monitored to ensure that there was no contamination, either from other yeast cells or from potential revertants of the mutant strain because the S. cerevisiae PDC triple-mutant (GEVO2302) does not produce ethanol. The minimum pH in the vessel was set to 5, and a base control was set up to pump in potassium hydroxide into the vessel when the pH dropped below 5.

[0430] GEVO2302 was inoculated into 10 ml of YNB+ histidine medium with 2% w/v ethanol as the carbon source. The culture was incubated at 30° C. overnight with shaking. The overnight culture was used to inoculate the DasGip vessel. Initially, the vessel was run in batch mode, to build up a high cell density. When about a cell biomass of OD₆₀₀=8 was reached, the vessel was switched to chemostat mode and the dilution of the culture began. The medium pumped into the vessel was YNB+histidine with 6.357 g/L glucose and 0.364 g/L of acetate (5% carbon equivalent). The initial dilution rate was set to 0.06 h⁻¹ to avoid washout.

[0431] After the culture in the chemostat was stabilized at the 0.06 h^{-1} dilution rate, the concentration of acetate was slowly decreased. This was achieved by using a two pump system, effectively producing a gradient pumping scheme. Initially pump A was pumping YNB+histidine medium with 10 g/L glucose at a rate of 35.5 mL/h and pump B was pumping YNB+histidine medium with only 1 g/L acetate at a rate of 20.3 mL/h. The total acetate going into the vessel was 0.364 g/L. Then, over a period of 5 days, the rate of pump B was slowly decreased and the rate of pump A was increased so that the combined rate of feeding increased from 56 mL/h to 74 ml/h. Over this period, the rate of pump B was finally reduced to 0, resulting in no (0 g/L) acetate addition to the chemostat. The glucose feed to the chemostat over this period was increased from 6.4 g/L to 10 g/L and the evolved strain was able to grow on glucose only.

[0432] Evolution of the strain for growth on increased glucose concentration was performed by slowly increasing the concentration of glucose in the chemostat with the evolved strain that no longer required a 2-carbon supplement. The concentration of glucose in the feed medium was increased from 10 g/L to 38 g/L over a period of 31 days. This was achieved by using a two pump system, effectively producing a gradient pumping scheme. Initially pump A was pumping YNB+histidine medium with 10 g/L glucose at a rate of 35.2 mL/h and pump B was pumping YNB+histidine medium with

15 g/L glucose at a rate of 32.9 mL/h. The total glucose going into the vessel was 12.4 g/L. Then, over a period of 18 days, the medium reservoirs for pump A and pump B were replaced with reservoirs containing increased concentrations of glucose until the reservoir for pump A contained 80 g/L glucose and the reservoir for pump B contained 100 g/L glucose. During this period, the combined rate of feeding maintained a dilution rate of $0.04 h^{-1}$. At the end of this period, the rate of pump A was finally reduced to 0, resulting in a feed of 100 g/Lglucose. This dilution rate resulted in a biomass of OD_{600} =4.8 at this glucose concentration and increasing the dilution rate to 0.09 h⁻¹ over a period of 4 days lowered the biomass to an $OD_{600}=2.6$. The dilution rate was lowered to 0.03 h⁻¹ and gradually raised to 0.04 h⁻¹ at 100 g/L glucose feed to raise the biomass to an OD_{600} =4.4 over a period of 5 days. The glucose feed was then lowered by replacing the medium reservoir for pump A with a reservoir containing 0 g/L glucose, pumping initially at a rate of 33.4 ml/h, and pumping the 100 g/L glucose feed from pump B at 2.4 ml/h. This resulted in a dilution rate of 0.04 h⁻¹, a glucose feed of 6.7 g/L and a biomass of OD_{600} =6.0. Over a period of 4 days, the glucose concentration in the feed was gradually increased to 37.8 g/L by increasing the rate of pump B and decreasing the rate of pump A while maintaining a dilution rate of 0.04 h^{-1} and resulting in a biomass under these conditions of an $OD_{600} = 6.6$ and a glucose level in the chemostat of 18.8 g/L. [0433] Evolution of the strain for increased growth rate was performed by slowly increasing the dilution rate in the chemostat with the evolved strain that no longer required a 2-carbon supplement and could grow with a feed of 37.8 g/L glucose with a glucose level in the chemostat of 18.8 g/L. Over a period of 13 days, the dilution rate was gradually increased from 0.04 h^{-1} to 0.14 h^{-1} by alternately increasing the rates of pump A and pump B to maintain a glucose feed concentration of 21-24 g/L glucose. A biomass of OD₅₀₀=1.6 to an OD₆₀₀=2.0 was maintained at dilution rates of 0.13 h⁻¹ to 0.14 h⁻

[0434] Over the period of evolution, a sample was occasionally removed from the vessel directly. Samples were analyzed for glucose, acetate, and pyruvate using HPLC. Samples were plated onto YNB+histidine medium with 2% w/v ethanol as carbon source, YNB+histidine medium with different glucose concentrations (5 g/L, 10 g/L, 15 g/L, 20 g/L, 25 g/L and 50 g/L glucose), and YPD medium (containing 10 g/L yeast extract, 20 g/L peptone and 20 g/L dextrose) agar plates (plates contain the indicated medium+20 g/L agar). OD₆₀₀ measurements were taken regularly to make sure the chemostat did not wash out. Freezer stocks of samples of the culture were made regularly for future characterization of the strains.

[0435] The chemostat with the evolved strain that no longer required a 2-carbon supplement and could grow with a feed of 37.8 g/L glucose with a glucose level in the chemostat of 18.8 g/L and could grow at a dilution rate >0:13 h⁻¹ was maintained for another 23 days with varying dilution rates from $0.07 h^{-1}$ to $0.11 h^{-1}$ to allow further evolution for improved growth rate. At the end of this period, a sample from the chemostat was plated onto YNB+histidine medium with 50 g/L glucose agar plates and allowed to form colonies at 30° C. Ten colonies were picked for further characterization and re-streaked onto YNB+histidine medium with 50 g/L glucose agar plates for purification. None of these 10 evolved strains isolated from the chemostat sample grew when streaked onto SC-histidine medium (Synthetic complete medium lacking histidine, containing per liter of distilled water: 6.7 g YNB without amino acids from Difco, 100 ml of a solution of 14 g Yeast Synthetic Drop-out Medium Supplements without histidine, leucine, tryptophan and uracil from Sigma dissolved in 1 L water, 20 ml of a solution of 3.8 g/L tryptophan, 20 ml of a solution of 19 g/L leucine and 40 ml of a solution of 1.9 g/L uracil) containing 20 g/L glucose plates but did grow on SC-leucine medium (Synthetic complete medium lacking leucine, containing per liter of distilled water: 6.7 g YNB without amino acids from Difco, 100 ml of a solution of 14 g Yeast Synthetic Drop-out Medium Supplements without histidine, leucine, tryptophan and uracil from Sigma dissolved in 1 L water, 20 ml of a solution of 3.8 g/L tryptophan, 20 ml of a solution of 3.8 g/L histidine and 40 ml of a solution of 1.9 g/L uracil) containing 20 g/L glucose plates, indicating that they were still auxotrophic for histidine.

[0436] To characterize growth of the evolved strains, single colonies from each of the 10 evolved isolates purified on YNB+histidine medium with 50 g/L glucose agar plates were inoculated into 3 ml of YNB+histidine medium with 50 g/L glucose and YPD medium in 14 ml round-bottom snap-cap tubes and incubated overnight at 30° C. as a pre-culture. The next day the pre-cultures were used to inoculate 5 ml of the same medium as the pre-cultures in 50 ml conical plastic screw-cap centrifuge tubes to an OD_{600} of 0.01. The cultures were incubated shaking upright at 250 rpm at 30° C. and sampled periodically for OD₆₀₀ measurement. Growth rates were calculated from plots of the OD_{600} measurements vs. time of incubation. Evolved isolates GEVO2710, GEVO2711, GEVO2712 and GEVO2799 were selected because of high growth rates in both YNB+histidine medium with 50 g/L glucose and YPD medium.

[0437] GEVO2792 is a C2-independent, PDC-minus *S. cerevisiae* strain carrying a control plasmid encoding no genes for an isobutanol metabolic pathway. To generate this strain, GEVO2710 was transformed with plasmid pGV2020 (SEQ ID NO: 121).

[0438] GEVO2844 is a C2-independent, PDC-minus *S. cerevisiae* strain carrying a control plasmid encoding no genes for an isobutanol metabolic pathway. To generate this strain, GEVO2799 was transformed with plasmid pGV2020 (SEQ ID NO: 121).

[0439] GEVO2847 is a C2-independent, PDC-minus *S. cerevisiae* strain carrying a partially NADH-utilizing isobutanol metabolic pathway. To generate this strain, GEVO2799 was transformed with plasmid pGV2082 (SEQ ID NO: 122), carrying the genes encoding NADPH-dependent KARI and the NADH-dependent ADH, Ec_ilvC_coSc^{Q110V} (SEQ ID NO: 24), and Dm_ADH (SEQ ID NO: 60), respectively.

[0440] GEVO2848 is a O₂-independent, PDC-minus *S. cerevisiae* strain carrying a partially NADH-utilizing isobutanol metabolic pathway. To generate this strain, GEVO2799 was transformed with plasmid pGV2227 (SEQ ID NO: 123), carrying the genes encoding NADPH-dependent KARI and the NADH-dependent ADH, Ec_ilvC_coSc^{Q110}^{*V*}(SEQ ID NO: 24), and L1_adhA (SEQ ID NO: 66), respectively.

[0441] GEVO2849 is a C2-independent, PDC-minus *S. cerevisiae* strain carrying an NADH-utilizing isobutanol metabolic pathway. To generate this strain, GEVO2799 was transformed with plasmid pGV2242 (SEQ ID NO: 125), carrying the genes encoding NADH-dependent KARI and ADH, Ec_ilvC_coSc^{P2D1} (SEQ ID NO: 39) and Ll_adhA (SEQ ID NO: 66), respectively.

[0442] GEVO2851 is a C2-independent, PDC-minus *S. cerevisiae* strain carrying a partially NADH-utilizing isobutanol metabolic pathway. To generate this strain, GEVO2711 was transformed with plasmid pGV2227 (SEQ ID NO: 123), carrying the genes encoding NADPH-dependent KARI and the NADH-dependent ADH, Ec_ilvC_coSc^{Q110V} (SEQ ID NO: 24), and L1_adhA (SEQ ID NO: 66), respectively. **[0443]** GEVO2852 is a C2-independent, PDC-minus *S. cerevisiae* strain carrying an NADH-utilizing isobutanol metabolic pathway. To generate this strain, GEVO2711 was transformed with plasmid pGV2242 (SEQ ID NO: 125), carrying the genes encoding NADH-dependent KARI and ADH, Ec_ilvC_coSc^{P2D1} (SEQ ID NO: 39) and L1_adhA (SEQ ID NO: 66), respectively.

[0444] GEVO2854 is a C2-independent, PDC-minus *S. cerevisiae* strain carrying a partially NADH-utilizing isobutanol metabolic pathway. To generate this strain, GEVO2710 was transformed with plasmid pGV2082 (SEQ ID NO: 122), carrying the genes encoding NADPH-dependent KARI and the NADH-dependent ADH, Ec_ilvC_coSc^{Q110V}, and Dm_ADH (SEQ ID NO: 60), respectively.

[0445] GEVO2855 is a C2-independent, PDC-minus *S. cerevisiae* strain carrying a partially NADH-utilizing isobutanol metabolic pathway. To generate this strain, GEVO2710 was transformed with plasmid pGV2227 (SEQ ID NO: 123), carrying the genes encoding NADPH-dependent KARI and the NADH-dependent ADH Ec_ilvC_coSc^{Q110V}, and Ll_adhA (SEQ ID NO: 66), respectively.

[0446] GEVO2856 is a C2-independent, PDC-minus *S. cerevisiae* strain carrying an NADH-utilizing isobutanol metabolic pathway. To generate this strain, GEVO2710 was transformed with plasmid pGV2242 (SEQ ID NO: 125), carrying the genes encoding NADH-dependent KARI and ADH, Ec_ilvC_coSc^{P2D1} (SEQ ID NO: 39) and Ll_adhA (SEQ ID NO: 66), respectively.

Construction of E. coli Expression Plasmids

[0447] pGV1631: The adh2 gene was cut out of plasmid pSA55 using appropriate restriction enzymes. Re-ligation yielded plasmid pGV1631 featuring only L1_kivd1 (SEQ ID NO: 45) under the control of the PLlacO1 promoter. The plasmid was verified by sequencing prior to its use.

[0448] pGV1705A: The Ec_yqhD gene (SEQ ID NO: 68) contained on plasmid pGV1705 was cloned into plasmid pGV1711 (SEQ ID NO: 113) using the primers XX3 and XX4. These primers added additional sequences surrounding the ADH coding sequence. Specifically, the 5'-end of the PCR product contains an EcoRI site, a BamHI site, a RBS (ag-gaga), a 7 nucleotide space sequence, and the initiating ATG codon. The 3' end of the product, following the stop codon, contains a NotI site followed by an AvrII site. The amplified product was digested with EcoRI and NotI and ligated into pGV1711 (SEQ ID NO: 113) which had been cut with both EcoRI and AvrII and gel purified to generate plasmid pGV1705-A,

[0449] ADH genes, whether PCR amplified or ordered as synthetic DNA sequences were cloned into plasmid pGV1716 (SEQ ID NO: 114), a derivative of plasmid pGV1698 carrying an in vitro-synthesized gene for S. cerevisiae ADH2, codon-optimized for expression in E. coli (="ADH2co"). ADH2co gene was amplified from plasmid pGV1527 in a PCR reaction using KOD polymerase (Novagen, Gibbstown, N.J.) and primers 1296 and 1297. These primers add additional sequences surrounding the ADH2co coding sequence. Specifically, the 5'-end of the PCR product contains a Sall site, a BamHI site, an RBS (aggaga), a 7 nucleotide space sequence, and the initiating ATG codon. The 3' end of the product, following the stop codon, contains a NotI site followed by a SalI site. The amplified product was digested Sall and was ligated into pGV1698 (SEQ ID NO: 112) which had been cut with SalI and gel purified. DNA constructs were analyzed by multiple restriction digests, and also by DNA sequencing to confirm integrity and to correct construction. Oligonucleotides 1220 and 1365 were used as primers in standard DNA sequencing reactions to sequence all of the aforementioned clones.

[0450] Plasmid pGV1748, which contains the ORF for Ec_fucO (SEQ ID NO: 64) expressed under the control of the IPTG-inducible promoter PLlacO1, was generated by amplifying the Ec_fucO gene in a PCR reaction, using primers 1470 and 1471 and *E. coli* genomic DNA as a template. The ~1.2 kb PCR product so generated was digested with BamHI plus NotI, purified using a Zymo Research DNA Gel Extraction kit (Zymo Research, Orange, Calif.) according to manufacturer's protocol, and ligated into the vector pGV1716 (SEQ ID NO: 114) which had been digested with BamHI plus NotI and purified using a Zymo Research DNA Gel Extraction kit (Zymo Research, Orange, Calif.).

[0451] Plasmid pGV1748-A: The Ec_fucO gene contained on plasmid pGV1748 was cloned into plasmid pGV1711 (SEQ ID NO: 113) using the primers XX1 and XX2. These primers add additional sequences into the vector backbone upstream of the AvrII restriction site and downstream of the EcoRI restriction site. Specifically, the 5'-end of the PCR product contains a NotI site followed by an AvrII site and the 3' end of the product, contains an AgeI site followed by an EcoRI site. The amplified product was digested with AgeI and Non and ligated with the similarly digested pGV1711 to generate plasmid 1748-A.

[0452] Plasmid pGV1749, which contains the ORF for Dm_ADH (SEQ ID NO: 60) expressed under the control of the IPTG-inducible promoter PLlacO1, was generated by amplifying the Dm_ADH gene in a PCR reaction, using primers 1469 and 1364 and the clone RH54514 (Drosophila Genome Resource Center) as a template. The ~0.8 kb PCR product was digested with BgIII plus NotI, was purified using a Zymo Research DNA Gel Extraction kit according to manufacturer's protocol, and was ligated into the vector pGV1716 (SEQ ID NO: 114) which had been digested with BamHI plus NotI and purified using a Zymo Research DNA Gel Extraction kit.

[0453] Plasmid pGV1749-A: The Dm_ADH gene (SEQ ID NO: 60) contained on plasmid pGV1749 was cloned into plasmid pGV1711 (SEQ ID NO: 113) using the primers XX1 and XX2. These primers add additional sequences into the vector backbone 5' of the AvrII restriction site and 3' of the EcoRI restriction site. Specifically, the 5'-end of the PCR product contains a NotI site followed by an AvrII site and the 3' end of the product, contains an AgeI site followed by an EcorI site. The amplified product was digested with AgeI and NotI and ligated with the product of the ADH gene similarly digested with AgeI and NotI to generate plasmid pGV1749-A.

[0454] Plasmid pGV1778, which contains the ORF for Kp_dhaT (SEQ ID NO: 62) expressed under the control of the IPTG-inducible promoter PLlacO1, was generated by excising the Kp_dhaT gene from an in vitro synthesized plasmid (generated by DNA2.0, Menlo Park, Calif.) by digestion with BamHI plus NotI. The released 1.16 kb fragment was purified using a Zymo Research DNA Gel Extraction kit according to manufacturer's protocol, and was ligated into the vector pGV1716 (SEQ ID NO: 114) which had been digested with BamHI plus NotI and purified using a Zymo Research DNA Gel Extraction kit.

[0455] Plasmid pGV1778-A: The Kp_dhaT gene (SEQ ID NO: 62) contained on plasmid pGV1778 was cloned into plasmid pGV1711 (SEQ ID NO: 113) using the primers XX1 and XX2. These primers add additional sequences into the vector backbone 5' of the AvrII restriction site and 3' of the EcoRI restriction site. Specifically, the 5'-end of the PCR product contains a NotI site followed by an AvrII site and the

3' end of the product, contains an AgeI site followed by an EcoRI site. The amplified product was digested with AgeI and NotI and ligated with the product of the ADH gene similarly digested with AgeI and NotI to generate plasmid pGV1778-A.

[0456] Plasmids pGV1655 (SEQ ID NO: 109) and pGV1711 (SEQ ID NO: 113) have been described previously. Briefly, pGV1655 is a low-copy, Kan^{R} -selected plasmid that expresses *E. coli* Ec_ilvD_coEc (SEQ ID NO: 51) and Ll_kivd1 (SEQ ID NO: 41) under the control of the PLlac promoter.

[0457] Plasmid pGV1938 was constructed by inserting the gene coding for Ec_llvC_coEc^{S78D} into pGV1711 (SEQ ID NO: 113). The KARI variant gene was amplified with primers Not_in_for and AvrII_in_rev introducing the 5' NotI and the 3' AvrII restriction sites, DpnI digested for 1 h at 37° C., and then cleaned up using the Zymo PCR clean up kit. The fragment and the vector pGV1711 were restriction digested with NotI and AvrII and run out on a 1% agarose gel. After cutting out the fragments, they were cleaned up using the Freeze'n'Squeeze and pellet paint procedure. Ligation was performed with the rapid ligation kit from Roche according to the manufacturer's instructions.

[0458] Plasmid pGV1939 was generated using primers XX3 and XX4 to amplify the Ec_fucO gene from plasmid pGV1748-A. The forward primer adds a new RBS (aggaga), a 7 nucleotide space sequence, and the initiating ATG codon. The amplified product was digested with EcoRI and NotI and ligated with the similarly digested pGV1711 (SEQ. ID NO: 113) to generate plasmid pGV1939 containing the modified RBS.

[0459] The genes coding for KARI variants Ec_ilvC_co-Ec^{his6} (SEQ ID NO: 14), Ec_ilvC_coEc^{S78D-his6} (SEQ ID NO: 16), Ec_ilvC_coEc^{6E6-his6} (SEQ ID NO: 32) and Ec_ilvC_coEc^{2H10-his6} (SEQ ID NO: 30) were cloned into pGV1939 generating plasmids pGV1925, pGV1927, pGV1975 and pGV1976, respectively using primers NotI_ in_for and AvrII_in_rev. The PCR products were DpnI digested for 1 h and cleaned over a 1% agarose gel. After a sequential restriction digestion of vector and insert with NotI for 1 h followed by 1 h with AvrII, ligation was performed using rapid ligase (Roche). Ligation mixture was desalted using the Zymo PCR clean up kit and used to transform *E. coli* DH5 α . DNA constructs were analyzed by restriction digests, and also by DNA sequencing to confirm integrity and correct construction. Primers pETup and KARIpETrev were used as primers in standard DNA sequencing reactions to sequence pET22b(+) derivatives, primer seq_ilvc_pGV was used to sequence pGV1925, pGV1927, pGV1975 and pGV1976.

Construction of *Saccharomyces cerevisiae* Expression Plasmids

[0460] pGV1824: The gene coding for Ec_llvC (SEQ ID NO: 13) was codon optimized for *S. cerevisiae* and synthesized (DNA2.0, Menlo Park, Calif.), resulting in Ec_ilvC_ coSc (SEQ ID NO: 12). To generate pGV1824, the Ec_ilvC_ coSc gene was excised from plasmid pGV1774 using BgIII and XhoI. Plasmid pGV1662 was digested with SalI and BamHI. The pGV1662 vector backbone and Ec_ilvC_coSc insert were ligated using standard methods resulting in plasmid pGV1824 containing the gene Ec_ilvC_coSc.

[0461] pGV1914 (SEQ ID NO: 119) is a yeast integrating vector (YIp) that utilizes the *S. cerevisiae* URA3 gene as a selection marker and contains homologous sequence for targeting the HpaI-digested, linearized plasmid for integration at the PDC6 locus of *S. cerevisiae*. This plasmid does not carry a yeast replication origin, thus is unable to replicate episomally. This plasmid carries the Dm_ADH (SEQ ID NO: 60) and

L1_kivd2_coEc (SEQ ID NO: 48) genes, expressed under the control of the S. cerevisiae TDH3 and TEF1 promoters, respectively. pGV1914 was generated in two steps. First, the Dm_ADH-containing E. coli expression plasmid pGV1749 was digested with SalI plus NotI, and the 0.78 kb fragment containing the Dm ADH ORF released by digestion was gel purified and ligated into pGV1635, which had been digested with XhoI plus NotI and gel purified. Plasmid pGV1635 is a yeast expression plasmid which has as its salient feature a TDH3 promoter followed by several restriction enzyme recognition sites, into which the Dm_ADH sequence was cloned as described above. A correct recombinant plasmid was named pGV1913. In the second step of pGV1914 construction, pGV1913 was digested with BamHI plus NotI and the 1.45 kb fragment, containing the TDH3 promoter-Dm_ADH ORF sequence was gel purified and ligated into pGV1733, which had been digested with BamHI plus NotI and similarly gel purified, yielding pGV1914. Thus, the ScADH7 ORF in pGV1733 is replaced by the Dm_ADH ORF in the pGV1914, both under the control of the TDH3 promoter; both plasmids also contain the P_{TEF1}-Ll_kivd2_coEc cassette as well as the URA3 selection marker and ScPDC6 5' and 3' regions suitable for homologous recombination targeting following linearization of the plasmid with HpaI.

[0462] pGV1936 (SEQ ID NO: 120) is a yeast integrating vector (YIp) that utilizes the S. cerevisiae LEU2 gene as a selection marker and contains homologous sequence for targeting the linearized (by HpaI digestion) plasmid for integration at the PDC5 locus of S. cerevisiae. This plasmid does not carry a yeast replication origin, thus is unable to replicate episomally. This plasmid carries the $Ec_i lv C_c oSc^{Q110V}$ (SEO ID NO: 24) mutant (i.e. codon optimized for expression in S. cerevisiae) and S. cerevisiae ILV3AN genes, expressed under the control of the S. cerevisiae TDH3 and TEF1 promoters, respectively. pGV1936 was constructed using SOE PCR method that amplified the Ec_ilvC_coSc gene while simultaneously introducing the nucleotide changes coding for a Q110V mutation. Specifically, primers 1624 and 1814 were used to amplify a portion of plasmid pGV1774 containing the Ec_ilvC_coSc gene; primers 1813 and 1798 were used to amplify a portion of plasmid pGV1824 that also contained the Ec ilvC coSc gene. The two separate PCR products were gel purified, eluted in 15 µL, and 3 µL of each were used as a template along with primers 1624 and 1798. The resulting PCR product was digested with XhoI plus NotI and ligated into pGV1765 that had been digested with XhoI plus NotI, yielding pGV1936. Candidate clones of pGV1936 were confirmed by sequencing, using primers 350, 1595, and 1597.

[0463] pGV1994: Mutations found in variant Ec_llvC^{6E6}his6 were introduced into pGV1824 by SOE PCR. The 5' PCR used primers 1898 and 2037 and the 3' PCR used primers 1893 and 2036. Each of these primer pairs were used with pGV1894 as the template in two separate PCR reactions. The product was used in a second PCR with the end primers 1898 and 1893 to yield a final PCR product. This final PCR product has a 5' SalI restriction site and 3' BgIII followed by NotI restriction sites. These were cloned into pGV1662 using the SalI and NotI site and yielding plasmid pGV1994 which carries Ec_ilvC_coSc^{6E6} (SEQ ID NO: 35).

[0464] pGV2020 (SEQ ID NO: 121) is an empty G418 resistant 2-micron yeast vector that was generated by removing the L1_kivd2_coEc sequence from pGV2017. This was carried out by amplifying the TDH3 promoter from pGV2017 using primers 1926 and 1927, digesting with Sall and NotI and cloning into the same sites of pGV2017.

[0465] pGV2082 (SEQ ID NO: 122) is a G418 resistant yeast 2-micron plasmid for the expressions of Ec_ilvC_ $coSc^{Q110V}$ (SEQ ID NO: 24), L1_ilvD_coSc (SEQ ID NO: 54), L1_kivd2_coEc (SEQ ID NO: 48), and Dm_ADH (SEQ ID NO: 60). A fragment carrying the PGK1 promoter, L1_kivd2_coEc and a short region of the PDC1 terminator sequence was obtained by cutting pGV2047 with AvrII and NcoI. This fragment was treated with Klenow to generate blunt ends then cloned into pGV2044 that had been digested with EcoRI and SbfI and the overhangs filled in with Klenow. This construction replaced the CUP1 promoter and the Bs_alsS1_coSc (SEQ ID NO: 6) in pGV2044 with the PGK1 promoter and L1_kivd2 coEc.

[0466] pGV2193: The Ec_llvC variant encoded by Ec_ilvC_coSe^{6E6-his6} (SEQ ID NO: 33) encoded on pGV2241 (SEQ ID NO: 124) served as template for errorprone PCR using primers pGV1994ep_for and pGV1994ep_ rev yielding variant Ec_llvC^{P2D1-his6} (SEQ ID NO: 38) which is encoded by Ec_ilvC_coSc^{P2D1-his6} (SEQ ID NO: 37) on construct pGV2193.

[0467] pGV2227 (SEQ ID NO: 123) is a G418 resistant yeast 2-micron plasmid for the expressions of Ec_ilvC_ coSc^{Q110V} (SEQ ID NO: 24), L1_ilvD_coSc (SEQ ID NO: 54), L1_kivd2 coEc (SEQ ID NO: 48), and L1_adhA (SEQ ID NO: 66). pGV2227 is a derivative of pGV2201 where the BamHI and XhoI sites at the 3' end of the L1 adhA were removed and replaced with an AvrII site. This construction was carried out by cloning into the NheI-MluI sites of pGV2202 a fragment carrying the 3' end of the Ll_adhA sequence, an AvrlI site, and the 5' part of the CYC1 terminator. This fragment was generated by SOE PCR combining a PCR product using primers 2091 and 2352 with pGV2201 as template and a PCR product using primers 2353 and 772 with pGV2201 as template. The sequences of primers 2352 and 2353 overlap and introduce an AvrII site. This SOE PCR product was digested with NheI and MluI for cloning into pGV2201.

[0468] pGV2238: The Ec_llvC variant encoded by Ec_ilvC_coSc^{P201-his6} (SEQ ID NO: 37) encoded on pGV2193 served as parent for an additional error-prone PCR round using the same primers as described before on template DNA pGV2193 yielding an improved KARI variant named Ec_llvC^{P2D1-A1-his6} (SEQ ID NO: 42) which is encoded by the gene Ec_ilvC_coSc^{2D1-A1-his6} (SEQ ID NO: 41) on plasmid pGV2238.

[0469] pGV2241 (SEQ ID NO: 124): The gene Ec_ilvC_ coSc^{6E6} (SEQ ID NO: 35) was his-tagged using primers pGV1994_ep_for and 1994hisrev, cleaned with the Zymo PCR clean up kit (Zymo Research), NotI and SalI digested, and ligated into similarly digested pGV1994, resulting in construct pGV2241 coding for Ec_ilvC_coSc^{6E6-his6} (SEQ ID NO: 33).

[0470] pGV2242 (SEQ ID NO: 125) is a G418 resistant yeast 2-micron plasmid for the expressions of Ec_ilvC_ $coSc^{P2D1}$ (SEQ ID NO: 39), L1_ilvD_coSc (SEQ ID NO: 54), L1_kivd2_coEc (SEQ ID NO: 48), and L1_adhA (SEQ ID NO: 66). This plasmid was generated by cloning the Sall-BspEI fragment of pGV2193 carrying the region encoding for Ec_llvC with the relevant mutations for the Ec_ilvC_ $coSc^{P2D1}$ allele into the XhoI-BspEI sites of pGV2227 (SEQ ID NO: 123).

TABLE 3

	Strains disclosed herein
Strain No.	Description
GEVO1186	S. cerevisiae CEN.PK2 (MATa/a ura3/ura3 leu2/leu2 his3/his3 trp1/trp1
GEVO1385	PDC1/PDC1 PDC5/PDC5 PDC6/PDC6) E. coli BW25113, AldhA-fnr::FRT, AadhE::FRT, Δfrd::FRT, Δpta::FRT,
GEVO1399	ΔpftB::FRT, F' (laclq+), attB::(Sp ⁺ laclq ⁺ tetR ⁺) E. coli BW25113, ΔldhA-fnr::FRT, ΔadhE::FRT, Δfrd::FRT, Δpta::FRT,
GEVO1608	pflB::FRT, Δzwf::FRT F' (laclq+) E. coli BW25113, ΔldhA-fnr::FRT, ΔadhE::FRT, Δfrd::FRT, ΔpflB::FRT,
GEVO1725	Δpta::FRT, ΔyqhD::FRT-Kan-FRT, F' (laclq+) E. coli BW25113, AldhA-fnr::FRT, ΔadhE::FRT, Δfrd::FRT, Δpta::FRT,
GEVO1745	ΔpfB::FRT, ΔmaeA::FRT, ΔpykA::FRT, ApykF::FRT, F' (laclq+) E. coli BW25113, AldhA-fnr::FRT, ΔadhE::FRT, Δfrd::FRT, ΔpfB::FRT,
	Δpta::FRT, ΔyqhD::FRT
GEVO1748	E. coli BW25113, AldhA-fnr::FRT, ΔadhE::FRT, Δfrd::FRT, Δpfa::FRT, pfiB::FRT, F' (laclq+), ΔilvC::PLlacO1::Ll_kivd1::Ec_ilvD_coEc::FRT
GEVO1749	E. coli BW25113, AldhA-fnr::FRT, Afrd::FRT, Δpta::FRT, pflB::FRT, F' (laclq+), AadhE::[PLlacO1::Ll_kivd1::Ec_ilvD_coEc::FRT]
GEVO1750	E. coli BW25113, AldhA-fnr::FRT, ΔadhE::FRT, Δfrd::FRT, Δpta::FRT, ΔpffB::FRT, ΔmaeA::FRT, F' (laclq+), attB::(Sp+ laclq+ tetR+)
GEVO1751	E. coli BW25113, ΔldhA-fnr::FRT, ΔadhE::FRT, Δfrd::FRT, Δpta::FRT,
	ΔpftB::FRT, ΔmaeA::FRT, ΔpykA::FRT, ΔpykF::FRT, F' (laclq+), attB::(Sp+ laclq+ tetR+)
GEVO1777 GEVO1780	<i>E. coli</i> W3110, ΔilvC::FRT, attB::(Sp+ laclq+ tetR+) JCL260 transformed with pGV1655 and pGV1698
GEVO1780 GEVO1803	S. cerevisiae CEN.PK2, MATa/alpha ura3/ura3 leu2/leu2 his3/his3 trp1/trp1
CEVO1944	pdc1::Bs_alsS2, TRP1/PDC1
GEVO1844	<i>E. coli</i> BW25113, Δ(ldhA-fnr::FRT) ΔadhE::FRT Δfrd::FRT Δpta::FRT ΔpftB::FRT ΔilvC::P _{LlacO1} ::Ll_kivd1::Ec_ilvD_coEc::FRT ΔsthA::FRT
GEVO1846	<i>E. coli</i> BW25113, ΔldhA-fnr::FRT, ΔadhE::FRT, Δfrd::FRT, Δpta::FRT, pflB::FRT, F' (laclq+), ΔilvC::PLlacO1::Ll_kivd1::Ec_ilvD_coEc::FRT,
	pGV1745, pGV1698
GEVO1859	<i>E. coli</i> BW25113, ΔldhA-fnr::FRT, Δfrd::FRT, Δpta::FRT, F' (laclq+), ΔadhE::[pLlacO1::Ll_kivd1::Ec_ilvD_coEc::FRT],
	pflB::[pLlacO1::Bs_alsS1::Ec_ilvC_coEc::FRT]
GEVO1886	<i>E. coli</i> BW25113, ΔldhA-fnr::FRT, Δfrd::FRT, Δpta::FRT, F' (laclq+), ΔadhE::[pLlacO1::Ll_kivd1::Ec_ilvD_coEc::FRT], ΔpflB::[pLlacO1::Bs_alsS1::
CELICIAN	Ec_ilvC_coEc::FRT] AsthA::[pLlacO1::pntA::pntB::FRT]
GEVO1993	E. coli BW25113, AldhA-fnr::FRT, AadhE::FRT, Afrd::FRT, DpflB::FRT, F' (laclq+), AilvC::PLlacO1::Ll_kivd1::Ec_ilvD_coEc::FRT,
	Apta::PLlacO1::Bs_alsS1, FRT::KAN::FRT
GEVO2107	S. cerevisiae CEN.PK2, MATa/alpha ura3/ura3 leu2/leu2 his3/his3 trp1/trp1 pdc1::Bs_alsS2, TRP1/PDC1 pdc6::{ScTEF1p-Ll_kivd2_coEc
	ScTDH3p-Dm_ADH URA3}/PDC6
GEVO2158	S. cerevisiae CEN. PK2; MATa/α ura3/ura3 leu2/leu2 his3/his3 trp1/trp1 pdc1::Bs_alsS2, TRP1/PDC1 pdc5:{ScTEF1prom-
	Sc_ILV3AN ScTDH3prom-Ec_ilvC_coSc ^{QI10V} LEU2}/PDC5
GEVO2302	pdc6::{ScTEF1p-Ll_kivd2_coEc ScTDH3p-Dm_ADH URA3}/PDC6 S. cerevisiae CEN.PK2; MATa ura3 leu2 his3 trp1
01102302	pdc1::Bs_alsS2, TRP1 pdc5::{P _{TEF1} :Sc_ILV3AN P _{TDH3} :Ec_ilvC_coSc ^{Q110V}
CEVOITIO	LEU2} pdc6::{P _{TEF1} : Ll_kivd2_coEc P _{TDH3} :Dm_ADH URA3}
GEVO2710	S. cerevisiae CEN.PK2; MATa ura3 leu2 his3 trp1 pdc1::{ P_{CUP1} -Bs_alsS2, TRP1} pdc5::{ P_{TEF1} :Sc_ILV3 Δ N P _{TDH3} :Ec_ilvC_coSc ^{Q110V} ,
	LEU2 } pdc6::{P _{TEF1} : Ll_kivd2_coEc P _{TDH3} :Dm_ADH, URA3 }, evolved
GEVO2711	for C2 supplement-independence, glucose tolerance and faster growth S. cerevisiae CEN.PK2; MATa ura3 leu2 his3 trp1 pdc1::{P _{CUP1} -
01,02/11	Bs_alsS2, TRP1} pdc5::{ P_{TEF1} :Sc_ILV3 Δ N P_{TDH3} :Ec_ilvC_coSc ^{Q110V} ,
	LEU2 } pdc6::{P _{TEF1} : Ll_kivd2_coEc P _{TDH3} :Dm_ADH, URA3 }, evolved
GEVO2712	for C2 supplement-independence, glucose tolerance and faster growth S. cerevisiae CEN.PK2; MATa ura3 leu2 his3 trp1 pdc1::{P _{CUP1} -
	Bs_alsS2, TRP1} pdc5::{P _{TEF1} :Sc_ILV3 Δ N P _{TDH3} :Ec_ilvC_coSc ^{Q110V} ,
	LEU2} pdc6::{P _{TEF1} : Ll_kivd2_coEc P _{TDH3} :Dm_ADH, URA3}, evolved for C2 supplement-independence, glucose tolerance and faster growth
GEVO2799	S. cerevisiae CEN.PK2: MATa ura3 leu2 his3 trp1 pdc1::{P_crm-
	Bs_alsS2, TRP1} pdc5::{ P_{TEF1} :Sc_ILV3 Δ N P_{TDH3} :Ec_IVC_coSc Q^{110V} ,
	LEU2} pdc6::{P _{TEF1} : Ll_kivd2_coEc P _{TDH3} :Dm_ADH, URA3}, evolved for C2 supplement-independence, glucose tolerance and faster growth
GEVO2792	GEVO2710 transformed with pGV2020
GEVO2844	GEVO2799 transformed with pGV2020
GEVO2847	GEVO2799 transformed with pGV2082
GEVO2848	GEVO2799 transformed with pGV2227
GEVO2849	GEV02799 transformed with pGV2242
GEVO2851 GEVO2052	GEVO2711 transformed with pGV2227 GEVO2711 transformed with pGV2242
GEVO2052	GEVO2711 transformed with pGV2242

TABLE 3-continued

44

Strain No. Description	
GEVO2854 GEVO2710 transformed with pGV2082	
GEVO2855 GEVO2710 transformed with pGV2227	
GEVO2856 GEVO2710 transformed with pGV2242	
GEVO5001 S. cerevisiae CEN.PK2, Δpdc1 Δpdc5 Δpdc6 expressing an isobutanol	
pathway (ALS, KARI, DHAD, KIVD, ADH)	
GEVO5002 GEVO5001 P _{TEF1} :NADH kinase P _{TDH3} :NADP ⁺ phosphatase HPH	
GEVO5003 GEVO5001, P _{TDH3} :Kl_GDP1 HPH	
GEVO5004 GEVO5001 P _{TEF1} :ess:pntA P _{TDH3} :ess:pntB HPH	
GEVO5005 GEVO5001 P _{TEF1} :mts:pntA P _{TDH3} :mts:pntB HPH	
GEVO5006 GEVO5001 P _{4DH1} :PYC1 P _{TEE1} :MDH2 P _{TDH3} :maeB HPH	
E. coli BL21 Lucigen Corporation (Middleton, WI)	
(DE3)	
E. coli Lutz, R. and Bujard, H, Nucleic Acids Research (1997) 25 1203-1210	
DH5aZ1	
JCL260* E. coli BW25113, AldhA-fnr::FRT, ΔadhE::FRT, Δfrd::FRT, ΔpflB::FRT, ΔpflB::FRT, ΔpflB::FRT, F' (lacIq+)	

*These strains are described in PCT/US2008/053514

TABLE 4

Plasmids disclosed herein

		SEQ II)
GEVO No.	FIG.	NO	Genotype or Reference
	,		
pKD13	n/a		Datsenko, K and Wanner, B. PNAS 2000, 97: 6640-5
pKD46	n/a		Datsenko, K and Wanner, B. PNAS 2000, 97: 6640-5
pSA55*	n/a		pLlacO1::Ll_kivd1::ADH2, ColE1, Amp
pSA69*	n/a		pLlacO1::Bs_alsS1::Ec_ilvC::Ec_ilvD, p15A, Kan
pET22b(+)	n/a		Novagen, Gibbstown, NJ
pET22b[ilvCco]	n/a	101	Novagen, Gibbstown, NJ
pGV1102		101	P _{TEF1} -HA-tag-MCS-T _{CYC1} , URA3,2-micron, bla, pUC-ori
pGV1323		102	DI L. OLUL L. Ladiu ADID - SCI01 K-
pGV1485		103	PLlacO1::Ll_kivd1::ADH2, pSC101, Km
pGV1490		104	pLtetO1::p15A, Cm
pGV1527		105	PLtetO1::Ll_kivd1_coEc::S. cerevisiae ADH2 ColE1, bla
pGV1572		105	PLlacO1::empty, p15A, Cm^R
pGV1573		106	PLlacO1::GDP1, p15A, Cm ^R
pGV1575		107	PLlacO1::gapC, p15A, Cm ^R
pGV1609		108	PLlacO1::Bs_alsS1::ilvC::Ec_ilvD, p15A, Cm
pGV1631			PLlacO1::Ll_kivd1, ColE1, Amp
pGV1655		109	PLlacO1::Ll_kivd1::Ec_ilvD_coEc,, pSC101, Km
pGV1661		110	pLtetO1::maeB::ppc::mdh, p15A, Cm
pGV1662			
pGV1685		111	PLtetO1::pntAB, p15A, Cm
pGV1698		112	PLlacO1::Bs_alsS1::ilvC, bla, ColE1 ORI
pGV1705-A			PLlacO1::Ec_yqhD bla, ColE1 ORI
pGV1711		113	PLlacO1::(no ORF) bla, ColE1 ORI
pGV1716		114	PLlacO1::Bs_alsS1::Saccharomyces cerevisiae
			ADH2::ilvC bla, ColE1 ORI
pGV1720		115	pLlacO1::empty, pSC101, Km
pGV1730		116	P _{CUP1} -Bs_alsS2-PDC1 3' region-PDC1 5' region, TRP1,
			bla, pUC ori
pGV1745		117	pLlacO1::pntAB, pSC101, Km
pGV1748			PLlacO1::Bs_alsS1::Ec_fucO::Ec_ilvC_coEc bla, ColE1 ORI
pGV1748-A			PLlacO1::Ec_fucO:: bla, ColE1 ORI
pGV1749			PLlacO1:: Bs_alsS1::Dm_ADH: Ec_ilvC_coEc bla,
portino			ColE1 ORI
pGV1749-A			PLlacO1::Dm_ADH:: bla, ColE1 ORI
pGV1772			pLtetO1::maeB::pck::mdh, p15A, Cm
pGV1777		118	PLlacO1::Ec_ilvC_coEc, bla, ColE1 ORI
pGV1778		110	PLlacO1:: Bs_alsS1::Kp_dhaT::Ec_ilvC_coEc bla, ColE1
pGV1778			ORI
pGV1778-A			PLlacO1::Kp_dhaT::bla, ColE1 ORI
pGV1824			P _{TEF1} ::Ec_ilvC_coSc:T _{CYC1} , pUC ORI, URA3, 2µ ORI, bla
pGV1914		119	P _{TEF1} :Ll_kivd2: P _{TDH3} :Dm_ADH PDC6 5',3' targeting
pGV1925			homology URA3 pUC ori bla(ampR) pLlacO1::Ec_fucO ::Ec_jlvC_coEc::bla, ColE1 ORI

TABLE 4	-continued
---------	------------

			Plasmids disclosed herein
GEVO No.		Q ID NO) Genotype or Reference
pGV1927			pLlacO1::Ec_fucO::Ec_ilvC_coEc ^{578D} bla, ColE1 ORI
pGV1936	1	120	P _{TEF1} :Sc_ILV3AN P _{TDH3} :Ec_ilvC_coSc ^{Q110V} PDC5 5',3' targeting homology LEU2
pGV1938			pLlac01::ilvC_coS78D bla, ColE1 ORI
pGV1939			pLlacO1::E. coli fucO bla, ColE1 ORI
pGV1975			pLlacO1::Ec_fucO::Ec_ilvC_coEc ^{6E6} bla, ColE1 ORI
pGV1976			pLlacO1::Ec_fucO::Ec_ilvC_coEC ^{2H10} bla, ColE1 ORI
pGV1994			P _{TEF1} ::Ec_ilvC_coSc ^{6E6} :T _{CYC1} , bla, pUC ORI, URA3, 2μ ORI
pGV2020	1	121	P _{Sc_TEF1} , P _{Sc_TPI1} , P _{Sc_TPI1} G418 ^R , AP ^r , 2µ —Vector Control
pGV2082	1	122	P _{TEF1} -Ll_ilvD_coSc-P _{TDH3} -Ec_ilvC_coSc ^{Q110V} -P _{TP1} -
			G418R-P _{PGK1} -Ll_kivd2_coEc-PDC1-3'region-P _{ENO2} -
			Dm_ADH 2µ bla, pUC-ori
pGV2193			P _{TEF1} ::Ec_ilvC_coSc ^{P2D1-his6} :T _{CYC1} , bla, pUC ORI, URA3, 2µ ORI
pGV2227	1	123	P _{TFF1} -Ll_ilvD_coSc-P _{TDH3} -Ec_ilvC_coSc ^{Q110V} -P _{TP11} -
-			G418R-P _{PGK1} -Ll_kivd2_coEc-PDC1-3'region-P _{ENO2} -
			Ll_adhA 2µ bla, pUC-ori
pGV2238			P_{TEF1} ::Ec_ilvC_coSc ^{P2D1-A1-his6} :T _{CYC1} , bla, pUC ORI,
			URA3, 2μ ORI.
pGV2241]	124	P _{TEF1} ::Ec_ilvC_coSe ^{6E6-his6} :T _{CYC1} , bla, pUC ORI, URA3, 2µ ORI.
pGV2242	1	125	P _{TEF1} -Ll_ilvD_coSc-P _{TDH3} -Ec_ilvC_coSc ^{P2D1} -P _{TP11} -
			G418R-P _{PGK1} -Ll_kivd2_coEc-PDC1-3'region-P _{ENO2} -
			Ll_adhA 2µ bla, pUC-ori
pGV6000			P _{TEF1} :NADH kinase P _{TDH3} :NADP ⁺ phosphatase HPH
pGV6001			P _{TDH3} :Kl_GDP1 HPH
pGV6002			P _{TEF1} :ess:pntA P _{TDH3} :ess:pntB HPH
pGV6003			P_{TEF1} :mts:pntA P_{TDH3} :mts:pntB HPH
pGV6004			P _{ADH1} :PYC1 P _{TEF1} :MDH2 P _{TDH3} :maeB HPH
			AMALI 120-1 11013

*These plasmids are described in PCT/US2008/053514

TABLE 5

		mino acid and nucleotide	sequences of enzymes	and denes disclosed	herein
Enz.	Source	Gene (SEQ ID NO)	Corresponding	Protein (SEQ ID NO)
pntA	E. coli	<i>E. coli</i> pntA	(SEQ ID NO: 1)	E. coli PntA	(SEQ ID NO: 2)
pntB	E. coli	<i>E. coli</i> pntB	(SEQ ID NO: 3)	E. coli PntB	(SEQ ID NO: 4)
ALS	B. subtilis	Bs_alsS1 Bs_alsS1_coSc Bs_alsS2	(SEQ ID NO: 5) (SEQ ID NO: 6) (SEQ ID NO: 8)	Bs_AlsS1 Bs_AlsS2	(SEQ ID NO: 7) (SEQ ID NO: 9)
KARI	E. coli	Ec_ilvC Ec_ilvC-coEc Ec_ilvC_coSc	(SEQ ID NO: 10) (SEQ ID NO: 11) (SEQ ID NO: 12)	Ec_llvC	(SEQ ID NO: 13)
		$ \begin{array}{l} \texttt{Ec_ilvC_coEc^{his6}} \\ \texttt{Ec_ilvC_coEc^{his6}} \\ \texttt{Ec_ilvC_coEc^{S78D-his6}} \\ \texttt{Ec_ilvC_coEc^{Q110A-his6}} \\ \texttt{Ec_ilvC_coEc^{Q110V-his6}} \\ \texttt{Ec_ilvC_coEc^{Q110V}} \\ \texttt{Ec_ilvC_coEc^{B8-his6}} \\ \texttt{Ec_ilvC_coEc^{B8-his6}} \\ \texttt{Ec_ilvC_coEc^{B8-his6}} \\ \texttt{Ec_ilvC_coEc^{2H10-his6}} \\ \texttt{Ec_ilvC_coEc^{2H10-his6}} \\ \texttt{Ec_ilvC_coEc^{6E6-his6}} \\ \\ \texttt{Ec_ilvC_coSc^{6e6-his6}} \\ \\ \texttt{Ec_ilvC_coSc^{6e6-his6}} \\ \\ \\ \texttt{Ec_ilvC_coSc^{P2D1-his6}} \\ \\ \\ \\ \\ \\ \texttt{Ec_ilvC_coSc^{P2D1}-A1-his6} \end{array} \end{array} $		Ec_llvC ^{his6} Ec_llvC ^{578D-his6} Ec_llvC ^{578D} Ec_llvC ^{Q110A-his6} Ec_llvC ^{Q110V-his6} Ec_llvC ^{Q110V} Ec_llvC ^{85-his6} Ec_llvC ^{85-his6} Ec_llvC ^{2H10-his6} Ec_llvC ^{6E6} -his6 Ec_llvC ^{6E6} Ec_llvC ^{62D1} -his6 Ec_llvC ^{2D1} -his6 Ec_llvC ^{2D1} -his6	(SEQ ID NO: 15) (SEQ ID NO: 17) (SEQ ID NO: 17) (SEQ ID NO: 21) (SEQ ID NO: 23) (SEQ ID NO: 25) (SEQ ID NO: 27) (SEQ ID NO: 27) (SEQ ID NO: 31) (SEQ ID NO: 34) (SEQ ID NO: 36) (SEQ ID NO: 38) (SEQ ID NO: 40) (SEQ ID NO: 42)
		Ec_ilvC_coSc ^{P2D1-A1-hist} Ec_ilvC_coSc ^{P2D1-A1}	(SEQ ID NO: 39) (SEQ ID NO: 41) (SEQ ID NO: 43)	$ \begin{array}{l} \texttt{EC_11VC} \\ \texttt{Ec_11VC}^{P2D1-A1-his6} \\ \texttt{Ec_11VC}^{P2D1-A1} \end{array} \end{array} $. ~

Amino acid and nucleotide sequences of enzymes and genes disclosed herein

Inz.	Soi	ırce		Gene (SEQ ID NO)				Corresponding	g Protein (Sl	EQ ID	NO)
CIVD	L.	lactis	Ll_kivd1		(SEQ			,	Ll_Kivd1	(SEQ I	NO:	47)
			Ll_kivd1_coEc		(SEQ							
			Ll_kivd2_coEc		(SEQ	ID 1	: 01	48)	Ll_Kivd2	(SEQ I	O NO:	49)
HAD	E.	coli	Ec_ilvD		(SEQ	ID 1	: 01	50)	Ec_llvD	(SEQ I	D NO:	52)
			Ec_ilvD_coEc		(SEQ	ID 1	: OI	51)				
	L .	lactis	Ll_ilvD_coSc		(SEQ	ID 1	: OI	54)	Ll_llvD	(SEQ I	ONO:	55)
	s.	cerevisiae	Sc_1LV3		(SEQ	ID 1	: 01	56)	Sc_llv3	(SEQ I	D NO:	57)
			$Sc_{1LV3\Delta N}$		(SEQ	ID 1	: 01	58)	Sc_llv3AN	(SEQ I	D NO:	59)
DH	D.	melanogaster	Dm_ADH		(SEQ	ID 1	: 01	60)	Dm_Adh	(SEQ I	D NO:	61)
	К.	pneumoniae	Kp_dhaT		(SEQ	ID 1	: 07	62)	Kp_DhaT	(SEQ I	D NO:	63)
	Ε.	coli	Ec_fuc0		(SEQ	ID1	: 01	64)	Ec_FucO	(SEQ I	D NO:	65)
	L.	lactis	Ll_adhA		(SEQ	ID1	: 01	66)	Ll_AdhA	(SEQ I	D NO:	67)
	Ε.	coli	Ec_yqhD		(SEO	ID 1	: 01	68)	Ec_YqhD	(SEO I	D NO:	69)

TABLE 5-continued

TABLE	6
-------	---

	-	Pri	mers	sequences disclosed herein
No.	(SEQ	ID	NO)	Sequence (listed as 5' to 3')
XX1 (SEQ	IDN	10 :	201)	CGCACCGGTTTTCTCCTCTTTAATGAATTCGGTC AGTGCGTCCTGC
XX2 (SEQ	IDN	10 :		GCGGCCGCCCTAGGGCGTTCGGCTGCGGCGAGCG GT
XX3 (SEQ	IDN	10 :		CGCGAATTCGGATCCGAGGAGAAAATAGTTATGA ACAACTTTAATCTGCACACCCC
XX4 (SEQ	IDN	10 :	204)	GCGCCTAGGGCGGCCGCTTAGCGGGCGGCTTCGT ATATACGG
50 (SEQ		10 :		GCAGTTTCACCTTCTACATAATCACGACCGTAGT AGGTATCATTCCGGGGATCCGTCGACC
73 (SEQ		10 :	206)	CTGGCTTAAGTACCGGGTTAGTTAACTTAAGGAG AATGACGTGTAGGCTGGAGCTGCTTC
74 (SEQ		10 :	207)	CTCAAACTCATTCCAGGAACGACCATCACGGGTA ATCATCATTCCGGGGATCCGTCGACC
116 (SEQ		10 :	208)	CAGCGTTCGCTTTATATCCCTTACGCTGGCCCTG TACTGCTGGAAGTGTAGGCTGGAGCTGCTTC
117 (SEQ		10 :	209)	TTCGGCTTGCCAGAAATTATCGTCAATGGCCTGT TGCAGGGCTTCATTCCGGGGATCCGTCGACC
350 (SEQ	IDN	10 :	210)	CTTAAATTCTACTTTTATAGTTAGTC
474 (SEQ		10 :	211)	CAAAGCTGCGGATGATGACGAGATTACTGCTGCT GTGCAGACTGAATTCCGGGGATCCGTCGACC
772 (SEQ	IDN	10 :		AGGAAGGAGCACAGACTTAG
868 (SEQ		10 :	213)	CACAACATCACGAGGAATCACCATGGCTAACTAC TTCAATACACGTGTAGGCTGGAGCTGCTTC
869 (SEQ		10 :	214)	CTTAACCCGCAACAGCAATACGTTTCATATCTGT CATATAGCCGCATTCCGGGGGATCCGTCGACC
1030 (SEQ		10 :	215)	GTCGGTGAACGCTCTCCTGAGTAGGGTGTAGGCT GGAGCTGCTTC

TABLE 6-continued

		Pri	mers	sequences disclosed herein
No.	(SEQ	ID	NO)	Sequence (listed as 5' to 3')
1031 (SEÇ	9 ID	NO :	216)	GAAGCAGCTCCAGCCTACACCCTACTCAGGAGAG CGTTCACCGAC
1032 (SEÇ		NO :	217)	CACAACATCACGAGGAATCACCATGGCTAACTAC TTCAATACACCACGAGGCCCTTTCGTCTTCACCT C
1155 (SEÇ	i D ID	NO :	218)	CCCAACCCGCATTCTGTTTGGTAAAGGCGCAATC GCTGGTTTACGGTGTAGGCTGGAGCTGCTTC
1156 (SEÇ		NO :	219)	CAATCGCGGCGTCAATACGCTCATCATCGGAACC TTCAGTGATGTATTCCGGGGATCCGTCGACC
1187 (SEÇ		NO :	220)	CGGATAAAGTTCGTGAGATTGCCGCAAAACTGGG GCGTCATGTGGGTGTAGGCTGGAGCTGCTTC
1188 (SEÇ		NO :	221)	CAGACATCAAGTAACCTTTATCGCGCAGCAGATT AACCGCTTCGCATTCCGGGGATCCGTCGACC
1191 (SEÇ		NO :	222)	GGCACTCACGTTGGGCTGAGACACAAGCACACAT TCCTCTGCACGGTGTAGGCTGGAGCTGCTTC
1192 (SEÇ	0 ID	NO :	223)	GCACCAGAAACCATAACTACAACGTCACCTTTGT GTGCCAGACCGATTCCGGGGATCCGTCGACC
1205 (SEÇ) ID	NO :	224)	GTTATCTAGTTGTGCAAAACATGCTAATGTAGCC ACCAAATCCACGAGGCCCTTTCGTCTTCACCTC
1218 (SEÇ		NO :	225)	GCTCACTCAAAGGCGGTAATACGTGTAGGCTGGA GCTGCTTC
1219 (SEÇ		NO :	226)	GAAGCAGCTCCAGCCTACACGTATTACCGCCTTT GAGTGAGC
1220 (SEÇ) ID	NO :	227)	CGTAGAATCACCAGACCAGC
1296 (SEÇ) ID	NO :	228)	TTTTGTCGACGGATCCAGGAGACAACATTATGTC TATTCCAGAAACTCAAAAAGCG
1297 (SEÇ		NO :	229)	TTTTGTCGACGCCGCCGCTTATTTAGAGGTGTCC ACCACGTAACGG
1321 (SEÇ	9 ID	NO :	230)	AATCATATCGAACACGATGC

TABLE 6-continued

TABLE 6-CONTINUED	TABLE 6-CONCINUED
Primers sequences disclosed herein	Primers sequences disclosed herein
No. (SEQ ID NO) Sequence (listed as 5' to 3')	No. (SEQ ID NO) Sequence (listed as 5' to 3')
1322 TCAGAAAGGATCTTCTGCTC	1562 GGTCGACGGATCCCCGGAATGTTACAGAGCTTTC
(SEQ ID NO: 231)	(SEQ ID NO: 255) AGGATTGC
1323 ATCGATATCGTGAAATACGC (SEQ ID NO: 232)	1563 CAAATCGGCGGTAACGAAAGAGGATAAACCGTGT (SEQ ID NO: 256) CCCGTATTATTCACGAGGCCCTTTCGTCTTCACC TC
1324 AGCTGGTCTGGTGATTCTAC (SEQ ID NO: 233)	1566 TCCCACCCAATCAAGGCCAACG (SEQ ID NO: 257)
1341 TGCTGAAAGAGAAATTGTCC	1567 TCCACCTGGTGCCAATGAACCG
(SEQ ID NO: 234)	(SEQ ID NO: 258)
1342 TTTCTTGTTCGAAGTCCAAG	1587 CGGCTGCCAGAACTCTACTAACTG
(SEQ ID NO: 235)	(SEQ ID NO: 259)
1364 TTTTGCGGCCGCTTAGATGCCGGAGTCCCAGTGC	1588 GCGACGTCTACTGGCAGGTTAAT
(SEQ ID NO: 236) TTG	(SEQ ID NO: 260)
1365 AGTTGTTGACGCAGGTTCAGAG	1595 CAACCTGGTGATTTGGGGAAG
(SEQ ID NO: 237)	(SEQ ID NO: 261)
1436 AAATGACGACGAGCCTGAAG	1597 GAATGATGGCAGATTGGGCA
(SEQ ID NO: 238)	(SEQ ID NO: 262)
1437 GACCTGACCATTTGATGGAG	1598 TATTGTGGGGCTGTCTCGAATG
(SEQ ID NO: 239)	(SEQ ID NO: 263)
1439 CAATTGGCGAAGCAGAACAAG	1624 CCCTCATGTTGTCTAACGG
(SEQ ID NO: 240)	(SEQ ID NO: 264)
1469 TTTTAGATCTAGGAGATACCGGTATGTCGTTTAC	1633 TCCGTCACTGGATTCAATGCCATC
(SEQ ID NO: 241) TTTGACCAACAAG	(SEQ ID NO: 265)
1440 ATCGTACATCTTCCAAGCATC	1634 TTCGCCAGGGAGCTGGTGAA
(SEQ ID NO: 242)	(SEQ ID NO: 266)
1441 AATCGGAACCCTAAAGGGAG	1798 GCAAATTAAAGCCTTCGAGCG
(SEQ ID NO: 243)	(SEQ ID NO: 267)
1442 AATGGGCAAGCTGTTTGCTG	1926 TTTTTGTCGACGGATCCAGTTTATCATTATCAAT
(SEQ ID NO: 244)	(SEQ ID NO: 268) ACTCG
1443 TGCAGATGCAGATGTGAGAC	1927 TTTTGCGGCCGCAGATCTCTCGAGTCGAAACTAA
(SEQ ID NO: 245)	(SEQ ID NO: 269) GTTCTGGTGTT
1470 TTTTGGATCCAGGAAATAGATCTATGATGGCTAA	2091 CTTTTCTTCCCTTGTCTCAATC
(SEQ ID NO: 246) CAGAATGATTCTGAACG	(SEQ ID NO: 270)
1471 TTTTGCGGCCGCTTACCAGGCGGTATGGTAAAGC	2352 GACTCGACCTAGGTTATTTAGTAAAATCAATGAC
(SEQ ID NO: 247) TC	(SEQ ID NO: 271) CATTC
1479 CCGATAGGCTTCCGCCATCGTCGGGTAGTTAAAG	2353 CTAAATAACCTAGGTCGAGTCATGTAATTAGTTA
(SEQ ID NO: 248) GTGGTGTTGAGTGTAGGCTGGAGCTGCTTC	(SEQ ID NO: 272) TGTC
1485 GCCTTTATTGTACGCTTTTTACTGTACGATTTCA (SEQ ID NO: 249) GTCAAATCTAACACGAGGCCCTTTCGTCTTCACC TC	KARIpETfor ATTCATATGGCGAATTATTTCAACACTCTG (SEQ ID NO: 273)
1486 AAGTACGCAGTAAATAAAAAATCCACTTAAGAAG	KARIPETrev TAATCTCGAGGCCAGCCACCGCGATGCG
(SEQ ID NO: 250) GTAGGTGTTACATTCCGGGGATCCGTCGACC	(SEQ ID NO: 274)
1526 TCGACGAGGAGACAACATTGTGTAGGCTGGAGCT	pETup ATGCGTCCGGCGTAGA
(SEQ ID NO: 251) GCTTC	(SEQ ID NO: 275)
1527 GAAGCAGCTCCAGCCTACACAATGTTGTCTCCTC (SEQ ID NO: 252) GTCGA	<pre>seq_ilvC_pGV GCGGCCGCGTCGACGAGGAGACAACATTATGGCG (SEQ ID NO: 276) A</pre>
1539 CCATTCTGTTGCTTTTATGTATAAGAACAGGTAA	pGV1994ep_for CGGTCTTCAATTTCTCAAGTTTCAGTTTCATTTT
(SEQ ID NO: 253) GCCCTACCATGGAGAATTGTGAGCGGATAAC	(SEQ ID NO: 277) TCTTGTTCTATTACAAC
1561 GCAATCCTGAAAGCTCTGTAACATTCCGGGGATC	pGV1994ep_rev CTAACTCCTTCCTTTTCGGTTAGAGCGGATGTGG
(SEQ ID NO: 254) CGTCGACC	(SEQ ID NO: 278) G

47

TABLE 6-continued

TABLE 6	-continued
---------	------------

-1	ABLE 6-continued	TABLE 6-CONTINUED					
Primers	sequences disclosed herein	Primers	sequences disclosed herein				
No. (SEQ ID NO)	Sequence (listed as 5' to 3')	No. (SEQ ID NO)	Sequence (listed as 5' to 3')				
Not_in_for (SEQ ID NO: 279)	CCTCTAGAAATAATTTGCGGCCGCGTTAAGAAGG AGATATACATATG	Q110Arev (SEQ ID NO: 303)	AACAACGTCGCTATGTGCTTTATCTGGGGTC				
AvrII_in_rev (SEQ ID NO: 280)	CCGAACGCCCTAGGTCAGTGGTGGTGGTGGTGGT GCTCGAG	Q110Vfor (SEQ ID NO: 304)	GACCCCAGATAAAGTACATAGCGACGTTGTT				
R68DK69Lfor (SEQ ID NO: 281)	TAGCTATGCGCTGGACCTGGAGGCTATC	Q110Vrev (SEQ ID NO: 305)	AACAACGTCGCTATGTACTTTATCTGGGGTC				
R68DK69Lrev (SEQ ID NO: 282)		R68A71recombfor (SEQ ID NO: 306)	GCTATGCGCTGCKAAAGGAGDCAATCGCGG				
K75VR76Dfor (SEQ ID NO: 283)	AGGCTATCGCGGAAGTTGACGCTAGCTG	R68A71recombrev (SEQ ID NO: 307)	CGGCGATTGHCTCCTTTMGCAGCGCATAGC				
K75VR76Drev (SEQ ID NO: 284)	CAGCTAGCGTCAACTTCCGCGATAGCCT	R76S78recombfor (SEQ ID NO: 308)	GAAAAACGTGCTAGCTGGCGCAAGGCTACT				
R69NNKfor (SEQ ID NO: 285)	TAGCTATGCGCTGCGCNNKGAGGCTATC	R76S78recombrev (SEQ ID NO: 309)	AGTAGCCTTGCGCCAGCTAGCACGTTTTTC				
R69NNKrev (SEQ ID NO: 286)	GATAGCCTCMNNGCGCAGCGCATAGCTA	G76S78recombfor (SEQ ID NO: 310)	GAAAAAGGTGCTAGCTGGCGCAAGGCTACT				
K75NNKfor (SEQ ID NO: 287)	AGGCTATCGCGGAANNKCGTGCTAGCTG	G76S78recombrev (SEQ ID NO: 311)	AGTAGCCTTGCGCCAGCTAGCACCTTTTTC				
K75NNKrev (SEQ ID NO: 288)	CAGCTAGCACGMNNTTCCGCGATAGCCT	S76S78recombfor (SEQ ID NO: 312)	GAAAAAAGTGCTAGCTGGCGCAAGGCTACT				
R76NNKfor (SEQ ID NO: 289)	AGGCTATCGCGGAAAAANNKGCTAGCTGGC	S76S78recombrev (SEQ ID NO: 313)	AGTAGCCTTGCGCCAGCTAGCACTTTTTTC				
R76NNKrev (SEQ ID NO: 290)	GCCAGCTAGCMNNTTTTTCCGCGATAGCCT	T76S78recombfor (SEQ ID NO: 314)	GAAAAAACTGCTAGCTGGCGCAAGGCTACT				
R68NNK_for (SEQ ID NO: 291)	TAGCTATGCGCTGNNKAAGGAGGCTATC	T76S78recombrev (SEQ ID NO: 315)	AGTAGCCTTGCGCCAGCTAGCAGTTTTTTC				
R68NNK_rev (SEQ ID NO: 292)	GATAGCCTCCTTMNNCAGCGCATAGCTA	(SEQ ID NO: 316)					
(SEQ ID NO: 293) (SEQ ID NO: 293)	GCGGAAAAACGTGCTNNKTGGCGCAAGGCTACT	(SEQ ID NO: 317)	AGTAGCCTTGCGCCAGCTAGCATCTTTTTC				
S78NNK_rev (SEQ ID NO: 294)	AGTAGCCTTGCGCCAMNNAGCACGTTTTTCCGC	R76D78recombfor (SEQ ID NO: 318)	GAAAAACGTGCTGACTGGCGCAAGGCTACT				
A71NNK_for (SEQ ID NO: 295)	GCGCTGCGCAAGGAGNNKATCGCGGAAAAAC	R76D78recombrev (SEQ ID NO: 319)	AGTAGCCTTGCGCCAGTCAGCACGTTTTTC				
A71NNK_rev (SEQ ID NO: 296)	GTTTTTCCGCGATMNNCTCCTTGCGCAGCGC	G76D78recombfor (SEQ ID NO: 320)	GAAAAAGGTGCTGACTGGCGCAAGGCTACT				
Gln110NNK_for (SEQ ID NO: 297)	CTGACCCCAGATAAANNKCATAGCGACGTTG	G76D78recombrev (SEQ ID NO: 321)	AGTAGCCTTGCGCCAGTCAGCACCTTTTTC				
Gln110NNK_rev (SEQ ID NO: 298)	CAACGTCGCTATGMNNTTTATCTGGGGTCAG	S76D78recombfor (SEQ ID NO: 322)	GAAAAAAGTGCTGACTGGCGCAAGGCTACT				
seq_ilvC_pGV (SEQ ID NO: 299)	GCGGCCGCGTCGACGAGGAGACAACATTATGGC GA	S76D78recombrev (SEQ ID NO: 323)	AGTAGCCTTGCGCCAGTCAGCACTTTTTTC				
Q110Qfor (SEQ ID NO: 300)	GACCCCAGATAAACAACATAGCGACGTTGTT	T76D78recombfor (SEQ ID NO: 324)	GAAAAAACTGCTGACTGGCGCAAGGCTACT				
Q110Qrev (SEQ ID NO: 301)	AACAACGTCGCTATGTTGTTTATCTGGGGTC	T76D78recombrev (SEQ ID NO: 325)	AGTAGCCTTGCGCCAGTCAGCAGTTTTTTC				
Q110Afor (SEQ ID NO: 302)	GACCCCAGATAAAGCACATAGCGACGTTGTT		GAAAAAGATGCTGACTGGCGCAAGGCTACT				

TABLE 6-continued

	-	Pri	mers	sequences disclosed herein
No. (\$	SEQ	ID	NO)	Sequence (listed as 5' to 3')
D76D78 (SEQ]				AGTAGCCTTGCGCCAGTCAGCATCTTTTTC
1994h: (SEQ :			328)	TGACTCGAGCGGCCGCGGATCCTTAGTGGTGGTG GTGGTGGTGTCCTGCCACTGCA
pGV199 (SEQ]	-			CGGTCTTCAATTTCTCAAGTTTCAGTTTCATTTT TCTTGTTCTATTACAAC
pGV199 (SEQ)	-			CTAACTCCTTCCTTTTCGGTTAGAGCGGATGTGG G

EXAMPLE 1

Low-Level Anaerobic Production of Isobutanol

[0471] This example illustrates that a modified microorganism which is engineered to overexpress an isobutanol producing pathway produces a low amount of isobutanol under anaerobic conditions.

[0472] Overnight cultures of GEVO1859 were started from glycerol stocks stored at -80° C. of previously transformed strains. These cultures were started in 3 mL M9 minimal medium (Miller, J. H. A Short Course in Bacterial Genetics: A laboratory manual and handbook for *Escherichia coli* and

 30° C. The flasks in the anaerobic chamber were swirled twice a day. Samples (2 mL) were taken at the time of the shift and at 24 h and 48 h after inoculation, spun down at 22,000 g for 1 min to separate the cell pellet from the supernatant and stored frozen at -20° C. until analysis. The samples were analyzed using High performance liquid chromatography (HPLC) and gas chromatography (GC).

[0475] GEVO1859 was run in triplicate. Stable OD values can be observed for all strains under anaerobic shift conditions over the course of the fermentation (FIG. 8). The complete pathway integrant strain showed low-level anaerobic isobutanol production over the course of the fermentation (FIG. 9, Table 7).

TABLE 7

Volumetric productivity, specific productivity titer and yield reached in an anaerobic fermentation for the tested strains and plasmid systems								
		netric <u>ctivit</u> y	Specific Productivity					
	[g/		[g/L/		Tit	ter	Yi	eld
Samples	L/h]	±	h/OD]	±	[g/L]	±	[g/g]	±
GEVO1859	0.088	0.028	0.019	0.005	4.22	1.35	0.140	0.029

[0476] In the period from 6 h to 48 h, i.e. under anaerobic conditions GEVO1859 demonstrated limited production of isobutanol (Table 8).

TABLE 8

Volumetric productivity, specific productivity titer and yield reached in the period from 6 to 48 h for the tested strain									
		Volum Produc	eure	Specifi Productiv		Tite	er	Yi	eld
Samples	Condition	[g/L/h]	±	[g/L/h/OD]	±	[g/L]	±	[g/g]	±
GEVO1859	Micro- aerobic	0.266	0.010	0.040	0.004	11.2	0.4	0.33	0.016
GEVO1859	Anaerobic	0.086	0.026	0.019	0.005	3.60	1.1	0.14	0.032

related bacteria. 1992. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.), supplemented with 10 g/L yeast extract, 10 μ M ferric citrate and trace metals, containing 8.5% glucose and the appropriate antibiotics in snap cap tubes about 14 h prior to the start of the fermentation. Isobutanol fermentations were then carried out in screw cap flasks containing 20 mL of the same medium that was inoculated with 0.2 mL of the overnight culture. The cells were incubated at 37° C./250 rpm until the strains had grown to an OD₆₀₀ of 0.6-0.8 and were then induced with Isopropyl 13-D-1-thiogalactopyranoside at 1 mM final concentration.

[0473] Three hours after induction the cultures were either kept under the current conditions (micro-aerobic conditions) or shifted to anaerobic conditions by loosening the cap of the flasks and placing the flasks into to a Coy Laboratory Products Type B Vinyl anaerobic chamber (Coy Laboratory Products, Grass Lakes, Mich.) through an airlock in which the flasks were cycled three times with nitrogen and vacuum, and then filled with the a hydrogen gas mix (95% Nitrogen, 5% Hydrogen).

[0474] Once the flasks were inside the anaerobic chamber, the flasks were closed again and incubated without shaking at

EXAMPLE 2

Determination of Transhydrogenase Activity

[0477] This example illustrates that an isobutanol producing microorganism which carries a plasmid for the expression of the *E. coli* PntAB transhydrogenase (SEQ ID NO: 2 and SEQ ID NO: 4) contains increased transhydrogenase activity. [0478] A fermentation was performed with a strain expressing the tet repressor (GEV01385) and carrying the plasmids pGV1655 (SEQ ID NO: 109) and pGV1698 (SEQ ID NO: 112) for expression of the isobutanol pathway. The *E. coli* transhydrogenase PntAB was expressed from a third plasmid pGV1685 (SEQ ID NO: 111), which contained the *E. coli* pntAB genes under control of the PLtet promoter. The appropriate empty vector control carries the plasmid pGV1490 (SEQ ID NO: 104).

[0479] GEVO1385 was transformed with pGV1698, pGV1655, and either pGV1685 or pGV1490. Transformed cells were plated on LB-plates containing the appropriate antibiotics and the plates were incubated overnight at 37° C. Overnight cultures were started in 3 mL EZ-Rich Defined

Medium (Neidhardt, F. C., P. L. Bloch, and D. F. Smith. 1974, Culture medium for enterobacteria, J Bacteriol. 119:736-47) containing 5% glucose and the appropriate antibiotics in snap cap tubes about 14 h prior to the start of the fermentation. Isobutanol fermentations were then carried out in EZ-Rich containing 5% glucose and the appropriate antibiotics. 250 mL screw cap flasks with 20 mL EZ-Rich containing 5% glucose and the appropriate antibiotics were inoculated with 1% of the grown overnight culture. The cells were incubated at 37° C./250 rpm until the strains were grown to an OD_{600} of 0.6-0.8 and these strains were then induced with Isopropyl β-D-1-thiogalactopyranoside (IPTG (Gold BioTechnology, Inc, 12481C100) 1 mM) and anhydrotetracycline (aTc (Sigma, 37919-100 mg) 100 ng/mL). Samples were taken of the medium 48 h after inoculation. 15 mL of cell culture from each flask were centrifuged at 5,000×g for 5 min to separate the cell pellet from the supernatant. The cell pellets were stored frozen at -80° C. until analysis. The cultures grew to a comparable OD in this experiment.

[0480] To confirm that the transhydrogenase was actually expressed from the plasmids and to assess their enzymatic activity levels, enzyme assays were done with lysates prepared from the fermentation cultures. Frozen cell pellets were thawed on ice. The pellets were resuspended in 1.2 mL lysis buffer (50 mM potassium phosphate buffer at pH 7.5, MgCl₂ 2 mM). The suspensions were sonicated on ice for twice 2 min. The transhydrogenase enzyme assay was done in potassium phosphate buffer (50 mM pH 7.5, MgCl₂ 2 mM, 1 mM acetylpyridine-AD, 0.5 mM NADPH). The assay was run at 25° C. in a 96 well plate. Absorbance at 375 nm was followed in a kinetic assay format. To measure PntAB activity lysates were not cleared by centrifugation. The activity obtained for the samples featuring over-expressed E. coli pntAB show at least a 10 fold increase in transhydrogenase activity (Table 9).

TABLE 9

Shown are the enzymatic activities of the independent E. coli pntAB overexpressing strains and the amount of isobutanol production that would be supported by that activity calculated from V_{max} values obtained from the enzyme assay

Samples	average Vmax	stdev. Vmax	protein conc. [mg/mL]	units in reaction	specific activity [u/mg (total cell protein)]
pntAB-1	33.81	3.87	1.17	0.0010	0.1646
pntAB-2	45.06	1.51	1.89	0.0013	0.1355

TABLE 9-continued

Shown are the enzymat overexpressing strains would be supported b obtai	and the ar by that act	nount of isc	butanol pr ated from V	oduction that
		protein		specific activity [u/mg

Samples	average Vmax	stdev. Vmax	protein conc. [mg/mL]	units in reaction	[u/mg (total cell protein)]
empty vector-1	2.24	0.21	0.89	$0.0001 \\ 0.0000$	0.0142
empty vector-2	-0.01	2.00	0.71		-0.0001

EXAMPLE 3

Overexpression of pntAB Improves Isobutanol Fermentation Performance

[0481] This example illustrates that overexpression of a transhydrogenase, exemplified by the E. coli pntAB operon (SEQ ID NO: 1 and SEQ ID NO: 3) on a low copy plasmid improves isobutanol production under micro-aerobic conditions.

[0482] GEVO1748 was transformed with plasmids pGV1698 (SEQ ID NO: 112) and one of either pGV1720 (SEQ ID NO: 115) (control) or pGV1745 (SEQ ID NO: 117) (E. coli pntAB).

[0483] The aforementioned strains were plated on LB-plates containing the appropriate antibiotics and incubated overnight at 37° C. Overnight cultures were started in 3 ml. EZ-Rich medium (Neidhardt, F. C., P. L. Bloch, and D. F. Smith. 1974. Culture medium for enterobacteria. J Bacteriol. 119:736-47) containing 5% glucose and the appropriate antibiotics in snap cap tubes about 14 h prior to the start of the fermentation. Isobutanol fermentations were then carried out in EZ-Rich Medium containing 5% glucose and the appropriate antibiotics. 250 mL screw cap flasks with 20 mL EZ-Rich medium containing 5% glucose and the appropriate antibiotics were inoculated with 1% of the grown overnight culture. The cells were incubated at 37° C./250 rpm until they reached an OD₆₀₀ of 0.6-0.8 followed by induction with Isopropyl β-D-1-thiogalactopyranoside (IPTG, 1 mM) and anhydrotetracycline (aTc, 100 ng/mL). Samples (2 mL) were taken 24 h and 48 h post inoculation, centrifuged at 22,000×g for 1 min and stored frozen at -20° C. until via Gas Chromatography (GC) and High Performance Liquid Chromatography (HPLC). Fermentations were run with two biological replicates.

[0484] All cultures grew to an OD of 5.5 to 6.5. Volumetric productivity and titer were improved by 45%, specific productivity even by 51%. Yield was improved by 8% (Table 10).

TABLE 10

Ove	rexpressio	n of <i>E. c</i>	<i>coli</i> pntAB imp performa		sobutano	l fermen	tation	
	Volum Produc		Specifi Productiv		Ti	ter	<u>Y</u>	ield
Strain	[g/L/h]	±	[g/L/h/OD]	±	[g/L]	±	[g/g]	±
GEVO1748 + pGV1698 + pGV1720	0.205	0.001	0.035	0.001	9.86	0.04	0.311	0.001
GEVO1748 + pGV1698 + pGV1745	0.298	0.006	0.053	0.003	14.29	0.28	0.337	0.001

EXAMPLE 4

Overexpression of pnfAB Enables Anaerobic Isobutanol Production

[0485] This example illustrates that overexpression of a transhydrogenase, exemplified by the *E. coli* pntAB operon product (SEQ ID NO: 2 and SEQ ID NO: 4), improves anaerobic isobutanol production. This is surprising because it was previously not known that isobutanol could be produced anaerobically. In addition, this result was achieved without modifying the isobutanol biosynthetic pathway itself.

[0486] GEVO1748 was transformed with plasmids pGV1698 (SEQ ID NO: 112) and pGV1720 (SEQ ID NO: 115) (control) or pGV1745 (SEQ ID NO: 117) (*E. coli* pntAB).

[0487] Overnight cultures of the aforementioned strains were started from glycerol stocks stored at -80° C. of previously transformed strains. These cultures were started in 3 mL M9 minimal medium (Miller, J. H. A Short Course in Bacterial Genetics: A laboratory manual and handbook for Escherichia coli and related bacteria. 1992. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.), supplemented with 10 g/L yeast extract, 10 µM ferric citrate and trace metals, containing 8.5% glucose and the appropriate antibiotics in snap cap tubes about 14 h prior to the start of the fermentation. Isobutanol fermentations were then carried out in 250 mL screw cap flasks containing 20 mL of the same medium that was inoculated with 0.2 mL of the overnight culture. The cells were incubated at 37° C./250 rpm until the strains had grown to an OD_{600} of 0.6-0.8 and were then induced with Isopropyl β-D-1-thiogalactopyranoside at 1 mM final concentration.

then filled with the a hydrogen gas mix (95% Nitrogen, 5% Hydrogen). Once the flasks were inside the anaerobic chamber, the flasks were closed again and incubated without shaking at 30° C. Inside the chamber, an anaerobic atmosphere (<5 ppm oxygen) was maintained through the hydrogen gas mix (95% Nitrogen, 5% Hydrogen) reacting with a palladium catalyst to remove oxygen. The flasks in the anaerobic chamber were swirled twice a day. Samples (2 mL) were taken at the time of the shift and at 24 h and 48 h after inoculation, spun down at 22,000×g for 1 min to separate the cell pellet from the supernatant and stored frozen at -20° C. until analysis. The samples were analyzed using High performance liquid chromatography (HPLC) and gas chromatography (GC). All experiments for the E. coli pntAB-expressing strain were performed in duplicate while the control strain was only run in a single experiment.

[0489] At the time of shifting the cultures to anaerobic conditions all samples had an OD_{600} ranging between 2.3 and 3.3. All samples featuring an overexpressed *E. coli* pntAB operon (pGV1745) increased in OD_{600} from 6 h to 24 h by 0.2-1.1, all samples lacking pntAB (pGV1720) decreased in OD_{600} by 0.5-1.2 (FIG. **10**), indicating that overexpression of *E. coli* pntAB is beneficial under anaerobic conditions.

[0490] Furthermore, pntAB over-expression is beneficial for anaerobic isobutanol production. All samples featuring *E. coli* PntAB continued isobutanol production under anaerobic conditions until the fermentation was stopped at 48 hours whereas the samples lacking *E. coli* PntAB did not produce isobutanol between 24 and 48 hours (FIG. **11**)

[0491] In the strain overexpressing *E. coli* pntAB, volumetric productivity and titer are increased 2.4-fold, specific productivity by 85% and yield by 9% (Table 11).

TABLE 11

Shown are the results for volumetric productivity, specific productivity titer
and yield reached in an anaerobic fermentation for the tested strains and plasmid

systems after 48 h								
	Volum Produc		Specific Productivity		Titer		Yield	
Samples	[g/L/h]	±	[g/L/h/OD]	±	[g/L]	±	[g/g]	±
GEVO1748 + pGV1720 + pGV1698	0.047		0.022		2.24		0.279	
GEV01748 + pGV1745 + pGV1698	0.111	0.002	0.041	0.012	5.32	0.10	0.304	0.004

[0488] Three hours after induction the cultures were shifted to anaerobic fermentation conditions by loosening the cap of the flasks and placing the flasks into to a Coy Laboratory Products Type B Vinyl anaerobic chamber (Coy Laboratory Products, Grass Lakes, Mich.) through an airlock in which the flasks were cycled three times with nitrogen and vacuum, and

[0492] In the period from 6 h to 48 h, (i.e. under anaerobic conditions), GEVO1748 transformed with plasmids pGV1698 and pGV1745 (carrying *E. coli* pntAB) demonstrated significantly higher productivity, titer, and yield of isobutanol compared to the control strain carrying pGV1720 (without *E. coli* pntAB) (Table 12).

TABLE 12				
Shown are the results for volumetric productivity, specific productivity titer				

and yield reached in the period from 6 to 48 h for the tested strains and plasmid systems									
	Volum Produc		Specific Productivity		Titer		Yield		
sample	[g/L/h]	±	[g/L/h/OD]	±	[g/L]	±	[g/g]	±	
GEVO1748 + pGV1720 + pGV1698	0.029		0.014		1.21		0.171		
GEV01748 + pGV1745 + pGV1698	0.096	0.003	0.035	0.015	4.01	0.15	0.246	0.002	

EXAMPLE 5

Chromosomal Integration of pntAB Improves Anaerobic Isobutanol Production

[0493] This example illustrates that overexpression of a transhydrogenase, exemplified by the *E. coli* pntAB operon product (SEQ ID NO: 2 and SEQ ID NO: 4), from the chromosome improves isobutanol production under anaerobic conditions compared to the case in which *E. coli* pntAB is expressed from a low copy plasmid. This strain reaches the same titer aerobically as anaerobically.

[0494] Overnight cultures of GEVO1846, GEVO1859, GEVO1886 were started from glycerol stocks stored at -80° C. of previously transformed strains. These cultures were started in 3 mL M9 minimal medium (Miller, J. H. A Short Course in Bacterial Genetics: A laboratory manual and handbook for Escherichia coli and related bacteria. 1992. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.), supplemented with 10 g/L yeast extract, 10 µM ferric citrate and trace metals, containing 8.5% glucose and the appropriate antibiotics in snap cap tubes about 14 h prior to the start of the fermentation. Isobutanol fermentations were then carried out in screw cap flasks containing 20 mL of the same medium that was inoculated with 0.2 mL of the overnight culture. The cells were incubated at 37° C./250 rpm until the strains had grown to an OD_{600} of 0.6-0.8 and were then induced with Isopropyl β -D-1-thiogalactopyranoside at 1 mM final concentration.

[0495] Three hours after induction the cultures were either kept under the current conditions (micro-aerobic conditions) or shifted to anaerobic conditions by loosening the cap of the flasks and placing the flasks into to a Coy Laboratory Products Type B Vinyl anaerobic chamber (Coy Laboratory Products, Grass Lakes, Mich.) through an airlock in which the flasks were cycled three times with nitrogen and vacuum, and then filled with the a hydrogen gas mix (95% Nitrogen, 5% Hydrogen). Once the flasks were inside the anaerobic chamber, the flasks were closed again and incubated without shaking at 30° C. The flasks in the anaerobic chamber were swirled twice a day. Samples (2 mL) were taken at the time of the shift and at 24 h and 48 h after inoculation, spun down at 22,000×g for 1 min to separate the cell pellet from the supernatant and stored frozen at -20° C. until analysis. The samples were analyzed using High performance liquid chromatography (HPLC) and gas chromatography (GC). All experiments were performed in duplicate.

[0496] GEVO1886, GEVO1859 and GEVO1846 were run in parallel. Each strain was run in triplicate. Stable OD values can be observed for all strains under anaerobic shift conditions over the course of the fermentation (FIG. **12**). The over-expression of *E. coli* pntAB in the complete pathway integrant strain again showed improvement for isobutanol production over the course of the fermentation (FIG. **13**).

[0497] Compared to the complete pathway integrant strain without *E. coli* pntAB knock-in (GEVO1859), volumetric productivity and titer are increased 3.8-fold, specific productivity is increased 2.8-fold and the yield is 2.2-fold higher in GEVO1886. In addition, GEVO1886 shows superior performance compared to the plasmid system strain (GEVO1846) under anaerobic conditions. Volumetric productivity and titer are increased by 48%, specific productivity is increased by 18% and yield is 12% higher (Table 13).

TABLE 13

Shown are the results for volumetric productivity, specific productivity titer and yield reached in an anaerobic fermentation for the tested strains and plasmid systems									
	Volumetric Productivity		Specific Productivity						
	[g/		[g/L/		Titer		Yield		
Samples	L/h]	±	h/OD]	±	[g/L]	±	[g/g]	±	
GEVO1886	0.335	0.002	0.053	0.001	16.08	0.08	0.307	0.004	
GEVO1859	0.088	0.028	0.019	0.005	4.22	1.35	0.140	0.029	
GEVO1846	0.227	0.021	0.045	0.005	10.88	1.01	0.274	0.003	

[0498] The performance numbers in the period from 6 to 48 demonstrate that most of isobutanol production occurred under anaerobic conditions. Highest values for yield and specific productivity were reached by the strain featuring the complete pathway integration and the *E. coli* pntAB knock-in (GEVO1886) under anaerobic conditions. In addition this strain reached the highest values for volumetric productivity and titer under both conditions anaerobic and micro-aerobic (Table 14).

TABLE 14

Shown are the results for volumetric productivity, specific productivity titer and yield reached in the period from 6 to 48 h for the tested strains and plasmid systems

		Volumetric Productivity		Specific Productivity		Titer		Yield	
Samples	Condition	[g/L/h]	±	[g/L/h/OD]	±	[g/L]	±	[g/g]	±
GEVO1886	Micro- aerobic	0.355	0.004	0.042	0.001	149	0.2	0.33	0.012
GEVO1859	Micro- aerobic	0.266	0.010	0.040	0.004	11.2	0.4	0.33	0.016
GEVO1846	Micro- aerobic	0.344	0.007	0.051	0.004	14.4	0.3	0.33	0.005
GEVO1886	Anaerobic	0.355	0.008	0.056	0.001	14.9	0.1	0.35	0.004
GEVO1859	Anaerobic	0.086	0.026	0.019	0.005	3.60	1.1	0.14	0.032
GEVO1846	Anaerobic	0.209	0.019	0.041	0.004	8.79	0.8	0.27	0.006

[0499] The performance numbers in the period from 6 to 48 demonstrate that most of isobutanol production occurred under anaerobic conditions. Highest values for yield and specific productivity were reached by the strain featuring the complete pathway integration and the *E. coli* pntAB knock-in (GEVO1886) under anaerobic conditions.

EXAMPLE 6

Anaerobic Batch Fermentation of GEVO1886 and GEVO1859

[0500] This example illustrates that an engineered microorganism which overexpresses a transhydrogenase, exemplified by the *E. coli* pntAB gene product (SEQ ID NO: 2 and SEQ ID NO: 4), from the chromosome produces isobutanol at a higher rate, titer and productivity compared to the a strain that does not overexpress a transhydrogenase. This is surprising because the increase in rate, titer, and productivity was achieved without modifying the isobutanol biosynthetic pathway itself.

[0501] Overnight cultures were started in 250 mL Erlenmeyer flasks with strain GEVO1886 and strain GEVO1859 cells from fresh streak plates with a 40 mL volume of M9 medium (Miller, J. H. A Short Course in Bacterial Genetics: A laboratory manual and handbook for *Escherichia coli* and related bacteria. 1992. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.) containing 85 g/L glucose, 20 g/L yeast extract, 20 μ M ferric citrate, trace metals, an additional 1 g/L NH₄Cl, an additional 1 mM MgSO₄ and an additional 1 mM CaCl₂ and at a culture OD₆₀₀ of 0.02 to 0.05. The overnight cultures were grown for approximately 14 hours at 30° C. at 250 rpm.

[0502] Some of the overnight cultures were then transferred to 400 mL DasGip fermenter vessels containing about 200 mL of M9 medium (Miller, J. H. A Short Course in Bacterial Genetics: A laboratory manual and handbook for *Escherichia coli* and related bacteria. 1992. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.) containing 85 g/L glucose, 20 g/L yeast extract, 20 μ M ferric citrate, trace metals, an additional 1 g/L NH₄Cl, an additional 1 mM MgSO₄ and an additional 1 mM CaCl₂ to achieve a starting cell concentration by optical density at 600 nm of 0.1. The vessels were attached to a computer control system to monitor and control pH at 6.5 through addition of base, temperature at 30° C., dissolved oxygen, and agitation. The vessels were

agitated, with a minimum agitation of 200 rpm and agitation was varied to maintain a dissolved oxygen content of about 50% using a 12 sL/h air sparge until the OD_{600} was about 1.0. The vessels were then induced with 1 mM IPTG.

[0503] After continuing growth for 3 hrs, the dissolved oxygen content was decreased to 0% with 200 rpm agitation and 2.5 sL/h sparge with nitrogen (N_2) gas. Measurement of the fermenter vessel off-gas for isobutanol and ethanol was performed throughout the experiment by passage of the off-gas stream through a mass spectrometer. Continuous measurement of off-gas concentrations of carbon dioxide and oxygen were also measured by a DasGip off-gas analyzer throughout the experiment. Samples were aseptically removed from the fermenter vessel throughout the experiment and used to measure OD₆₀₀, glucose concentration by HPLC, and isobutanol concentration in the broth by GC. Each strain was run in three independent fermentations.

[0504] Strain GEVO1886 reached an average isobutanol total titer of 21.6 g/L. The average yield of the fermentation, calculated when the titer of isobutanol was between 1 g/L and 15 g/L, was 88% of theoretical. The average productivity of the fermentation was 0.4 g/L/h. As described in Example 5, GEVO1886 performs at least equally well in terms of isobutanol productivity, titer, yield under anaerobic and aerobic conditions.

[0505] By comparison, strain GEVO1859 reached an average isobutanol total titer of 1.8 g/L. The average yield of the fermentation was 56% of theoretical, and the average productivity of the fermentation was 0.02 g/l/h.

EXAMPLE 7

PntAB Overexpression Rescues a zwf-deletion Phenotype

[0506] This example illustrates that a strain that has a growth defect and does not produce isobutanol because of the deletion in a native pathway that reduces the strains ability to produce the redox cofactor NADPH can surprisingly be rescued by overexpression of *E. coli* pntAB.

[0507] Overnight cultures of GEVO1399 transformed with plasmids pSA55, pGV1609 (SEQ ID NO: 108), and pGV1745 (SEQ ID NO: 117) and GEVO1399 transformed with plasmids pSA55, pGV1609, and pGV1720 (SEQ ID NO: 115) were started from glycerol stock cultures stored at -80° C. in 3 mL fermentation medium (M9 minimal medium

according to Miller (Miller, J. H. A Short Course in Bacterial Genetics: A laboratory manual and handbook for *Escherichia coli* and related bacteria. 1992. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.), supplemented with 10 g/L yeast extract, 10 μ M ferric citrate and trace metals) containing 8.5% glucose and the appropriate antibiotics in snap cap tubes about 14 h prior to the start of the fermentation.

[0508] Isobutanol fermentations were then carried out in fermentation medium containing 8.5% glucose and the appropriate antibiotics. Two 250 mL screw cap flasks with 20 mL fermentation medium containing 8.5% glucose and the appropriate antibiotics were inoculated with 1% of each grown overnight culture. The cells were incubated at 37° C./250 rpm until the strains were grown to an OD₆₀₀ of 0.6-0.8 and were then induced with Isopropyl β -D-1-thiogalactopyranoside at 1 mM final concentration. Three hours after induction one flask per overnight culture was shifted to anaerobic fermentation conditions. This was done by loosening the cap of the flasks and introducing the flasks into the anaerobic chamber. Once the flasks were flushed with oxygen

free atmosphere (while going through the airlock), the flasks were closed again and incubated without shaking at 30° C. in the anaerobic chamber. The flasks in the anaerobic chamber were swirled twice a day. Samples were taken from the medium at the time of the shift and at 24 h and 48 h after inoculation, spun down at 22,000×g for 1 min to separate the cell pellet from the supernatant and stored frozen at -20° C. until analysis. The samples were analyzed using High performance liquid chromatography (HPLC) and gas chromatography (GC).

[0509] The strain lacking zwf without *E. coli* pntAB grew to an OD of about 3, whereas the samples featuring *E. coli* pntAB reached OD values of about 5-6. This OD was not significantly different from normal growth and thus the over-expression of *E. coli* pntAB rescues the zwf growth phenotype (FIG. **14**).

[0510] Isobutanol production was rescued under microaerobic conditions by the overexpression of *E. coli* pntAB. Volumetric productivity and titer are improved 7.4 fold, specific productivity was improved 3.3 fold and yield 2.5 fold (Table 15).

TABLE 15

_	Volumetric productivity, specific productivity titer and yield in a micro- aerobic fermentation for the tested strains and plasmid systems								
		Volum Produc		Specifi Productiv		Ti	ter	Yi	eld
Samples		[g/L/h]	±	[g/L/h/OD]	±	[g/L]	±	[g/g]	±
GEVO1399 pGV1745 + pGV1609	-	0.170	0.001	0.030	0.003	8.18	0.02	0.248	0.012
GEVO1399 pGV1720 + pGV1609		0.023	0.004	0.009	0.002	1.10	0.18	0.100	0.013

[0511] For the anaerobic shift experiment the same trend was observed as under micro-aerobic conditions. Isobutanol production was rescued by the over-expression of *E. coli* pntAB. Volumetric productivity and titer are improved 3.4 fold, specific productivity was improved 2.1 fold and yield by 43% (Table 16).

TABLE 16

Volumetric productivity, specific productivity titer and yield in an anaerobic fermentation for the tested strains and plasmid systems								
		Volumetric Specific Productivity Productivity			TiterYi		ield	
Samples	[g/L/h]	±	[g/L/h/OD]	±	[g/L]	±	[g/g]	±
GEVO1399 + pGV1745 + pSA55 + pGV1609	0.125	0.038	0.035	0.003	6.00	1.84	0.297	0.008
GEVO1399 + pGV1720 + pSA55 + pGV1609	0.037	0.001	0.017	0.001	1.78	0.04	0.207	0.005

EXAMPLE 8

sthA Does Not Contribute to Improvement in Anaerobic Isobutanol Production

[0512] This example illustrates that an isobutanol production strain with a deletion of the soluble transhydrogenase sthA produces low amounts of isobutanol anaerobically. This shows that the introduction of the sthA deletion does not provide cofactor balance to the isobutanol production strain and does not enable anaerobic isobutanol production above the levels seen for strains without redox engineering. The deletion of sthA has no significant effect on anaerobic performance of a production strain that overexpresses *E. coli* pntAB.

[0513] GEVO1748 and GEVO1844 were transformed with plasmids pGV1698 (SEQ ID NO: 112) and one of either pGV1720 (SEQ ID NO: 115) (control) or pGV1745 (SEQ ID NO: 117) (*E. coli* pntAB).

lactopyranoside at 1 mM final concentration. Three hours after induction the flasks were shifted to anaerobic fermentation conditions. This was done by loosening the cap of the flasks and introducing the flasks into the anaerobic chamber. Once the flasks were flushed with oxygen free atmosphere (while going through the airlock), the flasks were closed again and incubated without shaking at 30° C. in the anaerobic chamber. The flasks in the anaerobic chamber were swirled twice a day. Samples were taken of the medium at the time of the shift and at 24 h and 48 h after inoculation, spun down at 22,000×g for 1 min to separate the cell pellet from the supernatant and stored frozen at -20° C. until analysis. The samples were analyzed using High performance liquid chromatography (HPLC) and gas chromatography (GC).

[0516] Strain GEVO1844 showed similar isobutanol production compared to non redox cofactor engineered strain GEVO1748 (Table 17).

TABLE 17

Shown are the and yield r		an anaer	tric productivi obic fermenta lasmid system	tion for				
	Volumetric Productivity		Specific Productivity		Titer		Yi	eld
Samples	[g/L/h]	±	[g/L/h/OD]	±	[g/L]	±	[g/g]	±
GEVO1844 + pGV1720 + pGV1698 (i.e. AsthA without PntAB)	0.039	0.004	0.036	0.006	1.89	0.20	0.236	0.025
GEVO1748 + pGV1720 + pGV1698 (i.e. Control without PntAB)	0.047		0.022		2.24		0.279	
$\begin{array}{l} \text{GEVO1844 +} \\ \text{gGV1745 + } \text{gGV1698} \\ \text{(i.e. } \Delta \text{sthA with} \\ \text{PntAB)} \end{array}$	0.127	0.004	0.033	0.002	6.11	0.19	0.310	0.007
GEVO1748 + pGV1745 + pGV1698 (i.e. control with PntAB)	0.111	0.002	0.041	0.012	5.32	0.10	0.304	0.004

[0514] Overnight cultures of the strains to be tested were started either using fresh transformants (for all combinations featuring strain GEVO1844) or using frozen stocks (all other samples). The cultures were started in 3 mL fermentation medium (M9 minimal medium according to Miller (Miller, J. H. A Short Course in Bacterial Genetics: A laboratory manual and handbook for *Escherichia coli* and related bacteria. 1992. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.), supplemented with 10 g/L yeast extract, 10 μ M ferric citrate and trace metals) containing 8.5% glucose and the appropriate antibiotics in snap cap tubes about 14 h prior to the start of the fermentation.

[0515] Isobutanol fermentations were then carried out in fermentation medium containing 8.5% glucose and the appropriate antibiotics. Two 250 mL screw cap flasks with 20 mL fermentation medium containing 8.5% glucose and the appropriate antibiotics were inoculated with 1% of each grown overnight culture. The cells were incubated at 37° C./250 rpm until the strains were grown to an OD₆₀₀ of 0.6-0.8 and were then induced with Isopropyl β -D-1-thioga-

[0517] The strains with the sthA deletion exhibited similar isobutanol production compared to the strains without the sthA deletion. This was independent on the presence or absence of overexpression of *E. coli* pntAB. It can thus be concluded that the sthA deletion has no significant effect on isobutanol production.

EXAMPLE 9

pntAB in Yeast

[0518] This example illustrates an isobutanol producing yeast which is engineered to express a transhydrogenase.

[0519] Yeast strain, GEVO5001, which is deficient in pyruvate decarboxylase activity and expresses the isobutanol biosynthetic pathway is further engineered to express a transhydrogenase. The *E. coli* pntA (SEQ ID NO: 1) and pntB (SEQ ID NO: 3) genes are expressed in yeast with the modifications of (1) N-terminal addition of amino acids to target the proteins to the plasma membrane (export signal sequence (ess)) and (2) N-terminal modifications to target the proteins to the

mitochondrial outer membrane (mitochondrial targeting sequence (mts)). pGV6002 is a yeast integration plasmid that carries versions of pntA and pntB with modifications to target them to the plasma membrane. pGV6003 is a yeast integration plasmid that carries versions of pntA and pntB with modifications to target them to the plasma them to the mitochondrial outer membrane. In both cases, the pntA and pntB genes are under the control of the strong constitutive promoters from TEF1 and TDH3, respectively. pGV6002 and pGV6003 are linearized and transformed into GEVO5001 to generate GEVO5004 and GEVO5005, respectively. Expression of pntA and pntB is confirmed by qRT-PCR and once confirmed; GEVO5004 and GEVO5005 are used in fermentations for the production of isobutanol.

EXAMPLE 10

Native *E. coli* Alcohol Dehydrogenase Activity Converts Isobutyraldehyde to Isobutanol

[0520] This example illustrates that native *E. coli* alcohol dehydrogenase activity converts isobutyraldehyde to isobutanol.

[0521] Strain JCL260 transformed with pGV1631 and pSA69 (strain without S. cerevisiae ADH2) and JCL260 transformed with pSA55 and pSA69 (strain with S. cerevisiae ADH2) were plated onto LB-plates containing the appropriate antibiotics and incubated overnight at 37° C. Plates were taken out of the incubator and kept at room temperature until further use. Overnight cultures were started in 3 mL EZ-Rich medium containing 7.2% glucose and the appropriate antibiotics in snap cap tubes about 14 hours prior to the start of the fermentation. Isobutanol fermentations were then carried out in EZ-Rich defined medium containing 7.2% glucose and the appropriate antibiotics. Screw cap flasks with 20 mL EZ-Rich medium containing 7.2% glucose and the appropriate antibiotics were inoculated with 1% of the grown overnight culture. The cells were incubated at 37° C./250 rpm until they were grown to an OD₆₀₀ of 0.6-0.8 and induced with Isopropyl β-D-1-thiogalactopyranoside (IPTG, 1 mM).

[0522] After induction the cells were incubated at 30° C./250 rpm. Samples were taken from the medium before induction, and 24 and 48 hours after inoculation, spun down at 22,000×g for 1 min to separate the cell pellet from the supernatant and stored frozen at -20° C. until analysis.

[0523] The ADH2 gene product is expected to be functionally expressed from pSA55 and required for isobutanol production. Thus, no isobutanol should be produced with the plasmid combination lacking ADH2 as adhE is deleted in JCL260. However, isobutanol production for the system lacking ADH2 was higher than for the system with ADH2 expression. Table 18 shows the results for the isobutanol fermentation comparing the pathway including Adh2 expression with the exact same system excluding Adh2 expression. Both systems feature Bs_AlsS1, Ec_llvC and Ec_ilvD expressed from the same medium copy plasmid and Ll_Kivd1 expressed from a high copy plasmid. Volumetric productivity and titer showed 42% increase, specific productivity 18% and yield 12% increase. This suggests strongly that a native E. coli dehydrogenase is responsible for the conversion of isobutyraldehyde to isobutanol, and that Adh2 is not expressed and not necessary for isobutanol production in E. coli.

TABLE 18

		netric ctivity	Specifi	с				
	[g/		Productivity		Tit	ter	Yi	eld
samples	L/h]	±	[g/L/h/OD]	±	[g/L]	±	[g/g]	±
without Adh2	0.175	0.006	0.039	0.003	8.40	0.26	0.207	0.009
with Adh2	0.123	0.004	0.033	0.001	5.88	0.17	0.185	0.004

EXAMPLE 11

Identification of Native ADH

[0524] This example illustrates that the native *E. coli* alcohol dehydrogenase is encoded by the Ec_yqhD gene (SEQ ID NO: 68).

[0525] Several *E. coli* genes predicted or known to code for alcohol dehydrogenases were knocked out of strain JCL260 to determine whether any of them are involved in isobutyraldehyde reduction. Fermentations were carried out with GEVO1608 and with JCL260, each transformed with plasmids pGV1609 (SEQ ID NO: 108) and pGV1631 by electroporation. Single colonies were grown and two colonies from each strain were started in a 3 mL overnight culture, with appropriate antibiotics. Each 250 mL fermentation flask was filled with 20 mL of EZ-Rich medium (Neidhardt, F. C., P. L. Bloch, and D. F. Smith. 1974. Culture medium for enterobacteria. *J Bacteriol.* 119:736-47) supplemented with 5% glucose, Ampicillin (100 mg/mL), and Chloramphenical (100 mg/mL).

[0526] The cell densities of the overnight cultures were normalized and 2% inoculum was added to each fermentation flask and incubated at 270 rpm/37° C. The cultures were induced with 20 μ L 0.1 M IPTG after they reached an OD₆₀₀ of 0.6-0.8 at which time the temperature was lowered to 30° C. Samples were taken from the medium before induction, and 24 hours after inoculation, spun down at 22,000×g for 1 min to separate the cell pellet from the supernatant and stored frozen at -20° C. until analysis. A second fermentation was performed in the same way with the best candidate, GEVO1608 containing the yqhD deletion, and samples were taken at 24 and 48 hours.

[0527] While both GEVO1608 and JCL260 grew to similar cell densities, GEVO1608 produced ~80% less isobutanol than the control strain (Table 19), indicating that the Ec_yqhD gene product is primarily responsible for isobutyraldehyde reduction.

TABLE 19

Specific Productivity and Titer of Fermentation					
Strain	Plasmids	Time	Titer (g/L)		
GEVO1608	pGV1609, pGV1631	24 h	0.33		
JCL260	pGV1609, pGV1631	24 h	2.45		
GEVO1608	pGV1609, pGV1631	48 h	0.83		
JCL260	pGV1609, pGV1631	48 h	4.00		

Overexpression of NADH-Dependent Alcohol Dehydrogenase and Propanediol Dehydrogenases

[0528] This example demonstrates that overexpression of an NADH-dependent alcohol dehydrogenase or propanediol dehydrogenases increases isobutanol production.

[0529] Relevant *E. coli* strains were transformed with the appropriate plasmids (Table 20).

TABLE 20

-	Plasmid and s	train combinati	ons used in isobu	tanol fermentations
#	Plasmid 1	Plasmid 2	Strain	Comments
1	pGV1655	pGV1698	GEV01745	No ADH on plasmid
2	pGV1655	pGV1698	JCL260	GEVO1780
3	pGV1655	pGV1748	GEVO1745	Ec_fucO
4	pGV1655	pGV1749	GEVO1745	Dm_ADH
5	pGV1655	pGV1778	GEVO1745	Kp_dhaT

[0530] Following transformation, the strains were plated on LB-plates containing the appropriate antibiotics and incubated overnight at 37° C. Overnight cultures Were started in 3 mL EZ-Rich medium (Neidhardt, F. C., P. L. Bloch, and D. F. Smith. 1974. Culture medium for Enterobacteria. J Bacteriol. 119:736-47) containing 8% glucose and the appropriate antibiotics in snap cap tubes about 14 h prior to the start of the fermentation. Isobutanol fermentations were then carried out in EZ-Rich Medium containing 8% glucose and the appropriate antibiotics. Screw cap flasks with 25 mL EZ-Rich medium containing 8% glucose and the appropriate antibiotics were inoculated with a sufficient volume of the grown overnight culture to obtain a starting OD_{600} of 0.1. The cells were incubated at 37° C./250 rpm until they reached an OD₆₀₀ of 0.6-0.8 followed by induction with Isopropyl β -D-1thiogalactopyranoside (IPTG, 1 mM). After induction, cultures were capped, sealed and placed in 30° C. shaker, 225 rpm to start fermentation. Samples (2 mL) were taken 24 h and 48 h post induction, centrifuged at 22,000×g for 1 min and the supernatant stored at 4° C. until analyzed. Prior to analysis, the supernatants were filtered and then analyzed via Gas Chromatography and High Performance Liquid Chromatography. All experiments were carried out in triplicate.

[0531] Results are presented in Table 21, below. Expression of either 1,2-propanediol dehydrogenase Ec_fucO or 1,3-propanediol dehydrogenase Kp_dhaT significantly and reproducibly increases titer in the Δ yqhD background of strain GEVO1745. Expression of Dm_ADH enhances titer and yield of the fermentations in the Δ yqhD background of strain GEVO1745.

TABLE 21

Summary of isobutanol titer, and yield data from fermentations after 48 hours						
#	Comments	titer [g/L]	±	Yield [% theor.]	±	
1	no ADH	1.91	0.50	38.5	10.30	
2	GEVO1780	3.39	0.15	65.0	2.83	
3	Ec_FucO	6.30	0.10	79.9	1.79	
4	Dm_Adh	4.86	0.29	67.0	4.54	
5	Kp_DhaT	6.22	0.16	75.3	2.04	

EXAMPLE 13

Characterization of Alcohol Dehydrogenases

[0532] This example demonstrates that the alcohol dehydrogenases Ec_FucO (SEQ ID NO: 65), Kp_DhaT (SEQ ID NO: 63), and Dm_Adh (SEQ ID NO: 61) catalyze the NADHdependent reduction of isobutyraldehyde.

[0533] *E. coli* strain GEVO1745 was transformed by electroporation with one of plasmids pGV1705-A, pGV1748-A, pGV1749-A, or pGV1778-A. 50 mL of TB medium (23.1 g/L KH2PO4, 125.4 g/L K2HPO4, 12 g/L Bacto-tryptone, 24 g/L yeast extract, 4 ml/L glycerol) were inoculated to an initial OD_{600} of 0.2 using a 3 mL overnight LB culture of a single colony. The 50 mL culture was allowed to grow for 3-4 hrs at 250 rpm and 37° C. Protein expression was induced at an OD_{600} of 2-2.5 by the addition of IPTG to a final concentration of 1 mM. After the addition of IPTG, protein expression was allowed to continue for 20-24 hours at 225 rpm and 25° C.

[0534] Alcohol dehydrogenase (ADH) activity was assayed kinetically by monitoring the decrease in NAD(P)H concentration by measuring the absorbance at 340 nm. A reaction buffer was prepared containing 0.1 M potassium phosphate, 0.4 mM NAD(P)H, 10 mM isobutyraldehyde, 1 mM DTT, and 1 mM PMSF. Cell pellets were resuspended in 0.1 M potassium phosphate buffer containing 1 mM DTT and 1 mM PMSF at one fifth of the culture volume, i.e. 10 mL resuspension buffer for cell pellet from a 50 mL culture. The resuspended cells were lysed by sonication for 1 min with a 50% duty cycle. The reaction was initiated by the addition of 0.5 mL of the reaction buffer to 0.5 mL of clarified lysate in a cuvette. Dilution of the clarified lysate was necessary for ADHs that were highly active. A substrate free control was conducted using reaction buffer without the addition of aldehyde.

[0535] Kinetic parameters were determined for Ec_YghD, Ec_FucO, Dm_Adh, and Kp_DhaT (Table 22).

TABLE 22

Kinetic parameters for the conversion of isobutyraldehyde to isobutanol by Ec_YqhD, Ec_FucO, Dm_Adh, and Kp_DhaT						
			NADH		NADPH	
Plasmid	ADH	K _M (mM)	Activity (U/min ⁻¹ mg ⁻¹ crude lysate)	K _M (mM)	Activity (U/min ⁻¹ mg ⁻¹ crude lysate)	
pGV1705-A	-	n.d.	n.d.	0.25	0.09	
pGV1748-A	Ec_FucO	0.8	0.23	0.2	0.04	
pGV1749-A	Dm_Adh	0.9	6.60	2.7	1.70	
pGV1778-A	Kp_DhaT	1.3	0.56	0.6	0.08	

The kinetic properties of the Ll_AdhA enzyme were described by Atsumi et al. (Atsumi et al., Appl. Microbiol. Biotechnol., 2009, DOI 10.1007/s00253-009-2085-6), and are shown in Table 23.

TABLE 23

Kinetic parameters for Ll_AdhA (Atsumi et al., Appl. Microbiol. Biotechnol., 2009, DOI 10.1007/s00253-009-2085-6)							
			NADH		1	NADPH	I
ADH	Substrate	K _M (mM)	$\substack{k_{cat}\\(s^{-1})}$	Kcat/ K _M	K _M (mM)	$\substack{k_{cat}\\(s^{-1})}$	Kcat/ K _M
Ll_AdhA Acetaldehyde 0.5 10 20.9 n.d." Ll_AdhA isobutyraldehyde 9.1 6.6 0.8							

"did not show any detectably activity when tested with NADPH as a cofactor

EXAMPLE 14

KARI Engineering by Saturation Mutagenesis

[0536] Construction of KARI-containing plasmids: Standard molecular biology procedures (Sambrook and Russell, Molecular Cloning, A Laboratory Manual, 3^{rd} Edition, Vol. 3, 2001) were utilized to make plasmid pGV1711 (SEQ ID NO: 113) (pLlacO1::(no ORF) bla, ColE1 OR1). Plasmid pGV1711 is a high-copy, AmpR vector that serves as an "empty vector" control, i.e. it contains no open reading frames under the control of the PLlac promoter. The *E. coli* KARI gene Ec_ilvC (SEQ ID NO: 10) was codon optimized for *E. coli* resulting in gene Ec_ilvC coEc (SEQ ID NO: 11) **[0537]** The codon optimized gene Ec_ilvC_coEc was cloned into pET22b(+) using primers KARIpETfor and KARIpETrev introducing a 5' NdeI and a 3' XhoI restriction site and a C-terminal his₆-tag, resulting in plasmid pET22b [ilvCco] carrying Ec_ilvC_coEc^{his6}(SEQ ID NO: 14).

[0538] DNA constructs were analyzed by restriction digests, and also by DNA sequencing to confirm integrity and correct construction. Primers pETup and KARIpETrev were used as primers in standard DNA sequencing reactions to sequence pET22b(+) derivatives.

[0539] Construction of NNK libraries: NNK libraries were constructed using site directed mutagenesis overlap extension (SOE) PCR. First, the fragments containing the mutations were created allowing for at least 15 by of overlap using KARIPET_for and KARIPET_rev and the respective NNK primers listed in Table 6 (SEQ ID NO 285 through SEQ ID NO 298). After digesting traces of template DNA with DpnI, the fragments were separated on a 1% TAE agarose gel, extracted, and the PCR products were precipitated using pellet paint (Novagen). The clean products were used as templates in a subsequent assembly PCR. The PCR product was cleaned up (Zymo Research, Orange, Calif.), restriction digested with NdeI and XhoI for 1.5 h at 37° C., cleaned on a 1% agarose gel, and ligated into pET22b(+).

[0540] Site directed mutagenesis mutants were generated as described above. The successful mutagenesis was confirmed by DNA sequencing.

[0541] Cell growth and protein expression in shake flasks: Flasks containing 25 mL of Luria-Bertani. (LB) medium (10 g tryptone, 10 g NaCl, 5 g yeast extract) with ampicillin (final concentration 0.1 mg/mL) were inoculated to an initial OD₆₀₀ of 0.1 using 0.25 mL overnight LB culture of a single colony. The 25 mL LB expression culture was allowed to grow for 3-4 h at 250 rpm and 37° C. Protein expression was induced at OD₆₀₀ of 1 by the addition of IPTG to a final concentration of 0.5 mM. Protein expression was allowed to continue for 20-24 h at 225 rpm and 25° C. Cells were harvested at $5300 \times g$ and 4° C. for 10 min and the cell pellets were frozen at -20° C. until further use.

[0542] Cell growth and protein expression in microplates: In order to grow and express KARI variants in deep well plates, sterile toothpicks were used to pick single colonies into shallow 96 well plates filled with 300 μ l LB_{amp}. 75 μ l of these overnight cultures were used to inoculate deep well plates filled with 600 μ l of LB_{amp} per well. The plates were grown at 37° C. and 210 rpm for 4 h. One hour before induction with IPTG (final concentration 0.5 mM), the temperature of the incubator was reduced to 25° C. After induction, growth and expression continued for 20 h at 25° C. and 210 rpm. Cells were harvested at 5300×g and 4° C. and stored at -20° C.

[0543] KARI cuvette assay: KARI activity was assayed kinetically by monitoring the decrease in NAD(P)H concentration by measuring the absorbance at 340 nm. A reaction buffer was prepared containing 250 mM potassium phosphate pH 7, 1 mM DTT and 10 mM MgCl₂. Cell pellets were resuspended (0.25 g wet weight/mL buffer) in 250 mM potassium phosphate (KPi) buffer containing 1 mM DTT and 10 mM MgCl₂. The resuspended cells were lysed by sonication for 1 min with a 50% duty cycle and pelleted at 11000×g and 4° C. for 15 min. A reaction mixture consisting of 910 µl reaction buffer, 50 µl acetolactate, and 20 µl lysate was prepared in a cuvette. The reaction was initiated by addition of 20 µL of 10 mM NAD(P)H. A substrate free control was conducted using reaction buffer without the addition of acetolactate.

[0544] KARI high-throughput assay: Frozen cell pellets were thawed at room temperature for 20 min and then $100 \,\mu$ L of lysis buffer (250 mM Kpi, 750 mg/L lysozyme, 10 mg/L DNasel, pH 7) were added. Plates were vortexed to resuspend the cell pellets. After a 30 min incubation at 37° C., plates were centrifuged at 5300×g and 4° C. for 10 min. 20 μ L of the resulting crude extract were transferred into assay plates (flat bottom, Rainin) using a liquid handling robot. 10 mL assay buffer per plate were prepared (250 mM Kpi, pH 7, 500 μ L acetolactate, 1 mM DTT, 10 mM NAD(P)H, and 10 mM MgCl₂) and 90 μ L thereof were added to each well to start the reaction. The depletion of NAD(P)H was monitored at 340 nm in a plate reader (TECAN) over 1.5 min.

[0545] Purification of KARI: Cell pellets used for purification were resuspended in purification buffer A (20 mM Tris, ± 20 mM imidazol, 100 mM NaCl, 10 mM MgCl₂, pH 7.4). KARI was purified by IMAC (Immobilized metal affinity chromatography) over a 1 ml Histrap High Performance (histrap HP) column pre-charged with Nickel (GE Healthcare) using an Akta FPLC system (GE Healthcare). The column was equilibrated with four column volumes (cv) of buffer A. After injecting the crude extract, the column was washed with buffer A for 2 cv, followed by a wash step with a mixture of 10% elution buffer B (20 mM Tris, 300 mM imidazol, 100 mM NaCl, 10 mM MgCl₂, pH 7.4) for 5 cv. KARI variants were eluted at 40% buffer B and stored at 4° C.

[0546] Homology modeling was performed with pymol and x-ray structures of *E. coli* KARI (PDB ID: 1YRL) and spinach KARI (PDB ID: 1YVE), the latter containing NADPH co-crystallized.

[0547] A KARI expression construct (pGV1777 (SEQ ID NO: 118)) (pLlacO1::Ec_ilvC_coEc::bla, ColE1 ORI) was tested in *E. coli* strain GEVO1777 and yielded KARI activity in lysates. On this plasmid, the ilvC gene was not his-tagged

and therefore no purification was attempted. In order to obtain higher expression levels for a high-throughput screen (HTS) in 96-well plate format, ilvC_co was sub-cloned into pET22b (+). This plasmid also ads a his-tag to the C-terminus of the protein to facilitate purification. *E. coli* BL21 (DE3) (Lucigen, Middleton, Wis.) cells were transformed with pET22 [ilvCco] and protein expression was performed in LB medium with ampicillin at 25° C. SDS PAGE analysis (FIG. **15**) shows a comparison of crude extracts of BL21 (DE3) and GEVO1777 expressing KAR1.

[0548] Table 24 shows the specific activities in U/mg of KARI in lysates of GEVO1777 and BL21(DE3) being 15-fold higher in BL21 crude extract, mirroring the results shown in the SDS PAGE.

TABLE 24

Specific Activities of KARI in U/mg Expressed in GEV01777 and BL21 (DE) measured with NADPH					
Strain/Construct U/mg Crude Extract					
pGV1777 in GEVO1777 pET22b[ilvCco] in BL21 (DE3)	0.03 0.45				

[0549] Purification of his-tagged KARI expressed from pET22[ilvCco] in BL21(DE3) cells was first performed over a linear gradient to determine the proper amount of imidazol to elute KARI. Then, a step gradient was implemented and the protein was eluted at 40% elution buffer B (140 mM imidazol). A SDS PAGE documented the purity of the enriched protein (FIG. **16**).

[0550] A quadruplet *E. coli* llvC mutant (R68D:K69L: K75V:R76D), which was described previously by Rane and coworkers (Rane et al., 1997, *Arch Biochem Biophys* 338: 83-89) was constructed using the respective primers listed in Table 6 (SEQ ID NO: 281 through SEQ ID NO 284) and cloned into pET22b(+) as described, but did not yield the cofactor switch that was described in the paper, although the ratio NADH/NADPH was 2.5 (wild-type 0.08). In fact, the specific activity of the quadruplet mutant on NADH was even worse than wild-type (Table 25), suggesting this mutant enzyme is not suited for the aforementioned aims.

TABLE 25

C	Comparison of specific activities from purified Ec_IlvC ^{his6} and purified IlvC ^{quadruplet-his6} quadruplet in U/mg measured on NAD(P)H							
Variant	U/mg with Variant U/mg with NADH NADPH NADH/NADPH							
Ec_IlvC ^{his6} IlvC ^{quadruplet-his6}		0.03 0.45	1 0.02	0.08 2.5				

[0551] Since the quadruplet KARI mutant did not yield the promised activity, the Ec_ilvC_coE c^{his6} gene (SEQ ID NO: 14) was used as starting point for engineering a cofactor switch. A structure alignment of *E. coli* KARI with spinach KARI was generated (FIG. **17**) because spinach KARI was co-crystallized with NADPH. The position of the cofactor in the spinach KARI structure was in good agreement with the NADPH phosphate group in the *E. coli* KARI structure. Based on this, amino acid residues R68, A71, R76, S78, and Q110 seemed likely to be interacting with NADPH and therefore were chosen as targets in a site saturation mutagenesis

experiment. Only residues R68 and R76 were found in the aforementioned quadruplet mutant. Residues K69 and K75 seemed less likely to be involved in cofactor binding.

[0552] Five individual site saturation libraries were generated and electro-competent *E. coli* BL21(DE3) cells were transformed with the desalted ligation mixtures. 88 clones of each library were screened for NAD(P)H depletion at 340 nm in microplates. Clones with an improved NADH/NADPH consumption ratio while maintaining or increasing their NADH activity were chosen for a rescreen. Variants that passed the rescreen were sequenced, expressed in shake flasks, purified, and characterized.

[0553] The first screening round resulted in several improved variants in terms of their specific activity on NADH (and NADPH for most of them) (Table 26). The first variant to favor NADH over NADPH was $Ec_{11vC}^{578D-his6}$ which showed a specific activity for NADH that equals the specific activity of Ec_{11vC}^{his6} for NAPDH (1 U/mg). Table 26 shows the variants resulting from the first round of site saturation mutagenesis compared to the parent Ec_{11vC}^{his6} . All proteins were purified over a histrap column.

TABLE 26

Specifi	c Activities for NA	ADH and NADPH i	n U/mg
Variant	U/mg NADH	U/mg NADPH	NADH/NADPH
No mutation (Ec_IlvC ^{his6})	0.08	1	0.08
Ec IlvC ^{R68L-his6}	0.27	1.15	0.23
Ec_IlvC ^{A71T-his6}	0.48	1.81	0.27
Ec_IlvC ^{A71S-his6}	0.57	2.65	0.22
Ec_IIvC ^{R76G-his6}	0.64	2.73	0.23
Ec_IlvC ^{R76S-his6}	0.59	1.51	0.39
Ec_IlvC ^{R76T-his6}	0.25	1	0.25
Ec_IIvC ^{R76D-his6}	0.26	0.69	0.38
Ec IIvC ^{S78D-his6}	1	0.61	1.64
Ec IlvC ^{Q110A-his6}	0.85	2	0.43
Ec_IIvC ^{Q110V-his6}	0.93	2	0.47

[0554] The three best variants $\text{Ec_llvC}^{S78D\text{-}his6}$, $\text{Ec_llvC}^{Q110A\text{-}his6}$, and $\text{Ec_llvC}^{Q110V\text{-}his6}$ were characterized according to their specific activities [U/mg], k_{cal} values [s⁻¹], catalytic efficiencies [M⁻¹*s⁻¹] (FIG. **18**), and K_M values (Table 27).

TABLE 27

K_M values of Ec_IlvC ^{his6} compared to three variants resulting from the site saturation library						
Variant	${f K}_{\mathcal M}[{f m}{f M}]$ NADPH	K _M [mM] NADH				
Ec_IlvC ^{his6}	41	1075				
Ec_IlvC ^{S78D-his6}	658	130				
$Ec_IlvC^{S78D-his6}$ $Ec_IlvC^{Q110V-his6}$ $Ec_IlvC^{Q110A-his6}$	13	135				
Ec_IIvC ^{Q110A-his6}	24	277				

[0555] All three variants were improved compared to the parent Ec_llvC^{*his6*}. Ec_llvC^{*S*78*D*-*his6*} was the first variant to show an actual preference of NADH over NADPH, while variants Ec_llvC^{*Q*110*A*-*his6*} and Ec_llvC^{*Q*110*V*-*his6*} showed drastic improvements in their overall catalytic efficiencies (FIG. **18**). Table 28 contains a comparison of the K_{*M*} values of Ec_llvC^{*his6*} with the three best variants resulting from the site saturation mutagenesis library on both cofactors. All variants showed improved K_{*M*} values on NADH. While

Ec_llvC^{Q110V-his6} and Ec_llvC^{Q110A-his6} had improved K_M values on NADPH compared to wild-type, the K_M value of variant Ec_llvC^{S78D-his6} on NADPH was decreased 16-fold from 1075 μ M to 130 μ M. The catalytic efficiencies on NADH were greatly improved as well. Ec_llvC^{his6} showed 1,000 M⁻¹*^{s-1}, while Ec_llvC^{S78D-his6} yielded 27,600 M⁻¹*^{s-1}.

TABLE 28

Catalytic efficiencies $[M^{-1*s}s^{-1}]$ for Ec_IlvC ^{<i>his6</i>} and variants Ec_IlvC ^{<i>Q</i>110<i>V</i>-<i>his6</i>} , Ec_IlvC ^{<i>Q</i>110<i>A</i>-<i>his6</i>} , and Ec_IlvC ^{<i>S</i>78<i>D</i>-<i>his6</i>} on NADPH							
Variant	$rac{k_{cal}/K_{\mathcal{M}}}{ m with NADH}$ [$M^{-1*s^{-1}}$]	$rac{\mathrm{k}_{cat}/\mathrm{K}_{M}}{\mathrm{with NADH}}$ $[\mathrm{M}^{-1*\mathrm{s}^{-1}}]$	$\begin{array}{c} (\mathbf{k}_{cat}/\mathbf{K}_{M} \text{ with } \\ \mathbf{NADH})/(\mathbf{k}_{cat}/\mathbf{K}_{M} \text{ of } \\ \mathbf{Ec_llvC}^{his6} \text{ with } \\ \mathbf{NADPH}) \\ [\%] \end{array}$				
$\begin{array}{l} & \text{Ec_IlvC^{his6}} \\ & \text{Ec_IlvC^{Q110P-his6}} \\ & \text{Ec_IlvC^{Q110A-his6}} \\ & \text{Ec_IlvC^{S78D-his6}} \end{array}$	1000 24800 11063 27600	87300 569000 301800 3770	1% 28% 13% 32%				

[0556] As a next step, the gene encoding variant $\text{Ec_llvC}^{Q110V-his6}$ (SEQ ID NO: 23) was used as template to generate individual combinations of the mutation Q110V with other mutations: R68L, A71T, A71S, R76G, R76S, R76T, S78D, and R76D. After screening the variants as described above, the most promising ones were expressed, purified, and characterized. Table 29 lists the K_M values in μ M on NADPH and NADH for Ec_llvC^{his6}, Ec_llvC^{Q110V-his6}, and variants of Ec_llvC^{Q110V-his6}, Variant Ec_llvC^{88-his6} containing amino acid mutations Q110V and S78D, showed the same K_M value for NADH and for NADPH with 65 μ M. The A71S mutation was introduced into Ec_llvC^{B8-his6} resulting in a variant Ec_llvC^{B8471S-his6}, which yielded 44% catalytic efficiency on NADH compared to the catalytic efficiency of wild-type KARI on NADPH (FIG. **19** and Table 30).

TABLE 29

K_M values for Ec_IIvC ^{his6} , Ec_IIvC ^{Q110V-his6} , and variants of Ec_IIvC ^{Q110V-his6} on NADPH and on NADH								
Variant K _M for NADPH [mM] K _M for NADH [mM]								
Ec_IlvC ^{his6}	41	1075						
Ec IIvC ^{Q110V-his6}	13	135						
Ec IlvC ^{Q110VA71T-his6}	37	80						
Ec_IlvC ^{Q110VA71S-his6}	30	70						
Fc IIvCQ110VR76G-his6	47	87						
Ec IIvCQ110VR76S-his6	n.d.	223						
Ec_IlvC ^{B8-his6}	65	65						

ТΛ	BI	L.	20	
1/3	1.01	1.	50	

Catalytic efficiencies [M ⁻¹ *s ⁻¹] for wild-type Ec_IlvC ^{his6} and variants Ec_IlvC ^{Q110F-his6} , Ec_IlvC ^{Q110A-his6} , and Ec_IlvC ^{S78D-his6} on NAD(P)H compared to Ec_IlvC ^{B8-his6} and Ec_IlvC ^{B8A71S-his6}							
Variant	$egin{array}{c} \mathbf{k}_{cat}/\mathbf{K}_{M} \ \mathrm{with} \ \mathrm{NADH} \ [\mathrm{M}^{-1}*\mathrm{s}^{-1}] \end{array}$	$rac{k_{car}/K_M}{ ext{with}}$ NADH $[ext{M}^{-1*} ext{s}^{-1}]$	$\begin{array}{c} (\mathbf{k_{cat}}/\mathbf{K_{M}} \text{ with NADH}) \\ (\mathbf{k_{cat}}/\mathbf{K_{M}} \text{ of } \\ \mathbf{Ec_llvC^{his6}} \text{ with NADPH}) \\ [\%] \end{array}$				
Ec_IlvC ^{his6} Ec_IlvC ^{Q110V-his6}	1000 24800	87300 569000	1% 28%				

TABLE 30-continued

Catalytic efficiencies [M ⁻¹ *s ⁻¹] for wild-type Ec_IIvC ^{his6} and variants Ec_IIvC ^{Q110V-his6} , Ec_IIvC ^{Q110A-his6} , and Ec_IIvC ^{S78D-his6} on NAD(P)H compared to Ec_IIvC ^{B8-his6} and Ec_IIvC ^{B8A71S-his6}						
Variant	with NADH	$rac{k_{cat}/K_M}{ ext{with}}$ NADH $[ext{M}^{-1} ext{s}^{-1}]$	$\begin{array}{c} (\mathbf{k}_{cat}/\mathbf{K}_{\mathcal{M}} \text{with NADH}) \\ (\mathbf{k}_{cat}/\mathbf{K}_{\mathcal{M}} \text{of} \\ \mathbf{Ec_llvC}^{his6} \text{with NADPH}) \\ [\%] \end{array}$			
Ec_IlvC ^{Q110A-his6} Ec_IlvC ^{S78D-his6} Ec_IlvC ^{88-his6} Ec_IlvC ^{88A71S-his6}	11063 27600 31775 38330	301800 3770 34188 37459	13% 32% 36% 44%			

EXAMPLE 15

KARI Engineering by Recombination

[0557] The codon optimized gene $\text{Ec_ilvC_coEc}^{his6}$ (SEQ ID NO: 14) and libraries thereof were cloned into pET22b(+) using primers KARIpETfor and KARIpETrev (Table 6). DNA constructs were analyzed by restriction digests, and also by DNA sequencing to confirm integrity and correct construction. Primers pETup and KARIpETrev (Table 6) were used as primers in standard DNA sequencing reactions to sequence pET22b(+) derivatives.

[0558] The recombination library was constructed using SOE PCR introducing mutations found at the five targeted sites while allowing for wild-type sequence as well. The first fragments were generated using degenerate primers R68A71recombfor and R68A71recombrev which covered the gene sequence coding for the region at amino acid positions 68/71 (Table 6). After assembling the long and the short fragment, the assembly product was DpnI digested for 1 h, separated on an agarose gel, freeze'n' squeeze (BioRad, Hercules, Calif.) treated, and finally pellet painted (Novagen, Gibbstown, N.J.). The clean assembly product served as template for the second round of SOE PCR introducing mutations at amino acid positions 76/78 using the following primers: R68A71recombfor, R68A71recombrev, R76S78recombfor, R76S78recombrev, G76S78recombfor, G76S78recombrev, S76S78recombfor, S76S78recombrev, T76S78recombfor, T76S78recombrev, D76S78recombfor, D76S78recombrev, R76D78recombfor, R76D78recombrev, G76D78recombfor, G76D78recombrev, S76D78recombfor, S76D78recombrev, T76D78recombfor, T76D78recombrev, D76D78recombfor, D76D78recombrev (Table 6). The mixture of primers was used, since degenerate codons would have expanded the library size immensely. Again, the assembly product served as template to complete the recombination library with amino acid position 110. The same procedure was applied as described for the first two rounds of SOE PCR. Primers used were again a mixture prepared out of equimolar concentrations of Q110Qfor, Q110Qrev, Q110Afor, Q110Arev, Q110Vfor, and Q110Vrev. After all sites were recombined, the insert was restriction digested with NdeI and XhoI, ligated into pET22b(+), and electro-competent BL21(D3) (Lucigen, Middleton, Wis.) were transformed. In order to oversample the library by approximately five-fold, one thousand clones were picked and cultured as described below. In order to check for possible biases (i.e. certain mutations occurring more frequently than others), 20 clones were randomly chosen for DNA sequence analysis.

[0559] As described in Example 14, the first screening round identified several individual point mutations within the KARI cofactor binding region that either improved NADH-dependent activity or were at least neutral (i.e. had neither a beneficial nor deleterious effect). These mutations, along with the wild-type amino acid residue are listed in Table 31.

TABLE 31

Amino Acid Mutations Included in the Recombinatorial Library							
Amino Acid Position	Wild-type	Neutral or beneficial mutations identified	Total # (including wild-type)				
68	R	L	2				
71	А	T, S	3				
76	R	G, S, T, D	5				
78	S	D	2				
110	Q	A, V	3				

[0560] A complete recombination library was constructed allowing for all beneficial and some neutral mutations (and including the wild-type residues) at each of the five sites. The total number of unique combinations was 180.

[0561] Generating all mutations using a single primer would result in a large library of ~4,000. Thus, the present inventors built the library stepwise in three SOE reactions using primers mixed in equimolar amounts for each of three SOE reactions:

SOE 1: R68/A71, R68/T71, R68/S71, L68/A71, L68/ T71, L68/S71 SOE 2: A76/S78, G76/S78, S76/S78, T76/S78, D76/ S78, A76/D78, G76/D78, S76/D78, T76/D78, D76/D78, SOE3: Q110, A110, V110

[0562] First, mutations at amino acid sites 68 and 71 were introduced into the Ec_ilvC_coEc^{his6} gene, followed by mutations at site 76 and finally, by mutations at site 110. After the library had been generated, it was ligated into pET22b(+). The resulting plasmid library was used to transform *E. coli*

BL21(DE3) electro-competent cells. Cells were grown in 96-well plates according to the protocol for cell growth and protein expression in microplates as described in Example 14. The KARI enzyme activity of each of 1,000 individual transformants was determined using the high-throughput assay as described in Example 14.

[0563] Only 20% of the enzymes of the recombination library were active on NADH. After screening 1,000 clones using the NADH depletion assay at 340 nm, 26 KARI variants were selected for a rescreen by the high-throughput assay described in Example 14 and eight thereof were expressed in 25 ml LB_{amp} medium in shake flasks according to the protocol for cell growth and protein expression in shake flasks as described in Example 14, purified according to the protocol for purification of KARI enzymes as described in Example 14, and NAD(P)H depletion at 340 nm was measured again. Two candidates Ec $llvC^{2H10-his6}$ (containing the amino acid substitutions A71S, R76D, S78D, and Q110A) and $Ec_{llvC^{6E6-his6}}$ (containing the amino acid substitutions A71S, R76D, S78D, and Q110V) showed good specific activity on NADH and were only marginally active on NADPH. The other six variants showed lower specific activities on NADH (ranging from 0.44-0.55 U/mg) compared to the two favored variants $\text{Ec_llvC}^{2H_{10}-his6}$ and $\text{Ec_llvC}^{6E6-his6}$ and higher specific activities on NADPH (0.72-2.62 U/mg). The K_M values of variants Ec_llvC^{2H10-his6} and Ec_llvC^{6E6-his6} were measured and the catalytic efficiencies were calculated. [0564] The kinetic parameters of the recombination variants and previously described KARI mutants are shown in Table 32. Both variants found in the recombination library showed an almost complete switch in cofactor preference from NADPH to NADH. The K_M values of the mutants on NADH rival the K_M value of KARI Ec_llvC^{his6} on NADPH (44.2 and 31.6 μ M on NADH vs. 41 μ M for Ec_llvC^{his6} on NADPH). The catalytic efficiencies of $Ec_{1v}C^{\overline{2H10-his6}}$ and Ec_llvC^{6E6-his6} on NADH (60322 and 74045 M⁻¹*s⁻¹, respectively) came very close to the catalytic efficiency of Ec_llvC^{*his6*} on NADPH (87300 $M^{-1}*s^{-1}$). The mutants described herein exhibit a complete reversal in cofactor specificity and the NADH-dependent activity approaches the NADPH-dependent activity of the wild-type enzyme. The best variant exhibited 85% activity (in terms of k_{cat}/K_M) on NADH compared to wild-type activity on NADPH.

TABLE 32

Kinetic parameters of Ec_IlvC ^{his6} , two of the enzymes described previously (Ec_IlvC ^{B8-his6} and Ec_IlvC ^{B8A71S-his6}), as well as the two mutants Ec_IlvC ^{2H10-his6} and Ec_IlvC ^{6E6-his6}								
	U	/mg	K _M	-[μM]	k	_t [^{s-1}]	k_{cat}/K_M	$[M^{-1} * s^{-1}]$
Variant	NADH	NADPH	NADH	NADPH	NADH	NADPH	NADH	NADPH
Ec_IlvC ^{his6}	0.08	1.00	1,075	41	1.0	3.6	1,000	87,300
Ec_IlvC ^{B8-his6}	0.57	0.62	65	65	2.0	2.2	31,775	34,188
Ec_IlvC ^{B8A71S-his6}	0.57	0.66	53.5	63.4	2.0	2.4	38,330	37,459
$Ec_{IlvC^{2H10-his6}}$	0.74	0.17	44.2	568	2.6	0.61	60,322	1,078
Ec_IIvC ^{6E6-his6}	0.65	0.07	31.6	653	2.3	0.2	74,045	386

[0565] The above data demonstrates the effects brought on by the beneficial mutations at positions 71 and 110. Moreover, aspartic acids at positions 76 and 78 electrostatically repel the phosphate of NADPH. It is noted that the electrostatic attraction of arginine to the NADPH phosphate is lost when R76 is mutated to an aspartic acid residue.

EXAMPLE 16

KARI Engineering by Random Mutagenesis in Yeast

[0566] The following example demonstrates increases in specific, NADH-dependent KARI activity.

[0567] Methods: Plasmid pGV2241 (SEQ ID NO: 124) carrying the Ec_ilvC_coSc^{6E6-his6} gene (SEQ ID NO: 33) served as template for generating the first error-prone FOR library using forward primer pGV1994ep_for and reverse primer pGV1994_rev. These primers are specific to the backbone pGV1102 (SEQ ID NO: 101) and bind 50 by upstream and downstream of the KARI insert to create an overlap for homologous recombination in yeast. Generally, three different MnCl₂ concentrations were tested (100, 200, and 300 μ M MnCl₂) and the PCR compositions are summarized in Table 33.

TABLE 33

PCR set up for differe final volumes were			4		
	f	ìnal MnCl	2 concent	ration [µM	
	100	150	200	250	300
Template	1	1	1	1	1
primer forward	2	2	2	2	2
primer reverse	2	2	2	2	2
dNTP's	4	4	4	4	4
Taq buffer	10	10	10	10	10
MgCl ₂	28	28	28	28	28
Taq polymerase	1.6	1.6	1.6	1.6	1.6
MnCl ₂ (1 mM stock)	10	15	20	25	30
PCR grade water	41.4	36.4	31.4	26.4	21.4

[0568] The temperature profile was the following: 95° C. 3 min initial denaturation, 95° C. 30 s denaturation, 55° C. 30 s annealing, 72° C. 2 min elongation, 25 cycles, 5 min final elongation at 72° C.

[0569] The PCR products were checked on a 1% analytical TAE agarose gel, DpnI digested for 1 h at 37° C. to remove traces of template DNA, and then cleaned up using a 1% preparative TAE agarose gel. The agarose pieces containing the PCR products were put into Freeze'n' Squeeze tubes (BIORAD, catalog $\#732-\overline{6}166$) and frozen for 10 min at -20° C. Then, they were spun down at room temperature and 10,000 rpm to "squeeze" the buffer with the soluble DNA out of the agarose mesh. The volume of the eluted DNA/buffer mixture was estimated and then subjected to the pellet paint procedure (Novagen, catalog #69049-3), which was performed according to the manufacturer's manual. The dried pink DNA pellets were resuspended in 50 µL PCR grade water. In the meantime, the restriction digest of the backbone pGV1102 (SEQ ID NO: 101) was performed as follows: 10 μ L of DNA, 32 μ L PCR grade water, 5 μ L NEB buffer 3 (10×), 2 µL NotI, and 1 µL SalI. After an incubation time of 3 h at 37° C., the digest was run out on an agarose gel and then pellet painted as described above. After determining the DNA concentration of cut vector and insert, 500 ng of each were mixed together, precipitated with pellet paint, and resuspended in 6 uL of PCR grade water. This mixture can be prepared a day before the transformation.

[0570] In the evening before the planned transformation, YPD medium (10 g/L yeast extract, 20 g/L peptone, 20 g/L glucose) was inoculated with a single colony of GEVO1186 and incubated at 30° C. and 250 rpm over night. The next morning, a 20 mL YPD culture was started in a 250 ml Erlenmeyer flask without baffles with the overnight culture at an OD₆₀₀ of 0.1. This culture was incubated at 30° C. and 250 rpm until it reached an OD_{600} of 1.3-1.5. When the culture had reached the desired $\mathrm{OD}_{600}, 200\,\mu\mathrm{L}$ of freshly prepared sterilefiltered Tris-DTT (0.39 g 1,4-dithiothreitol per 1 mL of 1 M Tris, pH 8.0) were added and the culture was allowed to incubate at 30° C. and 250 rpm for another 15 min. The cells were then pelleted at 4° C. and 2,500×g for 3 min. After removing the supernatant, the pellet was resuspended in 10 mL of ice-cold buffer E and spun down again as described above. Then, the cell pellet was resuspended in 1 mL of sterile-filtered ice-cold buffer E (1.2 g Tris base, 92.4 g glucose, and 0.2 g MgCl_2 per 1 L deionized water, adjusted to pH 7.5) and spun down one more time as before. After removal of the supernatant with a pipette, $200 \,\mu\text{L}$ of ice-cold buffer E (1.2 g/L Tris, 92.4 g/L glucose, and 0.2 g/L MgCl₂, pH 7.5) were added and the pellet was gently resuspended. The 6 µL of insert/backbone mixture were split in half and added to 50 µL of electrocompetent GEVO1186 cells. The DNA/cell mixtures were transferred into 0.2 cm electroporation cuvettes (BioRad) and electroporated without a pulse controller at 0.54 kV and 25 µF. 1 mL of pre-warmed YPD medium was added immediately and the transformed cells were allowed to regenerate at 30° C. and 250 rpm in 15 mL round bottom culture tubes (Falcon). After 1 hour, the cells were spun down at 4° C. and 2,500×g for 3 min, and the pellets were resuspended in 1 mL pre-warmed SD-URA medium (1.7 g/L yeast nitrogen base, 5 g/L ammonium sulfate, 20 g/L glucose, with casamino acids but without uracil (CSM-URA). Different amounts of transformed cells were plated on SD-URA agar plats plates and incubated at 30° C. for 1.5 days or until the colonies were large enough to be picked with sterile toothpicks.

[0571] Single yeast colonies were picked with sterile toothpicks into shallow 96-well plates containing 300 µL of SC-URA medium (6.7 g/L DifcoTM Yeast Nitrogen Base, 14 g/L Sigma[™] Synthetic Dropout Media supplement (includes amino acids and nutrients excluding histidine, tryptophan, uracil, and leucine), 10 g/L casamino acids, 20 g/L glucose, 0.018 g/L adenine hemisulfate, and 0.076 g/L tryptophan) per well. Each plate encompassed 88 wells with variants, four wells with parent, three wells with GEVO1886 carrying pGV1102 as background control, and one well with medium only, which served as a sterility control. The plates were incubated at 250 rpm and 30° C. in a humidified plate shaker (Kuhner) over night. On the next morning, 50 µL of the overnight culture were transferred into 600 µL SC-URA medium in 96 well deep well plates (2 mL capacity per well). The cultures were allowed to grow for another 8 h at the same conditions, before they were spun down at 4° C. and 5000 rpm for 5 min. The supernatants were removed and the pellets were frozen at -20° C. until they were screened for activity as described in Example 14 above.

[0572] Improved variants were expressed and purified from GEVO1186. 20 mL SC-URA medium overnight cultures were grown at 30° C. and 250 rpm in 250 mL flasks and were then used to inoculate 96 well deep well plates on the next morning. $50 \,\mu\text{L}$ of the overnight cultures were transferred into 600 $\,\mu\text{L}$ SC-URA medium per well. The plates were then grown at 30° C. and 250 rpm in a humidified plate shaker for 8 h. In order to the harvest, the cultures were transferred into 50 mL Falcon tubes and then spun down at 4° C. and 5,000

rpm for 10 min. The pellets were frozen until they were processed and purified as described in Example 14 above.

[0573] Results: Two rounds of error-prone PCR and screening were carried out. The libraries (~2400 clones per library) were screened using the KARI high-throughput assay. KARI variants that exhibited an improved activity compared to their parent (total of 88 variants) were picked and rescreened in triplicate and five clones were selected for sequencing and purification. In the first round variant Ec_llvC^{P2D1-his6} (SEQ ID NO: 38), encoded by Ec_ilvC_coSc^{P2D1-his6} (SEQ ID NO: 37) was identified carrying the following mutations: D146G and G185R. This variant served as parent for the second round of error-prone PCR and screening which yielded variant Ec_llvC^{P2D1-A1-his6} (SEQ ID NO: 42), encoded by Ec_ilvC_coSc^{P2D1-A1-his6} (SEQ ID NO: 41) with one additional mutation (K433E). The biochemical properties were determined and are summarized in Table 34. A two-fold improvement of the specific activity in lysate and in the purified enzyme was observed after two rounds of error-prone PCR.

[0576] Overnight cultures of the GEVO1993 transformed with pGV1777 (SEQ ID NO: 118), pGV1925, pGV1938, or pGV1927 were started from individual colonies of previously transformed strains. These cultures were started in 3 mL M9 minimal medium (Miller, J. H. A Short Course in Bacterial Genetics: A laboratory manual and handbook for Escherichia coli and related bacteria. 1992. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.), supplemented with 10 g/L yeast extract, 10 µM ferric citrate and trace metals, containing 8.5% glucose and the appropriate antibiotics in snap cap tubes about 14 h prior to the start of the fermentation. Isobutanol fermentations were then carried out in screw cap flasks containing 20 mL of the same medium that was inoculated with 0.2 mL of the overnight culture. The cells were incubated at 37° C./250 rpm until the strains had grown to an OD_{500} of 0.6-0.8 and were then induced with Isopropyl (β -D-1-thiogalactopyranoside at 1 mM final concentration.

TABLE 34

Con the varian	Comparison of the biochemical properties of the parent Ec_IIvC ^{6E6-his-6} with the variants found in round 1 (Ec_IIvC ^{P2D1-his6}) and 2 (Ec_IIvC ^{P2D1-A1-his6}). The variants were purified before characterization							s
	U	/mg	K _M	·[µM]	k	, [^{s-1}]	k _{cat} /K _M []	$M^{-1} * s^{-1}$]
Variant	NADH	NADPH	NADH	NADPH	NADH	NADPH	NADH	NADPH
Ec_IlvC ^{6E6-his6} Ec_IlvC ^{P2D1-his6} Ec_IlvC ^{P2D1-A1-his6}	0.69 0.92 1.2	0.15 0.15	39 40 26	1432 >1432	2.4 3.3 4.3	0.54 0.54	63,000 82,650 167,687	377 <377

EXAMPLE 17

NADH-Dependent Anaerobic Isobutanol Production

[0574] This example illustrates that an isobutanol producing microorganism which is engineered to carry NADH-dependent KARI and ADH enzymes produces isobutanol at higher yield compared to strains engineered to carry NADPH-dependent KARI and ADH enzymes. These strains also acquire the ability to produce isobutanol anaerobically. [0575] A first set of anaerobic fermentations with isobutanol producing strains according to Table 35 were performed. Strain GEVO1993 is an *E. coli* strain in which the native ilvC gene was deleted and the other three steps of the isobutanol pathway (Bs_alsS1, Ec_ilvD_coEc and Ll_kivd1) were integrated into the chromosome.

Plasmid	<u>Strain/Plas</u> Strain	mid combinations desc KARI gene	ADH gene	Cofactor usage of the isobutanol pathway
pGV1777	GEVO1993	Ec_ilvC_coEc	Ec_yqhD	NADPH/
pGV1925	GEVO1993	Ec_ilvC_coEc	(native) Ec_fucO	NADPH NADPH/
pGV1938	GEVO1993	Ec_ilvC_coEc ^{S78D}	Ec_yqhD (native)	NADH NADH/ NADPH
pGV1927	GEVO1993	Ec_ilvC_coEc ^{S78D}	(flative) Ec_fucO	NADH/ NADH/ NADH

[0577] Three hours after induction the cultures were shifted to anaerobic fermentation conditions by loosening the cap of the flasks and placing the flasks into to a Coy Laboratory Products Type B Vinyl anaerobic chamber (Coy Laboratory Products, Grass Lakes, Mich.) through an airlock in which the flasks were cycled three times with nitrogen and vacuum, and then filled with the a hydrogen gas mix (95% Nitrogen, 5% Hydrogen). Once the flasks were inside the anaerobic chamber, the flasks were closed again and incubated without shaking at 30° C. Inside the chamber, an anaerobic atmosphere (<5 ppm oxygen) was maintained through the hydrogen gas mix (95% Nitrogen, 5% Hydrogen) reacting with a palladium catalyst to remove oxygen. The flasks in the anaerobic chamber were swirled twice a day. Samples (2 mL) were taken at the time of the shift and at 21 h and 45 h after shifting to anaerobic conditions, spun down at 22,000 g for 1 min to separate the cell pellet from the supernatant and stored frozen at -20° C. until analysis. The samples were analyzed using High performance liquid chromatography (HPLC) and gas chromatography GC. All experiments were performed in triplicate.

[0578] The OD₆₀₀ values of the cultures were similar amongst the three replicates. Notably, after 45 h, GEVO1993+pGV1927 (i.e. expressing NADH-dependent KARI and ADH) produced isobutanol at approximately twice the volumetric productivity, specific productivity, and titer. Surprisingly the theoretical yield increased from about 70% of theoretical to 96% of theoretical. Expressing only one NADH-dependent enzyme with the other enzyme being NADH-dependent did not have an effect (Table 36).

			IABI	LE 36					
		<u>45 h p</u>	erformai	ice parameters	<u>.</u>				
		Vo Produc		Spec. Productiv	<u>vity</u>	Anaerob Yield ^a		Tite	er
Sample	KARI/ADH	[g/L/h]	±	[g/L/h/OD]	±	% theor.	±	[g/L]	±
GEVO1993 + pGV1777	Ec_IlvC/ Ec_YqhD	0.044	0.019	0.018	0.003	72	3	2.4	1.0
GEVO1993 + pGV1925	Ec_IlvC/ Ec_FucO	0.031	0.002	0.017	0.003	55	4	1.9	0.1
GEVO1993 + pGV1938	Ec_IlvC ^{S78D} / Ec_YqhD	0.040	0.015	0.021	0.002	78	10	2.1	0.9
GEVO1993 + pGV1927	Ec_IlvC ^{\$78D} / Ec_FucO	0.078	0.006	0.030	0.003	96	5	3.8	0.2

TADLESC

 a The anaerobic yield is calculated by dividing the isobutanol produced from time of anaerobic shift until 45 hours after the shift by the amount of glucose consumed during this time period

[0579] A second set of anaerobic fermentations with isobutanol producing strains according to Table 37 were performed to demonstrate that the of improved KARI variants correlates with an improvement of isobutanol production under anaerobic conditions.

TABLE 37

	Strain	n/Plasmid com	binations used for the s	econd set of	anaerobic ferme	ntations.
#	Plasmid	Strain	KARI gene	ADH gene	KARI k _{cat} /K _{M,NADH}	$\begin{array}{l} {\rm KARI} \\ {\rm (k}_{cat} / {\rm K}_{M,NADH}) / \\ {\rm (k}_{cat} / {\rm K}_{M,NADPH}) \end{array}$
	pGV1976	GEVO1993 GEVO1993 GEVO1993	Ec_ilvC_coEc ^{S78D} Ec_ilvC_coEc ^{2H10} Ec_ilvC_coEc ^{6E6}	Ec_fucO Ec_fucO Ec_fucO	27,600 60,300 74,000	7 56 192

[0580] The experiment was carried out as described above except that the cell cultures were induced at an OD_{600} of 0.8-1.0 instead of 0.6-0.8 and shifted to anaerobic conditions at and $OD OD_{600}$ of 4.0-6.0 instead of 3 hours after induction. In addition, samples were taken at the time of the anaerobic shift and 24 h and 48 h after induction (i.e. 20 h and 44 h after the anaerobic shift, respectively).

[0581] 44 hours after shift to anaerobic fermentation conditions, the trend for volumetric and specific productivity is the same as observed 20 hours after shift to anaerobic conditions: strains carrying improved KARI variants Ec_llvC^{2H10} and Ec_llvC^{6E6} produced isobutanol at higher volumetric and specific productivity as well as yield compared to strains carrying KARI variant $\text{Ec_llvC}^{S7\&D}$ (Table 38).

TABLE 38

		44 h p	erformai	ice parameters	3				
		Vo Produc		Spec. Productiv		anaerob Yield ^a		Tite	er
Sample	KARI/ADH	[g/L/h]	±	[g/L/h/OD]	±	% theor.	±	[g/L]	±
GEVO1993 + pGV1927	Ec_IlvC ^{S78D} / Ec_FucO	0.215	0.005	0.037	0.002	79	12	10.9	0.3
GEVO1993 + pGV1976	Ec_IlvC ^{2H10} / Ec_FucO	0.274	0.008	0.047	0.002	107	15	13.0	0.6
GEVO1993 + pGV1975	Ec_IlvC ^{6E6} / Ec_FucO	0.270	0.032	0.047	0.005	97	2	12.5	1.5

^{*a*}The anaerobic yield is calculated by dividing the isobutanol produced from time of anaerobic shift until 44 hours after the shift by the amount of glucose consumed during this time period

EXAMPLE 18

NADH-Dependent Anaerobic Isobutanol Production in Yeast

[0582] This example illustrates that isobutanol producing yeast microorganisms engineered to carry NADH-dependent KARI and ADH enzymes produce isobutanol at higher yields compared to isobutanol producing yeast microorganisms engineered to carry NADH-dependent KARI and/or ADH enzymes. These strains also produce isobutanol anaerobically.

Cultures of GEVO2710, GEVO2711 and [0583] GEVO2799 transformed with pGV2227 (SEQ ID NO: 123) or pGV2242 (SEQ ID NO: 125) and cultures of GEVO2710, and GEVO2799 transformed with pGV2020 (SEQ ID NO: 121) or pGV2082 (SEQ ID NO: 122) were started from individual colonies of previously transformed and purified strains. These cultures were started in 14 ml round-bottom snap-cap test tubes containing 3 ml of YPD medium supplemented with 0.2 g/L G418 antibiotic, and 1% (v/v) of a stock solution containing 3 g/L ergosterol and 66 g/L Tween 80 dissolved in ethanol. The snap-cap test tubes were not closed completely so that air would vent in/out of the tubes. After growth for about 10 hours at 30° C. shaking at 250 rpm, these cultures were added to 47 ml of the same medium in 250 ml non-baffled flasks with sleeve closures and incubated for about 14 hours at 30° C. shaking at 250 rpm. Isobutanol fermentations were then carried out after harvesting the cells from the 50 ml cultures by centrifugation, and resuspending the cell pellets in f 50 ml of the same medium in 250 ml non-baffled flasks to an initial optical density (OD_{600}) of 3-6. [0584] Anaerobic fermentations were carried out by inoculating flasks with screw-cap closures as above and placing the flasks with loose caps into to a Coy Laboratory Products Type B Vinyl anaerobic chamber (Coy Laboratory Products, Grass Lakes, Mich.) through an airlock in which the flasks were cycled three times with nitrogen and vacuum, and then filled with a hydrogen gas mix (95% Nitrogen, 5% Hydrogen). The flasks were moved inside the anaerobic chamber from the airlock and the screw-caps on the flasks were closed inside the anaerobic chamber. Inside the chamber, an anaerobic atmosphere (<5 ppm oxygen) was maintained through the hydrogen gas mix (95% Nitrogen, 5% Hydrogen) reacting with a palladium catalyst to remove oxygen. The flasks were then removed from the anaerobic chamber and incubated outside the anaerobic chamber at 30° C. shaking at 75 rpm. Samples (2 ml) were taken at the beginning of the incubation of the anaerobic fermentations and after 24 hours, 48 hours and 72 hours of incubation. The samples taken at the beginning of the incubation were taken before moving the flasks into the anaerobic chamber. The 24 hour and 48 hour samples were taken by moving the flasks into the anaerobic chamber through the airlock as above, opening the flasks in the anaerobic chamber to remove the samples, re-closing the flasks in the anaerobic chamber and removing the flasks from the anaerobic chamber for continued incubation. The 72 hour samples were taken outside of the anaerobic chamber because these were the final samples from the flasks.

[0585] Samples from fermentations were centrifuged for 10 minutes at 18,000 g to separate the cells from the supernatant. The supernatant was removed and stored under refrigeration until analyzed by gas chromatography and high performance liquid chromatography as described above. All experiments were performed in triplicate.

[0586] In the anaerobic fermentations the OD₆₀₀ values of the cultures were similar amongst the three replicates. Notably, after 72 hours in anaerobic fermentations, GEVO2710+ pGV2242, GEVO2711+pGV2242 and GEVO2799+ pGV2242 (i.e. strains expressing an NADH-dependent KARI) produced isobutanol at an approximately 1.25- to 2-fold higher volumetric productivity, specific productivity, and titer than the same strains containing pGV2227 (i.e. strains expressing an NADH-dependent KARI). The anaerobic yield increased from about 16-25% of theoretical to 22-35% of theoretical (Table 39).

TABLE 39

	72 hour performance parameters from anaerobic fermentations								
	KARI/ADH overexpressed	Vo Produc		Spec Producti		Yield		Specif Titer	
Sample	from plasmid	[g/L/h]	±	[g/L/h/OD]	±	% theor.	±	[g/L/OD]	±
GEVO2710 +	None/	0.000	0.000	0.0001	0.0000	1	0	0.01	0.00
pGV2020	None								
GEVO2710 +	Ec_IlvC ^{Q110V} /	0.006	0.001	0.0014	0.0001	21	2	0.10	0.01
pGV2082	Dm_Adh								
GEVO2710 +	Ec_IlvC ^{Q110V} /	0.006	0.001	0.0017	0.0003	17	9	0.12	0.02
pGV2227	Ll_AdhA								
GEVO2710 +	Ec_IlvC ^{P2D1} /	0.011	0.001	0.0029	0.0003	22	2	0.21	0.02
pGV2242	Ll_AdhA								
GEVO2799 +	None/	0.001	0.000	0.0002	0.0000	6	1	0.01	0.00
pGV2020 GEVO2799 +	None Ec_IlvC ^{Q110V} /	0.010	0.000	0.0019	0.0003	38	2	0.14	0.02
pGV2082	Dm_Adh	0.010	0.000	0.0019	0.0005	38	2	0.14	0.02
GEVO2799 +	Ec_IlvC ^{Q110V} /	0.009	0.001	0.0014	0.0002	20	2	0.10	0.01
pGV2227	Ll_AdhA	0.009	0.001	0.0014	0.0002	20	2	0.10	0.01
GEVO2799 +	$Ec_{IVC}^{P2D1}/$	0.014	0.003	0.0026	0.0003	33	10	0.19	0.03
pGV2242	Ll_AdhA	0.011	0.005	0.0020	0.0005	55		0.12	0.05
GEV02711 +	Ec_{IlvC}^{Q110V}	0.008	0.000	0.0020	0.0000	24	2	0.14	0.00
pGV2227	Ll AdhA						_		
GEVO2711 +	$Ec_{IlvC^{P2D1}}$	0.014	0.004	0.0025	0.0008	37	8	0.18	0.06
pGV2242	Ll_AdhA								
-									

Jun. 10, 2010

respectively. *K. lactis* GAPDH was subcloned from pGV1323 (SEQ ID NO: 102), which contains the GDP1 gene cloned from genomic DNA of *K. lactis.* GapC (*C. acetobu-tylicum*) was cloned from genomic DNA using primers 1049 and 1050.

[0591] *E. coli* DH5 α Z1 (Lutz, R. and Bujard, H, Nucleic Acids Research (1997) 25 1203-1210) was chosen as the host strain. This strain contains the Z1 integration which provides overexpression of lacl from a lacIq expression cassette. DH5aZ1 was transformed with pGV1572, pGV1573, and pGV1575. Transformants were used to inoculate 5 mL cultures, which were incubated at 37° C., 250 rpm overnight. 50 mL cultures were inoculated with 1 mL overnight culture and incubated at 37° C., 250 rpm. The cultures were induced with IPTG when OD₅₀₀ was approximately 0.6 and incubated at 30° C., 250 rpm for 2 hours. The cultures were frozen at -80° C.

[0592] Pellets were resuspended with lysis buffer to 40% (w/v). (lysis buffer was the same as the reaction buffer but without substrate and cofactors). Cells were lysed in a bead mill using 3 times 1 min intervals, placing them on ice for 2 min in between each run. The lysate was centrifuged at 25000×g at 4° C. for 10 min, the supernatant was kept on ice and it was used as whole cell lysate for the enzyme assays. **[0593]** The total reaction volume was 100 μ L consisting of 90 μ L of Reaction Buffer: 50 mM glycine buffer pH 9.5, 5 mM EDTA, 40 mM triethanolamine, 3 mM beta-mercaptoethanol, 6 mM NAD+ or NADP+, and 10 μ L lysate. 10 μ L of lysate were pipette into a UV permeable 96 well plate. 90 μ L of reaction buffer was added to the lysate and mixed well by pipetting up and down. The plate was read for 5 min at 340 nm. Results are shown in Table 40.

TABLE 40

Volumet	ric and specific	activity of vario	ous GAPD	H with NADP ⁺
	NA	DP+		
Lysate Name	Volumetric Activity (mU/ml)	Sp. Activity (nmol/min/ μg total cell protein)	pGV#	organism
gapC GDP1 Control (DH5az1)	10.022 26.849 3.819	0.010 0.031 0.005	1575 1573 1572	C. acetobutylicum K. lactis

[0594] DH5aZ1 was the host strain for all the plasmids and has its own indigenous GAPDH. The results show that the GAPDH enzymes are expressed and active in *E. coli*. The strain expressing GDP1 had more than 6 times higher in vitro GAPDH specific activity with the cofactor NADPH than the control strain not overexpressing GAPDH. The strain over-expressing gapC had twice the in vitro GAPDH specific activity with the control strain not overexpressing GAPDH.

EXAMPLE 21

NADPH-Dependent GAPDH in Yeast

[0595] The purpose of this example is to describe how an isobutanol producing yeast which is engineered to express NADPH-dependent GAPDH and produce isobutanol anaerobically.

EXAMPLE 19

Overexpression of an NADPH-Dependent GAPDH, GDP1

[0587] The purpose of this example is to describe how overexpression of an NADPH-dependent GAPDH can improve isobutanol production under anaerobic conditions. [0588] GDP1 is expressed from plasmid pGV1573 (SEQ ID NO: 106) together with an isobutanol biosynthetic pathway expressed from pGV1485 (SEQ ID NO: 103) and pSA69. As a control the plasmid pGV1573 is replaced by the empty version of this plasmid pGV1572 (SEQ ID NO: 105). These plasmids are transformed into GEVO1859AgapA. Overnight cultures of Strain 1: GEVO1859 AgapA, pSA69 and pGV1573, pGV1485, Strain GEVO1859∆gapA, pGV1572, pGV1485, pSA69 are started from individual colonies of previously transformed strains. These cultures are started in 3 mL M9 minimal medium (Miller, J. H. A Short Course in Bacterial Genetics: A laboratory manual and handbook for Escherichia coli and related bacteria. 1992. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.), supplemented with 10 g/L yeast extract, 10 µM ferric citrate and trace metals, containing 8.5% glucose and the appropriate antibiotics in snap cap tubes about 14 h prior to the start of the fermentation. Isobutanol fermentations are then carried out in screw cap flasks containing 20 mL of the same medium that was inoculated with 0.2 mL of the overnight culture. The cells are incubated at 37° C./250 rpm until the strains had grown to an OD_{600} of 0.6-0.8 and are then induced with Isopropyl β -D-1-thiogalactopyranoside at 1 mM final concentration.

[0589] Three hours after induction the cultures are shifted to anaerobic fermentation conditions by loosening the cap of the flasks and placing the flasks into to a Coy Laboratory Products Type B Vinyl anaerobic chamber (Coy Laboratory Products, Grass Lakes, Mich.) through an airlock in which the flasks are cycled three times with nitrogen and vacuum, and then filled with the a hydrogen gas mix (95% Nitrogen, 5% Hydrogen). Once the flasks are inside the anaerobic chamber, the flasks are closed again and incubated without shaking at 30° C. Inside the chamber, an anaerobic atmosphere (<5 ppm) oxygen) was maintained through the hydrogen gas mix (95% Nitrogen, 5% Hydrogen) reacting with a palladium catalyst to remove oxygen. The flasks in the anaerobic chamber are swirled twice a day. Samples (2 mL) are taken at the time of the shift and at 24 h and 48 h after inoculation, spun down at 22,000 g for 1 min to separate the cell pellet from the supernatant and stored frozen at -20° C. until analysis. The samples are analyzed using High performance liquid chromatography (HPLC) and gas chromatography GC. All experiments are performed in duplicate.

EXAMPLE 20

Overexpression of NADPH-Dependent GADPHs GDP1 and gapC

[0590] pGV1572 (SEQ ID NO: 105) (PLlacO, p15A, Cm^{*R*}) was constructed as an empty vector compatible with the plasmids pGV1698 (SEQ ID NO: 112) and pGV1655 (SEQ ID NO: 109) for the expression of the isobutanol pathway. The GAPDHs from *Kluyveromyces lactis*, and *Clostridium aceto-butylicum* were cloned into pGV1572 to make pGV1573 (SEQ ID NO: 106) (PLlacO1::GDP1, p15A, Cm^{*R*}), and pGV1573 (SEQ ID NO: 107) (PLlacO1::GapC, p15A, Cm^{*R*})

[0596] A yeast strain, GEVO5001, which expresses the isobutanol biosynthetic pathway and is deficient in pyruvate decarboxylase activity, is engineered to overproduce the *K. lactis* Gdp1. pGV6001 is a yeast integration plasmid carrying a hygromycin resistance marker and the GDP1 gene under the strong constitutive promoter from TDH3. This plasmid is linearized and transformed into GEVO5001 to generate GEVO5003. Expression of GDP1 is confirmed by qRT-PCR. Once confirmed, GEVO5003 and the parent strain GEVO5001 are used in fermentations for the production of isobutanol, Two fermentations are performed with the two strains. Fermentation 1 is an aerobic fermentation.

EXAMPLE 22

pyk Bypass 1

[0597] This example illustrates that an isobutanol producing microorganism which is engineered to bypass the pyruvate kinase reaction shows increased productivity, titer and yield of isobutanol compared to the control strain without said engineering.

[0598] For the pyk bypass experiment, GEVO1385, GEVO1725 (triple deletion strain-tet repressor), and GEVO1751 were transformed with pGV1655 (SEQ ID NO: 109), pGV1698 (SEQ ID NO: 112), and pGV1490 (SEQ ID NO: 104) or pGV1661 (SEQ ID NO: 110). Strains GEVO1725 and GEVO1751 contain the deletions of pyruvate kinase and of the NADH dependent malic enzyme which

are part of the pyruvate bypass engineering. All of these transformants were tested in isobutanol fermentations.

[0599] The aforementioned strains were grown overnight in two biological replicates for each strain in M9+A5 salts+ FeCl3+10 g/LYE media and the appropriate antibiotics in 14 ml snap cap tubes and incubated at 37° C., 250 rpm. Screw cap flasks with 20 ml M9+A5 salts+FeCl3+10 g/L YE media and the appropriate antibiotics were inoculated with overnight culture to an OD_{600} of 0.1. The cells were incubated at 37° C., 250 rpm until they were grown to an OD₆₀₀ of 0.6-0.8 and induced with IPTG [1 mM] and aTc [100 ng/ml]. Afterwards the cultures were incubated at 30° C., 250 rpm. Samples were taken of the medium, at 24 h and 48 h after inoculation. Samples were centrifuged at 15000 g for 1 min to separate the cell pellet from the supernatant and stored in -20° C. until sample submission. The samples were analyzed using High performance liquid chromatography (HPLC) and gas chromatography (GC).

[0600] The triple deletion strains GEVO1725 and GEVO1751 have a severe growth defect which is partially rescued by introduction of pGV1661.

[0601] The analysis of the fermentation data shows that the partial deletion strain, GEVO1750, with pGV1661 only has negative effects on isobutanol production (Tables 41, 42). However, at the 24 h time point the triple deletion strain with and without the tet repressor (GEVO1725 and GEVO1751 respectively) shows increased yield (Table 41). GEVO1725 shows a 20% increase in yield, with specific productivity similar to the control strain. GEVO1751 shows a 13% increase in yield and specific productivity.

TABLE 41

	Volumetric Productivity		Specific Productivity		Titer		Yield	
Samples 24 h	[g/L/h]	±	[g/L/h/OD]	±	[g/L]	±	[g/g]	±
GEVO1385 + pGV1655, pGV1698, pGV1490 (control)	0.205	0.008	0.031	0.001	4.93	0.18	0.277	0.002
GEV01385 + pGV1655, pGV1698, pGV1661 (control)	0.197	0.003	0.028	0.002	4.65	0.01	0.285	0.035
GEVO1725 + pGV1655, pGV1698, pGV1490	0.125	0.009	0.034	0.005	2.83	0.19	0.331	0.029
GEVO1725 + pGV1655, pGV1698, pGV1661	0.184	0.002	0.031	0.001	4.16	0.04	0.333	0.004
GEVO1750 + pGV1655, pGV1698, pGV1490	0.144	0.004	0.022	0.001	3.30	0.14	0.267	0.001
GEVO1750 + pGV1655, pGV1698, pGV1661	0.080	0.005	0.013	0.001	1.84	0.09	0.305	
GEVO1751 + pGV1655, pGV1698, pGV1490	0.138	0.006	0.031	0.001	3.09	0.13	0.303	0.008
GEVO1751 + pGV1655, pGV1698, pGV1661	0.204	0.004	0.035	0.001	4.55	0.08	0.318	0.006

68

IADLE 42	TA	BL	Æ	42	
----------	----	----	---	----	--

Analysis of the second pyk bypass fermentation from the 48 hour time point								
		Volumetric Specific Productivity Productivity		Titer		Yi	eld	
samples 48 h	[g/L/h]	±	[g/L/h/OD]	±	[g/L]	±	[g/g]	±
GEVO1385 + pGV1655, pGV1698, pGV1490 (control)	0.128	0.011	0.023	0.002	6.14	0.53	0.271	0.004
GEV01385 + pGV1655, pGV1698, pGV1661 (control)	0.141	0.029	0.023	0.005	6.75	1.41	0.263	0.002
GEVO1725 + pGV1655, pGV1698, pGV1490	0.070	0.002	0.024	0.002	3.25	0.10	0.299	0.009
GEVO1725 + pGV1655, pGV1698, pGV1661	0.101	0.006	0.024	0.002	4.72	0.28	0.309	0.005
GEVO1750 + pGV1655, pGV1698, pGV1490	0.102	0.013	0.018	0.002	4.77	0.54	0.277	0.013
GEVO1750 + pGV1655, pGV1698, pGV1661	0.085	0.003	0.015	0.001	4.02	0.13	0.261	0.018
GEVO1751 + pGV1655, pGV1698, pGV1490	0.093	0.004	0.029	0.001	4.29	0.16	0.267	0.006
GEVO1751 + pGV1655, pGV1698, pGV1661	0.123	0.002	0.041	0.001	5.68	0.06	0.302	0.009

[0602] To verify that maeB, ppc, and mdh were expressed, cell lysates were made from GEVO1780 transformed with the above plasmids and run on a protein gel (FIG. **20**).

[0603] The gel shows that all pathway enzymes are expressed in GEVO1780 with pGV1490 (Ec_llvD=65.5 kD, Ll_Kivd1/Bs_AlsS1=60.9 kD, Ec_llvC=54.1 kD). The gel also shows that all pathway enzymes and Ppc (99 kD), MaeB (82 kD), and Mdh (32 kD) are expressed in GEVO1780 with pGV1661.

EXAMPLE 23

pyk Bypass 2

[0604] This example illustrates that an isobutanol producing microorganism which is engineered to bypass the pyruvate kinase reaction shows increased productivity, titer and yield of isobutanol compared to the control strain without overexpression of ppc or pck.

[0605] Both plasmid constructs (pGV1661 (SEQ ID NO: 110) and pGV1772) were sequence verified. GEVO1725, and GEVO1751 were transformed with isobutanol pathway plasmids pGV1655 (SEQ ID NO: 109) and pGV1698 (SEQ ID NO: 112), and pyk bypass plasmids pGV1661 (ppc) or pGV1772 (pck). The controls were the same strains and pathway plasmids, but with the empty vector, pGV1490 (SEQ ID NO: 104), in place of pGV1661 or pGV1772. Strains GEVO1725 and GEVO1751 have deletions of pyruvate kinase (pykAF) and of the NADH dependent malic enzyme, maeA, which are part of the pyruvate kinase bypass engineering. The difference between GEVO1725 and GEVO1751 is that GEVO1725 does not have the tet repressor, and therefore, pGV1490, pGV1661, and pGV1772 are constitutively expressed in this strain.

[0606] All of these transformants were tested in isobutanol fermentations.

[0607] Overnight cultures were started in duplicate for each transformation in 3 mL M9+A5 salts+FeCl₃+10 g/L YE media and the appropriate antibiotics in 14 mL snap cap tubes and incubated at 37° C., 250 rpm. Screw cap flasks with 20 mL M9+A5 salts+FeCl₃+10 g/L YE media and the appropriate antibiotics were inoculated to a starting OD_{600} of 0.1 with overnight culture. The cells were incubated at 37° C., 250 rpm until they reached an OD_{600} of 0.6-0.8 and were then induced with IPTG [1 mM] and aTc [1 ng/mL]. After induction, the cultures were switched to incubation at 30° C., 250 rpm. Samples were taken of the cultures at 24 and 48 hours after inoculation and OD600 and pH were measured. Samples were centrifuged at 22,000×g for 5 min and the supernatant was collected and stored at -20° C. until sample submission. After 48 hour samples were taken, the remainder of the culture was transferred to a 50 ml tube, centrifuged at 4000×g, for 10 min at 4° C. The supernatant was removed, and the cell pellet was stored at -80° C. The samples were analyzed using High performance liquid chromatography (HPLC) and gas chromatography (GC).

[0608] The deletion strains with pck (pGV1772) had greater specific productivities than the strains with ppc (pGV1661). When ppc is used in the pyk bypass system in GEVO1725 and GEVO1751, the specific productivity of these strains increased by 3% in GEVO1751 and by 13% in GEVO1725 compared to GEVO1385 with the empty vector. When pck is used instead of ppc, the specific productivity increased by 43% in GEVO1725 and by 50% in GEVO1751. Both of the deletion strains show improved volumetric and specific productivity, titer, and yield when pGV1661 and pGV1772 are expressed compared to the empty vector (Table 43).

TABLE 43

Isobutanol pr	oduction a	t 24 hou	rs for pyk byp	ass syst	em with	ppc or	pck_	
	Volum Produc		Specifi Productiv		Ti	ter	Yi	eld
samples 24 h	[g/L/h]	±	[g/L/h/OD]	±	[g/L]	±	[g/g]	±
GEVO1725 empty vector	0.126	0.001	0.033	0.001	3.03	0.03	0.224	0.005
GEVO1725 pGV1661	0.266	0.003	0.045	0.001	6.38	0.07	0.304	0.022
GEVO1725 pGV1772	0.311	0.021	0.057	0.003	7.46	0.49	0.306	0.006
GEVO1751 empty vector	0.159	0.005	0.033	0.001	3.83	0.1	0.218	0.002
GEVO1751 pGV1661	0.262	0.054	0.041	0.005	6.29	1.29	0.236	0.035
GEVO1751 pGV1772	0.309	0.049	0.06	0.002	7.41	1.18	0.292	0.005

EXAMPLE 24

NADH Kinase and NADP+ Phosphatase in Yeast

[0609] The purpose of this example is to describe how an isobutanol producing yeast which is engineered to express NADPH biosynthesis enzymes to convert NADH into NADPH can produce isobutanol under anaerobic conditions. [0610] A yeast strain GEVO5001 which expresses the isobutanol biosynthetic pathway and is deficient in pyruvate decarboxylase activity is engineered to express NADH kinase and NADP+ phosphatase. pGV6000, which is a yeast integration plasmid carrying an hygromycin resistance marker, NADH kinase and NADP+ phosphatase, is linearized by restriction digestion and transformed into GEVO5001. NADH kinase and NADP+ phosphatase are expressed using the strong constitutive promoters from TEF1 and TDH3, respectively. Clones in which the NADH kinase and NADP+ phosphatase are first identified by resistance to hygromycin. The clones are confirmed to be expressing NADH kinase and NADP+ phosphatase by qRT-PCR. The resulting strain, GEVO5002, along with the parent strain, GEVO5001, is used in fermentations for production of isobutanol.

EXAMPLE 25

Metabolic Transhydrogenation in Yeast

[0611] This example describes an isobutanol producing yeast which is engineered to convert NADH into NADPH through the combination of two redox enzymes that are catalyzing a conversion that is part of the same pathway wherein one redox enzyme oxidizes NADH and the other redox enzyme reduces NADP+.

[0612] The yeast strain, GEVO5001, is a yeast strain that has been engineered to be deficient in pyruvate decarboxylase activity and also to express the isobutanol pathway. A pyruvate bypass is generated by overexpressing in this yeast the genes for (a) pyruvate carboxylase (PYC1 or PYC2), (b) malate dehydrogenase, MDH2, and (c) malic enzyme (maeB). These genes are cloned to generate the yeast integration plasmid, pGV6004. This plasmid carries the hygromycin resistance marker and expresses PYC1, MDH2 and maeB under the strong promoters from ADH1, TEF1 and TDH3, respectively. pGV6004 is linearized and transformed into GEVO5001 to generate GEVO5006. Over-expressions of PYC1, MDH2 and maeB are confirmed by qRT-PCR.

[0613] The foregoing detailed description has been given for clearness of understanding only and no unnecessary limitations should be understood there from as modifications will be obvious to those skilled in the art.

[0614] While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications and this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains and as may be applied to the essential features hereinbefore set forth and as follows in the scope of the appended claims.

[0615] The disclosures, including the claims, figures and/or drawings, of each and every patent, patent application, and publication cited herein are hereby incorporated herein by reference in their entireties.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 330

<210> SEQ ID NO 1 <211> LENGTH: 1533 <212> TYPE: DNA <213> ORGANISM: Escherichia coli

<400> SEQUENCE: 1

atgcgaattg gcataccaag agaacggtta accaatgaaa cccgtgttgc agcaacgcca 60

-continued	
	120
caactggcaa gttttgacga taaagcgttt gtgcaagcgg gcgctgaaat tgtagaaggg	180
aatagcgtct ggcagtcaga gatcattctg aaggtcaatg cgccgttaga tgatgaaatt	240
gcgttactga atcctgggac aacgctggtg agttttatct ggcctgcgca gaatccggaa	300
ttaatgcaaa aacttgcgga acgtaacgtg accgtgatgg cgatggactc tgtgccgcgt	360
atctcacgcg cacaatcgct ggacgcacta agctcgatgg cgaacatcgc cggttatcgc	420
gccattgttg aagcggcaca tgaatttggg cgcttcttta ccgggcaaat tactgcggcc	480
gggaaagtgc caccggcaaa agtgatggtg attggtgcgg gtgttgcagg tctggccgcc	540
attggcgcag caaacagtct cggcgcgatt gtgcgtgcat tcgacacccg cccggaagtg	600
aaagaacaag ttcaaagtat gggcgcggaa ttcctcgagc tggattttaa agaggaagct	660
ggcagcggcg atggctatgc caaagtgatg tcggacgcgt tcatcaaagc ggaaatggaa	720
ctctttgccg cccaggcaaa agaggtcgat atcattgtca ccaccgcgct tattccaggc	780
aaaccagcgc cgaagctaat tacccgtgaa atggttgact ccatgaaggc gggcagtgtg	840
attgtcgacc tggcagccca aaacggcggc aactgtgaat acaccgtgcc gggtgaaatc	900
ttcactacgg aaaatggtgt caaagtgatt ggttataccg atcttccggg ccgtctgccg	960
acgcaatcct cacagettta eggeacaaae etegttaate tgetgaaaet gttgtgeaaa	1020
gagaaagacg gcaatatcac tgttgatttt gatgatgtgg tgattcgcgg cgtgaccgtg	1080
atccgtgcgg gcgaaattac ctggccggca ccgccgattc aggtatcagc tcagccgcag	1140
gcggcacaaa aagcggcacc ggaagtgaaa actgaggaaa aatgtacctg ctcaccgtgg	1200
cgtaaatacg cgttgatggc gctggcaatc attctttttg gctggatggc aagcgttgcg	1260
ccgaaagaat tccttgggca cttcaccgtt ttcgcgctgg cctgcgttgt cggttattac	1320
gtggtgtgga atgtatcgca cgcgctgcat acaccgttga tgtcggtcac caacgcgatt	1380
tcagggatta ttgttgtcgg agcactgttg cagattggcc agggcggctg ggttagcttc	1440
cttagtttta tcgcggtgct tatagccagc attaatattt tcggtggctt caccgtgact	1500
cagegeatge tgaaaatgtt eegcaaaaat taa	1533
<210> SEQ ID NO 2 <211> LENGTH: 510 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 2	
Met Arg Ile Gly Ile Pro Arg Glu Arg Leu Thr Asn Glu Thr Arg Val	
1 5 10 15	
Ala Ala Thr Pro Lys Thr Val Glu Gln Leu Leu Lys Leu Gly Phe Thr 20 25 30	
Val Ala Val Glu Ser Gly Ala Gly Gln Leu Ala Ser Phe Asp Asp Lys 35 40 45	
Ala Phe Val Gln Ala Gly Ala Glu Ile Val Glu Gly Asn Ser Val Trp 50 55 60	
Gln Ser Glu Ile Ile Leu Lys Val Asn Ala Pro Leu Asp Asp Glu Ile 65 70 75 80	
Ala Leu Leu Asn Pro Gly Thr Thr Leu Val Ser Phe Ile Trp Pro Ala 85 90 95	

7	1	

											-	con	tin	uea						
Gln	Asn	Pro	Glu 100	Leu	Met	Gln	ГЛа	Leu 105	Ala	Glu	Arg	Asn	Val 110	Thr	Val					
Met	Ala	Met 115	Asp	Ser	Val	Pro	Arg 120	Ile	Ser	Arg	Ala	Gln 125	Ser	Leu	Asp					
Ala	Leu 130	Ser	Ser	Met	Ala	Asn 135	Ile	Ala	Gly	Tyr	Arg 140	Ala	Ile	Val	Glu					
Ala 145	Ala	His	Glu	Phe	Gly 150		Phe	Phe	Thr	Gly 155	Gln	Ile	Thr	Ala	Ala 160					
Gly	Lys	Val	Pro	Pro 165	Ala	Lys	Val	Met	Val 170	Ile	Gly	Ala	Gly	Val 175	Ala					
Gly	Leu	Ala	Ala 180	Ile	Gly	Ala	Ala	Asn 185	Ser	Leu	Gly	Ala	Ile 190	Val	Arg					
Ala	Phe	Asp 195	Thr	Arg	Pro	Glu	Val 200	-	Glu	Gln	Val	Gln 205	Ser	Met	Gly					
Ala	Glu 210	Phe	Leu	Glu	Leu	Asp 215	Phe	Lys	Glu	Glu	Ala 220	Gly	Ser	Gly	Aap					
Gly 225	-	Ala	Lys	Val	Met 230	Ser	Asp	Ala	Phe	Ile 235	Lys	Ala	Glu	Met	Glu 240					
Leu	Phe	Ala	Ala	Gln 245	Ala	Гла	Glu	Val	Asp 250	Ile	Ile	Val	Thr	Thr 255	Ala					
Leu	Ile	Pro	Gly 260		Pro	Ala	Pro	Lys 265	Leu	Ile	Thr	Arg	Glu 270	Met	Val					
Asp	Ser	Met 275	Lys	Ala	Gly	Ser	Val 280	Ile	Val	Asp	Leu	Ala 285	Ala	Gln	Asn					
Gly	Gly 290	Asn	Сүз	Glu	Tyr	Thr 295	Val	Pro	Gly	Glu	Ile 300	Phe	Thr	Thr	Glu					
Asn 305		Val	ГЛа	Val	Ile 310	Gly	Tyr	Thr	Asp	Leu 315	Pro	Gly	Arg	Leu	Pro 320					
Thr	Gln	Ser	Ser	Gln 325	Leu	Tyr	Gly	Thr	Asn 330	Leu	Val	Asn	Leu	Leu 335	Lys					
Leu	Leu	Cys	Lys 340	Glu	Гла	Asp	Gly	Asn 345	Ile	Thr	Val	Asp	Phe 350	Asp	Asp					
Val	Val	Ile 355	Arg	Gly	Val	Thr	Val 360	Ile	Arg	Ala	Gly	Glu 365	Ile	Thr	Trp					
Pro	Ala 370	Pro	Pro	Ile	Gln	Val 375	Ser	Ala	Gln	Pro	Gln 380	Ala	Ala	Gln	Lys					
Ala 385	Ala	Pro	Glu	Val	Lys 390	Thr	Glu	Glu	Lys	Сув 395	Thr	Сув	Ser	Pro	Trp 400					
Arg	Lys	Tyr	Ala	Leu 405	Met	Ala	Leu	Ala	Ile 410	Ile	Leu	Phe		Trp 415	Met					
Ala	Ser	Val	Ala 420		ГЛЗ	Glu	Phe	Leu 425	Gly	His	Phe	Thr	Val 430	Phe	Ala					
Leu	Ala	Cys 435	Val	Val	Gly		Tyr 440		Val	Trp		Val 445	Ser	His	Ala					
Leu	His 450		Pro	Leu	Met	Ser 455		Thr	Asn	Ala	Ile 460	Ser	Gly	Ile	Ile					
Val 465	Val	Gly	Ala		Leu 470	Gln	Ile	Gly		Gly 475	Gly	Trp	Val	Ser	Phe 480					
Leu	Ser	Phe	Ile	Ala 485	Val	Leu	Ile	Ala	Ser 490	Ile	Asn	Ile	Phe	Gly 495	Gly					
Phe	Thr	Val	Thr	Gln	Arg	Met	Leu	Lys	Met	Phe	Arg	Lys	Asn							

505
505

<210> SEQ ID NO 3 <211> LENGTH: 1389 <212> TYPE: DNA <213> ORGANISM: Escherichia coli

500

<400> SEQUENCE: 3

<210> SEQ ID NO 4 <211> LENGTH: 462 <212> TYPE: PRT

<213> ORGANISM: Escherichia coli

atgtctggag	gattagttac	agctgcatac	attgttgccg	cgatcctgtt	tatcttcagt	60
ctggccggtc	tttcgaaaca	tgaaacgtct	cgccagggta	acaacttcgg	tatcgccggg	120
atggcgattg	cgttaatcgc	aaccattttt	ggaccggata	cgggtaatgt	tggctggatc	180
ttgctggcga	tggtcattgg	tggggcaatt	ggtatccgtc	tggcgaagaa	agttgaaatg	240
accgaaatgc	cagaactggt	ggcgatcctg	catagetteg	tgggtctggc	ggcagtgctg	300
gttggcttta	acagctatct	gcatcatgac	gcgggaatgg	caccgattct	ggtcaatatt	360
cacctgacgg	aagtgttcct	cggtatcttc	atcgggggggg	taacgttcac	gggttcggtg	420
gtggcgttcg	gcaaactgtg	tggcaagatt	tcgtctaaac	cattgatgct	gccaaaccgt	480
cacaaaatga	acctggcggc	tctggtcgtt	teetteetge	tgctgattgt	atttgttcgc	540
acggacagcg	tcggcctgca	agtgctggca	ttgctgataa	tgaccgcaat	tgcgctggta	600
ttcggctggc	atttagtcgc	ctccatcggt	ggtgcagata	tgccagtggt	ggtgtcgatg	660
ctgaactcgt	actccggctg	ggcggctgcg	gctgcgggct	ttatgctcag	caacgacctg	720
ctgattgtga	ccggtgcgct	ggtcggttct	tcggggggta	tcctttctta	cattatgtgt	780
aaggcgatga	accgttcctt	tatcagcgtt	attgcgggtg	gtttcggcac	cgacggctct	840
tctactggcg	atgatcagga	agtgggtgag	caccgcgaaa	tcaccgcaga	agagacagcg	900
gaactgctga	aaaactccca	ttcagtgatc	attactccgg	ggtacggcat	ggcagtcgcg	960
caggcgcaat	atcctgtcgc	tgaaattact	gagaaattgc	gcgctcgtgg	tattaatgtg	1020
cgtttcggta	tccacccggt	cgcgggggcgt	ttgcctggac	atatgaacgt	attgctggct	1080
gaagcaaaag	taccgtatga	catcgtgctg	gaaatggacg	agatcaatga	tgactttgct	1140
gataccgata	ccgtactggt	gattggtgct	aacgatacgg	ttaacccggc	ggcgcaggat	1200
gatccgaaga	gtccgattgc	tggtatgcct	gtgctggaag	tgtggaaagc	gcagaacgtg	1260
attgtcttta	aacgttcgat	gaacactggc	tatgctggtg	tgcaaaaccc	gctgttcttc	1320
aaggaaaaca	cccacatgct	gtttggtgac	gccaaagcca	gcgtggatgc	aatcctgaaa	1380
gctctgtaa						1389

_											_	COII	υIII	ueu	
< 4	00> S	EQUEI	NCE:	4											
Me 1	t Ser	Gly	Gly	Leu 5	Val	Thr	Ala	Ala	Tyr 10	Ile	Val	Ala	Ala	Ile 15	Leu
Ph	e Ile	Phe	Ser 20	Leu	Ala	Gly	Leu	Ser 25	Lys	His	Glu	Thr	Ser 30	Arg	Gln
Gl	y Asn	Asn 35	Phe	Gly	Ile	Ala	Gly 40	Met	Ala	Ile	Ala	Leu 45	Ile	Ala	Thr
Il	e Phe 50	Gly	Pro	Aap	Thr	Gly 55	Asn	Val	Gly	Trp	Ile 60	Leu	Leu	Ala	Met
Va 65	l Ile	Gly	Gly	Ala	Ile 70	Gly	Ile	Arg	Leu	Ala 75	Lys	Гла	Val	Glu	Met 80
Th	r Glu	Met	Pro	Glu 85	Leu	Val	Ala	Ile	Leu 90	His	Ser	Phe	Val	Gly 95	Leu
Al	a Ala	Val	Leu 100	Val	Gly	Phe	Asn	Ser 105	Tyr	Leu	His	His	Asp 110	Ala	Gly
Me	t Ala	Pro 115	Ile	Leu	Val	Asn	Ile 120	His	Leu	Thr	Glu	Val 125	Phe	Leu	Gly
Il	e Phe 130		Gly	Ala	Val	Thr 135	Phe	Thr	Gly	Ser	Val 140	Val	Ala	Phe	Gly
Lу 14	s Leu 5	Суз	Gly	ГЛа	Ile 150	Ser	Ser	Lys	Pro	Leu 155	Met	Leu	Pro	Asn	Arg 160
Hi	s Lys	Met	Asn	Leu 165	Ala	Ala	Leu	Val	Val 170	Ser	Phe	Leu	Leu	Leu 175	Ile
Va	l Phe	Val	Arg 180	Thr	Asp	Ser	Val	Gly 185	Leu	Gln	Val	Leu	Ala 190	Leu	Leu
Il	e Met	Thr 195	Ala	Ile	Ala	Leu	Val 200	Phe	Gly	Trp	His	Leu 205	Val	Ala	Ser
Il	e Gly 210	-	Ala	Aap	Met	Pro 215	Val	Val	Val	Ser	Met 220	Leu	Asn	Ser	Tyr
Se 22	r Gly 5	Trp	Ala	Ala	Ala 230	Ala	Ala	Gly	Phe	Met 235	Leu	Ser	Asn	Asp	Leu 240
Le	u Ile	Val	Thr	Gly 245	Ala	Leu	Val	Gly	Ser 250	Ser	Gly	Ala	Ile	Leu 255	Ser
ту	r Ile	Met	Сув 260	Lys	Ala	Met	Asn	Arg 265	Ser	Phe	Ile	Ser	Val 270	Ile	Ala
Gl	y Gly	Phe 275	Gly	Thr	Asp	Gly	Ser 280	Ser	Thr	Gly	Asp	Asp 285	Gln	Glu	Val
Gl	y Glu 290		Arg	Glu	Ile	Thr 295	Ala	Glu	Glu	Thr	Ala 300	Glu	Leu	Leu	Lys
As 30	n Ser 5	His	Ser	Val	Ile 310	Ile	Thr	Pro	Gly	Tyr 315	Gly	Met	Ala	Val	Ala 320
Gl	n Ala	Gln	Tyr	Pro 325	Val	Ala	Glu	Ile	Thr 330	Glu	Lys	Leu	Arg	Ala 335	Arg
Gl	y Ile	Asn	Val 340	Arg	Phe	Gly	Ile	His 345	Pro	Val	Ala	Gly	Arg 350	Leu	Pro
Gl	y His	Met 355	Asn	Val	Leu	Leu	Ala 360	Glu	Ala	Lys	Val	Pro 365	Tyr	Asp	Ile
Va	l Leu 370	Glu	Met	Asp	Glu	Ile 375	Asn	Asp	Asp	Phe	Ala 380	Asp	Thr	Asp	Thr
Va 38	l Leu 5	Val	Ile	Gly	Ala 390	Asn	Asp	Thr	Val	Asn 395	Pro	Ala	Ala	Gln	Asp 400

Asp Pro Lys Ser Pro Ile Ala Gly Met Pro Val Leu Glu Val Trp Lys 405 410 415 Ala Gln Asn Val Ile Val Phe Lys Arg Ser Met Asn Thr Gly Tyr Ala 420 425 430 Gly Val Gln Asn Pro Leu Phe Phe Lys Glu Asn Thr His Met Leu Phe 435 440 445 Gly Asp Ala Lys Ala Ser Val Asp Ala Ile Leu Lys Ala Leu 450 455 460 <210> SEQ ID NO 5 <211> LENGTH: 1716 <212> TYPE: DNA <213> ORGANISM: Bacillus subtilis <400> SEQUENCE: 5 atgttgacaa aagcaacaaa agaacaaaaa tcccttgtga aaaacagagg ggcggagctt 60 gttgttgatt gcttagtgga gcaaggtgtc acacatgtat ttggcattcc aggtgcaaaa 120 attgatgcgg tatttgacgc tttacaagat aaaggacctg aaattatcgt tgcccggcac 180 gaacaaaacg cagcattcat ggcccaagca gtcggccgtt taactggaaa accgggagtc 240 gtgttagtca catcaggacc gggtgcctct aacttggcaa caggcctgct gacagcgaac 300 actgaaggag accetgtegt tgegettget ggaaaegtga teegtgeaga tegtttaaaa 360 cggacacatc aatctttgga taatgcggcg ctattccagc cgattacaaa atacagtgta 420 gaagttcaag atgtaaaaaa tataccggaa gctgttacaa atgcatttag gatagcgtca 480 gcagggcagg ctggggccgc ttttgtgagc tttccgcaag atgttgtgaa tgaagtcaca 540 aatacqaaaa acqtqcqtqc tqttqcaqcq ccaaaactcq qtcctqcaqc aqatqatqca 600 atcaqtqcqq ccataqcaaa aatccaaaca qcaaaacttc ctqtcqtttt qqtcqqcatq 660 aaaggeggaa gaceggaage aattaaageg gttegeaage ttttgaaaaa ggtteagett 720 ccatttgttg aaacatatca agctgccggt accctttcta gagatttaga ggatcaatat 780 tttggccgta tcggtttgtt ccgcaaccag cctggcgatt tactgctaga gcaggcagat 840 gttgttctga cgatcggcta tgacccgatt gaatatgatc cgaaattctg gaatatcaat 900 ggagaccgga caattatcca tttagacgag attatcgctg acattgatca tgcttaccag 960 cctgatcttg aattgatcgg tgacattccg tccacgatca atcatatcga acacgatgct 1020 gtgaaagtgg aatttgcaga gcgtgagcag aaaatccttt ctgatttaaa acaatatatg 1080 catgaaggtg agcaggtgcc tgcagattgg aaatcagaca gagcgcaccc tcttgaaatc 1140 gttaaagagt tgcgtaatgc agtcgatgat catgttacag taacttgcga tatcggttcg 1200 cacgccattt ggatgtcacg ttatttccgc agctacgagc cgttaacatt aatgatcagt 1260 aacggtatgc aaacactcgg cgttgcgctt ccttgggcaa tcggcgcttc attggtgaaa 1320 1380 ccgggagaaa aagtggtttc tgtctctggt gacggcggtt tcttattctc agcaatggaa ttagagacag cagttegaet aaaageaeca attgtaeaca ttgtatggaa egaeageaea 1440 tatgacatgg ttgcattcca gcaattgaaa aaatataacc gtacatctgc ggtcgatttc 1500 ggaaatatcg atatcgtgaa atatgcggaa agcttcggag caactggctt gcgcgtagaa 1560 tcaccagacc agetggcaga tgttctgcgt caaggcatga acgetgaagg teetgteate 1620 atcgatgtcc cggttgacta cagtgataac attaatttag caagtgacaa gcttccgaaa 1680

75

-continued

aattcgggg aactcatgaa	aacgaaagct d	ctctag			1716	
210> SEQ ID NO 6 211> LENGTH: 1716 212> TYPE: DNA 213> ORGANISM: Bacill	lus subtilis					
400> SEQUENCE: 6						
tgttgacta aagctacaaa	agagcagaaa	tcattggtga	aaaatagggg	tgcagaactt	60	
ttgtggact gtttggtaga	acagggcgta a	acacatgttt	ttggtatccc	aggtgcaaaa	120	
tcgacgccg tgtttgatgc	attacaagac a	aagggtccag	aaattattgt	tgctagacat	180	
agcaaaatg ccgcatttat	ggcgcaagct	gtaggtaggc	ttacaggtaa	acctggtgtt	240	
teetagtta egtetggeee	aggageetee a	aatttagcaa	ctggtctatt	gacagctaat	300	
ctgagggag atcctgtagt	tgcgttagcc g	ggtaatgtaa	ttagagctga	taggcttaag	360	
gaactcacc agtctctaga	caacgctgct	ttattccaac	cgatcaccaa	gtactcagta	420	
aggtacaag acgtaaagaa	tatacctgaa 🤉	gctgtgacaa	acgcatttcg	tatagettet	480	
ctggtcagg ctggtgccgc	gtttgtttct	tttcctcaag	acgttgtcaa	tgaagtgacc	540	
atactaaaa acgttagagc	ggttgcagcc	cctaaactag	gtccagccgc	agacgacgca	600	
ttagcgctg caattgctaa	aattcagacg g	gcgaaactac	cagtagtcct	tgtcggtatg	660	
agggcggaa gaccagaagc	aataaaagct 🤉	gttcgtaagt	tattgaagaa	agtccaatta	720	
ctttcgttg agacttacca	agcagcaggt	actttatcta	gagatttaga	ggatcagtat	780	
ttggaagga taggtctatt	tagaaaccaa	ccaggagatt	tactattaga	acaagctgat	840	
ttgtactta ctatcggtta	tgatcctata 🤉	gagtatgacc	caaagttttg	gaacataaat	900	
gggatagaa caattataca	tctagacgag a	ataatcgccg	acatcgatca	cgcttatcaa	960	
cagatttag aactaatcgg	agatatcccg	tcaacaatca	atcatattga	acatgatgct	1020	
taaaggttg agttcgctga	acgtgagcag	aaaatcttat	ctgatctaaa	gcaatatatg	1080	
atgagggtg aacaagttcc	agcagactgg	aaatctgacc	gtgcacatcc	tttggaaatc	1140	
ttaaggaac taagaaatgc	ggtcgatgat d	catgtgactg	ttacatgtga	tatcggttca	1200	
atgcaattt ggatgtcacg	ttattttagg a	agctacgaac	cattaacttt	aatgatatct	1260	
acgggatgc aaactctggg	ggttgcactt d	ccttgggcta	ttggcgctag	tttagttaag	1320	
ccggtgaga aggtggtatc	ggtatcaggt	gatggtggct	ttctgttttc	ggctatggaa	1380	
tagaaactg cagtccgttt	aaaagctccc a	attgtgcata	ttgtctggaa	tgattctact	1440	
acgacatgg ttgcttttca	acagttgaag a	aaatacaata	gaacttcggc	tgtagacttt	1500	
gtaacatcg atattgtgaa	atatgctgag 1	tcttttggcg	caacaggcct	gagggtggaa	1560	
gtccagatc agttagctga	tgtgttgaga	caagggatga	atgccgaggg	accggtaatc	1620	
tagatgtgc cagttgacta	ctcagacaat a	attaatttgg	cttctgataa	acttectaaa	1680	
		ttataa			1716	

<211> LENGTH: 571
<212> TYPE: PRT
<213> ORGANISM: Bacillus subtilis

<400> SEQUENCE: 7

-cont	inued	

Met 1	Leu	Thr	Lys	Ala 5	Thr	Lys	Glu	Gln	Lys 10	Ser	Leu	Val	Lys	Asn 15	Arg
Gly	Ala	Glu	Leu 20	Val	Val	Asp	Суз	Leu 25	Val	Glu	Gln	Gly	Val 30	Thr	His
Val	Phe	Gly 35	Ile	Pro	Gly	Ala	Lys 40	Ile	Asp	Ala	Val	Phe 45	Asp	Ala	Leu
Gln	Asp 50	Lys	Gly	Pro	Glu	Ile 55	Ile	Val	Ala	Arg	His 60	Glu	Gln	Asn	Ala
Ala 65	Phe	Met	Ala	Gln	Ala 70	Val	Gly	Arg	Leu	Thr 75	Gly	ГЛа	Pro	Gly	Val 80
Val	Leu	Val	Thr	Ser 85	Gly	Pro	Gly	Ala	Ser 90	Asn	Leu	Ala	Thr	Gly 95	Leu
Leu	Thr	Ala	Asn 100	Thr	Glu	Gly	Asp	Pro 105	Val	Val	Ala	Leu	Ala 110	Gly	Asn
Val	Ile	Arg 115	Ala	Asp	Arg	Leu	Lys 120	Arg	Thr	His	Gln	Ser 125	Leu	Asp	Asn
Ala	Ala 130	Leu	Phe	Gln	Pro	Ile 135	Thr	Lys	Tyr	Ser	Val 140	Glu	Val	Gln	Aab
Val 145	Lys	Asn	Ile	Pro	Glu 150	Ala	Val	Thr	Asn	Ala 155	Phe	Arg	Ile	Ala	Ser 160
Ala	Gly	Gln	Ala	Gly 165	Ala	Ala	Phe	Val	Ser 170	Phe	Pro	Gln	Asp	Val 175	Val
Asn	Glu	Val	Thr 180	Asn	Thr	Lys	Asn	Val 185	Arg	Ala	Val	Ala	Ala 190	Pro	LYa
Leu	Gly	Pro 195	Ala	Ala	Asp	Asp	Ala 200	Ile	Ser	Ala	Ala	Ile 205	Ala	Lys	Ile
Gln	Thr 210	Ala	Lys	Leu	Pro	Val 215	Val	Leu	Val	Gly	Met 220	Lys	Gly	Gly	Arg
Pro 225	Glu	Ala	Ile	Lys	Ala 230	Val	Arg	Lys	Leu	Leu 235	Lys	Lys	Val	Gln	Leu 240
Pro	Phe	Val	Glu	Thr 245	Tyr	Gln	Ala	Ala	Gly 250	Thr	Leu	Ser	Arg	Asp 255	Leu
Glu	Asb	Gln	Tyr 260	Phe	Gly	Arg	Ile	Gly 265	Leu	Phe	Arg	Asn	Gln 270	Pro	Gly
Asp	Leu	Leu 275	Leu	Glu	Gln	Ala	Asp 280	Val	Val	Leu	Thr	Ile 285	Gly	Tyr	Asp
Pro	Ile 290	Glu	Tyr	Asp	Pro	Lys 295	Phe	Trp	Asn	Ile	Asn 300	Gly	Asp	Arg	Thr
Ile 305	Ile	His	Leu	Asp	Glu 310	Ile	Ile	Ala	Asp	Ile 315	Asp	His	Ala	Tyr	Gln 320
Pro	Asp	Leu	Glu	Leu 325	Ile	Gly	Asp	Ile	Pro 330	Ser	Thr	Ile	Asn	His 335	Ile
Glu	His	Asp	Ala 340	Val	ГЛа	Val	Glu	Phe 345	Ala	Glu	Arg	Glu	Gln 350	ГЛа	Ile
Leu	Ser	Asp 355	Leu	Lys	Gln	Tyr	Met 360	His	Glu	Gly	Glu	Gln 365	Val	Pro	Ala
Asp	Trp 370	Lys	Ser	Asp	Arg	Ala 375	His	Pro	Leu	Glu	Ile 380	Val	Lys	Glu	Leu
Arg 385	Asn	Ala	Val	Asp	Asp 390	His	Val	Thr	Val	Thr 395	Суа	Asp	Ile	Gly	Ser 400

										-	con	tin	ued				
Iis Ala	Ile	Trp	Met 405	Ser	Arg	Tyr	Phe	Arg 410	Ser	Tyr	Glu	Pro	Leu 415	Thr			
Jeu Met	Ile	Ser		Glv	Met	Gln	Thr		Glv	Val	Ala	Leu		Trp			
		420		-1			425		-1			430	'	τ.			
Ala Ile	Gly 435	Ala	Ser	Leu	Val	Lys 440	Pro	Gly	Glu	LÀa	Val 445	Val	Ser	Val			
Ser Gly	_	Gly	Gly	Phe		Phe	Ser	Ala	Met		Leu	Glu	Thr	Ala			
450				_	455			- 1		460			-	-			
7al Arg 165	Leu	гла	Ala	Pro 470	IIe	Val	Hls	11e	Val 475	Trp	Asn	Asp	Ser	480			
Yr Asp	Met	Val	Ala 485	Phe	Gln	Gln	Leu	Lys 490	Lys	Tyr	Asn	Arg	Thr 495	Ser			
Ala Val	Asp	Phe		Asn	Ile	Asp	Ile		Lys	Tyr	Ala	Glu		Phe			
	_	500	-			_	505		-	-		510					
3ly Ala	Thr 515	Gly	Leu	Arg	Val	Glu 520	Ser	Pro	Asp	Gln	Leu 525	Ala	Asp	Val			
Jeu Arg		Gly	Met	Asn		Glu	Gly	Pro	Val		Ile	Asp	Val	Pro			
530 Iol Dam		Com	N am	7 an	535	Acro	Lou	71-	Com	540 Dem	Luc	Lou	Dre	Inc			
Val Asp 545	I I Y I	Ser	дан	550	тте	ASII	цец	AIA	555	чэр	цур	цец	FIO	560			
Slu Phe	Gly	Glu	Leu 565	Met	ГЛа	Thr	Lys	Ala 570	Leu								
210> S																	
212> T 213> C	YPE :	DNA		illu:	s sul	btili	Ls										
:400> S	EQUEI	ICE :	8														
itgttga	.caa a	aagc	aacaa	aa aq	gaaca	aaaaa	a tco	cctt	gtga	aaaç	gcaga	agg g	aacaa	gagett	60		
gttgttg	att o	getta	agcgę	ga go	caage	gtgto	c aca	acato	gtat	ttgg	gcati	cc a	aggto	gcaaaa	120		
attgatg	cgg 1	atti	tgaco	gc ti	ttaca	aagat	: aaa	agggo	cctg	aaat	tat	cgt t	gcco	ggcat	180		
jaacaaa	atg d	cage	attta	at go	gegea	aagca	a gto	cggco	gtt	taad	ctgga	aaa a	accgo	gagtc	240		
gtgttag	tca	catc	agga	cc aç	ggtg	cttcç	g aac	cttg	gcaa	cago	gacto	get ç	gacaç	gcaaac	300		
ictgaag	gtg a	accci	tgtco	gt tạ	geget	ttgct	ggg	gaaco	gtga	tccç	gtgca	aga t	ccgtt	taaaa	360		
ggacac	atc a	aatc	tttg	ga ta	aatgo	cggcg	g cta	attco	cagc	cgat	taca	aaa a	ataca	agtgta	420		
gaagtto	aag a	atgt	aaaaa	aa ta	ataco	cggaa	a gct	gtta	acaa	atgo	cgtti	ag g	gataç	gcgtca	480		
gcagggc	agg (ctgg	ggccó	gc ti	tttgi	tgagt	ttt	ccg	caag	atgt	tgt	yaa t	gaag	gtcaca	540		
atacaa	aaa a	acgt	acgto	gc tạ	gtcg	cageo	g cca	aaaa	cttg	gtco	ccgca	agc a	agato	jacgca	600		
itcagta	tgg (cati	tgcaa	aa aa	attea	aaaca	a gca	aaaa	ette	ctgt	ccgti	tt a	agtco	gcatg	660		
agggcg	gaa 🤉	gacc	ggaaq	ge ga	atta	aagco	g gtt	cgca	aagc	tatt	cgaaa	aaa a	agtgo	agctt	720		
catteg															780		
ttggco															840		
gttgttc															900		
gagaco															960		
cggato															1020		
gtgaaag	tag a	actt	tgcg	ga ad	cgtga	agcag	g aag	gatco	ettt	ctga	attta	aaa a	acaat	atatg	1080		

catgagggtg agcaggtgcc tgcagattgg aaatcagaca gagtgcatcc tcttgaaatc gttaaaqaat tgcgaaacgc agtcgatgat catgttacag tgacttgcga tatcggttca cacgcgattt ggatgtcacg ttatttccgc agctacgagc cgttaacatt aatgattagt aacggtatgc aaacactcgg cgttgcgctt ccttgggcaa tcggcgcttc attggtgaaa ccgggagaaa aagtagtatc agtctccggt gatggcggtt tcttattctc agctatggaa ttagagacag cagttcgttt aaaagcacca attgtacaca ttgtatggaa cgacagcaca tatgacatgg ttgcattcca gcaattgaaa aaatataatc gtacatctgc ggtcgatttc ggaaatatcg atatcgtgaa atacgcggaa agcttcggag caactggctt acgcgtagaa tcaccagacc agctggcaga tgttctgcgt caaggcatga acgctgaggg gcctgtcatc attgatgtcc cggttgacta cagtgataac gttaatttag caagtgacaa gcttccgaaa gaattcgggg aactcatgaa aacgaaagct ctctag <210> SEQ ID NO 9 <211> LENGTH: 571 <212> TYPE: PRT <213> ORGANISM: Bacillus subtilis <400> SEQUENCE: 9 Met Leu Thr Lys Ala Thr Lys Glu Gln Lys Ser Leu Val Lys Ser Arg Gly Ala Glu Leu Val Val Asp Cys Leu Ala Glu Gln Gly Val Thr His Val Phe Gly Ile Pro Gly Ala Lys Ile Asp Ala Val Phe Asp Ala Leu Gln Asp Lys Gly Pro Glu Ile Ile Val Ala Arg His Glu Gln Asn Ala Ala Phe Met Ala Gln Ala Val Gly Arg Leu Thr Gly Lys Pro Gly Val Val Leu Val Thr Ser Gly Pro Gly Ala Ser Asn Leu Ala Thr Gly Leu Leu Thr Ala Asn Thr Glu Gly Asp Pro Val Val Ala Leu Ala Gly Asn Val Ile Arg Ala Asp Arg Leu Lys Arg Thr His Gln Ser Leu Asp Asn Ala Ala Leu Phe Gln Pro Ile Thr Lys Tyr Ser Val Glu Val Gln Asp Val Lys Asn Ile Pro Glu Ala Val Thr Asn Ala Phe Arg Ile Ala Ser Ala Gly Gln Ala Gly Ala Ala Phe Val Ser Phe Pro Gln Asp Val Val Asn Glu Val Thr Asn Thr Lys Asn Val Arg Ala Val Ala Ala Pro Lys Leu Gly Pro Ala Ala Asp Asp Ala Ile Ser Met Ala Ile Ala Lys Ile Gln Thr Ala Lys Leu Pro Val Val Leu Val Gly Met Lys Gly Gly Arg Pro Glu Ala Ile Lys Ala Val Arg Lys Leu Leu Lys Lys Val Gln Leu

-cont	inued	

-continued	
ro Phe Val Glu Thr Tyr Gln Ala Ala Gly Thr Leu Thr Arg Asp Leu 245 250 255	
lu Asp Gln Tyr Phe Gly Arg Ile Gly Leu Phe Arg Asn Gln Pro Gly 260 265 270	
sp Leu Leu Glu Gln Ala Asp Val Val Leu Thr Ile Gly Tyr Asp 275 280 285	
ro Ile Glu Tyr Asp Pro Lys Phe Trp Asn Val Asn Gly Asp Arg Thr 290 295 300	
le Ile His Leu Asp Glu Ile Leu Ala Asp Ile Asp His Ala Tyr Gln 05 310 315 320	
ro Asp Leu Glu Leu Ile Gly Asp Ile Pro Ser Thr Ile Asn His Ile 325 330 335	
lu His Asp Ala Val Lys Val Asp Phe Ala Glu Arg Glu Gln Lys Ile 340 345 350	
eu Ser Asp Leu Lys Gln Tyr Met His Glu Gly Glu Gln Val Pro Ala 355 360 365	
sp Trp Lys Ser Asp Arg Val His Pro Leu Glu Ile Val Lys Glu Leu 370 375 380	
rg Asn Ala Val Asp Asp His Val Thr Val Thr Cys Asp Ile Gly Ser 85 390 395 400	
is Ala Ile Trp Met Ser Arg Tyr Phe Arg Ser Tyr Glu Pro Leu Thr 405 410 415	
eu Met Ile Ser Asn Gly Met Gln Thr Leu Gly Val Ala Leu Pro Trp 420 425 430	
la Ile Gly Ala Ser Leu Val Lys Pro Gly Glu Lys Val Val Ser Val 435 440 445	
er Gly Asp Gly Gly Phe Leu Phe Ser Ala Met Glu Leu Glu Thr Ala 450 455 460	
al Arg Leu Lys Ala Pro Ile Val His Ile Val Trp Asn Asp Ser Thr 65 470 475 480	
yr Asp Met Val Ala Phe Gln Gln Leu Lys Lys Tyr Asn Arg Thr Ser 485 490 495	
la Val Asp Phe Gly Asn Ile Asp Ile Val Lys Tyr Ala Glu Ser Phe 500 505 510	
ly Ala Thr Gly Leu Arg Val Glu Ser Pro Asp Gln Leu Ala Asp Val 515 520 525	
eu Arg Gln Gly Met Asn Ala Glu Gly Pro Val Ile Ile Asp Val Pro	
al Asp Tyr Ser Asp Asn Val Asn Leu Ala Ser Asp Lys Leu Pro Lys	
lu Phe Gly Glu Leu Met Lys Thr Lys Ala Leu	
565 570	
210> SEQ ID NO 10 211> LENGTH: 1476 212> TYPE: DNA 213> ORGANISM: Escherichia coli	
400> SEQUENCE: 10	
tggctaact acttcaatac actgaatctg cgccagcagc tggcacagct gggcaaat	gt 60
getttatgg geegegatga attegeegat ggegegaget acetteaggg taaaaaag	ta 120

80

-continued

ctcgatatct	cctacgctct	gcgtaaagaa	gcgattgccg	agaagcgcgc	gtcctggcgt	240
aaagcgaccg	aaaatggttt	taaagtgggt	acttacgaag	aactgatccc	acaggcggat	300
ctggtgatta	acctgacgcc	ggacaagcag	cactctgatg	tagtgcgcac	cgtacagcca	360
ctgatgaaag	acggcgcggc	gctgggctac	tcgcacggtt	tcaacatcgt	cgaagtgggc	420
gagcagatcc	gtaaagatat	caccgtagtg	atggttgcgc	cgaaatgccc	aggcaccgaa	480
gtgcgtgaag	agtacaaacg	tgggttcggc	gtaccgacgc	tgattgccgt	tcacccggaa	540
aacgatccga	aaggcgaagg	catggcgatt	gccaaagcct	gggcggctgc	aaccggtggt	600
caccgtgcgg	gtgtgctgga	atcgtccttc	gttgcggaag	tgaaatctga	cctgatgggc	660
gagcaaacca	tcctgtgcgg	tatgttgcag	gctggctctc	tgctgtgctt	cgacaagctg	720
gtggaagaag	gtaccgatcc	agcatacgca	gaaaaactga	ttcagttcgg	ttgggaaacc	780
atcaccgaag	cactgaaaca	gggcggcatc	accctgatga	tggaccgtct	ctctaacccg	840
gcgaaactgc	gtgcttatgc	gctttctgaa	cagctgaaag	agatcatggc	acccctgttc	900
cagaaacata	tggacgacat	catctccggc	gaattetett	ccggtatgat	ggcggactgg	960
gccaacgatg	ataagaaact	gctgacctgg	cgtgaagaga	ccggcaaaac	cgcgtttgaa	1020
accgcgccgc	agtatgaagg	caaaatcggc	gagcaggagt	acttcgataa	aggcgtactg	1080
atgattgcga	tggtgaaagc	gggcgttgaa	ctggcgttcg	aaaccatggt	cgattccggc	1140
atcattgaag	agtctgcata	ttatgaatca	ctgcacgagc	tgccgctgat	tgccaacacc	1200
atcgcccgta	agcgtctgta	cgaaatgaac	gtggttatct	ctgataccgc	tgagtacggt	1260
aactatctgt	tctcttacgc	ttgtgtgccg	ttgctgaaac	cgtttatggc	agagctgcaa	1320
ccgggcgacc	tgggtaaagc	tattccggaa	ggcgcggtag	ataacgggca	actgcgtgat	1380
gtgaacgaag	cgattcgcag	ccatgcgatt	gagcaggtag	gtaagaaact	gcgcggctat	1440
atgacagata	tgaaacgtat	tgctgttgcg	ggttaa			1476
<210> SEQ 1 <211> LENGT <212> TYPE <213> ORGAN	TH: 1476	richia coli				
<400> SEQUE	ENCE: 11					
atggcgaatt	atttcaacac	tctgaacctg	cgtcaacaac	tggcgcaact	gggtaagtgc	60
cgtttcatgg	gtcgtgacga	gtttgcggac	ggtgcttctt	atctgcaagg	caagaaggtt	120
gttattgttg	gttgcggtgc	gcaaggcctg	aatcaaggtc	tgaatatgcg	cgacagcggc	180
ctggacatta	gctatgcgct	gcgcaaggag	gctatcgcgg	aaaaacgtgc	tagctggcgc	240
aaggctactg	agaacggctt	caaggttggc	acctatgagg	agetgattee	gcaagctgac	300
ctggttatca	atctgacccc	agataaacaa	catagcgacg	ttgttcgtac	tgttcaaccg	360
ctgatgaagg	atggtgctgc	tctgggttat	agccacggct	ttaacattgt	tgaggtaggt	420
gaacaaattc	gcaaggacat	tactgttgtt	atggtggctc	caaagtgtcc	gggtactgag	480
gttcgcgagg	aatataagcg	cggttttggt	gttccaaccc	tgatcgcggt	gcatccagag	540
aatgacccaa	agggtgaggg	tatggctatc	gcgaaggcgt	gggetgegge	gactggcggc	600
categegetg	gcgttctgga	gagcagcttt	gtggctgagg	ttaagagcga	tctgatgggt	660
gaacagacta	ttctgtgtgg	tatgctgcaa	gcgggtagcc	tgctgtgttt	tgataaactg	720

gttgaggagg gcactgaccc ggcgtatgcg gagaagctga tccaatttgg ctgggagact 780 attactgagg cgctgaagca aggtggtatt actctgatga tggatcgcct gagcaatcca 840 gctaagctgc gcgcgtacgc tctgagcgag caactgaagg aaattatggc accgctgttt 900 caaaagcaca tggatgatat cattagcggt gagtttagca gcggcatgat ggctgattgg 960 gcgaatgacg acaaaaagct gctgacttgg cgcgaggaaa ctggtaagac tgctttcgag 1020 actgctccac aatacgaggg taagattggt gaacaagaat attttgacaa gggtgttctg 1080 atgatcgcta tggttaaggc tggtgtggag ctggcttttg agactatggt tgacagcggt 1140 attatcgagg aaagcgcgta ctacgagagc ctgcatgaac tgccactgat cgcgaatact 1200 attgegegea aacgeetgta tgagatgaat gttgtgatta gegaeaetge ggaatatgge 1260 aattacctgt ttagctatgc gtgcgttcca ctgctgaagc cattcatggc ggaactgcag 1320 ccaggtgatc tgggcaaggc gatcccagag ggtgctgttg acaatggtca gctgcgcgac 1380 1440 gttaatgagg ctatccgttc tcacgctatc gaacaagttg gcaaaaaagct gcgtggttac 1476 atgaccgaca tgaagcgcat cgcggtggct ggctaa <210> SEQ ID NO 12 <211> LENGTH: 1476 <212> TYPE: DNA <213> ORGANISM: Escherichia coli <400> SEQUENCE: 12 atggccaact attttaacac attaaatttg agacaacaat tggctcaact gggtaagtgc 60 120 agatttatgg gaagggacga gtttgctgat ggtgcttctt atctgcaagg aaagaaagta qtaattqttq qctqcqqtqc tcaqqqtcta aaccaaqqtt taaacatqaq aqattcaqqt 180 ctqqatattt cqtatqcatt qaqqaaaqaq qcaattqcaq aaaaqaqqqc ctcctqqcqt 240 aaagcgacgg aaaatgggtt caaagttggt acttacgaag aactgatccc tcaggcagat 300 ttagtgatta acctaacacc agataagcaa cactcagacg tagtaagaac agttcaaccg 360 ctgatgaagg atggggcagc tttaggttac tctcatggct ttaatatcgt tgaagtgggc 420 gagcagatca gaaaagatat aacagtcgta atggttgcac caaagtgccc aggtacggaa 480 gtcagagagg agtacaagag gggttttggt gtacctacat tgatcgccgt acatcctgaa 540 aatgacccca aaggtgaagg tatggcaatt gcgaaggcat gggcagccgc aaccggaggt 600 catagagcgg gtgtgttaga gagttctttc gtagctgagg tcaagagtga cttaatgggt 660 gaacaaacca ttctgtgcgg aatgttgcag gcagggtctt tactatgctt tgataaattg 720 gtcgaagagg gtacagatcc tgcctatgct gaaaagttga tacaatttgg ttgggagaca 780 atcaccgagg cacttaaaca aggtggcata acattgatga tggatagact ttcaaatccg 840 gccaagctaa gagcctacgc cttatctgag caactaaaag agatcatggc accattattc 900 caaaagcaca tggacgatat tatctccggt gagttttcct caggaatgat ggcagattgg 960 gcaaacgatg ataaaaagtt attgacgtgg agagaagaaa ccggcaagac ggcattcgag 1020 acageeeccac aataegaagg taaaattggt gaacaagaat aetttgataa gggagtattg 1080 atgatageta tggtgaagge aggggtagaa ettgeatteg aaactatggt tgacteeggt 1140 atcattgaag aatctgcata ctatgagtct ttgcatgaat tgcctttgat agcaaatact 1200 attgcaagaa aaagacttta cgagatgaat gttgtcatat cagacactgc agaatatggt 1260

aattacttat ttagctacgc atgtgtcccg ttgttaaagc ccttcatggc cgagttacaa $\tt cctggtgatt\ tggggaaggc\ tattccggaa\ ggagcggttg\ acaatggcca\ actgagagac$ gtaaatgaag ctattcgttc acatgctata gaacaggtgg gtaaaaaagct gagaggatat atgaccgata tgaaaagaat tgcagtggca ggatga <210> SEQ ID NO 13 <211> LENGTH: 491 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 13 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 10 15 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 20 25 30 Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln 35 40 45 Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser Tyr Ala Leu Arg Lys Glu Ala Ile Ala Glu Lys Arg Ala Ser Trp Arg 65 70 75 80 Lys Ala Thr Glu Asn Gly Phe Lys Val Gly Thr Tyr Glu Glu Leu Ile 85 90 95 Pro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Gln His Ser Asp Val Val Arg Thr Val Gln Pro Leu Met Lys Asp Gly Ala Ala Leu Gly Tyr Ser His Gly Phe Asn Ile Val Glu Val Gly Glu Gln Ile Arg Lys Asp Ile Thr Val Val Met Val Ala Pro Lys Cys Pro Gly Thr Glu 145 150 155 160 Val Arg Glu Glu Tyr Lys Arg Gly Phe Gly Val Pro Thr Leu Ile Ala Val His Pro Glu Asn Asp Pro Lys Gly Glu Gly Met Ala Ile Ala Lys Ala Trp Ala Ala Ala Thr Gly Gly His Arg Ala Gly Val Leu Glu Ser Ser Phe Val Ala Glu Val Lys Ser Asp Leu Met Gly Glu Gln Thr Ile Leu Cys Gly Met Leu Gln Ala Gly Ser Leu Leu Cys Phe Asp Lys Leu Val Glu Glu Gly Thr Asp Pro Ala Tyr Ala Glu Lys Leu Ile Gln Phe Gly Trp Glu Thr Ile Thr Glu Ala Leu Lys Gln Gly Gly Ile Thr Leu Met Met Asp Arg Leu Ser Asn Pro Ala Lys Leu Arg Ala Tyr Ala Leu Ser Glu Gln Leu Lys Glu Ile Met Ala Pro Leu Phe Gln Lys His Met Asp Asp Ile Ile Ser Gly Glu Phe Ser Ser Gly Met Met Ala Asp Trp305310315320

330 325 335 Thr Ala Phe Glu Thr Ala Pro Gln Tyr Glu Gly Lys Ile Gly Glu Gln 340 345 350 Glu Tyr Phe Asp Lys Gly Val Leu Met Ile Ala Met Val Lys Ala Gly 355 360 365 Val Glu Leu Ala Phe Glu Thr Met Val Asp Ser Gly Ile Ile Glu Glu 380 375 370 Ser Ala Tyr Tyr Glu Ser Leu His Glu Leu Pro Leu Ile Ala Asn Thr 395 385 390 400 Ile Ala Arg Lys Arg Leu Tyr Glu Met Asn Val Val Ile Ser Asp Thr 405 410 415 Ala Glu Tyr Gly Asn Tyr Leu Phe Ser Tyr Ala Cys Val Pro Leu Leu 425 420 430 Lys Pro Phe Met Ala Glu Leu Gln Pro Gly Asp Leu Gly Lys Ala Ile 440 435 445 Pro Glu Gly Ala Val Asp Asn Gly Gln Leu Arg Asp Val Asn Glu Ala 455 Ile Arg Ser His Ala Ile Glu Gln Val Gly Lys Lys Leu Arg Gly Tyr 465 470 475 480 Met Thr Asp Met Lys Arg Ile Ala Val Ala Gly 485 490 <210> SEQ ID NO 14 <211> LENGTH: 1500 <212> TYPE: DNA <213> ORGANISM: Escherichia coli <400> SEOUENCE: 14 atggcgaatt atttcaacac tctgaacctg cgtcaacaac tggcgcaact gggtaagtgc 60 cgtttcatgg gtcgtgacga gtttgcggac ggtgcttctt atctgcaagg caagaaggtt 120 gttattgttg gttgcggtgc gcaaggcctg aatcaaggtc tgaatatgcg cgacagcggc 180 ctggacatta gctatgcgct gcgcaaggag gctatcgcgg aaaaacgtgc tagctggcgc 240 aaggctactg agaacggctt caaggttggc acctatgagg agctgattcc gcaagctgac 300 ctggttatca atctgacccc agataaacaa catagcgacg ttgttcgtac tgttcaaccg 360 ctgatgaagg atggtgctgc tctgggttat agccacggct ttaacattgt tgaggtaggt 420 gaacaaattc gcaaggacat tactgttgtt atggtggctc caaagtgtcc gggtactgag 480 gttcgcgagg aatataagcg cggttttggt gttccaaccc tgatcgcggt gcatccagag 540 aatgacccaa agggtgaggg tatggctatc gcgaaggcgt gggctgcggc gactggcggc 600 catcgcgctg gcgttctgga gagcagcttt gtggctgagg ttaagagcga tctgatgggt 660 720 gaacagacta ttctgtgtgg tatgctgcaa gcgggtagcc tgctgtgttt tgataaactg gttgaggagg gcactgaccc ggcgtatgcg gagaagctga tccaatttgg ctgggagact 780 attactgagg cgctgaagca aggtggtatt actctgatga tggatcgcct gagcaatcca 840 gctaagctgc gcgcgtacgc tctgagcgag caactgaagg aaattatggc accgctgttt 900 caaaaqcaca tqqatqatat cattaqcqqt qaqtttaqca qcqqcatqat qqctqattqq 960 1020 gcgaatgacg acaaaaagct gctgacttgg cgcgaggaaa ctggtaagac tgctttcgag

Ala Asn Asp Asp Lys Lys Leu Leu Thr Trp Arg Glu Glu Thr Gly Lys

84

-continued	
actgctccac aatacgaggg taagattggt gaacaagaat attttgacaa gggtgttctg	g 1080
atgatcgcta tggttaaggc tggtgtggag ctggcttttg agactatggt tgacagcggt	1140
attatcgagg aaagcgcgta ctacgagagc ctgcatgaac tgccactgat cgcgaatact	1200
attgegegea aaegeetgta tgagatgaat gttgtgatta gegaeaetge ggaatatgge	2 1260
aattacctgt ttagctatgc gtgcgttcca ctgctgaagc cattcatggc ggaactgcag	g 1320
ccaggtgatc tgggcaaggc gatcccagag ggtgctgttg acaatggtca gctgcgcgad	2 1380
gttaatgagg ctatccgttc tcacgctatc gaacaagttg gcaaaaagct gcgtggttac	c 1440
atgaccgaca tgaagcgcat cgcggtggct ggcctcgagc accaccacca ccaccactga	a 1500
<210> SEQ ID NO 15 <211> LENGTH: 499 <212> TYPE: PRT <213> ORGANISM: Escherichia coli	
<400> SEQUENCE: 15	
Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 1 5 10 15	
Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 20 25 30	
Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln 35 40 45	
Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser 50 55 60	
Tyr Ala Leu Arg Lys Glu Ala Ile Ala Glu Lys Arg Ala Ser Trp Arg	
65 70 75 80	
Lys Ala Thr Glu Asn Gly Phe Lys Val Gly Thr Tyr Glu Glu Leu Ile 85 90 95	
Pro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Gln His Ser 100 105 110	
Asp Val Val Arg Thr Val Gln Pro Leu Met Lys Asp Gly Ala Ala Leu 115 120 125	
Gly Tyr Ser His Gly Phe Asn Ile Val Glu Val Gly Glu Gln Ile Arg 130 135 140	
Lys Asp Ile Thr Val Val Met Val Ala Pro Lys Cys Pro Gly Thr Glu	
145 150 155 160	
Val Arg Glu Glu Tyr Lys Arg Gly Phe Gly Val Pro Thr Leu Ile Ala 165 170 175	
Val His Pro Glu Asn Asp Pro Lys Gly Glu Gly Met Ala Ile Ala Lys 180 185 190	
Ala Trp Ala Ala Ala Thr Gly Gly His Arg Ala Gly Val Leu Glu Ser 195 200 205	
Ser Phe Val Ala Glu Val Lys Ser Asp Leu Met Gly Glu Gln Thr Ile 210 215 220	
Leu Cys Gly Met Leu Gln Ala Gly Ser Leu Leu Cys Phe Asp Lys Leu 225 230 235 240	
Val Glu Gly Thr Asp Pro Ala Tyr Ala Glu Lys Leu Ile Gln Phe 245 250 255	
Gly Trp Glu Thr Ile Thr Glu Ala Leu Lys Gln Gly Gly Ile Thr Leu 260 265 270	
Met Met Asp Arg Leu Ser Asn Pro Ala Lys Leu Arg Ala Tyr Ala Leu	

-continued

-continued
275 280 285
Ser Glu Gln Leu Lys Glu Ile Met Ala Pro Leu Phe Gln Lys His Met 290 295 300
Asp Asp Ile Ile Ser Gly Glu Phe Ser Ser Gly Met Met Ala Asp Trp 305 310 315 320
Ala Asn Asp Asp Lys Lys Leu Thr Trp Arg Glu Glu Thr Gly Lys 325 330 335
Thr Ala Phe Glu Thr Ala Pro Gln Tyr Glu Gly Lys Ile Gly Glu Gln 340 345 350
Glu Tyr Phe Asp Lys Gly Val Leu Met Ile Ala Met Val Lys Ala Gly 355 360 365
Val Glu Leu Ala Phe Glu Thr Met Val Asp Ser Gly Ile Ile Glu Glu 370 375 380
Ser Ala Tyr Tyr Glu Ser Leu His Glu Leu Pro Leu Ile Ala Asn Thr 385 390 395 400
Ile Ala Arg Lys Arg Leu Tyr Glu Met Asn Val Val Ile Ser Asp Thr 405 410 415
Ala Glu Tyr Gly Asn Tyr Leu Phe Ser Tyr Ala Cys Val Pro Leu Leu 420 425 430
Lys Pro Phe Met Ala Glu Leu Gln Pro Gly Asp Leu Gly Lys Ala Ile 435 440 445
Pro Glu Gly Ala Val Asp Asn Gly Gln Leu Arg Asp Val Asn Glu Ala 450 455 460
Ile Arg Ser His Ala Ile Glu Gln Val Gly Lys Lys Leu Arg Gly Tyr465470475480
Met Thr Asp Met Lys Arg Ile Ala Val Ala Gly Leu Glu His His His 485 490 495
His His His
<210> SEQ ID NO 16 <211> LENGTH: 1494 <212> TYPE: DNA <213> ORGANISM: Escherichia coli
<400> SEQUENCE: 16
atggcgaatt atttcaacac tctgaacctg cgtcaacaac tggcgcaact gggtaagtgc 60
cgtttcatgg gtcgtgacga gtttgcggac ggtgcttctt atctgcaagg caagaaggtt 120
gttattgttg gttgcggtgc gcaaggcctg aatcaaggtc tgaatatgcg cgacagcggc 180
ctggacatta gctatgcgct gcgcaaggag gctatcgcgg aaaaacgtgc tgactggcgc 240
aaggctactg agaacggctt caaggttggc acctatgagg agctgattcc gcaagctgac 300
ctggttatca atctgacccc agataaacaa catagcgacg ttgttcgtac tgttcaaccg 360
ctgatgaagg atggtgctgc tctgggttat agccacggct ttaacattgt tgaggtaggt 420
gaacaaatte geaaggaeat taetgttgtt atggtggete eaaagtgtee gggtaetgag 480
gttegegagg aatataageg eggttttggt gtteeaacee tgategeggt geateeagag 540
aatgacccaa agggtgaggg tatggctatc gcgaaggcgt gggctgcggc gactggcggc 600
catcgcgctg gcgttctgga gagcagcttt gtggctgagg ttaagagcga tctgatgggt 660
gaacagacta ttetgtgtgg tatgetgeaa gegggtagee tgetgtgttt tgataaaetg 720
gttgaggagg gcactgaccc ggcgtatgcg gagaagctga tccaatttgg ctgggagact 780

attactgagg cgctgaagca aggtggtatt actctgatga tggatcgcct gagcaatcca 840 gctaagctgc gcgcgtacgc tctgagcgag caactgaagg aaattatggc accgctgttt 900 caaaaagcaca tggatgatat cattagcggt gagtttagca gcggcatgat ggctgattgg 960 gcgaatgacg acaaaaagct gctgacttgg cgcgaggaaa ctggtaagac tgctttcgag 1020 actgctccac aatacgaggg taagattggt gaacaagaat attttgacaa gggtgttctg 1080 atgatcgcta tggttaaggc tggtgtggag ctggcttttg agactatggt tgacagcggt 1140 attatcgagg aaagcgcgta ctacgagagc ctgcatgaac tgccactgat cgcgaatact 1200 attgcgcgca aacgcctgta tgagatgaat gttgtgatta gcgacactgc ggaatatggc 1260 aattacctgt ttagctatgc gtgcgttcca ctgctgaagc cattcatggc ggaactgcag 1320 ccaggtgatc tgggcaaggc gatcccagag ggtgctgttg acaatggtca gctgcgcgac 1380 gttaatgagg ctatccgttc tcacgctatc gaacaagttg gcaaaaagct gcgtggttac 1440 1494 atgaccgaca tgaagcgcat cgcggtggct ggccaccacc accaccacca ctaa <210> SEQ ID NO 17 <211> LENGTH: 499 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 17 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 10 5 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 20 25 30 Ser Tyr Leu Gl
n Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gl
n $_{35}$ 40 45 Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser 50 55 60 Tyr Ala Leu Arg Lys Glu Ala Ile Ala Glu Lys Arg Ala Asp Trp Arg 65 70 75 80 Lys Ala Thr Glu Asn Gly Phe Lys Val Gly Thr Tyr Glu Glu Leu Ile 85 90 95 Pro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Gln His Ser 100 105 110 Asp Val Val Arg Thr Val Gln Pro Leu Met Lys Asp Gly Ala Ala Leu 120 125 115 Gly Tyr Ser His Gly Phe Asn Ile Val Glu Val Gly Glu Gln Ile Arg 135 130 140 Lys Asp Ile Thr Val Val Met Val Ala Pro Lys Cys Pro Gly Thr Glu 145 150 155 160 Val Arg Glu Glu Tyr Lys Arg Gly Phe Gly Val Pro Thr Leu Ile Ala 170 165 175 Val His Pro Glu Asn Asp Pro Lys Gly Glu Gly Met Ala Ile Ala Lys 185 180 190 Ala Trp Ala Ala Ala Thr Gly Gly His Arg Ala Gly Val Leu Glu Ser 195 200 205 Ser Phe Val Ala Glu Val Lys Ser Asp Leu Met Gly Glu Gln Thr Ile 210 215 220 Leu Cys Gly Met Leu Gln Ala Gly Ser Leu Leu Cys Phe Asp Lys Leu

-continued

											-	con	tin	ued							
225					230					235					240						
Val	Glu	Glu	Gly	Thr 245	_	Pro	Ala	Tyr	Ala 250	Glu	Lya	Leu	Ile	Gln 255	Phe						
Gly	Trp	Glu	Thr 260	Ile	Thr	Glu	Ala	Leu 265	Lys	Gln	Gly	Gly	Ile 270	Thr	Leu						
Met	Met	Asp 275	Arg	Leu	Ser	Asn	Pro 280	Ala	Lys	Leu	Arg	Ala 285	Tyr	Ala	Leu						
Ser	Glu 290	Gln	Leu	Lys	Glu	Ile 295	Met	Ala	Pro	Leu	Phe 300	Gln	Lys	His	Met						
Asp 305	-	Ile	Ile	Ser	Gly 310	Glu	Phe	Ser	Ser	Gly 315	Met	Met	Ala	Asp	Trp 320						
		Asp	Asp	Lys 325	Lys	Leu	Leu	Thr	Trp 330		Glu	Glu	Thr	Gly 335							
Thr	Ala	Phe	Glu 340			Pro	Gln	Tyr 345		Gly	Гла	Ile	Gly 350	Glu	Gln						
Glu	Tyr	Phe 355		Lys	Gly	Val	Leu 360		Ile	Ala	Met	Val 365		Ala	Gly						
Val	Glu 370		Ala	Phe	Glu	Thr 375		Val	Asp	Ser	Gly 380		Ile	Glu	Glu						
	Ala	Tyr	Tyr	Glu	Ser 390		His	Glu	Leu	Pro 395		Ile	Ala	Asn							
385 Ile		Arg	Lys			Tyr	Glu	Met			Val	Ile	Ser	Asp	400 Thr						
Ala	Glu	Tyr		405 Asn	Tyr	Leu	Phe		410 Tyr	Ala	Суз	Val		415 Leu	Leu						
Гла	Pro		420 Met	Ala	Glu	Leu		425 Pro	Gly	Asp	Leu		430 Lys	Ala	Ile						
Pro	Glu	435 Gly	Ala	Val	Asp	Asn	440 Gly	Gln	Leu	Arg	Asp	445 Val	Asn	Glu	Ala						
Ile	450 Arq	Ser	His	Ala	Ile	455 Glu	Gln	Val	Gly	Lys	460 Lys	Leu	Arq	Gly	Tyr						
465	-				470				-	475	-			- His	480						
	His	-		485	5				490		204			495							
<21 <21 <21 <21	0> S 1> L 2> T 3> O	EQ II ENGTI YPE : RGAN: EQUEI	H: 1 DNA ISM:	476 Esci	heri	chia	col	i													
					ac t	ctga	acct	g cgi	tcaa	caac	tgg	cgca	act g	gggta	agtgc		60				
															aggtt	1	20				
gtt	attg	ttg 🤉	gttg	cggt	gc g	caag	geet	g aat	tcaa	ggtc	tga	atat	gcg (cgaca	agcggc	1	80				
ctg	gaca	tta 🤉	gcta	tgcg	ct g	cgca	agga	g gei	tato	gcgg	aaa	aacg	tgc 1	tgact	ggcgc	2	40				
aag	gcta	ctg a	agaa	cggc	tt c	aagg	ttgg	c aco	ctat	gagg	agci	tgat	tcc 🤉	gcaa	gctgac	3	00				
ctg	gtta	tca a	atct	gacc	cc a	gata	aaca	a cat	tage	gacg	ttgi	ttcg	tac 1	tgtt«	caaccg	3	60				
ctg	atga	agg a	atgg	tgct	gc t	ctgg	gttai	t ago	ccac	ggct	tta	acat	tgt 1	tgago	gtaggt		20				
gaa	caaa	ttc 🤉	gcaa	ggac.	at t	actg	ttgti	t ato	ggtg	gctc	caa	agtg	tcc o	gggta	actgag	4	80				

gttcgcgagg aatataagcg cggttttggt gttccaaccc tgatcgcggt gcatccagag	540
aatgacccaa agggtgaggg tatggctatc gcgaaggcgt gggctgcggc gactggcggc	600
categegetg gegttetgga gageagettt gtggetgagg ttaagagega tetgatgggt	660
gaacagacta ttctgtgtgg tatgctgcaa gcgggtagcc tgctgtgttt tgataaactg	720
gttgaggagg gcactgaccc ggcgtatgcg gagaagctga tccaatttgg ctgggagact	780
attactgagg cgctgaagca aggtggtatt actctgatga tggatcgcct gagcaatcca	840
gctaagctgc gcgcgtacgc tctgagcgag caactgaagg aaattatggc accgctgttt	900
caaaagcaca tggatgatat cattagcggt gagtttagca gcggcatgat ggctgattgg	960
gcgaatgacg acaaaaagct gctgacttgg cgcgaggaaa ctggtaagac tgctttcgag	1020
actgctccac aatacgaggg taagattggt gaacaagaat attttgacaa gggtgttctg	1080
atgatcgcta tggttaaggc tggtgtggag ctggcttttg agactatggt tgacagcggt	1140
attatcgagg aaagcgcgta ctacgagagc ctgcatgaac tgccactgat cgcgaatact	1200
attgcgcgca aacgcctgta tgagatgaat gttgtgatta gcgacactgc ggaatatggc	1260
aattacctgt ttagctatgc gtgcgttcca ctgctgaagc cattcatggc ggaactgcag	1320
ccaggtgatc tgggcaaggc gatcccagag ggtgctgttg acaatggtca gctgcgcgac	1380
gttaatgagg ctatccgttc tcacgctatc gaacaagttg gcaaaaagct gcgtggttac	1440
atgaccgaca tgaagcgcat cgcggtggct ggctaa	1476
<400> SEQUENCE: 19	
Met Ala Ash iyi phe Ash inr Leu Ash Leu Arg Gin Gin Leu Ala Gin	
Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 1 5 10 15	
1 5 10 15 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala	
1 5 10 15 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 20 25 30 Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln 45 40 45 Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser 5 5	
1 5 10 15 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 20 20 20 20 Ser Tyr Leu Gln Gly Lys Lys Val Val Val Ile Val Gly Cys Gly Ala Gln 35 30 20 Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser 50 55 60	
1 5 10 15 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 20 25 30 Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln 45 40 45 Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser 5 5	
1 5 10 15 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 20 20 20 20 Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln 30 25 20 20 20 Ser Tyr Leu Gln Gly Lys Lys Val Val Val Ile Val Gly Cys Gly Ala Gln 35 25 20 20 20 20 Gly Leu Asn Gln Gly Leu Asn Met Sp Met Arg Asp Ser Gly Leu Asp Ile Ser 50 55 20 20 20 20 Tyr Ala Leu Arg Lys Glu Ala Ile Ala Glu Lys Arg Ala Asp Trp Arg 20	
1 5 10 15 Leu Gly Lys Cys Arg Phe Met Gly Z5 Asp Glu Phe Ala Asp Gly Ala 30 30 Ser Tyr Leu Gln Gly Lys Lys Val Val Val Ile Val Gly Cys Gly Ala Gln 45 30 Ala Gln 45 Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser 50 55 Ala Glu Lys Arg Ala Asp Trp Arg 80 Tyr Ala Leu Arg Lys Glu Ala Ile Ala Glu Lys Arg Ala Asp Trp Arg 80 70 75 Lys Ala Thr Glu Asn Gly Phe Lys Val Gly Thr Tyr Glu Glu Leu Ile 10	
1 5 10 15 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 20 Asp Gly Lys Cys Gly Ala Gln Ala Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala 30 Asp Gly Ala Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln 45 Ser Tyr Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser 50 Asn Glu Cys Glu Ala Ile Ala Glu Lys Arg Asp Ile Ser 60 Asp Trp Arg 80 Tyr Ala Leu Arg Lys Glu Ala Ile Ala Glu Lys Arg Asp Clu Arg Asp Ser 61 Asp Trp Arg 80 Asp 11 Lys Ala Thr Glu Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Glu His Ser Asp Ser 61 Asp Ser 61	
1 5 10 15 Leu Gly Lys Cys Arg Phe Met Gly Z5 Asp Glu Phe Ala Asp Gly Ala 30 Asp Gly Ala 25 Ser Tyr Leu Gln Gly Lys Lys Lys Val Val Val Ile Val Gly Cys Gly Ala 30 Gly Ala Gln 45 Gly Ala Gln 45 Gly Leu Asn Gln Gly Leu Asn Met 55 Arg Asp Ser Gly Leu Asp Ile Ser 60 Asp Trp Arg 80 Tyr Ala Leu Arg Lys Glu Ala Ile Ala Glu Lys Asp Ser 61 Ala Asp Trp Arg 80 Lys Ala Thr Glu Asp Gly Phe Lys Val Gly Thr Tyr Glu Glu Leu Ile 95 Pro Gln Ala Asp Leu Val Ile Asn Leu 105 Asp Asp Cly Ala Ala Leu Asp Val Val Val Arg Thr Val Gln Pro Leu Met Lys Asp Gly Ala Ala Leu	
1 5 10 15 Leu Gly Lys 20° Arg Phe Met Gly 25° Arg Asp Glu Phe Ala 30° Gly Ala 30° Ala 25° Arg Asp Glu Phe Ala 45° Gly Ala 30° Ala 30° Gly Ala 30° Ser Tyr Leu 35° Gln Gly Lys Lys 40° Val Val Ile Val Gly Cys Gly Ala Gln 45° Gly Leu Asn Gln Gly Leu Asn Met 47° Asp Ser 61° Leu Asp Ile Ser 65° Ala Leu Arg Lys Glu Ala Ile Ala Glu Lys Arg Asp 75° Arg Ala Asp Trp 48° Tyr Ala Leu Arg Lys Glu Ala Ile Ala Glu 50° Trr 70° Ala Gly Trr 75° Arg Ala Asp Trp 48° Ala 55° Gly Ala 45° Gly Ala 45° Gly Ala 45° Lys Ala Thr Glu 45° Gly Phe Lys Val 61° Gly Thr Tyr Glu Glu Leu 55° Ala 50° Leu Val Ile Asn 105° Trr 70° Ala 50° Gln Ala 45° Gln 45° Pro Gln Ala Asp Leu Val Ile Asn 105° Trr 70° Ala 50° Ala 50° Cln 45° Ala 10° Asp Val 11° Asp Gly Phe Asn 10° Asp $10^$	
1 5 10 15 Leu Gly Lys 2_{20}° Arg Phe Met Gly 2_{25}° Arg Asp Glu Phe Ala 3_{30}° Gly Leu 3_{35}° Gly Ala Gln 4_{40}° Gly Asp See 3_{60}° Leu Asp ILe Ser 3_{50}° Gly Ala 3_{50}° Gly 3_{50}° Gly Ala 3_{50}° Gly Ala 3_{50}° Gly Ala 3_{50}° Gly Ala 3_{50}° Gly 3_{50}° Gly Ala 3_{50}° Gly Gly Gly Gly Gly Gly Ala 3_{50}° Gly	

-continued

Ala Trp Ser Phe 210 Leu Cys 225	195 Val		Ala	Thr			105							_
Ser Phe 210 Leu Cys 225	195 Val		Ala	Thr			185					190		
210 Leu Cys 225		Ala			Gly	Gly 200	His	Arg	Ala	Gly	Val 205	Leu	Glu	Ser
Leu Cys 225		1110	Glu	Val	Lys 215	Ser	Asp	Leu	Met	Gly 220	Glu	Gln	Thr	Ile
	Gly	Met	Leu	Gln 230		Gly	Ser	Leu	Leu 235		Phe	Asp	Lys	Leu 240
Val Glu	Glu	Gly	Thr		Pro	Ala	Tyr	Ala		Lys	Leu	Ile	Gln	
Gly Trp	Glu	Thr	245	Thr	Glu	۵la	Ι.011	250 Lvre	Gln	Glv	Gly	TIA	255 Thr	I.011
GIY IIP	Gru	260	116	1111	GIU	AIG	265	цур	UIII	Uly	GTY	270	1111	Deu
Met Met	Asp 275	Arg	Leu	Ser	Asn	Pro 280	Ala	Lys	Leu	Arg	Ala 285	Tyr	Ala	Leu
Ser Glu 290		Leu	Lys	Glu	Ile 295	Met	Ala	Pro	Leu	Phe 300	Gln	ГЛЗ	His	Met
Asp Asp 305	Ile	Ile	Ser	Gly 310	Glu	Phe	Ser	Ser	Gly 315	Met	Met	Ala	Asp	Trp 320
Ala Asn	Asp	Asp	Lys 325	Lys	Leu	Leu	Thr	Trp 330	Arg	Glu	Glu	Thr	Gly 335	Lys
Thr Ala	Phe			Ala	Pro	Gln			Gly	гла	Ile			Gln
Glu Tyr	Phe	340 Asp	Гла	Gly	Val	Leu	345 Met	Ile	Ala	Met	Val	350 Lys	Ala	Gly
	355					360					365			
Val Glu 370	ьец	ыа	гпе	GIU	375	met	vaı	чар	ser	380 380	тте	тте	ыц	ыц
Ser Ala 385	Tyr	Tyr	Glu	Ser 390	Leu	His	Glu	Leu	Pro 395	Leu	Ile	Ala	Asn	Thr 400
Ile Ala	Arg	Lys	Arg 405	Leu	Tyr	Glu	Met	Asn 410	Val	Val	Ile	Ser	Asp 415	Thr
Ala Glu	Tyr	Gly 420	Asn	Tyr	Leu	Phe	Ser 425	Tyr	Ala	Сүв	Val	Pro 430	Leu	Leu
Lys Pro		Met	Ala	Glu	Leu		Pro	Gly	Asp	Leu	-	Lys	Ala	Ile
Pro Glu	435 Gly	Ala	Val	Asp	Asn	440 Gly	Gln	Leu	Arg	Asp	445 Val	Asn	Glu	Ala
450 Ile Arg	-				455	-			-	460				
465				470				-	475	-		·	этү	480
Met Thr	Asp	Met	Lys 485	Arg	Ile	Ala	Val	Ala 490	Gly	Leu	Glu			

<pre>ctggttatca atctgaccc agataaagca catagegacg ttgttcgtac tgttcacac; ctgatgaagg atggtgtgt ctggggttat agccaegget ttaacattgt tgaggtagg facaaaatte geaaggacat tactgttgt atggtggete caaagtgtee gggtactgaag fgtegegagg aatataageg eggttttggt gttecaaece tgategegg geategeage fatgatgaagg gattgggg tatggetate gegaaggetg gggetgeeg gategegge faceggetg gggttetgg gageagettt gtggetgagg ttaagaegat tetgatggg fgtaggagg geategaeee ggegtateg gagaagetg atceaattgg etgggagaet fataetgagg egetgaagea aggtggatat acteatga tggategea degggagaet gegaagaea tggatgat cattagegg gagatgga tecaattgg etgggagaet gegaagaea tggatgat cattagegg gagatgga tecgatage gageaatee gegaagaea tggatgat cattagegg gagatga gaattagge accegetgtt gegaagaea tggatgat cattagegg gagtagea tggatagea tggttagg gegaagaea tggatgat cattagegg gagtagea etggtaagae tggttage gegaatgaeg acaaaaaget getgattgg egegagaaa etggtaagae tggttegg attactgagg aaageeggt atggatgga etggetttg gaacaagae tgettee attacegag aaageeggt aggatgga tggetgtga etgeettg gagaagee attacegag aaageeggt aggatgga etggetttg agaacatag tgeo attacegag aaageeggt atgagatga tggtgtgaa tgecaatgg tggaadee attacegag aaageeggt atgagatga getgetgtg acaatgge gagaatee attacegag aaageeggt atgagatga getgetgtg acaatgge gagaatee attacegag aaageegga etgeeggag getgetgt geaaaaget geeggaatae attacegag taceetga ggegetget gacaaaget geeggaat attacegag aaageeggat eegeggtget geta attacetg ttagetateg tgegtteea etgegaage tagetgeega attacetgt tagetateg tgegtteea tegaagaet geeggaat attace see the see tere attaces atgaagee tegeggtget geta *210 SEQ ID NO 21 *211 SENTH: *88 *212 SENTH *81 *213 OKGMIISH: Eccherichia col1 *211 SENTH: *81 *213 OKGMIISH: Eccherichia col1 *211 SENTH: *81 *213 CKGMIISH: Eccherichia col1 *213 SCGUNISH: Eccherichia col1 *214 See The *6 *2 fy Ala Ann fun Gly Leu Ann Met Arg Aep Ser Gly Leu App Ila Sen *6 *7 fy Ala Leu Arg Lyo Glu Ala Ile Ala Gly Thr Yr Glu Glu Leu Ile *5 Fro Gln Ala App Leu Val Ile Ann Leu Thr Pro App Lys Ala Hin Sen *6 *7 *7 *7 *7 *7 *7 *7 *7 *7 *7 *7 *7 *7</pre>	ctgatgaagg atggtgctgc tctgggttat agccacggct ttaacattgt tgaggtaggt gaacaaattc gcaaggacat tactgttgtt atggtggctc caaagtgtcc gggtactgag gttcgcgagg aatataagcg cggttttggt gttccaaccc tgatcgcggt gcatccagag aatgacccaa agggtgaggg tatggctatc gcgaaggcgt gggctgcggc gactggcggc catcgcgctg gcgttctgga gagcagcttt gtggctgagg ttaagagcga tctgatgggt gaacagacta ttctgtgtgg tatgctgcaa gcgggtagcc tgctgtgttt tgataaactg gttgaggagg gcactgaccc ggcgtatgcg gagaagctga tccaatttgg ctgggagact attactgagg cgctgaagca aggtggtatt actctgatga tggatcgcct gagcaatcca gctaagctgc gcgcgtacgc tctgagcgag caactgaagg aaattatggc accgctgttt caaaagcaca tggatgatat cattagcggt gagtttagca gcggcatgat ggctgattgg	420 480 540 600 660 720 780 840
gaacaattc gcaaggacat tactgttgtt atggtggct caagggtc ggattgga gattagcaattc gcaaggacat tactgttgt atggtggct caaggtgtc ggdtgcgg gattaggag atgaccaa agggtgagg tatggctatc gcgaaggcg ggdtgcgg gattagggg 600 catcgccg gcgttctga gagcagctt gtggctgagg ttaagacgat ctgatgggf 600 gaacagacta ttctgtgg tatgctgcaa gcgggtgcc tgctgtgtt tgataactg 720 gttgaggagg gcactgacc ggcgtatgg gagaagcga tccaattgg ctggggaact 780 attactgagg cgctgaagca aggtggtat actctgatg tgatcgaacg gggaaacta gctaagctg cgcgtaagc tctgaggga gacagtga tccaattgg ctgggaaat gcaaagcac tggatgata cattaggg gagaagcg actcgatgg gacagcat g gcgaagtag cgacaaaagc gctgaatgg gacaagaa attatggc accgtgatg 900 caatagcgaa aaaaagc gctgatgg gaacaagaa atttgaaa cggtgttt 1000 atgatcgaa aaagggg taggtgga ctggcatga ggcgatat ggtgtgt 1140 attactgagg aaagggg tatggtgga ctggcttga gacaagat atttgacaa gggtgttcg 1020 actgccca aatacgagg taggtgga ctggcttga gaccagg ggaagtgg 1220 attactgag aaaggcgt ctacgagag ctgcatga ctgcaagat 1200 attactgag aaaggcgt ctggtggag ctggcttg agactagg tggaagcg 1260 aattaccgag aaaggcg gtccaagag gtgtgtgt acaatggt ggaagcggaa 1200 attactgag aaaggcg gacccaga ggtgtgtg gacaagat 1200 attactgag aaaggcg acccagag ggtgctgt gacaaaggt ggtgggaa 1210 regggcaa acgcctg taggagga ggtcgaa ctgcagaac 200 attactgag ctacggtag ggtcgtgg ggtaga 200 gtaatgagg ctaccgtc tcagetat gaacaagtt gcaaaagt ggtgggaa 1210 regg pro No 21 2212 TPE PRT 2213) ORGANISM: Escherichia coli 2400> SEQUENCE: 21 Met Ala Asn Tyr Phe Ann Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 1 1 5 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala Gln 30 Ser Tyr Leu Gln Gly Lys Lys Val Val 11e Val Gly Cys Gly Ala Gln 50 Gys Ala Thr Glu Asn Gly Phe Lys Val Cly Thr Tyr Glu Glu Leu 11e 85 Pro Gln Ala Asp Leu Val 11e Asn Leu Mr Pro Asp Lays Ala Ser Trp Arg 65 Pro Gln Ala Asp Leu Val 11e Asn Leu Mr Pro Asp Lays Ala Ser Trp Arg 90 Lys Ala Thr Glu Asn Gly Phe Lys Val Cly Thr Tyr Glu Glu Leu 11e 85 Pro Gln Ala Asp Leu Val 11e Asn Leu Mr Pro Asp Cly Ala Ala Leu 100 Asp Val Val Arg Thr Val Gln Pro Lys Val Cly	gaacaaattc gcaaggacat tactgttgtt atggtggctc caaagtgtcc gggtactgag gttcgcgagg aatataagcg cggttttggt gttccaaccc tgatcgcggt gcatccagag aatgacccaa agggtgaggg tatggctatc gcgaaggcgt gggctgcggc gactggcggc catcgcgctg gcgttctgga gagcagctt gtggctgagg ttaagagcga tctgatgggt gaacagacta ttctgtgtgg tatgctgcaa gcgggtagcc tgctgtgttt tgataaactg gttgaggagg gcactgaccc ggcgtatgcg gagaagctga tccaatttgg ctgggagact attactgagg cgctgaagca aggtggtatt actctgatga tggatcgcct gagcaatcca gctaagctgc gcgcgtacgc tctgagcgag caactgaagg aaattatggc accgctgttt caaaagcaca tggatgatat cattagcggt gagtttagca gcggcatgat ggctgattgg	480 540 600 660 720 780 840
gttegegagg aatataageg eggtttiggt gttecaacee tgategegg gaetgaegg 540 aatgaecea agggtgagg tatggetate gegaaggeg ggegtegge gaetggegge 600 categegetg gegttetgg gaeagettt gtggetgagg tatagaegga tetgatgggt 660 gaacagaeta ttetgtgtgg tatgetgeaa gegggagee tgetgtgtt tgataaaetg 720 gttgaggagg geaetgaece ggegtatgeg gagaagetga tecaattgg etggggaat 780 attaetgagg egetgaagea aggtggat a actetgatg tgetgetgtt tgataaaetg 720 getgaggagg geaetgaece ggegtatgeg gagaagetga tecaattgg etggggaat 780 attaetgagg egetgaagea aggtggat a actetgatg tgeaegeet gageaateea 840 getaagetge gegegtaege tetgagegg caaetgaag aaattaegg aceeetgat 900 caaaageaea tggatgat eattagegg gagaagetga tegatagea eeegetgt 900 caaaageaea tggatgat eattagegg tgagetgaga actggtaagae tgetgategg 960 gegaatgaeg acaaaaaget getgaettg egegagaa etggtaagea tgetgateg 1020 actgeteeea ataegagg taagattggt gaacaagaat atttegaea gggtgtetg 1080 atgategeta tggtaage tggtgtgga etggettug agaetatggt tgaeaegegt 1140 attaeegagg aaaeegegta etaegagae etgeetgaae tgeeetgat eeggaataet 1200 attgegegea aaegeetgt tgagatgaat gttgtgatt gegaeaetge gaaataege 1260 aattaeetg ttagetatge gtgegteea etgeetgaae tgeeetgaa etgeeetgaa 1320 ceaggtgate tgggeaage gateeeagag egteetgage cateeatgge gaaatege 1260 aattaeetg ttagetatge gtegetteea etgetgaae tgeeatgee gaaataege 1260 aattaeetgt ttagetatge gtegetteea etgetgaae tgeedgege 1330 gttaatgagg etateegte teaegagag ggteetgt acaatggte gegaetgeeg 1320 ceaggtgate tgggeaage at egeggtgget ggetaa 1440 atgaeegaea tgaageegae tegegtgget ggetaa 1476 c210> SEQ ID NO 21 c213> OREANISM: Ebeeherichia coli c400> SEQUENCE: 21 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 15 Leu Gln Luy Cyo Arg Phe Met Gly Arg Apg Glu Phe Ala Apg Gly Ala 30 Ser Tyr Leu Gln Gly Lys Lys Val Val The Val Gly Cyo Gly Ala Gln 45 Gly Leu Asn Gln Gly Lys Lys Val Val The Val Gly Cyo Gly Ala Gln 45 Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp The Ser 60 Tyr Ala Leu Arg Lys Glu Ala Ile Ala Glu Lys Arg Ala Ser Trp Arg 85 Fo Gln Ala Apg Leu Val Ile Asn Leu Thr Pro Asp Lys Ala His Ser 100 Lys Al	gttcgcgagg aatataagcg cggtttggt gttccaaccc tgatcgcggt gcatccagag aatgacccaa agggtgaggg tatggctatc gcgaaggcgt gggctgcggc gactggcggc catcgcgctg gcgttctgga gagcagctt gtggctgagg ttaagagcga tctgatgggt gaacagacta ttctgtgtgg tatgctgcaa gcgggtagcc tgctgtgtt tgataaactg gttgaggagg gcactgaccc ggcgtatgcg gagaagctga tccaatttgg ctgggagact attactgagg cgctgaagca aggtggtatt actctgatga tggatcgcct gagcaatcca gctaagctgc gcgcgtacgc tctgagcgag caactgaagg aaattatggc accgctgttt caaaagcaca tggatgatat cattagcggt gagttagca gcggcatgat gcgcgtattgg	540 600 660 720 780 840
atgacccaa agggtaggg tatggctatc gcgaaggeg gggtcggg gactgcgg datggggd datggtagg ggacggtt gggcgggg tatggcgag ggggggg tatggtggag tagggggg tatggtggg tatggtggg gggggggg	aatgacccaa agggtgaggg tatggctatc gcgaaggcgt gggctgcggc gactggcggc catcgcgctg gcgttctgga gagcagcttt gtggctgagg ttaagagcga tctgatgggt gaacagacta ttctgtgtgg tatgctgcaa gcgggtagcc tgctgtgtt tgataaactg gttgaggagg gcactgaccc ggcgtatgcg gagaagctga tccaatttgg ctgggagact attactgagg cgctgaagca aggtggtatt actctgatga tggatcgcct gagcaatcca gctaagctgc gcgcgtacgc tctgagcgag caactgaagg aaattatggc accgctgttt caaaagcaca tggatgatat cattagcggt gagtttagca gcggcatgat ggctgattgg	600 660 720 780 840
categeedig gegittetigga gageageetti giggergaggi tiaagaagea tetigatiggi faa gaacagacta tieteigiggi tatgergeaa gegiggagee tigeigigtit tigataaaeti 720 gittigaggaggi geaetiggaee aggitgigtat aetetigatig tiggateeeti gageaataee attaetigage gegegtaagee taggegga caaetigaag aaattatigge aeegigtit 900 caaaageaea tiggatgat a cattageegi gagttagea gegegaagee tiggatgag aeatatagee aeegittig 990 gegaatigae aeaaaaaget getigaetig eeegiagaaa etiggtaagae tigetteegi 1020 aetigaeee aaaaagee tiggatgag eeegittig gageaagaa etiggtaagae tigetteegi 1020 aetigaeee aaaagee tiggitgigga eegittig aagaetaget gedittegi 1020 aetigaeee aaaaagee tiggitgigga eegiettig agaeeaagaa attitigaeaa giggittie 1140 attaeegigg aaaaegeeetia eegittig giggitgiga eegiettig agaeeaagee tigeegaatae 1200 attaeegig aaageeegia etaeegigae eegietiga eegittig aeaatagee gigaataee 1220 ceaggitgate tiggeeaage gigeettee eegietig geaaaaagee gegeataee 1220 eeagitgate tiggeeaage gateeeagig gigteegit gaeaaagee ageetgeegie 1220 eeagitgate tiggeeaagee gateeeagi gigteegit gaeaaagee gegegeaea 1220 eeagitgate tiggeeaagee gaeeeagi gigtee geaaaaagee gedeegie 2120 eeagitgate tiggeeaagee gaeeeagi gigtee geaaaaagee gedeegie 2120 eeagitgate tiggeeaagee gaeeeagi gigtee geaaaaagee gedeegie 2120 eeagitgate tiggeeaagee geeegie geeegie geaaaaagee geeegie 2120 eeagitgaee tiggeegie geegie geeegie geeegie 2120 eeagitgaee eeesei geeegie geeegie geeegie geeegie 2120 eeagitgaee eeesei geeegie geeegi	catcgcgctg gcgttctgga gagcagcttt gtggctgagg ttaagagcga tctgatgggt gaacagacta ttctgtgtgg tatgctgcaa gcgggtagce tgctgtgtt tgataaactg gttgaggagg gcactgacce ggcgtatgcg gagaagetga tccaatttgg etgggagaet attactgagg egetgaagea aggtggtatt actetgatga tggategeet gageaateca getaagetge gegegtaege tetgagegag eaaetgaagg aaattatgge acegetgtt caaaageaca tggatgatat eattagegg gagttagea geggeatgat geetgattgg	660 720 780 840
gaacagacta ttctgtgg tatgctgcaa gcggtagcc tgctgtgttt tgataaactg 720 gttgaggag gcactgaccc ggcgtatgcg gagaagctga tccaatttgg ctgggagat 780 attactgagg cgctgaagca aggtggtatt actctgatga tggatcgcct gagcaatcca 840 gctaagctgc gcgcgtacgc tctgagcgag caactgaagg aaattatgge accgctgttt 900 caaaagcaca tggatgata cattagcgg gagttagca gcggcatga ggctgatgg 960 gcgaatgacg acaaaaagct gctgacttgg cgcagagaa ctggtaagac tgcttcgag 1020 actgctccac aatacgaggg taagattgg gaacaagaa attttgaca gggtgttcg 1080 atgatcgcta tggttaagc tggtgtggag ctggctttg agactaggt gactagaggt 1140 attactgagg aaagcggta ctacgagagc ctgcatgaa tgccactgat cgcgaatact 1200 attgctgca aggccgta tggtgtggag ctggctttg agactaggt ggaatatgg 1260 attacctgt ttagctatg tggtgtgcac ctgctgaagc cattcatgge ggaatatgg 1260 attacctgt ttagctatg tggtgtgcg ggtgtgtg gactagac tgccactgat cgcgaatact 1200 attgcgcgca aacgcctgt tgagatgat gttgtgatta gcgacactge ggaatatgg 1260 attacctgt ttagctatg tggtgtcca ctgctgaagc cattcatgge ggaactgcag 1320 ccaggtgatc tgggcaagge gatcccagag ggtgctgt acaatggtca gctggcgac 1380 gttaatgagg ctatccgtc tcacgctat gaacaagttg gcaaaaagct gcgtggtac 1440 atgaccgaca tgaagcgcat cgcggtggt ggcta 1440 atgaccgaca tgaagcgcat cgcggtggt ggcta 1440 atgaccgaca tgaagcgcat cgcggtggt ggct ggc	gaacagacta ttctgtgtgg tatgctgcaa gcgggtagcc tgctgtgttt tgataaactg gttgaggagg gcactgaccc ggcgtatgcg gagaagctga tccaatttgg ctgggagact attactgagg cgctgaagca aggtggtatt actctgatga tggatcgcct gagcaatcca gctaagctgc gcgcgtacgc tctgagcgag caactgaagg aaattatggc accgctgttt caaaagcaca tggatgatat cattagcggt gagtttagca gcggcatgat ggctgattgg	720 780 840
gttgaggagg gcactgaccc gcgtatgcg gagaagctga tccaattgg ctgggagact780attactgagg cgctgaagca aggtggtatt actctgatga tggatcgcct gagcaatcca840gctaagctgc gcggtacgc tctgagcgag caactgaagg aaattatgge accggtgtt900caaaagcaca tggatgata cattagcgt gagtttagca gcggcatga ggctgattgg960gcgaatgacg acaaaaagct gctgactgg cgcgaggaa ctggtaagac tgcttccgg1020actgctccac aatacgagg taagattgg gaacaagaa atttggcaa gggtgttcg1080attactgagg aaagcggta ctacgagagc ctgcatgaa tgccactga gggatatgg1140attactgagg aaagcgcgt atagatgg tgggtggag ctggctttg agactatgg tgacagcgg1200attgegegca aacgcctga tgggtggag gtgctgta gagcactge ggaatatg1200attactgagg aaagcgcgta ctacgagagc ctgcatgaac tgccactga tgcgagac1320caagtgact tgggcaagg gtgcgttca ctgctgaag cattcatgg ggaactgag1320caagtgact tgggcaagg gtgcggtg ggctggt gacaaaagct gctggtgac1440atgaccgac tgagcgaa cgcggtggc ggctaa1440atgaccgac tgagcaat gcggtggt ggcta ggctaa1440atgaccgaca tgaagcgat cgcggtgg ggctggt ggctaa1440atgaccgaca tgaagcat gcggtggt ggct ggctaa1440atgaccgaca tgaagcat gcggtgg ggctggt ggc1440atgaccgaca tgaagcaag ggtgctgt gacaaggt gctgt gacaaaget gcgtggta1440atgaccgaca tgaagcac gcggtgg ggctggt ggc1410c11> Ebwolff. HP15c210> SEQUENCE: 211Met Ala Ann Tyr Phe Ann Thr Leu Ann Leu Arg Gln Gln Leu Ala Gln 2015c11> Leu Gln Gly Leu Asn Gly Glu Ala 11e Ala Glu Lys Arg Ala Ser Trp Arg 8015f5 <td< td=""><td>gttgaggagg gcactgaccc ggcgtatgcg gagaagctga tccaatttgg ctgggagact attactgagg cgctgaagca aggtggtatt actctgatga tggatcgcct gagcaatcca gctaagctgc gcgcgtacgc tctgagcgag caactgaagg aaattatggc accgctgttt caaaagcaca tggatgatat cattagcggt gagtttagca gcggcatgat ggctgattgg</td><td>780 840</td></td<>	gttgaggagg gcactgaccc ggcgtatgcg gagaagctga tccaatttgg ctgggagact attactgagg cgctgaagca aggtggtatt actctgatga tggatcgcct gagcaatcca gctaagctgc gcgcgtacgc tctgagcgag caactgaagg aaattatggc accgctgttt caaaagcaca tggatgatat cattagcggt gagtttagca gcggcatgat ggctgattgg	780 840
attactgagg cgctgaagca aggtggtatt actctgatga tggatcgcct gagcaatcca gctaagctgc gegegtacge tetgaaggag caactgaagg aaattatgge accegtgttt gcgaatgacg acaaaaaget getgacttgg egegagaaa etggtaagae tggetgattgg actgetecae aatacgaggg taagattggt gaacaagaat attttgacaa gggtgtteg 1000 atgategeta tggttaagge tggtgtggg etggetttg agactatggt tgacagegg 1140 attacegagg aaageeggta etaegagage etgetattg agacatggt ggaatage 1200 attgegegea aaegeegta tgagatgag tggtgtgat gegeacatge ggaatage 1200 attgegegea aaegeegta tgagatgag gtgetgtg acaatggt eggaatage 1200 attgegegea aaegeegta tgagatgag gtgetgtg acaatgge ggaattge 1200 attgegegea aeegeetgt tgagatgag ggteetgt acaatgge ggaattge 1200 attgegegea aeegeetge tecaegta ggateggt gacaaaget gegaatatge 1200 attgedegea tgggeaage gateceagag ggteetgt acaatggt ageeggeat 1200 1210 SEQ ID NO 21 2110 SEQ ID NO 21 2110 LENGTH: 498 2212 VPE: PET 2113 ORGANISM: Becherichia coli 2100 SEQUENCE: 21 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 15 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 20 Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln 40 140 Ago Cys Arg Phe Met Gly Arg Asp Ser Gly Leu Asp Ile Ser 50 Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser 50 Tyr Ala Leu Arg Lys Glu Ala Ile Ala Glu Lys Arg Ala Ser Trp Arg 70 70 75 70 7	attactgagg cgctgaagca aggtggtatt actctgatga tggatcgcct gagcaatcca gctaagctgc gcgcgtacgc tctgagcgag caactgaagg aaattatggc accgctgttt caaaagcaca tggatgatat cattagcggt gagtttagca gcggcatgat ggctgattgg	840
gctaagctgc gcgcgtacgc tctgagcgag caactgaagg aaattatggc accgctgttt900caaaagcaca tggatgatat cattagcggt gagtttagca gcggcatgat ggctgattgg960gcgaatgacg acaaaaagct gctgacttgg cgcgaggaaa ctggtaagac tgcttccgag1020actgctccac aatacgaggg taagattggt gaacaagaat attttgacaa gggtgttcg1080atgatcgcta tggttaaggc tggtgtggag ctggctttg agactatggt tgacagcggt1140attatcgagg aaagcgcgta ctacgagagc ctgcatgaac tgccactga cgcgaatact1200attgcgcqca aacgcctgta tgagatgag tgtgtgata gcgacactgc ggaatatggc1260attacctgt ttagctatgc gtgcgttcca ctgctgaagc cattcatggc ggaatatggc1260attacctgt ttagctatgc gtgcgttcca ctgctgaagc cattcatggc ggaatatggc1320ccaggtgatc tgggcaaggc gatcccagag ggtgctgtg acaatggtca gctgcgcgac1380gttaatgagg ctatccgttc tcacgctatc gaacaagtt gcaaaagct gcgtggttc1440atgaccgaca tgaagcgcat cgcggtggct ggctaa1440atgaccgaca tgaagcgcat cgcgtggtg ggctaa1440atgaccgaca tgaagcgcat cgcgtggtg ggctag1440atgaccgaca tgaagcgcat cgcgtggtg ggctag1440atgaccgaca tgaagcgcat cgcgtggtg ggctag1440atgaccgaca tgaagcgcat cgcgtgtgg ggctggt1440atgaccgaca tgaagcgcat cgcgtgtggt ggctg1440atgaccgaca tgaagcgcat cgcgtgtggt1440atgaccgaca tgaagcgcat cgcgtgtggt ggctgtggt2120TYpe : PET<	gctaagctgc gcgcgtacgc tctgagcgag caactgaagg aaattatggc accgctgttt caaaagcaca tggatgatat cattagcggt gagtttagca gcggcatgat ggctgattgg	
caaaagcaca tggatgatat cattagcggt gagtttagca gcggcatgat ggctgattgg 960 gcgaatgacg acaaaaagct gctgacttgg cgcgaggaaa ctggtaagac tgcttccgag 1020 actgctccac aatacgaggg taagattggt gaacaagaat attttgacaa gggtgttcg 1080 atgatcgcta tggttaaggc tggtgtggag ctggctttg agactatggt tgacagcggt 1140 attatcgagg aaagcgcgta ctacgagagc ctgcatgaac tgccactgat cgcgaatact 1200 attgcgcgca aacgcctgta tgagatgaat gttgtgatta gcgacactgc ggaatatggc 1260 aattacctgt ttagctatgc gtgcgttcca ctgctgaagc cattcatggc ggaactgcag 1320 ccaggtgatc tgggcaaggc gatcccagag ggtgctgttg acaatggtc gggaactgcag 1380 gttaatgagg ctatccgttc tcacgctatc gaacaagttg gcaaaaagct gcgtggttac 1440 atgaccgaca tgaagcgcat cgcggtggct ggctaa 1476 <211> LENGTH: 498 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 21 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 1 5 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 20 Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln 40 40 Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln 40 fy Ala Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser 50 77 Ala Leu Arg Lys Glu Ala Ile Ala Glu Lys Arg Ala Ser Trp Arg 65 Fro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Ala His Ser 100 Lys Ala Thr Glu Asn Gly Phe Lys Val Gly Thr Tyr Glu Glu Leu Ile 85 Pro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Ala His Ser 100 Asp Val Val Arg Thr Val Gln Pro Leu Met Lys Asp Gly Ala Ala Leu 115 120 120 120	caaaagcaca tggatgatat cattagcggt gagtttagca gcggcatgat ggctgattgg	
gcgaatgacg acaaaaaqct gctgacttgg cgcgaggaaa ctggtaagac tgcttccgag 1020 actgctccac aatacgaggg taagattggt gaacaagaat atttgacaa gggtgttcg 1080 atgatcgcta tggttaaggc tggtgtggag ctgctttg agactatggt tgacagcggt 1140 attaccgagg aaagcgcgta ctacgagagc ctgcatgaac tgccactgat cgcgaatact 1200 attgcgcgca aacgcctgta tgagatgaat gttgtgatta gcgacactgc ggaataggc 1260 aattacctgt ttagctatgc gtgcgttcca ctgctgaagc cattcatggc ggaataggc 1320 ccaggtgatc tgggcaaggc gatcccagag ggtgctgttg acaatggtc ggaactgcag 1320 gttaatgagg ctaccgtte tcacgcgag ggtgctgttg acaatggtca gctgcgcgac 1380 gttaatgagg ctaccgtte tcacgctate gaacaagttg gcaaaaagct gcgtggttac 1440 atgaccgaca tgaagcgcat cgcggtggct ggctaa 1476 <210> SEQ ID NO 21 <211> LENGTH: 498 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 21 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 15 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 20 Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln 45 Gly Leu Asn Gln Gly Luys Lys Val Val Ile Val Gly Cys Gly Ala Gln 45 50 55 70 75 $80Lys Ala Thr Glu Asn Gly Phe Lys Val Gly Thr Tyr Glu Glu Leu Ile 95Pro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Ala His Ser 10010$ 10 10 10 10 10 10 10		900
actgctccac aatacgaggg taagattggt gaacaagaat atttgacaa gggtgttctg 1080 atgatcgcta tggttaaggc tggtgtggag ctggctttg agactatggt tgacagcggt 1140 attatcgagg aaagcgcgta ctacgagagc ctgcatgaac tgccactgat cgcgaatact 1200 attgcgcgca aacgcctgta tgagatgaat gttgtgatta gcgacactgc ggaatatggc 1260 aattacctgt ttagctatgc gtgcgtcca ctgctgaagc cattcatggc ggaactgcag 1320 ccaggtgatc tgggcaaggc gatcccagag ggtgctgttg acaatggtca gctgcgcgac 1380 gttaatgagg ctatccgttc tcacgctatc gaacaagttg gcaaaaagct gcgtggttac 1440 atgaccgaca tgaagcgcat cgcggtggct ggctaa 1476 <210 > SEQ ID NO 21 <211 > LENGTH: 498 <212 > TYPE: PRT <213 > ORGANISM: Escherichia coli $<400 > SEQUENCE: 21Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 15Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 20Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln 45Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser 5060$ Tyr Ala Leu Arg Lys Glu Ala Ile Ala Glu Lys Arg Ala Ser Trp Arg 65 Tyr Ala Leu Arg Lys Glu Ala Ile Ala Glu Lys Arg Ala Ser Trp Arg 80 Lys Ala Thr Glu Asn Gly Phe Lys Val Gly Thr Tyr Glu Glu Leu Ile 95 Pro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Ala His Ser 100 10 10 10 10 10 10 10 10	gcgaatgacg acaaaaagct gctgacttgg cgcgaggaaa ctggtaagac tgctttcgag 1	960
atgategeta tggttaagge tggtgtggag etggettttg agaetatggt tgacageggt 1140 attategagg aaagegegta etaegagage etgeatgaae tgeeaetga egegaataet 1200 attgegegea aaegeetgta tgagatgaat gttgtgatta gegacaetge ggaatatgge 1260 aattaeetgt ttagetatge gtgegtteea etgetgaage eatteatgge ggaaetgeag 1320 ceaggtgate tgggeaagge gateceagag ggtgetgttg acaatggtea getgegegae 1380 gttaatgagg etateegtte teaegetate gaaeaagttg geaaaaaget gegtggtae 1440 atgacegaea tgaagegeat egeggtgget ggetaa 1476 211> LENGTH: 498 212> TYPE: PRT 211> LENGTH: 498 212> TYPE: PRT 213> ORGANISM: Escherichia coli 400> SEQUENCE: 21 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 15 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 20 Ser Tyr Leu Gln Gly Lys Lys Val Val 11e Val Gly Cys Gly Ala Gln 40 Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser 50 55 Tyr Ala Leu Arg Lys Glu Ala 11e Ala Glu Lys Arg Ala Ser Trp Arg 80 Lys Ala Thr Glu Asn Gly Phe Lys Val Gly Thr Tyr Glu Glu Leu Ile 95 Pro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Ala His Ser 100 10		1020
attatcgagg aaagegegta ctacggagage etgeatgaae tgeeaetgat egegaataet 1200 attgegegea aaegeetgta tgagatgaat gttgtgatta geggacaetge ggaataege 1260 aattaeetgt ttagetatge gtgegtteea etgetgaage eatteatgge ggaaetgeeg 1320 ecaggtgate tgggeaagge gateeegag ggtgetgttg acaatggtea getgegegae 1380 gttaatgagg etateegtte teaegetate gaaeaagttg geaaaaaget gegtggttae 1440 atgaeegaea tgaagegeat egeggtgget ggetaa 1440 atgaeegaea tgaagegeat egeggtgget ggetaa 1440 e211> LENGTH: 498 e212> TYPE: PRT e213> ORGANISM: Escherichia coli <<400> SEQUENCE: 21 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 15 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 30 Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln 45 Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser 60 Tyr Ala Leu Arg Lys Glu Ala Ile Ala Glu Lys Arg Ala Ser Trp Arg 80 Lys Ala Thr Glu Asn Gly Phe Lys Val Gly Thr Tyr Glu Glu Leu Ile 95 Pro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Ala His Ser 100 100 Ilo 112 Ilo	actgeteeac aataegaggg taagattggt gaacaagaat attttgacaa gggtgttetg 1	1080
attgegegea aacgeetgta tgagatgaat gttgtgatta gegacatge ggaatatgge 1260 aattaeetgt ttagetatge gtgegtteea etgetgaage catteatgge ggaaetgeag 1320 ceaggtgate tgggeaagge gateeeagg ggtgetgtt aacatggtea getgegegae 1380 gttaatgagg etateegtte teaegetate gaaeaagttg geaaaaaget gegtggttae 1440 atgaeegaea tgaagegeat egeggtgget ggetaa 1476 <210 > SEQ ID NO 21 <211 > LENOTH + 498 <212 > TYPE = PRT <213 > ORGANISM : Escherichia coli $<400 > SEQUENCE : 21Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 15Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 20Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln 45Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser 50Tyr Ala Leu Arg Lys Glu Ala Ile Ala Glu Lys Arg Ala Ser Trp Arg 80Lys Ala Thr Glu Asn Gly Phe Lys Val Gly Thr Tyr Glu Glu Leu Ile 95Pro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Ala His Ser 100100$ 100	atgategeta tggttaagge tggtgtggag etggettttg agaetatggt tgaeageggt 1	1140
aattacctgt ttagctatge gtgcgttcca ctgctgaage cattcatgge ggaactgcag 1320 ccaggtgate tgggcaagge gateccagag ggtgetgttg acaatggtea getgegegae 1380 gttaatgagg etatecgtte teacgetate gaacaagttg gcaaaaaget gegtggttae 1440 atgacegaea tgaagegeat egegtgget ggetaa 1476 <210> SEQ ID NO 21 <211> LENGTH: 498 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 21 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 15 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 20 Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln 45 Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser 60 Tyr Ala Leu Arg Lys Glu Ala Ile Ala Glu Lys Arg Ala Ser Trp Arg 80 Lys Ala Thr Glu Asn Gly Phe Lys Val Gly Thr Tyr Glu Glu Leu Ile 95 Pro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Ala His Ser 100 10	attatcgagg aaagegegta etaegagage etgeatgaae tgeeaetgat egegaataet 1	1200
ccaggtgatc tgggcaaggc gatcccagag ggtgctgttg acaatggtca gctgcgcgac 1380 gttaatgagg ctatccgtte teacgetate gaacaagttg gcaaaaaget gegtggttae 1440 atgaccgaca tgaagegeat egeggtgget ggetaa 1476 <2210> SEQ ID NO 21 <211> LENGTH: 498 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 21 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 1 1 2 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 20 Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln 35 Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser 50 Tyr Ala Leu Arg Lys Glu Ala Ile Ala Glu Lys Arg Ala Ser Trp Arg 65 Tyr Ala Leu Arg Lys Glu Ala Ile Ala Glu Lys Arg Ala Ser Trp Arg 65 Pro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Ala His Ser 100 Asp Val Val Arg Thr Val Gln Pro Leu Met Lys Asp Gly Ala Ala Leu 115 120 120 125	attgcgcgca aacgcctgta tgagatgaat gttgtgatta gcgacactgc ggaatatggc 1	1260
gttaatgagg ctatccgtte teacgetate gaacaagttg geaaaaaget gegtggttae1440atgaecgaca tgaagegeat egegtgget ggetaa1476<210> SEQ ID NO 21 <211> LENGTH: 498 <212> TYPE: PRT <213> ORGANISM: Escherichia coli1476<400> SEQUENCE: 21Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 1015Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 2030Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln 4045Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser 6075Tyr Ala Leu Arg Lys Glu Ala Ile Ala Glu Lys Arg Ala Ser Trp Arg 8580Lys Ala Thr Glu Asn Gly Phe Lys Val Gly Thr Tyr Glu Glu Leu Ile 9590Pro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Ala His Ser 100110Asp Val Val Arg Thr Val Gln Pro Leu Met Lys Asp Gly Ala Ala Leu 115120	aattacctgt ttagctatgc gtgcgttcca ctgctgaagc cattcatggc ggaactgcag 1	1320
1476 210 > SEQ ID NO 21 213 > DEGMISMI: Escherichia coli 2400 > SEQUENCE: 21 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 140 Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 140 Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 140 Gly Leu Asn Gln Gly Lys Lys Val Val Ile Val Gly Crs Gly Ala Gln 141 Gly Leu Asn Gln Gly Leu Asp Met Arg Asp Asp Gly Leu Asp Ile Ser 142 Ala Thr Glu Asp Glu Ala Ile Ala Glu Lys Arg Asp Gly Ala Ser Trp Asg 143 Asp Val Ala Thr Glu Asp Gly Phe Lys Val Gly Thr Tyr Glu Glu Glu Leu Ile 144 Asp Val Yala Asp Thr Val Glu Pro Lys Wet Lys Asp Gly Ala Leu 145 Asp Val Yala Yang Thr Val Glu Pro Lys Wet Lys Asp Gly Ala La Leu	ccaggtgatc tgggcaaggc gatcccagag ggtgctgttg acaatggtca gctgcgcgac 1	1380
<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	gttaatgagg ctatccgttc tcacgctatc gaacaagttg gcaaaaagct gcgtggttac 1	1440
<pre><211> LENGTH: 498 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 21 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 1 1 5 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 20 Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln 35 Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser 50 Tyr Ala Leu Arg Lys Glu Ala Ile Ala Glu Lys Arg Ala Ser Trp Arg 65 Pro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Ala His Ser 10 Asp Val Val Arg Thr Val Gln Pro Leu Met Lys Asp Gly Ala Ala Leu 115</pre>	atgaccgaca tgaagcgcat cgcggtggct ggctaa 1	1476
1 5 10 15 Leu Gly Lys Cys Arg Arg Arg Arg Arg Slu Phe Ala Arg Gly Ala Ser Tyr Lgu Gly Gly Arg Arg Arg Alg Gly Alg Gly Alg Gly Lgu Arg Gly Lus Gly Lus Alg Gly Alg Gly Alg Alg Gly Alg Gly Lgu Arg Gly Lus Arg Met Alg Arg Alg Gly Lus Alg Gly Lgu Arg Gly Lus Arg Met Alg Ser Gly Lus Alg Gly Alg Gly Lus Arg Gly Lus Arg Met Alg Gly Lus Alg Ser Gly Ala Arg Lus Arg Lus Lus Alg Su Lus Su Su Su Su Su Su Su Gly Ala Arg Lus Lus Lus Lus Lus Su Lus Lus	<211> LENGTH: 498 <212> TYPE: PRT <213> ORGANISM: Escherichia coli	
LeuGlyLysCysArgPheMetGlyArgArgGluPheAlaAsgGlyAlaSerTyrLeuGlyGlyLysLysLysValIleValGlyGlyGlyGlyAlaGlnGlyLeuAsnGlyGlyMetAsgAsgSerGlyLeuAsgIleSerGlyAlaLeuAsgGlyLusAsgGlyAlaGlyAsgGlyLusSerGlyAlaLeuAsgGlyLusAsgGlyAlaGlyAsgGlyLusSerGlyAlaLeuAsgGlyPheLysAlaGlyThrSerTheSerGlyAlaAsgClyLusAlaGlyNeiSerGlySerSerSerGlyAlaAsgLeuSerLusSerGlyThrSerSerSerFroGlyAlaAsgLusSerLusSerSerSerSerSerFroSerSerSerSerSerSerSerSerSerSerSerFroSerSerSerSerSerSerSerSerSerSerSerAssValSerSerSerSerSerSerSerSerSerSer <td></td> <td></td>		
Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser Tyr Ala Leu Arg Lys Glu Ala Ile Ala Glu Lys Arg Asp Ser Trp Arg 65 Ala Leu Arg Lys Glu Ala Ile Ala Glu Lys Arg Ser Trp Arg 80 Lys Ala Thr Glu Asp Gly Phe Lys Val Gly Thr Tyr Glu Leu Ile 80 Lys Ala Thr Glu Asp Gly Thr Tyr Glu Glu Leu Ile 90 Thr Tyr Glu Lus Ile Ser 1lo 90 Ser 11	1 5 10 15	
35 40 45 Gl Leu Asn Gl Gl Asn Sen Sen Asn Asn Sen Sen Gl Sen Gl Leu Sen		
G1y Leu Asn G1y Leu Asn Met Asn Asn G1y Leu Asn I le Asn G1y Leu Asn Jus Ser G1y Leu Asn Jus Ser G1y Leu Asn Jus Ser G1y Leu Asn Ser G1y Leu Asn Ser G1y Ser Asn Ser Ser Ser Asn Ser	Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln	
505560TyrAlaLeuArgLysGluAlaIleAlaGluLysArgAlaSerTrpArg65AlaThrGluAsnGlyPheLysValGlyThrTyrGluGluLeuIleLysAlaThrGluAsnGlyPheLysValGlyThrTyrGluGluLeuIleProGlnAlaAspLeuValIleAsnLeuThrProAspLysAlaHisSerAspValValArgThrValGlnProLeuMetLysAspGlyAlaAlaLeu115115110120125125125125125125		
65707580Lys AlaThr Glu Asn Gly Phe Lys Val Gly Thr Tyr Glu Glu Leu Ile 85SoSoPro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Ala His Ser 100SoSoAsp Val Val Arg Thr Val Gln Pro Leu Met Lys Asp Gly Ala Ala Leu 120SoSo		
85 90 95 Pro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Ala His Ser 100 105 Asp Val Val Arg Thr Val Gln Pro Leu Met Lys Asp Gly Ala Ala Leu 115 120		
100105110Asp Val Val Arg Thr Val Gln Pro Leu Met Lys Asp Gly Ala Ala Leu115120125		
115 120 125		
	Gly Tyr Ser His Gly Phe Asn Ile Val Glu Val Gly Glu Gln Ile Arg 130 135 140	

											-	con	tin	led	
Lys 145	Asp	Ile	Thr	Val	Val 150	Met	Val	Ala	Pro	Lys 155	Суа	Pro	Gly	Thr	Glu 160
Val	Arg	Glu	Glu	Tyr 165	Lys	Arg	Gly	Phe	Gly 170	Val	Pro	Thr	Leu	Ile 175	Ala
Val	His	Pro	Glu 180	Asn	Asp	Pro	Гла	Gly 185	Glu	Gly	Met	Ala	Ile 190	Ala	Lys
Ala	Trp	Ala 195	Ala	Ala	Thr	Gly	Gly 200	His	Arg	Ala	Gly	Val 205	Leu	Glu	Ser
Ser	Phe 210		Ala	Glu	Val	Lys 215		Aab	Leu	Met	Gly 220		Gln	Thr	Ile
		Gly	Met	Leu	Gln		Gly	Ser	Leu			Phe	Asp	Lys	
225 Val	Glu	Glu	Gly	Thr	230 Asp	Pro	Ala	Tyr	Ala	235 Glu	Lys	Leu	Ile	Gln	240 Phe
Glv	Trn	Glu	Thr	245	Thr	Glu	۵la	I.e11	250 Lvg	Gln	Glv	Glv	TIA	255 Thr	I.e.1
-	-		260					265	-		-	-	270		
Met	Met	Asp 275	Arg	Leu	Ser	Asn	Pro 280	Ala	Lys	Leu	Arg	Ala 285	Tyr	Ala	Leu
Ser	Glu 290	Gln	Leu	Lys	Glu	Ile 295	Met	Ala	Pro	Leu	Phe 300	Gln	Lys	His	Met
Asp 305	Asp	Ile	Ile	Ser	Gly 310	Glu	Phe	Ser	Ser	Gly 315	Met	Met	Ala	Asp	Trp 320
Ala	Asn	Aab	Asp	Lys 325	Lys	Leu	Leu	Thr	Trp 330	Arg	Glu	Glu	Thr	Gly 335	Lys
Thr	Ala	Phe	Glu 340	Thr	Ala	Pro	Gln	Tyr 345	Glu	Gly	Lys	Ile	Gly 350	Glu	Gln
Glu	Tyr	Phe 355	Asp	Lys	Gly	Val	Leu 360	Met	Ile	Ala	Met	Val 365	Lys	Ala	Gly
Val			Ala	Phe	Glu			Val	Asp	Ser	-		Ile	Glu	Glu
Ser	370 Ala	Tyr	Tyr	Glu	Ser	375 Leu	His	Glu	Leu	Pro	380 Leu	Ile	Ala	Asn	Thr
385 Tle	Ala	Ara	Lvs	Ara	390 Leu	Tvr	Glu	Met	Asn	395 Val	Val	Tle	Ser	Asp	400 Thr
			•	405					410					415	
Ala	Glu	Tyr	Gly 420	Asn	Tyr	Leu	Phe	Ser 425	Tyr	Ala	Сүв	Val	Pro 430	Leu	Leu
Lys	Pro	Phe 435	Met	Ala	Glu	Leu	Gln 440	Pro	Gly	Asp	Leu	Gly 445	Lys	Ala	Ile
Pro	Glu 450	Gly	Ala	Val	Asp	Asn 455	Gly	Gln	Leu	Arg	Asp 460	Val	Asn	Glu	Ala
Ile 465	Arg	Ser	His	Ala	Ile 470	Glu	Gln	Val	Gly	Lys 475	Lys	Leu	Arg	Gly	Tyr 480
Met	Thr	Asp	Met	Lys 485	Arg	Ile	Ala	Val	Ala 490	Gly	Leu	Glu	His	His 495	His
His	His														

<210> SEQ ID NO 22 <211> LENGTH: 1500 <212> TYPE: DNA <213> ORGANISM: Escherichia coli

<400> SEQUENCE: 22

-continued

											-	con	ιm	uea	
Pro	Gln	Ala	Asp 100	Leu	Val	Ile	Asn	Leu 105	Thr	Pro	Asp	ГЛа	Val 110	His	Ser
Asp	Val	Val 115	Arg	Thr	Val	Gln	Pro 120	Leu	Met	LYa	Asp	Gly 125	Ala	Ala	Leu
Gly	Tyr 130	Ser	His	Gly	Phe	Asn 135		Val	Glu	Val	Gly 140	Glu	Gln	Ile	Arg
Lys 145	Asp	Ile	Thr	Val	Val 150		Val	Ala	Pro	Lys 155	-	Pro	Gly	Thr	Glu 160
Val	Arg	Glu	Glu	Tyr 165		Arg	Gly	Phe	Gly 170	Val	Pro	Thr	Leu	Ile 175	Ala
Val	His	Pro	Glu 180		Asp	Pro	Lys	Gly 185		Gly	Met	Ala	Ile 190	Ala	Lys
Ala	Trp	Ala 195	Ala	Ala	Thr	Gly	Gly 200	His	Arg	Ala	Gly	Val 205	Leu	Glu	Ser
Ser	Phe 210	Val	Ala	Glu	Val	Lys 215	Ser	Asp	Leu	Met	Gly 220	Glu	Gln	Thr	Ile
Leu 225		Gly	Met	Leu	Gln 230		Gly	Ser	Leu	Leu 235	Cys	Phe	Asp	Lys	Leu 240
	Glu	Glu	Gly	Thr 245		Pro	Ala	Tyr	Ala 250			Leu	Ile	Gln 255	
Gly	Trp	Glu	Thr 260		Thr	Glu	Ala	Leu 265		Gln	Gly	Gly	Ile 270		Leu
Met	Met	Asp 275	Arg	Leu	Ser	Asn		Ala	Lys	Leu	Arg			Ala	Leu
Ser				Lys	Glu		280 Met	Ala	Pro	Leu		285 Gln	Lys	His	Met
	290 Asp	Ile	Ile	Ser	-		Phe	Ser	Ser		300 Met	Met	Ala	Asp	-
305 Ala	Asn	Asp	Asp				Leu	Thr	_	315 Arg	Glu	Glu	Thr	-	320 Lys
Thr	Ala	Phe		325 Thr		Pro	Gln	Tyr	330 Glu	Gly	Lys	Ile	-	335 Glu	Gln
Glu	Tyr	Phe	340 Asp	Lys	Gly	Val	Leu	345 Met	Ile	Ala	Met	Val	350 Lys	Ala	Gly
	-	355		-	-		360					365	-		-
	370					375		Glu	-		380				
385					390			Met		395					400
				405					410					415	
			420					Ser 425					430		
-		435					440		-	-		445	-		
Pro	Glu 450		Ala	Val	Asp	Asn 455		Gln	Leu	Arg	Asp 460	Val	Asn	Glu	Ala
Ile 465	Arg	Ser	His	Ala	Ile 470		Gln	Val	Gly	Lys 475		Leu	Arg	Gly	Tyr 480
Met	Thr	Asp	Met	Lys 485	-	Ile	Ala	Val	Ala 490	Gly	Leu	Glu	His	His 495	His
His	His	His													

-continued

60

120

180

240

300 360

420

480

540

600

660 720

780

840

900 960

1020

1080

1140

1200

1260

1320

1380

1440

1476

<210> SEQ ID NO 24 <211> LENGTH: 1476 <212> TYPE: DNA <213> ORGANISM: Escherichia coli <400> SEQUENCE: 24 atggcgaatt atttcaacac tctgaacctg cgtcaacaac tggcgcaact gggtaagtgc cgtttcatgg gtcgtgacga gtttgcggac ggtgcttctt atctgcaagg caagaaggtt gttattgttg gttgcggtgc gcaaggcctg aatcaaggtc tgaatatgcg cgacagcggc ctggacatta gctatgcgct gcgcaaggag gctatcgcgg aaaaacgtgc tagctggcgc aaggctactg agaacggctt caaggttggc acctatgagg agctgattcc gcaagctgac ctggttatca atctgacccc agataaagtg catagcgacg ttgttcgtac tgttcaaccg ctgatgaagg atggtgctgc tctgggttat agccacggct ttaacattgt tgaggtaggt gaacaaattc gcaaggacat tactgttgtt atggtggctc caaagtgtcc gggtactgag gttcgcgagg aatataagcg cggttttggt gttccaaccc tgatcgcggt gcatccagag aatgacccaa agggtgaggg tatggctatc gcgaaggcgt gggctgcggc gactggggg catcgcgctg gcgttctgga gagcagcttt gtggctgagg ttaagagcga tctgatgggt qaacaqacta ttctqtqtqq tatqctqcaa qcqqqtaqcc tqctqtqttt tqataaactq gttgaggagg gcactgaccc ggcgtatgcg gagaagctga tccaatttgg ctgggagact attactgagg cgctgaagca aggtggtatt actctgatga tggatcgcct gagcaatcca gctaagctgc gcgcgtacgc tctgagcgag caactgaagg aaattatggc accgctgttt caaaaqcaca tqqatqatat cattaqcqqt qaqtttaqca qcqqcatqat qqctqattqq gcgaatgacg acaaaaagct gctgacttgg cgcgaggaaa ctggtaagac tgctttcgag actgctccac aatacgaggg taagattggt gaacaagaat attttgacaa gggtgttctg atgatcqcta tqqttaaqqc tqqtqtqqaq ctqqcttttq aqactatqqt tqacaqcqqt attatcgagg aaagcgcgta ctacgagagc ctgcatgaac tgccactgat cgcgaatact attgegegea aaegeetgta tgagatgaat gttgtgatta gegaeaetge ggaatatgge aattacctgt ttagctatgc gtgcgttcca ctgctgaagc cattcatggc ggaactgcag ccaggtgatc tgggcaaggc gatcccagag ggtgctgttg acaatggtca gctgcgcgac gttaatgagg ctatccgttc tcacgctatc gaacaagttg gcaaaaagct gcgtggttac atgaccgaca tgaagcgcat cgcggtggct ggctaa <210> SEQ ID NO 25 <211> LENGTH: 493 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 25 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 1 5 10 15 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 25 Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln 35 40

											-	con	tin	ued	
Gly	Leu 50	Asn	Gln	Gly	Leu	Asn 55	Met	Arg	Asp	Ser	Gly 60	Leu	Asp	Ile	Ser
Tyr 65	Ala	Leu	Arg	ГЛа	Glu 70	Ala	Ile	Ala	Glu	Lys 75	Arg	Ala	Ser	Trp	Arg 80
Lys	Ala	Thr	Glu	Asn 85	Gly	Phe	Lys	Val	Gly 90	Thr	Tyr	Glu	Glu	Leu 95	Ile
Pro	Gln	Ala	Asp 100	Leu	Val	Ile	Asn	Leu 105	Thr	Pro	Aap	Lys	Val 110	His	Ser
Asp	Val	Val 115	Arg	Thr	Val	Gln	Pro 120	Leu	Met	Lys	Asp	Gly 125	Ala	Ala	Leu
Gly	Tyr 130	Ser	His	Gly	Phe	Asn 135	Ile	Val	Glu	Val	Gly 140	Glu	Gln	Ile	Arg
Lys 145	Asp	Ile	Thr	Val	Val 150	Met	Val	Ala	Pro	Lys 155	Суз	Pro	Gly	Thr	Glu 160
Val	Arg	Glu	Glu	Tyr 165	Гла	Arg	Gly	Phe	Gly 170	Val	Pro	Thr	Leu	Ile 175	Ala
Val	His	Pro	Glu 180	Asn	Asp	Pro	Lys	Gly 185	Glu	Gly	Met	Ala	Ile 190	Ala	Lys
Ala	Trp	Ala 195	Ala	Ala	Thr	Gly	Gly 200	His	Arg	Ala	Gly	Val 205	Leu	Glu	Ser
Ser	Phe 210		Ala	Glu	Val	Lys 215		Asp	Leu	Met	Gly 220		Gln	Thr	Ile
Leu 225		Gly	Met	Leu	Gln 230		Gly	Ser	Leu	Leu 235		Phe	Asp	Lys	Leu 240
	Glu	Glu	Gly	Thr 245		Pro	Ala	Tyr	Ala 250		Lys	Leu	Ile	Gln 255	
Gly	Trp	Glu	Thr 260		Thr	Glu	Ala	Leu 265		Gln	Gly	Gly	Ile 270		Leu
Met	Met	_		Leu	Ser	Asn		Ala	Lys	Leu	Arg			Ala	Leu
Ser		275 Gln	Leu	Lys	Glu		280 Met	Ala	Pro	Leu		285 Gln	Lys	His	Met
-	290 Asp	Ile	Ile	Ser	-	295 Glu	Phe	Ser	Ser	-	300 Met	Met	Ala	Asp	-
305 Ala	Asn	Asp	Asp	Lys	310 Lys	Leu	Leu	Thr	Trp	315 Arg	Glu	Glu	Thr	Gly	320 Lys
Thr	Ala	Phe	Glu	325 Thr	Ala	Pro	Gln	Tyr	330 Glu	Gly	Lys	Ile	Gly	335 Glu	Gln
			340					345 Met					350		
	-	355	-	-	-		360					365	•		-
	370					375		Val			380				
385		-	-		390			Glu		395					400
		-	-	405		-		Met	410					415	
Ala	Glu	Tyr	Gly 420	Asn	Tyr	Leu	Phe	Ser 425	Tyr	Ala	Сүз	Val	Pro 430	Leu	Leu
Lys	Pro	Phe 435	Met	Ala	Glu	Leu	Gln 440	Pro	Gly	Asp	Leu	Gly 445	Lys	Ala	Ile
Pro	Glu	Gly	Ala	Val	Asp	Asn	Gly	Gln	Leu	Arg	Asp	Val	Asn	Glu	Ala

							-	
-	CO	Dr.	ιt	1	n	u	ed	

450 455 460 Ile Arg Ser His Ala Ile Glu Gln Val Gly Lys Lys Leu Arg Gly Tyr 465 470 475 480 Met Thr Asp Met Lys Arg Ile Ala Val Ala Gly Leu Glu 485 490 <210> SEO ID NO 26 <211> LENGTH: 1494 <212> TYPE: DNA <213> ORGANISM: Escherichia coli <400> SEOUENCE: 26 atggcgaatt atttcaacac tctgaacctg cgtcaacaac tggcgcaact gggtaagtgc 60 cgtttcatgg gtcgtgacga gtttgcggac ggtgcttctt atctgcaagg caagaaggtt 120 gttattgttg gttgcggtgc gcaaggcctg aatcaaggtc tgaatatgcg cgacagcggc 180 ctggacatta gctatgcgct gcgcaaggag gctatcgcgg aaaaacgtgc tgactggcgc 240 aaggctactg agaacggctt caaggttggc acctatgagg agctgattcc gcaagctgac 300 ctggttatca atctgacccc agataaagtg catagcgacg ttgttcgtac tgttcaaccg 360 ctgatgaagg atggtgctgc tctgggttat agccacggct ttaacattgt tgaggtaggt 420 gaacaaattc gcaaggacat tactgttgtt atggtggctc caaagtgtcc gggtactgag 480 gttcgcgagg aatataagcg cggttttggt gttccaaccc tgatcgcggt gcatccagag 540 600 aatgacccaa agggtgaggg tatggctatc gcgaaggcgt gggctgcggc gactggcggc categogetg gegttetgga gageagettt gtggetgagg ttaagagega tetgatgggt 660 720 gaacagacta ttctgtgtgg tatgctgcaa gcgggtagcc tgctgtgttt tgataaactg 780 gttgaggagg gcactgaccc ggcgtatgcg gagaagctga tccaatttgg ctgggagact attactgagg cgctgaagca aggtggtatt actctgatga tggatcgcct gagcaatcca 840 gctaagctgc gcgcgtacgc tctgagcgag caactgaagg aaattatggc accgctgttt 900 caaaagcaca tggatgatat cattagcggt gagtttagca gcggcatgat ggctgattgg 960 gcgaatgacg acaaaaagct gctgacttgg cgcgaggaaa ctggtaagac tgctttcgag 1020 actgctccac aatacgaggg taagattggt gaacaagaat attttgacaa gggtgttctg 1080 atgatcgcta tggttaaggc tggtgtggag ctggcttttg agactatggt tgacagcggt 1140 attatcgagg aaagcgcgta ctacgagagc ctgcatgaac tgccactgat cgcgaatact 1200 attgegegea aacgeetgta tgagatgaat gttgtgatta gegacaetge ggaatatgge 1260 aattacctgt ttagctatgc gtgcgttcca ctgctgaagc cattcatggc ggaactgcag 1320 ccaggtgatc tgggcaaggc gatcccagag ggtgctgttg acaatggtca gctgcgcgac 1380 gttaatgagg ctatccgttc tcacgctatc gaacaagttg gcaaaaagct gcgtggttac 1440 atgaccgaca tgaagcgcat cgcggtggct ggccaccacc accaccacca ctaa 1494 <210> SEQ ID NO 27 <211> LENGTH: 499 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 27 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 5 10 15 1

Leu	Gly	Гла	Суз 20	Arg	Phe	Met	Gly	Arg 25	Asp	Glu	Phe	Ala	Asp 30	Gly	Ala
Ser	Tyr	Leu 35	Gln	Gly	Lys	Гла	Val 40	Val	Ile	Val	Gly	Суз 45	Gly	Ala	Gln
Gly	Leu 50	Asn	Gln	Gly	Leu	Asn 55	Met	Arg	Asp	Ser	Gly 60	Leu	Asp	Ile	Ser
Tyr 65	Ala	Leu	Arg	Lys	Glu 70	Ala	Ile	Ala	Glu	Lys 75	Arg	Ala	Asp	Trp	Arg 80
Lys	Ala	Thr	Glu	Asn 85	Gly	Phe	Lys	Val	Gly 90	Thr	Tyr	Glu	Glu	Leu 95	Ile
Pro	Gln	Ala	Asp 100	Leu	Val	Ile	Asn	Leu 105	Thr	Pro	Asp	ГÀа	Val 110	His	Ser
Asp	Val	Val 115	Arg	Thr	Val	Gln	Pro 120	Leu	Met	ГЛа	Asp	Gly 125	Ala	Ala	Leu
Gly	Tyr 130	Ser	His	Gly	Phe	Asn 135	Ile	Val	Glu	Val	Gly 140	Glu	Gln	Ile	Arg
Lys 145	Asp	Ile	Thr	Val	Val 150	Met	Val	Ala	Pro	Lys 155	Суз	Pro	Gly	Thr	Glu 160
Val	Arg	Glu	Glu	Tyr 165	Lys	Arg	Gly	Phe	Gly 170	Val	Pro	Thr	Leu	Ile 175	Ala
Val	His	Pro	Glu 180	Asn	Asp	Pro	ГÀа	Gly 185	Glu	Gly	Met	Ala	Ile 190	Ala	Lys
Ala	Trp	Ala 195	Ala	Ala	Thr	Gly	Gly 200	His	Arg	Ala	Gly	Val 205	Leu	Glu	Ser
Ser	Phe 210	Val	Ala	Glu	Val	Lys 215	Ser	Asp	Leu	Met	Gly 220	Glu	Gln	Thr	Ile
Leu 225	Cys	Gly	Met	Leu	Gln 230	Ala	Gly	Ser	Leu	Leu 235	Сүз	Phe	Asb	Lys	Leu 240
Val	Glu	Glu	Gly	Thr 245	Asp	Pro	Ala	Tyr	Ala 250	Glu	Lys	Leu	Ile	Gln 255	Phe
Gly	Trp	Glu	Thr 260	Ile	Thr	Glu	Ala	Leu 265	Lys	Gln	Gly	Gly	Ile 270	Thr	Leu
Met	Met	Asp 275	Arg	Leu	Ser	Asn	Pro 280	Ala	Lys	Leu	Arg	Ala 285	Tyr	Ala	Leu
Ser	Glu 290	Gln	Leu	Lys	Glu	Ile 295	Met	Ala	Pro	Leu	Phe 300	Gln	Lys	His	Met
Asp 305	Asp	Ile	Ile	Ser	Gly 310	Glu	Phe	Ser	Ser	Gly 315	Met	Met	Ala	Asp	Trp 320
Ala	Asn	Asp	Asp	Lys 325	Lys	Leu	Leu	Thr	Trp 330	Arg	Glu	Glu	Thr	Gly 335	Lys
Thr	Ala	Phe	Glu 340	Thr	Ala	Pro	Gln	Tyr 345	Glu	Gly	Lys	Ile	Gly 350	Glu	Gln
Glu	Tyr	Phe 355	Asp	ГЛа	Gly	Val	Leu 360	Met	Ile	Ala	Met	Val 365	ГЛа	Ala	Gly
Val	Glu 370	Leu	Ala	Phe	Glu	Thr 375	Met	Val	Asp	Ser	Gly 380	Ile	Ile	Glu	Glu
Ser 385	Ala	Tyr	Tyr	Glu	Ser 390	Leu	His	Glu	Leu	Pro 395	Leu	Ile	Ala	Asn	Thr 400
Ile	Ala	Arg	Гла	Arg 405	Leu	Tyr	Glu	Met	Asn 410	Val	Val	Ile	Ser	Asp 415	Thr

-continued	
la Glu Tyr Gly Asn Tyr Leu Phe Ser Tyr Ala Cys Val Pro Leu 1 420 425 430	Leu
ys Pro Phe Met Ala Glu Leu Gln Pro Gly Asp Leu Gly Lys Ala 3 435 440 445	Ile
ro Glu Gly Ala Val Asp Asn Gly Gln Leu Arg Asp Val Asn Glu A 450 455 460	Ala
le Arg Ser His Ala Ile Glu Gln Val Gly Lys Lys Leu Arg Gly 1	Tyr
	480
et Thr Asp Met Lys Arg Ile Ala Val Ala Gly Leu Glu His His H 485 490 495	119
is His His	
210> SEQ ID NO 28 211> LENGTH: 1494	
212> TYPE: DNA 213> ORGANISM: Escherichia coli	
400> SEQUENCE: 28	
tggcgaatt atttcaacac totgaacotg ogtcaacaac tggogcaact gggtaa	agtgc 60
gtttcatgg gtcgtgacga gtttgcggac ggtgcttctt atctgcaagg caagaa	aggtt 120
ttattgttg gttgcggtgc gcaaggcctg aatcaaggtc tgaatatgcg cgacag	gegge 180
tggacatta gctatgcgct gcgcaaggag tctatcgcgg aaaaacgtgc tgactg	ggcgc 240
aggetaetg agaaeggett caaggttgge acetatgagg agetgattee geaage	stgac 300
tggttatca atctgacccc agataaagtg catagcgacg ttgttcgtac tgttca	aaccg 360
tgatgaagg atggtgctgc tctgggttat agccacggct ttaacattgt tgagg!	taggt 420
aacaaatte geaaggaeat taetgttgtt atggtggete eaaagtgtee gggta	
ttegegagg aatataageg eggttttggt gtteeaacee tgategeggt geate	
atgacccaa agggtgaggg tatggctatc gcgaaggcgt gggctgcggc gactg	
atogogotg gogttotgga gagoagottt gtggotgagg ttaagagoga totgal	
aacagacta ttotgtgtgg tatgctgcaa gogggtagoc tgotgtgttt tgata	
ttgaggagg gcactgaccc ggcgtatgcg gagaagctga tccaatttgg ctggg ttactgagg cgctgaagca aggtggtatt actctgatga tggatcgcct gagcaa	5
ctaagetge gegegtaege tetgagegag caactgaagg aaattatgge aceget	
aaaagcaca tggatgatat cattagcggt gagtttagca gcggcatgat ggctga	5
cgaatgacg acaaaaagct gctgacttgg cgcgaggaaa ctggtaagac tgctti	
ctgctccac aatacgaggg taagattggt gaacaagaat attttgacaa gggtg1	ttctg 1080
tgatcgcta tggttaaggc tggtgtggag ctggcttttg agactatggt tgacas	geggt 1140
ttatcgagg aaagogogta ctacgagago ctgcatgaac tgccactgat cgcgaa	atact 1200
ttgcgcgca aacgcctgta tgagatgaat gttgtgatta gcgacactgc ggaata	atggc 1260
attacetgt ttagetatge gtgegtteea etgetgaage catteatgge ggaae	tgcag 1320
caggtgatc tgggcaaggc gatcccagag ggtgctgttg acaatggtca gctgc	gcgac 1380
	gttac 1440
ttaatgagg ctatccgttc tcacgctatc gaacaagttg gcaaaaagct gcgtgg	5

<21	0> SI L> LI 2> TY	ENGTI	H: 49												
				Escl	heri	chia	col:	Ĺ							
<40)> SI	EQUEI	ICE :	29											
Met 1	Ala	Asn	Tyr	Phe 5	Asn	Thr	Leu	Asn	Leu 10	Arg	Gln	Gln	Leu	Ala 15	Gln
Leu	Gly	Lys	Сув 20	Arg	Phe	Met	Gly	Arg 25	Asp	Glu	Phe	Ala	Asp 30	Gly	Ala
Ser	Tyr	Leu 35	Gln	Gly	Lys	Lys	Val 40	Val	Ile	Val	Gly	Суз 45	Gly	Ala	Gln
Gly	Leu 50	Asn	Gln	Gly	Leu	Asn 55	Met	Arg	Asb	Ser	Gly 60	Leu	Asp	Ile	Ser
Tyr 65	Ala	Leu	Arg	Lys	Glu 70	Ser	Ile	Ala	Glu	Lys 75	Arg	Ala	Asp	Trp	Arg 80
Lys	Ala	Thr	Glu	Asn 85	Gly	Phe	Lys	Val	Gly 90	Thr	Tyr	Glu	Glu	Leu 95	Ile
Pro	Gln	Ala	Asp 100	Leu	Val	Ile	Asn	Leu 105	Thr	Pro	Asp	Lys	Val 110	His	Ser
Asp	Val	Val 115	Arg	Thr	Val	Gln	Pro 120	Leu	Met	Lys	Asp	Gly 125	Ala	Ala	Leu
Gly	Tyr 130	Ser	His	Gly	Phe	Asn 135	Ile	Val	Glu	Val	Gly 140	Glu	Gln	Ile	Arg
Lys 145	Asp	Ile	Thr	Val	Val 150	Met	Val	Ala	Pro	Lys 155	Сүз	Pro	Gly	Thr	Glu 160
Val	Arg	Glu	Glu	Tyr 165	Гла	Arg	Gly	Phe	Gly 170	Val	Pro	Thr	Leu	Ile 175	Ala
Val	His	Pro	Glu 180	Asn	Asp	Pro	Lys	Gly 185	Glu	Gly	Met	Ala	Ile 190	Ala	Lys
Ala	Trp	Ala 195	Ala	Ala	Thr	Gly	Gly 200	His	Arg	Ala	Gly	Val 205	Leu	Glu	Ser
Ser	Phe 210	Val	Ala	Glu	Val	Lys 215	Ser	Asp	Leu	Met	Gly 220	Glu	Gln	Thr	Ile
Leu 225	Суз	Gly	Met	Leu	Gln 230	Ala	Gly	Ser	Leu	Leu 235	Сүз	Phe	Asp	ГЛЗ	Leu 240
Val	Glu	Glu	Gly	Thr 245	Asp	Pro	Ala	Tyr	Ala 250	Glu	ГЛЗ	Leu	Ile	Gln 255	Phe
Gly	Trp	Glu	Thr 260	Ile	Thr	Glu	Ala	Leu 265	Lys	Gln	Gly	Gly	Ile 270	Thr	Leu
Met	Met	Asp 275	Arg	Leu	Ser	Asn	Pro 280	Ala	Lys	Leu	Arg	Ala 285	Tyr	Ala	Leu
Ser	Glu 290	Gln	Leu	ГЛЗ	Glu	Ile 295	Met	Ala	Pro	Leu	Phe 300	Gln	Гла	His	Met
Asp 305	Asp	Ile	Ile	Ser	Gly 310	Glu	Phe	Ser	Ser	Gly 315	Met	Met	Ala	Asp	Trp 320
Ala	Asn	Asp	Asp	Lуя 325	Lys	Leu	Leu	Thr	Trp 330	Arg	Glu	Glu	Thr	Gly 335	Lys
Thr	Ala	Phe	Glu 340	Thr	Ala	Pro	Gln	Tyr 345	Glu	Gly	LÀa	Ile	Gly 350	Glu	Gln
Glu	Tyr	Phe 355	Asp	Lys	Gly	Val	Leu 360	Met	Ile	Ala	Met	Val 365	ГÀа	Ala	Gly

			÷ .					-
 ~	\sim	n	÷	٦.	n	11		\sim
 -	\sim	чτ	<u> </u>	_	τт.	u	-	\sim

-continued	
Val Glu Leu Ala Phe Glu Thr Met Val Asp Ser Gly Ile Ile Glu Glu 370 375 380	
370 375 380 Ser Ala Tyr Tyr Glu Ser Leu His Glu Leu Pro Leu Ile Ala Asn Thr	
Set Ata TyrTyrGiu Set Deu Ats Giu Deu Fro Deu Fro Deu Fro Ata Ash fini385390395400	
Ile Ala Arg Lys Arg Leu Tyr Glu Met Asn Val Val Ile Ser Asp Thr 405 410 415	
Ala Glu Tyr Gly Asn Tyr Leu Phe Ser Tyr Ala Cys Val Pro Leu Leu	
420 425 430	
Lys Pro Phe Met Ala Glu Leu Gln Pro Gly Asp Leu Gly Lys Ala Ile 435 440 445	
Pro Glu Gly Ala Val Asp Asn Gly Gln Leu Arg Asp Val Asn Glu Ala 450 455 460	
Ile Arg Ser His Ala Ile Glu Gln Val Gly Lys Leu Arg Gly Tyr	
465 470 475 480	
Met Thr Asp Met Lys Arg Ile Ala Val Ala Gly Leu Glu His His His 485 490 495	
His His	
-210- CEO ID NO 20	
<210> SEQ ID NO 30 <211> LENGTH: 1494	
<212> TYPE: DNA <213> ORGANISM: Escherichia coli	
<400> SEQUENCE: 30	
atggcgaatt atttcaacac tctgaacctg cgtcaacaac tggcgcaact gggtaagtgc	60
cgtttcatgg gtcgtgacga gtttgcggac ggtgcttctt atctgcaagg caagaaggtt	120
gttattgttg gttgcggtgc gcaaggcctg aatcaaggtc tgaatatgcg cgacagcggc	180
ctggacatta gctatgcgct gcgcaaggag tctatcgcgg aaaaagatgc tgattggcgc	240
aaggetaetg agaacggett caaggttgge acetatgagg agetgattee geaagetgae	300
ctggttatca atctgacccc agataaagca catagcgacg ttgttcgtac tgttcaaccg	360
ctgatgaagg atggtgctgc tctgggttat agccacggct ttaacattgt tgaggtaggt	420
gaacaaattc gcaaggacat tactgttgtt atggtggctc caaagtgtcc gggtactgag	480
gttcgcgagg aatataagcg cggttttggt gttccaaccc tgatcgcggt gcatccagag	540
aatgacccaa agggtgaggg tatggctatc gcgaaggcgt gggctgcggc gactggcggc	600
catcgcgctg gcgttctgga gagcagcttt gtggctgagg ttaagagcga tctgatgggt	660
gaacagacta ttctgtgtgg tatgctgcaa gcgggtagcc tgctgtgttt tgataaactg	720
gttgaggagg gcactgaccc ggcgtatgcg gagaagctga tccaatttgg ctgggagact	780
attactgagg cgctgaagca aggtggtatt actctgatga tggatcgcct gagcaatcca	840
gctaagctgc gcgcgtacgc tctgagcgag caactgaagg aaattatggc accgctgttt	900
caaaagcaca tggatgatat cattagcggt gagtttagca gcggcatgat ggctgattgg	960
gcgaatgacg acaaaaagct gctgacttgg cgcgaggaaa ctggtaagac tgctttcgag	1020
actgctccac aatacgaggg taagattggt gaacaagaat attttgacaa gggtgttctg	1080
atgategeta tggttaagge tggtgtggag etggettttg agaetatggt tgacageggt	1140
attatcgagg aaagcgcgta ctacgagagc ctgcatgaac tgccactgat cgcgaatact	1200
attgcgcgca aacgcctgta tgagatgaat gttgtgatta gcgacactgc ggaatatggc	1260

Concinaca	
	320
ccaggtgatc tgggcaaggc gatcccagag ggtgctgttg acaatggtca gctgcgcgac 13	380
gttaatgagg ctatccgttc tcacgctatc gaacaagttg gcaaaaagct gcgtggttac 14	140
atgaccgaca tgaagcgcat cgcggtggct ggccaccacc accaccacca ctaa 14	194
210. CEO ID NO 21	
<210> SEQ ID NO 31 <211> LENGTH: 499	
<212> TYPE: PRT <213> ORGANISM: Escherichia coli	
<400> SEQUENCE: 31	
Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 1 5 10 15	
Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 20 25 30	
Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln 35 40 45	
Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser 50 55 60	
Tyr Ala Leu Arg Lys Glu Ser Ile Ala Glu Lys Asp Ala Asp Trp Arg 65 70 75 80	
Lys Ala Thr Glu Asn Gly Phe Lys Val Gly Thr Tyr Glu Glu Leu Ile 85 90 95	
Pro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Ala His Ser 100 105 110	
Asp Val Val Arg Thr Val Gln Pro Leu Met Lys Asp Gly Ala Ala Leu 115 120 125	
Gly Tyr Ser His Gly Phe Asn Ile Val Glu Val Gly Glu Gln Ile Arg 130 135 140	
Lys Asp Ile Thr Val Val Met Val Ala Pro Lys Cys Pro Gly Thr Glu 145 150 155 160	
Val Arg Glu Glu Tyr Lys Arg Gly Phe Gly Val Pro Thr Leu Ile Ala 165 170 175	
Val His Pro Glu Asn Asp Pro Lys Gly Glu Gly Met Ala Ile Ala Lys 180 185 190	
Ala Trp Ala Ala Ala Thr Gly Gly His Arg Ala Gly Val Leu Glu Ser 195 200 205	
Ser Phe Val Ala Glu Val Lys Ser Asp Leu Met Gly Glu Gln Thr Ile 210 215 220	
Leu Cys Gly Met Leu Gln Ala Gly Ser Leu Leu Cys Phe Asp Lys Leu 225 230 235 240	
Val Glu Glu Gly Thr Asp Pro Ala Tyr Ala Glu Lys Leu Ile Gln Phe 245 250 255	
Gly Trp Glu Thr Ile Thr Glu Ala Leu Lys Gln Gly Gly Ile Thr Leu 260 265 270	
Met Met Asp Arg Leu Ser Asn Pro Ala Lys Leu Arg Ala Tyr Ala Leu 275 280 285	
Ser Glu Gln Leu Lys Glu Ile Met Ala Pro Leu Phe Gln Lys His Met 290 295 300	
Asp Asp Ile Ile Ser Gly Glu Phe Ser Ser Gly Met Met Ala Asp Trp 305 310 315 320	

-continued

Ala Asn Asp Asp Lys Lys Leu Leu Thr Trp Arg Glu Glu Thr Gly Lys 325 Thr Ala Phe Glu Thr Ala Pro Gln Tyr Glu Gly Lys Ile Gly Glu Gln 340 340 Thr Ala Phe Glu Thr Ala Pro Gln Tyr Glu Gly Lys Ile Gly Glu Gln 350 Glu Tyr Phe Asp Lys Gly Val Leu Met Ile Ala Met Val Lys Ala Gly 355 Val Glu Leu Ala Phe Glu Thr Met Val Asp Ser Gly Ile Ile Glu Glu 370 Ser Ala Tyr Tyr Glu Ser Leu His Glu Leu Pro Leu Ile Ala Asn Thr 390 Ser Ala Tyr Tyr Glu Asp Lys Gly Val Leu Met Asn Val Val Ile Ser Asp Thr 410 11e Ala Arg Lys Arg Leu Tyr Glu Met Asn Val Val Ile Ser Asp Thr 410 420 Lys Pro Phe Met Ala Glu Leu Gln Pro Gly Asp Leu Gly Lys Ala Ile 420 Lys Pro Phe Met Ala Glu Leu Gln Pro Gly Asp Leu Gly Lys Ala Ile 450 Pro Glu Gly Ala Val Asp Asn Gly Gln Leu Arg Asp Val Asn Glu Ala 450 465 470 470 475 485 490 450 460 470 475 480 481
340 345 350 Glu Tyr Phe Asp Lys Gly Val Leu Met Ile Ala Met Val Lys Ala Gly 355 Ser Ala Tyr Tyr Glu Ser Leu His Glu Leu Pro Leu Ile Ala Asn Thr 385 Ala Gly Tyr Gly Asn Tyr Leu Phe Ser Tyr Ala Cys Val Pro Leu Leu 405 Fro Glu Gly Ala Val Asp Asn Gly Gln Leu Arg Asp Val Asn Glu Ala 455 Fro Glu Gly Ala Val Asp Asn Gly Gln Leu Arg Asp Val Asn Glu Ala 455 Fro Glu Gly Ala Val Asp Asn Gly Gln Leu Arg Asp Val Asn Glu Ala 455 Fro Glu Gly Ala Val Asp Asn Gly Gln Leu Arg Asp Val Asn Glu Ala 455 Fro Glu Gly Ala Val Asp Asn Gly Gln Leu Arg Asp Val Asn Glu Ala 455 Fro Ket His Ala Ile Ala Val Asp Asn Gly Lys Lys Leu Arg Gly Tyr 465 Fro Ket His His 415 Fro Ket Lys Arg Ile Ala Val Ala Gly Leu Glu His His His 415 Fro Ket Lys Arg Ile Ala Val Ala Gly Leu Glu His His His 415 Fro Ket His His
Glu Tyr Phe Asp Lys Gly Val Leu Met Ie Ala Set Sys Ala Gly Val 370 Lu Ala Phe Glu Tyr Met Val Asp Set Gly Ile Glu Glu Glu Face Face Glu Asp Set Gly Ile Glu Glu Glu Set Set Gly Ile Glu Glu Glu Set Set Gly Ile Glu Glu Glu Set Set Gly Ile Face Glu Glu Set Set Gly Ile Face Glu Glu Glu Set Set Gly Val Ile Set Asp Tre Set Set Yal Val Ile Set Asp Tre Asp Set Yal Val Ile Set Asp Tre Asp Set Yal Val Val Yal Yal Yal Yal Yal Yal <td< td=""></td<>
Val Glu Leu Ala Phe Glu Thr Met Val Asp Ser Gly Ile Glu Glu Glu Ser Ala Tyr Glu Ser Glu He Pro Leu Pro Leu Pro Leu Pro Leu Pro Asp Yan Thr Ala Arg Lyr Glu Ser Tyr Glu Met Asp Val Val Ser Asp Thr Ala Arg Lyr Arg Lyr Glu Met Asp Val Val Val Ser Asp Thr 410 Ala Glu Tyr Glu Met Pro Leu Leu Asp Asp Asp Asp Asp Asp Tro Asp Asp Asp Tro Asp Asp Asp Tro Asp As
Ser Ala Tyr Gu Ser Lu His Gu Lu Pro Lu Aa Asn Man Ile Ala Arg Lys Arg Hus Arg Val Ala Val Ie Ser Ala Fro Ala Arg Man Arg Val Val Val Ser Ala Fro Ala Arg Man Man Man Val Val Ser Ala Fro Ala Man Man<
385 390 395 400 Ile Ala Arg Lys Arg Leu Tyr Glu Met Asn Val Val Ile Ser Asp 415 Thr Ala Glu Tyr Gly Asn 72 Leu Phe Ser Tyr Ala Cys Val Pro 435 Leu 445 Yero Phe Met Ala Glu Leu Gln Pro 61Y Asp Leu Gly Lys Leu Gly Lys Ala Ile Ser Asp 445 Pro Glu Gly Ala Val Asp Asn Gly Gln Leu Arg Asp 460 Val Asn 61U Val Asn 61U Ala 455 Ile Arg Ser His Ala 11e Glu Gln Val Glu Val Val Ala 400 Ser Asp 475 Met Thr Asp Met Lys Arg Ile Ala Val Ala 400 Gly Lys Leu Glu Leu Glu Fie 490 SEQ ID NO 32 SEQ ID NO 32
Ala Glu Tyr Gly Asn Tyr Leu Phe Ser Tyr Ala Cys Val Pro Ala Glu Tyr Gly Asn Tyr Leu Phe Ser Tyr Ala Cys Val Pro A25 Tyr Ala Cys Val Pro A35 Pro Phe Met Ala Glu Leu Gln Pro Gly Asp Leu Gly Lys Ala Ile A45 Pro Glu Gly Ala Val Asp Asn Gly Gln Leu Arg Asp Val Asn Glu Ala A450 Ser His Ala Ile Glu Gln Val Gly Lys Lys Leu Arg Gly Tyr A465 Arg Ser His Ala Ile Glu Gln Val Gly Lys Lys Leu Arg Gly Tyr A465 His His His His Sec Sec ID NO 32 <211> LENGTH: 1494
420 425 430 Lys Pro Phe Met Ala Glu Leu Gln Pro Gly Asp Leu Gly Lys Ala Ile 440 Gly Lys Ala Ile 445 Pro Glu Gly Ala Val Asp Asn Gly Gln Leu Arg Asp Val Asn Glu Ala 450 Asn Glu Ala 460 Ile Arg Ser His Ala Ile Glu Gln Val Gly Lys Lys Leu Arg Gly Tyr 465 His Ala Ile Glu Gln Val Gly Lys Lys Leu Arg Gly Tyr 485 Met Thr Asp Met Lys Arg Ile Ala Val Ala Gly Leu Glu His His His 485 His His His <210> SEQ ID NO 32 <211> LENGTH: 1494
435 440 445 Pro Glu Gly Ala Val Asp Asn Gly Gln Leu Arg Asp Val Asn Glu Ala 450 Ile Arg Ser His Ala Ile Glu Gln Val Gly Lys Lys Leu Arg Gly Tyr 465 Met Thr Asp Met Lys Arg Ile Ala Val Ala Gly Leu Glu His His His 490 490 495
Pro Glu Gly Ala Asp Asp Gly Gly Gly Asp Asp Gly Gly Asp Tyr 480 Met Thr Asp Met Lys Arg Ile Ala Ala Gly Leu Glu His H
450 455 460 Ile Arg Ser His Ala Ile Glu Gln Val Gly Lys Lys Leu Arg Gly Tyr 465 470 475 480 Met Thr Asp Met Lys Arg Ile Ala Val Ala Gly Leu Glu His His His 485 490 495 His His His <210> SEQ ID NO 32 <211> LENGTH: 1494
465 470 475 480 Met Thr Asp Met Lys Arg Ile Ala Val Ala Gly Leu Glu His His His 485 490 495 His His <210> SEQ ID NO 32 <211> LENGTH: 1494
485 490 495 His His His <210> SEQ ID NO 32 <211> LENGTH: 1494
<210> SEQ ID NO 32 <211> LENGTH: 1494
<211> LENGTH: 1494
<212> TIPE: DNA <213> ORGANISM: Escherichia coli <400> SEQUENCE: 32
atggcgaatt atttcaacac tctgaacctg cgtcaacaac tggcgcaact gggtaagtgc 60
cgtttcatgg gtcgtgacga gtttgcggac ggtgcttctt atctgcaagg caagaaggtt 120
gttattgttg gttgcggtgc gcaaggcctg aatcaaggtc tgaatatgcg cgacagcggc 180
ctggacatta gctatgcgct gcgcaaggag tctatcgcgg aaaaagatgc tgattggcgc 240 aaggctactg agaacggctt caaggttggc acctatgagg agctgattcc gcaagctgac 300
ctggttatca atctgacccc agataaagta catagegacg ttgttegtac tgtteaaceg 360
ctgatgaagg atggtgctgc tctgggttat agccacggct ttaacattgt tgaggtaggt 420
gaacaaattc gcaaggacat tactgttgtt atggtggctc caaagtgtcc gggtactgag 480
gttegegagg aatataageg eggttttggt gtteeaaeee tgategeggt geateeagag 540
aatgacccaa agggtgaggg tatggctatc gcgaaggcgt gggctgcggc gactggcggc 600
catcgcgctg gcgttctgga gagcagcttt gtggctgagg ttaagagcga tctgatgggt 660
gaacagacta ttetgtgtgg tatgetgeaa gegggtagee tgetgtgttt tgataaaetg 720
gttgaggagg gcactgaccc ggcgtatgcg gagaagctga tccaatttgg ctgggagact 780
gttgaggagg gcactgaccc ggcgtatgcg gagaagctga tccaatttgg ctgggagact 780
gttgaggagg gcactgaccc ggcgtatgcg gagaagctga tccaatttgg ctgggagact 780 attactgagg cgctgaagca aggtggtatt actctgatga tggatcgcct gagcaatcca 840

actgctccac a	aatacgaggg	taagattggt	gaacaagaat	attttgacaa	gggtgttctg	1080
atgatcgcta t	tggttaaggc	tggtgtggag	ctggcttttg	agactatggt	tgacagcggt	1140
attatcgagg a	aaagcgcgta	ctacgagagc	ctgcatgaac	tgccactgat	cgcgaatact	1200
attgcgcgca a	aacgcctgta	tgagatgaat	gttgtgatta	gcgacactgc	ggaatatggc	1260
aattacctgt t	ttagctatgc	gtgcgttcca	ctgctgaagc	cattcatggc	ggaactgcag	1320
ccaggtgatc t	tgggcaaggc	gatcccagag	ggtgctgttg	acaatggtca	gctgcgcgac	1380
gttaatgagg d	ctatecgtte	tcacgctatc	gaacaagttg	gcaaaaagct	gcgtggttac	1440
atgaccgaca t	tgaagegeat	cgcggtggct	ggccaccacc	accaccacca	ctaa	1494
<210> SEQ II <211> LENGTH <212> TYPE: <213> ORGANI	H: 1494 DNA	richia coli				
<400> SEQUEN	NCE: 33					
atggccaact a	attttaacac	attaaatttg	agacaacaat	tggctcaact	gggtaagtgc	60
agatttatgg g	gaagggacga	gtttgctgat	ggtgcttctt	atctgcaagg	aaagaaagta	120
gtaattgttg g	gctgcggtgc	tcagggtcta	aaccaaggtt	taaacatgag	agattcaggt	180
ctggatattt d	cgtatgcatt	gaggaaagag	tctattgcag	aaaaggatgc	cgattggcgt	240
aaagcgacgg a	aaaatgggtt	caaagttggt	acttacgaag	aactgatccc	tcaggcagat	300
ttagtgatta a	acctaacacc	agataaggtt	cactcagacg	tagtaagaac	agttcaaccg	360
ctgatgaagg a	atgggggcagc	tttaggttac	tctcatggct	ttaatatcgt	tgaagtgggc	420
gagcagatca g	gaaaagatat	aacagtcgta	atggttgcac	caaagtgccc	aggtacggaa	480
gtcagagagg a	agtacaagag	gggttttggt	gtacctacat	tgatcgccgt	acatcctgaa	540
aatgacccca a	aaggtgaagg	tatggcaatt	gcgaaggcat	gggcagccgc	aaccggaggt	600
catagagegg g	gtgtgttaga	gagttettte	gtagctgagg	tcaagagtga	cttaatgggt	660
gaacaaacca t	tctgtgcgg	aatgttgcag	gcagggtctt	tactatgctt	tgataaattg	720
gtcgaagagg g	gtacagatcc	tgcctatgct	gaaaagttga	tacaatttgg	ttgggagaca	780
atcaccgagg d	cacttaaaca	aggtggcata	acattgatga	tggatagact	ttcaaatccg	840
gccaagctaa g	gagcetaege	cttatctgag	caactaaaag	agatcatggc	accattattc	900
caaaagcaca t	tggacgatat	tatctccggt	gagttttcct	caggaatgat	ggcagattgg	960
gcaaacgatg a	ataaaaagtt	attgacgtgg	agagaagaaa	ccggcaagac	ggcattcgag	1020
acagccccac a	aatacgaagg	taaaattggt	gaacaagaat	actttgataa	gggagtattg	1080
atgatagcta t	tggtgaaggc	aggggtagaa	cttgcattcg	aaactatggt	tgactccggt	1140
atcattgaag a	aatctgcata	ctatgagtct	ttgcatgaat	tgcctttgat	agcaaatact	1200
attgcaagaa a	aaagacttta	cgagatgaat	gttgtcatat	cagacactgc	agaatatggt	1260
aattacttat t	ttagctacgc	atgtgtcccg	ttgttaaagc	ccttcatggc	cgagttacaa	1320
cctggtgatt t	tggggaaggc	tattccggaa	ggagcggttg	acaatggcca	actgagagac	1380
gtaaatgaag d	ctattcgttc	acatgctata	gaacaggtgg	gtaaaaagct	gagaggatat	1440
atgaccgata t	tgaaaagaat	tgcagtggca	ggacaccacc	accaccacca	ctga	1494

<210)> SI	EQ II	о мо	34											
		ENGTI YPE :		99											
				Escl	heri	chia	col:	Ĺ							
<400)> SI	EQUEI	NCE :	34											
Met 1	Ala	Asn	Tyr	Phe 5	Asn	Thr	Leu	Asn	Leu 10	Arg	Gln	Gln	Leu	Ala 15	Gln
Leu	Gly	Lys	Суз 20	Arg	Phe	Met	Gly	Arg 25	Asp	Glu	Phe	Ala	Asp 30	Gly	Ala
Ser	Tyr	Leu 35	Gln	Gly	Lys	Lys	Val 40	Val	Ile	Val	Gly	Сув 45	Gly	Ala	Gln
Gly	Leu 50	Asn	Gln	Gly	Leu	Asn 55	Met	Arg	Asp	Ser	Gly 60	Leu	Asp	Ile	Ser
Tyr 65	Ala	Leu	Arg	Гла	Glu 70	Ser	Ile	Ala	Glu	Lys 75	Asp	Ala	Asp	Trp	Arg 80
Lys	Ala	Thr	Glu	Asn 85	Gly	Phe	Гла	Val	Gly 90	Thr	Tyr	Glu	Glu	Leu 95	Ile
Pro	Gln	Ala	Asp 100	Leu	Val	Ile	Asn	Leu 105	Thr	Pro	Asp	ГЛа	Val 110	His	Ser
Asp	Val	Val 115	Arg	Thr	Val	Gln	Pro 120	Leu	Met	Lys	Asp	Gly 125	Ala	Ala	Leu
Gly	Tyr 130	Ser	His	Gly	Phe	Asn 135	Ile	Val	Glu	Val	Gly 140	Glu	Gln	Ile	Arg
Lys 145	Asp	Ile	Thr	Val	Val 150	Met	Val	Ala	Pro	Lys 155	Сүз	Pro	Gly	Thr	Glu 160
Val	Arg	Glu	Glu	Tyr 165	Lys	Arg	Gly	Phe	Gly 170	Val	Pro	Thr	Leu	Ile 175	Ala
Val	His	Pro	Glu 180	Asn	Asp	Pro	ГÀа	Gly 185	Glu	Gly	Met	Ala	Ile 190	Ala	Гла
Ala	Trp	Ala 195	Ala	Ala	Thr	Gly	Gly 200	His	Arg	Ala	Gly	Val 205	Leu	Glu	Ser
Ser	Phe 210	Val	Ala	Glu	Val	Lys 215	Ser	Asp	Leu	Met	Gly 220	Glu	Gln	Thr	Ile
Leu 225	Cys	Gly	Met	Leu	Gln 230	Ala	Gly	Ser	Leu	Leu 235	СЛа	Phe	Asp	Lys	Leu 240
Val	Glu	Glu	Gly	Thr 245	Asp	Pro	Ala	Tyr	Ala 250	Glu	Lys	Leu	Ile	Gln 255	Phe
Gly	Trp	Glu	Thr 260	Ile	Thr	Glu	Ala	Leu 265	Lys	Gln	Gly	Gly	Ile 270	Thr	Leu
Met	Met	Asp 275	Arg	Leu	Ser	Asn	Pro 280	Ala	Lys	Leu	Arg	Ala 285	Tyr	Ala	Leu
Ser	Glu 290	Gln	Leu	ГЛа	Glu	Ile 295	Met	Ala	Pro	Leu	Phe 300	Gln	ГÀа	His	Met
Asp 305	Asp	Ile	Ile	Ser	Gly 310	Glu	Phe	Ser	Ser	Gly 315	Met	Met	Ala	Asp	Trp 320
Ala	Asn	Asp	Asp	Lуя 325	ГЛа	Leu	Leu	Thr	Trp 330	Arg	Glu	Glu	Thr	Gly 335	Lys
Thr	Ala	Phe	Glu 340	Thr	Ala	Pro	Gln	Tyr 345	Glu	Gly	ГЛа	Ile	Gly 350	Glu	Gln
Glu	Tyr	Phe 355	Asp	ГЛа	Gly	Val	Leu 360	Met	Ile	Ala	Met	Val 365	Lys	Ala	Gly

-continued		
Val Glu Leu Ala Phe Glu Thr Met Val Asp Ser Gly Ile Ile Glu Glu 370 375 380		
Sio 375 380 Ser Ala Tyr Tyr Glu Ser Leu His Glu Leu Pro Leu Ile Ala Asn Thr		
385 390 395 400		
Ile Ala Arg Lys Arg Leu Tyr Glu Met Asn Val Val Ile Ser Asp Thr 405 410 415		
Ala Glu Tyr Gly Asn Tyr Leu Phe Ser Tyr Ala Cys Val Pro Leu Leu		
420 425 430 Lys Pro Phe Met Ala Glu Leu Gln Pro Gly Asp Leu Gly Lys Ala Ile		
435 440 445		
Pro Glu Gly Ala Val Asp Asn Gly Gln Leu Arg Asp Val Asn Glu Ala 450 455 460		
Ile Arg Ser His Ala Ile Glu Gln Val Gly Lys Lys Leu Arg Gly Tyr		
465 470 475 480		
Met Thr Asp Met Lys Arg Ile Ala Val Ala Gly Leu Glu His His 485 490 495		
His His His		
<210> SEQ ID NO 35		
<211> LENGTH: 1476 <212> TYPE: DNA		
<213> ORGANISM: Escherichia coli		
<400> SEQUENCE: 35 atggccaact atttaacac attaaatttg agacaacaat tggctcaact gggtaagtgc	60	
arggecaact attitaacac attaaattig agacaacaat tggetcaact gggtaagtge aqatttatgg gaaqggacga gtttgetgat ggtgettett atetgeaagg aaagaaagta	120	
gtaattgttg getgeggtge teagggteta aaccaaggtt taaacatgag agatteaggt	180	
ctggatattt cgtatgcatt gaggaaagag tctattgcag aaaaggatgc cgattggcgt	240	
aaagcgacgg aaaatgggtt caaagttggt acttacgaag aactgatccc tcaggcagat	300	
ttagtgatta acctaacacc agataaggtt cactcagacg tagtaagaac agttcaaccg	360	
ctgatgaagg atggggcagc tttaggttac tctcatggct ttaatatcgt tgaagtgggc	420	
gagcagatca gaaaagatat aacagtcgta atggttgcac caaagtgccc aggtacggaa	480	
gtcagagagg agtacaagag gggttttggt gtacctacat tgatcgccgt acatcctgaa	540	
aatgacccca aaggtgaagg tatggcaatt gcgaaggcat gggcagccgc aaccggaggt	600	
catagagegg gtgtgttaga gagttettte gtagetgagg teaagagtga ettaatgggt	660	
gaacaaacca ttctgtgcgg aatgttgcag gcagggtctt tactatgctt tgataaattg	720	
gtcgaagagg gtacagatcc tgcctatgct gaaaagttga tacaatttgg ttgggagaca	780	
atcaccgagg cacttaaaca aggtggcata acattgatga tggatagact ttcaaatccg	840	
gccaagctaa gagcctacgc cttatctgag caactaaaag agatcatggc accattattc	900	
caaaagcaca tggacgatat tatctccggt gagttttcct caggaatgat ggcagattgg	960	
gcaaacgatg ataaaaagtt attgacgtgg agagaagaaa ccggcaagac ggcattcgag	1020 1080	
acagccccac aatacgaagg taaaattggt gaacaagaat actttgataa gggagtattg atgatagcta tggtgaaggc aggggtagaa cttgcattcg aaactatggt tgactccggt	1080	
atgatageta tygtgaagge aggggtagaa ettgeatteg aaaetatggt tgaeteeggt atcattgaag aatetgeata etatgagtet ttgeatgaat tgeetttgat ageaaataet	1200	
attgcaagaa aaagacttta cgagatgaat gttgtcatat cagacactgc agaatatggt	1260	
	1200	

-continued

												0011	CIN	aoa		
aat	tact	tat t	tag	ctac	gc al	tgtgi	tcccç	g ttç	gtta	aagc	cct	tcat	ggc (cgagi	tacaa	a 1320
cct	ggtga	att t	ggg	gaago	gc ta	attco	cggaa	a gga	ageg	gttg	aca	atgg	cca a	actg	agagad	c 1380
gta	aatga	aag d	tati	tcgt1	cc a	catgo	ctata	a gaa	acag	gtgg	gta	aaaa	gct	gaga	ggatat	t 1440
atg	accga	ata t	gaa	aagaa	at te	gcagi	tggca	a gga	atga							1476
<21 <21	0> SI 1> LI 2> TY 3> OH	ENGTH YPE :	H: 4 PRT	91	nerio	chia	col:	Ĺ								
<40	0> SI	EQUEI	ICE :	36												
Met 1	Ala	Asn	Tyr	Phe 5	Asn	Thr	Leu	Asn	Leu 10	Arg	Gln	Gln	Leu	Ala 15	Gln	
Leu	Gly	Lys	Cys 20	Arg	Phe	Met	Gly	Arg 25	Asp	Glu	Phe	Ala	Asp 30	Gly	Ala	
Ser	Tyr	Leu 35	Gln	Gly	Lys	Гла	Val 40	Val	Ile	Val	Gly	Cys 45	Gly	Ala	Gln	
Gly	Leu 50	Asn	Gln	Gly	Leu	Asn 55	Met	Arg	Asp	Ser	Gly 60	Leu	Asp	Ile	Ser	
Tyr 65	Ala	Leu	Arg	Lys	Glu 70	Ser	Ile	Ala	Glu	Lys 75	Asp	Ala	Asp	Trp	Arg 80	
Lys	Ala	Thr	Glu	Asn 85	Gly	Phe	Lys	Val	Gly 90	Thr	Tyr	Glu	Glu	Leu 95	Ile	
Pro	Gln	Ala	Asp 100	Leu	Val	Ile	Asn	Leu 105	Thr	Pro	Asp	Lys	Val 110	His	Ser	
Asp	Val	Val 115	Arg	Thr	Val	Gln	Pro 120	Leu	Met	Lys	Aap	Gly 125	Ala	Ala	Leu	
Gly	Tyr 130	Ser	His	Gly	Phe	Asn 135	Ile	Val	Glu	Val	Gly 140	Glu	Gln	Ile	Arg	
Lys 145	Asp	Ile	Thr	Val	Val 150	Met	Val	Ala	Pro	Lys 155	Суз	Pro	Gly	Thr	Glu 160	
Val	Arg	Glu	Glu	Tyr 165	Lys	Arg	Gly	Phe	Gly 170	Val	Pro	Thr	Leu	Ile 175	Ala	
Val	His	Pro	Glu 180	Asn	Asp	Pro	Lys	Gly 185	Glu	Gly	Met	Ala	Ile 190	Ala	Lys	
Ala	Trp	Ala 195	Ala	Ala	Thr	Gly	Gly 200	His	Arg	Ala	Gly	Val 205	Leu	Glu	Ser	
Ser	Phe 210	Val	Ala	Glu	Val	Lys 215	Ser	Asp	Leu	Met	Gly 220	Glu	Gln	Thr	Ile	
Leu 225	Cys	Gly	Met	Leu	Gln 230	Ala	Gly	Ser	Leu	Leu 235	Сүз	Phe	Asp	Lys	Leu 240	
Val	Glu	Glu	Gly	Thr 245	Asp	Pro	Ala	Tyr	Ala 250	Glu	Lys	Leu	Ile	Gln 255	Phe	
Gly	Trp	Glu	Thr 260	Ile	Thr	Glu	Ala	Leu 265	Lys	Gln	Gly	Gly	Ile 270	Thr	Leu	
Met	Met	Asp 275		Leu	Ser	Asn	Pro 280	Ala	Lys	Leu	Arg	Ala 285	Tyr	Ala	Leu	
Ser	Glu 290	Gln	Leu	Lys	Glu	Ile 295		Ala	Pro	Leu	Phe 300	Gln	ГÀа	His	Met	
Asp 305	Asp	Ile	Ile	Ser	Gly 310	Glu	Phe	Ser	Ser	Gly 315	Met	Met	Ala	Asp	Trp 320	

-continued	

-continued	
Ala Asn Asp Asp Lys Lys Leu Leu Thr Trp Arg Glu Glu Thr Gly Lys 325 330 335	
Thr Ala Phe Glu Thr Ala Pro Gln Tyr Glu Gly Lys Ile Gly Glu Gln 340 345 350	
Glu Tyr Phe Asp Lys Gly Val Leu Met Ile Ala Met Val Lys Ala Gly	
355 360 365 Val Glu Leu Ala Phe Glu Thr Met Val Asp Ser Gly Ile Ile Glu Glu	
370 375 380	
Ser Ala Tyr Tyr Glu Ser Leu His Glu Leu Pro Leu Ile Ala Asn Thr 385 390 395 400	
Ile Ala Arg Lys Arg Leu Tyr Glu Met Asn Val Val Ile Ser Asp Thr 405 410 415	
Ala Glu Tyr Gly Asn Tyr Leu Phe Ser Tyr Ala Cys Val Pro Leu Leu	
420 425 430 Lys Pro Phe Met Ala Glu Leu Gln Pro Gly Asp Leu Gly Lys Ala Ile	
435 440 445	
Pro Glu Gly Ala Val Asp Asn Gly Gln Leu Arg Asp Val Asn Glu Ala 450 455 460	
Ile Arg Ser His Ala Ile Glu Gln Val Gly Lys Lys Leu Arg Gly Tyr 465 470 475 480	
Met Thr Asp Met Lys Arg Ile Ala Val Ala Gly	
485 490	
<210> SEQ ID NO 37 <211> LENGTH: 1494 <212> TYPE: DNA <213> ORGANISM: Escherichia coli	
<400> SEQUENCE: 37	
atggccaact attttaacac attaaatttg agacaacaat tggctcaact gggtaagtgc	60
agatttatgg gaagggacga gtttgctgat ggtgcttctt atctgcaagg aaagaaagta	120
gtaattgttg gctgcggtgc tcagggtcta aaccaaggtt taaacatgag agattcaggt	180
ctggatattt cgtatgcatt gaggaaagag tctattgcag aaaaggatgc cgattggcgt aaaqcqacqq aaaatqqqtt caaaqttqqt acttacqaaq aactqatccc tcaqqcaqat	300
ttagtgatta acctaacacc agataaggtt cactcagacg tagtaagaac agttcaaccg	360
ctgatgaagg atggggcagc tttaggttac tctcatggct ttaatatcgt tgaagtgggc	420
gagcagatca gaaaaggtat aacagtcgta atggttgcgc caaagtgccc aggtacggaa	480
gtcagagagg agtacaagag gggttttggt gtacctacat tgatcgccgt acatcctgaa	540
aatgacccca aacgtgaagg tatggcaatt gcgaaggcat gggcagccgc aaccggaggt	600
catagagegg gtgtgttaga gagttettte gtagetgagg teaagagtga ettaatgggt	660
gaacaaacca ttctgtgcgg aatgttgcag gcagggtctt tactatgctt tgataaattg	720
gtcgaagagg gtacagatcc tgcctatgct gaaaagttga tacaatttgg ttgggagaca	780
atcaccgagg cacttaaaca aggtggcata acattgatga tggatagact ttcaaatccg	840
gccaagctaa gagcctacgc cttatctgag caactaaaag agatcatggc accattattc	900
caaaagcaca tggacgatat tatctcccggt gagttttcct caggaatgat ggcagattgg	960
gcaaacgatg ataaaaagtt attgacgtgg agagaagaaa ccggcaagac ggcattcgag	1020
acagccccac aatacgaagg taaaattggt gaacaagaat actttgataa gggagtattg	1080

atgatageta tggtgaagge aggggtagaa ettgeatteg aaaetatggt tgaeteeggt	1140
atcattgaag aatctgcata ctatgagtct ttgcatgaat tgcctttgat agcaaatact	1200
attgcaagaa aaagacttta cgagatgaat gttgtcatat cagacactgc agaatatggt	1260
aattacttat ttagctacgc atgtgtcccg ttgttaaagc ccttcatggc cgagttacaa	1320
cctggtgatt tggggaaggc tattccggaa ggagcggttg acaatggcca actgagagac	1380
gtaaatgaag ctattcgttc acatgctata gaacaggtgg gtaaaaaagct gagaggatat	1440
atgaccgata tgaaaagaat tgcagtggca ggacaccacc accaccacca ctga	1494
<210> SEQ ID NO 38 <211> LENGTH: 497 <212> TYPE: PRT <213> ORGANISM: Escherichia coli	
<400> SEQUENCE: 38	
Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 1 5 10 15	
Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 20 25 30	
Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln	
35 40 45	
Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser 50 55 60	
Tyr Ala Leu Arg Lys Glu Ser Ile Ala Glu Lys Asp Ala Asp Trp Arg 65 70 75 80	
Lys Ala Thr Glu Asn Gly Phe Lys Val Gly Thr Tyr Glu Glu Leu Ile 85 90 95	
Pro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Val His Ser 100 105 110	
Asp Val Val Arg Thr Val Gln Pro Leu Met Lys Asp Gly Ala Ala Leu	
115 120 125	
Gly Tyr Ser His Gly Phe Asn Ile Val Glu Val Gly Glu Gln Ile Arg 130 135 140	
Lys Gly Ile Thr Val Val Met Val Ala Pro Lys Cys Pro Gly Thr Glu 145 150 155 160	
Val Arg Glu Glu Tyr Lys Arg Gly Phe Gly Val Pro Thr Leu Ile Ala	
165 170 175 Val His Pro Glu Asn Asp Pro Lys Arg Glu Gly Met Ala Ile Ala Lys	
180 185 190 190 195 190 195 190 195 190 199 190 190	
Ala Trp Ala Ala Ala Thr Gly Gly His Arg Ala Gly Val Leu Glu Ser 195 200 205	
Ser Phe Val Ala Glu Val Lys Ser Asp Leu Met Gly Glu Gln Thr Ile 210 215 220	
Leu Cys Gly Met Leu Gln Ala Gly Ser Leu Leu Cys Phe Asp Lys Leu	
225 230 235 240	
Val Glu Glu Gly Thr Asp Pro Ala Tyr Ala Glu Lys Leu Ile Gln Phe 245 250 255	
Gly Trp Glu Thr Ile Thr Glu Ala Leu Lys Gln Gly Gly Ile Thr Leu 260 265 270	
Met Met Asp Arg Leu Ser Asn Pro Ala Lys Leu Arg Ala Tyr Ala Leu	
275 280 285	

-	С	С	n	t	i	n	u	е	c

Ser	Glu 290	Gln	Leu	Lys	Glu	Ile 295	Met	Ala	Pro	Leu	Phe 300	Gln	Lys	His	Met	
Asp 305	Asp	Ile	Ile	Ser	Gly 310	Glu	Phe	Ser	Ser	Gly 315	Met	Met	Ala	Asp	Trp 320	
Ala	Asn	Asp	Asp	Lys 325	Lys	Leu	Leu	Thr	Trp 330	Arg	Glu	Glu	Thr	Gly 335	Lys	
Thr	Ala	Phe	Glu 340	Thr	Ala	Pro	Gln	Tyr 345	Glu	Gly	Lys	Ile	Gly 350	Glu	Gln	
Glu	Tyr	Phe 355	Asp	Lys	Gly	Val	Leu 360	Met	Ile	Ala	Met	Val 365	Lys	Ala	Gly	
Val	Glu 370	Leu	Ala	Phe	Glu	Thr 375	Met	Val	Aab	Ser	Gly 380	Ile	Ile	Glu	Glu	
Ser 385	Ala	Tyr	Tyr	Glu	Ser 390	Leu	His	Glu	Leu	Pro 395	Leu	Ile	Ala	Asn	Thr 400	
Ile	Ala	Arg	Lys	Arg 405	Leu	Tyr	Glu	Met	Asn 410	Val	Val	Ile	Ser	Asp 415	Thr	
Ala	Glu	Tyr	Gly 420	Asn	Tyr	Leu	Phe	Ser 425	Tyr	Ala	Суз	Val	Pro 430	Leu	Leu	
ГЛа	Pro	Phe 435	Met	Ala	Glu	Leu	Gln 440	Pro	Gly	Asp	Leu	Gly 445	Гла	Ala	Ile	
Pro	Glu 450	Gly	Ala	Val	Asp	Asn 455	Gly	Gln	Leu	Arg	Asp 460	Val	Asn	Glu	Ala	
Ile 465	Arg	Ser	His	Ala	Ile 470	Glu	Gln	Val	Gly	Lys 475	Lys	Leu	Arg	Gly	Tyr 480	
Met	Thr	Asp	Met	Lys 485	Arg	Ile	Ala	Val	Ala 490	Gly	His	His	His	His 495	His	
His																
<213 <212	0> SI L> LI 2> T 3> OH	ENGTI ZPE :	H: 14 DNA	476	herio	chia	coli	Ĺ								
<400)> SI	EQUEI	ICE :	39												
atg	gccaa	act a	attti	caaca	ac at	taaa	atttç	g aga	acaad	caat	tgg	ctcaa	act q	gggta	aagtgc	60
															aaagta	120
-	-				-		-		-					-	caggt	180 240
															iggcgt gcagat	300
															caaccg	360
															gtgggc	420
gago	cagat	cca g	gaaaa	aggta	at aa	acagt	cgta	a atç	ggttg	gege	caaa	agtgo	ccc a	aggta	acggaa	480
gtca	agaga	agg a	agta	caag	ag gg	ggtti	tggt	t gta	accta	acat	tgai	cege	cgt a	acato	cctgaa	540
aato	gacco	cca a	aacgi	gaa	gg ta	atggo	caatt	c gcé	gaago	gcat	999 (cage	cgc a	aacco	ggaggt	600
cata	agago	gg g	gtgtg	gttag	ga ga	agtto	cttto	c gta	ageto	gagg	tcaa	agagt	cga (cttaa	atgggt	660
gaad	caaad	cca t	tct	gtgc	gg aa	atgti	gcag	g gca	agggt	ctt	taci	catgo	ett 1	cgata	aaattg	720
gtco	gaaga	agg g	gtaca	agat	cc tç	geeta	atgct	z gaa	aaagt	tga	taca	aatti	cgg 1	tggg	gagaca	780

-continued	
atcaccgagg cacttaaaca aggtggcata acattgatga tggatagact ttcaaatccg	y 840
gccaagctaa gagcctacgc cttatctgag caactaaaag agatcatggc accattattc	900
caaaagcaca tggacgatat tatctccggt gagttttcct caggaatgat ggcagattgg	960
gcaaacgatg ataaaaagtt attgacgtgg agagaagaaa ccggcaagac ggcattcgag	1020
acageeecac aataegaagg taaaattggt gaacaagaat aetttgataa gggagtattg	1080
atgatageta tggtgaagge aggggtagaa ettgeatteg aaaetatggt tgaeteeggt	1140
atcattgaag aatctgcata ctatgagtct ttgcatgaat tgcctttgat agcaaatact	1200
attgcaagaa aaagacttta cgagatgaat gttgtcatat cagacactgc agaatatggt	1260
aattacttat ttagctacgc atgtgtcccg ttgttaaagc ccttcatggc cgagttacaa	1320
cctggtgatt tggggaaggc tattccggaa ggagcggttg acaatggcca actgagagac	: 1380
gtaaatgaag ctattcgttc acatgctata gaacaggtgg gtaaaaagct gagaggatat	1440
atgaccgata tgaaaagaat tgcagtggca ggatga	1476
<210> SEQ ID NO 40 <211> LENGTH: 491 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 40	
Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 1 5 10 15	
Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 20 25 30	
Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln 35 40 45	
Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser 50 55 60	
Tyr Ala Leu Arg Lys Glu Ser Ile Ala Glu Lys Asp Ala Asp Trp Arg 65 70 75 80	
Lys Ala Thr Glu Asn Gly Phe Lys Val Gly Thr Tyr Glu Glu Leu Ile 85 90 95	
Pro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Val His Ser 100 105 110	
Asp Val Val Arg Thr Val Gln Pro Leu Met Lys Asp Gly Ala Ala Leu 115 120 125	
Gly Tyr Ser His Gly Phe Asn Ile Val Glu Val Gly Glu Gln Ile Arg 130 135 140	
Lys Gly Ile Thr Val Val Met Val Ala Pro Lys Cys Pro Gly Thr Glu 145 150 155 160	
Val Arg Glu Glu Tyr Lys Arg Gly Phe Gly Val Pro Thr Leu Ile Ala 165 170 175	
Val His Pro Glu Asn Asp Pro Lys Arg Glu Gly Met Ala Ile Ala Lys 180 185 190	
Ala Trp Ala Ala Ala Thr Gly Gly His Arg Ala Gly Val Leu Glu Ser 195 200 205	
Ser Phe Val Ala Glu Val Lys Ser Asp Leu Met Gly Glu Gln Thr Ile 210 215 220	
Leu Cys Gly Met Leu Gln Ala Gly Ser Leu Leu Cys Phe Asp Lys Leu 225 230 235 240	

Val	Glu	Glu	Gly	Thr 245	Asp	Pro	Ala	Tyr	Ala 250	Glu	Lys	Leu	Ile	Gln 255	Phe	
Gly	Trp	Glu	Thr 260	Ile	Thr	Glu	Ala	Leu 265	Lys	Gln	Gly	Gly	Ile 270	Thr	Leu	
Met	Met	Asp 275	Arg	Leu	Ser	Asn	Pro 280	Ala	Lys	Leu	Arg	Ala 285	Tyr	Ala	Leu	
Ser	Glu 290	Gln	Leu	Lys	Glu	Ile 295	Met	Ala	Pro	Leu	Phe 300	Gln	Lys	His	Met	
Asp 305	Asp	Ile	Ile	Ser	Gly 310	Glu	Phe	Ser	Ser	Gly 315	Met	Met	Ala	Asp	Trp 320	
Ala	Asn	Asp	Asp	Lys 325	Lys	Leu	Leu	Thr	Trp 330	Arg	Glu	Glu	Thr	Gly 335	Lys	
Thr	Ala	Phe	Glu 340	Thr	Ala	Pro	Gln	Tyr 345	Glu	Gly	Lys	Ile	Gly 350	Glu	Gln	
Glu	Tyr	Phe 355	Asp	Lys	Gly	Val	Leu 360	Met	Ile	Ala	Met	Val 365	Lys	Ala	Gly	
Val	Glu 370	Leu	Ala	Phe	Glu	Thr 375	Met	Val	Asp	Ser	Gly 380	Ile	Ile	Glu	Glu	
Ser 385	Ala	Tyr	Tyr	Glu	Ser 390	Leu	His	Glu	Leu	Pro 395	Leu	Ile	Ala	Asn	Thr 400	
Ile	Ala	Arg	ГЛЗ	Arg 405	Leu	Tyr	Glu	Met	Asn 410	Val	Val	Ile	Ser	Asp 415	Thr	
Ala	Glu	Tyr	Gly 420	Asn	Tyr	Leu	Phe	Ser 425	Tyr	Ala	Сүз	Val	Pro 430	Leu	Leu	
Lys	Pro	Phe 435	Met	Ala	Glu	Leu	Gln 440	Pro	Gly	Asp	Leu	Gly 445	Lys	Ala	Ile	
Pro	Glu 450	Gly	Ala	Val	Asp	Asn 455	Gly	Gln	Leu	Arg	Asp 460	Val	Asn	Glu	Ala	
Ile 465	Arg	Ser	His	Ala	Ile 470	Glu	Gln	Val	Gly	Lys 475	LÀa	Leu	Arg	Gly	Tyr 480	
Met	Thr	Asp	Met	Lys 485	Arg	Ile	Ala	Val	Ala 490	Gly						
<213 <212	L> LH 2> TY	EQ II ENGTH YPE : RGANI	H: 14 DNA	494	herio	chia	coli	Ĺ								
		EQUEI														
															agtgc	60
															aagta	120 180
															caggt ggcgt	240
															gcagat	300
															caaccg	360
															gtgggc	420
															acggaa	480
gtca	agaga	agg a	agta	caaga	ag gé	ggtti	tggt	t gta	accta	acat	tgai	ccgc	cgt a	acato	cctgaa	540
aato	gacco	cca a	aacgi	zgaa	gg ta	atggo	caata	a gco	gaago	gcat	ggg	cage	cgc a	aacco	ggaggt	600

catagagcgg gtgtgttaga gagttettte gtagetgagg teaagagtga ettaatgggt 660 gaacaaacca ttctgtgcgg aatgttgcag gcagggtctt tactatgctt tgataaattg 720 gtcgaagagg gtacagatcc tgcctatgct gaaaagttga tacaatttgg ttgggagaca 780 atcaccgagg cacttaaaca aggtggcata acattgatga tggatagact ttcaaatccg 840 gccaagctaa gagcctacgc cttatctgag caactaaaag agatcatggc accattattc 900 caaaagcaca tggacgatat tatctccggt gagttttcct caggaatgat ggcagattgg 960 gcaaacgatg ataaaaagtt attgacgtgg agagaagaaa ccggcaagac ggcattcgag 1020 acagccccac aatacgaagg taaaattggt gaacaagaat actttgataa gggagtattg 1080 atgatageta tggtgaagge aggggtagaa ettgeatteg aaactatggt tgacteeggt 1140 1200 atcattgaag aatctgcata ctatgagtct ttgcatgaat tgcctttgat agcaaatact attgcaagaa aaagacttta cgagatgaat gttgtcatat cagacactgc agaatatggt 1260 aattacttat ttagctacgc gtgtgtcccg ttgttagagc ccttcatggc cgagttacaa 1320 cctggtgatt tggggaaggc tattccggaa ggagcggttg acaatggcca actgagagac 1380 gtaaatgaag ctattcgttc gcatgctata gaacaggtgg gtaaaaaagct gagaggatat 1440 atgaccgata tgaaaagaat tgcagtggca ggacaccacc accaccacca ctga 1494 <210> SEQ ID NO 42 <211> LENGTH: 497 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 42 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 1 10 15 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 20 25 30Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln 35 40 Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser 50 55 60 Tyr Ala Leu Arg Lys Glu Ser Ile Ala Glu Lys Asp Ala Asp Trp Arg 65 70 75 80 Lys Ala Thr Glu Asn Gly Phe Lys Val Gly Thr Tyr Glu Glu Leu Ile 85 90 95 Pro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Val His Ser 105 100 110 Asp Val Val Arg Thr Val Gln Pro Leu Met Lys Asp Gly Ala Ala Leu 115 120 125 Gly Tyr Ser His Gly Phe Asn Ile Val Glu Val Gly Glu Gln Ile Arg 135 130 140 Lys Gly Ile Thr Val Val Met Val Ala Pro Lys Cys Pro Gly Thr Glu 145 150 155 160 Val Arg Glu Glu Tyr Lys Arg Gly Phe Gly Val Pro Thr Leu Ile Ala 170 175 Val His Pro Glu Asn Asp Pro Lys Arg Glu Gly Met Ala Ile Ala Lys 180 185 190 Ala Trp Ala Ala Ala Thr Gly Gly His Arg Ala Gly Val Leu Glu Ser

-continued

-												0011	CIII	ued				 	 		
		195					200					205									
Ser	Phe 210	Val	Ala	Glu	Val	Lys 215		Asp	Leu	Met	Gly 220	Glu	Gln	Thr	Ile						
Leu 225	Суз	Gly	Met	Leu	Gln 230	Ala	Gly	Ser	Leu	Leu 235	Суз	Phe	Asp	Lys	Leu 240						
Val	Glu	Glu	Gly	Thr 245	Asp	Pro	Ala	Tyr	Ala 250	Glu	Lys	Leu	Ile	Gln 255	Phe						
Gly	Trp	Glu	Thr 260	Ile	Thr	Glu	Ala	Leu 265	Lys	Gln	Gly	Gly	Ile 270	Thr	Leu						
Met	Met	Asp 275	-	Leu	Ser	Asn	Pro 280	Ala	Lys	Leu	Arg	Ala 285	Tyr	Ala	Leu						
Ser	Glu 290	Gln	Leu	Lys	Glu	Ile 295	Met	Ala	Pro	Leu	Phe 300	Gln	Lys	His	Met						
Asp 305	Asp	Ile	Ile	Ser	Gly 310		Phe	Ser	Ser	Gly 315	Met	Met	Ala	Asp	Trp 320						
Ala	Asn	Asp	Asp	Lys 325	Lys	Leu	Leu	Thr	Trp 330	Arg	Glu	Glu	Thr	Gly 335	Lys						
Thr	Ala	Phe	Glu 340	Thr	Ala	Pro	Gln	Tyr 345	Glu	Gly	Lys	Ile	Gly 350	Glu	Gln						
Glu	Tyr	Phe 355	Asp	Lys	Gly	Val	Leu 360	Met	Ile	Ala	Met	Val 365	Lys	Ala	Gly						
Val	Glu 370	Leu	Ala	Phe	Glu	Thr 375	Met	Val	Asp	Ser	Gly 380	Ile	Ile	Glu	Glu						
Ser 385	Ala	Tyr	Tyr	Glu	Ser 390	Leu	His	Glu	Leu	Pro 395	Leu	Ile	Ala	Asn	Thr 400						
Ile	Ala	Arg	Lys	Arg 405	Leu	Tyr	Glu	Met	Asn 410	Val	Val	Ile	Ser	Asp 415	Thr						
Ala	Glu	Tyr	Gly 420	Asn	Tyr	Leu	Phe	Ser 425	Tyr	Ala	Суа	Val	Pro 430	Leu	Leu						
Glu	Pro	Phe 435	Met	Ala	Glu	Leu	Gln 440	Pro	Gly	Asp	Leu	Gly 445	Lys	Ala	Ile						
Pro	Glu 450	Gly	Ala	Val	Asp	Asn 455	-	Gln	Leu	Arg	Asp 460	Val	Asn	Glu	Ala						
Ile 465	Arg	Ser	His	Ala	Ile 470	Glu	Gln	Val	Gly	Lys 475	Lys	Leu	Arg	Gly	Tyr 480						
Met	Thr	Asp		-	-	Ile				-	His	His	His	His 495	His						
His																					
<21 <21	0> SH 1> LH 2> TY 3> OH	ENGTI ZPE :	H: 1 DNA	476	herio	chia	col	Ĺ													
<40	0> SH	EQUEI	NCE :	43																	
atg	gccaa	act a	attt	taaca	ac at	ttaa	attt	g aga	acaa	caat	tgg	ctca	act g	gggt	agtgc	60)				
															aagta	120					
															caggt	180					
															.ggcgt	240					
aaa	gcgad	gg a	aaaa	tgggi	tt ca	aaagi	ttggi	z act	tac	gaag	aact	tgat	200 1	cag	JCAGAT	300)				

			-
-con	t. 1	nı	led

ttagtgatta acctaacacc agataaggtt cactcagacg tagtaagaac agttcaaccg	360
ctgatgaagg atggggcagc tttaggttac tctcatggct ttaatatcgt tgaagtgggc	420
gagcagatca gaaaaggtat aacagtcgta atggttgcgc caaagtgccc aggtacggaa	480
gtcagagagg agtacaagag gggttttggt gtacctacat tgatcgccgt acatcctgaa	540
aatgacccca aacgtgaagg tatggcaata gcgaaggcat gggcagccgc aaccggaggt	600
catagagegg gtgtgttaga gagttettte gtagetgagg teaagagtga ettaatgggt	660
gaacaaacca ttctgtgcgg aatgttgcag gcagggtctt tactatgctt tgataaattg	720
gtcgaagagg gtacagatcc tgcctatgct gaaaagttga tacaatttgg ttgggagaca	780
atcaccgagg cacttaaaca aggtggcata acattgatga tggatagact ttcaaatccg	840
gccaagctaa gagcctacgc cttatctgag caactaaaag agatcatggc accattattc	900
caaaagcaca tggacgatat tatctccggt gagttttcct caggaatgat ggcagattgg	960
gcaaacgatg ataaaaagtt attgacgtgg agagaagaaa ccggcaagac ggcattcgag	1020
acagccccac aatacgaagg taaaattggt gaacaagaat actttgataa gggagtattg	1080
atgatageta tggtgaagge aggggtagaa ettgeatteg aaaetatggt tgaeteeggt	1140
atcattgaag aatctgcata ctatgagtct ttgcatgaat tgcctttgat agcaaatact	1200
attgcaagaa aaagacttta cgagatgaat gttgtcatat cagacactgc agaatatggt	1260
aattacttat ttagctacgc gtgtgtcccg ttgttagagc ccttcatggc cgagttacaa	1320
cctggtgatt tggggaaggc tattccggaa ggagcggttg acaatggcca actgagagac	1380
gtaaatgaag ctattcgttc gcatgctata gaacaggtgg gtaaaaaagct gagaggatat	1440
atgaccgata tgaaaagaat tgcagtggca ggatga	1476
<210> SEQ ID NO 44 <211> LENGTH: 491	
<212> TYPE: PRT <213> ORGANISM: Escherichia coli	
<212> TYPE: PRT	
<212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 44	
<212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 44 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln	
<212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 44 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 1 5 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 20 25 30	
<212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 44 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 1 5 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala	
<212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 44 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 1 1 5 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 20 Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln	
<pre><212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 44 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 1 10 and and and and and and a sp Gly Ala Gln 2 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 3 Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln 4 35 Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser</pre>	
<pre><212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 44 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 1 10 Phe Ala Asp Gly Ala Gln 1 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 30 Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln 4 35 Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser 60 Tyr Ala Leu Arg Lys Glu Ser Ile Ala Glu Lys Asp Ala Asp Trp Arg</pre>	
<pre><212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 44 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 1 10</pre>	
<pre><212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 44 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 1 10 and and and and and and and and and and</pre>	
<pre><212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEQUENCE: 44 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 1 10 Phe Ala Asp Gly Ala Gln Ala 1 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 30 Ser Tyr Leu Gln Gly Lys Lys Val Val 1le Val Gly Cys Gly Ala Gln Ala 30 Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser 6 50 Phe Ala Asp Trp Arg 80 Tyr Ala Leu Arg Lys Glu Ser Ile Ala Glu Lys Asp Ala Asp Trp Arg 80 Lys Ala Thr Glu Asn Gly Phe Lys Val Gly Thr Tyr Glu Glu Leu 1le 9 Pro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Val His Ser 1 Asp Val Val Arg Thr Val Gln Pro Leu Met Lys Asp Gly Ala Ala Leu</pre>	

-continued

											-	con	tın	ued	
145					150					155					160
Val	Arg	Glu	Glu	Tyr 165	-	Arg	Gly	Phe	Gly 170	Val	Pro	Thr	Leu	Ile 175	Ala
Val	His	Pro	Glu 180		Asp	Pro	Lys	Arg 185	Glu	Gly	Met	Ala	Ile 190	Ala	Гла
Ala	Trp	Ala 195	Ala	Ala	Thr	Gly	Gly 200		Arg	Ala	Gly	Val 205	Leu	Glu	Ser
Ser	Phe 210		Ala	Glu	Val	Lys 215	Ser		Leu	Met	Gly 220		Gln	Thr	Ile
		Gly	Met	Leu		Ala		Ser	Leu		Cys	Phe	Asp	Lys	
225 Val	Glu	Glu	Gly	Thr	230 Asp	Pro	Ala	Tyr	Ala	235 Glu		Leu	Ile	Gln	240 Phe
Glv	ሞrኮ	Glu	Thr	245 Tle		Glu	۵la	Leu	250 Lvs	Gln	Glv	Glv	TIA	255 Thr	Leu
-	-		260					265	-		-	-	270		
Met	Met	Asp 275	-	Leu	Ser	Asn	Pro 280		Lys	Leu	Arg	Ala 285	Tyr	Ala	Leu
Ser	Glu 290	Gln	Leu	Lys	Glu	Ile 295		Ala	Pro	Leu	Phe 300	Gln	Lys	His	Met
Asp 305	-	Ile	Ile	Ser	Gly 310	Glu	Phe	Ser	Ser	Gly 315		Met	Ala	Asp	Trp 320
Ala	Asn	Asp	Asp	Lys 325		Leu	Leu	Thr	Trp 330	Arg	Glu	Glu	Thr	Gly 335	Гла
Thr	Ala	Phe	Glu 340		Ala	Pro	Gln	Tyr 345	Glu	Gly	Lys	Ile	Gly 350	Glu	Gln
Glu	Tyr	Phe 355			Gly	Val	Leu 360	Met	Ile	Ala	Met	Val 365	Lys	Ala	Gly
Val			Ala	Phe	Glu	Thr	Met		Asp	Ser	-		Ile	Glu	Glu
Ser	370 Ala	Tyr	Tyr	Glu	Ser	375 Leu		Glu	Leu	Pro	380 Leu	Ile	Ala	Asn	Thr
385		-	-		390					395					400
			-	405		-			410					415	
Ala	Glu	Tyr	Gly 420		Tyr	Leu	Phe	Ser 425	Tyr	Ala	САа	Val	Pro 430	Leu	Leu
Glu	Pro	Phe 435	Met	Ala	Glu	Leu	Gln 440		Gly	Asp		Gly 445		Ala	Ile
Pro	Glu 450	Gly	Ala	Val	Asp	Asn 455		Gln	Leu	Arg	Asp 460	Val	Asn	Glu	Ala
Ile 465	Arg	Ser	His	Ala	Ile 470	Glu	Gln	Val	Gly	Lys 475	Lys	Leu	Arg	Gly	Tyr 480
Met	Thr	Asp	Met	Lys 485	Arg	Ile	Ala	Val	Ala 490	Gly					
<211)> SH L> LH	ENGTI	H: 1	647											
	2> T) 3> OF				toco	ccus	lac	tis							
<400)> SI	EQUEI	NCE :	45											
atgt	tatad	cag	tagg	agat	ta c	ctat	taga	c cg	atta	cacg	agt	tagg	aat 1	tgaa	gaaat
tttç	ggagt	tcc (ctgg	agac	ta t	aact	taca	a tt	ttta	gatc	aaa	ttat	ttc (ccgca	aagga

atgaaatggg tcggaaatgc taatgaatta aatgcttcat atatggctga tggctatg	ct 180
cgtactaaaa aagctgccgc atttcttaca acctttggag taggtgaatt gagtgcag	tt 240
aatggattag caggaagtta cgccgaaaat ttaccagtag tagaaatagt gggatcac	ect 300
acatcaaaag ttcaaaatga aggaaaattt gttcatcata cgctggctga cggtgatt	tt 360
aaacacttta tgaaaatgca cgaacctgtt acagcagctc gaactttact gacagcag	aa 420
aatgcaaccg ttgaaattga ccgagtactt tctgcactat taaaagaaag aaaacctg	tc 480
tatatcaact taccagttga tgttgctgct gcaaaagcag agaaaccctc actccctt	tg 540
aaaaaagaaa actcaacttc aaatacaagt gaccaagaga tcttgaacaa aattcaag	aa 600
agcttgaaaa atgccaaaaa accaatcgtg attacaggac atgaaataat tagttttg	gc 660
ttagaaaaaa cagtctctca atttatttca aagacaaaac tacctattac gacattaa	ac 720
tttggaaaaa gttcagttga tgaagctctc ccttcatttt taggaatcta taatggta	aa 780
ctctcagagc ctaatcttaa agaattcgtg gaatcagccg acttcatcct gatgcttg	ga 840
gttaaactca cagactcttc aacaggagcc ttcactcatc atttaaatga aaataaaa	tg 900
atttcactga atatagatga aggaaaaata tttaacgaaa gcatccaaaa ttttgatt	tt 960
gaatccctca tctcctctc cttagaccta agcgaaatag aatacaaagg aaaatata	tc 1020
gataaaaagc aagaagactt tgttccatca aatgcgcttt tatcacaaga ccgcctat	gg 1080
caagcagttg aaaacctaac tcaaagcaat gaaacaatcg ttgctgaaca agggacat	ca 1140
ttetttggeg etteateaat tttettaaaa eeaaagagte attttattgg teaaeeet	ta 1200
tggggatcaa ttggatatac attcccagca gcattaggaa gccaaattgc agataaag	aa 1260
agcagacacc ttttatttat tggtgatggt tcacttcaac ttacggtgca agaattag	ga 1320
ttagcaatca gagaaaaaat taatccaatt tgctttatta tcaataatga tggttata	ca 1380
gtcgaaagag aaattcatgg accaaatcaa agctacaatg atattccaat gtggaatt	ac 1440
tcaaaattac cagaatcatt tggagcaaca gaagaacgag tagtctcgaa aatcgtta	ga 1500
actgaaaatg aatttgtgtc tgtcatgaaa gaagctcaag cagatccaaa tagaatgt	ac 1560
tggattgagt taattttggc aaaagaagat gcaccaaaag tactgaaaaa aatgggca	aa 1620
ctatttgctg aacaaaataa atcataa	1647
<210> SEQ ID NO 46 <211> LENGTH: 1647 <212> TYPE: DNA <213> ORGANISM: Lactococcus lactis <400> SEQUENCE: 46	
atgtatactg ttggtgatta tctgctggat cgtctgcatg aactgggtat tgaggaga	tc 60
tttggtgttc cgggcgacta caacctgcag ttcctggatc agatcatttc ccgtaagg	
atgaaatggg ttggcaacgc caacgagctg aatgctagct atatggctga tggttatg	
cgtaccaaaa aggoggotgo ottoctgacc acgttoggtg ttggogaact gtotgcog	
aacggcotgg ctggtagcta tgctgagaac ctgccagtgg ttgaaattgt tggttctc	
accycledy clygragica cycryagaac cryclagiyg rigaaaliy rygroot accictaaag ticagaacga aggtaaatto gigcatcaca cictggciga cggigatt	
aaacacttca tgaaaatgca cgagcoggtg accgctgccc gtactctgct gacggctg	
aacgegaetg tggagatega eegtgtgetg tetgeaetge tgaaagageg taaacegg	109 100

tacattaacc tgccggtgga tgtcgccgca gctaaagcag agaaaccgtc tctgccgctg	540
aaaaaggaga acagcacgtc taacacgtcc gatcaggaga tcctgaacaa aatccaggag	600
tccctgaaaa acgcgaagaa accgatcgta atcactggtc atgaaattat cagctttggc	660
ctggaaaaga ctgtaagcca gtttatctct aaaaccaaac tgccgatcac cactctgaat	720
ttcggcaaaa gcagcgttga tgaggcactg ccttccttcc tgggcattta taacggtaaa	780
ctgtccgagc cgaacctgaa agagttcgtt gagtccgccg atttcattct gatgctgggc	840
gtcaaactga ctgactcttc tactggtgcc ttcacccacc acctgaacga aaacaaaatg	900
atttccctga acattgatga gggtaaaatc ttcaacgaaa gcatccagaa cttcgacttc	960
gaatetetga teteetetet getggatetg agegagateg aatacaaggg caaatacatt	1020
gataagaaac aggaggactt cgttccgtct aacgctctgc tgagccagga ccgtctgtgg	1080
caggcagtcg aaaacctgac ccagtccaac gaaaccatcg ttgcagagca gggtacttcc	1140
ttetteggtg cetettetat etteetgaaa eegaagteee aetteattgg eeageegetg	1200
tggggtagca tcggctatac cttccctgca gctctgggtt ctcagattgc ggataaagaa	1260
tetegecate tgetgtteat eggegaegge ageetgeage tgaeegttea ggaaetggge	1320
ctggctatcc gtgaaaagat caacccaatt tgcttcatca tcaataacga cggttacact	1380
gtggaacgcg agatccacgg tccgaaccag tcttacaacg atatcccgat gtggaactac	1440
tccaagctgc cagagagett eggtgetaet gaggaaegtg tegttageaa gategtaege	1500
accgaaaatg agttcgtaag cgttatgaaa gaagctcaag ctgatccgaa ccgcatgtat	1560
tggatcgagc tgatcctggc aaaagaggat gccccaaaag ttctgaagaa aatgggcaaa	1620
ctgttcgccg agcaaaacaa atcataa	1647
<210> SEQ ID NO 47 <211> LENGTH: 548 <212> TYPE: PRT <213> ORGANISM: Lactococcus lactis	
<400> SEQUENCE: 47	
Met Tyr Thr Val Gly Asp Tyr Leu Leu Asp Arg Leu His Glu Leu Gly 1 5 10 15	
Ile Glu Glu Ile Phe Gly Val Pro Gly Asp Tyr Asn Leu Gln Phe Leu	
20 25 30	
Asp Gln Ile Ile Ser Arg Lys Asp Met Lys Trp Val Gly Asn Ala Asn 35 40 45	
Glu Leu Asn Ala Ser Tyr Met Ala Asp Gly Tyr Ala Arg Thr Lys Lys 50 55 60	
Ala Ala Ala Phe Leu Thr Thr Phe Gly Val Gly Glu Leu Ser Ala Val 65 70 75 80	
Asn Gly Leu Ala Gly Ser Tyr Ala Glu Asn Leu Pro Val Val Glu Ile	
ASII GIY LEU AIA GIY SEI IYI AIA GIU ASII LEU PIO VAI VAI GIU IIE 85 90 95	
Val Gly Ser Pro Thr Ser Lys Val Gln Asn Glu Gly Lys Phe Val His 100 105 110	
His Thr Leu Ala Asp Gly Asp Phe Lys His Phe Met Lys Met His Glu 115 120 125	
Pro Val Thr Ala Ala Arg Thr Leu Leu Thr Ala Glu Asn Ala Thr Val	
130 135 140	

								-
-	С	01	nt	1	n	u	е	a

											-	con	tin	ued						
Glu 145	Ile	Asp	Arg	Val	Leu 150	Ser	Ala	Leu	Leu	Lys 155	Glu	Arg	Lys	Pro	Val 160					
Tyr	Ile	Asn	Leu	Pro 165	Val	Asp	Val	Ala	Ala 170	Ala	Lys	Ala	Glu	Lys 175	Pro					
Ser	Leu	Pro	Leu 180	Lys	Lys	Glu	Asn	Ser 185	Thr	Ser	Asn	Thr	Ser 190	Asp	Gln					
Glu	Ile	Leu 195	Asn	Lys	Ile	Gln	Glu 200	Ser	Leu	Lys	Asn	Ala 205	Гла	Lys	Pro					
Ile	Val 210	Ile	Thr	Gly	His	Glu 215	Ile	Ile	Ser	Phe	Gly 220	Leu	Glu	Lys	Thr					
Val 225	Ser	Gln	Phe	Ile	Ser 230	Lys	Thr	Lys	Leu	Pro 235	Ile	Thr	Thr	Leu	Asn 240					
Phe	Gly	Lys	Ser	Ser 245	Val	Asp	Glu	Ala	Leu 250	Pro	Ser	Phe	Leu	Gly 255	Ile					
Tyr	Asn	Gly	Lys 260	Leu	Ser	Glu	Pro	Asn 265	Leu	Lys	Glu	Phe	Val 270	Glu	Ser					
Ala	Asp	Phe 275	Ile	Leu	Met	Leu	Gly 280	Val	Lys	Leu	Thr	Asp 285	Ser	Ser	Thr					
Gly	Ala 290	Phe	Thr	His	His	Leu 295	Asn	Glu	Asn	Lys	Met 300	Ile	Ser	Leu	Asn					
Ile 305	Asp	Glu	Gly	Lys	Ile 310	Phe	Asn	Glu	Ser	Ile 315	Gln	Asn	Phe	Asp	Phe 320					
	Ser	Leu	Ile	Ser 325		Leu	Leu	Asp	Leu 330	Ser	Glu	Ile	Glu	Tyr 335						
Gly	Lys	Tyr	Ile 340	Asp	Гла	Гла	Gln	Glu 345	Asp	Phe	Val	Pro	Ser 350	Asn	Ala					
Leu	Leu	Ser 355		Asp	Arg	Leu	Trp 360		Ala	Val	Glu	Asn 365		Thr	Gln					
Ser	Asn 370		Thr	Ile	Val	Ala 375		Gln	Gly	Thr	Ser 380		Phe	Gly	Ala					
Ser 385		Ile	Phe	Leu	Lys 390		Lys	Ser	His	Phe 395		Gly	Gln	Pro	Leu 400					
	Gly	Ser	Ile	Gly 405		Thr	Phe	Pro	Ala 410		Leu	Gly	Ser	Gln 415						
Ala	Aab	Lys	Glu 420		Arg	His	Leu	Leu 425	Phe	Ile	Gly	Asp	Gly 430		Leu					
Gln	Leu			Gln	Glu	Leu			Ala	Ile	Arg			Ile	Asn					
Pro			Phe	Ile	Ile			Asp	Gly	Tyr		445 Val	Glu	Arg	Glu					
	450 His		Pro	Asn		455 Ser		Asn	Asp		460 Pro	Met	Trp	Asn						
465 Ser	Lys	Leu	Pro		470 Ser	Phe	Gly	Ala	Thr	475 Glu	Glu	Arg	Val		480 Ser					
Lys	Ile	Val		485 Thr	Glu	Asn	Glu		490 Val	Ser	Val	Met		495 Glu	Ala					
Gln	Ala	-	500 Pro	Asn	Arg		-	505 Trp	Ile	Glu	Leu		510 Leu	Ala	Lys					
Glu	-	515 Ala	Pro	Гла	Val	Leu	-	Lys	Met	Gly	-	525 Leu	Phe	Ala	Glu					
Gln	530 Asn	Lys	Ser			535					540									

119

<210> SEQ ID NO 48 <211> LENGTH: 1647 <212> TYPE: DNA <213> ORGANISM: Lactococcus lactis <400> SEOUENCE: 48 atgtatactg ttggtgatta tctgctggac cgtctgcatg aactgggtat cgaagaaatc 60 ttcggcgttc cgggtgatta caatctgcag ttcctggatc agatcatctc tcataaagac 120 atgaaatggg tgggtaacgc taacgaactg aacgcaagct acatggcaga tggttatgca 180 cgtaccaaga aagccgcggc atttctgacc actttcggtg ttggcgaact gagcgccgtc 240 aacggtctgg cgggctccta cgccgaaaac ctgccggtgg tggagatcgt aggcagccca 300 acgagcaaag ttcagaacga aggtaaattc gtccaccaca ctctggctga cggcgatttc 360 aaacacttca tgaaaatgca tgaacctgtg actgcggcac gtacgctgct gactgcagag 420 aacgctactg tggaaatcga ccgcgttctg tctgcgctgc tgaaagaacg caaaccagtt 480 tacatcaacc tgcctgtgga tgttgcggca gctaaagcgg aaaaaccgag cctgccgctg 540 aagaaagaaa actccacttc taacactagc gaccaggaaa tcctgaacaa aatccaggag 600 tetetgaaaa acgcaaagaa accaategtg ateaceggee acgaaateat ttettttggt 660 ctggagaaga ccgtgaccca attcatcagc aaaaccaaac tgccgattac caccctgaac 720 ttcggcaagt cetetgttga cgaggetetg cegtetttee tgggcateta caacggtaet 780 ctqaqcqaac cqaacctqaa aqaatttqtt qaatctqcqq acttcatcct qatqctqqqc 840 gttaaactga ccgactcttc taccggtgca ttcactcacc atctgaacga aaacaaaatg 900 attageetga acategaega gggtaaaate tteaaegage gtateeagaa ettegaette 960 gaaagcctga tcagctctct gctggacctg tccgaaatcg agtataaagg caaatacatt 1020 gacaaaaaagc aagaagattt cgtaccatct aacgcactgc tgtcccagga tcgcctgtgg 1080 caggccgtgg agaacctgac ccagagcaat gaaaccatcg tggcggaaca aggtacgagc 1140 tttttcqqcq cqtcttctat ctttctqaaa tccaaaaqcc attttatcqq tcaqccqctq 1200 tggggtagca ttggctatac tttcccggca gcgctgggct ctcagatcgc tgataaagaa 1260 tetegteate tgetgtteat eggtgaeggt teeetgeage tgaeegtaea ggaaetgggt 1320 ctggcaattc gtgaaaagat caacccgatt tgcttcatta ttaacaatga cggctacacc 1380 gttgagcgtg agatecaegg teegaaceag tettacaaeg atatecetat gtggaaetae 1440 tctaaactgc cggagtcctt cggcgcaact gaggaccgtg ttgtgtctaa aattgtgcgt 1500 accgaaaacg aatttgtgag cgtgatgaaa gaggcccagg ccgatccgaa ccgtatgtac 1560 tggatcgaac tgatcctggc gaaagaaggc gcaccgaagg tactgaagaa aatgggcaag 1620 ctgtttgctg aacagaataa atcctaa 1647 <210> SEQ ID NO 49 <211> LENGTH: 548 <212> TYPE: PRT <213> ORGANISM: Lactococcus lactis

<400> SEQUENCE: 49 Met Tyr Thr Val Gly Asp Tyr Leu Leu Asp Arg Leu His Glu Leu Gly 5 10 1

	n			

Ile Glu Glu	Ile Phe 20	Gly Val	Pro	Gly 25	Asp	Tyr	Asn	Leu	Gln 30	Phe	Leu
Asp Gln Ile 35	Ile Ser	His Lys	Asp 40	Met	Lys	Trp	Val	Gly 45	Asn	Ala	Asn
Glu Leu Asn 50	Ala Ser	Tyr Met 55	Ala	Asp	Gly	Tyr	Ala 60	Arg	Thr	Lys	Lys
Ala Ala Ala 65	Phe Leu	Thr Thr 70	Phe	Gly	Val	Gly 75	Glu	Leu	Ser	Ala	Val 80
Asn Gly Leu	Ala Gly 85	Ser Tyr	Ala	Glu	Asn 90	Leu	Pro	Val	Val	Glu 95	Ile
Val Gly Ser	Pro Thr 100	Ser Lys	Val	Gln 105	Asn	Glu	Gly	Lys	Phe 110	Val	His
His Thr Leu 115		Gly Asp	Phe 120	Lys	His	Phe	Met	Lys 125	Met	His	Glu
Pro Val Thr 130	Ala Ala	Arg Thr 135	Leu	Leu	Thr	Ala	Glu 140	Asn	Ala	Thr	Val
Glu Ile Asp 145	Arg Val	Leu Ser 150	Ala	Leu	Leu	Lys 155	Glu	Arg	Lys	Pro	Val 160
Tyr Ile Asn	Leu Pro 165	Val Asp	Val	Ala	Ala 170	Ala	Lys	Ala	Glu	Lys 175	Pro
Ser Leu Pro	Leu Lys 180	Lys Glu	Asn	Ser 185	Thr	Ser	Asn	Thr	Ser 190	Asp	Gln
Glu Ile Leu 195	-	Ile Gln	Glu 200	Ser	Leu	Lys	Asn	Ala 205	Lys	ГЛа	Pro
Ile Val Ile 210	Thr Gly	His Glu 215	Ile	Ile	Ser	Phe	Gly 220	Leu	Glu	Lys	Thr
Val Thr Gln 225	Phe Ile	Ser Lys 230	Thr	Lys	Leu	Pro 235	Ile	Thr	Thr	Leu	Asn 240
Phe Gly Lys	Ser Ser 245	Val Asp	Glu	Ala	Leu 250	Pro	Ser	Phe	Leu	Gly 255	Ile
Tyr Asn Gly	Thr Leu 260	Ser Glu	Pro	Asn 265	Leu	Lys	Glu	Phe	Val 270	Glu	Ser
Ala Asp Phe 275		Met Leu	Gly 280	Val	Lys	Leu	Thr	Asp 285	Ser	Ser	Thr
Gly Ala Phe 290	Thr His	His Leu 295	Asn	Glu	Asn	ГÀа	Met 300	Ile	Ser	Leu	Asn
Ile Asp Glu 305	Gly Lys	Ile Phe 310	Asn	Glu	Arg	Ile 315	Gln	Asn	Phe	Asp	Phe 320
Glu Ser Leu	325			-	330					335	-
Gly Lys Tyr	Ile Asp 340	Гла Гла	Gln	Glu 345	Asp	Phe	Val	Pro	Ser 350	Asn	Ala
Leu Leu Ser 355		Arg Leu	Trp 360	Gln	Ala	Val	Glu	Asn 365	Leu	Thr	Gln
Ser Asn Glu 370	Thr Ile	Val Ala 375	Glu	Gln	Gly	Thr	Ser 380	Phe	Phe	Gly	Ala
Ser Ser Ile 385	Phe Leu	Lys Ser 390	Lys	Ser	His	Phe 395	Ile	Gly	Gln	Pro	Leu 400
Trp Gly Ser	Ile Gly 405	Tyr Thr	Phe	Pro	Ala 410	Ala	Leu	Gly	Ser	Gln 415	Ile

-continued	
Ala Asp Lys Glu Ser Arg His Leu Leu Phe Ile Gly Asp Gly Ser Leu 420 425 430	
Gln Leu Thr Val Gln Glu Leu Gly Leu Ala Ile Arg Glu Lys Ile Asn 435 440 445	
Pro Ile Cys Phe Ile Ile Asn Asn Asp Gly Tyr Thr Val Glu Arg Glu 450 455 460	
Ile His Gly Pro Asn Gln Ser Tyr Asn Asp Ile Pro Met Trp Asn Tyr 465 470 475 480	
Ser Lys Leu Pro Glu Ser Phe Gly Ala Thr Glu Asp Arg Val Val Ser 485 490 495	
Lys Ile Val Arg Thr Glu Asn Glu Phe Val Ser Val Met Lys Glu Ala	
500 505 510 Gln Ala Asp Pro Asn Arg Met Tyr Trp Ile Glu Leu Ile Leu Ala Lys	
515 520 525 Glu Gly Ala Pro Lys Val Leu Lys Lys Met Gly Lys Leu Phe Ala Glu	
530 535 540	
Gln Asn Lys Ser 545	
<210> SEQ ID NO 50 <211> LENGTH: 1851	
<211> DENGIN: 1831 <212> TYPE: DNA <213> ORGANISM: Escherichia coli	
<400> SEQUENCE: 50	
atgeetaagt acegtteege caceaceact catggtegta atatggeggg tgetegtgeg	60
ctgtggcgcg ccaccggaat gaccgacgcc gatttcggta agccgattat cgcggttgtg	120
aactogttoa occaatttgt acogggtoac gtocatotgo gogatotogg taaactggto	180
gccgaacaaa ttgaagcggc tggcggcgtt gccaaagagt tcaacaccat tgcggtggat	240
gatgggattg ccatgggcca cggggggatg ctttattcac tgccatctcg cgaactgatc	300
gctgattccg ttgagtatat ggtcaacgcc cactgcgccg acgccatggt ctgcatctct	360
aactgegaca aaatcaceee ggggatgetg atggetteee tgegeetgaa tatteeggtg	420
atetttgttt ceggeggeee gatggaggee gggaaaaeea aaettteega teagateate	480
aagetegate tggttgatge gatgateeag ggegeagaee egaaagtate tgaeteeeag	540
agegateagg ttgaaegtte egegtgteeg acetgeggtt eetgeteegg gatgtttaee	600
gctaactcaa tgaactgcct gaccgaagcg ctgggcctgt cgcagccggg caacggctcg	660
ctgctggcaa cccacgccga ccgtaagcag ctgttcctta atgctggtaa acgcattgtt	720
gaattgacca aacgttatta cgagcaaaac gacgaaagtg cactgccgcg taatatcgcc	780
agtaaggegg egtttgaaaa egecatgaeg etggatateg egatgggtgg ategaetaae	840
accgtacttc acctgctggc ggcggcgcag gaagcggaaa tcgacttcac catgagtgat	900
atcgataagc tttcccgcaa ggttccacag ctgtgtaaag ttgcgccgag cacccagaaa	960
taccatatgg aagatgttca ccgtgctggt ggtgttatcg gtattctcgg cgaactggat	1020
cgcgcgggggt tactgaaccg tgatgtgaaa aacgtacttg gcctgacgtt gccgcaaacg	1080
ctggaacaat acgacgttat gctgacccag gatgacgcgg taaaaaatat gttccgcgca	1140
ggtcctgcag gcattcgtac cacacaggca ttctcgcaag attgccgttg ggatacgctg	1200
gacgacgatc gcgccaatgg ctgtatccgc tcgctggaac acgcctacag caaagacggc	1260

-cont	inued	
- COIIC	THUER	

ggcctggcgg tgctctacgg taactttgcg gaaaacggct gcatcgtgaa aacggcaggc 1320 gtcgatgaca gcatcctcaa attcaccggc ccggcgaaag tgtacgaaag ccaggacgat 1380 gcggtagaag cgattetegg eggtaaagtt gtegeeggag atgtggtagt aattegetat 1440 gaaggeeega aaggeggtee ggggatgeag gaaatgetet acceaaceag etteetgaaa 1500 tcaatgggtc tcggcaaagc ctgtgcgctg atcaccgacg gtcgtttctc tggtggcacc 1560 tetggtettt ceateggeea egteteaceg gaageggeaa geggeggeag eattggeetg 1620 1680 attgaagatg gtgacctgat cgctatcgac atcccgaacc gtggcattca gttacaggta agcgatgccg aactggcggc gcgtcgtgaa gcgcaggacg ctcgaggtga caaagcctgg 1740 acgeegaaaa ategtgaaeg teaggtetee tttgeeetge gtgettatge eageetggea 1800 accagegeeg acaaaggege ggtgegegat aaategaaae tggggggtta a 1851 <210> SEQ ID NO 51 <211> LENGTH: 1851 <212> TYPE: DNA <213> ORGANISM: Escherichia coli <400> SEQUENCE: 51 atgeetaaat ategeagege aactaetaee caeggeegea acatggeagg egegegtget 60 120 ctqtqqcqtq cqactqqtat qactqatqcq qactttqqca aaccaatcat tqctqtqqtt aatagettta etcagttegt tecaggeeat gtteacetge gtgaeetggg eaagetggtt 180 gcggagcaga tcgaggctgc gggtggtgtg gcgaaggaat ttaacaccat cgctgttgac 240 gacggtatcg cgatgggtca tggtggtatg ctgtacagcc tgccgagccg tgagctgatt 300 gcggacagcg tggaatacat ggttaatgcg cattgtgcgg atgcgatggt ttgtattagc 360 aactqtqata aqattactcc aqqtatqctq atqqcqaqcc tqcqtctqaa catcccaqtt 420 attttcgtga gcggtggtcc aatggaagcg ggtaagacta agctgagcga ccagattatc 480 aaactggacc tggtggacgc tatgattcaa ggtgctgatc caaaggttag cgatagccaa 540 tetgaceaag tggagegeag egettgeeea aettgtggea getgtagegg tatgtteaet 600 gcgaatagca tgaattgtct gactgaggct ctgggtctga gccaaccagg taatggtagc 660 ctgctggcga ctcatgcgga tcgcaaacaa ctgtttctga acgcgggcaa gcgtatcgtg 720 gagetgaeta agegetaeta tgaacagaat gatgagteeg egetgeeaeg caacattgeg 780 tccaaagctg ctttcgagaa tgcgatgacc ctggacattg ctatgggcgg tagcaccaat 840 actgttctgc atctgctggc tgctgctcaa gaggctgaga ttgattttac tatgtccgac 900 attgacaaac tgagccgtaa agtgccgcaa ctgtgcaagg tggctccatc tactcaaaag 960 tatcacatgg aggacgtgca tcgcgcgggt ggcgtgattg gcatcctggg tgagctggac 1020 cgtgctggtc tgctgaatcg cgacgttaag aatgttctgg gtctgaccct gccacagacc 1080 ctggagcagt atgatgtgat gctgactcaa gacgatgctg ttaagaacat gtttcgtgct 1140 ggtccggcgg gtatccgcac tacccaagcg tttagccagg actgtcgctg ggacaccctg 1200 gatgatgacc gtgcgaacgg ttgcattcgt agcctggaac atgcgtattc taaggatggt 1260 ggtctggctg ttctgtatgg caatttcgct gagaatggtt gtattgttaa gaccgcgggt 1320 gttgacgatt ctattctgaa gtttactggt ccagctaagg tttatgagtc tcaagatgac 1380 1440 gctqttqaqq ctatcctqqq tqqcaaqqtq qttqcqqqtq acqttqttqt tatccqttac

gagggtccaa agggtggccc aggtatgcaa gagatgctgt atccgacttc ttttctgaag	1500
agcatgggcc tgggtaaggc gtgcgctctg attactgatg gccgctttag cggcggtact	1560
ageggeetga geattggtea tgttageeea gaggetgegt etggtggtte tateggtetg	1620
atcgaggacg gcgatctgat tgcgattgat attccaaatc gcggtatcca actgcaagtt	1680
tetgaegegg agetggetge tegeegegag geteaagatg egegtggega taaggegtgg	1740
accccaaaga accgcgagcg ccaagttagc ttcgcgctgc gcgcgtacgc ctctctggcg	1800
acttctgcgg ataagggtgc tgttcgtgac aagagcaagc tgggtggcta a	1851
<210> SEQ ID NO 52 <211> LENGTH: 616 <212> TYPE: PRT <213> ORGANISM: Escherichia coli	
<400> SEQUENCE: 52	
Met Pro Lys Tyr Arg Ser Ala Thr Thr Thr His Gly Arg Asn Met Ala 1 5 10 15	
Gly Ala Arg Ala Leu Trp Arg Ala Thr Gly Met Thr Asp Ala Asp Phe 20 25 30	
Gly Lys Pro Ile Ile Ala Val Val Asn Ser Phe Thr Gln Phe Val Pro 35 40 45	
Gly His Val His Leu Arg Asp Leu Gly Lys Leu Val Ala Glu Gln Ile 50 55 60	
Glu Ala Ala Gly Gly Val Ala Lys Glu Phe Asn Thr Ile Ala Val Asp	
65 70 75 80	
Asp Gly Ile Ala Met Gly His Gly Gly Met Leu Tyr Ser Leu Pro Ser 85 90 95	
Arg Glu Leu Ile Ala Asp Ser Val Glu Tyr Met Val Asn Ala His Cys 100 105 110	
Ala Asp Ala Met Val Cys Ile Ser Asn Cys Asp Lys Ile Thr Pro Gly 115 120 125	
Met Leu Met Ala Ser Leu Arg Leu Asn Ile Pro Val Ile Phe Val Ser 130 135 140	
Gly Gly Pro Met Glu Ala Gly Lys Thr Lys Leu Ser Asp Gln Ile Ile	
145 150 155 160	
Lys Leu Asp Leu Val Asp Ala Met Ile Gln Gly Ala Asp Pro Lys Val 165 170 175	
Ser Asp Ser Gln Ser Asp Gln Val Glu Arg Ser Ala Cys Pro Thr Cys 180 185 190	
Gly Ser Cys Ser Gly Met Phe Thr Ala Asn Ser Met Asn Cys Leu Thr 195 200 205	
Glu Ala Leu Gly Leu Ser Gln Pro Gly Asn Gly Ser Leu Leu Ala Thr	
210 215 220	
His Ala Asp Arg Lys Gln Leu Phe Leu Asn Ala Gly Lys Arg Ile Val 225 230 235 240	
Glu Leu Thr Lys Arg Tyr Tyr Glu Gln Asn Asp Glu Ser Ala Leu Pro 245 250 255	
Arg Asn Ile Ala Ser Lys Ala Ala Phe Glu Asn Ala Met Thr Leu Asp 260 265 270	
Ile Ala Met Gly Gly Ser Thr Asn Thr Val Leu His Leu Leu Ala Ala	
275 280 285	

```
-continued
```

Ala Gln Glu Ala Glu Ile Asp Phe Thr Met Ser Asp Ile Asp Lys Leu Ser Arg Lys Val Pro Gln Leu Cys Lys Val Ala Pro Ser Thr Gln Lys Tyr His Met Glu Asp Val His Arg Ala Gly Gly Val Ile Gly Ile Leu Gly Glu Leu Asp Arg Ala Gly Leu Leu Asn Arg Asp Val Lys Asn Val Leu Gly Leu Thr Leu Pro Gln Thr Leu Glu Gln Tyr Asp Val Met Leu Thr Gln Asp Asp Ala Val Lys Asn Met Phe Arg Ala Gly Pro Ala Gly
 Ile Arg Thr Thr Gln Ala Phe Ser Gln Asp Cys Arg Trp Asp Thr Leu

 385
 390
 395
 400
 Asp Asp Asp Arg Ala Asn Gly Cys Ile Arg Ser Leu Glu His Ala Tyr Ser Lys Asp Gly Gly Leu Ala Val Leu Tyr Gly Asn Phe Ala Glu Asn Gly Cys Ile Val Lys Thr Ala Gly Val Asp Asp Ser Ile Leu Lys Phe 435 440 445 Thr Gly Pro Ala Lys Val Tyr Glu Ser Gln Asp Asp Ala Val Glu Ala Ile Leu Gly Gly Lys Val Val Ala Gly Asp Val Val Val Ile Arg Tyr Glu Gly Pro Lys Gly Gly Pro Gly Met Gln Glu Met Leu Tyr Pro Thr Ser Phe Leu Lys Ser Met Gly Leu Gly Lys Ala Cys Ala Leu Ile Thr Asp Gly Arg Phe Ser Gly Gly Thr Ser Gly Leu Ser Ile Gly His Val Ser Pro Glu Ala Ala Ser Gly Gly Ser Ile Gly Leu Ile Glu Asp Gly Asp Leu Ile Ala Ile Asp Ile Pro Asn Arg Gly Ile Gln Leu Gln Val Ser Asp Ala Glu Leu Ala Ala Arg Arg Glu Ala Gln Asp Ala Arg Gly Asp Lys Ala Trp Thr Pro Lys Asn Arg Glu Arg Gln Val Ser Phe Ala Leu Arg Ala Tyr Ala Ser Leu Ala Thr Ser Ala Asp Lys Gly Ala Val Arg Asp Lys Ser Lys Leu Gly Gly <210> SEQ ID NO 53 <400> SEQUENCE: 53 <210> SEQ ID NO 54 <211> LENGTH: 1713 <212> TYPE: DNA <213> ORGANISM: Lactococcus lactis

<400> SEQUENCE: 54							
atggagttta agtataacgg caaagttgaa tctgttgaac tgaataagta cagcaaaacg	60						
ttgacacaag atcccacaca acccgccaca caggcaatgt attacggcat cgggtttaaa	120						
gacgaagatt tcaagaaagc tcaagtgggt atagtgtcga tggactggga tggaaatcca	180						
tgcaacatgc atttaggaac ccttggatca aagattaaaa gctcagtaaa tcagacagat	240						
ggtctgatcg gcttacaatt tcatacgata ggagtttctg atgggatagc aaatggaaag	300						
ttgggaatga gatactccct tgtttccaga gaagttatag ctgactctat tgaaaccaac	360						
gctggcgctg aatactatga tgcaattgta gccatcccag gttgtgacaa aaatatgcca	420						
ggttctatta ttggtatggc aagacttaat aggccaagca ttatggtgta tggaggaaca	480						
atagaacacg gtgaatataa aggtgagaaa ttgaacatcg tatcggcttt tgaatctcta	540						
ggccagaaaa ttaccggcaa tatctctgat gaagattatc acggtgttat ttgtaatgct	600						
atteetggte aaggggeatg tggggggatg tacacageta ataeettage tgeegetate	660						
gaaacactag gtatgtcatt gccgtattct tcttcgaacc ctgcagtatc tcaagaaaaa	720						
caagaagaat gtgatgagat tggattagcc attaagaatc ttttggaaaa agacatcaag	780						
cctagtgata taatgactaa ggaggcgttc gagaacgcta ttaccattgt gatggtcttg	840						
gggggtagta ctaatgctgt cttgcatatt attgcaatgg ctaacgcgat aggtgtcgaa	900						
ataactcagg atgacttcca aagaattagt gacattactc cagtactagg tgattttaaa	960						
ccttcaggta aatatatgat ggaagatttg cataaaattg gaggcttgcc agcagtgctt	1020						
aagtaccttc taaaggaagg aaaattgcat ggtgactgcc ttactgtgac gggtaaaaca	1080						
ttageegaga atgtegagae tgeeetagae ttggattteg aeteacaaga tateatgagg	1140						
ccactaaaga atcctatcaa ggccaccggc cacttgcaga ttctgtacgg taatttagct	1200						
caagggggtt ccgtagcaaa aattagcggt aaagaaggag agttcttcaa aggcactgcc	1260						
agagtetttg atggtgaaca acattttate gaeggeatag aatetggteg tttgeatget	1320						
ggagatgtag cggtaattag gaatataggt cccgtcggcg gacctggtat gcccgaaatg	1380						
ctgaagccta catcagcatt aattggtgcg ggtttaggga aaagttgcgc gttaattacg	1440						
gatggtagat teteeggtgg caeteaeggt tttgttgteg gecatattgt geetgaagee	1500						
gttgagggtg gactaatcgg cttagttgaa gatgacgata taatagagat agatgcagtc	1560						
aacaactcta tatccctgaa agtttccgat gaagaaatcg caaagagaag agctaattat	1620						
cagaagccaa ctccgaaagc caccagggga gttttggcaa aattcgctaa attaacccgt	1680						
cctgcatcgg aagggtgtgt tactgatctg taa	1713						
<210> SEQ ID NO 55 <211> LENGTH: 570 <212> TYPE: PRT <213> ORGANISM: Lactococcus lactis							
<400> SEQUENCE: 55							
Met Glu Phe Lys Tyr Asn Gly Lys Val Glu Ser Val Glu Leu Asn Lys 1 5 10 15							
Tyr Ser Lys Thr Leu Thr Gln Asp Pro Thr Gln Pro Ala Thr Gln Ala 20 25 30							
Met Tyr Tyr Gly Ile Gly Phe Lys Asp Glu Asp Phe Lys Lys Ala Gln							

-continued

											-	con	ιш	ueu	
		35					40					45			
Val	Gly 50	Ile	Val	Ser	Met	Asp 55	Trp	Asp	Gly	Asn	Pro 60	Суа	Asn	Met	His
Leu 65	Gly	Thr	Leu	Gly	Ser 70	Lys	Ile	Lys	Ser	Ser 75	Val	Asn	Gln	Thr	Asp 80
Gly	Leu	Ile	Gly	Leu 85	Gln	Phe	His	Thr	Ile 90	Gly	Val	Ser	Asp	Gly 95	Ile
Ala	Asn	Gly	Lys 100	Leu	Gly	Met	Arg	Tyr 105	Ser	Leu	Val	Ser	Arg 110	Glu	Val
Ile	Ala	Asp 115	Ser	Ile	Glu	Thr	Asn 120	Ala	Gly	Ala	Glu	Tyr 125	Tyr	Asp	Ala
Ile	Val 130	Ala	Ile	Pro	Gly	Сув 135	Asp	Lys	Asn	Met	Pro 140	Gly	Ser	Ile	Ile
Gly 145	Met	Ala	Arg	Leu	Asn 150	-	Pro	Ser	Ile	Met 155	Val	Tyr	Gly	Gly	Thr 160
Ile	Glu	His	Gly	Glu 165	Tyr	Lys	Gly	Glu	Lys 170	Leu	Asn	Ile	Val	Ser 175	Ala
Phe	Glu	Ser	Leu 180	Gly	Gln	Lys	Ile	Thr 185	Gly	Asn	Ile	Ser	Asp 190	Glu	Asp
Tyr	His	Gly 195	Val	Ile	Суз	Asn	Ala 200	Ile	Pro	Gly	Gln	Gly 205	Ala	Cys	Gly
Gly	Met 210	Tyr	Thr	Ala	Asn	Thr 215	Leu	Ala	Ala	Ala	Ile 220	Glu	Thr	Leu	Gly
Met 225	Ser	Leu	Pro	Tyr	Ser 230	Ser	Ser	Asn	Pro	Ala 235	Val	Ser	Gln	Glu	Lys 240
Gln	Glu	Glu	Суз	Asp 245	Glu	Ile	Gly	Leu	Ala 250	Ile	ГЛЗ	Asn	Leu	Leu 255	Glu
Lys	Asp	Ile	Lys 260	Pro	Ser	Asp	Ile	Met 265	Thr	Lys	Glu	Ala	Phe 270	Glu	Asn
Ala	Ile	Thr 275	Ile	Val	Met	Val	Leu 280	Gly	Gly	Ser	Thr	Asn 285	Ala	Val	Leu
His	Ile 290	Ile	Ala	Met	Ala	Asn 295	Ala	Ile	Gly	Val	Glu 300	Ile	Thr	Gln	Asp
Asp 305	Phe	Gln	Arg	Ile	Ser 310	Asp	Ile	Thr	Pro	Val 315	Leu	Gly	Asp	Phe	Lys 320
Pro	Ser	Gly	-	Tyr 325	Met	Met		-		His	-		-	Gly 335	
Pro	Ala	Val	Leu 340	Lys	Tyr	Leu	Leu	Lys 345	Glu	Gly	Гла	Leu	His 350	Gly	Asp
Cys	Leu	Thr 355	Val	Thr	Gly	Lys	Thr 360	Leu	Ala	Glu	Asn	Val 365	Glu	Thr	Ala
Leu	Asp 370	Leu	Asp	Phe	Asp	Ser 375	Gln	Asp	Ile	Met	Arg 380	Pro	Leu	Lys	Asn
Pro 385	Ile	Lys	Ala	Thr	Gly 390		Leu	Gln	Ile	Leu 395	Tyr	Gly	Asn	Leu	Ala 400
Gln	Gly	Gly	Ser	Val 405	Ala	ГЛа	Ile	Ser	Gly 410	ГЛа	Glu	Gly	Glu	Phe 415	Phe
Гла	Gly	Thr	Ala 420	Arg	Val	Phe	Asp	Gly 425	Glu	Gln	His	Phe	Ile 430	Asp	Gly
Ile	Glu	Ser 435	Gly	Arg	Leu	His	Ala 440	Gly	Asp	Val	Ala	Val 445	Ile	Arg	Asn

```
-continued
```

Ile Gly Pro Val Gly Gly Pro Gly Met Pro Glu Met Leu Lys Pro Thr 450 455 460 Ser Ala Leu Ile Gly Ala Gly Leu Gly Lys Ser Cys Ala Leu Ile Thr 465 470 475 480 Asp Gly Arg Phe Ser Gly Gly Thr His Gly Phe Val Val Gly His Ile 485 490 495 Val Pro Glu Ala Val Glu Gly Gly Leu Ile Gly Leu Val Glu Asp Asp 500 505 510 Asp Ile Ile Glu Ile Asp Ala Val Asn Asn Ser Ile Ser Leu Lys Val 520 525 515 Ser Asp Glu Glu Ile Ala Lys Arg Arg Ala Asn Tyr Gln Lys Pro Thr 530 535 540 Pro Lys Ala Thr Arg Gly Val Leu Ala Lys Phe Ala Lys Leu Thr Arg 545 550 555 560 Pro Ala Ser Glu Gly Cys Val Thr Asp Leu 565 570 <210> SEQ ID NO 56 <211> LENGTH: 1758 <212> TYPE: DNA <213> ORGANISM: Saccharomyces cerevisiae <400> SEQUENCE: 56 atgggettgt taacgaaagt tgetacatet agacaattet etacaaegag atgegttgea 60 aaqaaqetea acaaqtaete qtatateate actgaaceta aqqqeeaaqq tqeqteeeaq 120 gccatgcttt atgccaccgg tttcaagaag gaagatttca agaagcctca agtcggggtt 180 qqttcctqtt qqtqqtccqq taacccatqt aacatqcatc tattqqactt qaataacaqa 240 tqttctcaat ccattqaaaa aqcqqqtttq aaaqctatqc aqttcaacac catcqqtqtt 300 tcagacggta tctctatggg tactaaaggt atgagatact cgttacaaag tagagaaatc 360 420 attgcagact cctttgaaac catcatgatg gcacaacact acgatgctaa catcgccatc ccatcatgtg acaaaaacat gcccggtgtc atgatggcca tgggtagaca taacagacct 480 tccatcatgg tatatggtgg tactatcttg cccggtcatc caacatgtgg ttcttcgaag 540 atetetaaaa acategatat egtetetgeg tteeaateet aeggtgaata tattteeaag 600 caattcactg aagaagaaag agaagatgtt gtggaacatg catgcccagg tcctggttct 660 tgtggtggta tgtatactgc caacacaatg gcttctgccg ctgaagtgct aggtttgacc 720 attccaaact cctcttcctt cccagccgtt tccaaggaga agttagctga gtgtgacaac 780 attggtgaat acatcaagaa gacaatggaa ttgggtattt tacctcgtga tatcctcaca 840 aaagaggett ttgaaaacge cattaettat gtegttgeaa eeggtgggte caetaatget 900 gttttgcatt tggtggctgt tgctcactct gcgggtgtca agttgtcacc agatgatttc 960 caaagaatca gtgatactac accattgatc ggtgacttca aaccttctgg taaatacgtc 1020 atggccgatt tgattaacgt tggtggtacc caatctgtga ttaagtatct atatgaaaac 1080 aacatgttgc acggtaacac aatgactgtt accggtgaca ctttggcaga acgtgcaaag 1140 aaagcaccaa gcctacctga aggacaagag attattaagc cactctccca cccaatcaag 1200 qccaacqqtc acttqcaaat tctqtacqqt tcattqqcac caqqtqqaqc tqtqqqtaaa 1260 attaccopta appaapptac ttacttcaap pptapapcac ptptpttcpa apappaappt 1320

-continued

gcctttattg aagccttgga aagaggtgaa atcaagaagg gtgaaaaaac cgttgttgtt atcagatatg aaggtccaag aggtgcacca ggtatgcctg aaatgctaaa gccttcctct gctctgatgg gttacggttt gggtaaagat gttgcattgt tgactgatgg tagattctct ggtggttete acgggttett aateggeeae attgtteeeg aageegetga aggtggteet atcgggttgg tcagagacgg cgatgagatt atcattgatg ctgataataa caagattgac ctattagtct ctgataagga aatggctcaa cgtaaacaaa gttgggttgc acctccacct cgttacacaa gaggtactct atccaagtat gctaagttgg tttccaacgc ttccaacggt tgtgttttag atgcttga <210> SEQ ID NO 57 <211> LENGTH: 585 <212> TYPE: PRT <213> ORGANISM: Saccharomyces cerevisiae <400> SEQUENCE: 57 Met Gly Leu Leu Thr Lys Val Ala Thr Ser Arg Gln Phe Ser Thr Thr Arg Cys Val Ala Lys Lys Leu Asn Lys Tyr Ser Tyr Ile Ile Thr Glu Pro Lys Gly Gln Gly Ala Ser Gln Ala Met Leu Tyr Ala Thr Gly Phe Lys Lys Glu Asp Phe Lys Lys Pro Gln Val Gly Val Gly Ser Cys Trp Trp Ser Gly Asn Pro Cys Asn Met His Leu Leu Asp Leu Asn Asn Arg Cys Ser Gln Ser Ile Glu Lys Ala Gly Leu Lys Ala Met Gln Phe Asn Thr Ile Gly Val Ser Asp Gly Ile Ser Met Gly Thr Lys Gly Met Arg Tyr Ser Leu Gln Ser Arg Glu Ile Ile Ala Asp Ser Phe Glu Thr Ile Met Met Ala Gln His Tyr Asp Ala Asn Ile Ala Ile Pro Ser Cys Asp Lys Asn Met Pro Gly Val Met Met Ala Met Gly Arg His Asn Arg Pro Ser Ile Met Val Tyr Gly Gly Thr Ile Leu Pro Gly His Pro Thr Cys Gly Ser Ser Lys Ile Ser Lys Asn Ile Asp Ile Val Ser Ala Phe Gln Ser Tyr Gly Glu Tyr Ile Ser Lys Gln Phe Thr Glu Glu Glu Arg Glu Asp Val Val Glu His Ala Cys Pro Gly Pro Gly Ser Cys Gly Gly Met Tyr Thr Ala Asn Thr Met Ala Ser Ala Ala Glu Val Leu Gly Leu Thr Ile Pro Asn Ser Ser Ser Phe Pro Ala Val Ser Lys Glu Lys Leu Ala Glu Cys Asp Asn Ile Gly Glu Tyr Ile Lys Lys Thr Met Glu Leu Gly

												COIL		ued					
Ile	Leu	Pro 275	Arg	Asp	Ile	Leu	Thr 280	Lys	Glu	Ala	Phe	Glu 285	Asn	Ala	Ile				
Thr	Tyr 290	Val	Val	Ala	Thr	Gly 295		Ser	Thr	Asn	Ala 300	Val	Leu	His	Leu				
Val 305	Ala	Val	Ala	His	Ser 310	Ala	Gly	Val	Lys	Leu 315	Ser	Pro	Asp	Asp	Phe 320				
Gln	Arg	Ile	Ser	Asp 325	Thr	Thr	Pro	Leu	Ile 330	Gly	Aap	Phe	Lys	Pro 335	Ser				
Gly	Lys	Tyr	Val 340	Met	Ala	Asp	Leu	Ile 345	Asn	Val	Gly	Gly	Thr 350	Gln	Ser				
Val	Ile	Lys 355	Tyr	Leu	Tyr	Glu	Asn 360	Asn	Met	Leu	His	Gly 365	Asn	Thr	Met				
Thr	Val 370	Thr	Gly	Asp	Thr	Leu 375	Ala	Glu	Arg	Ala	Lys 380	Lys	Ala	Pro	Ser				
Leu 385	Pro	Glu	Gly	Gln	Glu 390	Ile	Ile	Lys	Pro	Leu 395	Ser	His	Pro	Ile	Lys 400				
Ala	Asn	Gly	His	Leu 405	Gln	Ile	Leu	Tyr	Gly 410	Ser	Leu	Ala	Pro	Gly 415	Gly				
Ala	Val	Gly	Lys 420	Ile	Thr	Gly	Lys	Glu 425	Gly	Thr	Tyr	Phe	Lys 430	Gly	Arg				
Ala	Arg	Val 435	Phe	Glu	Glu	Glu	Gly 440	Ala	Phe	Ile	Glu	Ala 445	Leu	Glu	Arg				
Gly	Glu 450	Ile	Lys	Lys	Gly	Glu 455	Lys	Thr	Val	Val	Val 460	Ile	Arg	Tyr	Glu				
Gly 465	Pro	Arg	Gly	Ala	Pro 470	Gly	Met	Pro	Glu	Met 475	Leu	Lys	Pro	Ser	Ser 480				
Ala	Leu	Met	Gly	Tyr 485	Gly	Leu	Gly	Lys	Asp 490	Val	Ala	Leu	Leu	Thr 495	Asp				
Gly	Arg	Phe	Ser 500	Gly	Gly	Ser	His	Gly 505	Phe	Leu	Ile	Gly	His 510	Ile	Val				
Pro	Glu	Ala 515	Ala	Glu	Gly	Gly	Pro 520	Ile	Gly	Leu	Val	Arg 525	Asp	Gly	Asp				
Glu	Ile 530	Ile	Ile	Asp	Ala	Asp 535	Asn	Asn	Lys	Ile	Asp 540	Leu	Leu	Val	Ser				
Asp 545	Lys	Glu	Met	Ala	Gln 550	Arg	Lys	Gln	Ser	Trp 555	Val	Ala	Pro	Pro	Pro 560				
Arg	Tyr	Thr	Arg	Gly 565	Thr	Leu	Ser	Lys	Tyr 570	Ala	Гла	Leu	Val	Ser 575	Asn				
Ala	Ser	Asn	Gly 580		Val	Leu	Asp	Ala 585											
<211 <212 <213	L> LE 2> TY 3> OF		H: 1 DNA ISM:	701 Saco	charo	omyce	es ce	erevi	isia	e									
		EQUEN					.+		1005		a+ -		100		iact -				
															jegtee jteggg				
															ataac				
gttg																			

-cont	inued
-------	-------

-continued	
gtttcagacg gtatctctat gggtactaaa ggtatgagat actcgttaca aagtagagaa	300
atcattgcag actcctttga aaccatcatg atggcacaac actacgatgc taacatcgcc	360
atcccatcat gtgacaaaaa catgcccggt gtcatgatgg ccatgggtag acataacaga	420
ccttccatca tggtatatgg tggtactatc ttgcccggtc atccaacatg tggttcttcg	480
aagateteta aaaacatega tategtetet gegtteeaat eetaeggtga atatatttee	540
aagcaattca ctgaagaaga aagagaagat gttgtggaac atgcatgccc aggtcctggt	600
tcttgtggtg gtatgtatac tgccaacaca atggcttctg ccgctgaagt gctaggtttg	660
accatteeaa acteetette etteecagee gttteeaagg agaagttage tgagtgtgae	720
aacattggtg aatacatcaa gaagacaatg gaattgggta ttttacctcg tgatatcctc	780
acaaaagagg cttttgaaaa cgccattact tatgtcgttg caaccggtgg gtccactaat	840
getgttttge atttggtgge tgttgeteae tetgegggtg teaagttgte accagatgat	900
tteeaaagaa teagtgatae taeaceattg ateggtgaet teaaacette tggtaaatae	960
gtcatggccg atttgattaa cgttggtggt acccaatctg tgattaagta tctatatgaa	1020
aacaacatgt tgcacggtaa cacaatgact gttaccggtg acactttggc agaacgtgca	1080
aagaaagcac caagcctacc tgaaggacaa gagattatta agccactctc ccacccaatc	1140
aaggccaacg gtcacttgca aattctgtac ggttcattgg caccaggtgg agctgtgggt	1200
aaaattaccg gtaaggaagg tacttacttc aagggtagag cacgtgtgtt cgaagaggaa	1260
ggtgccttta ttgaagcctt ggaaagaggt gaaatcaaga agggtgaaaa aaccgttgtt	1320
gttatcagat atgaaggtcc aagaggtgca ccaggtatgc ctgaaatgct aaagccttcc	1380
tctgctctga tgggttacgg tttgggtaaa gatgttgcat tgttgactga tggtagattc	1440
tetggtggtt etcaegggtt ettaategge caeattgtte eegaageege tgaaggtggt	1500
cctatcgggt tggtcagaga cggcgatgag attatcattg atgctgataa taacaagatt	1560
gacctattag tetetgataa ggaaatgget caaegtaaae aaagttgggt tgeaeeteea	1620
cctcgttaca caagaggtac tctatccaag tatgctaagt tggtttccaa cgcttccaac	1680
ggttgtgttt tagatgcttg a	1701
<210> SEQ ID NO 59 <211> LENGTH: 566 <212> TYPE: PRT <213> ORGANISM: Saccharomyces cerevisiae	
<400> SEQUENCE: 59	
Met Lys Lys Leu Asn Lys Tyr Ser Tyr Ile Ile Thr Glu Pro Lys Gly 1 5 10 15	
Gln Gly Ala Ser Gln Ala Met Leu Tyr Ala Thr Gly Phe Lys Lys Glu 20 25 30	
Asp Phe Lys Lys Pro Gln Val Gly Val Gly Ser Cys Trp Trp Ser Gly 35 40 45	
Asn Pro Cys Asn Met His Leu Leu Asp Leu Asn Asn Arg Cys Ser Gln 50 55 60	
Ser Ile Glu Lys Ala Gly Leu Lys Ala Met Gln Phe Asn Thr Ile Gly 65 70 75 80	
Val Ser Asp Gly Ile Ser Met Gly Thr Lys Gly Met Arg Tyr Ser Leu 85 90 95	

-continued

													CIII			
Gln	Ser	Arg	Glu 100	Ile	Ile	Ala	Asp	Ser 105	Phe	Glu	Thr	Ile	Met 110	Met	Ala	
Gln	His	Tyr 115	Asp	Ala	Asn	Ile	Ala 120	Ile	Pro	Ser	Сув	Asp 125	Lys	Asn	Met	
Pro	Gly 130	Val	Met	Met	Ala	Met 135		Arg	His	Asn	Arg 140	Pro	Ser	Ile	Met	
Val 145	Tyr	Gly	Gly	Thr	Ile 150	Leu	Pro	Gly	His	Pro 155	Thr	Суз	Gly	Ser	Ser 160	
rÀa	Ile	Ser	ГЛа	Asn 165	Ile	Asp	Ile	Val	Ser 170	Ala	Phe	Gln	Ser	Tyr 175	Gly	
Glu	Tyr	Ile	Ser 180	Lys	Gln	Phe	Thr	Glu 185	Glu	Glu	Arg	Glu	Asp 190	Val	Val	
Glu	His	Ala 195	Суз	Pro	Gly	Pro	Gly 200	Ser	Суз	Gly	Gly	Met 205	Tyr	Thr	Ala	
Asn	Thr 210	Met	Ala	Ser	Ala	Ala 215	Glu	Val	Leu	Gly	Leu 220	Thr	Ile	Pro	Asn	
Ser 225	Ser	Ser	Phe	Pro	Ala 230	Val	Ser	Lys	Glu	Lys 235	Leu	Ala	Glu	Сув	Asp 240	
Asn	Ile	Gly	Glu	Tyr 245	Ile	Lys	Lys	Thr	Met 250	Glu	Leu	Gly	Ile	Leu 255	Pro	
Arg	Asp	Ile	Leu 260	Thr	Lys	Glu	Ala	Phe 265	Glu	Asn	Ala	Ile	Thr 270	Tyr	Val	
Val	Ala	Thr 275	Gly	Gly	Ser	Thr	Asn 280	Ala	Val	Leu	His	Leu 285	Val	Ala	Val	
Ala	His 290		Ala	Gly	Val	Lys 295	Leu	Ser	Pro	Asp	Asp 300	Phe	Gln	Arg	Ile	
Ser 305		Thr	Thr	Pro	Leu 310		Gly	Asp	Phe	Lys 315		Ser	Gly	Lys	Tyr 320	
	Met	Ala	Asp	Leu 325		Asn	Val	Gly	Gly 330		Gln	Ser	Val	Ile 335		
Tyr	Leu	Tyr	Glu 340		Asn	Met	Leu	His 345		Asn	Thr	Met	Thr 350		Thr	
Gly	Asp	Thr 355		Ala	Glu	Arg	Ala 360	Lys	Lys	Ala	Pro	Ser 365		Pro	Glu	
Gly	Gln 370		Ile	Ile	Lys	Pro 375		Ser	His	Pro	Ile 380		Ala	Asn	Gly	
His 385		Gln	Ile	Leu	Tyr 390		Ser	Leu	Ala	Pro 395		Gly	Ala	Val	Gly 400	
	Ile	Thr	Gly	Lys 405		Gly	Thr	Tyr	Phe 410		Gly	Arg	Ala	Arg 415		
Phe	Glu	Glu	Glu 420		Ala	Phe	Ile	Glu 425		Leu	Glu	Arg	Gly 430		Ile	
Lys	Lys	Gly 435		Lys	Thr	Val	Val 440	425 Val	Ile	Arg	Tyr	Glu 445		Pro	Arg	
Gly	Ala 450		Gly	Met	Pro	Glu 455		Leu	Lys	Pro	Ser 460		Ala	Leu	Met	
Gly 465		Gly	Leu	Gly	Lys 470		Val	Ala	Leu	Leu 475		Asp	Gly	Arg	Phe 480	
	Gly	Gly	Ser			Phe	Leu	Ile	-		Ile	Val	Pro			
Ala	Glu	Gly	Gly	485 Pro	Ile	Gly	Leu	Val	490 Arg	Aap	Gly	Asp	Glu	495 Ile	Ile	

-continued

-continued	
500 505 510	
Ile Asp Ala Asp Asn Asn Lys Ile Asp Leu Leu Val Ser Asp Lys Glu 515 520 525	
Met Ala Gln Arg Lys Gln Ser Trp Val Ala Pro Pro Pro Arg Tyr Thr 530 535 540	
Arg Gly Thr Leu Ser Lys Tyr Ala Lys Leu Val Ser Asn Ala Ser Asn 545 550 555 560	
Gly Cys Val Leu Asp Ala 565	
<210> SEQ ID NO 60 <211> LENGTH: 771 <212> TYPE: DNA <213> ORGANISM: Drosophila melanogaster	
<400> SEQUENCE: 60	
atgtcgttta ctttgaccaa caagaacgtg attttcgttg ccggtctggg aggcattggt	60
ctggacacca gcaaggagct gctcaagcgc gatctgaaga acctggtgat cctcgaccgc	120
attgagaacc cggctgccat tgccgagctg aaggcaatca atccaaaggt gaccgtcacc	180
ttetaeeeet atgatgtgae egtgeeeatt geegagaeea eeaagetget gaagaeeate	240
ttegeecage tgaagaeegt egatgteetg ateaaeggag etggtateet ggaegateae	300
cagategage geaceattge egteaactae aetggeetgg teaacaeeae gaeggeeatt	360
ctggacttet gggacaageg caagggeggt eeeggtggta teatetgeaa eattggatee	420
gtcactggat tcaatgccat ctaccaggtg cccgtctact ccggcaccaa ggccgccgtg	480
gtcaacttca ccagctccct ggcgaaactg gcccccatta ccggcgtgac ggcttacact gtgaaccccg gcatcacccg caccacctg gtgcacacgt tcaactcctg gttggatgtt	540 600
gageeteagg tigeegagaa geteetgget cateceacee ageeetegti ggeetgegee	660
gagaacttcg tcaaggctat cgagctgaac cagaacggag ccatctggaa actggacttg	720
ggcaccctgg aggccatcca gtggaccaag cactgggact ccggcatcta a	771
<210> SEQ ID NO 61 <211> LENGTH: 256 <212> TYPE: PRT <213> ORGANISM: Drosophila melanogaster <400> SEQUENCE: 61	
Met Ser Phe Thr Leu Thr Asn Lys Asn Val Ile Phe Val Ala Gly Leu 1 5 10 15	
Gly Gly Ile Gly Leu Asp Thr Ser Lys Glu Leu Leu Lys Arg Asp Leu 20 25 30	
Lys Asn Leu Val Ile Leu Asp Arg Ile Glu Asn Pro Ala Ala Ile Ala 35 40 45	
Glu Leu Lys Ala Ile Asn Pro Lys Val Thr Val Thr Phe Tyr Pro Tyr 50 55 60	
Asp Val Thr Val Pro Ile Ala Glu Thr Thr Lys Leu Leu Lys Thr Ile 65 70 75 80	
Phe Ala Gln Leu Lys Thr Val Asp Val Leu Ile Asn Gly Ala Gly Ile 85 90 95	
Leu Asp Asp His Gln Ile Glu Arg Thr Ile Ala Val Asn Tyr Thr Gly 100 105 110	

```
-continued
```

Leu Val Asn Thr Thr Thr Ala Ile Leu Asp Phe Trp Asp Lys Arg Lys 120 115 125 Gly Gly Pro Gly Gly Ile Ile Cys Asn Ile Gly Ser Val Thr Gly Phe 130 135 140 Asn Ala Ile Tyr Gln Val Pro Val Tyr Ser Gly Thr Lys Ala Ala Val 145 150 155 160 Val Asn Phe Thr Ser Ser Leu Ala Lys Leu Ala Pro Ile Thr Gly Val 165 170 175 Thr Ala Tyr Thr Val Asn Pro Gly Ile Thr Arg Thr Thr Leu Val His 180 185 190 Thr Phe Asn Ser Trp Leu Asp Val Glu Pro Gln Val Ala Glu Lys Leu 200 195 205 Leu Ala His Pro Thr Gln Pro Ser Leu Ala Cys Ala Glu Asn Phe Val 210 215 220 Lys Ala Ile Glu Leu Asn Gln Asn Gly Ala Ile Trp Lys Leu Asp Leu 225 230 235 240 Gly Thr Leu Glu Ala Ile Gln Trp Thr Lys His Trp Asp Ser Gly Ile 245 250 255 <210> SEQ ID NO 62 <211> LENGTH: 1164 <212> TYPE: DNA <213> ORGANISM: Klebsiella pneumoniae <400> SEQUENCE: 62 atgagetace gtatgtttga ctatetggte cetaacgtga aettettegg ceegaatgea 60 atetetgtgg ttggegaaeg ttgeeaaetg etgggtggta aaaaggeget getggtgaeg 120 180 gataaaggtc tgcgtgcaat taaagacggt gccgttgata aaaccctgca ctatctgcgt gaggccggca ttgaggttgc catcttcgat ggtgtagaac cgaacccgaa agatacgaac 240 gtgegegaeg gtetggetgt ttteegtegt gaacaatgtg acattategt tacegtgggt 300 ggtggctctc cgcatgattg cggtaaaggc atcggtatcg cggctaccca cgaaggtgat 360 ctgtaccagt atgcgggcat cgagactctg accaacccgc tgccgccgat cgttgctgta 420 aacaccacgg ccggcaccgc ctccgaagtt acccgtcatt gtgtgctgac taacaccgag 480 acgaaagtga aattcgttat tgtgtcctgg cgcaatctgc ctagcgtaag cattaacgat 540 ccgctgctga tgatcggcaa accagcggca ctgaccgctg caactggtat ggacgccctg 600 actcacgcag tegaagcata tateteeaaa gatgetaace eggtaacega egeggeaget 660 atgcaggcga ttcgtctgat tgcccgtaac ctgcgtcagg cagtggctct gggcagcaac 720 ctgcaggctc gtgagaacat ggcctacgcg agcctgctgg ccggcatggc attcaacaac 780 840 gctaacctgg gttacgttca tgcgatggct catcagctgg gcggcctgta cgacatgccg 900 cacggtgtag ctaacgcagt tctgctgcca catgttgctc gttataacct gatcgctaat ccggaaaaat tcgcagacat cgcagaactg atgggcgaga acatcacggg tctgagcact 960 ctggatgccg cggaaaaagc gatcgcagcg attacgcgtc tgtctatgga cattggtatt 1020 ccgcaacacc tgcgtgacct gggtgtaaaa gaagctgatt tcccttacat ggcggaaatg 1080 gcactgaaag atggtaatgc gttttccaac ccacgtaaag gtaacgaaca ggagattgcg 1140 gctattttcc gtcaagcatt ctga 1164

-cont	inue	C

<210> SEO ID NO 63 <211> LENGTH: 387 <212> TYPE: PRT <213> ORGANISM: Klebsiella pneumoniae <400> SEOUENCE: 63 Met Ser Tyr Arg Met Phe Asp Tyr Leu Val Pro Asn Val Asn Phe Phe Gly Pro Asn Ala Ile Ser Val Val Gly Glu Arg Cys Gln Leu Leu Gly 2.0 Gly Lys Lys Ala Leu Leu Val Thr Asp Lys Gly Leu Arg Ala Ile Lys Asp Gly Ala Val Asp Lys Thr Leu His Tyr Leu Arg Glu Ala Gly Ile Glu Val Ala Ile Phe Asp Gly Val Glu Pro Asn Pro Lys Asp Thr Asn Val Arg Asp Gly Leu Ala Val Phe Arg Arg Glu Gln Cys Asp Ile Ile Val Thr Val Gly Gly Gly Ser Pro His Asp Cys Gly Lys Gly Ile Gly Ile Ala Ala Thr His Glu Gly Asp Leu Tyr Gln Tyr Ala Gly Ile Glu Thr Leu Thr Asn Pro Leu Pro Pro Ile Val Ala Val Asn Thr Thr Ala Gly Thr Ala Ser Glu Val Thr Arg His Cys Val Leu Thr Asn Thr Glu Thr Lys Val Lys Phe Val Ile Val Ser Trp Arg Asn Leu Pro Ser Val Ser Ile Asn Asp Pro Leu Leu Met Ile Gly Lys Pro Ala Ala Leu Thr Ala Ala Thr Gly Met Asp Ala Leu Thr His Ala Val Glu Ala Tyr Ile Ser Lys Asp Ala Asn Pro Val Thr Asp Ala Ala Ala Met Gln Ala Ile Arg Leu Ile Ala Arg Asn Leu Arg Gln Ala Val Ala Leu Gly Ser Asn Leu Gln Ala Arg Glu Asn Met Ala Tyr Ala Ser Leu Leu Ala Gly Met Ala Phe Asn Asn Ala Asn Leu Gly Tyr Val His Ala Met Ala His Gln Leu Gly Gly Leu Tyr Asp Met Pro His Gly Val Ala Asn Ala Val Leu Leu Pro His Val Ala Arg Tyr Asn Leu Ile Ala Asn Pro Glu Lys Phe Ala Asp Ile Ala Glu Leu Met Gly Glu Asn Ile Thr Gly Leu Ser Thr Leu Asp Ala Ala Glu Lys Ala Ile Ala Ala Ile Thr Arg Leu Ser Met Asp Ile Gly Ile Pro Gln His Leu Arg Asp Leu Gly Val Lys Glu Ala Asp Phe Pro Tyr Met Ala Glu Met Ala Leu Lys Asp Gly Asn Ala Phe

```
-continued
```

Ser Asn Pro Arg Lys Gly Asn Glu Gln Glu Ile Ala Ala Ile Phe Arg 370 375 380 Gln Ala Phe 385 <210> SEQ ID NO 64 <211> LENGTH: 1152 <212> TYPE: DNA <213> ORGANISM: Escherichia coli <400> SEQUENCE: 64 atgatggcta acagaatgat tctgaacgaa acggcatggt ttggtcgggg tgctgttggg 60 gctttaaccg atgaggtgaa acgccgtggt tatcagaagg cgctgatcgt caccgataaa 120 acgctggtgc aatgcggcgt ggtggcgaaa gtgaccgata agatggatgc tgcagggctg 180 gcatgggcga tttacgacgg cgtagtgccc aacccaacaa ttactgtcgt caaagaaggg 240 ctcggtgtat tccagaatag cggcgcggat tacctgatcg ctattggtgg tggttctcca 300 caggatactt gtaaagcgat tggcattatc agcaacaacc cggagtttgc cgatgtgcgt 360 ageetggaag ggettteece gaccaataaa eecagtgtae egattetgge aatteetaee 420 acagcaggta ctgcggcaga agtgaccatt aactacgtga tcactgacga agagaaacgg 480 540 cqcaaqtttq tttqcqttqa tccqcatqat atcccqcaqq tqqcqtttat tqacqctqac atgatggatg gtatgcctcc agcgctgaaa gctgcgacgg gtgtcgatgc gctcactcat 600 660 gctattgagg ggtatattac ccgtggcgcg tgggcgctaa ccgatgcact gcacattaaa gcgattgaaa tcattgctgg ggcgctgcga ggatcggttg ctggtgataa ggatgccgga 720 gaagaaatgg cgctcgggca gtatgttgcg ggtatgggct tctcgaatgt tgggttaggg 780 ttqqtqcatq qtatqqcqca tccactqqqc qcqttttata acactccaca cqqtqttqcq 840 aacgccatcc tgttaccgca tgtcatgcgt tataacgctg actttaccgg tgagaagtac 900 960 cqcqatatcq cqcqcqttat qqqcqtqaaa qtqqaaqqta tqaqcctqqa aqaqqcqcqt aatgeegetg ttgaageggt gtttgetete aacegtgatg teggtattee gecacatttg 1020 cgtgatgttg gtgtacgcaa ggaagacatt ccggcactgg cgcaggcggc actggatgat 1080 gtttgtaccg gtggcaaccc gcgtgaagca acgcttgagg atattgtaga gctttaccat 1140 accgcctggt aa 1152 <210> SEQ ID NO 65 <211> LENGTH: 383 <212> TYPE: PRT <213> ORGANISM: Escherichia coli <400> SEOUENCE: 65 Met Met Ala Asn Arg Met Ile Leu Asn Glu Thr Ala Trp Phe Gly Arg 1 5 10 15 Gly Ala Val Gly Ala Leu Thr Asp Glu Val Lys Arg Arg Gly Tyr Gln 25 Lys Ala Leu Ile Val Thr Asp Lys Thr Leu Val Gln Cys Gly Val Val Ala Lys Val Thr Asp Lys Met Asp Ala Ala Gly Leu Ala Trp Ala Ile 55 50 60 Tyr Asp Gly Val Val Pro Asn Pro Thr Ile Thr Val Val Lys Glu Gly

-continued

1 LysPheValCysValAspProHisAsp11eProGlnValAlaPhe2 AspAlaAspMetMetAspGlyMetProProAlaLeuLysAlaAla3 AspAspMetMetMetGlyMetProProAlaLeuLysAlaAla3 AspMetMetMetMetSerProProProProProProPro3 AlaYatAspAlaLeuThrHisProProProProProProPro3 AlaTrpAlaLeuThrHisProProProProProProProPro4 AlaTrpAlaLeuThrHisProProProProProProPro2 AlaGlyAlaLeuProProProProProProProProPro2 AlaGlyAlaLeuProProProProProProProProPro2 AlaGlyAlaLeuProProProProProProProPro2 AlaGlyAlaLeuProProProProProProPro2 AlaProProProProProProProProPro2 Ala											-	con	tin	ued							
659095Gly Ser Pro Gln Age Thr Cyo Lyo Ala Ile Gly Ile Ile Ser Aen 1151 Pro Glu Phe Ala Age Val Arg Ser Leu Glu Gly Leu Ser Pro Thr 1151 Pro Glu Phe Ala Age Val Arg Ser Leu Glu Gly Leu Ser Pro Thr 1251 Age Thr Cyo Yal Amp Pro His Pro Thr Thr Ala Gly Thr 1401 Ala Glu Val Thr 1 Re Aen Tyr Val Ile Thr Arg Glu Glu Lye Arg 1201 Cyo Phe Val Cyo Val Amp Pro His Ang The Pro Pro Ala Leu Lye Ala Ala 1201 Cyo Phe Val Cyo Val Amp Pro His Ang The Pro Pro Ala Leu Lye Ala Ala 1201 Cyo Phe Val Cyo Val Amp Pro His Ala The Glu Gly Tyr Ile Thr Arg 2002 Col Val Ala Age Met Met Ang Gly Met Pro Pro Pro Ala Leu Lye Ala Ala 1201 Pro Ala Leu Thr Ala Ala Ile Glu Gly Tyr Ile Thr Arg 2002 Col Val Ala Cu Thr Ala Ala His Ile Lye Ala Ile Glu Ile 2002 Col Val Ala Cu Thr Ala Ala Ala Gly Met Pro Pro Leu Gly Ala His 2002 Col Val Ala Leu Thr Ala Ala His Ile Lye Ala Ile Glu Ile 2002 Col Val Ala Leu Thr Ala Ala His Ile Lye Ala Ile 2002 Col Val Ala Leu Thr Ala Ala His Ile Lye Ala Ile 2002 Col Val Ala Leu Thr Ala Ala His Ile 2002 Col Val Ala Leu Thr Ala Cu Met Ala His Pro Leu Gly Ala Phe 2002 Col Val Val Ala Ann Ala Ile Leu Lye Ala His Pro 2002 Col Val Val Val Lye Val Ala Ann Ala Ile Leu Leu Pro His Val 2002 Col Val Val Lye Val Ala Ann Ala Ile Leu Lye Arg 3002 Col Val Val Lye Val Glu Gly Met Eare Leu Glu Glu Ala Arg 3002 Col Val Val Lye Val Glu Gly Met Ala Pro 3002 Col Val Val Lye Val Glu Gly Met Arg Ile 3002 Col Val Met Gly Val Ile Ala Leu Ang Arg Ile 3003 Col Thr Col Ala Ser Val C	65				70					75					80						
1001051101270110120120100125120120120120120120120120120120120130135120120120120130130135120120120130120120120120120120130120120120120120120140100120120120120120141140140120120120120141140140140120120141140140140140140140141140140140140140141140140140140140141140140140140140141140140140140140141140140140140140141140140140140140141140140140140140141140140140140140141140140140140140141140140140140140141140140140140140140140140140140140140140140140140140<	Jeu Gly	' Val	Phe		Asn	Ser	Gly	Ala	_	Tyr	Leu	Ile	Ala		Gly						
1151201251 lyg Pro Ser Val Pro 11e Leu Ala Ile Pro Thr Thr Ala Gly Thr136140141401 Val Thr Ile Am Tyr Val Ile Thr Asp Glu Glu Lyg Arg160199 Phe Val Cyg Val Asp Pro His Asp Tile Pro Gln Val Ala Phe165169164165165169165169165189164185165199165189165189166199166199167189168199169199169199160199160199161199162199163199164199165199165199166199166199166199166199166199167199168199168199169199160199160199161199162199164199165199165199166199167199168199169199169199169199169199169199169199169199169199169199169199<	3ly Gly	Ser		Gln	Asp	Thr	Суз		Ala	Ile	Gly	Ile		Ser	Asn						
130135140Ala Glu Val Thr Ile Aom Tyr Val Ile Thr App Glu Glu Lyn Aeg 150150Lyp Phe Val Cyp Val App Pro His App Ile Pro Gln Val Ala Phe 165a App Ala App Met Met Agp Gly Met Pro Pro Ala Leu Lys Ala Ala 180Oly Val App Ala Leu Thr His Ala Ile Glu Gly Tyr Ile Thr Arg 205Ala Gly Ala Leu Thr App Ala Leu His Ile Lys Ala Ile Glu Ile 210 The Ala Leu Thr App Ala Leu His Ile Lys Ala Ala Gly 220 Ala The Glu Ile 220 Ala The Glu Phe Ser Asm 255Ala Gly Ala Leu Gly Gln Tyr Val Ala Gly Met Gly Phe Ser Asm 250Glu Met Ala Leu Chr App Ala Leu His Ile Lys Ala His Pro Leu Gly Ala Phe 250Cly Leu Gly Leu Val His Gly Met Ala His Pro Leu Leu Pro His Val 250App Tyr Asm Ala App Phe Thr Gly Glu Lys Tyr Arg App Ile Ala 250Yal Met Gly Val Lys Val Glu Gly Met Ser Leu Glu Glu Ala Arg 210Yal Met Gly Val Lys Val Glu Gly Met Ser Leu Glu Glu Ala Arg 210Yal Met Gly Val Lys Val Glu Cys Thr Gly Glu App The Pro Arg 345Ala Ala Ala Leu App App The Gly Glu App The Pro Arg 315Yal Met Gly Val Lys Val Glu Cys Thr Gly Gly App The Ala 345Yal Met Gly Val Lys Val Glu Cys Thr Gly Gly App The Ala 345Ala Ala Val Glu App The Yal Glu Lue Tyr His Thr Ala Trp 370O SEQUENCE: 66mageag dagtagtag accecated ac gasgettet cettgacateg agetagette cettgacateg agetagette cettgacateg agetagetag accecateg cagegacet tettgacateg accecateg agetagetta getagetag accecateg cagegacet tettgacateg accecateg cagegacet tettgacateg tettgacateg accecateg cagegacet tettgacateg cagetagetage accecateg cagegacet tettgacateg cagetagetage conducted cagetagetageYal Met Gly Val Lys The DNA 300 ConnersYal Thr Leu	√sn Pro			Ala	Asp	Val		Ser	Leu	Glu	Gly		Ser	Pro	Thr						
15015516015715615716015815817017015815817017015916017515916017015916017715016019715116019715216019715516019715516019715516019715516019715516019715516019715516019715516019715516019715516019715516019715516019715515016015115011615215111615515011615515011615515011615515011615515011615515011615515011615515011615515015015011715015011615015011615015011615015011615015011615015011615015011615015011615015011615015011			Ser	Val	Pro		Leu	Ala	Ile	Pro		Thr	Ala	Gly	Thr						
Iye Ph Val Cye Val Aep Pro His App Ile Pro Gin Val Ala Pro Pro Pro Gin Val Ala Pro Pro<	Ala Ala 145	Glu	Val	Thr		Asn	Tyr	Val	Ile		Asp	Glu	Glu	Lys	-						
Asp Ala Asp Met Met Asp Gly Met Pro Pro Ala Leu Lys Ala Ala 180Gly Yal Asp Ala Leu Thr His Ala Ile Glu Gly Tyr Ile Thr Arg 200Part Ala Leu Thr Asp Ala Leu His Ile Lys Ala Ile Glu Ile 210200Ala Gly Ala Leu Arg Giy Ser Val Ala Gly Asp Lys Asp Ala Gly 230201Glu Met Ala Leu Gly Gin Tyr Val Ala Gly Met Gly Phe Ser Asn 		Phe	Val	-		Asp	Pro	His	-		Pro	Gln	Val								
Gly Val Asp Ala Leu Thr His Ala Ile Glu Gly Tyr Ile Thr Arg 205Ala Trp Ala Leu Thr Asp Ala Leu His Ile Lys Ala Ile Glu Ile 21010210Ala Giy Ala Leu Thr Asp Ala Leu His Ile Lys Ala Ile Glu Ile 220112102112201213141415151516161617181818191911121212131414151516161718181819191919191919191919191010101112121	[le Asp) Ala			Met	Asp	Gly			Pro	Ala	Leu	-		Ala						
Ala Trp Ala Leu Tr Asp Ala Leu His Ile Lys Ala Ile Glu Ile 210 210 211 212 212 212 212 212 212 212	[hr Gly			Ala	Leu	Thr			Ile	Glu	Gly	-		Thr	Arg						
Ala Gly Ala Leu Arg Gly Ser Val Ala Gly App Lys App Ala Gly 230 1 Glu Met Ala Leu Gly Gln Tyr Val Ala Gly Met Gly Phe Ser Apn 250 Gly Leu Gly Leu Val His Gly Met Ala His Pro Leu Gly Ala Phe 270 280 Apg Tyr Aon Ala App Phe Th Gly Glu Lys Tyr Arg App Ile Ala 290 1 Val Met Gly Val Lys Val Glu Gly Met Ser Leu Glu Glu Ala Arg 310 1 Val Met Gly Val Lys Val Glu Gly Met Ser Leu Glu Glu Ala Arg 320 2 Val Met Gly Val Lys Val Glu Gly Met Ser Leu Glu Glu Ala Arg 320 1 Val Met Gly Val Lys Val Gly Gly App Ile Ala Leu App App Val Gly Ile 320 2 Nor His Leu Arg App Val Gly Val Arg Lys Glu App Ile Pro Ala 340 1 Val Glu Ala Val Phe Ala Leu App App Val Gly App Tro Arg 355 1 Ala Gln Ala Ala Leu App App Val Gly Cys Thr Gly Gly App Pro Arg 355 1 Ala Gln Ala Ala Leu App App Val Gly Cys Thr Gly Gly App Pro Arg 355 1 Ala Gln Ala Ala Leu App App Val Glu Leu Tyr His Thr Ala Trp 300 0 > SEQ ID NO 66 1 LENCTH: 1023 2 > TYPE: DNA 3 > ORGANISM: Lactococcus lactis 0 > SEQUENCE: 66 maagedg degtagtadg acacaatedga gtggttatg gggadetgt tetggaagggaa 60 cgageaa teaaaceta tgaagettig ctggaacaaag cagggadgt tetgggaat gaattig gaattigtga agaattigga getggttatg gegadetgt agtgggatt 2240	-	Trp	Ala	Leu	Thr	_		Leu	His	Ile	-		Ile	Glu	Ile						
<pre>4 Glu Met Ala Leu Gly Gln Tyr Val Ala Gly Met Gly Phe Ser Asn 250 Gly Leu Gly Leu Val His Gly Met Ala His Pro Leu Gly Ala Phe 260 275 Control of Cly Val Ala Asn Ala Ile Leu Leu Pro His Val 275 275 Control of Cly Val Ala Asn Ala Ile Leu Leu Pro His Val 285 285 285 285 285 285 285 285 285 285</pre>			Ala	Leu	Arg		Ser	Val	Ala	Gly		Lys	Asp	Ala	Gly						
Gly Leu Gly Leu Val His Gly Met Ala His Pro Leu Gly Ala Phe Asn Thr Pro His Gly Val Ala Asn Ala IIe Leu Leu Pro His Val 290 Arg Tyr Asn Ala Asp Phe Thr Gly Glu Lys Tyr Arg Asp IIe Ala 290 Val Met Gly Val Lys Val Glu Gly Met Ser Leu Glu Glu Ala Arg 310 Ala Ala Val Glu Ala Val Phe Ala Leu Asn Arg Asp Val Gly IIe 320 Ala Ala Val Glu Ala Val Phe Ala Leu Asn Arg Asp Val Gly IIe 335 Ala Ala Leu Arg Asp Val Gly Val Arg Lys Glu Asp Tie Pro Ala 340 Ala Cln Ala Ala Leu Asp Age Val Cys Thr Gly Glu Leu Tyr His Thr Ala Trp 370 Cost Lister His 370 Store His Leu Clu Asp IIe Val Glu Leu Tyr His Thr Ala Trp 370 Store His Leus Cost Lister Store His Leus Thi Leu Glu Asp IIe Val Glu Leu Tyr His Thr Ala Trp Store His Leus Thi Lister Store His Leus Thi Store His Leus Thi Leu Glu Asp IIe Val Glu Cigaccatig cigacctig tigaaagagaa Store His Less Thi Leu Glu Asp IIe Val Glu Cigaccatig cigacctig tigaaagagaa Store His	225 Glu Glu	. Met	Ala	Leu		Gln	Tyr	Val	Ala		Met	Gly	Phe	Ser							
260265270Asn Thr Pro His Gly Val Ala Asn Ala Ile Leu Leu Pro His Val 290285Arg Tyr Asn Ala Asp Phe Thr Gly Glu Lys Tyr Arg Asp Ile Ala 290290Val Met Gly Val Lys Val Glu Gly Met Ser Leu Glu Glu Ala Arg 315320Ala Ala Val Glu Ala Val Phe Ala Leu Asn Arg Asp Val Gly Ile 325335Pro His Leu Arg Asp Val Gly Val Arg Lys Glu Asp Ile Pro Ala 340345Ala Gln Ala Ala Leu Asp Asp Val Gly Clys Thr Gly Gly Asn Pro Arg 350Ala Thr Leu Glu Asp Ile Val Glu Leu Tyr His Thr Ala Trp 370O> SEQ DE NO 66 1> LENGTH: 1023 2> TYPE: DNA 3> ORGANISM: Lactococcus lactisO> SEQUENCE: 66maagcag cagtagtaag acacaatcca gatggttat gcgaccttgt tgaaaaggaa60 120cagacaa tcaaacctaa tgaagctttg cttgacatgg agtattgtgg agtctgtcat120cagacat gaattgtcaa agaaattgga gctggtdata gccgcttca agttggtgat240	Val Glv	Leu	Glv		Val	His	Glv	Met		His	Pro	Leu	Glv		Phe						
275280285Arg Tyr Asn Ala Asp Phe 290Thr Gly Glu Lys Tyr Arg Asp Ile Ala 300295Val Met Gly Val Lys Val Glu Gly Met Ser Leu Glu Glu Ala Arg 310320Ala Ala Val Glu Ala Val Phe Ala Leu Asn 325Arg Asp Val Gly Ile 335Pro His Leu Arg Asp Val Gly Val Arg Lys Glu Asp Ile Pro Ala 346Ala Gln Ala Ala Leu Asp Asp Val Gly Crys Thr 360Gly Gly Asn Pro Arg 365Ala Thr Leu Glu Asp Ile Val Glu Leu Tyr 370His Thr Ala Trp 3800> SEQ ID NO 66 1> LENGTH: 1023 2> TYPE: DNA 3> ORGANISM: Lactococcus lactis0> SEQUENCE: 66 raagcag cagtagtaag acacaatcca gatggttatg cggaccttgt tgaaaaggaa60 120 120 120 120 120 120003 SEQUENCE: 66 raagcag cagtagtaag acacaatcca gatggttatg cggaccttgt tcttggtcat120 120 120 120 120 120 120 120 12010 cgatttgc acgttgcage aggtgattat ggcaacaaag cagggactgt tcttggtcat120 12010 cgatttgc acgttgcage aggtgattat ggcaacaaag cagggactgt tcttggtcat120 120			260					265					270								
290 295 300 1 Val Met Gly Val Lys Val Glu Gly Met Ser Leu Glu Glu Ala Arg 310 320 1 Ala Ala Val Glu Ala Val Phe Ala Leu Asn Arg Asp Val Gly Ile 325 320 2 Ala Ala Val Glu Ala Val Phe Ala Leu Asn Arg Asp Val Gly Ile 325 330 2 Pro His Leu Arg Asp Val Gly Val Arg Lys Glu Asp Ile Pro Ala 340 345 3 Ala Gln Ala Ala Leu Asp Asp Val Cys Thr Gly Gly Asn Pro Arg 355 3 Ala Gln Ala Ala Leu Asp Asp Val Cys Thr Gly Gly Asn Pro Arg 355 3 Ala Thr Leu Glu Asp Ile Val Glu Leu Tyr His Thr Ala Trp 370 0 > SEQ ID NO 66 1 > LENGTH: 1023 2 > TYPE: DNA 3 > ORGANISM: Lactococcus lactis 10 > SEQUENCE: 66 raaagcag cagtagtaag acacaatcca gatggttatg cggaccttgt tgaaaaggaa 60 cgagcaa tcaaacctaa tgaagctttg cttgacatgg agtattgtgg agtctgtcat 120 rgatttgc acgttgcagc aggtgattat ggcaacaaag cagggactgt tcttggtcat 180		275					280					285									
310 315 320 A la Ala Val Glu Ala Val Phe Ala Leu Asn Arg Asp Val Gly Ile 335 325 320 Pro His Leu Arg Asp Val Gly Val Arg Lys Glu Asp Ile Pro Ala 340 345 345 345 355 360 Ala Gln Ala Ala Leu Asp Asp Val Cys Thr Gly Gly Asn Pro Arg 355 360 Ala Thr Leu Glu Asp Ile Val Glu Leu Tyr His Thr Ala Trp 370 375 0> SEQ ID NO 66 1> LENGTH: 1023 2> TYPE: DNA 3> ORGANISM: Lactococcus lactis 0> SEQUENCE: 66 maaagcag cagtagtaag acacaatcca gatggttatg cggaccttgt tgaaaaggaa 60 cgagcaa tcaaacctaa tgaagcttg cttgacatgg agtattgtg agtctgtcat 120 agatttgc acgttgcagc aggtgattat ggcaacaaag cagggactgt tcttggtcat 180	-	-	Asn	Ala	Asp		Thr	GIY	GIu	ГЛЗ	-	Arg	Asp	Ile	Ala						
325 330 335 Pro His Leu Arg Asp Val Gly Val Arg Lys Glu Asp Ile Pro Ala 340 345 arg Lys Gly Asp Pro Ala 341 Gln Ala Ala Leu Asp Asp Val Cys Thr Gly Gly Asn Pro Arg 355 a Ala Thr Leu Glu Asp Ile Val Glu Leu Tyr His Thr Ala Trp 370 375 380 0> SEQ ID NO 66 1> LENGTH: 1023 2> TYPE: DNA 3> ORGANISM: Lactococcus lactis 0> SEQUENCE: 66 maaagcag cagtagtaag acacaatcca gatggttatg cggaccttgt tgaaaaggaa 60 cgagcaa tcaaacctaa tgaagcttg cttgacatgg agtattgtgg agtctgtcat 120 rgatttge acgttgcage aggtgattat ggcaacaaag cagggactgt tcttggtcat 180 rggaattg gaattgtcaa agaaattgga gctgatgtaa gctcgttca agttggtgat 240	Arg Val 305	. Met	Gly	Val	-	Val	Glu	Gly	Met		Leu	Glu	Glu	Ala	-						
340 345 350 A Ala Gln Ala Ala Leu Asp Asp Val Cys Thr Gly Gly Asn Pro Arg 355 360 A Ala Thr Leu Glu Asp Ile Val Glu Leu Tyr His Thr Ala Trp 370 375 380 00> SEQ ID NO 66 1> LENGTH: 1023 2> TYPE: DNA 3> ORGANISM: Lactococcus lactis 00> SEQUENCE: 66 Haaagcag cagtagtaag acacaatcca gatggttatg cggaccttgt tgaaaaggaa 60 cgagcaa tcaaacctaa tgaagctttg cttgacatgg agtattgtgg agtctgtcat 120 Hgatttgc acgttgcage aggtgattat ggcaacaaag cagggactgt tcttggtcat 180	\sn Ala	Ala	Val		Ala	Val	Phe	Ala		Asn	Arg	Asp	Val	-	Ile						
355 360 365 Ala Thr Leu Glu Asp Ile Val Glu Leu Tyr His Thr Ala Trp 370 375 380 0> SEQ ID NO 66 1> LENGTH: 1023 2> TYPE: DNA 3> ORGANISM: Lactococcus lactis 0> SEQUENCE: 66 maaagcag cagtagtaag acacaatcca gatggttatg cggaccttgt tgaaaaggaa 60 cggagcaa tcaaacctaa tgaagcttg cttgacatgg agtattgtgg agtctgtcat 120 rgattgc acgttgcagc aggtgattat ggcaacaaag cagggactgt tcttggtcat 180	ro Pro?) His		Arg	Asp	Val	Gly		Arg	rÀa	Glu	Asp		Pro	Ala						
370 375 380 0> SEQ ID NO 66 1> LENGTH: 1023 2> TYPE: DNA 3> ORGANISM: Lactococcus lactis 10> SEQUENCE: 66 Imaaagcag cagtagtaag acacaatcca gatggttatg cggaccttgt tgaaaaggaa 60 Incegagcaa tcaaacctaa tgaagetttg ettgacatgg agtattgtgg agtetgteat 120 Ingattge acgttgeage aggtgattat ggeaacaaag cagggactgt tettggteat 180 Ingaattg gaattgteaa agaaattgga getgatgtaa getegettea agttggtgat 240	Jeu Ala			Ala	Leu	Asp	-	Val	Сув	Thr	Gly	-	Asn	Pro	Arg						
<pre>1> LENGTH: 1023 2> TYPE: DNA 3> ORGANISM: Lactococcus lactis 10> SEQUENCE: 66 10- cgagcaa tcaaacctaa tgaagctttg cttgacatgg agtattgtgg agtctgtcat 120 10- cgagtagt acgutgcagc aggtgattat ggcaacaaag cagggactgt tcttggtcat 180 10- cggaattg gaattgtcaa agaaattgga gctgatgtaa gctcgcttca agttggtgat 240</pre>			Leu	Glu	Asp		Val	Glu	Leu	Tyr		Thr	Ala	Trp							
egageaa teaaacetaa tgaagetttg ettgacatgg agtattgtgg agtetgteat 120 gatttge aegttgeage aggtgattat ggeaacaaag eagggaetgt tettggteat 180 aggaattg gaattgteaa agaaattgga getgatgtaa getegettea agttggtgat 240	<211> L <212> T <213> O	ENGT YPE : RGAN	H: 1 DNA ISM:	023 Laci	tocod	ccus	lact	is													
gatttgc acgttgcagc aggtgattat ggcaacaaag cagggactgt tettggteat 180 ggaattg gaattgteaa agaaattgga getgatgtaa getegettea agttggtgat 240	itgaaag	Icag	cagt	agta	ag a	cacaa	atcca	a gat	tggti	tatg	cgg	acct	tgt 1	gaa	aaggaa		60				
nggaattg gaattgtcaa agaaattgga gctgatgtaa gctcgcttca agttggtgat 240	ttcgag	caa	tcaa	accta	aa to	gaago	cttt	g cti	tgaca	atgg	agta	attg	tgg a	agte	cgtcat						
gtttcag tggcttggtt ctttgaagga tgtggtcact gtgaatactg tgtatctggt 300	jaaggaa	ttg	gaat	tgtc	aa aq	gaaat	ttgga	a gct	tgato	gtaa	gct	cgct	tca a	agtt	ggtgat	2	240				
	gggttt	cag	tggc	ttggi	tt ci	tttga	aagga	a tgi	tggt	cact	gtg	aata	ctg 1	gta	ctggt	. 3	300				

-cont	1 1110	С

aatgaaactt tttgtcgaga agttaaaaat gcaggatatt cagttgatgg cggaatggct gaagaagcaa ttgttgttgc cgattatgct gtcaaagttc ctgacqgact tgacccaatt gaagctagct caattacttg tgctggagta acaacttaca aagcaatcaa agtatcagga gtaaaacctg gtgattggca agtaattttt ggtgctggag gacttggaaa tttagcaatt caatatgcta aaaatgtttt tggagcaaaa gtaattgctg ttgatattaa tcaagataaa ttaaatttag ctaaaaaaat tggagctgat gtgattatca attctggtga tgtaaatcca gttgatgaaa ttaaaaaaat aactggcggc ttagggggtgc aaagtgcaat agtttgtgct gttgcaagga ttgcttttga acaagcggtt gcttctttga aacctatggg caaaatggtt gctgtggcac ttcccaatac tgagatgact ttatcagttc caacagttgt ttttgacgga gtggaggttg caggttcact tgtcggaaca agacttgact tggcagaagc ttttcaattt ggagcagaag gtaaggtaaa accaattgtt gcgacacgca aactggaaga aatcaatgat attattgatg aaatgaaggc aggaaaaatt gaaggccgaa tggtcattga ttttactaaa taa <210> SEQ ID NO 67 <211> LENGTH: 340 <212> TYPE: PRT <213> ORGANISM: Lactococcus lactis <400> SEQUENCE: 67 Met Lys Ala Ala Val Val Arg His Asn Pro Asp Gly Tyr Ala Asp Leu Val Glu Lys Glu Leu Arg Ala Ile Lys Pro Asn Glu Ala Leu Leu Asp Met Glu Tyr Cys Gly Val Cys His Thr Asp Leu His Val Ala Ala Gly Asp Tyr Gly Asn Lys Ala Gly Thr Val Leu Gly His Glu Gly Ile Gly 50 55 60 Ile Val Lys Glu Ile Gly Ala Asp Val Ser Ser Leu Gln Val Gly Asp Arg Val Ser Val Ala Trp Phe Phe Glu Gly Cys Gly His Cys Glu Tyr Cys Val Ser Gly As
n Glu Thr Phe Cys Arg Glu Val Lys As
n Ala Gly Tyr Ser Val Asp Gly Gly Met Ala Glu Glu Ala Ile Val Val Ala Asp Tyr Ala Val Lys Val Pro Asp Gly Leu Asp Pro Ile Glu Ala Ser Ser Ile Thr Cys Ala Gly Val Thr Thr Tyr Lys Ala Ile Lys Val Ser Gly Val Lys Pro Gly Asp Trp Gln Val Ile Phe Gly Ala Gly Gly Leu Gly Asn Leu Ala Ile Gln Tyr Ala Lys Asn Val Phe Gly Ala Lys Val Ile Ala Val Asp Ile Asn Gln Asp Lys Leu Asn Leu Ala Lys Lys Ile Gly Ala Asp Val Ile Ile Asn Ser Gly Asp Val Asn Pro Val Asp Glu Ile

```
-continued
```

Lys Lys Ile Thr Gly Gly Leu Gly Val Gln Ser Ala Ile Val Cys Ala 235 225 230 240 Val Ala Arg Ile Ala Phe Glu Gln Ala Val Ala Ser Leu Lys Pro Met 245 250 255 Gly Lys Met Val Ala Val Ala Leu Pro Asn Thr Glu Met Thr Leu Ser 260 265 270 Val Pro Thr Val Val Phe Asp Gly Val Glu Val Ala Gly Ser Leu Val 280 285 275 Gly Thr Arg Leu Asp Leu Ala Glu Ala Phe Gln Phe Gly Ala Glu Gly 295 300 290 Lys Val Lys Pro Ile Val Ala Thr Arg Lys Leu Glu Glu Ile Asn Asp 305 310 315 320 Ile Ile Asp Glu Met Lys Ala Gly Lys Ile Glu Gly Arg Met Val Ile 325 330 335 Asp Phe Thr Lys 340 <210> SEQ ID NO 68 <211> LENGTH: 1164 <212> TYPE: DNA <213> ORGANISM: Escherichia coli <400> SEQUENCE: 68 atgaacaact ttaatctgca caccccaacc cgcattctgt ttggtaaagg cgcaatcgct 60 120 ggtttacgcg aacaaattcc tcacgatgct cgcgtattga ttacctacgg cggcggcagc gtgaaaaaaa ccggcgttct cgatcaagtt ctggatgccc tgaaaggcat ggacgtgctg 180 qaatttqqcq qtattqaqcc aaacccqqct tatqaaacqc tqatqaacqc cqtqaaactq 240 gttcgcgaac agaaagtgac tttcctgctg gcggttggcg gcggttctgt actggacggc 300 accaaattta togoogcago ggotaactat coggaaaata togatoogtg goacattotg 360 420 caaacqqqcq qtaaaqaqat taaaaqcqcc atcccqatqq qctqtqtqct qacqctqcca gcaaccggtt cagaatccaa cgcaggcgcg gtgatctccc gtaaaaccac aggcgacaag 480 caggegttee attetgeeca tgttcageeg gtatttgeeg tgetegatee ggtttatace 540 tacaccctgc cgccgcgtca ggtggctaac ggcgtagtgg acgcctttgt acacaccgtg 600 gaacagtatg ttaccaaacc ggttgatgcc aaaattcagg accgtttcgc agaaggcatt 660 ttgctgacgc taatcgaaga tggtccgaaa gccctgaaag agccagaaaa ctacgatgtg 720 cgcgccaacg tcatgtgggc ggcgactcag gcgctgaacg gtttgattgg cgctggcgta 780 ccgcaggact gggcaacgca tatgctgggc cacgaactga ctgcgatgca cggtctggat 840 cacgcgcaaa cactggctat cgtcctgcct gcactgtgga atgaaaaacg cgataccaag 900 960 cgcgctaagc tgctgcaata tgctgaacgc gtctggaaca tcactgaagg ttccgatgat gagegtattg acgeegegat tgeegeaace egeaatttet ttgageaatt aggegtgeeg 1020 acccacctct ccgactacgg tctggacggc agetccatec cggetttget gaaaaaactg 1080 gaagagcacg gcatgaccca actgggcgaa aatcatgaca ttacgttgga tgtcagccgc 1140 cgtatatacg aagccgcccg ctaa 1164

<210> SEQ ID NO 69 <211> LENGTH: 387

-cont	1 11 11	<u>–</u> –
COILC	TITO	cu

					_	_	_	_	_	_	_		_	_			
		PE : RGANI		Escl	heri	chia	col:	i									
<400)> SH	EQUEI	ICE :	69													
Met 1	Asn	Asn	Phe	Asn 5	Leu	His	Thr	Pro	Thr 10	Arg	Ile	Leu	Phe	Gly 15	Lys		
Gly	Ala	Ile	Ala 20	Gly	Leu	Arg	Glu	Gln 25	Ile	Pro	His	Asp	Ala 30	Arg	Val		
Leu	Ile	Thr 35	Tyr	Gly	Gly	Gly	Ser 40	Val	Lys	ГÀа	Thr	Gly 45	Val	Leu	Aab		
Gln	Val 50	Leu	Asp	Ala	Leu	Lуз 55	Gly	Met	Asp	Val	Leu 60	Glu	Phe	Gly	Gly		
Ile 65	Glu	Pro	Asn	Pro	Ala 70	Tyr	Glu	Thr	Leu	Met 75	Asn	Ala	Val	Lys	Leu 80		
Val	Arg	Glu	Gln	Lys 85	Val	Thr	Phe	Leu	Leu 90	Ala	Val	Gly	Gly	Gly 95	Ser		
Val	Leu	Asp	Gly 100	Thr	Lys	Phe	Ile	Ala 105	Ala	Ala	Ala	Asn	Tyr 110	Pro	Glu		
Asn	Ile	Asp 115	Pro	Trp	His	Ile	Leu 120	Gln	Thr	Gly	Gly	Lys 125	Glu	Ile	Гла		
Ser	Ala 130	Ile	Pro	Met	Gly	Cys 135	Val	Leu	Thr	Leu	Pro 140	Ala	Thr	Gly	Ser		
Glu 145	Ser	Asn	Ala	Gly	Ala 150	Val	Ile	Ser	Arg	Lys 155	Thr	Thr	Gly	Asp	Lys 160		
Gln	Ala	Phe	His	Ser 165	Ala	His	Val	Gln	Pro 170	Val	Phe	Ala	Val	Leu 175	Asp		
Pro	Val	Tyr	Thr 180	Tyr	Thr	Leu	Pro	Pro 185	Arg	Gln	Val	Ala	Asn 190	Gly	Val		
Val	Aab	Ala 195	Phe	Val	His	Thr	Val 200	Glu	Gln	Tyr	Val	Thr 205	Lys	Pro	Val		
Aap	Ala 210	Lys	Ile	Gln	Asp	Arg 215	Phe	Ala	Glu	Gly	Ile 220	Leu	Leu	Thr	Leu		
Ile 225	Glu	Asp	Gly	Pro	Lys 230	Ala	Leu	ГЛа	Glu	Pro 235	Glu	Asn	Tyr	Asp	Val 240		
Arg	Ala	Asn	Val	Met 245	Trp	Ala	Ala	Thr	Gln 250	Ala	Leu	Asn	Gly	Leu 255	Ile		
Gly	Ala	Gly	Val 260	Pro	Gln	Asp	Trp	Ala 265	Thr	His	Met	Leu	Gly 270	His	Glu		
Leu	Thr	Ala 275	Met	His	Gly	Leu	Asp 280	His	Ala	Gln	Thr	Leu 285	Ala	Ile	Val		
Leu	Pro 290	Ala	Leu	Trp	Asn	Glu 295	Lys	Arg	Asp	Thr	Lys 300	Arg	Ala	Lys	Leu		
Leu 305	Gln	Tyr	Ala	Glu	Arg 310	Val	Trp	Asn	Ile	Thr 315	Glu	Gly	Ser	Asp	Asp 320		
Glu	Arg	Ile	Asp	Ala 325	Ala	Ile	Ala	Ala	Thr 330	Arg	Asn	Phe	Phe	Glu 335	Gln		
Leu	Gly	Val	Pro 340	Thr	His	Leu	Ser	Asp 345	Tyr	Gly	Leu	Asp	Gly 350	Ser	Ser		
Ile	Pro	Ala 355	Leu	Leu	Гла	Lys	Leu 360	Glu	Glu	His	Gly	Met 365	Thr	Gln	Leu		
Gly	Glu 370	Asn	His	Asp	Ile	Thr 375	Leu	Asp	Val	Ser	Arg 380	Arg	Ile	Tyr	Glu		

Ala Ala Arq <210> SEQ ID NO 70 <211> LENGTH: 395 <212> TYPE: PRT <213> ORGANISM: Saccharomyces cerevisiae <400> SEQUENCE: 70 Met Leu Arg Thr Gln Ala Ala Arg Leu Ile Cys Asn Ser Arg Val Ile Thr Ala Lys Arg Thr Phe Ala Leu Ala Thr Arg Ala Ala Ala Tyr Ser Arg Pro Ala Ala Arg Phe Val Lys Pro Met Ile Thr Thr Arg Gly Leu Lys Gln Ile Asn Phe Gly Gly Thr Val Glu Thr Val Tyr Glu Arg Ala Asp Trp Pro Arg Glu Lys Leu Leu Asp Tyr Phe Lys Asn Asp Thr Phe 65 70 75 80 Ala Leu Ile Gly Tyr Gly Ser Gln Gly Tyr Gly Gln Gly Leu Asn Leu 85 90 95 Arg Asp Asn Gly Leu Asn Val Ile Ile Gly Val Arg Lys Asp Gly Ala Ser Trp Lys Ala Ala Ile Glu Asp Gly Trp Val Pro Gly Lys Asn Leu 115 120 125 Phe Thr Val Glu Asp Ala Ile Lys Arg Gly Ser Tyr Val Met Asn Leu 130 135 140 Leu Ser Asp Ala Ala Gln Ser Glu Thr Trp Pro Ala Ile Lys Pro Leu Leu Thr Lys Gly Lys Thr Leu Tyr Phe Ser His Gly Phe Ser Pro Val Phe Lys Asp Leu Thr His Val Glu Pro Pro Lys Asp Leu Asp Val Ile Leu Val Ala Pro Lys Gly Ser Gly Arg Thr Val Arg Ser Leu Phe Lys Glu Gly Arg Gly Ile Asn Ser Ser Tyr Ala Val Trp Asn Asp Val Thr Gly Lys Ala His Glu Lys Ala Gln Ala Leu Ala Val Ala Ile Gly Ser Gly Tyr Val Tyr Gln Thr Thr Phe Glu Arg Glu Val Asn Ser Asp Leu Tyr Gly Glu Arg Gly Cys Leu Met Gly Gly Ile His Gly Met Phe Leu Ala Gln Tyr Asp Val Leu Arg Glu Asn Gly His Ser Pro Ser Glu Ala Phe Asn Glu Thr Val Glu Glu Ala Thr Gln Ser Leu Tyr Pro Leu Ile Gly Lys Tyr Gly Met Asp Tyr Met Tyr Asp Ala Cys Ser Thr Thr Ala 305 310 315 320 Arg Arg Gly Ala Leu Asp Trp Tyr Pro Ile Phe Lys Asn Ala Leu Lys Pro Val Phe Gln Asp Leu Tyr Glu Ser Thr Lys Asn Gly Thr Glu Thr

-continued

Lys Arg Ser Leu Glu Phe Asn Ser Gln Pro Asp Tyr Arg Glu Lys Leu Glu Lys Glu Leu Asp Thr Ile Arg Asn Met Glu Ile Trp Lys Val Gly Lys Glu Val Arg Lys Leu Arg Pro Glu Asn Gln <210> SEQ ID NO 71 <211> LENGTH: 330 <212> TYPE: PRT <213> ORGANISM: Methanococcus maripaludis <400> SEQUENCE: 71 Met Lys Val Phe Tyr Asp Ser Asp Phe Lys Leu Asp Ala Leu Lys Glu Lys Thr Ile Ala Val Ile Gly Tyr Gly Ser Gln Gly Arg Ala Gln Ser Leu Asn Met Lys Asp Ser Gly Leu Asn Val Val Val Gly Leu Arg Lys Asn Gly Ala Ser Trp Glu Asn Ala Lys Ala Asp Gly His Asn Val Met Thr Ile Glu Glu Ala Ala Glu Lys Ala Asp Ile Ile His Ile Leu Ile Pro Asp Glu Leu Gln Ala Glu Val Tyr Glu Ser Gln Ile Lys Pro Tyr Leu Lys Glu Gly Lys Thr Leu Ser Phe Ser His Gly Phe Asn Ile His Tyr Gly Phe Ile Val Pro Pro Lys Gly Val Asn Val Val Leu Val Ala Pro Lys Ser Pro Gly Lys Met Val Arg Arg Thr Tyr Glu Glu Gly Phe Gly Val Pro Gly Leu Ile Cys Ile Glu Ile Asp Ala Thr Asn Asn Ala Phe Asp Ile Val Ser Ala Met Ala Lys Gly Ile Gly Leu Ser Arg Ala Gly Val Ile Gln Thr Thr Phe Lys Glu Glu Thr Glu Thr Asp Leu Phe Gly Glu Gln Ala Val Leu Cys Gly Gly Val Thr Glu Leu Ile Lys Ala Gly Phe Glu Thr Leu Val Glu Ala Gly Tyr Ala Pro Glu Met Ala Tyr Phe Glu Thr Cys His Glu Leu Lys Leu Ile Val Asp Leu Ile Tyr Gln Lys Gly Phe Lys Asn Met Trp Asn Asp Val Ser Asn Thr Ala Glu Tyr Gly Gly Leu Thr Arg Arg Ser Arg Ile Val Thr Ala Asp Ser Lys Ala Ala Met Lys Glu Ile Leu Lys Glu Ile Gln Asp Gly Arg Phe Thr Lys Glu Phe Val Leu Glu Lys Gln Val Asn His Ala His Leu Lys Ala Met

-continued

Arg Arg Ile Glu Gly Asp Leu Gln Ile Glu Glu Val Gly Ala Lys Leu Arg Lys Met Cys Gly Leu Glu Lys Glu Glu <210> SEQ ID NO 72 <211> LENGTH: 342 <212> TYPE: PRT <213> ORGANISM: Bacillus subtilis <400> SEOUENCE: 72 Met Val Lys Val Tyr Tyr Asn Gly Asp Ile Lys Glu Asn Val Leu Ala Gly Lys Thr Val Ala Val Ile Gly Tyr Gly Ser Gln Gly His Ala His Ala Leu Asn Leu Lys Glu Ser Gly Val Asp Val Ile Val Gly Val Arg Gln Gly Lys Ser Phe Thr Gln Ala Gln Glu Asp Gly His Lys Val Phe Ser Val Lys Glu Ala Ala Ala Gln Ala Glu Ile Ile Met Val Leu Leu Pro Asp Glu Gln Gln Gln Lys Val Tyr Glu Ala Glu Ile Lys Asp Glu Leu Thr Ala Gly Lys Ser Leu Val Phe Ala His Gly Phe As
n Val His Phe His Gln Ile Val Pro Pro Ala Asp Val Asp Val Phe Leu Val Ala Pro Lys Gly Pro Gly His Leu Val Arg Arg Thr Tyr Glu Gln Gly Ala Gly Val Pro Ala Leu Phe Ala Ile Tyr Gln Asp Val Thr Gly Glu Ala Arg Asp Lys Ala Leu Ala Tyr Ala Lys Gly Ile Gly Gly Ala Arg Ala Gly Val Leu Glu Thr Thr Phe Lys Glu Glu Thr Glu Thr Asp Leu Phe Gly Glu Gln Ala Val Leu Cys Gly Gly Leu Ser Ala Leu Val Lys Ala Gly Phe Glu Thr Leu Thr Glu Ala Gly Tyr Gln Pro Glu Leu Ala Tyr Phe Glu Cys Leu His Glu Leu Lys Leu Ile Val Asp Leu Met Tyr Glu Glu Gly Leu Ala Gly Met Arg Tyr Ser Ile Ser Asp Thr Ala Gln Trp Gly Asp Phe Val Ser Gly Pro Arg Val Val Asp Ala Lys Val Lys Glu Ser Met Lys Glu Val Leu Lys Asp Ile Gln Asn Gly Thr Phe Ala Lys Glu Trp Ile Val Glu Asn Gln Val Asn Arg Pro Arg Phe Asn Ala Ile Asn Ala Ser Glu Asn Glu His Gln Ile Glu Val Val Gly Arg Lys Leu Arg Glu Met Met Pro Phe Val Lys Gln Gly Lys Lys Lys Glu Ala Val

Val Ser Val Ala Gln Asn <210> SEQ ID NO 73 <211> LENGTH: 352 <212> TYPE: PRT <213> ORGANISM: Piromyces sp. <400> SEQUENCE: 73 Met Val Lys Val Ile Asn Phe Gly Gly Val Asp Glu Thr Val Tyr Glu Arg Ala Asp Phe Pro Gln Glu Lys Leu Asn Glu Ile Phe Lys Asp Asp Val Phe Val Val Ile Gly Tyr Gly Thr Gln Gly Arg Asn Gln Ser Arg Asn Leu Arg Asp Lys Gly Phe Lys Val Ile Val Gly Leu Arg Lys Gly Pro Ser Trp Asp Leu Ala Lys Glu Asp Gly Trp Val Glu Ser Glu Ser 65 70 75 80 Leu Phe Glu Ile Thr Glu Ala Cys Gl
n Lys Gly Thr Ile Ile Met Tyr $% \left({{\left({{{\left({{{}_{{\rm{T}}}} \right)}} \right)}} \right)$ Leu Leu Ser Asp Ala Gly Gln Lys Ala Cys Trp Asn Thr Ile Lys Glu Leu Val His Gly Lys Thr Leu Tyr Phe Ser His Gly Phe Ser Ile Val 115 120 125 Phe Lys Glu Lys Thr Gly Val Val Pro Pro Glu Asp Cys Asp Val Ile Met Val Ala Pro Lys Gly Ser Gly Thr Thr Val Arg Thr Leu Phe Leu Glu Gly Arg Gly Ile Asn Ser Ser Val Ala Val Phe Gln Asn Trp Ser Gly Lys Ala Glu Glu Arg Ala Tyr Ala Ala Gly Ile Ala Ile Gly Ser Gly Tyr Leu Tyr Pro Thr Thr Phe Glu Arg Glu Thr Tyr Ser Asp Leu Thr Gly Glu Arg Gly Thr Leu Met Gly Cys Ile Gln Gly Cys Phe Lys Ala Gln Phe Glu Val Leu Ile Ala Asn Gly His Thr Pro Ser Glu Ala Phe Ser Glu Thr Val Glu Glu Ala Thr Gln Ser Leu Tyr Pro Leu Ile Gly Lys Asp Gly Met Asp Trp Met Tyr Asp Asn Cys Ser Thr Thr Ala Arg Arg Gly Ala Leu Asp Trp Met Asp Lys Phe Tyr Ala Ala Thr Lys Pro Val Phe Glu Glu Leu Tyr Glu Ser Val Arg Asn Gly Thr Glu Ala Glu Asn Thr Leu Val Ala Asn Ser Lys Pro Asp Tyr Arg Glu Asn Leu Ala Lys Glu Leu Lys Glu Leu Arg Glu Ser Gln Met Trp Gln Thr Ala Val Thr Val Arg Ser Leu Arg Pro Glu Asn Gln Lys Val Glu Lys Asn

inued	

			340					345					350		
<21 <21	0> SI 1> LH 2> TY 3> OH	ENGTI ZPE :	H: 49 PRT	90	hnera	a apl	nidi	cola							
< 40	0> SI	EQUEI	NCE :	74											
Met 1	Lys	Asn	Tyr	Phe 5	Asn	Ser	Leu	Asn	Phe 10	Arg	Gln	Lys	Leu	Ile 15	Asn
Leu	Gln	Lys	Сув 20	Гла	Leu	Ile	Asp	Asn 25	Gln	Phe	Leu	Ser	Glu 30	Lys	Asn
Asn	Val	Leu 35	Lys	Gly	Lys	Asn	Ile 40	Val	Ile	Val	Gly	Сув 45	Gly	Ser	Gln
Gly	Leu 50	Asn	Gln	Gly	Leu	Asn 55	Met	Arg	Asp	Ser	Gly 60	Leu	Asn	Ile	Ser
Tyr 65	Ala	Leu	Arg	Asp	Asp 70	Ser	Ile	Phe	Asn	Lys 75	Asn	Gln	Ser	Trp	Ile 80
Asn	Ala	Thr	Ser	Asn 85	Gly	Phe	Phe	Val	Gly 90	Thr	Tyr	Glu	Asn	Ile 95	Ile
Pro	Thr	Ala	Asp 100		Val	Ile	Asn	Leu 105	Thr	Pro	Asp	Lys	Gln 110	His	Glu
Gln	Val	Val 115	Asn	Val	Leu	Gln	Lys 120	Phe	Met	Lys	Pro	Asn 125	Ser	Val	Leu
Gly	Phe 130	Ser	His	Gly	Phe	Asn 135	Ile	Val	Glu	Val	Gly 140	Gln	Leu	Ile	Arg
Asn 145	Asp	Ile	Thr	Val	Ile 150	Met	Val	Ala	Pro	Lys 155	Суз	Pro	Gly	Thr	Glu 160
Val	Arg	Glu	Glu	Tyr 165		Arg	Gly	Phe	Gly 170	Val	Pro	Ala	Leu	Ile 175	Ala
Val	His	Ser	Glu 180	Asn	Asp	Pro	His	Asp 185	Ile	Gly	Phe	Glu	Ile 190	Ala	Lys
Ser	Trp	Ala 195	Ile	Ser	Ile	Gly	Ser 200	His	His	Ala	Gly	Ile 205	Leu	His	Ser
Ser	Phe 210	Ile	Ala	Glu	Val	Lys 215	Ser	Asp	Leu	Met	Gly 220	Glu	Gln	Thr	Ile
Leu 225	Сув	Gly	Met	Leu	Gln 230	Ala	Ser	Ser	Leu	Val 235	Сүз	Tyr	Asn	Gln	Leu 240
Ile	Phe	Gln	Gly	Val 245	Asn	Pro	Ser	Tyr	Ala 250	Gly	Lys	Leu	Ile	Gln 255	Thr
Gly	Trp	Glu	Val 260	Ile	Thr	Glu	Ser	Val 265	Lys	His	Gly	Gly	Ile 270	Thr	Leu
Met	Leu	Asp 275	Arg	Leu	Ser	Asn	Thr 280	Ala	Lys	Ile	Arg	Ala 285	Tyr	Phe	Leu
Ser	Lys 290	Lys	Leu	Lys	Lys	Ile 295	Phe	Phe	Pro	Leu	Phe 300	Arg	Lys	His	Met
Asp 305	Asp	Ile	Ile	Ser	Gly 310	Glu	Phe	Ser	Lys	Asn 315	Met	Met	Phe	Asp	Trp 320
ГЛа	Asn	Asn	Asp	Gln 325	Gln	Leu	ГЛа	Glu	Trp 330	Arg	Thr	Glu	Ile	Gln 335	Asn
Thr	Asp	Phe	Glu 340	Lys	Сүз	Asn	Ile	Tyr 345	Tyr	Lys	Gln	Ile	Pro 350	Glu	Gln

-continued

Glu															
	Tyr	Phe 355	Asp	Asn	Gly	Leu	Leu 360	Met	Val	Ala	Ile	Leu 365	Lys	Ala	Gly
Ile	Glu 370	Leu	Ser	Phe	Glu	Ile 375	Met	Ile	Glu	Thr	Gly 380	Ile	Lys	Glu	Glu
Ser 385	Ala	Tyr	Tyr	Glu	Ser 390	Leu	His	Glu	Leu	Pro 395	Leu	Ile	Ala	Asn	Thr 400
Ile	Ala	Arg	Lys	Arg 405	Leu	Tyr	Glu	Met	Asn 410	Leu	Val	Ile	Ser	Asp 415	Thr
Ala	Glu	Tyr	Gly 420	Ser	Tyr	Leu	Phe	Ser 425	His	Ala	Ala	Ile	Pro 430	Leu	Leu
Lys	Lys	Phe 435	Met	Asn	Glu	Leu	Gln 440	Pro	Gly	Asp	Leu	Gly 445	Asn	Lys	Ile
Ser	Thr 450	Ser	Glu	Leu	Asp	Asn 455	Ile	Thr	Leu	Tyr	Lys 460	Val	Asn	Ala	Lys
Ile 465	Glu	Ser	His	Pro	Ile 470	Glu	Ile	Ile	Gly	Lys 475	Lys	Leu	Arg	Leu	Tyr 480
Met	Thr	Ser	Met	Val 485	Pro	Ile	Lys	Thr	Lys 490						
<212 <213	2> T) 3> OF	ENGTH (PE : RGAN] EQUEN	PRT [SM:	Spin	nacia	a ole	erace	ea							
					Ala	Thr	Thr	Phe		Leu	Ser	Ser	Ser	Ser	Ser
1 Thr	Ser	Ala	Ala	5 Ala	Ser	Lys	Ala	Leu	10 Lvs	Gln	Ser	Pro	Lvs	15 Pro	Ser
			20					25					30		
Ala	Leu	Asn 35	Leu	Gly	Phe	Leu	Gly 40	Ser	Ser	Ser	Thr	Ile 45	Lys	Ala	Сув
Arg	Ser 50	Leu	Lys	Ala	Ala	Arg 55	Val	Leu	Pro	Ser	Gly 60	Ala	Asn	Gly	Gly
Gly 65	Ser	Ala	Leu	Ser	Ala 70	Gln	Met	Val	Ser	Ala 75	Pro	Ser	Ile	Asn	Thr 80
Pro	Ser	Ala	Thr	Thr 85	Phe	Asp	Phe	Asp	Ser 90	Ser	Val	Phe	Lys	Lys 95	Glu
Lys	Val	Thr	Leu 100	Ser	Gly	His	Asp	Glu 105	Tyr	Ile	Val	Arg	Gly 110	Gly	Arg
Asn	Leu	Phe 115	Pro	Leu	Leu	Pro	Asp 120	Ala	Phe	Lys	Gly	Ile 125	Lys	Gln	Ile
Gly	Val 130	Ile	Gly	Trp	Gly	Ser 135	Gln	Ala	Pro	Ala	Gln 140	Ala	Gln	Asn	Leu
Lys 145	Aap	Ser	Leu	Thr	Glu 150	Ala	Lys	Ser	Asp	Val 155	Val	Val	Lys	Ile	Gly 160
Leu	Arg	Lys	Gly	Ser 165	Asn	Ser	Phe	Ala	Glu 170	Ala	Arg	Ala	Ala	Gly 175	Phe
					-	LOU	Glv	Asp	Met	Trp	Glu	Thr		Ser	Gly
Ser	Glu	Glu	Asn 180	Gly	Thr	Цец	1	185					190		
			180	-		Leu	-		Asp	Ser	Ala	Gln 205		Asp	Asn

	on			

Ser 225	His	Gly	Phe	Leu	Leu 230	Gly	His	Leu	Gln	Ser 235	Leu	Gly	Gln	Asp	Phe 240
	Lys	Asn	Ile	Ser 245		Ile	Ala	Val	Cys 250		Lys	Gly	Met	Gly 255	
Ser	Val	Arg	Arg 260		Tyr	Val	Gln	Gly 265		Glu	Val	Asn	Gly 270		Gly
Ile	Asn	Ser 275		Phe	Ala	Val	His 280		Asp	Val	Asp	Gly 285		Ala	Thr
Asp	Val 290	Ala	Leu	Gly	Trp	Ser 295		Ala	Leu	Gly			Phe	Thr	Phe
		Thr	Leu	Glu			Tyr	Lys	Ser		300 Ile	Phe	Gly	Glu	
305 Gly	Ile	Leu	Leu		310 Ala	Val	His	Gly		315 Val	Glu	Суз	Leu		320 Arg
Arg	Tyr	Thr		325 Ser	Gly	Met	Ser		330 Aap	Leu	Ala	Tyr		335 Asn	Thr
Val	Glu	Cys	340 Ile	Thr	Gly	Val		345 Ser	Lys	Thr	Ile		350 Thr	Lys	Gly
Met		355 Ala	Leu	Tyr	Asn		360 Leu	Ser	Glu	Glu		365 Lys	Lys	Asp	Phe
	370 Ala	Ala	Tyr	Ser		375 Ser	Tyr	Tyr	Pro		380 Met	Asp	Ile	Leu	
385 Glu	Cys	Tyr	Glu		390 Val	Ala	Ser	Gly		395 Glu	Ile	Arg	Ser		400 Val
Leu	Ala	Gly	_	405 Arg	Phe	Tyr	Glu		410 Glu	Gly	Leu	Pro		415 Phe	Pro
Met	Gly	Lys	420 Ile	Asp	Gln	Thr		425 Met	Trp	Lys	Val		430 Glu	Lys	Val
Arg		435 Val	Arg	Pro	Ala		440 Asp	Leu	Gly	Pro		445 Tyr	Pro	Phe	Thr
Ala	450 Gly	Val	Tyr	Val	Ala	455 Leu	Met	Met	Ala	Gln	460 Ile	Glu	Ile	Leu	Arg
465 Lys	Lys	Gly	His	Ser	470 Tyr	Ser	Glu	Ile	Ile	475 Asn	Glu	Ser	Val	Ile	480 Glu
Ala	Val	Asp	Ser	485 Leu	Asn	Pro	Phe	Met	490 His	Ala	Arg	Gly	Val	495 Ser	Phe
Met	Val	Asp	500 Asn	Cys	Ser	Thr	Thr	505 Ala	Arg	Leu	Gly	Ser	510 Arg	Lys	Trp
Ala	Pro	515 Arg	Phe	Asp	Tyr	Ile	520 Leu	Ser	Gln	Gln	Ala	525 Leu	Val	Ala	Val
Asp	530 Asn	Gly	Ala	Pro	Ile	535 Asn	Gln	Asp	Leu	Ile	540 Ser	Asn	Phe	Leu	Ser
545		Val			550					555					560
Val	Asp	Ile	Ser	565 Val	Thr	Ala	Asp	Ala	570 Asp	Phe	Val	Arg	Pro	575 Glu	Leu
	Gln		580				-	585	-			2	590		
5		595													

<210> SEQ ID NO 76 <211> LENGTH: 578

	2> T 3> OI			Ory	za s	ativ	a										
<40	0> S1	EQUE	NCE:	76													
Met 1	Ala	Ala	Ser	Thr 5	Thr	Leu	Ala	Leu	Ser 10	His	Pro	Lys	Thr	Leu 15	Ala		
Ala	Ala	Ala	Ala 20	Ala	Ala	Pro	Lys	Ala 25	Pro	Thr	Ala	Pro	Ala 30	Ala	Val		
Ser	Phe	Pro 35	Val	Ser	His	Ala	Ala 40	Суз	Ala	Pro	Leu	Ala 45	Ala	Arg	Arg		
Arg	Ala 50	Val	Thr	Ala	Met	Val 55	Ala	Ala	Pro	Pro	Ala 60	Val	Gly	Ala	Ala		
Met 65	Pro	Ser	Leu	Asp	Phe 70	Asp	Thr	Ser	Val	Phe 75	Asn	Lys	Glu	Lys	Val 80		
Ser	Leu	Ala	Gly	His 85	Glu	Glu	Tyr	Ile	Val 90	Arg	Gly	Gly	Arg	Asn 95	Leu		
Phe	Pro	Leu	Leu 100	Pro	Glu	Ala	Phe	Lys 105	Gly	Ile	Lys	Gln	Ile 110	Gly	Val		
Ile	Gly	Trp 115	Gly	Ser	Gln	Gly	Pro 120	Ala	Gln	Ala	Gln	Asn 125	Leu	Arg	Aap		
Ser	Leu 130	Ala	Glu	Ala	Lys	Ser 135	Asp	Ile	Val	Val	Lys 140	Ile	Gly	Leu	Arg		
Lys 145	Gly	Ser	ГЛа	Ser	Phe 150	Asp	Glu	Ala	Arg	Ala 155	Ala	Gly	Phe	Thr	Glu 160		
Glu	Ser	Gly	Thr	Leu 165	Gly	Asp	Ile	Trp	Glu 170	Thr	Val	Ser	Gly	Ser 175	Aap		
Leu	Val	Leu	Leu 180	Leu	Ile	Ser	Asp	Ala 185	Ala	Gln	Ala	Asp	Asn 190	Tyr	Glu		
ГЛа	Ile	Phe 195	Ser	His	Met	Lys	Pro 200	Asn	Ser	Ile	Leu	Gly 205	Leu	Ser	His		
Gly	Phe 210	Leu	Leu	Gly	His	Leu 215	Gln	Ser	Ala	Gly	Leu 220	Asp	Phe	Pro	ГЛа		
Asn 225	Ile	Ser	Val	Ile	Ala 230	Val	Сув	Pro	Lys	Gly 235	Met	Gly	Pro	Ser	Val 240		
Arg	Arg	Leu	Tyr	Val 245	Gln	Gly	Lys	Glu	Ile 250	Asn	Gly	Ala	Gly	Ile 255	Asn		
Ser	Ser	Phe	Ala 260	Val	His	Gln	Asp	Val 265	Asp	Gly	Arg	Ala	Thr 270	Asp	Val		
Ala	Leu	Gly 275	Trp	Ser	Val	Ala	Leu 280	Gly	Ser	Pro	Phe	Thr 285	Phe	Ala	Thr		
Thr	Leu 290	Glu	Gln	Glu	Tyr	Lys 295	Ser	Asp	Ile	Phe	Gly 300	Glu	Arg	Gly	Ile		
Leu 305	Leu	Gly	Ala	Val	His 310	Gly	Ile	Val	Glu	Ala 315	Leu	Phe	Arg	Arg	Tyr 320		
Thr	Glu	Gln	Gly	Met 325	Asp	Glu	Glu	Met	Ala 330	Tyr	ГЛа	Asn	Thr	Val 335	Glu		
Gly	Ile	Thr	Gly 340	Ile	Ile	Ser	Lys	Thr 345	Ile	Ser	Lys	Lys	Gly 350	Met	Leu		
Glu	Val	Tyr 355	Asn	Ser	Leu	Thr	Glu 360	Glu	Gly	ГÀа	ГЛа	Glu 365	Phe	Asn	Lys		
Ala	Tyr 370	Ser	Ala	Ser	Phe	Tyr 375	Pro	Суз	Met	Asp	Ile 380	Leu	Tyr	Glu	Сүз		

on			

Tyr 385	Glu	Asp	Val	Ala	Ser 390	Gly	Ser	Glu	Ile	Arg 395	Ser	Val	Val	Leu	Ala 400
Gly	Arg	Arg	Phe	Tyr 405	Glu	Lys	Glu	Gly	Leu 410	Pro	Ala	Phe	Pro	Met 415	Gly
Asn	Ile	Asp	Gln 420	Thr	Arg	Met	Trp	Lys 425	Val	Gly	Glu	Lys	Val 430	Arg	Ser
Thr	Arg	Pro 435	Glu	Asn	Asp	Leu	Gly 440	Pro	Leu	His	Pro	Phe 445	Thr	Ala	Gly
Val	Tyr 450	Val	Ala	Leu	Met	Met 455	Ala	Gln	Ile	Glu	Val 460	Leu	Arg	Lys	Lys
Gly 465	His	Ser	Tyr	Ser	Glu 470	Ile	Ile	Asn	Glu	Ser 475	Val	Ile	Glu	Ser	Val 480
Asp	Ser	Leu	Asn	Pro 485	Phe	Met	His	Ala	Arg 490	Gly	Val	Ala	Phe	Met 495	Val
Asp	Asn	Суз	Ser 500	Thr	Thr	Ala	Arg	Leu 505	Gly	Ser	Arg	Lys	Trp 510	Ala	Pro
Arg	Phe	Asp 515	Tyr	Ile	Leu	Thr	Gln 520	Gln	Ala	Phe	Val	Thr 525	Val	Asp	Lys
Asp	Ala 530	Pro	Ile	Asn	Gln	Asp 535	Leu	Ile	Ser	Asn	Phe 540	Met	Ser	Asp	Pro
Val 545	His	Gly	Ala	Ile	Glu 550	Val	Суз	Ala	Glu	Leu 555	Arg	Pro	Thr	Val	Asp 560
Ile	Ser	Val	Pro	Ala 565	Asn	Ala	Asp	Phe	Val 570	Arg	Pro	Glu	Leu	Arg 575	Gln
Ser	Ser														
)> SH L> LH														
<211 <212	L> LH 2> TY	ENGTH	1: 5! PRT	55	amvda	omona	as re	-inha	ardti	11					
<211 <212 <213	L> LH 2> TY 3> OH	ENGTH (PE : RGAN)	1: 5! PRT [SM:	55 Chla	amydo	omona	as re	∍inha	ardti	ĹĹ					
<211 <212 <213 <400	l> LH 2> TY 3> OH D> SH	ENGTH (PE : RGAN] EQUEI	H: 5! PRT ISM: NCE:	55 Chla 77	-						Sor	Cly	Sor	٨ra	Gla
<211 <212 <213 <400 Met 1	l> LH 2> TY 3> OF 0> SH Gln	ENGTH (PE : RGAN] EQUEN Leu	H: 5! PRT ISM: NCE: Leu	Chla 77 Asn 5	Ser	Lys	Ser	Arg	Val 10	Leu		-		15	
<211 <212 <213 <400 Met 1	l> LH 2> TY 3> OF 0> SH Gln	ENGTH (PE : RGAN] EQUEN Leu	H: 5! PRT ISM: NCE: Leu	Chla 77 Asn 5	Ser	Lys	Ser		Val 10	Leu		-		15	
<211 <212 <213 <400 Met 1 Gln	1> LH 2> TY 3> OF 0> SH Gln Ala	ENGTH (PE : RGAN EQUE Leu Ala	H: 5 PRT ISM: NCE: Leu Ala 20	55 Chla 77 Asn 5 Lys	Ser Ala	Lys Val	Ser Arg	Arg Val	Val 10 Ala	Leu Pro	Ser	Gly	Arg 30	15 Arg	Ser
<211 <212 <213 <400 Met 1 Gln Ala	l> LH 2> TY 3> OF Gln Ala Val	ENGTH (PE: RGAN) EQUEN Leu Ala Arg 35	H: 59 PRT ISM: ICE: Leu Ala 20 Val	Chla 77 Asn 5 Lys Ser	Ser Ala Ala	Lys Val Ala	Ser Arg Val 40	Arg Val 25	Val 10 Ala Leu	Leu Pro Asp	Ser Phe	Gly Asn 45	Arg 30 Thr	15 Arg Lys	Ser Val
<211 <212 <213 <400 Met 1 Gln Ala Phe	l> LH 2> TY 3> OF Gln Ala Val Gln 50	ENGTH (PE: (GAN) EQUEN Leu Ala Arg 35 Lys	H: 59 PRT ISM: NCE: Leu Ala 20 Val Glu	55 Chla 77 Asn 5 Lys Ser His	Ser Ala Ala Ala	Lys Val Ala Lys 55	Ser Arg Val 40 Phe	Arg Val 25 His	Val 10 Ala Leu Pro	Leu Pro Asp Thr	Ser Phe Glu 60	Gly Asn 45 Glu	Arg 30 Thr Tyr	15 Arg Lys Ile	Ser Val Val
<211 <212 <213 <400 Met 1 Gln Ala Phe Arg 65	L> LH 2> TY 3> OF Gln Ala Val Gln 50 Gly	ENGTH (PE: CGAN: EQUEN Leu Ala Arg 35 Lys Gly	H: 59 PRT ISM: ICE: Leu Ala 20 Val Glu Arg	55 Chlł 77 Asn 5 Lys Ser His Asp	Ser Ala Ala Ala Lys 70	Lys Val Ala Lys 55 Tyr	Ser Arg Val 40 Phe Pro	Arg Val 25 His Gly	Val 10 Ala Leu Pro Leu	Leu Pro Asp Thr Lys 75	Ser Phe Glu 60 Glu	Gly Asn 45 Glu Ala	Arg 30 Thr Tyr Phe	15 Arg Lys Ile Lys	Ser Val Val Gly 80
<211 <212 <213 <400 Met 1 Gln Ala Phe Arg 65 Ile	L> LH 2> TY 3> OF Gln Ala Val Gln 50 Gly Lys	ENGTH (PE: CQUET CQUET Leu Ala Arg 35 Lys Gly Lys	H: 59 PRT ISM: JCE: Leu Ala 20 Val Glu Arg Val	Chla 77 Asn 5 Lys Ser His Asp Ser 85	Ser Ala Ala Ala Lys 70 Val	Lys Val Ala Lys 55 Tyr Ile	Ser Arg Val 40 Phe Pro Gly	Arg Val 25 His Gly Leu	Val 10 Ala Leu Pro Leu Gly 90	Leu Pro Asp Thr Lys 75 Ser	Ser Phe Glu Glu Glu	Gly Asn 45 Glu Ala Ala	Arg 30 Thr Tyr Phe Pro	15 Arg Lys Ile Lys Ala 95	Ser Val Val Gly 80 Gln
<211 <212 <213 <400 Met 1 Gln Ala Phe Ala Arg 65 Ile Ala	L> LH 2> TY 3> OF Gln Ala Val Gln 50 Gly Lys Gln	ENGTH (PE: CQUE Leu Ala Arg 35 Lys Gly Lys Asn	H: 55 PRT ISM: NCE: Leu Ala 20 Val Glu Arg Val Leu 100	Chla 77 Asn 5 Lys Ser His Asp Ser 85 Arg	Ser Ala Ala Ala Lys 70 Val Asp	Lys Val Ala Lys 55 Tyr Ile Ser	Ser Arg Val 40 Phe Pro Gly Ile	Arg Val 25 His Gly Leu Trp Ala	Val 10 Ala Leu Pro Leu Gly 90 Glu	Leu Pro Asp Thr Lys 75 Ser Ala	Ser Phe Glu Glu Glu Glu	Gly Asn 45 Glu Ala Ala Met	Arg 30 Thr Tyr Phe Pro Asp 110	15 Arg Lys Ile Lys Ala 95 Ile	Ser Val Val Gly 80 Gln Lys
<211 <212 <213 <400 Met 1 Gln Ala Phe Arg 65 Ile Ala Val	L> LH 2> TY 3> OF Gln Ala Val Gln Gly Lys Gln Ala	ENGTH (PE: CGAN: CQUET Leu Ala Arg 35 Lys Gly Lys Asn Ile 115	H: 55 PRT ISM: JCE: Leu Ala 20 Val Glu Val Leu 100 Gly	Chla 77 Asn 5 Lys Ser His Ser 85 Arg Leu	Ser Ala Ala Ala Lys 70 Val Asp Arg	Lys Val Ala Lys 55 Tyr Ile Ser Pro	Ser Arg Val 40 Phe Pro Gly Ile Asp 120	Arg Val 25 His Gly Leu Trp Ala	Val 10 Ala Leu Pro Leu Gly 90 Glu Pro	Leu Pro Asp Thr Lys Ser Ala Ser	Ser Phe Glu 60 Glu Glu Gly Trp	Gly Asn 45 Glu Ala Ala Met Ala 125	Arg 30 Thr Tyr Phe Pro Asp 110 Glu	15 Arg Lys Ile Lys Ala 95 Ile Ala	Ser Val Val Gly 80 Gln Lys Glu
<211 <212 <213 <400 Met 1 Gln Ala Phe Ala Ala Val Ala	L> LH 2> TY 3> OF Gln Ala Val Gln Gly Lys Gly Ala Cys 130	ENGTH (PE: CGAN: EQUEL Leu Ala Arg 35 Lys Gly Lys Asn Ile 115 Gly	H: 59 PRT (SM: Leu Ala 20 Val Glu Arg Val Leu 100 Gly Phe	Chla 77 Asn 5 Lys Ser His Asp Ser Asp Asp Cer Ser	Ser Ala Ala Ala Lys 70 Val Asp Arg Lys	Lys Val Ala Lys 55 Tyr Ile Ser Pro Thr 135	Ser Arg Val 40 Phe Pro Gly Ile Asp 120 Asp	Arg Val 25 His Gly Leu Trp Ala 105 Ser	Val 10 Ala Leu Pro Leu Gly 90 Glu Pro Thr	Leu Pro Asp Thr Lys 75 Ser Ala Ser Leu	Ser Phe Glu Glu Glu Glu Gly Trp Gly 140	Gly Asn 45 Glu Ala Ala 125 Glu	Arg 30 Thr Tyr Phe Pro Asp 110 Glu Val	15 Arg Lys Ile Lys Ala 95 Ile Ala Phe	Ser Val Gly 80 Gln Lys Glu Glu

-	C 1	on	÷	п.	n	11	\frown	\sim
_	\sim	~~	L	ж.	TT.	u	-	u

Gln	Ala	Lys	Leu	Tyr 165	Pro	Arg	Ile	Leu	Ala 170	Ala	Met	Lys	Pro	Gly 175	Ala
Thr	Leu	Gly	Leu 180	Ser	His	Gly	Phe	Leu 185	Leu	Gly	Val	Met	Arg 190	Asn	Asp
Gly	Val	Asp 195	Phe	Arg	Гла	Asp	Ile 200	Asn	Val	Val	Leu	Val 205	Ala	Pro	Lys
Gly	Met 210	Gly	Pro	Ser	Val	Arg 215	Arg	Leu	Tyr	Glu	Gln 220	Gly	Гла	Ser	Val
Asn 225	Gly	Ala	Gly	Ile	Asn 230		Ser	Phe	Ala	Ile 235	Gln	Gln	Asp	Ala	Thr 240
Gly	Gln	Ala	Ala	Asp 245	Ile	Ala	Ile	Gly	Trp 250	Ala	Ile	Gly	Val	Gly 255	Ala
Pro	Phe	Ala	Phe 260	Pro	Thr	Thr	Leu	Glu 265	Ser	Glu	Tyr	ГÀа	Ser 270	Asp	Ile
Tyr	Gly	Glu 275	Arg	Суз	Val	Leu	Leu 280	Gly	Ala	Val	His	Gly 285	Ile	Val	Glu
Ala	Leu 290	Phe	Arg	Arg	Tyr	Thr 295	Arg	Gln	Gly	Met	Ser 300	Asp	Glu	Glu	Ala
Phe 305	Lys	Gln	Ser	Val	Glu 310	Ser	Ile	Thr	Gly	Pro 315	Ile	Ser	Arg	Thr	Ile 320
Ser	Thr	Lys	Gly	Met 325	Leu	Ser	Val	Tyr	Asn 330	Ser	Phe	Asn	Glu	Ala 335	Asp
ГЛа	ГÀа	Ile	Phe 340	Glu	Gln	Ala	Tyr	Ser 345	Ala	Ser	Tyr	ГÀа	Pro 350	Ala	Leu
Asp	Ile	Сув 355	Phe	Glu	Ile	Tyr	Glu 360	Asp	Val	Ala	Ser	Gly 365	Asn	Glu	Ile
Lys	Ser 370	Val	Val	Gln	Ala	Val 375	Gln	Arg	Phe	Asp	Arg 380	Phe	Pro	Met	Gly
Lуя 385	Ile	Asp	Gln	Thr	Tyr 390	Met	Trp	Lys	Val	Gly 395	Gln	Lys	Val	Arg	Ala 400
Glu	Arg	Asp	Glu	Ser 405	Lys	Ile	Pro	Val	Asn 410	Pro	Phe	Thr	Ala	Gly 415	Val
Tyr	Val	Ala	Val 420	Met	Met	Ala	Thr	Val 425	Glu	Val	Leu	Arg	Glu 430	Lys	Gly
His	Pro	Phe 435	Ser	Glu	Ile	Сүз	Asn 440	Glu	Ser	Ile	Ile	Glu 445	Ala	Val	Asp
	Leu 450		Pro	Tyr		His 455			Gly		Ala 460		Met	Val	Asp
Asn 465	Сув	Ser	Tyr	Thr	Ala 470	Arg	Leu	Gly	Ser	Arg 475	Lys	Trp	Ala	Pro	Arg 480
Phe	Asp	Tyr	Ile	Ile 485	Glu	Gln	Gln	Ala	Phe 490	Val	Asp	Ile	Asp	Ser 495	Gly
ГЛа	Ala	Ala	Asp 500	LYa	Glu	Val	Met	Ala 505	Glu	Phe	Leu	Ala	His 510	Pro	Val
His	Ser	Ala 515	Leu	Ala	Thr	Сүз	Ser 520	Ser	Met	Arg	Pro	Ser 525	Val	Asp	Ile
Ser	Val 530	Gly	Gly	Glu	Asn	Ser 535	Ser	Val	Gly	Val	Gly 540	Ala	Gly	Ala	Ala
Arg 545	Thr	Glu	Phe	Arg	Ser 550	Thr	Ala	Ala	Lys	Val 555					

t 1	n	110	\sim
L 7		uC	J
	ti	tin	tinue

<210> SEO ID NO 78 <211> LENGTH: 402 <212> TYPE: PRT <213> ORGANISM: Neurospora crassa <400> SEOUENCE: 78 Met Ala Ala Arg Asn Cys Thr Lys Ala Leu Arg Pro Leu Ala Arg Gln Leu Ala Thr Pro Ala Val Gln Arg Arg Thr Phe Val Ala Ala Ala Ser Ala Val Arg Ala Ser Val Ala Val Lys Ala Val Ala Ala Pro Ala Arg Gln Gln Val Arg Gly Val Lys Thr Met Asp Phe Ala Gly His Lys Glu Glu Val His Glu Arg Ala Asp Trp Pro Ala Glu Lys Leu Leu Asp Tyr Phe Lys Asn Asp Thr Leu Ala Leu Ile Gly Tyr Gly Ser Gln Gly His Gly Gln Gly Leu Asn Leu Arg Asp Asn Gly Leu Asn Val Ile Val Gly Val Arg Lys Asn Gly Lys Ser Trp Glu Asp Ala Ile Gln Asp Gly Trp Val Pro Gly Lys Asn Leu Phe Asp Val Asp Glu Ala Ile Ser Arg Gly Thr Ile Val Met Asn Leu Leu Ser Asp Ala Ala Gln Ser Glu Thr Trp Pro His Ile Lys Pro Gln Ile Thr Lys Gly Lys Thr Leu Tyr Phe Ser His Gly Phe Ser Pro Val Phe Lys Asp Leu Thr Lys Val Glu Val Pro Thr Asp Val Asp Val Ile Leu Val Ala Pro Lys Gly Ser Gly Arg Thr Val Arg Ser Leu Phe Arg Glu Gly Arg Gly Ile Asn Ser Ser Phe Ala Val Tyr Gln Asp Val Thr Gly Lys Ala Lys Glu Lys Ala Val Ala Leu Gly Val Ala Val Gly Ser Gly Tyr Leu Tyr Glu Thr Thr Phe Glu Lys Glu Val Tyr Ser Asp Leu Tyr Gly Glu Arg Gly Cys Leu Met Gly Gly Ile His Gly Met Phe Leu Ala Gln Tyr Glu Val Leu Arg Glu Arg Gly His Ser Pro Ser Glu Ala Phe Asn Glu Thr Val Glu Glu Ala Thr Gln Ser Leu Tyr Pro Leu Ile Gly Ala His Gly Met Asp Trp Met Phe Asp Ala Cys Ser Thr Thr Ala Arg Arg Gly Ala Ile Asp Trp Thr Pro Lys Phe Lys Asp Ala Leu Lys Pro Val Phe Asn Asn Leu Tyr Asp Ser Val Lys As
n Gly Asp Glu Thr Lys Arg Ser Leu Glu Tyr As
n Ser Gl
n $\ensuremath{\mathsf{Pro}}$

-continued

Asp Tyr Arg Glu Arg Tyr Glu Ala Glu Leu Asp Glu Ile Arg Asn Leu Glu Ile Trp Arg Ala Gly Lys Ala Val Arg Ser Leu Arg Pro Glu Asn Gln Lys <210> SEQ ID NO 79 <211> LENGTH: 404 <212> TYPE: PRT <213> ORGANISM: Schizosaccharomyces pombe <400> SEQUENCE: 79 Met Ser Phe Arg Asn Ser Ser Arg Met Ala Met Lys Ala Leu Arg Thr Met Gly Ser Arg Arg Leu Ala Thr Arg Ser Met Ser Val Met Ala Arg Thr Ile Ala Ala Pro Ser Met Arg Phe Ala Pro Arg Met Thr Ala Pro Leu Met Gln Thr Arg Gly Met Arg Val Met Asp Phe Ala Gly Thr Lys Glu Asn Val Trp Glu Arg Ser Asp Trp Pro Arg Glu Lys Leu Val Asp Tyr Phe Lys Asn Asp Thr Leu Ala Ile Ile Gly Tyr Gly Ser Gln Gly His Gly Gln Gly Leu Asn Ala Arg Asp Gln Gly Leu Asn Val Ile Val Gly Val Arg Lys Asp Gly Ala Ser Tr
p Lys Gl
n Ala Ile Glu Asp Gly $% \left({{\left({{{\left({{{\left({{{}}} \right)} \right)}} \right)}} \right)} \right)$ Trp Val Pro Gly Lys Thr Leu Phe Pro Val Glu Glu Ala Ile Lys Lys Gly Ser Ile Ile Met Asn Leu Leu Ser Asp Ala Ala Gln Thr Glu Thr Trp Pro Lys Ile Ala Pro Leu Ile Thr Lys Gly Lys Thr Leu Tyr Phe Ser His Gly Phe Ser Val Ile Phe Lys Asp Gln Thr Lys Ile His Pro Pro Lys Asp Val Asp Val Ile Leu Val Ala Pro Lys Gly Ser Gly Arg Thr Val Arg Thr Leu Phe Lys Glu Gly Arg Gly Ile Asn Ser Ser Phe Ala Val Tyr Gln Asp Val Thr Gly Lys Ala Gln Glu Lys Ala Ile Gly Leu Ala Val Ala Val Gly Ser Gly Phe Ile Tyr Gln Thr Thr Phe Lys Lys Glu Val Ile Ser Asp Leu Val Gly Glu Arg Gly Cys Leu Met Gly Gly Ile Asn Gly Leu Phe Leu Ala Gln Tyr Gln Val Leu Arg Glu Arg Gly His Ser Pro Ala Glu Ala Phe Asn Glu Thr Val Glu Glu Ala Thr Gln Ser Leu Tyr Pro Leu Ile Gly Lys Tyr Gly Leu Asp Tyr Met Phe

-cont	inued

Ala Ala Cys Ser Thr Thr Ala Arg Arg Gly Ala Ile Asp Trp Thr Pro Arg Phe Leu Glu Ala Asn Lys Lys Val Leu Asn Glu Leu Tyr Asp Asn Val Glu Asn Gly Asn Glu Ala Lys Arg Ser Leu Glu Tyr Asn Ser Ala Pro Asn Tyr Arg Glu Leu Tyr Asp Lys Glu Leu Glu Glu Ile Arg Asn Leu Glu Ile Trp Lys Ala Gly Glu Val Val Arg Ser Leu Arg Pro Glu His Asn Lys His <210> SEQ ID NO 80 <211> LENGTH: 415 <212> TYPE: PRT <213> ORGANISM: Laccaria bicolor <400> SEQUENCE: 80 Met Ala Ser Leu Ala Arg Ser Ala Ser Gln Ser Leu Arg Ala Ser Ala Arg Arg Ala Pro Arg Ser Leu Ala Lys Ser Ala Val Arg Pro Thr Gln202530 Ala Ala Ser Tyr Ser Leu Phe Ala Arg Ala Ala Ala Ala Lys Val Ala 35 40 45 Gln Thr Ser Thr Ala Lys Gly Val Arg Gly Val Lys Thr Leu Asp Phe Ala Gly Thr Lys Glu Val Val Tyr Glu Arg Ser Asp Trp Pro Leu Ala 65 70 75 80 Lys Leu Gl
n Asp Tyr Phe Lys Asn Asp Thr Leu Ala Leu Ile Gly Tyr Gly Ser Gln Gly His Gly Gln Gly Leu Asn Ala Arg Asp Asn Gly Leu Asn Val Ile Val Gly Val Arg Lys Asp Gly Glu Ser Trp Arg Gln Ala Leu Glu Asp Gly Trp Glu Ser Phe Ser Pro Val Pro Gly Glu Thr Leu Phe Pro Ile Glu Glu Ala Ile Asn Lys Gly Thr Ile Ile Met Asn Leu Leu Ser Asp Ala Ala Gln Ser Gln Thr Trp Pro Gln Leu Ala Pro Leu Ile Thr Lys Gly Lys Thr Leu Tyr Phe Ser His Gly Phe Ser Val Val Tyr Lys Asp Asp Thr His Val Ile Pro Pro Lys Asp Val Asp Val Ile Leu Val Ala Pro Lys Gly Ser Gly Arg Thr Val Arg Thr Leu Phe Lys Glu Gly Arg Gly Ile Asn Ser Ser Ile Ala Val Trp Gln Asp Val Thr 230 235 Gly Lys Ala Lys Glu Lys Ala Ile Ala Leu Gly Val Gly Ile Gly Ser Gly Tyr Met Tyr Glu Thr Thr Phe Glu Lys Glu Val Tyr Ser Asp Leu

```
-continued
```

Tyr Gly Glu Arg Gly Val Leu Met Gly Gly Ile Gln Gly Leu Phe Leu Ala Gln Tyr Gln Val Leu Arg Lys Asn Gly His Ser Pro Ser Glu Ala Phe Asn Glu Thr Val Glu Glu Ala Thr Gln Ser Leu Tyr Pro Leu Ile Gly Gln Lys Gly Met Asp Tyr Met Tyr Asn Ala Cys Ser Thr Thr Ala Arg Arg Gly Ala Leu Asp Trp Ala Pro Ile Phe Glu Lys Ala Asn Val Pro Val Phe Glu Ala Leu Tyr Glu Ser Val Arg Asn Gly Thr Glu Thr Arg Lys Ser Leu Glu Phe Asn Gly Arg Ala Thr Tyr Arg Glu Asp Leu Ala Lys Glu Leu Ala Val Ile Asp Asn Gln Glu Ile Trp Arg Ala Gly Lys Thr Val Arg Ser Leu Arg Pro Asp Tyr Lys Pro Glu Ser Glu <210> SEQ ID NO 81 <211> LENGTH: 343 <212> TYPE: PRT <213> ORGANISM: Ignicoccus hospitalis <400> SEQUENCE: 81 Met Gly Leu Asn Ala Gly Ala Leu Arg Arg Val Gly Val Thr Val Ala Gln Ile Trp Lys Asp Ser Asp Val Ser Leu Glu Pro Leu Lys Gly Arg - 30 Lys Val Ala Ile Ile Gly Tyr Gly Ser Gl
n Gly Arg Ala Trp Ala Leu Asn Ile Arg Asp Ser Gly Val Asp Val Val Val Gly Leu Arg Pro Gly Gly Lys Ser Trp Glu Leu Ala Thr Lys Asp Gly Phe Glu Pro Lys Pro Ile Pro Glu Ala Ala Lys Glu Gly Asp Val Ile Ala Met Leu Ile Pro Asp Met Ala Gln Pro Glu Ile Tyr Glu Lys Tyr Val Glu Pro Asn Leu His Glu Gly Asn Ala Leu Val Phe Ala His Gly Phe Asn Ile His Tyr Gly Leu Ile Lys Pro Pro Lys Asn Val Asp Val Ile Met Val Ala Pro Lys Ser Pro Gly Pro Lys Val Arg Glu Ala Phe Leu Ser Gly Arg Gly Val Pro Ala Leu Val Ala Val His Gln Asp Tyr Thr Gly Lys Ala Trp Asp Leu Val Leu Ala Leu Ala Lys Ala Leu Gly Cys Thr Arg Ala Gly Val Ile Lys Thr Thr Phe Lys Glu Glu Thr Glu Ser Asp Leu Ile Gly Glu Gln Thr Val Leu Val Gly Gly Leu Met Glu Leu Leu Lys Lys Gly

-continued

-																
		210					215					220				
	?he 225	Glu	Asn	Leu	Val	Glu 230	Leu	Gly	Tyr	Gln	Pro 235	Glu	Val	Ala	Tyr	Phe 240
C	Jlu	Ala	Ile	Asn	Glu 245	Ala	ГЛа	Leu	Ile	Met 250	Asp	Leu	Ile	Trp	Gln 255	Tyr
Ċ	Jly	Phe	Tyr	Gly 260	Met	Leu	Leu	Arg	Val 265	Ser	Asp	Thr	Ala	Lys 270	Tyr	Gly
¢	Jly	Leu	Thr 275	Val	Gly	Pro	Гла	Val 280	Ile	Asp	Glu	His	Val 285	Lys	Glu	Asn
N	1et	Lys 290	Lys	Ala	Ser	Glu	Arg 295	Val	Ile	Ser	Gly	Glu 300	Phe	Ala	Lys	Glu
	[rp 305	Val	Glu	Glu	Tyr	Lys 310	Lys	Gly	Met	Pro	Thr 315	Leu	Lys	Glu	Leu	Met 320
Ċ	Jlu	Lys	Val	Lys	Glu 325	His	Gln	Ala	Glu	Lys 330	Val	Gly	Lys	Glu	Leu 335	Arg
I	jÀa	Leu	Met	Gly 340	Leu	Glu	Glu									
~	<211 <212 <213	.> LE :> TY :> OF	EQ II ENGTH (PE : RGANI EQUEN	I: 32 PRT [SM:	29 Pic:	roph:	ilus	tori	ridu	3						
	/let L	Glu	Lys	Val	Tyr 5	Thr	Glu	Asn	Asp	Leu 10	Lys	Glu	Asn	Leu	Met 15	Arg
7	Asn	Lys	Lys	Ile 20	Ala	Val	Leu	Gly	Tyr 25	Gly	Ser	Gln	Gly	Arg 30	Ala	Trp
Į	Ala	Leu	Asn 35	Met	Arg	Asp	Ser	Gly 40	Leu	Asn	Val	Thr	Val 45	Gly	Leu	Glu
7	Arg	Gln 50	Gly	Lys	Ser	Trp	Glu 55	Lys	Ala	Val	Ala	Asp 60	Gly	Phe	Lys	Pro
	Seu	Lys	Ser	Arg	Asp	Ala 70	Val	Arg	Asp	Ala	Asp 75	Ala	Val	Ile	Phe	Leu 80
7	/al	Pro	Aap	Met	Ala 85	Gln	Arg	Glu	Leu	Tyr 90	Lys	Asn	Ile	Met	Asn 95	Asp
]	Ile	Lys	Asp	Asp 100	Ala	Asp	Ile	Val	Phe 105	Ala	His	Gly	Phe	Asn 110	Val	His
1	ſyr	Gly	Leu 115	Ile	Asn	Pro	Lys	Asn 120	His	Asp	Val	Tyr	Met 125	Val	Ala	Pro
Ι	JAa	Ala 130	Pro	Gly	Pro	Ser	Val 135	Arg	Glu	Phe	Tyr	Glu 140	Arg	Gly	Gly	Gly
	/al L45	Pro	Val	Leu	Ile	Ala 150	Val	Ala	Asn	Asp	Val 155	Ser	Gly	Arg	Ser	Lys 160
C	Jlu	Lys	Ala	Leu	Ser 165	Ile	Ala	Tyr	Ser	Leu 170	Gly	Ala	Leu	Arg	Ala 175	Gly
7	Ala	Ile	Glu	Thr 180	Thr	Phe	ГЛа	Glu	Glu 185	Thr	Glu	Thr	Asp	Leu 190	Ile	Gly
(Jlu	Gln		Asp	Leu	Val	Gly	Gly 200	Ile	Thr	Glu	Leu	Leu 205	Arg	Ser	Thr
			195					200					100			

-continued															
Glu 225	Ala	Ile	Asn	Glu	Met 230	Lys	Leu	Ile	Val	Asp 235	Gln	Val	Phe	Glu	Lys 240
Gly	Ile	Ser	Gly	Met 245	Leu	Arg	Ala	Val	Ser 250	Aap	Thr	Ala	Lys	Tyr 255	Gly
Gly	Leu	Thr	Thr 260	Gly	ГЛа	Tyr	Ile	Ile 265	Asn	Asp	Asp	Val	Arg 270	Lys	Arg
Met	Arg	Glu 275	Arg	Ala	Glu	Tyr	Ile 280	Val	Ser	Gly	Lys	Phe 285	Ala	Glu	Glu
Trp	Ile 290	Glu	Glu	Tyr	Gly	Glu 295	Gly	Ser	Lya	Asn	Leu 300	Glu	Ser	Met	Met
Leu 305	Asp	Ile	Asp	Asn	Ser 310	Leu	Glu	Glu	Gln	Val 315	Gly	Lys	Gln	Leu	Arg 320
Glu	Ile	Val	Leu	Arg 325	Gly	Arg	Pro	Lys							
	<210> SEQ ID NO 83 <211> LENGTH: 339														
<212	<211> LENGTH: 339 <212> TYPE: PRT <213> ORGANISM: Acidiphilium cryptum														
<400)> SI	EQUEI	ICE :	83											
Met 1	Arg	Val	Tyr	Tyr 5	Asp	Ser	Asp	Ala	Asp 10	Val	Asn	Leu	Ile	Lys 15	Ala
Lys	Lys	Val	Ala 20	Val	Val	Gly	Tyr	Gly 25	Ser	Gln	Gly	His	Ala 30	His	Ala
Leu	Asn	Leu 35	ГÀа	Glu	Ser	Gly	Val 40	Lys	Glu	Leu	Val	Val 45	Ala	Leu	Arg
Lys	Gly 50	Ser	Ala	Ala	Val	Ala 55	Lys	Ala	Glu	Ala	Ala 60	Gly	Leu	Arg	Val
Met 65	Thr	Pro	Glu	Glu	Ala 70	Ala	Ala	Trp	Ala	Asp 75	Val	Val	Met	Ile	Leu 80
Thr	Pro	Aab	Glu	Gly 85	Gln	Gly	Asp	Leu	Tyr 90	Arg	Asp	Ser	Leu	Ala 95	Ala
Asn	Leu	Lys	Pro 100	Gly	Ala	Ala	Ile	Ala 105	Phe	Ala	His	Gly	Leu 110	Asn	Ile
His	Phe	Asn 115	Leu	Ile	Glu	Pro	Arg 120	Ala	Asp	Ile	Asp	Val 125	Phe	Met	Ile
Ala	Pro 130	Lys	Gly	Pro	Gly	His 135	Thr	Val	Arg	Ser	Glu 140	Tyr	Gln	Arg	Gly
Gly 145	Gly	Val	Pro	Сүз	Leu 150	Val	Ala	Val	Ala	Gln 155	Asn	Pro	Ser	Gly	Asn 160
Ala	Leu	Asp	Ile	Ala 165	Leu	Ser	Tyr	Ala	Ser 170	Ala	Ile	Gly	Gly	Gly 175	Arg
Ala	Gly	Ile	Ile 180	Glu	Thr	Thr	Phe	Lys 185	Glu	Glu	Суз	Glu	Thr 190	Asp	Leu
Phe	Gly	Glu 195	Gln	Thr	Val	Leu	Суз 200		Gly	Leu	Val	Glu 205	Leu	Ile	Lys
Ala	Gly 210	Phe	Glu	Thr	Leu	Val 215	Glu	Ala	Gly	Tyr	Ala 220	Pro	Glu	Met	Ala
Tyr 225	Phe	Glu	Суз	Leu	His 230	Glu	Val	Lys	Leu	Ile 235	Val	Asp	Leu	Ile	Tyr 240
	Gly	Gly	Ile	Ala 245	Asn	Met	Asn	Tyr	Ser 250		Ser	Asn	Thr	Ala 255	

```
-continued
```

Tyr Gly Glu Tyr Val Thr Gly Pro Arg Met Ile Thr Pro Glu Thr Lys Ala Glu Met Lys Arg Val Leu Asp Asp Ile Gln Lys Gly Arg Phe Thr Arg Asp Trp Met Leu Glu Asn Lys Val Asn Gln Thr Asn Phe Lys Ala Met Arg Arg Ala Asn Ala Ala His Pro Ile Glu Glu Val Gly Glu Lys Leu Arg Ala Met Met Pro Trp Ile Lys Lys Gly Ala Leu Val Asp Lys Thr Arg Asn <210> SEQ ID NO 84 <211> LENGTH: 330 <212> TYPE: PRT <213> ORGANISM: Cyanobacteria/Synechococcus sp. <400> SEQUENCE: 84 Met Ala Arg Leu Tyr Tyr Asp Thr Asp Ala Asn Leu Asp Leu Leu Asp Gly Lys Thr Val Ala Ile Ile Gly Tyr Gly Ser Gln Gly His Ala His 20 25 30 Ala Leu Asn Leu Arg Asp Ser Gly Val Asn Val Leu Val Gly Leu Tyr 35 40 45 Pro Gly Ser Pro Ser Trp Pro Lys Ala Glu Arg Asp Gly Leu Thr Val Lys Thr Val Ala Asp Ala Ala Ala Ala Ala Asp Trp Val Met Ile Leu 65 70 75 80 Leu Pro Asp Glu Val Gln Lys Thr Val Phe Gln Ser Glu Ile Arg Pro His Leu Lys Pro Gly Lys Val Leu Leu Phe Ala His Gly Phe Asn Ile His Phe Gly Gln Ile Gln Pro Pro Pro Asp Ile Asp Val Ile Met Val Ala Pro Lys Gly Pro Gly His Leu Val Arg Arg Thr Tyr Leu Glu Gly 130 135 Gln Gly Val Pro Cys Leu Phe Ala Val Tyr Gln Asp Ala Ser Gly Met Ala Arg Glu Arg Ala Met Ala Tyr Ala Lys Ala Ile Gly Gly Thr Arg Ala Gly Ile Leu Glu Thr Ser Phe Arg Glu Glu Thr Glu Thr Asp Leu Phe Gly Glu Gln Val Val Leu Cys Gly Gly Leu Thr Ala Leu Ile Lys Ala Gly Phe Glu Thr Leu Val Glu Ala Gly Tyr Gln Pro Glu Leu Ala Tyr Phe Glu Cys Leu His Glu Val Lys Leu Ile Val Asp Leu Ile Val Glu Gly Gly Leu Glu Lys Met Arg His Ser Ile Ser Asn Thr Ala Glu Tyr Gly Asp Tyr Thr Arg Gly Pro Arg Ile Ile Thr Glu Gln Thr Arg

```
-continued
```

Ala Glu Met Lys Arg Ile Leu Ser Glu Ile Gln Ser Gly Gln Phe Ala Arg Glu Phe Val Leu Glu Asn Gln Ala Gly Lys Pro Val Leu Thr Ala Met Arg Arg Arg Glu Ala Glu His Pro Ile Glu Lys Val Gly Lys Glu Leu Arg Ala Met Phe Ser Trp Leu Lys Lys <210> SEQ ID NO 85 <211> LENGTH: 339 <212> TYPE: PRT <213> ORGANISM: Zymomonas mobilis <400> SEQUENCE: 85 Met Lys Val Tyr Tyr Asp Ser Asp Ala Asp Leu Gly Leu Ile Lys Ser Lys Lys Ile Ala Ile Leu Gly Tyr Gly Ser Gl
n Gly His Ala His Ala 20\$25\$30 Gln Asn Leu Arg Asp Ser Gly Val Ala Glu Val Ala Ile Ala Leu Arg 35 40 45 Pro Asp Ser Ala Ser Val Lys Lys Ala Gln Asp Ala Gly Phe Lys Val Leu Thr Asn Ala Glu Ala Ala Lys Trp Ala Asp Ile Leu Met Ile Leu 65 70 75 80 Ala Pro Asp Glu His Gln Ala Ala Ile Tyr Ala Glu Asp Leu Lys Asp 85 90 95 Asn Leu Arg Pro Gly Ser Ala Ile Ala Phe Ala His Gly Leu Asn Ile His Phe Gly Leu Ile Glu Pro Arg Lys Asp Ile Asp Val Phe Met Ile Ala Pro Lys Gly Pro Gly His Thr Val Arg Ser Glu Tyr Val Arg Gly Gly Gly Val Pro Cys Leu Val Ala Val Asp Gln Asp Ala Ser Gly Asn Ala His Asp Ile Ala Leu Ala Tyr Ala Ser Gly Ile Gly Gly Arg Ser Gly Val Ile Glu Thr Thr Phe Arg Glu Glu Val Glu Thr Asp Leu Phe Gly Glu Gln Ala Val Leu Cys Gly Gly Leu Thr Ala Leu Ile Thr Ala Gly Phe Glu Thr Leu Thr Glu Ala Gly Tyr Ala Pro Glu Met Ala Phe Phe Glu Cys Met His Glu Met Lys Leu Ile Val Asp Leu Ile Tyr Glu Ala Gly Ile Ala Asn Met Arg Tyr Ser Ile Ser Asn Thr Ala Glu Tyr Gly Asp Ile Val Ser Gly Pro Arg Val Ile Asn Glu Glu Ser Lys Lys Ala Met Lys Ala Ile Leu Asp Asp Ile Gln Ser Gly Arg Phe Val Ser Lys Phe Val Leu Asp Asn Arg Ala Gly Gln Pro Glu Leu Lys Ala

-continued

Ala Arg Lys Arg Met Ala Ala His Pro Ile Glu Gln Val Gly Ala Arg Leu Arg Lys Met Met Pro Trp Ile Ala Ser Asn Lys Leu Val Asp Lys Ala Arg Asn <210> SEQ ID NO 86 <211> LENGTH: 359 <212> TYPE: PRT <213> ORGANISM: Bacteroides thetaiotaomicron <400> SEQUENCE: 86 Met Ala Gln Val Ile Lys Thr Lys Lys Gln Lys Lys Met Ala Gln Leu Asn Phe Gly Gly Thr Val Glu Asn Val Val Ile Arg Asp Glu Phe Pro Leu Glu Lys Ala Arg Glu Val Leu Lys Asn Glu Thr Ile Ala Val Ile Gly Tyr Gly Val Gl
n Gly Pro Gly Gln Ala Leu Asn Leu Arg As
p Asn $% \mathbb{C}^{2}$ Gly Phe Asn Val Ile Val Gly Gln Arg Gln Gly Lys Thr Tyr Asp Lys Ala Val Ala Asp Gly Trp Val Pro Gly Glu Thr Leu Phe Gly Ile Glu Glu Ala Cys Glu Lys Gly Thr Ile Ile Met Cys Leu Leu Ser Asp Ala Ala Val Met Ser Val Trp Pro Thr Ile Lys Pro Tyr Leu Thr Ala Gly Lys Ala Leu Tyr Phe Ser His Gly Phe Ala Ile Thr Trp Ser Asp Arg Thr Gly Val Val Pro Pro Ala Asp Ile Asp Val Ile Met Val Ala Pro Lys Gly Ser Gly Thr Ser Leu Arg Thr Met Phe Leu Glu Gly Arg Gly Leu Asn Ser Ser Tyr Ala Ile Tyr Gln Asp Ala Thr Gly Asn Ala Met Asp Arg Thr Ile Ala Leu Gly Ile Gly Ile Gly Ser Gly Tyr Leu Phe Glu Thr Thr Phe Ile Arg Glu Ala Thr Ser Asp Leu Thr Gly Glu Arg Gly Ser Leu Met Gly Ala Ile Gln Gly Leu Leu Leu Ala Gln Tyr Glu Val Leu Arg Glu Asn Gly His Thr Pro Ser Glu Ala Phe Asn Glu Thr Val Glu Glu Leu Thr Gln Ser Leu Met Pro Leu Phe Ala Lys Asn Gly Met Asp Trp Met Tyr Ala Asn Cys Ser Thr Thr Ala Gln Arg Gly Ala 275 280 285 Leu Asp Trp Met Gly Pro Phe His Asp Ala Ile Lys Pro Val Val Glu Lys Leu Tyr His Ser Val Lys Thr Gly Asn Glu Ala Gln Ile Ser Ile

-continued

Asp Ser Asn Ser Lys Pro Asp Tyr Arg Glu Lys Leu Glu Glu Glu Leu Lys Ala Leu Arg Glu Ser Glu Met Trp Gln Thr Ala Val Thr Val Arg Lys Leu Arg Pro Glu Asn Asn <210> SEQ ID NO 87 <211> LENGTH: 494 <212> TYPE: PRT <213> ORGANISM: Vibrio fischeri <400> SEQUENCE: 87 Met Ser Asn Tyr Phe Asn Thr Leu Asn Leu Arg Glu Gln Leu Asp Gln Leu Gly Arg Cys Arg Phe Met Asp Arg Glu Glu Phe Ala Thr Glu Ala Asp Tyr Leu Lys Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Val Ala Tyr Ala Leu Arg Gln Ala Ala Ile Asp Glu Gln Arg Gln Ser Tyr Lys Asn Ala Lys Glu Asn Gly Phe Glu Val Ala Ser Tyr Glu Thr Leu Ile Pro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Gln His Thr Asn Val Val Glu Thr Val Met Pro Leu Met Lys Glu Gly Ala Ala Leu Gly Tyr Ser His Gly Phe Asn Val Val Glu Glu Gly Met Gln Ile Arg Lys Asp Leu Thr Val Val Met Val Ala Pro Lys Cys Pro Gly Thr Glu Val Arg Glu Glu Tyr Lys Arg Gly Phe Gly Val Pro Thr Leu Ile Ala Val His Pro Glu Asn Asp Pro Lys Gly Glu Gly Trp Asp Ile Ala Lys Ala Trp Ala Ala Gly Thr Gly Gly His Arg Ala Gly Cys Leu Glu Ser Ser Phe Val Ala Glu Val Lys Ser Asp Leu Met Gly Glu Gln Thr Ile Leu Cys Gly Met Leu Gln Ala Gly Ser Ile Val Ser Tyr Glu Lys Met Ile Ala Asp Gly Ile Glu Pro Gly Tyr Ala Gly Lys Leu Leu Gln Tyr Gly Trp Glu Thr Ile Thr Glu Ala Leu Lys Phe Gly Gly Val Thr His Met Met Asp Arg Leu Ser Asn Pro Ala Lys Val Lys Ala Phe Glu Leu Ser Glu Glu Leu Lys Glu Leu Met Arg Pro Leu Tyr Asn Lys His Met

											-	con	tin	ued	
Asp 305	Asp	Ile	Ile	Ser	Gly 310	Glu	Phe	Ser	Arg	Thr 315	Met	Met	Ala	Asp	Trp 320
Ala	Asn	Asp	Asp	Val 325		Leu	Phe	Gly	Trp 330	Arg	Glu	Glu	Thr	Gly 335	Gln
Thr	Ala	Phe	Glu 340	Asn	Tyr	Pro	Glu	Ser 345	Asp	Val	Glu	Ile	Ser 350	Glu	Gln
Glu	Tyr	Phe 355	Asp	Asn	Gly	Ile	Leu 360	Leu	Val	Ala	Met	Val 365	Arg	Ala	Gly
Val	Glu 370	Leu	Ala	Phe	Glu	Ala 375	Met	Thr	Ala	Ser	Gly 380	Ile	Ile	Asp	Glu
Ser 385	Ala	Tyr	Tyr	Glu	Ser 390	Leu	His	Glu	Leu	Pro 395	Leu	Ile	Ala	Asn	Thr 400
Val	Ala	Arg	Lys	Arg 405		Tyr	Glu	Met	Asn 410	Val	Val	Ile	Ser	Asp 415	Thr
Ala	Glu	Tyr	Gly 420	Asn	Tyr	Leu	Phe	Ala 425	Asn	Val	Ala	Thr	Pro 430	Leu	Leu
Arg	Glu	Lys 435	Phe	Met	Pro	Ser	Val 440	Glu	Thr	Asp	Val	Ile 445	Gly	Arg	Gly
Leu	Gly 450	Glu	Ala	Ser	Asn	Gln 455	Val	Asp	Asn	Ala	Thr 460	Leu	Ile	Ala	Val
Asn 465	Asp	Ala	Ile	Arg	Asn 470	His	Pro	Val	Glu	Tyr 475	Ile	Gly	Glu	Glu	Leu 480
Arg	Ser	Tyr	Met	Ser 485	Asp	Met	Гла	Arg	Ile 490	Ala	Val	Gly	Gly		
<212 <213	2> T 3> OF	ENGTH PE : RGAN EQUEI	PRT ISM:	She	wane	lla	ap.								
Met					Asn	Ser	Leu	Asn		Arg	Gln	Gln	Leu		Gln
1 Leu	Gly	Gln	Сув 20		Phe	Met	Asp	Arg 25	10 Ser	Glu	Phe	Ser	Asp 30	15 Gly	Суз
Asn	Tyr	Ile 35		Asp	Trp	Asn	Ile 40	Val	Ile	Leu	Gly	Cys 45		Ala	Gln
Gly	Leu 50		Gln	Gly		Asn 55		Arg	Asp		Gly 60		Asn	Ile	Ala
Tyr 65	Ala	Leu	Arg	Pro			Ile	Ala	Gln			Ala	Ser	Trp	Gln 80
Lys	Ala	Thr	Asp	Asn 85	Gly	Phe	Lys	Val	Gly 90	Thr	Phe	Glu	Glu	Leu 95	Ile
Pro	Thr	Ala	Asp 100	Leu	Val	Leu	Asn	Leu 105	Thr	Pro	Asp	Lys	Gln 110	His	Ser
Asn	Val	Val 115	Ser	Ala	Val	Met	Pro 120	Leu	Met	Lys	Gln	Gly 125	Ala	Thr	Leu
Ser	Tyr 130	Ser	His	Gly	Phe	Asn 135	Ile	Val	Glu	Glu	Gly 140	Met	Gln	Ile	Arg
Pro 145	Asp	Ile	Thr	Val	Val 150	Met	Val	Ala	Pro	Lys 155	Cys	Pro	Gly	Thr	Glu 160
Val	Arg	Glu	Glu	Tyr 165		Arg	Gly	Phe	Gly 170	Val	Pro	Thr	Leu	Ile 175	Ala

-continued

Val	His	Pro	Glu 180	Asn	Asp	Pro	Asn	Gly 185	Asp	Gly	Leu	Glu	Ile 190	Ala	Lys
Ala	Tyr	Ala 195	Ser	Ala	Thr	Gly	Gly 200	Asp	Arg	Ala	Gly	Val 205	Leu	Gln	Ser
Ser	Phe 210	Ile	Ala	Glu	Val	Lys 215	Ser	Asp	Leu	Met	Gly 220	Glu	Gln	Thr	Ile
Leu 225	Cys	Gly	Met	Leu	Gln 230	Thr	Gly	Ala	Ile	Leu 235	Gly	Tyr	Asp	Lys	Met 240
Val .	Ala	Asp	Gly	Val 245	Glu	Pro	Gly	Tyr	Ala 250	Ala	Lys	Leu	Ile	Gln 255	Gln
Gly	Trp	Glu	Thr 260	Val	Thr	Glu	Ala	Leu 265	Lys	His	Gly	Gly	Ile 270	Thr	Asn
Met	Met	Asp 275	Arg	Leu	Ser	Asn	Pro 280	Ala	Lys	Ile	Lys	Ala 285	Phe	Glu	Ile
Ala	Glu 290	Asp	Leu	Lys	Glu	Ile 295	Leu	Gln	Pro	Leu	Phe 300	Glu	Lys	His	Met
Asp 305	Asp	Ile	Ile	Ser	Gly 310	Glu	Phe	Ser	Arg	Thr 315	Met	Met	Gln	Asp	Trp 320
Ala .	Asn	Asp	Asp	Ala 325	Asn	Leu	Leu	Arg	Trp 330	Arg	Ala	Glu	Thr	Ala 335	Glu
Thr	Gly	Phe	Glu 340	Asn	Ala	Pro	Val	Ser 345	Ser	Glu	His	Ile	Asp 350	Glu	Gln
Thr	Tyr	Phe 355	Asp	Lys	Gly	Ile	Phe 360	Leu	Val	Ala	Met	Ile 365	Lys	Ala	Gly
Val	Glu 370	Leu	Ala	Phe	Asp	Thr 375	Met	Val	Ser	Ala	Gly 380	Ile	Val	Glu	Glu
Ser . 385	Ala	Tyr	Tyr	Glu	Ser 390	Leu	His	Glu	Thr	Pro 395	Leu	Ile	Ala	Asn	Thr 400
Ile	Ala	Arg	Lys	Arg 405	Leu	Tyr	Glu	Met	Asn 410	Val	Val	Ile	Ser	Asp 415	Thr
Ala	Glu	Tyr	Gly 420	Сүз	Tyr	Leu	Phe	Asn 425	His	Ala	Ala	Val	Pro 430	Met	Leu
Arg .	-	435					440			-		445		•	
	450					455	-				460				
Asp . 465					470					475		Ala	Glu	Leu	Arg 480
Gly	Tyr	Met	Thr	Asp 485	Met	Lys	Ser	Ile	Val 490	Gly	Ala				
<210> SEQ ID NO 89 <211> LENGTH: 491 <212> TYPE: PRT <213> ORGANISM: Gramella forsetti															
<400> SEQUENCE: 89															
Met 1	Thr	Asn	Tyr	Phe 5	Asn	Ser	Leu	Ser	Leu 10	Arg	Asp	Gln	Leu	Ala 15	Gln
Leu	Gly	Thr	Сув 20	Arg	Phe	Met	Glu	Leu 25	Asp	Glu	Phe	Ser	Asn 30	Glu	Val
Ala	Val	Leu	Lys	Asp	Lys	Lys	Ile	Val	Ile	Val	Gly	Cys	Gly	Ala	Gln

-continued

												con		ueu	
		35					40					45			
Gly	Leu 50	Asn	Gln	Gly	Leu	Asn 55	Met	Arg	Asp	Ser	Gly 60	Leu	Asp	Ile	Ser
Tyr 65	Ala	Leu	Arg	Glu	Gly 70	Ala	Ile	Гла	Glu	Lys 75	Arg	Gln	Ser	Trp	Lуз 80
Asn	Ala	Thr	Glu	Asn 85	Asn	Phe	Asn	Val	Gly 90	Thr	Tyr	Glu	Glu	Leu 95	Ile
Pro	Lys	Ala	Asp 100		Val	Ile	Asn	Leu 105	Thr	Pro	Asp	Lys	Gln 110	His	Thr
Ser	Val	Ile 115	Lys	Ala	Ile	Gln	Pro 120	His	Ile	Lys	Lys	Asp 125	Ala	Val	Leu
Ser	Tyr 130	Ser	His	Gly	Phe	Asn 135	Ile	Val	Glu	Glu	Gly 140	Thr	Гла	Ile	Arg
Glu 145	Asp	Ile	Thr	Val	Ile 150	Met	Val	Ala	Pro	Lys 155	Суз	Pro	Gly	Thr	Glu 160
Val	Arg	Glu	Glu	Tyr 165	Lys	Arg	Gly	Phe	Gly 170	Val	Pro	Thr	Leu	Ile 175	Ala
Val	His	Pro	Glu 180	Asn	Asp	Pro	His	Gly 185	Ile	Gly	Leu	Asp	Trp 190	Ala	Lys
Ala	Tyr	Ala 195	Tyr	Ala	Thr	Gly	Gly 200	His	Arg	Ala	Gly	Val 205	Leu	Glu	Ser
Ser	Phe 210	Val	Ala	Glu	Val	Lys 215	Ser	Asp	Leu	Met	Gly 220	Glu	Gln	Thr	Met
Leu 225	Cys	Gly	Val	Leu	Gln 230	Thr	Gly	Ser	Ile	Leu 235	Thr	Phe	Asp	Lys	Met 240
Val	Ala	Asp	Gly	Val 245	Glu	Pro	Asn	Tyr	Ala 250	Ala	ГЛа	Leu	Ile	Gln 255	Tyr
Gly	Trp	Glu	Thr 260	Ile	Thr	Glu	Ala	Leu 265	Lys	His	Gly	Gly	Ile 270	Thr	Asn
Met	Met	Asp 275	Arg	Leu	Ser	Asn	Pro 280	Ala	Lys	Leu	Arg	Ala 285	Asn	Glu	Ile
Ala	Glu 290	Glu	Leu	Lys	Glu	Lys 295	Met	Arg	Pro	Leu	Phe 300	Gln	Lys	His	Met
Asp 305	Asp	Ile	Ile	Ser	Gly 310	Glu	Phe	Ser	Ser	Arg 315	Met	Met	Arg	Asp	Trp 320
Ala	Asn	Asp		Lys 325	Glu	Leu		Thr	-	-	Ala	Glu	Thr	Glu 335	Asn
Thr	Ala	Phe			Thr	Glu					Glu	Ile	Lys 350	Glu	Gln
Glu	Tyr	Phe 355		Гла	Gly	Val	Leu 360		Val	Ala	Phe	Val 365	Arg	Ala	Gly
Val	Glu 370		Ala	Phe	Glu	Thr 375	Met	Val	Glu	Ala	Gly 380		Ile	Glu	Glu
Ser 385	Ala	Tyr	Tyr	Glu	Ser 390		His	Glu	Thr	Pro 395		Ile	Ala	Asn	Thr 400
	Ala	Arg	Lys	Lys 405	Leu	Tyr	Glu	Met	Asn 410		Val	Ile	Ser	Asp 415	Thr
Ala	Glu	Tyr	Gly 420		Tyr	Leu	Phe	Asp 425		Ala	Ala	Lys	Pro 430		Val
Lys	Asp	Tyr 435		Asn	Ser	Leu	Glu 440		Glu	Val	Ala	Gly 445		ГÀа	Phe

```
-continued
```

Gly Thr Asp Cys Asn Gly Val Asp Asn Gln Lys Leu Ile His Val Asn Asp Asp Leu Arg Ser His Pro Val Glu Lys Val Gly Ala Arg Leu Arg Thr Ala Met Thr Ala Met Lys Lys Ile Tyr Ala <210> SEQ ID NO 90 <211> LENGTH: 493 <212> TYPE: PRT <213> ORGANISM: Psychromonas ingrhamaii <400> SEQUENCE: 90 Met Ala Asn Tyr Phe Asn Thr Leu Ser Leu Arg Glu Lys Leu Asn Gln Leu Gly Gln Cys Arg Phe Met Asp Arg Ser Glu Phe Thr Asp Gly Cys Asp Ala Leu Lys Gly Lys Lys Val Val Ile Ile Gly Cys Gly Ala Gln 35 40 45 Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Val Ser Tyr Thr Leu Arg Ala Gln Ala Ile Ala Glu Lys Arg Gln Ser Trp Lys Asn Ala Thr Glu Asn Gly Phe Val Val Gly Thr Tyr Glu Glu Leu Ile Pro Glu Ala Asp Leu Leu Cys Asn Leu Thr Pro Asp Lys Gln His Thr Ala Val Val Gly Ala Val Met Pro Leu Met Lys Glu Gly Ala Thr Leu Ser Tyr Ser His Gly Phe Asn Ile Val Glu Glu Gly Met Gln Val Arg Glu Asp Leu Thr Val Ile Met Cys Ala Pro Lys Cys Pro Gly Ser Glu Val Arg Glu Glu Tyr Lys Arg Gly Phe Gly Val Pro Thr Leu Ile Ala Val His Pro Ala Asn Asp Pro Gln Gly Gln Gly Leu Val Trp Ala Lys Ala Tyr Ala Ser Ala Thr Gly Gly Asp Arg Ala Gly Val Leu Met Ser Ser Phe Val Ala Glu Val Lys Ser Asp Leu Met Gly Glu Gln Thr Ile Leu Cys Gly Met Leu Gl
n Thr Gly Ala Ile Ile Gly Tyr Glu Lys Met Val Ala Asp Gly Ile Glu Pro Gly Tyr Ala Ser Lys Leu Ile Gln Tyr Gly Trp Glu Thr Val Thr Glu Gly Met Lys Tyr Gly Gly Ile Thr Asn Met Met Asp Arg Leu Ser Asn Pro Ala Lys Ile Lys Ala Phe Asp Met Ser Leu Glu Leu Lys Glu Ile Leu Arg Pro Leu Phe Asn Lys His Met Asp Asp Ile Ile Glu Gly Glu Phe Ser Arg Thr Met Met Glu Asp Trp

-continued

										-	con	tın	ued	
305				310					315					320
Ala Asn	Asp	Asp	Lys 325	Asn	Leu	Leu	Gln	Trp 330	Arg	Ala	Glu	Thr	Ala 335	Glu
Thr Gly	Phe	Glu 340	-	Gln	Pro	Ala	Gly 345	Asp	Met	ГЛа	Ile	Asp 350	Glu	Gln
Glu Phe	Tyr 355	Asp	Asn	Gly	Ile	Phe 360	Leu	Ile	Ala	Met	Ile 365	Lys	Ala	Gly
Val Glu 370	Leu	Ala	Phe	Asp	Ala 375	Met	Thr	Ala	Ser	Gly 380	Ile	Ile	Ala	Asp
Ser Ala 385	Tyr	Tyr	Glu	Ser 390	Leu	His	Glu	Thr	Pro 395	Leu	Ile	Ala	Asn	Thr 400
Ile Ala	Arg	Lys	Lys 405	Leu	Tyr	Glu	Met	Asn 410	Val	Val	Ile	Ser	Asp 415	Thr
Ala Glu	Tyr	Gly 420	Суз	Tyr	Leu	Phe	Asp 425		Ala	Ala	Lys	Pro 430		Leu
Ala Asp				Ala	Leu			Glu	Met	Leu			Pro	Leu
Thr Val	435 Lys	Asn	Asn	Ala		440 Asp	Asn	Ala	Arg		445 Ile	Glu	Val	Asn
450 Glu Ala	Ile	Arg	Ser	His	455 Pro	Val	Glu	Ile	Val	460 Gly	Lys	Lys	Leu	Arg
465 Gly Tyr				470					475					480
			485					490						
<210> SE	EQ II	o no	91											
<211> LE <212> TY	ENGTH	I: 4	92											
<213> OR				opha	ga hı	utch	inso	nii						
<400> SE														
Met Ala 1	Asn	Tyr	Phe 5	Asn	Thr	Leu	Ser	Leu 10	Arg	Glu	Lys	Leu	Asp 15	Gln
Leu Gly	Val	Суз 20	Glu	Phe	Met	Asp	Arg 25	Ser	Glu	Phe	Ser	Asp 30	Gly	Val
Ala Ala	Leu 35	Lys	Gly	ГЛЗ	ГЛЗ	Ile 40	Val	Ile	Val	Gly	Сув 45	Gly	Ala	Gln
Gly Leu 50	Asn	Gln	Gly	Leu	Asn 55	Leu	Arg	Asp	Ser	Gly 60	Leu	Asp	Val	Ser
Tyr Thr 65	Leu	Arg	Lys	Glu 70	Ala	Ile	Asp	Ser	Lys 75	Arg	Gln	Ser	Phe	Leu 80
Asn Ala	Ser	Glu	Asn 85	Gly	Phe	Lys	Val	Gly 90	Thr	Tyr	Glu	Glu	Leu 95	Ile
Pro Thr	Ala	Asp 100	Leu	Val	Ile	Asn	Leu 105	Thr	Pro	Asp	ГЛа	Gln 110	His	Thr
Ala Val	Val 115	Ser	Ala	Val	Met	Pro 120	Leu	Met	Lys	Lys	Gly 125		Thr	Leu
Ser Tyr 130		His	Gly	Phe	Asn 135		Val	Glu	Glu	Gly 140		Gln	Ile	Arg
Lys Asp	Ile	Thr	Val			Val	Ala	Pro	-		Pro	Gly	Ser	
145 Val Arg				150					155					160
	Glu	Glu	Tyr	Lys	Arg	Gly	Phe	Gly	Val	Pro	Thr	Leu	Ile	Ala

-continued

												COIL		ueu	
Val	His	Pro	Glu 180	Asn	Asp	Pro	Glu	Gly 185	Lys	Gly	Trp	Asp	Tyr 190	Ala	Lys
Ala	Tyr	Cys 195	Val	Gly	Thr	Gly	Gly 200		Arg	Ala	Gly	Val 205	Leu	ГЛа	Ser
	Phe 210	Val	Ala	Glu	Val	Lys 215	Ser	Asp	Leu	Met	Gly 220	Glu	Gln	Thr	Ile
Leu 225	Cys	Gly	Leu	Leu	Gln 230		Gly	Ser	Ile	Leu 235	Суз	Phe	Asp	Lys	Met 240
Val	Glu	Lys	Gly	Ile 245	Asp	Lys	Gly	Tyr	Ala 250		LYa	Leu	Ile	Gln 255	Tyr
Gly	Trp	Glu	Val 260	Ile	Thr	Glu	Ser	Leu 265	Lys	His	Gly	Gly	Ile 270	Ser	Gly
Met	Met	Asp 275	Arg	Leu	Ser	Asn	Pro 280	Ala	Lys	Ile	Lys	Ala 285	Phe	Gln	Val
	Glu 290	Glu	Leu	Lys	Asp	Ile 295		Arg	Pro	Leu	Phe 300	Arg	Lys	His	Gln
Asp 305	Asp	Ile	Ile	Ser	Gly 310	Glu	Phe	Ser	Arg	Ile 315	Met	Met	Glu	Asp	Trp 320
Ala	Asn	Gly	Asp	Lys 325		Leu	Leu	Thr	Trp 330	Arg	Ala	Ala	Thr	Gly 335	
Thr	Ala	Phe	Glu 340		Thr	Pro	Ala	Gly 345			Lys	Ile	Ala 350	Glu	Gln
Glu	Tyr	Tyr 355		Asn	Gly	Leu	Leu 360		Val	Ala	Met	Val 365		Ala	Gly
Val			Ala	Phe	Glu			Thr	Glu	Ser	-		Ile	Asp	Glu
Ser	370 Ala	Tyr	Tyr	Glu		375 Leu	His	Glu	Thr		380 Leu	Ile	Ala	Asn	
385 Ile	Ala	Arg	Lys		390 Leu	Phe	Glu	Met		395 Arg	Val	Ile	Ser	Asp	400 Thr
Ala	Glu	Tyr	Gly	405 Сув	Tyr	Leu	Phe	Asp	410 His	Ala	Суз	Lys	Pro	415 Leu	Leu
Ala	Asn	Phe	420 Met	Lys	Thr	Val	Asp	425 Thr	Asp	Ile	Ile	Gly	430 Lys	Asn	Phe
Asn	Ala	435 Gly	Lys	Asp	Asn	Gly	440 Val	Asp	Asn	Gln	Met	445 Leu	Ile	Ala	Val
Asn	450 Glu	Val	Leu	Arq	Ser	455 His	Pro	Ile	Glu	Ile	460 Val	Gly	Ala	Glu	Leu
465 Arg					470					475		-			480
				485			_1		490						
<210															
<400	•> 5ł	°Õ∩ FI	NCE:	92											
		ю. ті		0.2											
<210															
000		~	_ ,	-											
<210	> SI	EQ II	о мо	94											

```
-continued
```

<400> SEOUENCE: 94 000 <210> SEQ ID NO 95 <400> SEOUENCE: 95 000 <210> SEQ ID NO 96 <400> SEQUENCE: 96 000 <210> SEQ ID NO 97 <400> SEQUENCE: 97 000 <210> SEQ ID NO 98 <400> SEQUENCE: 98 000 <210> SEQ ID NO 99 <400> SEQUENCE: 99 000 <210> SEQ ID NO 100 <400> SEOUENCE: 100 000 <210> SEQ ID NO 101 <211> LENGTH: 6362 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1102 <400> SEQUENCE: 101 tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 60 cagettgtet gtaageggat geegggagea gaeaageeeg teageggggg teagegggtg 120 ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180 accataccac agettttcaa ttcaattcat cattttttt ttattettt ttttgattte 240 ggtttctttg aaattttttt gattcggtaa tctccgaaca gaaggaagaa cgaaggaagg 300 agcacagact tagattggta tatatacgca tatgtagtgt tgaagaaaca tgaaattgcc 360 cagtattett aacceaactg cacagaacaa aaacetgeag gaaaegaaga taaateatgt 420 cgaaagctac atataaggaa cgtgctgcta ctcatcctag tcctgttgct gccaagctat 480 ttaatatcat gcacgaaaag caaacaaact tgtgtgcttc attggatgtt cgtaccacca 540 aggaattact ggagttagtt gaagcattag gtcccaaaat ttgtttacta aaaacacatg 600

tggatatctt	gactgatttt	tccatggagg	gcacagttaa	gccgctaaag	gcattatccg	660	
ccaagtacaa	tttttactc	ttcgaagaca	gaaaatttgc	tgacattggt	aatacagtca	720	
aattgcagta	ctctgcgggt	gtatacagaa	tagcagaatg	ggcagacatt	acgaatgcac	780	
acggtgtggt	gggcccaggt	attgttagcg	gtttgaagca	ggcggcagaa	gaagtaacaa	840	
aggaacctag	aggccttttg	atgttagcag	aattgtcatg	caagggctcc	ctatctactg	900	
gagaatatac	taagggtact	gttgacattg	cgaagagcga	caaagatttt	gttatcggct	960	
ttattgctca	aagagacatg	ggtggaagag	atgaaggtta	cgattggttg	attatgacac	1020	
ccggtgtggg	tttagatgac	aagggagacg	cattgggtca	acagtataga	accgtggatg	1080	
atgtggtctc	tacaggatct	gacattatta	ttgttggaag	aggactattt	gcaaagggaa	1140	
gggatgctaa	ggtagagggt	gaacgttaca	gaaaagcagg	ctgggaagca	tatttgagaa	1200	
gatgcggcca	gcaaaactaa	aaaactgtat	tataagtaaa	tgcatgtata	ctaaactcac	1260	
aaattagagc	ttcaatttaa	ttatatcagt	tattacccta	tgcggtgtga	aataccgcac	1320	
agatgcgtaa	ggagaaaata	ccgcatcagg	aaattgtaaa	cgttaatatt	ttgttaaaat	1380	
tcgcgttaaa	tttttgttaa	atcagctcat	tttttaacca	ataggccgaa	atcggcaaaa	1440	
tcccttataa	atcaaaagaa	tagaccgaga	tagggttgag	tgttgttcca	gtttggaaca	1500	
agagtccact	attaaagaac	gtggactcca	acgtcaaagg	gcgaaaaacc	gtctatcagg	1560	
gcgatggccc	actacgtgaa	ccatcaccct	aatcaagttt	tttggggtcg	aggtgccgta	1620	
aagcactaaa	tcggaaccct	aaagggagcc	cccgatttag	agcttgacgg	ggaaagccgg	1680	
cgaacgtggc	gagaaaggaa	gggaagaaag	cgaaaggagc	gggcgctagg	gcgctggcaa	1740	
gtgtagcggt	cacgctgcgc	gtaaccacca	cacccgccgc	gcttaatgcg	ccgctacagg	1800	
gcgcgtcgcg	ccattcgcca	ttcaggctgc	gcaactgttg	ggaagggcga	tcggtgcggg	1860	
cctcttcgct	attacgccag	ctggcgaaag	ggggatgtgc	tgcaaggcga	ttaagttggg	1920	
taacgccagg	gttttcccag	tcacgacgtt	gtaaaacgac	ggccagtgag	cgcgcgtaat	1980	
acgactcact	atagggcgaa	ttgggtaccg	gccgcaaatt	aaagccttcg	agcgtcccaa	2040	
aaccttctca	agcaaggttt	tcagtataat	gttacatgcg	tacacgcgtc	tgtacagaaa	2100	
aaaaagaaaa	atttgaaata	taaataacgt	tcttaatact	aacataacta	taaaaaata	2160	
aatagggacc	tagacttcag	gttgtctaac	tccttccttt	tcggttagag	cggatgtggg	2220	
gggaggggggt	gaatgtaagc	gtgacataac	taattacatg	actcgagcgg	ccgcggatcc	2280	
cgggaattcg	tcgacacccg	catagtcagg	aacatcgtat	gggtacatgc	tagttctaga	2340	
aaacttagat	tagattgcta	tgctttcttt	ctaatgagca	agaagtaaaa	aaagttgtaa	2400	
tagaacaaga	aaaatgaaac	tgaaacttga	gaaattgaag	accgtttatt	aacttaaata	2460	
tcaatgggag	gtcatcgaaa	gagaaaaaaa	tcaaaaaaaa	aattttcaag	aaaaagaaac	2520	
gtgataaaaa	ttttattgc	ctttttcgac	gaagaaaaag	aaacgaggcg	gtctctttt	2580	
tcttttccaa	acctttagta	cgggtaatta	acgacaccct	agaggaagaa	agaggggaaa	2640	
tttagtatgc	tgtgcttggg	tgttttgaag	tggtacggcg	atgcgcggag	tccgagaaaa	2700	
tctggaagag	taaaaagga	gtagaaacat	tttgaagcta	tgagctccag	cttttgttcc	2760	
ctttagtgag	ggttaattgc	gcgcttggcg	taatcatggt	catagctgtt	tcctgtgtga	2820	
aattgttatc	cgctcacaat	tccacacaac	ataggagccg	gaagcataaa	gtgtaaagcc	2880	

tggggtgcct	aatgagtgag	gtaactcaca	ttaattgcgt	tgcgctcact	gcccgctttc	2940
cagtcgggaa	acctgtcgtg	ccagctgcat	taatgaatcg	gccaacgcgc	ggggagaggc	3000
ggtttgcgta	ttgggcgctc	tteegettee	tcgctcactg	actcgctgcg	ctcggtcgtt	3060
cggctgcggc	gagcggtatc	agctcactca	aaggcggtaa	tacggttatc	cacagaatca	3120
ggggataacg	caggaaagaa	catgtgagca	aaaggccagc	aaaaggccag	gaaccgtaaa	3180
aaggccgcgt	tgctggcgtt	tttccatagg	ctccgccccc	ctgacgagca	tcacaaaaat	3240
cgacgctcaa	gtcagaggtg	gcgaaacccg	acaggactat	aaagatacca	ggcgtttccc	3300
cctggaagct	ccctcgtgcg	ctctcctgtt	ccgaccctgc	cgcttaccgg	atacctgtcc	3360
gcctttctcc	cttcgggaag	cgtggcgctt	tctcatagct	cacgctgtag	gtatctcagt	3420
tcggtgtagg	tcgttcgctc	caagctgggc	tgtgtgcacg	aaccccccgt	tcagcccgac	3480
cgctgcgcct	tatccggtaa	ctatcgtctt	gagtccaacc	cggtaagaca	cgacttatcg	3540
ccactggcag	cagccactgg	taacaggatt	agcagagcga	ggtatgtagg	cggtgctaca	3600
gagttettga	agtggtggcc	taactacggc	tacactagaa	ggacagtatt	tggtatctgc	3660
gctctgctga	agccagttac	cttcggaaaa	agagttggta	gctcttgatc	cggcaaacaa	3720
accaccgctg	gtagcggtgg	ttttttgtt	tgcaagcagc	agattacgcg	cagaaaaaaa	3780
ggatctcaag	aagateettt	gatetttet	acggggtctg	acgctcagtg	gaacgaaaac	3840
tcacgttaag	ggattttggt	catgagatta	tcaaaaagga	tcttcaccta	gatcctttta	3900
aattaaaaat	gaagttttaa	atcaatctaa	agtatatatg	agtaaacttg	gtctgacagt	3960
taccaatgct	taatcagtga	ggcacctatc	tcagcgatct	gtctatttcg	ttcatccata	4020
gttgcctgac	teccegtegt	gtagataact	acgatacggg	agggettace	atctggcccc	4080
agtgctgcaa	tgataccgcg	agacccacgc	tcaccggctc	cagatttatc	agcaataaac	4140
cagccagccg	gaagggccga	gcgcagaagt	ggtcctgcaa	ctttatccgc	ctccatccag	4200
tctattaatt	gttgccggga	agctagagta	agtagttcgc	cagttaatag	tttgcgcaac	4260
gttgttgcca	ttgctacagg	catcgtggtg	tcacgctcgt	cgtttggtat	ggcttcattc	4320
agctccggtt	cccaacgatc	aaggcgagtt	acatgatccc	ccatgttgtg	caaaaaagcg	4380
gttagctcct	teggteetee	gatcgttgtc	agaagtaagt	tggccgcagt	gttatcactc	4440
atggttatgg	cagcactgca	taattctctt	actgtcatgc	catccgtaag	atgcttttct	4500
gtgactggtg	agtactcaac	caagtcattc	tgagaatagt	gtatgcggcg	accgagttgc	4560
tcttgcccgg	cgtcaatacg	ggataatacc	gcgccacata	gcagaacttt	aaaagtgctc	4620
atcattggaa	aacgttcttc	ggggcgaaaa	ctctcaagga	tcttaccgct	gttgagatcc	4680
agttcgatgt	aacccactcg	tgcacccaac	tgatcttcag	catcttttac	tttcaccagc	4740
gtttctgggt	gagcaaaaac	aggaaggcaa	aatgccgcaa	aaaagggaat	aagggcgaca	4800
cggaaatgtt	gaatactcat	actcttcctt	tttcaatatt	attgaagcat	ttatcagggt	4860
tattgtctca	tgagcggata	catatttgaa	tgtatttaga	aaaataaaca	aataggggtt	4920
ccgcgcacat	ttccccgaaa	agtgccacct	gaacgaagca	tctgtgcttc	attttgtaga	4980
acaaaaatgc	aacgcgagag	cgctaatttt	tcaaacaaag	aatctgagct	gcatttttac	5040
agaacagaaa	tgcaacgcga	aagcgctatt	ttaccaacga	agaatctgtg	cttcattttt	5100
gtaaaacaaa	aatgcaacgc	gagagcgcta	atttttcaaa	caaagaatct	gagctgcatt	5160

-continued

tttacagaac agaaatgcaa cgcgagagcg ctattttacc aacaaagaat ctatacttct 5220 tttttgttct acaaaaatgc atcccqaqag cgctattttt ctaacaaagc atcttagatt 5280 actttttttc tcctttgtgc gctctataat gcagtctctt gataactttt tgcactgtag 5340 gtccgttaag gttagaagaa ggctactttg gtgtctattt tctcttccat aaaaaaagcc 5400 tgactccact tcccgcgttt actgattact agcgaagctg cgggtgcatt ttttcaagat 5460 aaaggcatcc ccgattatat tctataccga tgtggattgc gcatactttg tgaacagaaa 5520 gtgatagcgt tgatgattct tcattggtca gaaaattatg aacggtttct tctattttgt 5580 ctctatatac tacgtatagg aaatgtttac attttcgtat tgttttcgat tcactctatg 5640 aatagttett actacaattt ttttgtetaa agagtaatae tagagataaa cataaaaaat 5700 gtagaggtcg agtttagatg caagttcaag gagcgaaagg tggatgggta ggttatatag 5760 ggatatagca cagagatata tagcaaagag atacttttga gcaatgtttg tggaagcggt 5820 attcgcaata ttttagtagc tcgttacagt ccggtgcgtt tttggttttt tgaaagtgcg 5880 tottcagago gottttggtt ttcaaaagog ototgaagtt ootataottt otagagaata 5940 ggaacttcgg aataggaact tcaaagcgtt tccgaaaacg agcgcttccg aaaatgcaac 6000 gcgagctgcg cacatacagc tcactgttca cgtcgcacct atatctgcgt gttgcctgta 6060 tatatatata catgagaaga acggcatagt gcgtgtttat gcttaaatgc gtacttatat 6120 gcgtctattt atgtaggatg aaaggtagtc tagtacctcc tgtgatatta tcccattcca 6180 tgcggggtat cgtatgette ettcageact accetttage tgttetatat getgecaete 6240 ctcaattgga ttagtctcat ccttcaatgc tatcatttcc tttgatattg gatcatacta 6300 agaaaccatt attatcatga cattaaccta taaaaatagg cgtatcacga ggccctttcg 6360 tc 6362 <210> SEO ID NO 102 <211> LENGTH: 7314 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1323 <400> SEOUENCE: 102 tcgcgcgttt cggtgatgac ggtgaaaaacc tctgacacat gcagctcccg gagacggtca 60 cagettgtet gtaageggat geegggagea gaeaageeeg teagggegeg teagegggtg 120 ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180 accataaacg acattactat atatataata taggaagcat ttaatagaca gcatcgtaat 240 atatgtgtac tttgcagtta tgacgccaga tggcagtagt ggaagatatt ctttattgaa 300 aaatagettg teacettaeg tacaatettg ateeggaget tttettttt tgeegattaa 360 gaattaattc ggtcgaaaaa agaaaaggag agggccaaga gggagggcat tggtgactat 420 tgagcacgtg agtatacgtg attaagcaca caaaggcagc ttggagtatg tctgttatta 480 atttcacagg tagttctggt ccattggtga aagtttgcgg cttgcagagc acagaggccg 540 cagaatgtgc tctagattcc gatgctgact tgctgggtat tatatgtgtg cccaatagaa 600 agagaacaat tgacccggtt attgcaagga aaatttcaag tottgtaaaa goatataaaa 660 atagttcagg cactccgaaa tacttggttg gcgtgtttcg taatcaacct aaggaggatg 720

ttttggctct	ggtcaatgat	tacggcattg	atatcgtcca	actgcatgga	gatgagtcgt	780	
ggcaagaata	ccaagagttc	ctcggtttgc	cagttattaa	aagactcgta	tttccaaaag	840	
actgcaacat	actactcagt	gcagcttcac	agaaacctca	ttcgtttatt	cccttgtttg	900	
attcagaagc	aggtgggaca	ggtgaacttt	tggattggaa	ctcgatttct	gactgggttg	960	
gaaggcaaga	gagccccgaa	agcttacatt	ttatgttagc	tggtggactg	acgccagaaa	1020	
atgttggtga	tgcgcttaga	ttaaatggcg	ttattggtgt	tgatgtaagc	ggaggtgtgg	1080	
agacaaatgg	tgtaaaagac	tctaacaaaa	tagcaaattt	cgtcaaaaat	gctaagaaat	1140	
aggttattac	tgagtagtat	ttatttaagt	attgtttgtg	cacttgccta	tgcggtgtga	1200	
aataccgcac	agatgcgtaa	ggagaaaata	ccgcatcagg	aaattgtaaa	cgttaatatt	1260	
ttgttaaaat	tcgcgttaaa	tttttgttaa	atcagctcat	tttttaacca	ataggccgaa	1320	
atcggcaaaa	tcccttataa	atcaaaagaa	tagaccgaga	tagggttgag	tgttgttcca	1380	
gtttggaaca	agagtccact	attaaagaac	gtggactcca	acgtcaaagg	gcgaaaaacc	1440	
gtctatcagg	gcgatggccc	actacgtgaa	ccatcaccct	aatcaagttt	tttggggtcg	1500	
aggtgccgta	aagcactaaa	tcggaaccct	aaagggagcc	cccgatttag	agcttgacgg	1560	
ggaaagccgg	cgaacgtggc	gagaaaggaa	gggaagaaag	cgaaaggagc	gggcgctagg	1620	
gcgctggcaa	gtgtagcggt	cacgctgcgc	gtaaccacca	cacccgccgc	gcttaatgcg	1680	
ccgctacagg	gcgcgtcgcg	ccattcgcca	ttcaggctgc	gcaactgttg	ggaagggcga	1740	
tcggtgcggg	cctcttcgct	attacgccag	ctggcgaaag	ggggatgtgc	tgcaaggcga	1800	
ttaagttggg	taacgccagg	gttttcccag	tcacgacgtt	gtaaaacgac	ggccagtgag	1860	
cgcgcgtaat	acgactcact	atagggcgaa	ttgggtaccg	gccgcaaatt	aaagccttcg	1920	
agcgtcccaa	aaccttctca	agcaaggttt	tcagtataat	gttacatgcg	tacacgcgtc	1980	
tgtacagaaa	aaaaagaaaa	atttgaaata	taaataacgt	tcttaatact	aacataacta	2040	
taaaaaaata	aatagggacc	tagacttcag	gttgtctaac	tccttccttt	tcggttagag	2100	
cggatgtggg	gggagggcgt	gaatgtaagc	gtgacataac	taattacatg	actcgagcgg	2160	
ccgcggatcc	ttaaacacca	gcttcgaagt	ccttttgagc	catgaaaatg	gataaatcaa	2220	
ccactcttga	agagtaacca	tattcattat	cataccaaga	aaggaccttg	aaaaatggt	2280	
cgttcaattc	aataccggcc	ttggcatcaa	caatagatga	acgtgaatcg	gatgtgaagt	2340	
cagaggacac	aacggcgtct	ttggtaacac	ccaaaacacc	cttcatatcg	ctgcgagatc	2400	
tttgttctag	ggccttcata	atgtcatcgt	aagaagtttt	ctttgctgta	cggaatgtca	2460	
agtcaaccag	ggaaatatta	attgttggga	ctcttataga	cataccggtg	atcttaccat	2520	
taagttcagg	caagattttc	cctacagcct	tagctgcacc	agtagatgaa	ggaatgatat	2580	
ttccctggca	agatctaccg	cctctccagt	ccttaccacc	agaactggta	ccatcgacag	2640	
tcttttgaga	agcagtagtt	gcatgaatag	ttgtcatcaa	ggettetteg	ataccgaact	2700	
catcgtccaa	agccttaacc	aacggagcca	aacagttggt	agtacaggag	gcattagaga	2760	
ccacgtgatc	cgtcaatggg	ttgtatttaa	cgtggttaac	accatagacg	tacattggcg	2820	
cggtctttga	tggagcagta	atgataactt	ttttgacacc	tttatgtcta	gaggetgtat	2880	
cgacttcctt	gaagacaccg	gttgagtcaa	ttacataatc	gacgttgtag	gaagcccatg	2940	
ggatacgctc	tggttcccta	aaatgagata	gagggatatg	agccgaaaca	tggtcatttt	3000	

-continued

gaatgatgat	acgttcatcg	tcgaattcaa	cttcaccacg	atacttgccg	tgagtagaat	3060
cgtatttgaa	caaataagca	gcgtattctg	gtgttgtgga	tggattattg	attaatctga	3120
ccttaacttc	tgggtgcgtc	aaagcagcac	gtagaaccaa	tctaccgatt	ctaccaaaac	3180
cattgatacc	aatgttaatt	tgagctggct	tagaagaaga	ttcgtttgtc	atatcgggca	3240
tgtcgacacc	cgcatagtca	ggaacatcgt	atgggtacat	gctagttcta	gaaaacttag	3300
attagattgc	tatgctttct	ttctaatgag	caagaagtaa	aaaaagttgt	aatagaacaa	3360
gaaaaatgaa	actgaaactt	gagaaattga	agaccgttta	ttaacttaaa	tatcaatggg	3420
aggtcatcga	aagagaaaaa	aatcaaaaaa	aaaattttca	agaaaaagaa	acgtgataaa	3480
aatttttatt	gcctttttcg	acgaagaaaa	agaaacgagg	cggtctcttt	tttcttttcc	3540
aaacctttag	tacgggtaat	taacgacacc	ctagaggaag	aaagagggga	aatttagtat	3600
gctgtgcttg	ggtgttttga	agtggtacgg	cgatgcgcgg	agtccgagaa	aatctggaag	3660
agtaaaaaag	gagtagaaac	attttgaagc	tatgagetee	agettttgtt	ccctttagtg	3720
agggttaatt	gcgcgcttgg	cgtaatcatg	gtcatagctg	tttcctgtgt	gaaattgtta	3780
tccgctcaca	attccacaca	acataggagc	cggaagcata	aagtgtaaag	cctggggtgc	3840
ctaatgagtg	aggtaactca	cattaattgc	gttgcgctca	ctgcccgctt	tccagtcggg	3900
aaacctgtcg	tgccagctgc	attaatgaat	cggccaacgc	gcggggagag	gcggtttgcg	3960
tattgggcgc	tcttccgctt	cctcgctcac	tgactcgctg	cgctcggtcg	ttcggctgcg	4020
gcgagcggta	tcagctcact	caaaggcggt	aatacggtta	tccacagaat	caggggataa	4080
cgcaggaaag	aacatgtgag	caaaaggcca	gcaaaaggcc	aggaaccgta	aaaaggccgc	4140
gttgctggcg	tttttccata	ggctccgccc	ccctgacgag	catcacaaaa	atcgacgctc	4200
aagtcagagg	tggcgaaacc	cgacaggact	ataaagatac	caggcgtttc	cccctggaag	4260
ctccctcgtg	cgctctcctg	ttccgaccct	gccgcttacc	ggatacctgt	ccgcctttct	4320
cccttcggga	agcgtggcgc	tttctcatag	ctcacgctgt	aggtatctca	gttcggtgta	4380
ggtcgttcgc	tccaagctgg	gctgtgtgca	cgaacccccc	gttcagcccg	accgctgcgc	4440
cttatccggt	aactatcgtc	ttgagtccaa	cccggtaaga	cacgacttat	cgccactggc	4500
agcagccact	ggtaacagga	ttagcagagc	gaggtatgta	ggcggtgcta	cagagttctt	4560
gaagtggtgg	cctaactacg	gctacactag	aaggacagta	tttggtatct	gcgctctgct	4620
gaagccagtt	accttcggaa	aaagagttgg	tagetettga	tccggcaaac	aaaccaccgc	4680
tggtagcggt	ggttttttg	tttgcaagca	gcagattacg	cgcagaaaaa	aaggatctca	4740
agaagatcct	ttgatctttt	ctacgggggtc	tgacgctcag	tggaacgaaa	actcacgtta	4800
agggattttg	gtcatgagat	tatcaaaaag	gatetteace	tagatccttt	taaattaaaa	4860
atgaagtttt	aaatcaatct	aaagtatata	tgagtaaact	tggtctgaca	gttaccaatg	4920
cttaatcagt	gaggcaccta	tctcagcgat	ctgtctattt	cgttcatcca	tagttgcctg	4980
acteccegte	gtgtagataa	ctacgatacg	ggagggctta	ccatctggcc	ccagtgctgc	5040
aatgataccg	cgagacccac	gctcaccggc	tccagattta	tcagcaataa	accagccagc	5100
cggaagggcc	gagcgcagaa	gtggtcctgc	aactttatcc	gcctccatcc	agtctattaa	5160
ttgttgccgg	gaagctagag	taagtagttc	gccagttaat	agtttgcgca	acgttgttgc	5220
cattgctaca	ggcatcgtgg	tgtcacgctc	gtcgtttggt	atggcttcat	tcagctccgg	5280

-continued

ttcccaacga	tcaaggcgag	ttacatgatc	ccccatgttg	tgcaaaaaag	cggttagctc	5340
cttcggtcct	ccgatcgttg	tcagaagtaa	gttggccgca	gtgttatcac	tcatggttat	5400
ggcagcactg	cataattctc	ttactgtcat	gccatccgta	agatgctttt	ctgtgactgg	5460
tgagtactca	accaagtcat	tctgagaata	gtgtatgcgg	cgaccgagtt	gctcttgccc	5520
ggcgtcaata	cgggataata	ccgcgccaca	tagcagaact	ttaaaagtgc	tcatcattgg	5580
aaaacgttct	tcggggcgaa	aactctcaag	gatcttaccg	ctgttgagat	ccagttcgat	5640
gtaacccact	cgtgcaccca	actgatcttc	agcatctttt	actttcacca	gcgtttctgg	5700
gtgagcaaaa	acaggaaggc	aaaatgccgc	aaaaaggga	ataagggcga	cacggaaatg	5760
ttgaatactc	atactcttcc	tttttcaata	ttattgaagc	atttatcagg	gttattgtct	5820
catgagcgga	tacatatttg	aatgtattta	gaaaaataaa	caaatagggg	ttccgcgcac	5880
atttccccga	aaagtgccac	ctgaacgaag	catctgtgct	tcattttgta	gaacaaaaat	5940
gcaacgcgag	agcgctaatt	tttcaaacaa	agaatctgag	ctgcattttt	acagaacaga	6000
aatgcaacgc	gaaagcgcta	ttttaccaac	gaagaatctg	tgcttcattt	ttgtaaaaca	6060
aaaatgcaac	gcgagagcgc	taatttttca	aacaaagaat	ctgagctgca	tttttacaga	6120
acagaaatgc	aacgcgagag	cgctatttta	ccaacaaaga	atctatactt	ctttttgtt	6180
ctacaaaaat	gcatcccgag	agcgctattt	ttctaacaaa	gcatcttaga	ttactttttt	6240
tctcctttgt	gcgctctata	atgcagtctc	ttgataactt	tttgcactgt	aggtccgtta	6300
aggttagaag	aaggctactt	tggtgtctat	tttctcttcc	ataaaaaaag	cctgactcca	6360
cttcccgcgt	ttactgatta	ctagcgaagc	tgcgggtgca	tttttcaag	ataaaggcat	6420
ccccgattat	attctatacc	gatgtggatt	gcgcatactt	tgtgaacaga	aagtgatagc	6480
gttgatgatt	cttcattggt	cagaaaatta	tgaacggttt	cttctatttt	gtctctatat	6540
actacgtata	ggaaatgttt	acattttcgt	attgttttcg	attcactcta	tgaatagttc	6600
ttactacaat	tttttgtct	aaagagtaat	actagagata	aacataaaaa	atgtagaggt	6660
cgagtttaga	tgcaagttca	aggagcgaaa	ggtggatggg	taggttatat	agggatatag	6720
cacagagata	tatagcaaag	agatactttt	gagcaatgtt	tgtggaagcg	gtattcgcaa	6780
tattttagta	gctcgttaca	gtccggtgcg	tttttggttt	tttgaaagtg	cgtcttcaga	6840
gcgcttttgg	ttttcaaaag	cgctctgaag	ttcctatact	ttctagagaa	taggaacttc	6900
ggaataggaa	cttcaaagcg	tttccgaaaa	cgagcgcttc	cgaaaatgca	acgcgagctg	6960
cgcacataca	gctcactgtt	cacgtcgcac	ctatatctgc	gtgttgcctg	tatatata	7020
tacatgagaa	gaacggcata	gtgcgtgttt	atgcttaaat	gcgtacttat	atgcgtctat	7080
ttatgtagga	tgaaaggtag	tctagtacct	cctgtgatat	tatcccattc	catgeggggt	7140
atcgtatgct	tccttcagca	ctacccttta	gctgttctat	atgctgccac	tcctcaattg	7200
gattagtctc	atccttcaat	gctatcattt	cctttgatat	tggatcatat	taagaaacca	7260
ttattatcat	gacattaacc	tataaaaata	ggcgtatcac	gaggcccttt	cgtc	7314

<210> SEQ ID NO 103 <211> LENGTH: 6294 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1485

<400> SEQUENCE: 103						
taagaaacca ttattatcat	gacattaacc	tataaaaata	ggcgtatcac	gaggcccttt	60	
cgtcttcacc tcgagaattg	tgagcggata	acaattgaca	ttgtgagcgg	ataacaagat	120	
actgagcaca tcagcaggac	gcactgaccg	aattcattaa	agaggagaaa	ggtaccatgt	180	
atacagtagg agattaccta	ttagaccgat	tacacgagtt	aggaattgaa	gaaatttttg	240	
gagtccctgg agactataac	ttacaatttt	tagatcaaat	tatttcccgc	aaggatatga	300	
aatgggtcgg aaatgctaat	gaattaaatg	cttcatatat	ggctgatggc	tatgctcgta	360	
ctaaaaaagc tgccgcattt	cttacaacct	ttggagtagg	tgaattgagt	gcagttaatg	420	
gattagcagg aagttacgcc	gaaaatttac	cagtagtaga	aatagtggga	tcacctacat	480	
caaaagttca aaatgaagga	aaatttgttc	atcatacgct	ggctgacggt	gattttaaac	540	
actttatgaa aatgcacgaa	cctgttacag	cagetegaae	tttactgaca	gcagaaaatg	600	
caaccgttga aattgaccga	gtactttctg	cactattaaa	agaaagaaaa	cctgtctata	660	
tcaacttacc agttgatgtt	gctgctgcaa	aagcagagaa	acceteacte	cctttgaaaa	720	
aagaaaactc aacttcaaat	acaagtgacc	aagagatctt	gaacaaaatt	caagaaagct	780	
tgaaaaatgc caaaaaacca	atcgtgatta	caggacatga	aataattagt	tttggcttag	840	
aaaaaacagt ctctcaattt	atttcaaaga	caaaactacc	tattacgaca	ttaaactttg	900	
gaaaaagttc agttgatgaa	gctctccctt	catttttagg	aatctataat	ggtaaactct	960	
cagagcctaa tcttaaagaa	ttcgtggaat	cageegaett	catcctgatg	cttggagtta	1020	
aactcacaga ctcttcaaca	ggagcettea	ctcatcattt	aaatgaaaat	aaaatgattt	1080	
cactgaatat agatgaagga	aaaatattta	acgaaagcat	ccaaaatttt	gattttgaat	1140	
ccctcatctc ctctctcta	gacctaagcg	aaatagaata	caaaggaaaa	tatatcgata	1200	
aaaagcaaga agactttgtt	ccatcaaatg	cgcttttatc	acaagaccgc	ctatggcaag	1260	
cagttgaaaa cctaactcaa	agcaatgaaa	caatcgttgc	tgaacaaggg	acatcattct	1320	
ttggcgcttc atcaattttc	ttaaaaccaa	agagtcattt	tattggtcaa	cccttatggg	1380	
gatcaattgg atatacattc	ccagcagcat	taggaagcca	aattgcagat	aaagaaagca	1440	
gacacctttt atttattggt	gatggttcac	ttcaacttac	ggtgcaagaa	ttaggattag	1500	
caatcagaga aaaaattaat	ccaatttgct	ttattatcaa	taatgatggt	tatacagtcg	1560	
aaagagaaat tcatggacca	aatcaaagct	acaatgatat	tccaatgtgg	aattactcaa	1620	
aattaccaga atcatttgga	gcaacagaag	aacgagtagt	ctcgaaaatc	gttagaactg	1680	
aaaatgaatt tgtgtctgtc	atgaaagaag	ctcaagcaga	tccaaataga	atgtactgga	1740	
ttgagttaat tttggcaaaa	gaagatgcac	caaaagtact	gaaaaaaatg	ggcaaactat	1800	
ttgctgaaca aaataaatca	taagcatgca	ggagatatac	catgtctatt	ccagaaactc	1860	
aaaaagccat tatcttctac	gaatccaacg	gcaagttgga	gcataaggat	atcccagttc	1920	
caaagccaaa gcccaacgaa	ttgttaatca	acgtcaagta	ctctggtgtc	tgccacaccg	1980	
atttgcacgc ttggcatggt	gactggccat	tgccaactaa	gttaccatta	gttggtggtc	2040	
acgaaggtgc cggtgtcgtt	gtcggcatgg	gtgaaaacgt	taagggctgg	aagatcggtg	2100	
actacgccgg tatcaaatgg	ttgaacggtt	cttgtatggc	ctgtgaatac	tgtgaattgg	2160	
gtaacgaatc caactgtcct	cacgctgact	tgtctggtta	cacccacgac	ggttctttcc	2220	

aagaatacgc	taccgctgac	gctgttcaag	ccgctcacat	tcctcaaggt	actgacttgg	2280
ctgaagtcgc	gccaatcttg	tgtgctggta	tcaccgtata	caaggctttg	aagtctgcca	2340
acttgagagc	aggccactgg	gcggccattt	ctggtgctgc	tggtggtcta	ggttctttgg	2400
ctgttcaata	tgctaaggcg	atgggttaca	gagtettagg	tattgatggt	ggtccaggaa	2460
aggaagaatt	gtttacctcg	ctcggtggtg	aagtattcat	cgacttcacc	aaagagaagg	2520
acattgttag	cgcagtcgtt	aaggctacca	acggcggtgc	ccacggtatc	atcaatgttt	2580
ccgtttccga	agccgctatc	gaagcttcta	ccagatactg	tagggcgaac	ggtactgttg	2640
tcttggttgg	tttgccagcc	ggtgcaaagt	gctcctctga	tgtcttcaac	cacgttgtca	2700
agtctatctc	cattgtcggc	tcttacgtgg	ggaacagagc	tgataccaga	gaagccttag	2760
atttctttgc	cagaggtcta	gtcaagtctc	caataaaggt	agttggctta	tccagtttac	2820
cagaaattta	cgaaaagatg	gagaagggcc	aaattgctgg	tagatacgtt	gttgacactt	2880
ctaaataatc	tagaggcatc	aaataaaacg	aaaggctcag	tcgaaagact	gggcctttcg	2940
ttttatctgt	tgtttgtcgg	tgaacgctct	cctgagtagg	acaaatccgc	cgccctagac	3000
ctagggtacg	ggttttgctg	cccgcaaacg	ggctgttctg	gtgttgctag	tttgttatca	3060
gaatcgcaga	tccggcttca	ggtttgccgg	ctgaaagcgc	tatttcttcc	agaattgcca	3120
tgattttttc	cccacgggag	gcgtcactgg	ctcccgtgtt	gtcggcagct	ttgattcgat	3180
aagcagcatc	gcctgtttca	ggctgtctat	gtgtgactgt	tgagctgtaa	caagttgtct	3240
caggtgttca	atttcatgtt	ctagttgctt	tgttttactg	gtttcacctg	ttctattagg	3300
tgttacatgc	tgttcatctg	ttacattgtc	gatctgttca	tggtgaacag	ctttaaatgc	3360
accaaaaact	cgtaaaagct	ctgatgtatc	tatcttttt	acaccgtttt	catctgtgca	3420
tatggacagt	tttccctttg	atatctaacg	gtgaacagtt	gttctacttt	tgtttgttag	3480
tcttgatgct	tcactgatag	atacaagagc	cataagaacc	tcagatcctt	ccgtatttag	3540
ccagtatgtt	ctctagtgtg	gttcgttgtt	tttgcgtgag	ccatgagaac	gaaccattga	3600
gatcatgctt	actttgcatg	tcactcaaaa	attttgcctc	aaaactggtg	agctgaattt	3660
ttgcagttaa	agcatcgtgt	agtgtttttc	ttagtccgtt	acgtaggtag	gaatctgatg	3720
taatggttgt	tggtattttg	tcaccattca	tttttatctg	gttgttctca	agttcggtta	3780
cgagatccat	ttgtctatct	agttcaactt	ggaaaatcaa	cgtatcagtc	gggcggcctc	3840
gcttatcaac	caccaatttc	atattgctgt	aagtgtttaa	atctttactt	attggtttca	3900
aaacccattg	gttaagcctt	ttaaactcat	ggtagttatt	ttcaagcatt	aacatgaact	3960
taaattcatc	aaggctaatc	tctatatttg	ccttgtgagt	tttcttttgt	gttagttett	4020
ttaataacca	ctcataaatc	ctcatagagt	atttgttttc	aaaagactta	acatgttcca	4080
gattatattt	tatgaatttt	tttaactgga	aaagataagg	caatatctct	tcactaaaaa	4140
ctaattctaa	tttttcgctt	gagaacttgg	catagtttgt	ccactggaaa	atctcaaagc	4200
ctttaaccaa	aggattcctg	atttccacag	ttctcgtcat	cagetetetg	gttgctttag	4260
ctaatacacc	ataagcattt	tccctactga	tgttcatcat	ctgagcgtat	tggttataag	4320
tgaacgatac	cgtccgttct	ttccttgtag	ggttttcaat	cgtggggttg	agtagtgcca	4380
cacagcataa	aattagcttg	gtttcatgct	ccgttaagtc	atagcgacta	atcgctagtt	4440
catttgcttt	gaaaacaact	aattcagaca	tacatctcaa	ttggtctagg	tgattttaat	4500

-continued

cactatacca attgagatgg gctagtcaat gataattact agtccttttc ccgggagatc	4560
tgggtatctg taaattctgc tagacctttg ctggaaaact tgtaaattct gctagaccct	4620
ctgtaaattc cgctagacct ttgtgtgttt tttttgttta tattcaagtg gttataattt	4680
atagaataaa gaaagaataa aaaaagataa aaagaataga tcccagccct gtgtataact	4740
cactacttta gtcagttccg cagtattaca aaaggatgtc gcaaacgctg tttgctcctc	4800
tacaaaacag accttaaaac cctaaaggct taagtagcac cctcgcaagc tcgggcaaat	4860
cgctgaatat teettttgte teegaceate aggeaeetga gtegetgtet ttttegtgae	4920
attcagttcg ctgcgctcac ggctctggca gtgaatgggg gtaaatggca ctacaggcgc	4980
cttttatgga ttcatgcaag gaaactaccc ataatacaag aaaagcccgt cacgggcttc	5040
tcagggcgtt ttatggcggg tctgctatgt ggtgctatct gactttttgc tgttcagcag	5100
tteetgeeet etgattttee agtetgaeea etteggatta teeegtgaea ggteatteag	5160
actggctaat gcacccagta aggcagcggt atcatcaaca ggcttacccg tcttactgtc	5220
cctagtgctt ggattctcac caataaaaaa cgcccggcgg caaccgagcg ttctgaacaa	5280
atccagatgg agttctgagg tcattactgg atctatcaac aggagtccaa gcgagctctc	5340
gaaccccaga gtcccgctca gaagaactcg tcaagaaggc gatagaaggc gatgcgctgc	5400
gaatcgggag cggcgatacc gtaaagcacg aggaagcggt cagcccattc gccgccaagc	5460
tetteageaa tateaegggt agecaaeget atgteetgat ageggteege caeaeceage	5520
cggccacagt cgatgaatcc agaaaagcgg ccattttcca ccatgatatt cggcaagcag	5580
gcatcgccat gggtcacgac gagateeteg eegtegggea tgegegeett gageetggeg	5640
aacagttegg etggegegag eccetgatge tettegteea gateateetg ategacaaga	5700
ccggcttcca tccgagtacg tgctcgctcg atgcgatgtt tcgcttggtg gtcgaatggg	5760
caggtageeg gateaagegt atgeageege egeattgeat eageeatgat ggataettte	5820
teggeaggag caaggtgaga tgacaggaga teetgeeeeg geaettegee caatageage	5880
cagteeette eegetteagt gacaacgteg ageacagetg egeaaggaae geeegtegtg	5940
gccagccacg atagccgcgc tgcctcgtcc tgcagttcat tcagggcacc ggacaggtcg	6000
gtettgacaa aaagaaccgg gegeeeetge getgacagee ggaacaegge ggeateagag	6060
cageegattg tetgttgtge ceagteatag eegaatagee tetecaeeea ageggeegga	6120
gaacctgcgt gcaatccatc ttgttcaatc atgcgaaacg atcctcatcc tgtctcttga	6180
tcagatettg ateccetgeg ceateagate ettggeggea agaaageeat eeagtttaet	6240
ttgcaggget teecaacett accagaggge geeccagetg geaatteega egte	6294
<210> SEQ ID NO 104 <211> LENGTH: 1980 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1490 <400> SEQUENCE: 104	
ctcgagtccc tatcagtgat agagattgac atccctatca gtgatagaga tactgagcac	60
atcagcagga cgcactgacc gaattcatta aagaggagaa aggtacctgc acgtcgactc	120
egtectaggg gatatattee getteetege teactgaete getaegeteg gtegttegae	120
	100

<pre>tgrggcogc ggaatgget tacgaacgg gcggagatt ctggaaga gccaggaag 240 tactaacag ggaatgag gggccgog aagcgtt ttccataga tccggccccc 300 tgacagcat cacgaatct gacgctaa tcatgtggtg cgaacccg caggatta 360 aagataccag gcgttccc ctggcggt cctcgtgcg tctcctgtc tgccatcag 420 gttacggt gccatcag tgtatgcg gcgttgtc cattcacg ctgacaccc 440 gttccggt gcagtcg tccaagetg actactcgt tgatgcc ggaccccc ggtcagtcg 540 accgctggc dtatccgt actactgt tggtgcc ccggaaga ctgcaacgc 660 ggttaaggt agcagcact ggtaattg ttggtgcc gcccaagag gcagtcat 720 cggttaaag agtggtag tcagagaac ttggtgac ccggaaga ctatgcaaag 660 caccactgg agcagcact ggtaattg ttggtgctg cccaagag gcagttt 780 tcgtttCag agcaggag tacggcaga ccaaacgg cccaagag actagcaag 900 gttaaggct aaactgaag gacagaact tggtaga ccgagagat taccctgaa ggcggttt 780 tcgtttCag agcaggag tggtgcg cataagag actactgg cattatt cttcacaat aaaaacgc 960 cggcggaac cgagcgtct gaacaacc agtgggt tggagt tgcagggt tgaagag 1140 aatcagata aatattct gattcagt gaattgat taggccgg caccaagag agtggaag 1140 aacctgaata gtgtgag tcgaacaatc agtggagt ctgaagga catcacaag cggaagag 1140 aacctgaat gccagcgg gccgaat atgccaggt gataatat tgccaaga 1220 caggttta ccgtaacg ccaattg cgacatta ggcacgt 1220 caggttgg ggaagaag tgccaatt gcgcatt gaacaaac tggcagaac 1320 caccaggg gcgaagaag tgccaatt gcgcattg gataatat gccggaaac 1320 caccaggg gcgaagaag tgccaatt gcgactg ttacaaaa tagcgaga 1320 caggttga acctatcc atacacca cttacga ctacaga gcggaata 1320 caggttga acctatca atacccag ccacttg cgactata gccggaaat 1320 caggttga acctatca atacccag ccacttg cagacgtct ggaaata 1500 cggatgaga ttaccqgg ggcaagaat gtgaataag gccggaaat 1320 caggttga acctatca atacccag tcaccgtc ttcattgaa accggaaact 1640 accagggg gcgaagaa tgcctaaa tgtcacat gcagacgt ggaaatg 1140 acaaggtgg acctatca cataccag ctaccgt ttcattgaa accggaaact 1500 cggatgaga ttaccqga ggcgaagaat gtgaaaag gccgaaact 1300 cggatgaga ttaccqga ggaagaa gctaccaga cgacgct gaacatcg 1220 caggtttt tactggaa actatcc atacacag ctaccgt tcattgaa actgtgt 1440 acaaggtgg acctatcag ccatttg cgaatatag gccgaaact 1300 cggatgaga ctaccaga gcgatgaa actatcag 1220 caggttga acctatcc atacacag cgtatgaa a</pre>						
<pre>tgacagcat cacgcatct gacgctaaa trad; ggtg ggaaaccga caggactaa 360 agagtaccag gogttacce ctggogget ctcdgtgeg tactcdgtt ctcdgtte gedaactaa 480 gttcogggt ggaagtege tccaagcig actgatage cataccace gttaagteg 540 accgotgoge cttatcoggt aactacget tgagtacca cocggaaaga catgcaaata 480 gttcogggta agcagcact ggtaattgat taggggagt tagtettgaa gtcatgogee 660 ggttaagget aaactgaag gacaggttt ggtgacge gedttgte ctcaagaaga catgcaaata 720 cggttaaag agttggtage tcagagaace ttogaaaace gecogtgaag ccaaaacege 720 cggttaaag agttggtage tcagagaace ttogaaaace gecogtgaag ccaaaacege 720 cggttaagget aaactgaag gtcaggaace ttogaaaace gecogtgaag ccaaaacege 720 cggttaagg ag aggacgat taggegeag ccaaaacga ccaaaaga gecogggetttt 780 tcgtttCag agcaagag ttaggegeag ccaaaacga ccaaaaga gecogtgaa 700 gtcagccoca tacgaataa gttgttact gtgttgggt tctacacaa aaaaacgee 960 cggoggcaac cgacgetet gaacaaate agtggtggt ctgaggat tagcactgaa 1000 gtcagccoca tacgaataa gttgttact gtgttgggt tctacacaa aaaaacgee 960 cggoggcaac cgacgetet gaacaaate agtggtagt ctaggatat tactggate 1020 atcaacagg gtccaagag gctcgatat aattacgee cogccetge atcactacega 1080 gtactgttgt aattaata gcattete gacacaate agtaggagt ctggatat tactggate 1200 gaaaacgggg gegaagaag ttgecaatt gegcacgt gaaaacat ggegaaac 1260 caccaggg ttggetgag cgaaaacat attccaat aaccatae tggtgaaat 1260 caccaggg ttggetgag cgaaagaat tgecaactt gegaatat tgecaggaa 1320 caaggttgta tcaccacag ccaactet gegaatatg tgaaaact ggeggaaat 1380 gtegtgat tcaccacag cggegg aaccag tetacaccag tacaccatt tgegaatat 1600 accatgaga atcactacca attacacag ctaccagt taggget ggaaact 1740 cgataacta aaaatacge cogtagg tatacagag cuttagget caagaacat 1800 attattett aaaagaeget tetataa agtegt tacaccag taggataa agttggaaae 1800 tcttacgg cgataaaat aggegt atacacage cgaagget gaaact 1740 cgataacta aaaataege cogtagga tgtaataa ggedgata actggeget 1800 accatgagaa ttacaccag tacaccag taggatgaa agttggaaa 1800 cacacaggege atcacacat tacaccag tacaccatt tatggatgaa agttggaaa 1800 cacacatgac actatacca attacacag cacacttet catagaaga acttgtet 1800 accatgagaa tacacatac attacacag cacactate agaagget 1800 cacacatgac</pre>					240	
aagataccag gegttteee etgegegete etcetgtege teteetget etgeatete etgeene guttaceggt gedatteege tgraatgge gegttgtet eatteraege etgeaaeag guttaceggt gedatteege teraagetgg actgtatge eggaaaga eatgeaaag foo caccactgge ageageaeet ggtaattgat tagaggagt tagtettga gteatgeege foo ggttaaag agttggtage teagagaae ttegaaaaa eggeeggaag eatgeaaag foo eggeteaaga agttggtage teagagaae ttegaaaaa eggeegttett togtttteag ageaagagt tageegaa ecataaeae egeeetgaa ggeggtttt foo ggteageeeta taagataa gtegteag eagataete tegaaaaa eggeegtett ggeggeaae egaegtet gaacaatee agatggagt etgaggaet aaeaaeae ggeggeaae egaegtet gaacaatee agatggagt etgaggeat taetgegee ggeggeaae egaegtet gaacaatee agatggagt etgaggeat taetgeget ggeggeaae egaegtet gaacaatee agatggagt etgaggeat taetgeget gaaaeaggg geeaagag tegeeet geeetge gaaagaag eacaaaag gteaggeggaa egaegaag tageeett gegeetge gaaaaae eggeagga eacaaag gteaggegga tegeageg etegeatet aaattaege eegeetgaa geeaaga gteaggeggaa tageetg geeagaag etgeett gaeeett geeetge gaaaaae tggeagaat 1200 gaaaaegggg gegaagaag tgteeatet geeaattat geeagaaae eggeagaa 1200 caccaeggg attgeetgag egaaaaae atteeaaa aaceettag ggaaatagg 1200 idaaaegggg gegaagaag tgteeattg egaatatag tgtagaaat geeggaaaa 1200 idaaggtgga accaetee ataeeaa egtteeagt tgeeataga aaeggtga 1400 acaaggggg accaetee ataeeaaa egtteeagt tgeeatgga aaeggtga 1400 idattteet aaaaaaegg eggeagaaa ggtaataag geeggaaaa aitteeaga aaeggtga 1400 idattteett aeggeetta aaaggeegt atateeag teagegeet gaaeggeet ggaaaae 1800 ietaaegee aetgaetga atgeeetga ietaetgat teettagg aaaeggte 1800 ietaaegee degaetgaa teettaaa aatgeeget ataegagee etteget tegeaaatt 1800 ietaaegee degaetgaa tettaaaaa agegetaae egageett tegeaaate 1900 ietaaegee degaetgaa tettaaaaa agegetaae egageett tegeaaaa 1920 ietaaetgee taaeetaaa aaataggeg ataegaeee ietaaetgee terseme :221> SEO ID NO 105 :221> TPFE DNA :223> OTHER INFORMATION: Plasmid pOV1572 :223> OTHER INFORMATION: Plasmid pOV1572 :223> OTHER INFORMATION: Plasmid pOV1572 :223> OTHER INFORMATION: Plasmid pOV1572 :223> OTHER INF	tacttaacag ggaagtgaga gggccgcggc	aaagccgttt	ttccataggc	teegeeeee	300	
<pre>gtttaccggt gtcattcogc tgttatggcc gogtttgtt cattcocacgc ctgaacta 480 gttcogggta ggcagtcg tocaagctg actgtatgca cgaacacccc gttcagtcog 540 accgctggc dtatcoggt aactatogt ttgagtcoa cccggaaaga catgcaaaag 600 caccactggc agcagcact ggtaattgat taggagatg tagtctgag catgcaagc 660 ggttaaggct aaactgaag gacagttt ggtgactgg ctcaccaca goggtttt 780 togtttcag agcaagaag ttaggegaac ttggaaaaa cgccctagaa ggoggtttt 780 togtttcag agcaagag tagtgag caaaacg ccaaaacgg ctcaaaagg tagtcattat 840 aatcagata aatattcta gattcag g caattat ctcacaatg agcagtaga 900 gtcagccca tacgatata gttgttat gtgettgg tactaaaa cgccctgac agcggtttt 780 togtttcag agcaagag ttagge cagaaac tggaagag tcacaaagg tagtcattat 840 aatcagata aatattcta gattcag g caattat ctcacaatg agcagtat 1000 gtcagccca tacgatata gttgttat gtgettgg tatcacaaga ggogtttt 1000 gtacagtgg gtcaaggg gtcgaata aattacgc cagccctg a ctatogaa 1000 gtactgtgt aatcata goattcgc gaaaggag ccacaacag cggogtag 1140 aacctgaat gccaaggg gtcgaata agttcgg gaaaaact attccaata aaccttag ggaaatag 1200 gaaaacgggg ggaagaag tgtcccatg gcacagtt tgtcacaaa tggtgaaat 1200 caacaaggg attggetgag cgaaaaact attccaata aaccttag ggaaatag 1320 caggttttc ccgtaacag cgatgaaa cgttcagt tgtcataga aacggtga 1320 caggttgga accataccc ataccacg ctcacgt ttgtcataga aacggtga 1320 caggtgga accataccc ataccacg ctcaccgt tgaaaat 1500 cggatgaag attgcagg gggaagaa ggaaaaa ggttcag ggaagaa 1440 accagggtgg accataccc ataccacg ctcacgt tgaacggt ggaaaaact 1500 cggatagac ttacacgg ggcaagaa tgtgataaa ggtcgaaaa actggct 1740 cgatacta aaaatacg ccggtags tactacga tgaacgt tgaaggt 1740 cgatacta aaaatacg ccgatgg tacaagge ctctaggt agaact 1740 cgatacta aaaatagg ccgaagge tacagagge ctttggt tacaagaac 1800 tottacgg cg to 100 cttacgtg cgataaac ctataaaaaa agcgtac cgagcctt tgttcacaaact 1800 acctgsgc cgataaact tacccaaa aggtgag ctctagga accatatta 1860 atcatgaca taaccaag ctaaaaaaa aggcgtac cgagcact toggaaact 1800 tottacgtg cgataaacg ctcaaggg ctctgaga ccaagagg ctcaagge cttag caagaacc 1920 c210 SEQ ID N 015 c211 SENOTH 207 c223 OTHER INFORMATION Flamid pGV1572 c400 SEQUENCE: 105 tagtgcttg gatttcac ata</pre>	tgacaagcat cacgaaatct gacgctcaaa	tcagtggtgg	cgaaacccga	caggactata	360	
gttcogggta ggragttege toraagetgg actgtatge cgaacecce gttcagteeg 540 acceptgoe ettateeggt aactategt ttgagteea ceeggaaaga catgeaaag 600 caecaetgge ageageeat ggtaattgat ttagaggat tagtettgag etageaaag 600 ggttaagget aactgaaag gacaagttt ggtgaetgeg eteetea geoggtataeet 720 eggtteaag agtbggtge teagagaace ttgaaaaae egeeetgea geoggttut 780 tegttteag ageaagagt tegeegaag eeaaaeggt eteaagaag teatettat 840 aateagataa aatattete gatteagt caattgat eteaaaagt gacaetgaa goog gteageeeta aagatagat tegeegaag eeaaaeggt eteaagaag taetettat aateagataa aatatteta gatteagt geattgat teteacaat aaaaaaegee 960 eggeegaeae eggegttet gaacaaatee agatggagt etegagteat taetggate 1020 ateaacagga gteeaageg getegatate aaataegee eggeegae ateategga 1140 aacetgaate geeagegge tegaeate agatggagt etgaggteat taetggate 1020 gaaaaegggg gegaagaag tgteeatat ggeeetge gaataat tgeeetge 1200 gaaaaegggg gegaagaag tgteeatat ggeeetge gataatat tgeeetgg 1200 gaaaaegggg gegaagaag tgteeatat ggeeetge gataatat tgeeetgg 1200 eaggtttte eegtaaeg eeaaeet gegeetge gataatat tgeeetgg 1200 eaggttttee eegtaaeg eeaaeet gegeetge gataatat tgeeetgg 1200 eaggttttee eegtaaeg eeaaeet gegeetge gataatat tgeeetgg 1200 eaggatagaet geeagege tegeeetg egaatgaag 1320 eaggttgag aceateee geeage eeaettg eegaaat gegeagaae 1380 gtegtggta teeetga geegaaga egataaae egtteagt tgeteaga aaeeggga 1320 eaggttgag aceataeee ateaeeag eegaaaa egtteagt tgeteatga aaeeggtga 1440 acaagggtga aceataeee ateaeeag eegaaaa egtteagt tgeteagaaa etgetget 1500 eegaatagae ategeetga atgeeeaa atgeegaaa geegaaaa effeteage taeagaaaee 1500 eegaaaeeggeg eegaeaaa tgeeeaaa agteetta egaegeet eegaaaeee 1920 attetteet aggeetta aaaataeee eegaagee eettegee eegaaaeee 1920 attetteet aaaaataeee eegaagee teetageet eegaeeee 1920 attetteet aeeetaaa aaatagee taeeegaeee eettegeet teetaeaeee 1920 attetteet aeeetaaa aaatagee taeeegaeeeeeeeeee	aagataccag gcgtttcccc ctggcggctc	cctcgtgcgc	tctcctgttc	ctgcctttcg	420	
accggcgg cttaccggt actacgc ttgagtccaa ccggaagg catgaagg catgaagg 600 caccactgg agcagcact ggtaatgat ttggggactgc accgggaagg catgaagg catgaagg cggttcaagg agtggtag tcagaggac ttcgaaaac cgccctgaa ggcggtttt 780 tcgtttcag agcaaggat tacgcgcga ccaaaacgat ctcaagaag tcatctt 840 aatcagataa aatattcta gattcagtg caattatt cttcaaatg agcacgtag 900 gtcagccca tacgataa gttgtgtac agtggtag cattattat cttcaaatg agcacctgaa 900 gtcagccca tacgataa gttgtgtact ggcgtggat tctcaccaat aaaaaacgc 960 cggcggcaac cgagcgttc gaacaatca gtgggttggat tctcaccaat aaaaaacgc 960 gtactggtgt attcata gattcagg gccagtata aattacgc ccgcctgca actatggat 1020 atcaacagga gtccaagga gccgatata agtaggagt cgagagg catcacga 1080 gtactgttgt attcatta gcattcgc gacaggag ccaccaga cggcagagg 1140 aacctggat gccaagga ttgccaatg ggccagtag accatacga cggcatggt 1140 aacctggat gccaagga tggcagaat tagccctg ggccatga cagcacgg 1200 gaaacagggg gcgaagag tgtccatat ggccagtt aaatcaaaa tgggaatag 1320 cagcaggga ttggctgga cgaaaaaca attccaata aaccttag ggaaatagc 1320 cagcaggga ttggctgga cgaaaaaca gttcagt tgccattg ggaatagg 1320 cagggtgaa cactatcc attacccag tcaccgt ttatgccat tgggaatat 1600 actagggtg acctatcc attacccag tcaccgt ttatgcat aagaaacgtgt 1440 acaagggtga acctatcc attacccag tcaccgt ttatgcat aggaatat 1560 attttcttt acggtctt aaaaggcgt aattccag tgcaggtcag aggagaat 1620 acatgaga actgactga atgcctaaa agttctta cgatgcatt gggaataag 1620 acatgaga actgactga atgcctaaa agttctta cgatgcatt gggatatat 1680 aacggtggt tatccagg ggcagga at gtgaataag gccggataa acttgtgct 1740 cgaaactac aaaaatacg ccggtagt attatcag cgagg ccttaga aactatat 1860 atcatgacat taaccagt ctattatg cagatag ccttaga agttggaac 1920 attatata tacagata ctatacaa tagcgta cgagg ccttaga agttggaac 1920 attatata tgacattaa ctataaaat aggcgtata cgaggcct tcgcaga agttggaac 1920 attatata taccataa aaatagg ttacagagg ccttaggag ccttagaa accattat 1860 accagacgtg cgataaa tgcctcaaa aggcgtaca cgaggcct tcgcagaac 1920 attatata tagcattaa ctataaaat aggcgtata cgaggccat tgctagaaac 1920 attatata ta gcattaa ctataaaat aggcgtaca cgaggccta cgaggctcaa cgagcgcgt	gtttaccggt gtcattccgc tgttatggcc	gcgtttgtct	cattccacgc	ctgacactca	480	
caccactgge ageagecact ggtaattgat ttagaggagt tagtettgaa gteatggee 660 ggttaagget aaactgaaag gacaagttt ggtgactgeg eteeteaag eegegettt 780 tegttteag ageaagagt taegegeag etagaaac egeecegea ggeggtttt 780 tegttteag ageaagagat taegegeag ecaaaaegat etacaagaag teatettatt 840 aateagataa aatatteta gatteagtg eaattatet etteaaagt ageacetgaa 900 gteageecea taegataaa gttgtaeta gtgettggat teetaeaagag teatettatt 840 aateagataa aatatteta gatteagtg eaattatet etteaaagt ageacetgaa 900 gteageecea taegatataa gttgtaeta gtgettggat teetaeaagt ageacetgga 1020 ateaacagga gteeaageg geegatate aaattaegee eegeetge acteatgea 1080 gtaetgttgt aatteatta geatetgee gacagagg eaagag eaategga geeaagag egaagag 1140 aacetggat geeagegge tegatate ggeeetge gtataatat tgeeetgg 1200 gaaaaegggg gegaagagt tgeeatt ggeeetge gtataatat tgeeetgg 1200 gaaaaegggg gegaagagt tgeeatt ggeeetge gtataatat tgeeetgg 1200 gaaaaegggg gegaagag tgeeatt ggeeagtt gataatat ggeagatage 1320 eaggtttea eegaaeag eegaaaaa atteeaaa aceettag ggaaatage 1320 eaggtttea eegaaeag eegaaaaa gtteagt tgeeatata aaceettag gegaaaae geegggaa tegeegg gegaagaa gtgeaaaa egtteagt tgeeataga aaeeggtga 1440 acaagggtga acetatee atteeega eegea atateege tgaaeaaet geeggaaat 1560 eegaaggaa teateegg ggeaagaa gtgeaaaa gteeaaaa geeggataa actgtgett 1560 attettett aeggeetta aaaageegt aatateege tgaaeaggte ggtataagg 1620 acattgagea aeegaeega atgeeteaa atgteetta egaaeggte ggtataagg 1620 acattgagea aeegaeega atgeeteaa atgteetta egaaeggte ggtataagg 1620 acattgagea aeegaeega atgeeteaa atgteetta egaaeggtee ggtatagg 1620 acattgagea aeegaeega atgeeteaa atgeeega eegaaegaeet 1740 egataaeeta aaaaaaeeg eeggaega eettaeegaeet teetaeegaeet 1740 egataaeet aaeetaae etataaaat ageegtaae eettaeega ageetta 1860 ateatgaeet taaeetaae etataaaat ageegtate eegaegeet teegaaeet 1920 ateataeet taaeetaae etataaaat ageegtaee eegaegeet teegaaeet 1920 ateataeet taaeetaae etataaaat ageegtaee eegaeeet teegaaeeet 1920 ateataeet taaeetaae etataaaat ageegtaee eegaeeeet teegaaeeet teegaaeeet 1920 eegaeetteegaeetteegeeeeeeeeeeeeeee	gtteegggta ggeagttege teeaagetgg	actgtatgca	cgaacccccc	gttcagtccg	540	
ggttaagget aaactgaaag gacaagttt ggtgactgeg eteeteaag egeggtttt 720 eggtteaaag agtggtge teagegeag eteegaaaa egeeetgea geeggtttt 780 tegttteag ageaagagat taegegeag eeaaaaegat eteaagag teatettatt 840 aateagataa aatatteta gatteagtg eaattatet etteaaagt ageaectgaa 900 gteageecea taegataaa gtgttaeta gtgettggat teteaceaat aaaaaaegee 960 eggeggeaae egaeggtet gaacaaatee agatggagtt etgaggteat taetggatt 1020 ateaacagga gteeagegg geegatate aattaegee egeeetgee acteategea 1080 gtaetgttg aatteata geatetgee gaeatggaag eeateaaga eggeatgatg 1140 aaceegaae geeageggea teageacett gtegeettge gtataatat tgeeeagt 1200 gaaaaegggg gegaagaagt tgeeatatt ggeeeagt aatteeaea etggtgaaaet 1260 eaceeaggg ttggetgag egaaaaaeat atteeaata aaceettag ggaaatage 1320 eaggtttee egtaaege eeaaaeae etgeeageage 1320 eaggtttee egaaaaae geeeageett teategea aaeggtga 1440 acaagggtga acaetatee atteeeag eteaegeet teatetgee 1500 eeggatggaa teaetee atteeeag eteaeget teatetgee taegaaate 1500 eeggatgage teaeege ggeeagaag at gtgaataag geeggataaa aettgeet 1560 atteette eggatetga ageeeagaageet aatteeege tgaaeggte ggttataget 1620 acaetgagea aetgaetga atgeeteaa atgttetta egageeet ggaaataet 1660 aaeggtggta taeeagtga ttetttee eatttaget teetageee etgaaagee 1300 eegaaaetg eegaaaaat geeeteaa atgteetta egaageet ggataaate 1660 aaeggtggta taeeagtg eteattee eatttage teetagee etgaaegdee 1300 eettaegge egaaaaatege eeggtatga tettatte tatageea atgtegatae 1660 ateatgaea etgaettaa aaaageegt ateaegage eetteegte teaegaaeet 1920 attatatea tgaeataaa tageettaa aatgeegt aceegage eetteegte teaegaaaee 1920 attatatea tgaeataa ataegeeg ateaegage eetteegtee egaaaeet 1920 attatatea tgaeataa taaaaaa ageegtae eeggeeettee 1920 attatatee tgaeataa etatae etataaaaa ageegtae eeggeeettee 1920 attatatea tgaeataa etaaaaaaaageeg taeegagee eetteegaaeett 1920 attatatea tgaeataa etaae etaaaaaa ageegtae eeggeeettee eegaaeeet 1920 attatatee tgaeataae etaaaaaaa ggeegaaee	accgctgcgc cttatccggt aactatcgtc	ttgagtccaa	cccggaaaga	catgcaaaag	600	
cggttcaaag agttggtagt tcagagaace ttogaaaaac cgcctgcaa ggcggtttt 780 tegttteag agcaagagat taegegeaga cdaaacgat etcaagaaga teatettat 840 aatcagataa aatatteta gatteagtg caattatet etteaaatgt agcacetgaa 900 gteageecea taegatataa gtgttaeta gtgettggat teteaceaat aaaaaaegee 960 eggeggeaae egaegettet gaacaaatee agatggagt etgaggteat taetggatet 1020 atcaacagga gtecaageg getegatate aattaegee eegeetgee ateateggat 1140 aacetgaate geeagegget egaecaatee ggegetgee gaeatggaag ecateacaga eggeatgatg 1140 aacetgaate geeagegge teageaett gtegeette gataatatt tgeeeatgt 1200 gaaaaegggg gegaagaagt tgteeatat ggeeatgt aaateagee eggeatgatg 120 eaceeagga ttggetgaga egaaaaeat atteeaaa aecettag ggaaatagge 1320 eaggtttee eegaeaege geegaegaaa egtteegt tgeaaaat geeggaaate 1260 eaceeagga ttggetgaga egaaaaaeat atteeaaa aecettag ggaaatagge 1320 eaggtttee eegaeaege gegatgaaaa egtteegt tgeteagaaet 1260 eaceeagga ttggetgaga egaaaaaeat atteeeaa aecettag ggaaatagge 1320 eaggtgtga acaetaeee atteeeag etteegt tgeteatga aaaeggtgta 1440 aeeaagggtga acaetaeee atteeeag etteegt tgeteatgga aaaeggtgta 1440 aeeaagggtga acaetaeee atteeeag etteegt tgeteatgga aaaeggtgta 1440 aeeaagggtga acaetaeee atteeeag etteegt tgeteatgga aaaeggtgta 1440 aeeaagggtga acaetaeee atteeeag etteegte teetatgee aeegaeaeee 1500 eeggatgaea etteateegg ggeeagaaa gtgaataag geeggataaa aeetgtgett 1560 attetteett aeegtetta aaaggeegt aatateeage tgaaeggte ggatataet 1680 aaeeggtggta taeeeage eegtagtga tettatte teetaget eegaaaeee 1920 attettaee tgaeataa atgeegt ateaegage eettegteet teetetee 1980 eelloo SEQ ID NO 105 eelloo SEQUENCE: 105 ctagtgeetg gateteae aaaaaag geeggeega aaeeggeegt tetgaeaea 60 teeagatgga gtetgage eatteegga tettaeea ggageeegg tetgaeaaa 60 teeagatgga gtetgagge eatteegga tettaeeae ggageeegg tetgaeaea 60 teeagatgga gtetgaget eatteetga tettaeeae ggageeegg egaecegg egaeceg	caccactggc agcagccact ggtaattgat	ttagaggagt	tagtcttgaa	gtcatgcgcc	660	
togtttcag agcaagagat tacgocaga ccaaacgat ctcaagaaga tcatcttat 840 aatcagataa aatattcta gattcagtg caatttatc ctcaaagaga tcatcttatt 840 gtcagcocca tacgatataa gtgttacta gtgcttggat tctcacaat aaaaaacgoc 960 cggcggcaac cgagcgttct gaacaaatcc agatggagt ctgagtcat tactggatct 1020 atcaacagga gtccaagoga gctcgatatc aaattacgoc ccgocctgoc actcatcgca 1080 gtactgttgt aattcattaa gcattctgoc gacatggaag ccatcacaga cggcatgatg 1140 aacctggaat gocagogga tcagcacctt gtogccttgo gtataatatt tgoccatggt 1200 gaaaacgggg gcgaagaagt tgtocatat ggccacgtt aaatcaaaac tggtgaaact 1260 cacccaggga ttggctgaga cgaaaacat attctcaata aaccttag ggaaataggc 1320 caggttttca cogtaacaog ccaatcttg cgaatatat tgtocagga aaacggtga 1440 accagggtga acactatcce atatcaccag ctcacgtct ttcattgoca tacgaaact 1500 cggaggaga ttgactcagg gggaagaag tggaaaa ggttcaggtt tgotcatgga aaacggtgt 1440 accagggtga acactatcce atatcaccag ctcaccgtct ttcattgoca tacgaaact 1500 cggaggaga ttcactcagg gggcaagaat gtgaataag gccggataaa acttgtgctt 1560 attttcttt acggtcttta aaaggccg aaataccag tgaacggtt ggttataggt 1620 acattgagca actgactga atgcctaaa atgttctta cgatgcaat gggatatat 1680 aacggtggt taccagtcg tcattttoc catttagt tccttagct ctgaaaact 1740 cgataactca aaaatacgc ccggtagga tcttattta tatggtgaa agctggaac 1800 tcttacgtgc cgatcaacgt ctcattttog ccagatatcg acgtctaaga accattatt 1860 atcatgagca ttaacctata aaataggcg tacacgagg cctttcgtt tcatggaacc 1920 attattatca tgacattaac ctataaaaat aggcgtata cgaggcctt tcgtctcac 1980 c210> SEQ TD NO 105 <2210> SEQ TD NO 105 <2210> FEATURE: 2230> FEATURE: 2230> FEATURE: 2230> FEATURE: 2230> FEATURE: 2230> THER INFORMATION: Plasmid pGV1572 <400> SEQUENCE: 105 ctagtgcttg gattctcacc aataaaaa gccggcgg aaccgagcgt tctgaacaa 60 tccagatgga gttctgaggt cattactgga tctatcaca ggagcccag cgacctgg 120	ggttaaggct aaactgaaag gacaagtttt	ggtgactgcg	ctcctccaag	ccagttacct	720	
aatcagataa aatattteta gattteagtg caatttatet etteen	cggttcaaag agttggtagc tcagagaacc	ttcgaaaaac	cgccctgcaa	ggcggttttt	780	
gtcagcccca tacgatataa gttgttacta gtgcttggat tctcaccaat aaaaaacgcc 960 cggcggcaac cgagcgttt gaacaaatce agatggagt ctgaggtcat tactggatct 1020 atcaacagga gtccaagcg gctcgatate aaattacgce ccgccctge acteategea 1080 gtactgttgt aatteattaa geattetgee gacatggaag ceateacaga eggeatgat 1140 aaectgaate gecageggea teageacett gtegeettge gtataatatt tgeeeatgg 1200 gaaaacgggg gcgaagaagt tgtecaatt ggeeacgtt aaateaaae tggtgaaet 1260 cacceaggga ttggetgaga egaaaaacat attetcaata aaecetttag ggaaatagge 1320 caggttttea eegtaacaeg ecacatettg egaatatat ggtagaaaet geeggaaate 1380 gtegtggtat teaeteeag egaaaaae atteteeagt tgeteatga aaeeggtga 1440 acaagggtga acaetatee atateaceag eteaegtt tgeteatgga aaaeggtga 1440 acaagggtga acaetatee atateaceag eteaegtt tgeteatgga aaaeggtga 1440 acaagggtga acaetatee atateaceag eteaegtt tgeteatgga aaaeggtgt 1560 atttteett aeggtetta aaaaggeegt aaateege tgaaeggte ggtataagt 1560 atttteett aeggtetta aaaaggeegt aatateeage tgaaeggte ggtataggt 1620 acaetgagea actgaetgaa atgeeteaaa atgttetta egatgeeat gggaatate 1680 aaeggtggta tateeagtga tttttee eatttaget teettaget etgaaaate 1740 cgataaetea aaaaataege eeggtagtga tettattea ttatggtgaa agttggaaee 1800 tettaegtge egateaaegt ecegtagtga tettattea ttatggtgaa aaceattat 1860 ateatgaeat taaeetaaa aaataggegt ateaegage eetttegtet teaegaaaete 1920 attatatea tgaeattaae etataaaaat aggegtatea egaggeeett tegtettee 1920 attattatea tgaeattaae etataaaaat aggegtatea egaggeett tegtettee 1920 attattatea tgaeattaae tataaaaaa aggegtatea egaggeett tegtettee 1210 > SEQ ID NO 105 <2112 LENGTH: 2077 2212 > TYPE: DIN 2213 > OKANISM: Artificial Sequence 2200 > EEQUENCE: 105 ctagtgettg gatteteace aataaaaaa geecggegga aacegagegt tegaacaaa 60 teeaaatgga gtetgaggt eataetgga tetateeaea ggagteeaa egageteeag egacteaga 120	tcgttttcag agcaagagat tacgcgcaga	ccaaaacgat	ctcaagaaga	tcatcttatt	840	
cggcggcaac cgagcgttt gaacaaatc agatggagtt ctgaggtcat tactggatt 1020 atcaacagga gtccaagcga gctcgatat aaattacgcc ccgcctgcc actcatcgca 1080 gtactgttgt aattcatta gcattctgcc gacatggaag ccatcacaga cggcatgatg 1140 aacctgaatc gccagcggca tcagcacctt gtcgccttg gtataatatt tgcccatggt 1200 gaaaacgggg gcgaagaagt tgtccatat ggccacgtt aaatcaaaac tggtgaact 1260 cacccaggga ttggctgaga cgaaaaacat attctcaata aacccttag ggaaataggc 1320 caggttttca ccgtaacacg ccacatctg cgaatatag tgtagaaat gcoggaaatc 1380 gtcgtggtat tcactccaga gcgatgaaa cgttcagtt tgctcatgga aaacggtgta 1440 acaagggtga acactatccc atacaccag ctcaccgtct ttcattgcca tacgaaact 1500 cggatgagca ttcatcagg gggcaagaat gtgaataag gcoggataaa acttgtgtt 1560 atttttctt acggtctta aaaaggccgt aataccag tgaacggtt ggttataggt 1620 acactgggt atccatacgc ccggtagtga tctattacgc tgaacggtt ggttataggt 1620 acattgagca actgactgaa atgcccaaa atgttctta cgatgccatt gggatatac 1680 acaggtggt ataccagtga tggttttt cattggt tctattgc tgaacggtt ggttataggt 1620 acattgagca actgactgaa atgcccaaa atgttctta cgatgccatt gggatatac 1880 tcttacgtgc cgatcaacgt ctcatttcg ccagatatcg acgtctaaga accttatt 1860 atcatgagca taccacgt ataccagg ccggtagtg tcttattca ttatggtgaa agttggaacc 1920 attattatca taacctataa aaataggcgt atcacgagg cctttcgtct tcacgaaacc 1920 attattatca tgacattaac ctataaaaat aggcgtaac cgaggccct tcgtctcaca 1920 attattatca tgacattaac ctataaaaat aggcgtaac cgaggccct tcgtctcaca 1920 attattatca tgacattaac ctataaaaat aggcgtaac cgaggccct tcgtctcaca 1920 attattatca tgacattaac ctataaaaat aggcgtaac cgaggccct tcgtctcaca 2220 > SEQ ID N 0 105 <2211 > LENGTH: 2077 <2212 TYPE: DNA 2213 > ORCANISM: Artificial Sequence <2204 > FEATURE: 2223 > OTHER INFORMATION: Plasmid pGV1572 <400 > SEQUENCE: 105 ctagtgcttg gattctcacc aataaaaac gccgggcgg aaccgagcggt tctgaacaaa 60 tccagatgga gttctgaggt cattactgga tctatcacaa gaggtccaag cgagctcga 120	aatcagataa aatatttcta gatttcagtg	caatttatct	cttcaaatgt	agcacctgaa	900	
atcaacagga gtccaagcga gctcgatate aaattacgee eegeetgee acteategea 1080 gtactgttgt aatteatta geattetgee gacatggaag eeateatatt tgeeeatgga 1140 aacetgaate geeageggea teageacett gtegeettge gtataatatt tgeeeatgg 1200 gaaaacgggg gegaagaagt tgteeatatt ggeeaegttt aaateaaaae tggtgaaate 1260 caeceaggga ttggetgaga egaaaaacat atteeaata aaceettag ggaaatagge 1320 caggttttea eegtaacaeg eeacatetg egaatatag tgtagaaaet geeggaaate 1380 gtegtggtat teaeteeag egaagaaa egtteagtt tgeteatgga aaaeggtgta 1440 aceaggggga acaetateee atteaceag etteagtt tgeteatgga aaaeggtgta 1440 aceagggtga acaetateee atteaceag etteagtt tgeteatgga aaaeggtgta 1560 eggatgagea tteateagge gggeaagaat gtgaataaag geeggataaa aettgtgett 1560 attettett aeggtetta aaaaggeegt aatateeage tgaaeggte ggttataggt 1620 aceatgagea aetgaetgaa atgeeteaa atgttetta egatgeeat gggatatate 1680 aaeggtggta tateeagte ggteagaa atgteetta egatgeeat gggatatate 1680 aaeggtggta tateeagte gtettuttete eatttaget teettaget etgaaagte 1740 egataaetea aaaataege eeggatga tettattea ttatggtgaa agteggaace 1800 tettaegtge egateaaegt eteattteg eeagateg eegtetaaga aaceattatt 1860 ateatgaeat taaeetataa aaataggeegt ateaegagge eettegtet teaegaaece 1920 attattatea tgaeattaae etataaaaat aggegtatea egaggeeett tegtetteae 1920 ettatagta tateeetataa eaataggeegt ateaegagge eettegtet teaegaaaece 1920 attattatea tgaeattaae etataaaaat aggegtatea egaggeeett tegtetteae 1920 et210 > SEQ ID NO 105 <2211 > LENGTH: 2077 <2220 > TPE = DNA <2213 > ORGANISH: Artificial Sequence <220 > FEATWRE: <223 > OTHER INFORMATION: Plasmid pGV1572 <<400 > SEQUENCE: 105 ctagtgettg gatteteace aataaaaaa geeeggege aacegagegt tetgaacaaa 60 teeegatgga gttetgaggt eattategga tetateaea ggagteeaag egageteeaa 120	gtcagcccca tacgatataa gttgttacta	gtgcttggat	tctcaccaat	aaaaacgcc	960	
gtactgttgt aattcattaa gcattctgoc gacatggaag ccatcacaga cggcatgatg 1140 aacotgaat gccagoggea tcagcacott gtcgcottg gtataatatt tgcccatggt 1200 gaaaacgggg gcgaagaagt tgtccatatt ggccacgtt aaatcaaaac tggtgaaact 1260 cacccaggga ttggotgaag cgaaaaacat attctcaata aacotttag ggaaatagge 1320 caggttttea cogtaacacg ccacatottg cgaatatatg tgtagaaact gccggaaate 1380 gtcgtggtat tcactccaga gcgatgaaaa cgttcagtt tgctcatgga aaacggtgta 1440 acaagggtga acactatee atatcaccag etcacegtet tteattgeea taegaaact 1500 cggatgagea tteateagge gggeaagaat gtgaataag gccggataaa acttgtgett 1560 attttett acggtettta aaaaggeegt aatateeage tgaacggtet ggttataggt 1620 acattgagea actgaetgaa atgeeteaa atgttetta cgatgeeat gggatatate 1680 aacggtggta taeccagga gtgatga tettattee tatggtgaa agttggaaee 1800 tettaegtge cgateaaegt etcattteg ccagatateg acggtetaagat 1860 atcatgagee cgateaaegt etcattteg ccagatateg acggtetaaga atg1800 tettaegtge cgateaaegt etcattteg ccagatateg acggeetagaa agttggaaee 1920 attattatea tgacattaae etataaaaat aggegtatea egaggeet tegtetteae 1920 attattatea tgacattaae etataaaaat aggegtatea egaggeet tegtetteae 1920 attattatea tgacattaae etataaaat aggegtatea egaggeet tegtetteae 1920 attattatea tgacattaae etataaaaat aggegtatea egaggeett tegtetteae 1920 c220> FPETURE: c220> FPETURE: c220> FPETURE: c220> FPETURE: c220> FPETURE: c220> FPETURE:	cggcggcaac cgagcgttct gaacaaatcc	agatggagtt	ctgaggtcat	tactggatct	1020	
aacctgaatc gecageggca teageaeett gtegeettge gtataatatt tgeeeatggt 1200 gaaaaegggg gegaagaagt tgteeatatt ggeeaegtt aaateaaaae tggtgaaaet 1260 caeeeaggga ttggetgaga egaaaaaeat atteeaaa aaeeetttag ggaaatagge 1320 caggtttea eegtaaeaeg eeaeatettg egaatatatg tgtagaaaet geeggaaate 1380 gtegtggtat teaeteeag gegatgaaaa egtteagtt tgeteatgga aaaeggtgta 1440 aeeaagggtga aeaetateee atteeaeag eteaeegtet teattgeea taegaaaete 1500 eggatgagea tteateagge gggeaagaat gtgaataag geeggataaa aettgtgett 1560 attetett aeggtetta aaaaggeegt aatateeage tgaaeggtet ggttataggt 1620 aeattgagea aetgaetgaa atgeeteaaa atgetetta egatgeeat gggatatate 1680 aaeggtggta tateeagtga ttetttee eatttaget teettagete etgaaaatet 1740 eggataaetea aaaataege eeggtagga teettattee tatggegaa agtggaaee 1800 teettaegtge egateaaegt eteattteeg eagagee etteggaaaee 1920 attattatea tgaeattaae etataaaaat aggegtatea egageeett teegtettee 1920 attattatea tgaeattaae etataaaaat aggegtatea egaggeeett teegtettee 1920 attattatea tgaeattaae etataaaaat aggegtatea egaggeeett teegtettee 1920 attattatea tgaeattaae etataaaaat aggegtatea egaggeeett teegtettee 1920 attattatea tgaeattaae etataaaaat aggegtatea egaggeeett teegtettee 1920 2210> SEQ ID No 105 2211> LENGTH: 2077 2223 TYPE: DNA 2213> ORGANISM: Artificial Sequence 2200> FEAUREE: 2223 OTHER INFORMATION: Plasmid pGV1572 <400> SEQUENCE: 105 etagtgettg gatteteace aataaaaac geeeggeegg aacegagegt tetgaacaaa 60 teeagatgga gttetgaggt eataetgga tetateaeaa ggagteeag egagetegat 120	atcaacagga gtccaagcga gctcgatatc	aaattacgcc	ccgccctgcc	actcatcgca	1080	
<pre>gaaaacgggg gcgaagaagt tgtccatatt ggccacgttt aaatcaaaac tggtgaaact 1260 cacccaggga ttggctgaga cgaaaaacat attotcaata aaccotttag ggaaatagge 1320 caggttttca ccgtaacacg ccacatottg cgaatatatg tgtagaaact gocggaaate 1380 gtcgtggtat tcactocaga gcgatgaaaa cgtttcagtt tgotcatgga aaacggtgta 1440 acaagggtga accatatocc atatcaccag otcaccgtot ttoattgoca tacgaaacte 1500 cggatgagca ttoatcagge gggcaagaat gtgaataaag gocggataaa acttgtgott 1560 attttottt acggtottta aaaaggcogt aatatcoago tgaacggtot ggttataggt 1620 acaatgagca actgactgaa atgootcaaa atgttotta cgatgocatt gggatatate 1680 aacggtggta tatccagtga ttttttoto catttagot toottagot otgaaaatt 1740 cggataactca aaaaatacgo ccggtagga tottattoa ttatggtgaa agttggaace 1800 tottacgtgo cgatcaacgt ctcatttog ccagatateg acgtotaaga aaccattatt 1860 attattatca tgacattaac aaaaaggogt atcacgagge cotttogtot tcacgaaacc 1920 attattatca tgacattaac ctataaaaa aggcgtatca cgaggccott tegtettcac 1980 <2210> SEQ ID NO 105 <211> LENGTH: 2077 <212> TYPE: DNA 2213> ORGMISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1572 <400> SEQUENCE: 105 ctagtgottg gattotcacc aataaaaaac gocoggogg aaccgagcgt totgaacaa 60 tocagatgga gttctgaggt cattactgga totaccaca ggagtocaag cgagctcgat 120</pre>	gtactgttgt aattcattaa gcattctgcc	gacatggaag	ccatcacaga	cggcatgatg	1140	
cacccaggga ttggctgaga cgaaaaacat attctcaata aaccctttag ggaaatagge 1320 caggttttca ccgtaacacg ccacatcttg cgaatatatg tgtagaaact gcoggaaatc 1380 gtcgtggtat tcactccaga gcgatgaaaa cgtttcagtt tgctcatgga aaacggtgta 1440 acaaggggtga acactatccc atatcaccag ctcaccgtct ttcattgcca tacgaaactc 1500 cggatgagca ttcatcagge gggcaagaat gtgaataaag gcoggataaa acttgtgctt 1560 attttcttt acggtcttta aaaaggccgt aatatccage tgaacggtct ggttataggt 1620 acattgagca actgactgaa atgcctcaaa atgttetta cgatgccatt gggatatatc 1680 aacggtggta tatccagtga tttttttctc cattttagct tccttagctc ctgaaaatct 1740 cgataactca aaaaatacge ccggtagtga tcttattca ttatggtgaa agttggaacc 1800 tettacgtge cgatcaacgt ctcattteg ccagatateg acgtetaaga aaccattatt 1860 attattatca tgacattaa aaataggegt atcacgagge cetttegtet tcacgaaacc 1920 attattatate tgacattaa ctataaaaat aggegtaca cgaggccett tegtettcac 1980 <210> SEQ ID NO 105 <211> LENGTH: 2077 <212> TYPE: DNA <213> OFHER INFORMATION: Plasmid pGV1572 <400> SEQUENCE: 105 ctagtgcttg gattctcacc aataaaaaac gcccggcgge aaccgagcgt tctgaacaaa 60 tccagatgga gttctgaggt cattactgga tctatcaca ggagtccaag cgagctcgat 120	aacctgaatc gccagcggca tcagcacctt	gtcgccttgc	gtataatatt	tgcccatggt	1200	
caggttttca cogtaacacg ocacatottg ogaatatatg tgtagaaact googgaaato 1380 gtogtggtat toactocaga gogatgaaaa ogtttoagtt tgotoatgga aaaoggtgta 1440 acaagggtga acactatooc atatoaccag otoacogtot ttoattgooa taogaaacto 1500 oggatgagoa ttoatoaggo gggcaagaat gtgaataaag googgataaa acttgtgott 1560 attttottt acggtottta aaaaggoogt aatatocago tgaacggtot ggttataggt 1620 acattgagoa actgactgaa atgootcaaa atgttottta ogatgocatt gggatatato 1680 aacggtggta tatocagtga ttttttoto cattttagot toottagot otgaaaatot 1740 ogataactoa aaaaatacgo coggtagtga tottattoa ttatggtgaa agttggaaco 1800 tottacgtgo ogatcaacgt otoatttog ocagatatog acgtotaga aaccattatt 1860 attattatoa tgacattaa otaaaaaat aggogtatca ogaggocott togtottoac 1920 attattatoa tgacattaac otataaaaat aggogtatoa ogaggocott togtottoac 1980 <210> SEQ ID NO 105 <211> LENGTH: 2077 212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1572 <400> SEQUENCE: 105 ctagtgottg gattotcacc aataaaaaa googggog aacogagogt totgaacaa 60 tocagatgga gttotgaggt cattactgga totatcacaa ggagtocaag ogagotoga 120	gaaaacgggg gcgaagaagt tgtccatatt	ggccacgttt	aaatcaaaac	tggtgaaact	1260	
<pre>gtcgtggtat tcactccaga gcgatgaaaa cgtttcagtt tgctcatgga aaacggtgta 1440 acaagggtga acactatccc atatcaccag ctcaccgtct ttcattgcca tacgaaactc 1500 cggatgagca ttcatcaggc gggcaagaat gtgaataaag gccggataaa acttgtgctt 1560 attttcttt acggtcttta aaaaggccgt aatatccagc tgaacggtct ggttataggt 1620 acattgagca actgactgaa atgcctcaaa atgttcttta cgatgccatt gggatatatc 1680 aacggtggta tatccagtga ttttttctc cattttagct tccttagctc ctgaaaatct 1740 cgataactca aaaaatacgc ccggtagtga tcttattca ttatggtgaa agttggaacc 1800 tcttacgtgc cgatcaacgt ctcatttcg ccagatatcg acgtctaaga aaccattatt 1860 atcatgacat taacctataa aaataggcgt atcacgaggc cctttcgtct tccacgaaacc 1920 attattatca tgacattaac ctataaaaat aggcgtatca cgaggccctt tcgtcttcac 1920 attattatca tgacattaac ctataaaaat aggcgtatca cgaggccctt tcgtcttcac 1980 <210> SEQ ID NO 105 <211> LENGTH: 2077 c122> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1572 <400> SEQUENCE: 105 ctagtgcttg gattctcacc aataaaaaac gcccggcggc aaccgagcgt tctgaacaaa 60 tccagatgga gttctgaggt cattactgga tctatcaca ggagtccaag cgagctcgat 120</pre>	cacccaggga ttggctgaga cgaaaaacat	attctcaata	aaccctttag	ggaaataggc	1320	
acaagggtga acactateee atateaceag etcacegtet tteattgeea taegaaaete 1500 eggatgagea tteateagge gggeaagaat gtgaataaag geeggataaa aettgtgett 1560 atttteett aeggtetta aaaaggeegt aatateeage tgaaeggtet ggttataggt 1620 acattgagea aetgaetgaa atgeeteaaa atgttetta egatgeeatt gggatatee 1680 aaeggtggta tateeagtga ttttttee catttaget teettagete etgaaaatee 1740 egataaetea aaaaataege eeggtagtga tettattea ttatggtgaa agttggaaee 1800 tettaegtge egateaaegt eteattteg ecagatateg aegtetaaga aaeeattat 1860 ateatgaeat taaeetataa aaataggegt ateaegagge eettegtet teaegaaaee 1920 attattatea tgaeattaae etataaaaat aggegtatea egaggeeett tegtetteae 1980 <<210> SEQ ID NO 105 <211> LENGTH: 2077 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1572 <<400> SEQUENCE: 105 ctagtgettg gatteteace aataaaaaa geeeggegge aaeegagegt tetgaacaaa 60 teegatgga gttetgaggt eattaetgga tetateaaea ggagteeaag egagetegat 120	caggttttca ccgtaacacg ccacatcttg	cgaatatatg	tgtagaaact	gccggaaatc	1380	
cggatgagca ttcatcaggc gggcaagaat gtgaataaag gccggataaa acttgtgctt 1560 atttttcttt acggtcttta aaaaggccgt aatatccagc tgaacggtct ggttataggt 1620 acattgagca actgactgaa atgcctcaaa atgttcttta cgatgccatt gggatatatc 1680 aacggtggta tatccagtga ttttttctc cattttagct tccttagctc ctgaaaatct 1740 cgataactca aaaaatacgc ccggtagtga tcttattca ttatggtgaa agttggaacc 1800 tcttacgtgc cgatcaacgt ctcatttcg ccagatatcg acgtctaaga aaccattatt 1860 atcatgacat taacctataa aaataggcgt atcacgaggc cctttcgtct tcacgaaacc 1920 attattatca tgacattaac ctataaaaat aggcgtatca cgaggccctt tcgtcttcac 1980 <210> SEQ ID NO 105 <211> LENGTH: 2077 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1572 <400> SEQUENCE: 105 ctagtgcttg gattctcacc aataaaaaa gcccggcggc aaccgagcgt tctgaacaaa 60 tccagatgga gttctgaggt cattactgga tctatcaaca ggagtccaag cgagctcgat 120	gtcgtggtat tcactccaga gcgatgaaaa	cgtttcagtt	tgctcatgga	aaacggtgta	1440	
atttttcttt acggtottta aaaaggeegt aatateeage tgaaeggtet ggttataggt 1620 acattgagea aetgaetgaa atgeeteaaa atgttettta egatgeeatt gggatatate 1680 aaeggtggta tateeagtga ttttttee eattttaget teettagete etgaaaatet 1740 egataaetea aaaaataege eeggtagtga tettattea ttatggtgaa agttggaaee 1800 tettaegtge egateaaegt eteattteg eeagatateg aegtetaaga aaeeatatt 1860 ateatgaeat taaeetataa aaataggegt ateaegagge eettegtet teaegaaaee 1920 attattatea tgaeattaae etataaaaat aggegtatea egaggeeett tegtetteae 1980 <210> SEQ ID NO 105 <211> LENGTH: 2077 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1572 <400> SEQUENCE: 105 etagtgettg gatteteaee aataaaaaa geeeggege aaeegagegt tetgaacaaa 60 teeagatgga gttetgaggt eattactgga tetateaea ggagteeaag egagetegat 120	acaagggtga acactatccc atatcaccag	ctcaccgtct	ttcattgcca	tacgaaactc	1500	
acattgagca actgactgaa atgeeteaaa atgetettta egatgeeatt gggatatate 1680 aaeggtggta tateeagtga ttttttee eatttaget teettagete etgaaaatet 1740 egataaetea aaaaataege eeggtagtga teetattea ttatggtgaa agttggaaee 1800 tettaegtge egateaaegt eteattteg eeagatateg aegtetaaga aaeeattatt 1860 ateatgaeat taaeetataa aaataggegt ateaeegagge eettegtet teaegaaaee 1920 attattatea tgaeattaae etataaaaat aggegtatea egaggeeett tegtetteae 1980 <210> SEQ ID NO 105 <211> LENGTH: 2077 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1572 <400> SEQUENCE: 105 etagtgettg gatteteaee aataaaaae geeeggege aaeegagegt tetgaacaaa 60 teeagatgga gttetgaggt eattaetgga tetateaaea ggagteeaag egagetegat 120	cggatgagca ttcatcaggc gggcaagaat	gtgaataaag	gccggataaa	acttgtgctt	1560	
aacggtggta tatccagtga tttttttoto cattttagot toottagoto otgaaaatot 1740 cgataactoa aaaaatacgo ooggtagtga tottatttoa ttatggtgaa agttggaaco 1800 tottaogtgo ogatoaacgt otoattttog ooggatatog acgototaaga aacoattatt 1860 atoatgacat taacotataa aaataggogt atoacgaggo ootttogtot toacgaaaco 1920 attattatoa tgacattaac otataaaaat aggogtatoa ogaggocott togtottoac 1980 <210> SEQ ID NO 105 <211> LENGTH: 2077 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1572 <400> SEQUENCE: 105 ctagtgottg gattotcaco aataaaaaac gocoggoggo aacogagogt totgaacaaa 60 tocagatgga gttotgaggt cattactgga totatcaaca ggagtocaag ogagotogat 120	atttttcttt acggtcttta aaaaggccgt	aatatccagc	tgaacggtct	ggttataggt	1620	
cgataactca aaaaatacgc ccggtagtga tottatttca ttatggtgaa agttggaacc 1800 tottacgtgc cgatcaacgt otcattttcg ocagatatcg acgtotaaga aaccattatt 1860 atcatgacat taacotataa aaataggogt atcacgaggc ootttogtot toogaaacc 1920 attattatca tgacattaac otataaaaaat aggogtatca ogaggocott togtottoac 1980 <210> SEQ ID NO 105 <211> LENGTH: 2077 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1572 <400> SEQUENCE: 105 ctagtgottg gattotcacc aataaaaaac goocggoggc aaccgagogt totgaacaaa 60 tocagatgga gttotgaggt cattactgga totatcaaca ggagtocaag cgagotogat 120	acattgagca actgactgaa atgcctcaaa	atgttcttta	cgatgccatt	gggatatatc	1680	
<pre>tcttacgtgc cgatcaacgt ctcatttcg ccagatatcg acgtctaaga aaccattatt 1860 atcatgacat taacctataa aaataggcgt atcacgaggc ccttcgtct tcacgaaacc 1920 attattatca tgacattaac ctataaaaaat aggcgtatca cgaggccctt tcgtcttcac 1980 <210> SEQ ID NO 105 <211> LENGTH: 2077 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <2223> OTHER INFORMATION: Plasmid pGV1572 <400> SEQUENCE: 105 ctagtgcttg gattctcacc aataaaaaac gcccggcggc aaccgagcgt tctgaacaaa 60 tccagatgga gttctgaggt cattactgga tctatcaaca ggagtccaag cgagctcgat 120</pre>	aacggtggta tatccagtga tttttttctc	cattttagct	tccttagctc	ctgaaaatct	1740	
atcatgacat taacctataa aaataggegt atcacgagge eetttegtet teaegaaace 1920 attattatea tgacattaae etataaaaat aggegtatea egaggeeett tegtetteae 1980 <210> SEQ ID NO 105 <211> LENGTH: 2077 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1572 <400> SEQUENCE: 105 etagtgettg gatteteaee aataaaaaae geeeggegge aaeegagegt tetgaacaaa 60 teeagatgga gttetgaggt eattaetgga tetateaaea ggagteeaag egagetegat 120	cgataactca aaaaatacgc ccggtagtga	tcttatttca	ttatggtgaa	agttggaacc	1800	
attattatca tgacattaac ctataaaaat aggcgtatca cgaggccctt tcgtcttcac 1980 <210> SEQ ID NO 105 <211> LENGTH: 2077 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1572 <400> SEQUENCE: 105 ctagtgcttg gattctcacc aataaaaaac gcccggcggc aaccgagcgt tctgaacaaa 60 tccagatgga gttctgaggt cattactgga tctatcaaca ggagtccaag cgagctcgat 120	tettaegtge egateaaegt eteattteg	ccagatatcg	acgtctaaga	aaccattatt	1860	
<pre><210> SEQ ID NO 105 <211> LENGTH: 2077 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1572 <400> SEQUENCE: 105 ctagtgcttg gattctcacc aataaaaaac gcccggcggc aaccgagcgt tctgaacaaa 60 tccagatgga gttctgaggt cattactgga tctatcaaca ggagtccaag cgagctcgat 120</pre>	atcatgacat taacctataa aaataggcgt	atcacgaggc	cctttcgtct	tcacgaaacc	1920	
<pre><211> LENGTH: 2077 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1572 <400> SEQUENCE: 105 ctagtgcttg gattctcacc aataaaaaaac gcccggcggc aaccgagcgt tctgaacaaa 60 tccagatgga gttctgaggt cattactgga tctatcaaca ggagtccaag cgagctcgat 120</pre>	attattatca tgacattaac ctataaaaat	aggcgtatca	cgaggccctt	tcgtcttcac	1980	
tecagatgga gttetgaggt eattaetgga tetateaaca ggagteeaag egagetegat 120	<pre><211> LENGTH: 2077 <212> TYPE: DNA <213> ORGANISM: Artificial Seque <220> FEATURE: <223> OTHER INFORMATION: Plasmid</pre>					
	ctagtgcttg gattctcacc aataaaaaac	gcccggcggc	aaccgagcgt	tctgaacaaa	60	
atcaaattac gccccgccct gccactcatc gcagtactgt tgtaattcat taagcattct 180	tccagatgga gttctgaggt cattactgga	tctatcaaca	ggagtccaag	cgagctcgat	120	
	atcaaattac gccccgccct gccactcatc	gcagtactgt	tgtaattcat	taagcattct	180	

-continued

gccgacatgg	aagccatcac	agacggcatg	atgaacctga	atcgccagcg	gcatcagcac	240	
cttgtcgcct	tgcgtataat	atttgcccat	ggtgaaaacg	ggggcgaaga	agttgtccat	300	
attggccacg	tttaaatcaa	aactggtgaa	actcacccag	ggattggctg	agacgaaaaa	360	
catattctca	ataaaccctt	tagggaaata	ggccaggttt	tcaccgtaac	acgccacatc	420	
ttgcgaatat	atgtgtagaa	actgccggaa	atcgtcgtgg	tattcactcc	agagcgatga	480	
aaacgtttca	gtttgctcat	ggaaaacggt	gtaacaaggg	tgaacactat	cccatatcac	540	
cagctcaccg	tctttcattg	ccatacgaaa	ctccggatga	gcattcatca	ggcgggcaag	600	
aatgtgaata	aaggccggat	aaaacttgtg	cttattttc	tttacggtct	ttaaaaaggc	660	
cgtaatatcc	agctgaacgg	tctggttata	ggtacattga	gcaactgact	gaaatgcctc	720	
aaaatgttct	ttacgatgcc	attgggatat	atcaacggtg	gtatatccag	tgatttttt	780	
ctccatttta	gcttccttag	ctcctgaaaa	tctcgataac	tcaaaaaata	cgcccggtag	840	
tgatcttatt	tcattatggt	gaaagttgga	acctcttacg	tgccgatcaa	cgtctcattt	900	
tcgccagata	tcgacgtcta	agaaaccatt	attatcatga	cattaaccta	taaaaatagg	960	
cgtatcacga	ggccctttcg	tcttcacctc	gagaaatgtg	agcggataac	aattgacatt	1020	
gtgagcggat	aacaagatac	tgagcacatc	agcaggacgc	actgaccggg	aattcattaa	1080	
agaggagaaa	gtcgacatta	tgcggccgcg	gatccataag	gaggattaat	taagacttcc	1140	
cgggtgatcc	catggtacgc	gtgctagagg	catcaaataa	aacgaaaggc	tcagtcgaaa	1200	
gactgggcct	ttcgttttat	ctgttgtttg	tcggtgaacg	ctctcctgag	taggacaaat	1260	
ccgccgccct	agacctaggg	gatatattcc	gcttcctcgc	tcactgactc	gctacgctcg	1320	
gtcgttcgac	tgcggcgagc	ggaaatggct	tacgaacggg	gcggagattt	cctggaagat	1380	
gccaggaaga	tacttaacag	ggaagtgaga	gggccgcggc	aaagccgttt	ttccataggc	1440	
teegeeeeee	tgacaagcat	cacgaaatct	gacgctcaaa	tcagtggtgg	cgaaacccga	1500	
caggactata	aagataccag	gcgtttcccc	ctggcggctc	cctcgtgcgc	tctcctgttc	1560	
ctgcctttcg	gtttaccggt	gtcattccgc	tgttatggcc	gcgtttgtct	cattccacgc	1620	
ctgacactca	gttccgggta	ggcagttcgc	tccaagctgg	actgtatgca	cgaacccccc	1680	
gttcagtccg	accgctgcgc	cttatccggt	aactatcgtc	ttgagtccaa	cccggaaaga	1740	
catgcaaaag	caccactggc	agcagccact	ggtaattgat	ttagaggagt	tagtcttgaa	1800	
gtcatgcgcc	ggttaaggct	aaactgaaag	gacaagtttt	ggtgactgcg	ctcctccaag	1860	
ccagttacct	cggttcaaag	agttggtagc	tcagagaacc	ttcgaaaaac	cgccctgcaa	1920	
ggcggttttt	tcgttttcag	agcaagagat	tacgcgcaga	ccaaaacgat	ctcaagaaga	1980	
tcatcttatt	aatcagataa	aatatttcta	gatttcagtg	caatttatct	cttcaaatgt	2040	
agcacctgaa	gtcagcccca	tacgatataa	gttgtta			2077	

<210> SEQ ID NO 106 <211> LENGTH: 3135 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1573

<400> SEQUENCE: 106

ctagtgcttg gattctcacc aataaaaaac gcccggcggc aaccgagcgt tctgaacaaa 60

tccagatgga	gttctgaggt	cattactgga	tctatcaaca	ggagtccaag	cgagctcgat	120	
atcaaattac	gccccgccct	gccactcatc	gcagtactgt	tgtaattcat	taagcattct	180	
gccgacatgg	aagccatcac	agacggcatg	atgaacctga	atcgccagcg	gcatcagcac	240	
cttgtcgcct	tgcgtataat	atttgcccat	ggtgaaaacg	ggggcgaaga	agttgtccat	300	
attggccacg	tttaaatcaa	aactggtgaa	actcacccag	ggattggctg	agacgaaaaa	360	
catattctca	ataaaccctt	tagggaaata	ggccaggttt	tcaccgtaac	acgccacatc	420	
ttgcgaatat	atgtgtagaa	actgccggaa	atcgtcgtgg	tattcactcc	agagcgatga	480	
aaacgtttca	gtttgctcat	ggaaaacggt	gtaacaaggg	tgaacactat	cccatatcac	540	
cageteaceg	tctttcattg	ccatacgaaa	ctccggatga	gcattcatca	ggcgggcaag	600	
aatgtgaata	aaggccggat	aaaacttgtg	cttattttc	tttacggtct	ttaaaaaggc	660	
cgtaatatcc	agctgaacgg	tctggttata	ggtacattga	gcaactgact	gaaatgcctc	720	
aaaatgttct	ttacgatgcc	attgggatat	atcaacggtg	gtatatccag	tgatttttt	780	
ctccatttta	gcttccttag	ctcctgaaaa	tctcgataac	tcaaaaaata	cgcccggtag	840	
tgatcttatt	tcattatggt	gaaagttgga	acctcttacg	tgccgatcaa	cgtctcattt	900	
tcgccagata	tcgacgtcta	agaaaccatt	attatcatga	cattaaccta	taaaaatagg	960	
cgtatcacga	ggccctttcg	tetteacete	gagaaatgtg	agcggataac	aattgacatt	1020	
gtgagcggat	aacaagatac	tgagcacatc	agcaggacgc	actgaccggg	aattcattaa	1080	
agaggagaaa	gtcgacatgc	ccgatatgac	aaacgaatct	tcttctaagc	cagctcaaat	1140	
taacattggt	atcaatggtt	ttggtagaat	cggtagattg	gttctacgtg	ctgctttgac	1200	
gcacccagaa	gttaaggtca	gattaatcaa	taatccatcc	acaacaccag	aatacgctgc	1260	
ttatttgttc	aaatacgatt	ctactcacgg	caagtatcgt	ggtgaagttg	aattcgacga	1320	
tgaacgtatc	atcattcaaa	atgaccatgt	ttcggctcat	atccctctat	ctcattttag	1380	
ggaaccagag	cgtatcccat	gggcttccta	caacgtcgat	tatgtaattg	actcaaccgg	1440	
tgtcttcaag	gaagtcgata	cagcetetag	acataaaggt	gtcaaaaaag	ttatcattac	1500	
tgctccatca	aagaccgcgc	caatgtacgt	ctatggtgtt	aaccacgtta	aatacaaccc	1560	
attgacggat	cacgtggtct	ctaatgcctc	ctgtactacc	aactgtttgg	ctccgttggt	1620	
taaggctttg	gacgatgagt	tcggtatcga	agaagccttg	atgacaacta	ttcatgcaac	1680	
tactgcttct	caaaagactg	tcgatggtac	cagttctggt	ggtaaggact	ggagaggcgg	1740	
tagatettge	cagggaaata	tcattccttc	atctactggt	gcagctaagg	ctgtagggaa	1800	
aatcttgcct	gaacttaatg	gtaagatcac	cggtatgtct	ataagagtcc	caacaattaa	1860	
tatttccctg	gttgacttga	cattccgtac	agcaaagaaa	acttcttacg	atgacattat	1920	
gaaggcccta	gaacaaagat	ctcgcagcga	tatgaagggt	gttttgggtg	ttaccaaaga	1980	
cgccgttgtg	tcctctgact	tcacatccga	ttcacgttca	tctattgttg	atgccaaggc	2040	
cggtattgaa	ttgaacgacc	atttttcaa	ggtcctttct	tggtatgata	atgaatatgg	2100	
ttactcttca	agagtggttg	atttatccat	tttcatggct	caaaaggact	tcgaagctgg	2160	
tgtttaagga	tccataagga	ggattaatta	agacttcccg	ggtgatccca	tggtacgcgt	2220	
gctagaggca	tcaaataaaa	cgaaaggctc	agtcgaaaga	ctgggccttt	cgttttatct	2280	
gttgtttgtc	ggtgaacgct	ctcctgagta	ggacaaatcc	gccgccctag	acctagggga	2340	

		ъ.
-cont	inied	٦

tatattccgc ttcctcgctc actgactcgc tacgctcggt cgttcgactg cggcgagcgg 2400 aaatggetta egaacgggge ggagatttee tggaagatge eaggaagata ettaacaggg 2460 aagtgagagg geegeggeaa ageegttttt ceataggete egeeeeetg acaageatea 2520 cgaaatctga cgctcaaatc agtggtggcg aaacccgaca ggactataaa gataccaggc 2580 gtttccccct ggcggctccc tcgtgcgctc tcctgttcct gcctttcggt ttaccggtgt 2640 catteegetg ttatggeege gtttgtetea tteeaegeet gaeaeteagt teegggtagg 2700 cagttegete caagetggae tgtatgeaeg aaceeeegt teagteegae egetgegeet 2760 tatccggtaa ctatcgtctt gagtccaacc cggaaagaca tgcaaaagca ccactggcag 2820 cagccactgg taattgattt agaggagtta gtcttgaagt catgcgccgg ttaaggctaa 2880 actgaaagga caagttttgg tgactgcgct cctccaagcc agttacctcg gttcaaagag 2940 ttggtagctc agagaacctt cgaaaaaccg ccctgcaagg cggttttttc gttttcagag 3000 caagagatta cgcgcagacc aaaacgatct caagaagatc atcttattaa tcagataaaa 3060 tatttetaga ttteagtgea atttatetet teaaatgtag eacetgaagt eageeceata 3120 cgatataagt tgtta 3135 <210> SEQ ID NO 107 <211> LENGTH: 3069 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1575 <400> SEQUENCE: 107 ctagtgcttg gattctcacc aataaaaaac gcccggcggc aaccgagcgt tctgaacaaa 60 tccaqatqqa qttctqaqqt cattactqqa tctatcaaca qqaqtccaaq cqaqttcqat 120 atcaaattac geecegeeet geeacteate geagtactgt tgtaatteat taageattet 180 gccgacatgg aagccatcac agacggcatg atgaacctga atcgccagcg gcatcagcac 240 cttgtcgcct tgcgtataat atttgcccat ggtgaaaacg ggggcgaaga agttgtccat 300 attggccacg tttaaatcaa aactggtgaa actcacccag ggattggctg agacgaaaaa 360 catattetca ataaaceett tagggaaata ggeeaggttt teaeegtaac aegeeacate 420 ttgcgaatat atgtgtagaa actgccggaa atcgtcgtgg tattcactcc agagcgatga 480 aaacgtttca gtttgctcat ggaaaacggt gtaacaaggg tgaacactat cccatatcac 540 cageteaceg tettteattg ceataegaaa eteeggatga geatteatea ggegggeaag 600 aatgtgaata aaggccggat aaaacttgtg cttatttttc tttacggtct ttaaaaaggc 660 cgtaatatcc agctgaacgg tctggttata ggtacattga gcaactgact gaaatgcctc 720 aaaatgttct ttacgatgcc attgggatat atcaacggtg gtatatccag tgatttttt 780 ctccatttta gcttccttag ctcctgaaaa tctcgataac tcaaaaaata cgcccggtag 840 tgatettatt teattatggt gaaagttgga acetettaeg tgeegateaa egteteattt 900 tcgccagata tcgacgtcta agaaaccatt attatcatga cattaaccta taaaaatagg 960 cgtatcacga ggccctttcg tcttcacctc gagaaatgtg agcggataac aattgacatt 1020 gtgageggat aacaagatac tgageacate ageaggaege aetgaeeggg aatteattaa 1080

agaggagaaa gtcgacatgg caaagatagc tattaatggt tttggaagaa taggaagatt

-cont	ınu	.ea

agctttaaga	agaattettg	aagtacctgg	attggaagtt	gttgcaataa	acgacttaac	1200
tgatgcaaaa	atgttagcac	acttatttaa	atatgattca	tcacaaggaa	gattcaatgg	1260
agaaattgaa	gttaaagaag	gagctttcgt	agtaaacgga	aaagaagtta	aagttttcgc	1320
tgaagcagat	cctgaaaaat	taccttgggg	agatcttgga	atagacgttg	ttcttgagtg	1380
cacaggtttc	ttcacaaaga	aagaaaaagc	agaagctcac	gtaagagcag	gcgctaaaaa	1440
agttgttata	tcagctccag	ctggaaacga	cttaaagaca	atagttttca	acgttaataa	1500
tgaagatctt	gatggaacag	aaacagttat	atcaggtgca	tcatgcacaa	ctaactgctt	1560
agctccaatg	gctaaagtat	taaatgataa	atttggaata	gaaaaaggat	tcatgactac	1620
aattcatgcg	ttcactaatg	accaaaacac	attagatggt	ccacacagaa	aaggagattt	1680
aagaagagct	agagctgctg	ctgtaagtat	catccctaac	tcaactggtg	ctgctaaagc	1740
tataagccaa	gttattcctg	acttagctgg	aaaattagac	ggaaacgctc	aaagagttcc	1800
agttccaact	ggttcaataa	ctgaattagt	ttcagttctt	aagaaaaaag	ttacagttga	1860
agaaatcaac	gctgctatga	aagaagctgc	tgatgaatca	tttggataca	ctgaagatcc	1920
aatcgtttca	gctgacgtag	taggaatcaa	ctacggatca	ttatttgatg	caactttaac	1980
taaaattgtt	gatgttaacg	gatcacaatt	agttaaaaca	gctgcttggt	atgataatga	2040
aatgtcatac	acttcacaat	tagttagaac	tttagcttac	tttgcaaaaa	tagcaaaata	2100
gggatccata	aggaggatta	attaagactt	cccgggtgat	cccatggtac	gcgtgctaga	2160
ggcatcaaat	aaaacgaaag	gctcagtcga	aagactgggc	ctttcgtttt	atctgttgtt	2220
tgtcggtgaa	cgctctcctg	agtaggacaa	atccgccgcc	ctagacctag	gggatatatt	2280
ccgcttcctc	gctcactgac	tcgctacgct	cggtcgttcg	actgcggcga	gcggaaatgg	2340
cttacgaacg	gggcggagat	ttcctggaag	atgccaggaa	gatacttaac	agggaagtga	2400
gagggccgcg	gcaaagccgt	ttttccatag	gctccgcccc	cctgacaagc	atcacgaaat	2460
ctgacgctca	aatcagtggt	ggcgaaaccc	gacaggacta	taaagatacc	aggcgtttcc	2520
ccctggcggc	tccctcgtgc	gctctcctgt	tcctgccttt	cggtttaccg	gtgtcattcc	2580
gctgttatgg	ccgcgtttgt	ctcattccac	gcctgacact	cagttccggg	taggcagttc	2640
gctccaagct	ggactgtatg	cacgaacccc	ccgttcagtc	cgaccgctgc	gccttatccg	2700
gtaactatcg	tcttgagtcc	aacccggaaa	gacatgcaaa	agcaccactg	gcagcagcca	2760
ctggtaattg	atttagagga	gttagtcttg	aagtcatgcg	ccggttaagg	ctaaactgaa	2820
aggacaagtt	ttggtgactg	cgctcctcca	agccagttac	ctcggttcaa	agagttggta	2880
gctcagagaa	ccttcgaaaa	accgccctgc	aaggcggttt	tttcgttttc	agagcaagag	2940
attacgcgca	gaccaaaacg	atctcaagaa	gatcatctta	ttaatcagat	aaaatatttc	3000
tagatttcag	tgcaatttat	ctcttcaaat	gtagcacctg	aagtcagccc	catacgatat	3060
aagttgtta						3069

<210> SEQ ID NO 108 <211> LENGTH: 7093 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1609

cgatatcaaa	ttacgccccg	ccctgccact	catcgcagta	ctgttgtaat	tcattaagca	60	
ttctgccgac	atggaagcca	tcacagacgg	catgatgaac	ctgaatcgcc	agcggcatca	120	
gcaccttgtc	gccttgcgta	taatatttgc	ccatggtgaa	aacggggggcg	aagaagttgt	180	
ccatattggc	cacgtttaaa	tcaaaactgg	tgaaactcac	ccagggattg	gctgagacga	240	
aaaacatatt	ctcaataaac	cctttaggga	aataggccag	gttttcaccg	taacacgcca	300	
catcttgcga	atatatgtgt	agaaactgcc	ggaaatcgtc	gtggtattca	ctccagagcg	360	
atgaaaacgt	ttcagtttgc	tcatggaaaa	cggtgtaaca	agggtgaaca	ctatcccata	420	
tcaccagete	accgtctttc	attgccatac	gaaactccgg	atgagcattc	atcaggcggg	480	
caagaatgtg	aataaaggcc	ggataaaact	tgtgcttatt	tttctttacg	gtctttaaaa	540	
aggccgtaat	atccagctga	acggtctggt	tataggtaca	ttgagcaact	gactgaaatg	600	
cctcaaaatg	ttctttacga	tgccattggg	atatatcaac	ggtggtatat	ccagtgattt	660	
ttttctccat	tttagcttcc	ttagctcctg	aaaatctcga	taactcaaaa	aatacgcccg	720	
gtagtgatct	tatttcatta	tggtgaaagt	tggaacctct	tacgtgccga	tcaacgtctc	780	
attttcgcca	gatatcgacg	tctaagaaac	cattattatc	atgacattaa	cctataaaaa	840	
taggcgtatc	acgaggccct	ttcgtcttca	cctcgagaat	tgtgagcgga	taacaattga	900	
cattgtgagc	ggataacaag	atactgagca	catcagcagg	acgcactgac	cgaattcatt	960	
aaagaggaga	aaggtacaat	gttgacaaaa	gcaacaaaag	aacaaaaatc	ccttgtgaaa	1020	
aacagagggg	cggagcttgt	tgttgattgc	ttagtggagc	aaggtgtcac	acatgtattt	1080	
ggcattccag	gtgcaaaaat	tgatgcggta	tttgacgctt	tacaagataa	aggacctgaa	1140	
attatcgttg	cccggcacga	acaaaacgca	gcattcatgg	cccaagcagt	cggccgttta	1200	
actggaaaac	cgggagtcgt	gttagtcaca	tcaggaccgg	gtgcctctaa	cttggcaaca	1260	
ggcctgctga	cagcgaacac	tgaaggagac	cctgtcgttg	cgcttgctgg	aaacgtgatc	1320	
cgtgcagatc	gtttaaaacg	gacacatcaa	tctttggata	atgcggcgct	attccagccg	1380	
attacaaaat	acagtgtaga	agttcaagat	gtaaaaaata	taccggaagc	tgttacaaat	1440	
gcatttagga	tagcgtcagc	agggcaggct	ggggccgctt	ttgtgagctt	tccgcaagat	1500	
gttgtgaatg	aagtcacaaa	tacgaaaaac	gtgcgtgctg	ttgcagcgcc	aaaactcggt	1560	
cctgcagcag	atgatgcaat	cagtgcggcc	atagcaaaaa	tccaaacagc	aaaacttcct	1620	
gtcgttttgg	tcggcatgaa	aggcggaaga	ccggaagcaa	ttaaagcggt	tcgcaagctt	1680	
ttgaaaaagg	ttcagcttcc	atttgttgaa	acatatcaag	ctgccggtac	cctttctaga	1740	
gatttagagg	atcaatattt	tggccgtatc	ggtttgttcc	gcaaccagcc	tggcgattta	1800	
ctgctagagc	aggcagatgt	tgttctgacg	atcggctatg	acccgattga	atatgatccg	1860	
aaattctgga	atatcaatgg	agaccggaca	attatccatt	tagacgagat	tatcgctgac	1920	
attgatcatg	cttaccagcc	tgatcttgaa	ttgatcggtg	acattccgtc	cacgatcaat	1980	
catatcgaac	acgatgctgt	gaaagtggaa	tttgcagagc	gtgagcagaa	aatcctttct	2040	
gatttaaaac	aatatatgca	tgaaggtgag	caggtgcctg	cagattggaa	atcagacaga	2100	
gcgcaccctc	ttgaaatcgt	taaagagttg	cgtaatgcag	tcgatgatca	tgttacagta	2160	
acttgcgata	tcggttcgca	cgccatttgg	atgtcacgtt	atttccgcag	ctacgagccg	2220	
ttaacattaa	tgatcagtaa	cggtatgcaa	acactcggcg	ttgcgcttcc	ttgggcaatc	2280	

ggcgcttcat	tggtgaaacc	gggagaaaaa	gtggtttctg	tctctggtga	cggcggtttc	2340
ttattctcag	caatggaatt	agagacagca	gttcgactaa	aagcaccaat	tgtacacatt	2400
gtatggaacg	acagcacata	tgacatggtt	gcattccagc	aattgaaaaa	atataaccgt	2460
acatctgcgg	tcgatttcgg	aaatatcgat	atcgtgaaat	atgcggaaag	cttcggagca	2520
actggcttgc	gcgtagaatc	accagaccag	ctggcagatg	ttctgcgtca	aggcatgaac	2580
gctgaaggtc	ctgtcatcat	cgatgtcccg	gttgactaca	gtgataacat	taatttagca	2640
agtgacaagc	ttccgaaaga	attcggggaa	ctcatgaaaa	cgaaagctct	ctaggtcgac	2700
gaggaatcac	catggctaac	tacttcaata	cactgaatct	gcgccagcag	ctggcacagc	2760
tgggcaaatg	tcgctttatg	ggccgcgatg	aattcgccga	tggcgcgagc	taccttcagg	2820
gtaaaaaagt	agtcatcgtc	ggctgtggcg	cacagggtct	gaaccagggc	ctgaacatgc	2880
gtgattetgg	tctcgatatc	tcctacgctc	tgcgtaaaga	agcgattgcc	gagaagcgcg	2940
cgtcctggcg	taaagcgacc	gaaaatggtt	ttaaagtggg	tacttacgaa	gaactgatcc	3000
cacaggcgga	tctggtgatt	aacctgacgc	cggacaagca	gcactctgat	gtagtgcgca	3060
ccgtacagcc	actgatgaaa	gacggcgcgg	cgctgggcta	ctcgcacggt	ttcaacatcg	3120
tcgaagtggg	cgagcagatc	cgtaaagata	tcaccgtagt	gatggttgcg	ccgaaatgcc	3180
caggcaccga	agtgcgtgaa	gagtacaaac	gtgggttcgg	cgtaccgacg	ctgattgccg	3240
ttcacccgga	aaacgatccg	aaaggcgaag	gcatggcgat	tgccaaagcc	tgggcggctg	3300
caaccggtgg	tcaccgtgcg	ggtgtgctgg	aatcgtcctt	cgttgcggaa	gtgaaatctg	3360
acctgatggg	cgagcaaacc	atcctgtgcg	gtatgttgca	ggctggctct	ctgctgtgct	3420
tcgacaagct	ggtggaagaa	ggtaccgatc	cagcatacgc	agaaaaactg	attcagttcg	3480
gttgggaaac	catcaccgaa	gcactgaaac	agggcggcat	caccctgatg	atggaccgtc	3540
tctctaaccc	ggcgaaactg	cgtgcttatg	cgctttctga	acagctgaaa	gagatcatgg	3600
cacccctgtt	ccagaaacat	atggacgaca	tcatctccgg	cgaattctct	tccggtatga	3660
tggcggactg	ggccaacgat	gataagaaac	tgctgacctg	gcgtgaagag	accggcaaaa	3720
ccgcgtttga	aaccgcgccg	cagtatgaag	gcaaaatcgg	cgagcaggag	tacttcgata	3780
aaggcgtact	gatgattgcg	atggtgaaag	cgggcgttga	actggcgttc	gaaaccatgg	3840
tcgattccgg	catcattgaa	gagtctgcat	attatgaatc	actgcacgag	ctgccgctga	3900
ttgccaacac	catcgcccgt	aagcgtctgt	acgaaatgaa	cgtggttatc	tctgataccg	3960
ctgagtacgg	taactatctg	ttctcttacg	cttgtgtgcc	gttgctgaaa	ccgtttatgg	4020
cagagctgca	accgggcgac	ctgggtaaag	ctattccgga	aggcgcggta	gataacgggc	4080
aactgcgtga	tgtgaacgaa	gcgattcgca	gccatgcgat	tgagcaggta	ggtaagaaac	4140
tgcgcggcta	tatgacagat	atgaaacgta	ttgctgttgc	gggttaaccc	ggaaggagat	4200
ataccatgcc	taagtaccgt	tccgccacca	ccactcatgg	tcgtaatatg	gcgggtgctc	4260
gtgcgctgtg	gcgcgccacc	ggaatgaccg	acgccgattt	cggtaagccg	attatcgcgg	4320
ttgtgaactc	gttcacccaa	tttgtaccgg	gtcacgtcca	tctgcgcgat	ctcggtaaac	4380
tggtcgccga	acaaattgaa	gcggctggcg	gcgttgccaa	agagttcaac	accattgcgg	4440
tggatgatgg	gattgccatg	ggccacgggg	ggatgcttta	ttcactgcca	tctcgcgaac	4500
tgatcgctga	ttccgttgag	tatatggtca	acgcccactg	cgccgacgcc	atggtctgca	4560

tctctaactg	cgacaaaatc	accccgggga	tgctgatggc	ttccctgcgc	ctgaatattc	4620
cggtgatctt	tgtttccggc	ggcccgatgg	aggccgggaa	aaccaaactt	tccgatcaga	4680
tcatcaagct	cgatctggtt	gatgcgatga	tccagggcgc	agacccgaaa	gtatctgact	4740
cccagagcga	tcaggttgaa	cgttccgcgt	gtccgacctg	cggttcctgc	tccgggatgt	4800
ttaccgctaa	ctcaatgaac	tgcctgaccg	aagcgctggg	cctgtcgcag	ccgggcaacg	4860
getegetget	ggcaacccac	gccgaccgta	agcagctgtt	ccttaatgct	ggtaaacgca	4920
ttgttgaatt	gaccaaacgt	tattacgagc	aaaacgacga	aagtgcactg	ccgcgtaata	4980
tcgccagtaa	ggcggcgttt	gaaaacgcca	tgacgctgga	tatcgcgatg	ggtggatcga	5040
ctaacaccgt	acttcacctg	ctggcggcgg	cgcaggaagc	ggaaatcgac	ttcaccatga	5100
gtgatatcga	taagctttcc	cgcaaggttc	cacagetgtg	taaagttgcg	ccgagcaccc	5160
agaaatacca	tatggaagat	gttcaccgtg	ctggtggtgt	tatcggtatt	ctcggcgaac	5220
tggatcgcgc	ggggttactg	aaccgtgatg	tgaaaaacgt	acttggcctg	acgttgccgc	5280
aaacgctgga	acaatacgac	gttatgctga	cccaggatga	cgcggtaaaa	aatatgttcc	5340
gcgcaggtcc	tgcaggcatt	cgtaccacac	aggcattctc	gcaagattgc	cgttgggata	5400
cgctggacga	cgatcgcgcc	aatggctgta	teegeteget	ggaacacgcc	tacagcaaag	5460
acggcggcct	ggcggtgctc	tacggtaact	ttgcggaaaa	cggctgcatc	gtgaaaacgg	5520
caggcgtcga	tgacagcatc	ctcaaattca	ccggcccggc	gaaagtgtac	gaaagccagg	5580
acgatgcggt	agaagcgatt	ctcggcggta	aagttgtcgc	cggagatgtg	gtagtaattc	5640
gctatgaagg	cccgaaaggc	ggtccgggga	tgcaggaaat	gctctaccca	accagettee	5700
tgaaatcaat	gggtetegge	aaagcctgtg	cgctgatcac	cgacggtcgt	ttctctggtg	5760
gcacctctgg	tctttccatc	ggccacgtct	caccggaagc	ggcaagcggc	ggcagcattg	5820
gcctgattga	agatggtgac	ctgatcgcta	tcgacatccc	gaaccgtggc	attcagttac	5880
aggtaagcga	tgccgaactg	gcggcgcgtc	gtgaagcgca	ggacgctcga	ggtgacaaag	5940
cctggacgcc	gaaaaatcgt	gaacgtcagg	tctcctttgc	cctgcgtgct	tatgccagcc	6000
tggcaaccag	cgccgacaaa	ggcgcggtgc	gcgataaatc	gaaactgggg	ggttaaacgc	6060
gtgctagagg	catcaaataa	aacgaaaggc	tcagtcgaaa	gactgggcct	ttcgttttat	6120
ctgttgtttg	tcggtgaacg	ctctcctgag	taggacaaat	ccgccgccct	agacctaggg	6180
gatatattcc	getteetege	tcactgactc	gctacgctcg	gtcgttcgac	tgcggcgagc	6240
ggaaatggct	tacgaacggg	gcggagattt	cctggaagat	gccaggaaga	tacttaacag	6300
ggaagtgaga	gggccgcggc	aaagccgttt	ttccataggc	teegeeeeee	tgacaagcat	6360
cacgaaatct	gacgctcaaa	tcagtggtgg	cgaaacccga	caggactata	aagataccag	6420
gcgtttcccc	ctggcggctc	cctcgtgcgc	tctcctgttc	ctgcctttcg	gtttaccggt	6480
gtcattccgc	tgttatggcc	gcgtttgtct	cattccacgc	ctgacactca	gttccgggta	6540
ggcagttcgc	tccaagctgg	actgtatgca	cgaacccccc	gttcagtccg	accgctgcgc	6600
cttatccggt	aactatcgtc	ttgagtccaa	cccggaaaga	catgcaaaag	caccactggc	6660
agcagccact	ggtaattgat	ttagaggagt	tagtettgaa	gtcatgcgcc	ggttaaggct	6720
aaactgaaag	gacaagtttt	ggtgactgcg	ctcctccaag	ccagttacct	cggttcaaag	6780
agttggtagc	tcagagaacc	ttcgaaaaac	cgccctgcaa	ggcggttttt	tcgttttcag	6840

agcaagagat	tacgcgcaga	ccaaaacgat	ctcaagaaga	tcatcttatt	aatcagataa	6900
aatatttcta	gatttcagtg	caatttatct	cttcaaatgt	agcacctgaa	gtcagcccca	6960
tacgatataa	gttgttacta	gtgcttggat	tctcaccaat	aaaaaacgcc	cggcggcaac	7020
cgagcgttct	gaacaaatcc	agatggagtt	ctgaggtcat	tactggatct	atcaacagga	7080
gtccaagcga	gct					7093
<220> FEATU	TH: 7112 : DNA NISM: Artif: JRE:	icial Sequer DN: Plasmid				
<400> SEQUE	ENCE: 109					
taagaaacca	ttattatcat	gacattaacc	tataaaaata	ggcgtatcac	gaggcccttt	60
cgtcttcacc	tcgagaattg	tgagcggata	acaattgaca	ttgtgagcgg	ataacaagat	120
actgagcaca	tcagcaggac	gcactgaccg	aattcattaa	agaggagaaa	ggtaccatgt	180
atacagtagg	agattaccta	ttagaccgat	tacacgagtt	aggaattgaa	gaaatttttg	240
gagtccctgg	agactataac	ttacaatttt	tagatcaaat	tatttcccgc	aaggatatga	300
aatgggtcgg	aaatgctaat	gaattaaatg	cttcatatat	ggctgatggc	tatgctcgta	360
ctaaaaaagc	tgccgcattt	cttacaacct	ttggagtagg	tgaattgagt	gcagttaatg	420
gattagcagg	aagttacgcc	gaaaatttac	cagtagtaga	aatagtggga	tcacctacat	480
caaaagttca	aaatgaagga	aaatttgttc	atcatacgct	ggctgacggt	gattttaaac	540
actttatgaa	aatgcacgaa	cctgttacag	cagctcgaac	tttactgaca	gcagaaaatg	600
caaccgttga	aattgaccga	gtactttctg	cactattaaa	agaaagaaaa	cctgtctata	660
tcaacttacc	agttgatgtt	gctgctgcaa	aagcagagaa	accctcactc	cctttgaaaa	720
aagaaaactc	aacttcaaat	acaagtgacc	aagagatctt	gaacaaaatt	caagaaagct	780
tgaaaaatgc	caaaaaacca	atcgtgatta	caggacatga	aataattagt	tttggcttag	840
aaaaacagt	ctctcaattt	atttcaaaga	caaaactacc	tattacgaca	ttaaactttg	900
gaaaaagttc	agttgatgaa	gctctccctt	catttttagg	aatctataat	ggtaaactct	960
cagagcctaa	tcttaaagaa	ttcgtggaat	cagccgactt	catcctgatg	cttggagtta	1020
aactcacaga	ctcttcaaca	ggagccttca	ctcatcattt	aaatgaaaat	aaaatgattt	1080
cactgaatat	agatgaagga	aaaatattta	acgaaagcat	ccaaaatttt	gattttgaat	1140
ccctcatctc	ctctctctta	gacctaagcg	aaatagaata	caaaggaaaa	tatatcgata	1200
aaaagcaaga	agactttgtt	ccatcaaatg	cgcttttatc	acaagaccgc	ctatggcaag	1260
cagttgaaaa	cctaactcaa	agcaatgaaa	caatcgttgc	tgaacaaggg	acatcattct	1320
ttggcgcttc	atcaattttc	ttaaaaccaa	agagtcattt	tattggtcaa	cccttatggg	1380
gatcaattgg	atatacattc	ccagcagcat	taggaagcca	aattgcagat	aaagaaagca	1440
gacacctttt	atttattggt	gatggttcac	ttcaacttac	ggtgcaagaa	ttaggattag	1500
caatcagaga	aaaaattaat	ccaatttgct	ttattatcaa	taatgatggt	tatacagtcg	1560
aaagagaaat	tcatggacca	aatcaaagct	acaatgatat	tccaatgtgg	aattactcaa	1620
aattaccaga	atcatttgga	gcaacagaag	aacgagtagt	ctcgaaaatc	gttagaactg	1680

aaaatgaatt	tgtgtctgtc	atgaaagaag	ctcaagcaga	tccaaataga	atgtactgga	1740
ttgagttaat	tttggcaaaa	gaagatgcac	caaaagtact	gaaaaaaatg	ggcaaactat	1800
ttgctgaaca	aaataaatca	taaggtcgac	aggagatata	ctatgcctaa	atatcgcagc	1860
gcaactacta	cccacggccg	caacatggca	ggcgcgcgtg	ctctgtggcg	tgcgactggt	1920
atgactgatg	cggactttgg	caaaccaatc	attgctgtgg	ttaatagctt	tactcagttc	1980
gttccaggcc	atgttcacct	gcgtgacctg	ggcaagctgg	ttgcggagca	gatcgaggct	2040
gcgggtggtg	tggcgaagga	atttaacacc	atcgctgttg	acgacggtat	cgcgatgggt	2100
catggtggta	tgctgtacag	cctgccgagc	cgtgagctga	ttgcggacag	cgtggaatac	2160
atggttaatg	cgcattgtgc	ggatgcgatg	gtttgtatta	gcaactgtga	taagattact	2220
ccaggtatgc	tgatggcgag	cctgcgtctg	aacatcccag	ttattttcgt	gagcggtggt	2280
ccaatggaag	cgggtaagac	taagctgagc	gaccagatta	tcaaactgga	cctggtggac	2340
gctatgattc	aaggtgctga	tccaaaggtt	agcgatagcc	aatctgacca	agtggagcgc	2400
agcgcttgcc	caacttgtgg	cagctgtagc	ggtatgttca	ctgcgaatag	catgaattgt	2460
ctgactgagg	ctctgggtct	gagccaacca	ggtaatggta	gcctgctggc	gactcatgcg	2520
gatcgcaaac	aactgtttct	gaacgcgggc	aagcgtatcg	tggagctgac	taagcgctac	2580
tatgaacaga	atgatgagtc	cgcgctgcca	cgcaacattg	cgtccaaagc	tgctttcgag	2640
aatgcgatga	ccctggacat	tgctatgggc	ggtagcacca	atactgttct	gcatctgctg	2700
gctgctgctc	aagaggctga	gattgatttt	actatgtccg	acattgacaa	actgagccgt	2760
aaagtgccgc	aactgtgcaa	ggtggctcca	tctactcaaa	agtatcacat	ggaggacgtg	2820
catcgcgcgg	gtggcgtgat	tggcatcctg	ggtgagctgg	accgtgctgg	tctgctgaat	2880
cgcgacgtta	agaatgttct	gggtctgacc	ctgccacaga	ccctggagca	gtatgatgtg	2940
atgctgactc	aagacgatgc	tgttaagaac	atgtttcgtg	ctggtccggc	gggtateege	3000
actacccaag	cgtttagcca	ggactgtcgc	tgggacaccc	tggatgatga	ccgtgcgaac	3060
ggttgcattc	gtagcctgga	acatgcgtat	tctaaggatg	gtggtctggc	tgttctgtat	3120
ggcaatttcg	ctgagaatgg	ttgtattgtt	aagaccgcgg	gtgttgacga	ttctattctg	3180
aagtttactg	gtccagctaa	ggtttatgag	tctcaagatg	acgctgttga	ggctatcctg	3240
ggtggcaagg	tggttgcggg	tgacgttgtt	gttatccgtt	acgagggtcc	aaagggtggc	3300
ccaggtatgc	aagagatgct	gtatccgact	tcttttctga	agagcatggg	cctgggtaag	3360
gcgtgcgctc	tgattactga	tggccgcttt	agcggcggta	ctageggeet	gagcattggt	3420
catgttagcc	cagaggctgc	gtctggtggt	tctatcggtc	tgatcgagga	cggcgatctg	3480
attgcgattg	atattccaaa	tcgcggtatc	caactgcaag	tttctgacgc	ggagctggct	3540
gctcgccgcg	aggctcaaga	tgcgcgtggc	gataaggcgt	ggaccccaaa	gaaccgcgag	3600
cgccaagtta	gettegeget	gcgcgcgtac	gcctctctgg	cgacttctgc	ggataagggt	3660
gctgttcgtg	acaagagcaa	gctgggtggc	taaacgcgtg	ctagaggcat	caaataaaac	3720
gaaaggctca	gtcgaaagac	tgggcettte	gttttatctg	ttgtttgtcg	gtgaacgctc	3780
tcctgagtag	gacaaatccg	ccgccctaga	cctagctagg	gtacgggttt	tgetgeeege	3840
aaacgggctg	ttctggtgtt	gctagtttgt	tatcagaatc	gcagatccgg	cttcagccgg	3900

gtcactggct	cccgtgttgt	cggcagcttt	gattcgataa	gcagcatcgc	ctgtttcagg	4020
ctgtctatgt	gtgactgttg	agctgtaaca	agttgtctca	ggtgttcaat	ttcatgttct	4080
agttgctttg	ttttactggt	ttcacctgtt	ctattaggtg	ttacatgctg	ttcatctgtt	4140
acattgtcga	tctgttcatg	gtgaacagct	ttaaatgcac	caaaaactcg	taaaagctct	4200
gatgtatcta	tctttttac	accgttttca	tctgtgcata	tggacagttt	tccctttgat	4260
atctaacggt	gaacagttgt	tctacttttg	tttgttagtc	ttgatgcttc	actgatagat	4320
acaagagcca	taagaacctc	agateettee	gtatttagcc	agtatgttct	ctagtgtggt	4380
tcgttgttt	tgcgtgagcc	atgagaacga	accattgaga	tcatgcttac	tttgcatgtc	4440
actcaaaaat	tttgcctcaa	aactggtgag	ctgaatttt	gcagttaaag	catcgtgtag	4500
tgtttttctt	agtccgttac	gtaggtagga	atctgatgta	atggttgttg	gtattttgtc	4560
accattcatt	tttatctggt	tgttctcaag	ttcggttacg	agatccattt	gtctatctag	4620
ttcaacttgg	aaaatcaacg	tatcagtcgg	gcggcctcgc	ttatcaacca	ccaatttcat	4680
attgctgtaa	gtgtttaaat	ctttacttat	tggtttcaaa	acccattggt	taagcetttt	4740
aaactcatgg	tagttattt	caagcattaa	catgaactta	aattcatcaa	ggctaatctc	4800
tatatttgcc	ttgtgagttt	tettttgtgt	tagttettt	aataaccact	cataaatcct	4860
catagagtat	ttgttttcaa	aagacttaac	atgttccaga	ttatatttta	tgaatttttt	4920
taactggaaa	agataaggca	atatetette	actaaaaact	aattctaatt	tttcgcttga	4980
gaacttggca	tagtttgtcc	actggaaaat	ctcaaagcct	ttaaccaaag	gattcctgat	5040
ttccacagtt	ctcgtcatca	gctctctggt	tgctttagct	aatacaccat	aagcattttc	5100
cctactgatg	ttcatcatct	gagcgtattg	gttataagtg	aacgataccg	tccgttcttt	5160
ccttgtaggg	ttttcaatcg	tggggttgag	tagtgccaca	cagcataaaa	ttagcttggt	5220
ttcatgctcc	gttaagtcat	agcgactaat	cgctagttca	tttgctttga	aaacaactaa	5280
ttcagacata	catctcaatt	ggtctaggtg	attttaatca	ctataccaat	tgagatgggc	5340
tagtcaatga	taattactag	teetttteee	gggagatctg	ggtatctgta	aattctgcta	5400
gacctttgct	ggaaaacttg	taaattctgc	tagaccctct	gtaaattccg	ctagaccttt	5460
gtgtgtttt	tttgtttata	ttcaagtggt	tataatttat	agaataaaga	aagaataaaa	5520
aaagataaaa	agaatagatc	ccagccctgt	gtataactca	ctactttagt	cagttccgca	5580
gtattacaaa	aggatgtcgc	aaacgctgtt	tgctcctcta	caaaacagac	cttaaaaccc	5640
taaaggetta	agtagcaccc	tcgcaagctc	gggcaaatcg	ctgaatattc	cttttgtctc	5700
cgaccatcag	gcacctgagt	cgctgtcttt	ttcgtgacat	tcagttcgct	gcgctcacgg	5760
ctctggcagt	gaatgggggt	aaatggcact	acaggcgcct	tttatggatt	catgcaagga	5820
aactacccat	aatacaagaa	aagcccgtca	cgggcttctc	agggcgtttt	atggcgggtc	5880
tgctatgtgg	tgctatctga	ctttttgctg	ttcagcagtt	cctgccctct	gattttccag	5940
tctgaccact	tcggattatc	ccgtgacagg	tcattcagac	tggctaatgc	acccagtaag	6000
gcagcggtat	catcaacagg	cttacccgtc	ttactgtccc	tagtgcttgg	attctcacca	6060
ataaaaaacg	cccggcggca	accgagcgtt	ctgaacaaat	ccagatggag	ttctgaggtc	6120
attactggat	ctatcaacag	gagtccaagc	gagetetega	accccagagt	cccgctcaga	6180
agaactcgtc	aagaaggcga	tagaaggcga	tgcgctgcga	atcgggagcg	gcgataccgt	6240

		ъ.
-cont	inied	٦

aaagcacgag gaagcggtca gcccattcgc cgccaagctc ttcagcaata tcacgggtag 6300 ccaacgctat gtcctgatag cggtccgcca cacccagccg gccacagtcg atgaatccag 6360 aaaageggee attttecace atgatatteg geaageagge ategeeatgg gteaegaega 6420 gatectegee gtegggeatg egegeettga geetggegaa eagttegget ggegegagee 6480 cctgatgctc ttcgtccaga tcatcctgat cgacaagacc ggcttccatc cgagtacgtg 6540 ctcgctcgat gcgatgtttc gcttggtggt cgaatgggca ggtagccgga tcaagcgtat 6600 gcagccgccg cattgcatca gccatgatgg atactttctc ggcaggagca aggtgagatg 6660 acaggagate etgeccegge acttegecea atageageea gtecetteee getteagtga 6720 caacgtcgag cacagetgeg caaggaacge cegtegtgge cagecaegat ageegegetg 6780 cctcgtcctg cagttcattc agggcaccgg acaggtcggt cttgacaaaa agaaccgggc 6840 gcccctgcgc tgacagccgg aacacggcgg catcagagca gccgattgtc tgttgtgccc 6900 6960 agtcatagec gaatageete tecaceeaag eggeeggaga acetgegtge aateeatett 7020 gttcaatcat gcgaaacgat cctcatcctg tctcttgatc agatcttgat cccctgcgcc atcagateet tggeggeaag aaageeatee agtttaettt geagggette eeaaeettae 7080 7112 cagagggggc cccagctggc aatteegacg te <210> SEQ ID NO 110 <211> LENGTH: 7884 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1661 <400> SEQUENCE: 110 ctcgagtccc tatcagtgat agagattgac atccctatca gtgatagaga tactgagcac 60 atcagcagga cgcactgacc gaattcatta aagaggaaca accaaatgga tgaccagtta 120 aaacaaaqtq cacttqattt ccatqaattt ccaqttccaq qqaaaatcca qqtttctcca 180 accaageete tggcaacaca gegegatetg gegetggeet acteaceagg egttgeegea 240 ccttgtcttg aaatcgaaaa agacccgtta aaagcctaca aatataccgc ccgaggtaac 300 ctggtggcgg tgatctctaa cggtacggcg gtgctggggt taggcaacat tggcgcgctg 360 gcaggcaaac cggtgatgga aggcaagggc gttctgttta agaaattcgc cgggattgat 420 gtatttgaca ttgaagttga cgaactcgac ccggacaaat ttattgaagt tgtcgccgcg 480 ctcgaaccaa ccttcggcgg catcaacctc gaagacatta aagcgccaga atgtttctat 540 attgaacaga aactgcgcga gcggatgaat attccggtat tccacgacga tcagcacggc 600 acggcaatta tcagcactgc cgccatcctc aacggcttgc gcgtggtgga gaaaaacatc 660 tccgacgtgc ggatggtggt ttccggcgcg ggtgccgcag caatcgcctg tatgaacctg 720 780 ctggtagcgc tgggtctgca aaaacataac atcgtggttt gcgattcaaa aggcgttatc tatcagggcc gtgagccaaa catggcggaa accaaagccg catatgcggt ggtggatgac 840 ggcaaacgta ccctcgatga tgtgattgaa ggcgcggata ttttcctggg ctgttccggc 900 ccgaaagtgc tgacccagga aatggtgaag aaaatggctc gtgcgccaat gatcctggcg 960 ctggcgaacc cggaaccgga aattctgccg ccgctggcga aagaagtgcg tccggatgcc 1020

atcatttgca ccggtcgttc tgactatccg aaccaggtga acaacgtcct gtgcttcccg

ttcatcttcc	gtggcgcgct	ggacgttggc	gcaaccgcca	tcaacgaaga	gatgaaactg	1140	
gcggcggtac	gtgcgattgc	agaactcgcc	catgcggaac	agagcgaagt	ggtggcttca	1200	
gcgtatggcg	atcaggatct	gagctttggt	ccggaataca	tcattccaaa	accgtttgat	1260	
ccgcgcttga	tcgttaagat	cgctcctgcg	gtcgctaaag	ccgcgatgga	gtcgggcgtg	1320	
gcgactcgtc	cgattgctga	tttcgacgtc	tacatcgaca	agctgactga	gttcgtttac	1380	
aaaaccaacc	tgtttatgaa	gccgattttc	tcccaggete	gcaaagcgcc	gaagegegtt	1440	
gttctgccgg	aaggggaaga	ggcgcgcgtt	ctgcatgcca	ctcaggaact	ggtaacgctg	1500	
ggactggcga	aaccgatcct	tatcggtcgt	ccgaacgtga	tcgaaatgcg	cattcagaaa	1560	
ctgggcttgc	agatcaaagc	gggcgttgat	tttgagatcg	tcaataacga	atccgatccg	1620	
cgctttaaag	agtactggac	cgaatacttc	cagatcatga	agcgtcgcgg	cgtcactcag	1680	
gaacaggcgc	agcgggcgct	gatcagtaac	ccgacagtga	tcggcgcgat	catggttcag	1740	
cgtggggaag	ccgatgcaat	gatttgcggt	acggtgggtg	attatcatga	acattttagc	1800	
gtggtgaaaa	atgtetttgg	ttatcgcgat	ggcgttcaca	ccgcaggtgc	catgaacgcg	1860	
ctgctgctgc	cgagtggtaa	cacctttatt	gccgatacat	atgttaatga	tgaaccggat	1920	
gcagaagagc	tggcggagat	caccttgatg	gcggcagaaa	ctgtccgtcg	ttttggtatt	1980	
gagccgcgcg	ttgctttgtt	gtcgcactcc	aactttggtt	cttctgactg	cccgtcgtcg	2040	
agcaaaatgc	gtcaggcgct	ggaactggtc	agggaacgtg	caccagaact	gatgattgat	2100	
ggtgaaatgc	acggcgatgc	agcgctggtg	gaagcgattc	gcaacgaccg	tatgccggac	2160	
agctctttga	aaggttccgc	caatattctg	gtgatgccga	acatggaagc	tgcccgcatt	2220	
agttacaact	tactgcgtgt	ttccagctcg	gaaggtgtga	ctgtcggccc	ggtgctgatg	2280	
ggtgtggcga	aaccggttca	cgtgttaacg	ccgatcgcat	cggtgcgtcg	tatcgtcaac	2340	
atggtggcgc	tggccgtggt	agaagcgcaa	acccaaccgc	tgtaaggtac	cattaaagag	2400	
gagaaacgta	gcatgaacga	acaatattcc	gcattgcgta	gtaatgtcag	tatgctcggc	2460	
aaagtgctgg	gagaaaccat	caaggatgcg	ttgggagaac	acattettga	acgcgtagaa	2520	
actatccgta	agttgtcgaa	atcttcacgc	gctggcaatg	atgctaaccg	ccaggagttg	2580	
ctcaccacct	tacaaaattt	gtcgaacgac	gagctgctgc	ccgttgcgcg	tgcgtttagt	2640	
cagttcctga	acctggccaa	caccgccgag	caataccaca	gcatttcgcc	gaaaggcgaa	2700	
gctgccagca	acccggaagt	gatcgcccgc	accctgcgta	aactgaaaaa	ccagccggaa	2760	
ctgagcgaag	acaccatcaa	aaaagcagtg	gaatcgctgt	cgctggaact	ggtcctcacg	2820	
gctcacccaa	ccgaaattac	ccgtcgtaca	ctgatccaca	aaatggtgga	agtgaacgcc	2880	
tgtttaaaac	agctcgataa	caaagatatc	gctgactacg	aacacaacca	gctgatgcgt	2940	
cgcctgcgcc	agttgatcgc	ccagtcatgg	cataccgatg	aaatccgtaa	gctgcgtcca	3000	
agcccggtag	atgaagccaa	atggggcttt	gccgtagtgg	aaaacagcct	gtggcaaggc	3060	
gtaccaaatt	acctgcgcga	actgaacgaa	caactggaag	agaacctcgg	ctacaaactg	3120	
cccgtcgaat	ttgttccggt	ccgttttact	tcgtggatgg	gcggcgaccg	cgacggcaac	3180	
ccgaacgtca	ctgccgatat	caccegeeac	gtcctgctac	tcagccgctg	gaaagccacc	3240	
gatttgttcc	tgaaagatat	tcaggtgctg	gtttctgaac	tgtcgatggt	tgaagcgacc	3300	
cctgaactgc	tggcgctggt	tggcgaagaa	ggtgccgcag	aaccgtatcg	ctatctgatg	3360	

-						
aaaaacctgc	gttctcgcct	gatggcgaca	caggcatggc	tggaagcgcg	cctgaaaggc	3420
gaagaactgc	caaaaccaga	aggcctgctg	acacaaaacg	aagaactgtg	ggaaccgctc	3480
tacgcttgct	accagtcact	tcaggcgtgt	ggcatgggta	ttatcgccaa	cggcgatctg	3540
ctcgacaccc	tgcgccgcgt	gaaatgtttc	ggcgtaccgc	tggtccgtat	tgatatccgt	3600
caggagagca	cgcgtcatac	cgaagcgctg	ggcgagctga	cccgctacct	cggtatcggc	3660
gactacgaaa	gctggtcaga	ggccgacaaa	caggcgttcc	tgatccgcga	actgaactcc	3720
aaacgtccgc	ttctgccgcg	caactggcaa	ccaagcgccg	aaacgcgcga	agtgctcgat	3780
acctgccagg	tgattgccga	agcaccgcaa	ggctccattg	ccgcctacgt	gatctcgatg	3840
gcgaaaacgc	cgtccgacgt	actggctgtc	cacctgctgc	tgaaagaagc	gggtatcggg	3900
tttgcgatgc	cggttgctcc	gctgtttgaa	accctcgatg	atctgaacaa	cgccaacgat	3960
gtcatgaccc	agctgctcaa	tattgactgg	tatcgtggcc	tgattcaggg	caaacagatg	4020
gtgatgattg	gctattccga	ctcagcaaaa	gatgcgggag	tgatggcagc	tteetgggeg	4080
caatatcagg	cacaggatgc	attaatcaaa	acctgcgaaa	aagcgggtat	tgagctgacg	4140
ttgttccacg	gtcgcggcgg	ttccattggt	cgcggcggcg	cacctgctca	tgcggcgctg	4200
ctgtcacaac	cgccaggaag	cctgaaaggc	ggcctgcgcg	taaccgaaca	gggcgagatg	4260
atccgcttta	aatatggtct	gccagaaatc	accgtcagca	gcctgtcgct	ttataccggg	4320
gcgattctgg	aagccaacct	gctgccaccg	ccggagccga	aagagagctg	gcgtcgcatt	4380
atggatgaac	tgtcagtcat	ctcctgcgat	gtctaccgcg	gctacgtacg	tgaaaacaaa	4440
gattttgtgc	cttacttccg	ctccgctacg	ccggaacaag	aactgggcaa	actgccgttg	4500
ggttcacgtc	cggcgaaacg	tcgcccaacc	ggcggcgtcg	agtcactacg	cgccattccg	4560
tggatetteg	cctggacgca	aaaccgtctg	atgeteeeeg	cctggctggg	tgcaggtacg	4620
gcgctgcaaa	aagtggtcga	agacggcaaa	cagagcgagc	tggaggctat	gtgccgcgat	4680
tggccattct	tctcgacgcg	tctcggcatg	ctggagatgg	tcttcgccaa	agcagacctg	4740
tggctggcgg	aatactatga	ccaacgcctg	gtagacaaag	cactgtggcc	gttaggtaaa	4800
gagttacgca	acctgcaaga	agaagacatc	aaagtggtgc	tggcgattgc	caacgattcc	4860
catctgatgg	ccgatctgcc	gtggattgca	gagtctattc	agctacggaa	tatttacacc	4920
gacccgctga	acgtattgca	ggccgagttg	ctgcaccgct	cccgccaggc	agaaaaagaa	4980
ggccaggaac	cggatcctcg	cgtcgaacaa	gcgttaatgg	tcactattgc	cgggattgcg	5040
gcaggtatgc	gtaataccgg	ctaagtcgac	attaaagagg	agattactta	tgaaagttgc	5100
tgttctgggt	gctgcaggtg	gtattggtca	ggcactggcc	ctgctgctga	aaactcagct	5160
gccgagcggt	tctgaactgt	ccctgtacga	tattgcgcct	gttactccgg	gtgtcgctgt	5220
	catatcccta					5280
tccggcgctg	gaaggtgccg	acgttgtact	gatctctgcg	ggcgtggctc	gtaaaccggg	5340
	tctgatctgt					5400
	acctgtccga					5460
	gcggcagaag					5520
	accctggaca					5580
acagccgggt	gaagttgaag	ttccggttat	cggtggccac	agcggtgtta	ccatcctgcc	5640

tetgetgage c	caggttccgg	gtgtgtcttt	caccgaacaa	gaagtagcgg	acctgaccaa	5700
acgtatccaa a	aacgctggca	ccgaagttgt	tgaagccaaa	gcaggtggtg	gctctgctac	5760
cctgtctatg g	ggtcaagcgg	cagcacgctt	tggcctgtct	ctggttcgcg	ctctgcaggg	5820
tgaacaaggt g	gtggtagaat	gtgcttacgt	tgaaggcgat	ggccagtatg	cacgettett	5880
ctcccaacct c	ctgctgctgg	gcaaaaacgg	tgttgaggaa	cgtaaatcta	tcggcactct	5940
gteegegtte g	gaacaaaacg	cgctggaagg	catgctggat	actctgaaga	aagatatcgc	6000
tctgggtgag g	gaatttgtta	acaaatgacc	tagggatata	ttccgcttcc	tcgctcactg	6060
actcgctacg c	ctcggtcgtt	cgactgcggc	gagcggaaat	ggcttacgaa	cgggggcggag	6120
atttcctgga a	agatgccagg	aagatactta	acagggaagt	gagagggccg	cggcaaagcc	6180
gtttttccat a	aggeteegee	cccctgacaa	gcatcacgaa	atctgacgct	caaatcagtg	6240
gtggcgaaac c	ccgacaggac	tataaagata	ccaggcgttt	ccccctggcg	gctccctcgt	6300
gegeteteet g	gtteetgeet	ttcggtttac	cggtgtcatt	ccgctgttat	ggccgcgttt	6360
gtctcattcc a	acgcctgaca	ctcagttccg	ggtaggcagt	tcgctccaag	ctggactgta	6420
tgcacgaacc c	ccccgttcag	tccgaccgct	gcgccttatc	cggtaactat	cgtcttgagt	6480
ccaacccgga a	aagacatgca	aaagcaccac	tggcagcagc	cactggtaat	tgatttagag	6540
gagttagtct t	gaagtcatg	cgccggttaa	ggctaaactg	aaaggacaag	ttttggtgac	6600
tgegeteete e	caagccagtt	acctcggttc	aaagagttgg	tagctcagag	aaccttcgaa	6660
aaaccgccct g	gcaaggcggt	tttttcgttt	tcagagcaag	agattacgcg	cagaccaaaa	6720
cgatctcaag a	aagatcatct	tattaatcag	ataaaatatt	tctagatttc	agtgcaattt	6780
atctcttcaa a	atgtagcacc	tgaagtcagc	cccatacgat	ataagttgtt	actagtgctt	6840
ggatteteae c	caataaaaaa	cgcccggcgg	caaccgagcg	ttctgaacaa	atccagatgg	6900
agttctgagg t	cattactgg	atctatcaac	aggagtccaa	gcgagctcga	tatcaaatta	6960
cgccccgccc t	gccactcat	cgcagtactg	ttgtaattca	ttaagcattc	tgccgacatg	7020
gaagccatca c	cagacggcat	gatgaacctg	aatcgccagc	ggcatcagca	ccttgtcgcc	7080
ttgcgtataa t	atttgccca	tggtgaaaac	ggggggcgaag	aagttgtcca	tattggccac	7140
gtttaaatca a	aaactggtga	aactcaccca	gggattggct	gagacgaaaa	acatattctc	7200
aataaaccct t	tagggaaat	aggccaggtt	ttcaccgtaa	cacgccacat	cttgcgaata	7260
tatgtgtaga a	aactgccgga	aatcgtcgtg	gtattcactc	cagagcgatg	aaaacgtttc	7320
agtttgctca t	ggaaaacgg	tgtaacaagg	gtgaacacta	tcccatatca	ccagctcacc	7380
gtctttcatt g	gccatacgaa	actccggatg	agcattcatc	aggcgggcaa	gaatgtgaat	7440
aaaggccgga t	aaaacttgt	gcttatttt	ctttacggtc	tttaaaaagg	ccgtaatatc	7500
cagctgaacg g	gtctggttat	aggtacattg	agcaactgac	tgaaatgcct	caaaatgttc	7560
tttacgatgc c	cattgggata	tatcaacggt	ggtatatcca	gtgattttt	tctccatttt	7620
agetteetta g	gctcctgaaa	atctcgataa	ctcaaaaaat	acgcccggta	gtgatcttat	7680
ttcattatgg t	cgaaagttgg	aacctcttac	gtgccgatca	acgtctcatt	ttcgccagat	7740
atcgacgtct a	aagaaaccat	tattatcatg	acattaacct	ataaaaatag	gcgtatcacg	7800
aggeeettte g	gtcttcacga	aaccattatt	atcatgacat	taacctataa	aaataggcgt	7860
atcacgaggc c	cetttegtet	tcac				7884

-continued

<210> SEO ID NO 111 <211> LENGTH: 4895 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1685 <400> SEOUENCE: 111 ctcgagtccc tatcagtgat agagattgac atccctatca gtgatagaga tactgagcac 60 atcagcagga cgcactgacc gaattcatta aagaggagaa aggtaccatg cgaattggca 120 taccaagaga acggttaacc aatgaaaccc gtgttgcagc aacgccaaaa acagtggaac 180 agetgetgaa aetgggtttt aeegtegegg tagagagegg egegggteaa etggeaagtt 240 ttgacgataa agcgtttgtg caagcgggcg ctgaaattgt agaagggaat agcgtctggc 300 agtcagagat cattetgaag gtcaatgege egttagatga tgaaattgeg ttaetgaate 360 420 ctgggacaac gctggtgagt tttatctggc ctgcgcagaa tccggaatta atgcaaaaac ttgcggaacg taacgtgacc gtgatggcga tggactctgt gccgcgtatc tcacgcgcac 480 aategetgga egeactaage tegatggega acategeegg ttategegee attgttgaag 540 cggcacatga atttgggcgc ttctttaccg ggcaaattac tgcggccggg aaagtgccac 600 660 cqqcaaaaaqt qatqqtqatt qqtqcqqqtq ttqcaqqtct qqccqccatt qqcqcaqcaa acagtetegg egegattgtg egtgeatteg acaecegeee ggaagtgaaa gaacaagtte 720 aaagtatggg cgcggaattc ctcgagctgg attttaaaga ggaagctggc agcggcgatg 780 gctatgccaa agtgatgtcg gacgcgttca tcaaagcgga aatggaactc tttgccgccc 840 900 aqqcaaaaqa qqtcqatatc attqtcacca ccqcqcttat tccaqqcaaa ccaqcqccqa agetaattae ceqtqaaatq qttqaeteea tqaaqqeqqq caqtqtqatt qteqaeetqq 960 1020 cageceaaaa eggeggeaae tgtgaataea eegtgeeggg tgaaatette actaeggaaa atggtgtcaa agtgattggt tataccgatc ttccgggccg tctgccgacg caatcctcac 1080 agetttacgg cacaaacete gttaatetge tgaaactgtt gtgcaaagag aaagaeggca 1140 1200 atatcactgt tgattttgat gatgtggtga ttcgcggcgt gaccgtgatc cgtgcgggcg aaattacctg gccggcaccg ccgattcagg tatcagctca gccgcaggcg gcacaaaaag 1260 cggcaccgga agtgaaaaat gaggaaaaat gtacctgctc accgtggcgt aaatacgcgt 1320 tgatggcgct ggcaatcatt ctttttggct ggatggcaag cgttgcgccg aaagaattcc 1380 1440 ttgggcactt caccgttttc gcgctggcct gcgttgtcgg ttattacgtg gtgtggaatg tatcgcacgc gctgcataca ccgttgatgt cggtcaccaa cgcgatttca gggattattg 1500 ttgtcggagc actgttgcag attggccagg gcggctgggt tagcttcctt agttttatcg 1560 cggtgcttat agccagcatt aatattttcg gtggcttcac cgtgactcag cgcatgctga 1620 aaatgttccg caaaaattaa ggggtaacat atgtctggag gattagttac agctgcatac 1680 attgttgccg cgatcctgtt tatcttcagt ctggccggtc tttcgaaaca tgaaacgtct 1740 cgccagggta acaacttegg tategeeggg atggegattg egttaatege aaceattttt 1800 ggaccggata cgggtaatgt tggctggatc ttgctggcga tggtcattgg tggggcaatt 1860 ggtatccgtc tggcgaagaa agttgaaatg accgaaatgc cagaactggt ggcgatcctg 1920 catagetteg tgggtetgge ggeagtgetg gttggettta acagetatet geateatgae 1980

gcgggaatgg	caccgattct	ggtcaatatt	cacctgacgg	aagtgttcct	cggtatcttc	2040
atcggggggg	taacgttcac	gggttcggtg	gtggcgttcg	gcaaactgtg	tggcaagatt	2100
tcgtctaaac	cattgatgct	gccaaaccgt	cacaaaatga	acctggcggc	tctggtcgtt	2160
tccttcctgc	tgctgattgt	atttgttcgc	acggacagcg	tcggcctgca	agtgctggca	2220
ttgctgataa	tgaccgcaat	tgcgctggta	ttcggctggc	atttagtcgc	ctccatcggt	2280
ggtgcagata	tgccagtggt	ggtgtcgatg	ctgaactcgt	actccggctg	ggcggctgcg	2340
gctgcgggct	ttatgctcag	caacgacctg	ctgattgtga	ccggtgcgct	ggtcggttct	2400
tcggggggta	tcctttctta	cattatgtgt	aaggcgatga	accgttcctt	tatcagcgtt	2460
attgcgggtg	gtttcggcac	cgacggetet	tctactggcg	atgatcagga	agtgggtgag	2520
caccgcgaaa	tcaccgcaga	agagacagcg	gaactgctga	aaaactccca	ttcagtgatc	2580
attactccgg	ggtacggcat	ggcagtcgcg	caggcgcaat	atcctgtcgc	tgaaattact	2640
gagaaattgc	gcgctcgtgg	tattaatgtg	cgtttcggta	tccacccggt	cgcgggggcgt	2700
ttgcctggac	atatgaacgt	attgctggct	gaagcaaaag	taccgtatga	catcgtgctg	2760
gaaatggacg	agatcaatga	tgactttgct	gataccgata	ccgtactggt	gattggtgct	2820
aacgatacgg	ttaacccggc	ggcgcaggat	gatccgaaga	gtccgattgc	tggtatgcct	2880
gtgctggaag	tgtggaaagc	gcagaacgtg	attgtcttta	aacgttcgat	gaacactggc	2940
tatgctggtg	tgcaaaaccc	gctgttcttc	aaggaaaaca	cccacatgct	gtttggtgac	3000
gccaaagcca	gcgtggatgc	aatcctgaaa	gctctgtaac	ctagggatat	attccgcttc	3060
ctcgctcact	gactcgctac	gctcggtcgt	tcgactgcgg	cgagcggaaa	tggcttacga	3120
acgggggcgga	gatttcctgg	aagatgccag	gaagatactt	aacagggaag	tgagagggcc	3180
gcggcaaagc	cgtttttcca	taggctccgc	ccccctgaca	agcatcacga	aatctgacgc	3240
tcaaatcagt	ggtggcgaaa	cccgacagga	ctataaagat	accaggcgtt	tccccctggc	3300
ggctccctcg	tgegetetee	tgttcctgcc	tttcggttta	ccggtgtcat	tccgctgtta	3360
tggccgcgtt	tgtctcattc	cacgcctgac	actcagttcc	gggtaggcag	ttcgctccaa	3420
gctggactgt	atgcacgaac	cccccgttca	gtccgaccgc	tgcgccttat	ccggtaacta	3480
tcgtcttgag	tccaacccgg	aaagacatgc	aaaagcacca	ctggcagcag	ccactggtaa	3540
ttgatttaga	ggagttagtc	ttgaagtcat	gcgccggtta	aggctaaact	gaaaggacaa	3600
gttttggtga	ctgcgctcct	ccaagccagt	tacctcggtt	caaagagttg	gtagctcaga	3660
gaaccttcga	aaaaccgccc	tgcaaggcgg	tttttcgtt	ttcagagcaa	gagattacgc	3720
gcagaccaaa	acgatctcaa	gaagatcatc	ttattaatca	gataaaatat	ttctagattt	3780
cagtgcaatt	tatctcttca	aatgtagcac	ctgaagtcag	ccccatacga	tataagttgt	3840
tactagtgct	tggattctca	ccaataaaaa	acgcccggcg	gcaaccgagc	gttctgaaca	3900
aatccagatg	gagttctgag	gtcattactg	gatctatcaa	caggagtcca	agcgagctcg	3960
atatcaaatt	acgccccgcc	ctgccactca	tcgcagtact	gttgtaattc	attaagcatt	4020
ctgccgacat	ggaagccatc	acagacggca	tgatgaacct	gaatcgccag	cggcatcagc	4080
accttgtcgc	cttgcgtata	atatttgccc	atggtgaaaa	cggggggggaa	gaagttgtcc	4140
atattggcca	cgtttaaatc	aaaactggtg	aaactcaccc	agggattggc	tgagacgaaa	4200
aacatattct	caataaaccc	tttagggaaa	taggccaggt	tttcaccgta	acacgccaca	4260

-continued

tettgegaat atatgtgtag aaactgeegg aaategtegt ggtatteact ceagagegat 4320 gaaaacgttt cagtttgctc atggaaaacg gtgtaacaag ggtgaacact atcccatatc 4380 accageteae egtetteat tgecataega aacteeggat gageatteat eaggegggea 4440 agaatgtgaa taaaggccgg ataaaacttg tgcttatttt tctttacggt ctttaaaaag 4500 gccgtaatat ccagctgaac ggtctggtta taggtacatt gagcaactga ctgaaatgcc 4560 tcaaaatgtt ctttacgatg ccattgggat atatcaacgg tggtatatcc agtgattttt 4620 ttctccattt tagcttcctt agctcctgaa aatctcgata actcaaaaaa tacgcccggt 4680 agtgatetta tttcattatg gtgaaagttg gaacetetta cgtgeegate aacgteteat 4740 tttcgccaga tatcgacgtc taagaaacca ttattatcat gacattaacc tataaaaata 4800 ggcgtatcac gaggcccttt cgtcttcacg aaaccattat tatcatgaca ttaacctata 4860 aaaataggcg tatcacgagg ccctttcgtc ttcac 4895 <210> SEQ ID NO 112 <211> LENGTH: 5336 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1698 <400> SEQUENCE: 112 taagaaacca ttattatcat gacattaacc tataaaaata ggcgtatcac gaggcccttt 60 120 cgtcttcacc tcgagaattg tgagcggata acaattgaca ttgtgagcgg ataacaagat actgagcaca tcagcaggac gcactgaccg aattcattaa agaggagaaa ggtacaatgt 180 tqacaaaaqc aacaaaaqaa caaaaatccc ttqtqaaaaa caqaqqqqcq qaqcttqttq 240 ttgattgctt agtggagcaa ggtgtcacac atgtatttgg cattccaggt gcaaaaattg 300 atgeggtatt tgaegettta caagataaag gaeetgaaat tategttgee eggeaegaae 360 aaaacgcagc attcatggcc caagcagtcg gccgtttaac tggaaaaccg ggagtcgtgt 420 tagtcacatc aggaccgggt gcctctaact tggcaacagg cctgctgaca gcgaacactg 480 aaggagaccc tgtcgttgcg cttgctggaa acgtgatccg tgcagatcgt ttaaaacgga 540 cacatcaatc tttggataat gcggcgctat tccagccgat tacaaaatac agtgtagaag 600 ttcaagatgt aaaaaatata ccggaagctg ttacaaatgc atttaggata gcgtcagcag 660 ggcaggctgg ggccgctttt gtgagctttc cgcaagatgt tgtgaatgaa gtcacaaata 720 cgaaaaacgt gcgtgctgtt gcagcgccaa aactcggtcc tgcagcagat gatgcaatca 780 gtgcggccat agcaaaaatc caaacagcaa aacttcctgt cgttttggtc ggcatgaaag 840 gcggaagacc ggaagcaatt aaagcggttc gcaagctttt gaaaaaggtt cagcttccat 900 ttgttgaaac atatcaagct gccggtaccc tttctagaga tttagaggat caatattttg 960 gccgtatcgg tttgttccgc aaccagcctg gcgatttact gctagagcag gcagatgttg 1020 ttctgacgat cggctatgac ccgattgaat atgatccgaa attctggaat atcaatggag 1080 accggacaat tatccattta gacgagatta tcgctgacat tgatcatgct taccagcctg 1140 atottgaatt gatoggtgac attoogtoca ogatoaatoa tatogaacao gatgotgtga 1200 aagtggaatt tgcagagcgt gagcagaaaa tcctttctga tttaaaacaa tatatgcatg 1260 aaggtgagca ggtgcctgca gattggaaat cagacagagc gcaccctctt gaaatcgtta 1320

aagagttgcg	taatgcagtc	gatgatcatg	ttacagtaac	ttgcgatatc	ggttcgcacg	1380
ccatttggat	gtcacgttat	ttccgcagct	acgagccgtt	aacattaatg	atcagtaacg	1440
gtatgcaaac	actcggcgtt	gcgcttcctt	gggcaatcgg	cgcttcattg	gtgaaaccgg	1500
gagaaaaagt	ggtttctgtc	tctggtgacg	gcggtttctt	attctcagca	atggaattag	1560
agacagcagt	tcgactaaaa	gcaccaattg	tacacattgt	atggaacgac	agcacatatg	1620
acatggttgc	attccagcaa	ttgaaaaaat	ataaccgtac	atctgcggtc	gatttcggaa	1680
atatcgatat	cgtgaaatat	gcggaaagct	tcggagcaac	tggcttgcgc	gtagaatcac	1740
cagaccagct	ggcagatgtt	ctgcgtcaag	gcatgaacgc	tgaaggtcct	gtcatcatcg	1800
atgtcccggt	tgactacagt	gataacatta	atttagcaag	tgacaagctt	ccgaaagaat	1860
tcggggaact	catgaaaacg	aaagctctct	aggtcgacga	ggagacaaca	ttatggcgaa	1920
ttatttcaac	actctgaacc	tgcgtcaaca	actggcgcaa	ctgggtaagt	gccgtttcat	1980
gggtcgtgac	gagtttgcgg	acggtgcttc	ttatctgcaa	ggcaagaagg	ttgttattgt	2040
tggttgcggt	gcgcaaggcc	tgaatcaagg	tctgaatatg	cgcgacagcg	gcctggacat	2100
tagctatgcg	ctgcgcaagg	aggctatcgc	ggaaaaacgt	gctagctggc	gcaaggctac	2160
tgagaacggc	ttcaaggttg	gcacctatga	ggagctgatt	ccgcaagctg	acctggttat	2220
caatctgacc	ccagataaac	aacatagcga	cgttgttcgt	actgttcaac	cgctgatgaa	2280
ggatggtgct	gctctgggtt	atagccacgg	ctttaacatt	gttgaggtag	gtgaacaaat	2340
tcgcaaggac	attactgttg	ttatggtggc	tccaaagtgt	ccgggtactg	aggttcgcga	2400
ggaatataag	cgcggttttg	gtgttccaac	cctgatcgcg	gtgcatccag	agaatgaccc	2460
aaagggtgag	ggtatggcta	tcgcgaaggc	gtgggctgcg	gcgactggcg	gccatcgcgc	2520
tggcgttctg	gagagcagct	ttgtggctga	ggttaagagc	gatctgatgg	gtgaacagac	2580
tattctgtgt	ggtatgctgc	aagcgggtag	cctgctgtgt	tttgataaac	tggttgagga	2640
gggcactgac	ccggcgtatg	cggagaagct	gatccaattt	ggctgggaga	ctattactga	2700
ggcgctgaag	caaggtggta	ttactctgat	gatggatcgc	ctgagcaatc	cagctaagct	2760
gcgcgcgtac	gctctgagcg	agcaactgaa	ggaaattatg	gcaccgctgt	ttcaaaagca	2820
catggatgat	atcattagcg	gtgagtttag	cagcggcatg	atggctgatt	gggcgaatga	2880
cgacaaaaag	ctgctgactt	ggcgcgagga	aactggtaag	actgctttcg	agactgctcc	2940
acaatacgag	ggtaagattg	gtgaacaaga	atattttgac	aagggtgttc	tgatgatcgc	3000
tatggttaag	gctggtgtgg	agetggettt	tgagactatg	gttgacagcg	gtattatcga	3060
ggaaagcgcg	tactacgaga	gcctgcatga	actgccactg	atcgcgaata	ctattgcgcg	3120
caaacgcctg	tatgagatga	atgttgtgat	tagcgacact	gcggaatatg	gcaattacct	3180
gtttagctat	gcgtgcgttc	cactgctgaa	gccattcatg	gcggaactgc	agccaggtga	3240
tctgggcaag	gcgatcccag	agggtgctgt	tgacaatggt	cagetgegeg	acgttaatga	3300
ggctatccgt	tctcacgcta	tcgaacaagt	tggcaaaaag	ctgcgtggtt	acatgaccga	3360
catgaagcgc	atcgcggtgg	ctggctaacc	tagggcgttc	ggctgcggcg	agcggtatca	3420
gctcactcaa	aggcggtaat	acggttatcc	acagaatcag	gggataacgc	aggaaagaac	3480
atgtgagcaa	aaggccagca	aaaggccagg	aaccgtaaaa	aggccgcgtt	gctggcgttt	3540
ttccataggc	teegeeeeee	tgacgagcat	cacaaaaatc	gacgctcaag	tcagaggtgg	3600

cgaaacccga caggactata aaga	taccag gcgtttcccc	ctggaagctc	cctcgtgcgc	3660					
tctcctgttc cgaccctgcc gctt	accgga tacctgtccg	cctttctccc	ttcgggaagc	3720					
gtggcgcttt ctcatagctc acgc	tgtagg tatctcagtt	cggtgtaggt	cgttcgctcc	3780					
aagctgggct gtgtgcacga accc	cccgtt cagcccgacc	gctgcgcctt	atccggtaac	3840					
tatcgtcttg agtccaaccc ggta	agacac gacttatcgc	cactggcagc	agccactggt	3900					
aacaggatta gcagagcgag gtat	gtaggc ggtgctacag	agttcttgaa	gtggtggcct	3960					
aactacggct acactagaag gaca	gtattt ggtatctgcg	ctctgctgaa	gccagttacc	4020					
ttcggaaaaa gagttggtag ctct	tgatcc ggcaaacaaa	ccaccgctgg	tagcggtggt	4080					
ttttttgttt gcaagcagca gatt	acgcgc agaaaaaaag	gatctcaaga	agatcctttg	4140					
atcttttcta cggggtctga cgct	cagtgg aacgaaaact	cacgttaagg	gattttggtc	4200					
atgactagtg cttggattct cacc	aataaa aaacgcccgg	cggcaaccga	gcgttctgaa	4260					
caaatccaga tggagttctg aggt	cattac tggatctatc	aacaggagtc	caagcgagct	4320					
cgtaaacttg gtctgacagt tacc	aatgct taatcagtga	ggcacctatc	tcagcgatct	4380					
gtctatttcg ttcatccata gttg	cctgac tccccgtcgt	gtagataact	acgatacggg	4440					
agggcttacc atctggcccc agtg	ctgcaa tgataccgcg	agacccacgc	tcaccggctc	4500					
cagatttatc agcaataaac cagc	cagccg gaagggccga	gcgcagaagt	ggtcctgcaa	4560					
ctttatccgc ctccatccag tcta	ttaatt gttgccggga	agctagagta	agtagttcgc	4620					
cagttaatag tttgcgcaac gttg	ttgcca ttgctacagg	catcgtggtg	tcacgctcgt	4680					
cgtttggtat ggcttcattc agct	ccggtt cccaacgatc	aaggcgagtt	acatgatccc	4740					
ccatgttgtg caaaaaagcg gtta	geteet teggteetee	gatcgttgtc	agaagtaagt	4800					
tggccgcagt gttatcactc atgg	ttatgg cagcactgca	taattctctt	actgtcatgc	4860					
catccgtaag atgcttttct gtga	ctggtg agtactcaac	caagtcattc	tgagaatagt	4920					
gtatgeggeg acegagttge tett	gcccgg cgtcaatacg	ggataatacc	gcgccacata	4980					
gcagaacttt aaaagtgctc atca	ttggaa aacgttcttc	ggggcgaaaa	ctctcaagga	5040					
tettaeeget gttgagatee agtt	cgatgt aacccactcg	tgcacccaac	tgatcttcag	5100					
catcttttac tttcaccagc gttt	ctgggt gagcaaaaac	aggaaggcaa	aatgccgcaa	5160					
aaaagggaat aagggcgaca cgga	aatgtt gaatactcat	actcttcctt	tttcaatatt	5220					
attgaagcat ttatcagggt tatt	gtctca tgagcggata	catatttgaa	tgtatttaga	5280					
aaaataaaca aataggggtt ccgc	gcacat ttccccgaaa	agtgccacct	gacgtc	5336					
<210> SEQ ID NO 113 <211> LENGTH: 2289 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1711									
<400> SEQUENCE: 113									
ctagtgcttg gattctcacc aata	aaaaac gcccggcggc	aaccgagcgt	tctgaacaaa	60					
tccagatgga gttctgaggt catt	actgga tctatcaaca	ggagtccaag	cgagctcgta	120					
aacttggtct gacagttacc aatg	cttaat cagtgaggca	cctatctcag	cgatctgtct	180					
atttcgttca tccatagttg cctg	actece egtegtgtag	ataactacga	tacgggaggg	240					

-continued

cttaccatct	ggccccagtg	ctgcaatgat	accgcgagac	ccacgctcac	cggctccaga	300	
tttatcagca	ataaaccagc	cagccggaag	ggccgagcgc	agaagtggtc	ctgcaacttt	360	
atccgcctcc	atccagtcta	ttaattgttg	ccgggaagct	agagtaagta	gttcgccagt	420	
taatagtttg	cgcaacgttg	ttgccattgc	tacaggcatc	gtggtgtcac	gctcgtcgtt	480	
tggtatggct	tcattcagct	ccggttccca	acgatcaagg	cgagttacat	gatcccccat	540	
gttgtgcaaa	aaagcggtta	gctccttcgg	tcctccgatc	gttgtcagaa	gtaagttggc	600	
cgcagtgtta	tcactcatgg	ttatggcagc	actgcataat	tctcttactg	tcatgccatc	660	
cgtaagatgc	ttttctgtga	ctggtgagta	ctcaaccaag	tcattctgag	aatagtgtat	720	
gcggcgaccg	agttgctctt	gcccggcgtc	aatacgggat	aataccgcgc	cacatagcag	780	
aactttaaaa	gtgctcatca	ttggaaaacg	ttcttcgggg	cgaaaactct	caaggatctt	840	
accgctgttg	agatccagtt	cgatgtaacc	cactcgtgca	cccaactgat	cttcagcatc	900	
ttttactttc	accagcgttt	ctgggtgagc	aaaaacagga	aggcaaaatg	ccgcaaaaaa	960	
gggaataagg	gcgacacgga	aatgttgaat	actcatactc	ttcctttttc	aatattattg	1020	
aagcatttat	cagggttatt	gtctcatgag	cggatacata	tttgaatgta	tttagaaaaa	1080	
taaacaaata	ggggttccgc	gcacatttcc	ccgaaaagtg	ccacctgacg	tctaagaaac	1140	
cattattatc	atgacattaa	cctataaaaa	taggcgtatc	acgaggccct	ttcgtcttca	1200	
cctcgagaat	tgtgagcgga	taacaattga	cattgtgagc	ggataacaag	atactgagca	1260	
catcagcagg	acgcactgac	cgaattcatt	agtcgacatt	atgcggccgc	ggatccataa	1320	
ggaggattaa	ttaagacttc	ccgggtgatc	ccatggtacg	cgtgctagag	gcatcaaata	1380	
aaacgaaagg	ctcagtcgaa	agactgggcc	tttcgtttta	tctgttgttt	gtcggtgaac	1440	
gctctcctga	gtaggacaaa	teegeegeee	tagacctagg	cgttcggctg	cggcgagcgg	1500	
tatcagctca	ctcaaaggcg	gtaatacggt	tatccacaga	atcaggggat	aacgcaggaa	1560	
agaacatgtg	agcaaaaggc	cagcaaaagg	ccaggaaccg	taaaaaggcc	gcgttgctgg	1620	
cgtttttcca	taggeteege	ccccctgacg	agcatcacaa	aaatcgacgc	tcaagtcaga	1680	
ggtggcgaaa	cccgacagga	ctataaagat	accaggcgtt	tccccctgga	ageteceteg	1740	
tgcgctctcc	tgttccgacc	ctgccgctta	ccggatacct	gtccgccttt	ctcccttcgg	1800	
gaagcgtggc	gctttctcaa	tgctcacgct	gtaggtatct	cagttcggtg	taggtcgttc	1860	
gctccaagct	gggctgtgtg	cacgaacccc	ccgttcagcc	cgaccgctgc	gccttatccg	1920	
gtaactatcg	tcttgagtcc	aacccggtaa	gacacgactt	atcgccactg	gcagcagcca	1980	
ctggtaacag	gattagcaga	gcgaggtatg	taggcggtgc	tacagagttc	ttgaagtggt	2040	
ggcctaacta	cggctacact	agaaggacag	tatttggtat	ctgcgctctg	ctgaagccag	2100	
ttaccttcgg	aaaaagagtt	ggtagctctt	gatccggcaa	acaaaccacc	gctggtagcg	2160	
gtggttttt	tgtttgcaag	cagcagatta	cgcgcagaaa	aaaaggatct	caagaagatc	2220	
ctttgatctt	ttctacgggg	tctgacgctc	agtggaacga	aaactcacgt	taagggattt	2280	
tggtcatga						2289	

<210> SEQ ID NO 114 <211> LENGTH: 6416 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence

|--|

		eonemaea	
<pre><220> FEATURE: <223> OTHER INFORMATIC</pre>	ON: Plasmid pGV1716		
<400> SEQUENCE: 114			
aagaaacca ttattatcat	gacattaacc tataaaaata	ggcgtatcac gaggcccttt	t 60
gtetteace tegagaattg	tgagcggata acaattgaca	ttgtgagcgg ataacaagat	t 120
actgagcaca tcagcaggac	gcactgaccg aattcattaa	agaggagaaa ggtacaatgt	t 180
cgacaaaagc aacaaaagaa	caaaaatccc ttgtgaaaaa	cagaggggggg gagettgtte	g 240
tgattgctt agtggagcaa	ggtgtcacac atgtatttgg	cattccaggt gcaaaaatto	g 300
atgcggtatt tgacgcttta	caagataaag gacctgaaat	tatcgttgcc cggcacgaad	c 360
aaaacgcagc attcatggcc	caagcagtcg gccgtttaac	tggaaaaccg ggagtcgtgt	t 420
agtcacatc aggaccgggt	gcctctaact tggcaacagg	cctgctgaca gcgaacacto	g 480
aaggagaccc tgtcgttgcg	cttgctggaa acgtgatccg	tgcagatcgt ttaaaacgga	a 540
cacatcaatc tttggataat	gcggcgctat tccagccgat	tacaaaatac agtgtagaag	g 600
tcaagatgt aaaaaatata	ccggaagctg ttacaaatgc	atttaggata gcgtcagcag	g 660
ggcaggctgg ggccgctttt	gtgagctttc cgcaagatgt	tgtgaatgaa gtcacaaata	a 720
cgaaaaacgt gcgtgctgtt	gcagcgccaa aactcggtcc	tgcagcagat gatgcaatca	a 780
gtgcggccat agcaaaaatc	caaacagcaa aacttcctgt	cgttttggtc ggcatgaaaq	g 840
geggaagaee ggaageaatt	aaagcggttc gcaagctttt	gaaaaaggtt cagetteeat	t 900
tgttgaaac atatcaagct	gccggtaccc tttctagaga	tttagaggat caatatttto	g 960
geegtategg tttgtteege	aaccagcctg gcgatttact	gctagagcag gcagatgtte	g 1020
ttctgacgat cggctatgac	ccgattgaat atgatccgaa	attctggaat atcaatggag	g 1080
accggacaat tatccattta	gacgagatta tcgctgacat	tgatcatgct taccagcete	g 1140
atcttgaatt gatcggtgac	atteegteea egateaatea	tatcgaacac gatgctgtga	a 1200
aagtggaatt tgcagagcgt	gagcagaaaa teetttetga	tttaaaacaa tatatgcato	g 1260
aaggtgagca ggtgcctgca	gattggaaat cagacagagc	gcaccctctt gaaatcgtta	a 1320
aagagttgcg taatgcagtc	gatgatcatg ttacagtaac	ttgcgatatc ggttcgcaco	g 1380
ccatttggat gtcacgttat	tteegeaget acgageegtt	aacattaatg atcagtaaco	g 1440
gtatgcaaac actcggcgtt	gcgcttcctt gggcaatcgg	cgcttcattg gtgaaaccgo	g 1500
gagaaaaagt ggtttctgtc	tctggtgacg gcggtttctt	attctcagca atggaattag	g 1560
agacagcagt tcgactaaaa	gcaccaattg tacacattgt	atggaacgac agcacatato	g 1620
acatggttgc attccagcaa	ttgaaaaaat ataaccgtac	atctgcggtc gatttcggaa	a 1680
atatcgatat cgtgaaatat	gcggaaagct tcggagcaac	tggettgege gtagaatead	c 1740
cagaccagct ggcagatgtt	ctgcgtcaag gcatgaacgc	tgaaggteet gteateateg	g 1800
atgtcccggt tgactacagt	gataacatta atttagcaag	tgacaagctt ccgaaagaat	t 1860
ccggggaact catgaaaacg	aaagctctct aggtcgacgg	atccaggaga caacattato	g 1920
cctattccag aaactcaaaa	agcgattatt ttctacgagt	ccaacggcaa actggaacad	c 1980
aaagatatcc cggtgccgaa	accgaagccg aacgagctgc	tgattaacgt aaaatactct	t 2040
ggtgtgtgcc acactgatct	gcacgcttgg cacggtgatt	ggcctctgcc gaccaaacto	
ccgctggttg gtggtcatga	gggtgcgggc gttgtagtag	gcatgggtga aaacgtgaag	g 2160

ggctggaaaa	tcggtgacta	cgcaggtatc	aagtggctga	acggttcttg	catggcctgc	2220
gaatactgcg	agctgggtaa	cgaatctaac	tgcccgcacg	cagacctgtc	tggctatacc	2280
catgatggtt	cctttcagga	atacgctact	gcagacgcag	tgcaggctgc	acatattcca	2340
cagggcaccg	atctggcgga	ggtagctcct	attctgtgcg	ctggtattac	ggtttacaag	2400
gcgctgaaaa	gcgccaacct	gcgtgccggc	cactgggcag	cgatctctgg	tgcggcaggc	2460
ggtctgggtt	ctctggcagt	ccaatatgca	aaagcgatgg	gttaccgcgt	tctgggcatc	2520
gacggtggtc	cgggtaagga	ggaactgttc	acttctctgg	gcggcgaggt	gtttatcgac	2580
ttcactaagg	agaaagatat	cgtttccgcg	gttgttaaag	cgaccaacgg	tggcgcgcac	2640
ggcattatca	acgtatctgt	gtccgaggct	gcaatcgagg	cgtctactcg	ttactgccgt	2700
gctaacggca	ctgtggtcct	ggtaggtctg	ccggctggtg	ctaaatgttc	tagcgatgtt	2760
ttcaaccacg	tagtaaaaag	catcagcatc	gtgggttcct	acgttggcaa	ccgtgcagac	2820
actcgtgagg	ctctggactt	cttcgcacgc	ggcctggtga	aatctccgat	taaggttgtt	2880
ggtctgtcta	gcctgccgga	aatctatgag	aaaatggaaa	aaggtcagat	tgcgggccgt	2940
tacgtggtgg	acacctctaa	ataagcggcc	gcgtcgacga	ggagacaaca	ttatggcgaa	3000
ttatttcaac	actctgaacc	tgcgtcaaca	actggcgcaa	ctgggtaagt	gccgtttcat	3060
gggtcgtgac	gagtttgcgg	acggtgcttc	ttatctgcaa	ggcaagaagg	ttgttattgt	3120
tggttgcggt	gcgcaaggcc	tgaatcaagg	tctgaatatg	cgcgacagcg	gcctggacat	3180
tagctatgcg	ctgcgcaagg	aggctatcgc	ggaaaaacgt	gctagctggc	gcaaggctac	3240
tgagaacggc	ttcaaggttg	gcacctatga	ggagctgatt	ccgcaagctg	acctggttat	3300
caatctgacc	ccagataaac	aacatagcga	cgttgttcgt	actgttcaac	cgctgatgaa	3360
ggatggtgct	gctctgggtt	atagccacgg	ctttaacatt	gttgaggtag	gtgaacaaat	3420
tcgcaaggac	attactgttg	ttatggtggc	tccaaagtgt	ccgggtactg	aggttcgcga	3480
ggaatataag	cgcggttttg	gtgttccaac	cctgatcgcg	gtgcatccag	agaatgaccc	3540
aaagggtgag	ggtatggcta	tcgcgaaggc	gtgggctgcg	gcgactggcg	gccatcgcgc	3600
tggcgttctg	gagagcagct	ttgtggctga	ggttaagagc	gatctgatgg	gtgaacagac	3660
tattctgtgt	ggtatgctgc	aagcgggtag	cctgctgtgt	tttgataaac	tggttgagga	3720
gggcactgac	ccggcgtatg	cggagaagct	gatccaattt	ggctgggaga	ctattactga	3780
ggcgctgaag	caaggtggta	ttactctgat	gatggatcgc	ctgagcaatc	cagctaagct	3840
gcgcgcgtac	gctctgagcg	agcaactgaa	ggaaattatg	gcaccgctgt	ttcaaaagca	3900
catggatgat	atcattagcg	gtgagtttag	cagcggcatg	atggctgatt	gggcgaatga	3960
cgacaaaaag	ctgctgactt	ggcgcgagga	aactggtaag	actgctttcg	agactgctcc	4020
acaatacgag	ggtaagattg	gtgaacaaga	atattttgac	aagggtgttc	tgatgatcgc	4080
tatggttaag	gctggtgtgg	agetggettt	tgagactatg	gttgacagcg	gtattatcga	4140
ggaaagcgcg	tactacgaga	gcctgcatga	actgccactg	atcgcgaata	ctattgcgcg	4200
caaacgcctg	tatgagatga	atgttgtgat	tagcgacact	gcggaatatg	gcaattacct	4260
gtttagctat	gcgtgcgttc	cactgctgaa	gccattcatg	gcggaactgc	agccaggtga	4320
tctgggcaag	gcgatcccag	agggtgctgt	tgacaatggt	cagetgegeg	acgttaatga	4380
ggctatccgt	tctcacgcta	tcgaacaagt	tggcaaaaag	ctgcgtggtt	acatgaccga	4440

-		1	
- C	ont	ιn	ued

catgaagcgc	atcgcggtgg	ctggctaacc	tagggcgttc	ggetgeggeg	agcggtatca	4500
gctcactcaa	aggcggtaat	acggttatcc	acagaatcag	gggataacgc	aggaaagaac	4560
atgtgagcaa	aaggccagca	aaaggccagg	aaccgtaaaa	aggccgcgtt	gctggcgttt	4620
ttccataggc	tccgcccccc	tgacgagcat	cacaaaaatc	gacgctcaag	tcagaggtgg	4680
cgaaacccga	caggactata	aagataccag	gcgtttcccc	ctggaagctc	cctcgtgcgc	4740
tctcctgttc	cgaccctgcc	gcttaccgga	tacctgtccg	cctttctccc	ttcgggaagc	4800
gtggcgcttt	ctcatagctc	acgctgtagg	tatctcagtt	cggtgtaggt	cgttcgctcc	4860
aagctgggct	gtgtgcacga	accccccgtt	cagcccgacc	gctgcgcctt	atccggtaac	4920
tatcgtcttg	agtccaaccc	ggtaagacac	gacttatcgc	cactggcagc	agccactggt	4980
aacaggatta	gcagagcgag	gtatgtaggc	ggtgctacag	agttcttgaa	gtggtggcct	5040
aactacggct	acactagaag	gacagtattt	ggtatctgcg	ctctgctgaa	gccagttacc	5100
ttcggaaaaa	gagttggtag	ctcttgatcc	ggcaaacaaa	ccaccgctgg	tagcggtggt	5160
ttttttgttt	gcaagcagca	gattacgcgc	agaaaaaaag	gatctcaaga	agateetttg	5220
atcttttcta	cggggtctga	cgctcagtgg	aacgaaaact	cacgttaagg	gattttggtc	5280
atgactagtg	cttggattct	caccaataaa	aaacgcccgg	cggcaaccga	gcgttctgaa	5340
caaatccaga	tggagttctg	aggtcattac	tggatctatc	aacaggagtc	caagcgagct	5400
cgtaaacttg	gtctgacagt	taccaatgct	taatcagtga	ggcacctatc	tcagcgatct	5460
gtctatttcg	ttcatccata	gttgcctgac	tccccgtcgt	gtagataact	acgatacggg	5520
agggcttacc	atctggcccc	agtgctgcaa	tgataccgcg	agacccacgc	tcaccggctc	5580
cagatttatc	agcaataaac	cagccagccg	gaagggccga	gcgcagaagt	ggtcctgcaa	5640
ctttatccgc	ctccatccag	tctattaatt	gttgccggga	agctagagta	agtagttcgc	5700
cagttaatag	tttgcgcaac	gttgttgcca	ttgctacagg	catcgtggtg	tcacgctcgt	5760
cgtttggtat	ggcttcattc	agctccggtt	cccaacgatc	aaggcgagtt	acatgatccc	5820
ccatgttgtg	caaaaaagcg	gttagctcct	tcggtcctcc	gatcgttgtc	agaagtaagt	5880
tggccgcagt	gttatcactc	atggttatgg	cagcactgca	taattctctt	actgtcatgc	5940
catccgtaag	atgcttttct	gtgactggtg	agtactcaac	caagtcattc	tgagaatagt	6000
gtatgcggcg	accgagttgc	tcttgcccgg	cgtcaatacg	ggataatacc	gcgccacata	6060
gcagaacttt	aaaagtgctc	atcattggaa	aacgttcttc	ggggcgaaaa	ctctcaagga	6120
tcttaccgct	gttgagatcc	agttcgatgt	aacccactcg	tgcacccaac	tgatcttcag	6180
catcttttac	tttcaccagc	gtttctgggt	gagcaaaaac	aggaaggcaa	aatgccgcaa	6240
aaaagggaat	aagggcgaca	cggaaatgtt	gaatactcat	actcttcctt	tttcaatatt	6300
attgaagcat	ttatcagggt	tattgtctca	tgagcggata	catatttgaa	tgtatttaga	6360
aaaataaaca	aataggggtt	ccgcgcacat	ttccccgaaa	agtgccacct	gacgtc	6416

<210> SEQ ID NO 115 <211> LENGTH: 3644 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1720

<400> SEQUENCE: 115

taagaaacca	ttattatcat	gacattaacc	tataaaaata	ggcgtatcac	gaggcccttt	60	
cgtcttcacc	tcgagaattg	tgagcggata	acaattgaca	ttgtgagcgg	ataacaagat	120	
actgagcaca	tcagcaggac	gcactgaccg	aattcattag	tcgacattat	gcggccgcgg	180	
atccataagg	aggattaatt	aagacttccc	gggtgatccc	atggtacgcg	tgctagaggc	240	
atcaaataaa	acgaaaggct	cagtcgaaag	actgggcctt	tcgttttatc	tgttgtttgt	300	
cggtgaacgc	tctcctgagt	aggacaaatc	cgccgcccta	gacctagcta	gggtacgggt	360	
tttgctgccc	gcaaacgggc	tgttctggtg	ttgctagttt	gttatcagaa	tcgcagatcc	420	
ggcttcagcc	ggtttgccgg	ctgaaagcgc	tatttcttcc	agaattgcca	tgattttttc	480	
cccacgggag	gcgtcactgg	ctcccgtgtt	gtcggcagct	ttgattcgat	aagcagcatc	540	
gcctgtttca	ggctgtctat	gtgtgactgt	tgagctgtaa	caagttgtct	caggtgttca	600	
atttcatgtt	ctagttgctt	tgttttactg	gtttcacctg	ttctattagg	tgttacatgc	660	
tgttcatctg	ttacattgtc	gatctgttca	tggtgaacag	ctttaaatgc	accaaaaact	720	
cgtaaaagct	ctgatgtatc	tatcttttt	acaccgtttt	catctgtgca	tatggacagt	780	
tttccctttg	atatctaacg	gtgaacagtt	gttctacttt	tgtttgttag	tcttgatgct	840	
tcactgatag	atacaagagc	cataagaacc	tcagatcctt	ccgtatttag	ccagtatgtt	900	
ctctagtgtg	gttcgttgtt	tttgcgtgag	ccatgagaac	gaaccattga	gatcatgctt	960	
actttgcatg	tcactcaaaa	attttgcctc	aaaactggtg	agctgaattt	ttgcagttaa	1020	
agcatcgtgt	agtgtttttc	ttagtccgtt	acgtaggtag	gaatctgatg	taatggttgt	1080	
tggtatttg	tcaccattca	tttttatctg	gttgttctca	agttcggtta	cgagatccat	1140	
ttgtctatct	agttcaactt	ggaaaatcaa	cgtatcagtc	gggcggcctc	gcttatcaac	1200	
caccaatttc	atattgctgt	aagtgtttaa	atctttactt	attggtttca	aaacccattg	1260	
gttaagcctt	ttaaactcat	ggtagttatt	ttcaagcatt	aacatgaact	taaattcatc	1320	
aaggctaatc	tctatatttg	ccttgtgagt	tttcttttgt	gttagttctt	ttaataacca	1380	
ctcataaatc	ctcatagagt	atttgttttc	aaaagactta	acatgttcca	gattatattt	1440	
tatgaatttt	tttaactgga	aaagataagg	caatatctct	tcactaaaaa	ctaattctaa	1500	
tttttcgctt	gagaacttgg	catagtttgt	ccactggaaa	atctcaaagc	ctttaaccaa	1560	
aggattcctg	atttccacag	ttctcgtcat	cagctctctg	gttgctttag	ctaatacacc	1620	
ataagcattt	tccctactga	tgttcatcat	ctgagcgtat	tggttataag	tgaacgatac	1680	
cgtccgttct	ttccttgtag	ggttttcaat	cgtggggttg	agtagtgcca	cacagcataa	1740	
aattagcttg	gtttcatgct	ccgttaagtc	atagcgacta	atcgctagtt	catttgcttt	1800	
gaaaacaact	aattcagaca	tacatctcaa	ttggtctagg	tgattttaat	cactatacca	1860	
attgagatgg	gctagtcaat	gataattact	agtccttttc	ccgggagatc	tgggtatctg	1920	
taaattctgc	tagacctttg	ctggaaaact	tgtaaattct	gctagaccct	ctgtaaattc	1980	
cgctagacct	ttgtgtgttt	tttttgttta	tattcaagtg	gttataattt	atagaataaa	2040	
gaaagaataa	aaaaagataa	aaagaataga	tcccagccct	gtgtataact	cactacttta	2100	
gtcagttccg	cagtattaca	aaaggatgtc	gcaaacgctg	tttgctcctc	tacaaaacag	2160	
accttaaaac	cctaaaggct	taagtagcac	cctcgcaagc	tcgggcaaat	cgctgaatat	2220	
tccttttgtc	tccgaccatc	aggcacctga	gtcgctgtct	ttttcgtgac	attcagttcg	2280	

-conti	nued
--------	------

cjccpctcac gyctctgoc gtgataggg gtaatggoc ctacaggoc cttttagg 2440 ttatgocag gaactacce atatacaag aaagecogt cacggogtte toaggoct 2460 cjattttce aptopaag gjgtette gaettttig tyttagaag tteogoca 2560 gaaccagt aggoaggg atatacaac gyctaccag gyttactog actopaga 2560 gatttee agtopagg at atatacaae gyettaccag tettagae gyttagaeg 2560 ggotaccagt aggoaggg atatacag gystaccag gogacaccagae 2700 gtecocagt aggoagge gattactag aggoteca gagogtee gaaccagae 2800 cggogatace gaagaceg gaaggogg caccagae gagotecagae gagoagge 2800 cgatgatae gaagaegg catttee cacagat gggacage 2800 cgatgatae gaagaegg catttee cacageag gycacagae gggacage 2800 cgatgatae gaagaegg catttee cacageag gagetee gaacageag 2800 cgatgatae gaagaegg catttee cacageag gycacagae gggacage 2800 cgatgatae gaagaegg catttee cacageag gycacageag aggacage 2800 cgatgatae gaagaege cacageagae togogaeat 2800 cacagegaa cacegae gagateete cacgeoagae togocagae gagacagee gaacage 2800 cacagetaga tagacagee cacageagae togogaeagae gagacagee 3800 caagtegaa tagacageag tococagea gaacagee gaacagee gaacagee gaacagee 3800 caagtegaa tagacagee gaacagee gaacagee gaacagee gaacagee 3800 caagtegaa tagacagee cacageagae ca							
titatgogogi titgotagi gigitatat gacititig titlagan titgogodi titgo	ctgcgctcac	ggctctggca	gtgaatgggg	gtaaatggca	ctacaggcgc	cttttatgga	2340
ctgatttcc agtcacca ctcogtgaca gcaccagta 2520 gcaccagta aggcagcggt atcatoaca gcaccagta 2520 ggattctcac cataaaaa cgccgcgg caccagag tctatagtg 2640 agttctgagt tataacag gccccgcgg caccagagg 2640 agttctgagt tataacag gccccgcgg caccagagg 2700 gtcccggtca gaagaactcg aggagtocac gcgaccagag 2700 gtcccggtca gaagaactcg aggagtocac gcgaccagag 2700 ggccacagag tatacaggg gadgccg caccagcg 2820 tatacaggt agcacacag tagggtcag cagcatagg 2800 cggtacacc gaaaacg cgcacacag taggcggcact 3900 ctggcggaa cccctgatg ttctgcggag 3000 3000 ctggatag tccctgagag tcgcagtag ggatcacagac 3000 gadcaaget atgcacagag cgcatagad 3020 3120 gadcaaget agcacagac ggatcatce 3300 3120 gaaacagg gccacatag gcacacaga	ttcatgcaag	gaaactaccc	ataatacaag	aaaagcccgt	cacgggcttc	tcagggcgtt	2400
gcaccagta ageageggt atcarcaca ggettaccag tettatet tettatet 2580 ggattetcae cataaaaa cgeceggegg caacgageg tettagaaa atecagatgg 2640 agttetgagg teattactgg atetateaae aggageceaa gegagetete gaaceeaga 2700 gtecegetea gaagaaceg teagaageg gatagaage gatogetee gaaceeaga 2820 tateaegggt ageaacegt atgeteetgat ageogetee caeaeeeage eggeeaeag 2820 eggtgataee gaaaagegg cattetea ecatgatat eggeageag eategggg 3000 etggeggatee gaagaaceg ecettgate ageogetet gaeetggg aacagtegg 3000 etggeggag ecettge ettegeea gageaegett gageetggg aacagtegg 3000 etggeggag ecettge ettegeea gaeagegg gataetete ageoggeet aggeetggg aacagteg 3120 gateaaget getegeteg atgegatgt tegetggtg tegaatggg cagtageg 3120 gateaaget getegeteg atgegatgt tegetggtg geagatgg cagtaged 3120 gateaaget getegeteg atgegatgt tegetggtg geagatgg cagtaged 3120 ecegatgag tgeegeee ggattgeat eageoatgt ggeaatggg cagtaged 3120 gateaaget geegeee ggattgeat eageoatgt ggeaatggg cagtaged 3120 atageegge tgeeeetg ageacaget geaaggaa gecegtegt geeageag atageegge tgeeeetg ageacaget geaaggaa geeetgg geacagag cagteet 320 ecegeteagt gaeaageg gaecaget geaaggaa geeetgg geacagag a 3300 atageegge tgeeeetg eggaatage teceacaea ageggeegg gaacageg 3300 atageegge tgeeeetg eggaatage teceacaea ageggeegg gaacageg 3300 atageegge tgeeeetg eggaatage teceacaea ageggeegg gaacageg 340 eceateet tegtteaate atgegaaag atecteate tgetettg 340 teceateet tegtteaate atgegaaag atecteate tgetettga teagatett 340 e200 > FENTTMIN : F644 *2110 > SEQUENCE: 118 eaggeaagt geacacaat attaataa atectaeta gtaataect atteetage 160 attuttgeg aaatteget tttggeegge teeeaga teeeaattette cacacaeage 120 gettaaeta acceaataa cgecattaa tetaagega teecaeat tttetgeegt 180 eagtaetga taeaacaga cageatget tegggeet tettegee 220 aaaaacaga teeaacaat acteaataa tetaactea gtaataect atteetage 120 gettaaeta acceaata cgecattaa tetaagega teecaeat tttetgeegt 180 eagtagatet ttaataetg geaacega teceaetg 240 agaaategg tteeaatea aagtaaget tegggeet tettegaeate 240 agaaategg teeaaceata atgeaaget teggeget tettegaeate 240 aaaaacaga tagagttet tegaagetg atagtage 240 aaaaacagg te	ttatggcggg	tctgctatgt	ggtgctatct	gactttttgc	tgttcagcag	tteetgeeet	2460
<pre>gyattctcac cataaaaa cgcccgcggg cacccgagg ttctgaaca atccagg 2640 agttctgagg tcattactgg atctacaac aggagtccaa gcggagctct gaacccaga 2700 gtcccgctca gaagaactg tcaagaagg gataggagg gatggggt gacccaga 2820 tatcacgggt agccagct atgtcctgat agcggtcgc cacccagc ggccacagt 2880 cgatgaatcc agaaaagggg ccatttcca ccatgatat cggcaagcag gatggcgg 3200 ctgggggag caccctgg cgtgggg ttcggcgct gagccggg aacagtcgg 3000 ctgggggag caccctgg tcttcgtc agcgcatgt ggcggcgg aacagtcgg 3120 gatcaageg tatgacagcg aggagtgt tcgtcggg gatagggg caggtaggg 3120 gatcaaggt agcaacgtg agcgatgt tcgtcggg gataggg caggtaggg 3120 gatcaageg tatgacagcg gagaaggg gacagtgg gataggg caggtaggg 3120 gatcaaggg agcacgtg gagaaggg gacagtgg gataggag aggatggg 3120 gatcaaggg agcacgtg gagaaggg gacagtgg gataggg caggtaggg 3120 gatcaaggg agcacgtg gagaaggg gacaggg gataggag aggatggg 3120 gatcaaggg agcacgtg gagaaggg gacaggg gataggag aggatggg 3120 gatcaaggg agcacgtg gagaaggg gacaggg gaatggg aggatggg 3120 gatcaaggg gacacgtg gacaggg gacaggg gaatggg agaaggg 3120 gatcaaggg agcacgtg gacaggg gacaggag gaatggg 3120 gatcaaggg gacacgtg gacaggg gacaggg gaacggg 3120 gatcaaggg gacacgtg gacaggg gacaggg gaacggg 3120 caaggtgg agaaaggg gacaggg gacaggg gaacggg 3120 atagcggg tgccagtca tgcggaag gacaggg gaacggg 3120 caaggtgg gacaaggg gacaggg gacaggg gaacggg gaacggg 3120 caaggg gacaaggg gacaggg gacaggg gaacggg gaacggg 3120 caagggg gacaggg gacaggg gacaggg gaacggg gaacggg 3120 caagggg gacaggg gacaggg gacaggg gaacggg gaacggg 3120 caagggaa tgcaggag agaaggg gacaggg gaacggg gaacggg 3120 caaggg gacaggg gacaggg gacaggg gaacggg gaacggg gaacggg 3120 caaggg gacaggg gacaggg gacaggg gaacaggg gaacggg gaacggg 3120 caaggg gacaggg gacaggg gaacaggg gaacaggg gaacaggg gaacaggg 3120 caaggg gacaggg gacaggg gacaggg gaacaggg gaacaggg gaacaggg 3120 caagga gaacaggg gacaggg gaacaggg gaacaggg gaacaggg gaacaggg 3120 caagga gaacagg gacagg gaacagg gaacaggg gaacaggg gaacaggg 3120 caagga gaacagg gacaggg</pre>	ctgattttcc	agtctgacca	cttcggatta	tcccgtgaca	ggtcattcag	actggctaat	2520
spttergagg teattaetegg atteateae aggagteea gegggegtee gaacaecegag 2700 spteedgegtae gaagaaceg teageageg teageocate geegeeage tetteagea 2800 spdteadge gaacaeceg atgedgegg tegeggege cacaecegag eggecaage 2800 spdteadge gaateeteg eegteggge tegegeege cacaeceage eggeeage 2800 spdteadge gaateeteg eegteggge tegeggegg tegeggegg acagteegg 3100 spdteadgeg tegeggegg eegeagegg gaacaeceg gaacageg gaacaeceg 3100 spdteadgeg tegeggegg eegeagegg eggeategge cacagae eggeeage 3100 spdteadgeg tegegggg tegeggggg tegeggggg gaacaegeg 3100 spdteadgeg tegegggg tegeggggg eegeagegg gaacaegeg gaacaegeg 3100 spdteadgeg tegegggg tegeggegg geateage eggeagggg gaacaegeg 3100 spdteadgeg tegegggg tegeggegg geateage eggeagggg gaacaegeg 3100 spdteadgeg tegeeggeg gegaatege eggaaggae geeggegg geateagg eggeateaga 3100 spdteadge eggeegg eggeateage eggaaggg gegeagggg gaacaegeg 3100 spdteadge eggeegg eggeateage eggaagge gegeateagg eggeateaga 2800 spdteadge eggeaggg eggaaagge gegeateagg eggeateaga 2800 spdteadge eggeaggg eggaaagge teedgegaagg eggeateagg eggeateaga 2800 spdteadge eggeagg eggeateage eggaaagge gegeateagg eggeateagg eggeateaga 2800 spdteadge eggeaggg egeeage ggaaagge eggeateagg eggeateagg eggeateaga 2800 spdteadge eggeaggg egeeage eggaaagge eggeateag eggeaggeg 2800 spdteadge eggeaggg egeeage eggeagga eggeagge eggeaggeg eg	gcacccagta	aggcagcggt	atcatcaaca	ggettaeeeg	tcttactgtc	cctagtgctt	2580
gtcccgctca gaagaactog tcagaagge gatagaagge gatggogte gatcggaga 2760 cggogatace gtaaageaeg aggaagegg cagecatte geogeaeage tetteageaa gateaegeg ageaeaeget atgeeegge tegeegeett gageetgge ageagedeg 2880 cgatgaatee agaaaagegg eestttee eestagatat eggeaagea geategeeat 2940 gggteaegae gagateeteg eegtegggea tgeegegeett gageetggeg aaeagteeg 3000 etggegegag eeestgatge tettegteea gateateetg ategaeaaga eeggetteea 3060 teegagtaeg tgeeegee geattgee eestegg gateageg gaaeagteeg 3120 gateaageg tgeeegee egeattgee eageeatge ggateage gagaageeg 3120 gateaageg tgeeege egeattgee eageeatge ggateage gaeegee 3120 gateaageg tageaegee egeattgee eageeatge ggateattee teggeaggag 3180 caaggtgaga tgaeaggag teetgeeeg geaettege eageeage ggateage aggaagee 3120 gateaageg tgeeege egeattgee egeaettege egaagae geeegtegt geeageeag 3100 atageegeg tgeetegte tgeagteat teaggeaee ggaeagge ggeateaga 3300 atageegeg tgeetegte tgeagteat teaggeaee ggaeagge ggeateaga 3400 geaateeate ttgtteaate atgegaaage geeagteg gteettgaea 3360 aaagaacegg gegeeeetg egataage egaaagee ggeateagag eageeget 3420 tetgttgge ceagteatg egaatagee tetecaecea ageggeegg gaacetgeg 3400 geaateeate ttgtteaate atgegaaag ateetea ageggeegg agaeetge 3400 geaateeate ttgtteaate atgegaaag ateeteae ageggeegg gaacetge 3400 deateeetge ceateagae egaatagee gaaaageea ceagtteat ttgeaggeet 3400 teeeaaeett aceagagge geeeeage gaaaageea geegteega 3400 teeeaaeett aceagagge geeeeage gaaaageea geegeega 3400 teeeaaeett aceagagge geeeeage gaaaageea teegeega 3400 teeeaaeett aceagagge geeeeagee gaaaageea teegeega 3400 teeeaaeett aceagaagge geeeeagee gaaaageea teegeega 3400 teeeaaeett aceagaagge geeeeagee gaaaageeg 240 a210 > SEQ ID NO 116 <210 > SEQ ID NO 116 <210 > SEQUENCE: 116 Caggeaagtg cacaaaeaat aettaaaaa ateetaete gaaaaeet atteetage 120 gettaeatea aceeaata aettaaataa ateetaete gaaaaeet atteetage 120 gettaeatea aceeaataa egeeattaa teeagegee teeeaaeet atteetage 3400 aataaaeega tgeagttee geaaeetge aceaaeet geeetee 120 gaaategg tteeaaeetaa aagtaageet teegeeeetee 240 agaaategg tteeaa	ggatteteae	caataaaaaa	cgcccggcgg	caaccgagcg	ttctgaacaa	atccagatgg	2640
cggcgatacc gtaaagcacg aggaagcgg cagccatt gccgccaagt tettcagcaa 2820 tateacggg agecaacget atgteetgat ageeggteege caceceage eggecaeagt 2880 egatgaatee agaaaageag eeatttee eeatgatat eggeaageag geategeeat 2940 gggteacgae gagateeteg eegtegggea tgegegeett gageetggea acagttegg 3000 etggegegag eeeetgatge tettegteea gateateetg ategaeaaga eeggetteea 3060 teegagtaeg tgetegeteg atgegatgt tegetgggg ateggeaagge eaggtageeg 3120 gateaagegt atgeageege egeattgeat eageeatga ggataettee teggeaggag 3180 eaaggtgaga tgaeaggag teettegtee gaeatgeege eagteege eagteege 3300 atageegeg tgeetegtee tgeagtteat eageeatga ggataettee teggeaggag 3180 aaagaacegg egeeetg egeattgeat eageeaggee ggeateagge eggetegat 3420 teegetteagt gaeaacgteg egatagee ggaacaegge ggeateagag eageeaggt 3420 teetgttge eeagteet egeagteat teaggeaee ggeaetgag acagteeg 3480 geaateeate ttgtteaate atgegaaeg ateetee ageeggeegg agaeceget 3480 geaateeate ttgtteaate atgegaaeg ateetee ageggeegg agaecege 3480 deateeetg geeetegtee teggagtaagee teeteeaea ageggeegga gaacetgeg 3480 geaateeate ttgtteaate atgegaaag ateetee ageggeegga gaacetgeg 3480 deateeetgg eeateagae eetteggegea agaaageeat eeagtteat ttgeaggeet 3480 eeaaeett aceagagge geeeeaget geaatteega egte 3600 teeeaaeett aceagaagge geeeeaget geaatteega egte 3600 teeeaaeett aceagaagge geeeeaget geaatteega egte 3600 teeeaaeett aceagaagge geeeeaget geaatteega egte 2000 Fantues: 2020 FBATURE INFOMATION: Plasmid pGV1730 c400> SEQUENCE: 116 caggeaagtg caeaaeaaa acgeaatta teeaggeege teeeaaeett teeggegge 1800 cagteeaeeaa acgeaaeaaa acgeaettee geeetee 200 fantuesga aaatteege 120 geettaeatea aceeaaaa acgeaettee teeggeegee teetee 220 gaaategg tteeaaeeaaa ageteaee teegeeaeeegee teeteegaeaeaag 300 aataaaeega teegaeaeege eaeeegg gaaeetegg ta	agttctgagg	tcattactgg	atctatcaac	aggagtccaa	gcgagctctc	gaaccccaga	2700
tatcacggg agcaacgt atgteetga ageggteeg eaceccage eggecaead 2880 egatgaatee agaaaageg eeatttee eeattee eggeaageag geategeeat 2940 gggteaegae gagateeteg eegtegggea tgegegeett gageetggeg aeeagtteeg 3000 etggegegag eeeetgatge tettegteea gateateetg ategaeaaga eeggetteea 3060 teegagtaeg tgeeegte gategetget eageetgg gtegaatggg eaggtageeg 3120 gateaagegt atgeageege egeattgeat eageeatge ggataettet teggeaggag 3180 eaaggtggag tgaeaggaga teetgeeeg geaettege caatageage eagteege 3300 atageegege tgeetegte tgeagteat eageeaggae geeegteg geeageaeg 3300 atageegege tgeetegte tgeagteat teagggaee ggaeaggte gtettgaeaa 3360 aaagaacegg gegeeetge egeatagee ggaacaegge ggaeaggte gtettgaeaa 3360 geaateeate ttgtteaate atgegaaege ggaacaegge ggeateagag eageeagat 3420 tetgttgtge ecagteatg eegaatagee tetecaecae ageggeegga gaacetgeg 3420 tetgttgtge ceagteatg eegaatagee tetecaecae ageggeegga gaacetgeg 3420 tetesttgtge ceagteatg eegaatagee tetecaecae ageggeegga gaacetgeg 3480 geaateeate ttgtteaate atgegaaeg ateeteatee tgtetettga teagatettg 3540 ateeeetge ceateatge efgeaaegg geaateega eege 3644 <210> SEQ ID NO 116 <211> INFORMATION: Artificial Sequence <220> FENTME: <222> OTHER INFORMATION: Planmid pGV1730 <400> SEQUENCE: 116 Caggeaagtg cacaaacaat acttaataa atactaete gtaataacet atttetage f0 attuttgaeg aaattgeat tttgttaga gtetttaea ceatttget ceaaceete 120 gettaeatea aaegeaataa egeeattee geggeet teetgeete eacecaet 120 gettaeatea aaegeaataa egeeattee teggegget teetgeete eacecaete 120 gettaeatea aaegeaataa atgtaaget ttegggget teetgeate eaaecaagg 300 aataaacgaa tgaggttee gegaaeegg acceaeeg gaacetge diettgaat aaeacaagg 300 aataaacgaa tgaggttee gegaaeegg acceaeega atgeegget eacecaaaa aff aegagteet ttaataacg geaacegg gaacetegg atteetge eacecaage 300 aataaacgaa tgaggttee gegaaeegg acceaega acceaeae atteetee 480 aggaatega tgagagat ceaaceaeg acceaegg gaacetegg atteetge eagaeaegge 300 aataaacga tgagagttee gegaaeegg gaacetegg atteetge eeaaeaaa acceeede 480 aggetgatea egaaacaege eaaceage acceaega atteetge eeaaeaeae eaceeaaeae acceaeaae ateeceaeaeaeaeaeaeaeaeaeae	gtcccgctca	gaagaactcg	tcaagaaggc	gatagaaggc	gatgcgctgc	gaatcgggag	2760
cgatgaatcc agaaaagcgg ccatttcca ccatgatat cggcaagcag gcatcgccat 2940 gggtcacgac gagatcctog ccgtcgggca tgegegcett gagcctggeg aacagttegg 3000 ctggegegag ccectgatge tettegteca gatcateetg ategacaaga ceggetteca 3060 teegagtaeg tgetegeteg atgegatgtt tegettggtg gtegaatgge cagtageeg 3120 gatcaagegt atgeagege egeattgeat cagecatgat ggatactte teggeaggag 3180 caaggtggag tgacagege egeattgeat cagecatgat ggatactte teggeaggag 3180 caaggtggag tgacagege ggataegetg geeaggeag geeagteeg 3300 atageegege tgeetegtee tgeagteat teagggace ggacagge ggeategag 3300 atageegege tgeetegtee tgeagteat teagggace ggacaggteg gtettgacaa 3360 aaagaacegg gegeeeetge getgacagee ggaaacegge ggataagag gacetgegt 3420 tetgttgtge ceagteatag cegaatagee tetecaceea ageggeegga gaacetgeg 3420 tetgttgtge ceagteatag cegaatage tetecaceea ageggeegga gaacetgeg 3420 tetgttgtge ceagteatag cegaatage tetecaceea ageggeegga gaacetgeg 3480 geaateeate ttgtteaate atgegaaaeg ateeteate tgtetettga teagatettg 3540 atceeetge ceategage geeceetgg geaateega ege 3644 <210> SEQ ID NO 116 <211> LENGTH: 6654 <212> TFYE IDNA <213> ORANIISM: Artificial Sequence <220> FEATURE: 223> OTHER INFORMATION: Plasmid pGV1730 <400> SEQUENCE: 116 Caggeaagtg cacaaacaat acttaaataa atactacte gtataacet atttettage 40 agaaategag ttecaatea aagtaage ttegggede tettgeet 240 agaaategag ttecaatea aagtaace tteggeget tettgeet 240 agaaategag ttecaatea aagtaage tteggaget cettgeet 240 agaaategag ttecaatea aagtaage tteggaget cettgeet 240 agaaategag ttecaatea aagtaage ttegggget tettgeet 240 agaaategag ttecaatea aagtaage discocacet gettetgaat caacaaggg 300 aataaacgaa tgaggttet gtgaagetge actagtag tagttgeag tetttgaa 360 taegagtett ttaataactg geaaacegg gaacettgg tattettgeag ettitgaaa 360 taegagtett ttaataactg geaaacegg gaacettgg tattettgeag ettitgaag 360 taegagtett ttaataactg geaaacegg gaacettgg tattettgeag atettega 360 taegagtgat cgaacaga ceacaaga ategegat ateatgae aggegat 240 aggttgatta cgaacacge cacacaagta ttteggagg tettategeag 360 aataaacgaa tgaggttee gtgaagtega ateatgae 360 taegagat tgaagttee gtgaagetga ateatgae 360 aat	cggcgatacc	gtaaagcacg	aggaagcggt	cagcccattc	gccgccaagc	tcttcagcaa	2820
<pre>gggtcacgac gagatecteg cegtegggea tgegegeett gageetggeg aacagttegg 3000 ctggegegag occetgatge tettegteea gateateetg ategaaaaga eeggetteea 3060 teegagtaeg tgetegeteg atgegatgtt tegettggtg gtegaatgge caggtaegeg 3120 gateaagegt atgeageege egeattgeat cageeatgat ggataette teggeaggag 3180 caaggtgaga tgacagggag teettegee ggeaatgge caatageage cagteeette 3240 cegetteagt gacaaegteg ageacagetg egeaaggaa geeegtegg geeaggaeg 3300 atageegge tgeetegtee tgeagteat teagggeace ggacaggteg geettgaea 3360 aaagaacegg gegeeetge etgeagteat teagggeace ggacaggteg geettgaea 3360 aaagaacegg gegeeetge etgeagaege ggaacaegge ggeateagag cageeggt 3420 tetgttgtge ceagteatag eegaatagee tetceacea ageggeegg gaacetgeg 3480 geaateeate ttgtteaate atgeggaa gateeteate etgeteetg aegaaetegg 3600 teceaaeett aceagagge geeceagetg geaateega egta</pre>	tatcacgggt	agccaacgct	atgtcctgat	agcggtccgc	cacacccagc	cggccacagt	2880
ctggcgcgag cccctgatgc tcttcgtca gatcatctg atcgacaaga ccggcttcaa 3060 tccgagtacg tgctcgctcg atgcgatgtt tcgcttggtg gtcgaatggg caggtagccg 3120 gatcaagcgt atgcaacgcg cgcattgcat cagccatgat ggatacttc tcggcaggag 3180 caaggtgaga tgacaggag tcctgccccg gcacttcgc caatagcagc cagtcctte 3240 ccgcttcagt gacaacgtcg agcacagtg cgcaaggaac gccgtcgtg gccagcacg 3300 atagccgcgc tgcccgtcc tgcagttcat tcagggcacc ggacaggtcg gtcttgacaa 3360 aaagaaccgg gcgccctgc gtgacagcc ggaacacgge ggcatcagag cagccgatg 3420 tctgttgtgc ccagtcatag ccgaatagcc tctccacca agcggccgga gaacctgcgt 3480 gcaatccatc ttgttcaatc atgcgaacg atcctcatcc tgtctcttga tcagatcttg 3540 atcccctgcg ccatcagatc cttgcggca agaaagccat ccagtttact ttgcaggcg 3644 c210> SEQ ID N0 116 c211> LENGTH: 6654 c212> TYPE: DNA c220> FEATURE: c220> FEATURE: c220> FEATURE: c220> FEATURE: c220> FEATURE: c220> FEATURE: c220> Gatcagata atcttaata atactactca gtaataacct atttcttagc 60 attttggcg aaattgcta tttgtgag gcttttaca ccattgtct ccacacctcc 120 gcttacatca acccaataa cgccatttaa tctaggcga taccacaat tttctggcgt 180 cagtcaacca gtaacataa atgtaaget ttcggggct tcttgcact caaccacagg 300 aataaacgaa tgaggtttc gtgaagtcg actgagt cgcccacg gt atccaaca tttcttggcg 180 cagtcaacca gctaacataa atgtaaget ttcggggct tcttgcat caaccacagg 300 aataaacgaa tgaggtttc ggaagcga cacgaacga facctcacc gtttcgaat caaccaagg 300 aataaacgaa tgaggtttc ggaagcga taccacga gaacttgg tattcttgc acgaccaca 420 agaaatagga ttccaatcaa aagtcacc tgtcccacct gcttctgaat caacacagg 300 aataaacgaa tgaggtttct gtgaagctg actgagtagt atgttgcagt ctttggaa 360 tacgagtctt ttaataactg gcaaaccgg gaacttgg tattcttgc acgaccacat 480 aggttgatta cgaacacgc caaccaagta tttcggggct ctgaacaa tttttatgc 540	cgatgaatcc	agaaaagcgg	ccattttcca	ccatgatatt	cggcaagcag	gcatcgccat	2940
teegagtaeg tgetegeteg atgegatgtt tegettggg gtegaatggg eaggtageeg 3120 gateaagegt atgeageege egeatgeat eageeatgat ggataettte teggeagga 3180 caaggtgaga tgacaggag teetgeeeg geeaaggaae geeegtegtg geeageeag 3300 atageegege tgeetegtee tgeagtteat teagggeae ggaeaggteg gtettgaeaa 3360 aaagaaeegg gegeeeetge getgaeage ggaaeaegge ggeateagag eageeggat 3420 tetgttgtge eagteatag eggaatagee teeteaea ageggeegg agaaeetgg 3420 deetgttgtge ceagteatag eegaatagee teeteaea ageggeegg agaaeetgg 3480 geaateeate ttgtteaate atgegaaaeg ateeteae ageggeegg agaaeetgg 3480 ateeeetgeg eeateagate ettgeggea agaaageeat eegteata teagggeeg 3480 ateeeetgeg eeateagate ettgeggea agaaageeat eegteata teagageegg 3480 ateeeetgeg eeateagate ettgeggea agaaageeat eegteata teagageegg 3480 ateeeetgeg eeateagate ettgegggea agaaageeat eegteata tegeaggeet 3600 teeeaaeett aceagaggge geeeeaget geaatteega egte 3644 <210> SEQ ID NO 116 <211> LENOTH: 6654 <212> TYPE: DNA <313> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1730 <400> SEQUENCE: 116 caggeeagtg cacaaaeaat acttaaataa ataetaetea gtaataaeet atteetgeeg 180 gettacatea acaceaataa egeeatttaa tetaagegea teaceaaeat ttteeggegt 180 eagteeaeea getaacataa atgeaget teegggeet tettgeette caaceeage 240 agaaategag tteeaateea aaagteage tteegggete tettgeette caaceeage 240 agaaategag tteeaateea aaagteage teegggeet eettegeat eaaeeaagg 300 aataaaegaa tgaggttee ggaageeg gaaeeetgg tattettge agaeeedgg 300 aataaaegaa tgaggttee ggaageeg gaaeeetgg tattettgee aeaetag 330 aataaaegaa tgaggttee ggaaeeegg gaaeeeetgg tattettgee aeaetgg 330 aataaaegaa tgaggttee gaaaeeegg aaeeeetgg tattettgee aeaeeagg 330 aataaaegaa tgaggttee gaaaeeegg aaeeeetgg tattettgee aeaeeagg 330 aataaaegaa tgaggttee gaaaeeegg gaaeeeetg 240 agaategage teeeateea aaagteaeee tgeeeeeeeeee	gggtcacgac	gagatcctcg	ccgtcgggca	tgcgcgcctt	gagcctggcg	aacagttcgg	3000
<pre>gatcaagcgt atgcagccgc cgcattgcat cagccatgat ggatactttc tcggcaggag 3180 caaggtgaga tgacaggaga tcctgccccg gcattgcgc caatagcagc cagtccttc 3240 ccgcttcagt gacaacgtcg agcacagctg cgcaaggaca gcccgtcgtg gccagccacg 3300 atagccgcgc tgcctcgtc tgcagttcat tcagggcacc ggacaggtcg gtcttgacaa 3360 aaagaaccgg gcgccctgc gctgacagcc ggaacacggc ggcatcagag cagccgattg 3420 tctgttgtgc ccagtcatag ccgaatagcc tctccaccca agcggccgga gaacctgcgt 3480 gcaatccatc ttgttcaatc atgcgaacag atcctactc tgtctcttga tcagatcttg 3540 atcccctgcg ccatcagatc cttggcggca agaaagccat ccagtttact ttgcagggct 3600 tcccaacctt accagaggg gccccagctg gcaattccga cgtc 3644 <<210> SEQ ID NO 116 <211> LENGTH: 6654 <212> TTPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1730 <400> SEQUENCE: 116 caggcaagtg cacaaacaat acttaaataa atactactca gtaataacct atttcttagc 60 atttttgacg aaattgcta tttgttaga gtctttaca ccattgtct ccacccctc 120 gcttacatca acaccaataa cgccatttaa tctaagcgca tcaccaacat tttctggcgt 180 cagtccacca gtaacataa agtgaagct tcggggct tcttgcat caaccaagg 300 aataaacgaa tgaggttct gtgaagctg actgggtag tagttgcat caaccaagg 300 aataaacgaa tgaggttct gtgaagctg actggagtag tagttgcaat caaccaagg 300 aataaacgaa tgaggttct gtgaagctg actgggtag tagttgcaat caaccaagg 300 aataaacgaa tgaggttct gtgaagctg actgggtag tagttgcaac acaccaact tttctggcgt 180 cagtccacca gctaacataa aatgtaagct ttcggggct tcttgcat caaccaagg 300 aataaacgaa tgaggttct gtgaagctgc actgagtagt atgttgcagt ctttggaa 360 tacgagtctt ttaataactg gcaaaccgag gaactctgg tattcttgc acgactcatc 420 tccatgcagt tggacgatat caatgccgta atcattgacc agagccaaaa catcctcctt 480 aggttgatta cgaaacacgc caaccaagta tttcggagtg cctgaactat ttttatagc 540</pre>	ctggcgcgag	cccctgatgc	tcttcgtcca	gatcatcctg	atcgacaaga	ccggcttcca	3060
caaggtgaga tgacaggaga toctgococg goattogoo caatagoago cagtootto 3240 cogottoagt gacaacgtog agoacagotg ogoaaggaac gocogtogtg gocagocaog 3300 atagoogog tgoctogto tgoagtoat togggoac ggaacaggo ggoatcagag cagoogattg 3420 totgttgtgo coagtoatag oogaatagoo totocacoo agoogoogga gaacetogot 3480 goaatcoato ttgttoaato atgogaacag atcotcatoo tgtototga toagatottg 3540 atcocotgog coatcagato ottgoogga agaaagooat coagttaat tigoaggoot 3600 tocoaacott accagaggog gococagotg goaattooga ogto 3644 <210> SEQ ID NO 116 <211> LENGTH: 6654 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> ORGANISM: Artificial Sequence <220> SEQUENCE: 116 caggocaagtg cacaaacaat acttaaataa atactactoa gtaataacot attootagoo 120 gottacatoa acaccaataa cgocattaa totggogot tootgoot 120 gottacatoa acaccaataa cgocattaa totggogot tootgoot 240 agaaatoga tgaggttot gtagaagoot tootgoot tootgoot 240 agaaatoga tgaggttot gtagaagoot tootgoot cacaccaat titotgoog 300 aataaacgaa tgaggttot ggaaactoo gtacacacat titogga 300 aataaacgaa tgaggttot ggaagoot tootgoot cacaccaaca 240 agaaatoga titaataa atgtaagoot tootgoot cacaccaaca 300 aataaacgaa tgaggtttot gtagagoot actagatga tagttgoog tottgaaa 360 tacogagot tocaatoca aaagtocac tgtoccacci gottotgaat caacacagg 300 aataaacgaa tgaggtttot gtagagoot actagaga tagttgoog tottiggaaa 360 tacogagtot ttaataactg gcaaaccgag gaactotgg tattottogo 420 tocatgoog tiggacgatat caatgoogta atcattgoot agagocaaaa catcotcott 480 aggutgatta cgaaacacgo caaccaaga tittoggagt cotgaactat tittatatgo 540	tccgagtacg	tgctcgctcg	atgcgatgtt	tcgcttggtg	gtcgaatggg	caggtagccg	3120
ccgcttcagt gacaacgtcg agcacagctg cgcaaggaac gcccgtcgtg gccagccacg 3300 atagccgcg tgcctcgtc tgcagttcat tcagggcacc ggacaggtcg gtcttgacaa 3360 aaagaaccgg gcgccctge gctgacagce ggaacacgge ggcatcagag cagccgattg 3420 tctgttgtge ccagtcatag ccgaatagce tctccacca agcggccgga gaacctgcgt 3480 gcaatccate ttgttcaate atgcgaacg atceteate tgtetettga tcagatettg 3540 atcccetgeg ccatcagate ettggeggea agaaagceat ccagtttaet ttgcaggget 3600 tcccaacett accagaggge geeceagetg geaatcega egte 3644 <210> SEQ ID NO 116 <211> LENGTH: 6654 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1730 <400> SEQUENCE: 116 caggcaagtg cacaacaat acttaaataa atactactea gtaataacet attlettage 60 attlttgacg aaattgeta tttggtagg tettggggete tettgeete caaccagte 240 agaaategag ttceaatea aagtteace tgecceact gettetgaat caaacaaggg 300 aataaacgaa tgaggttet gtgaagetge actgagtagt atgttgcagt etttggaaa tacgagtett ttaataactg gcaaacegag gaactettgg tattettgee acgaeteate 420 tccatgcagt tggacgatat caatgcegta atcattgace agagccaaaa catecteet 480 aggttgatta cgaaacacge caaccaagta ttteggagtg ectgaactat ttttatatge 540	gatcaagcgt	atgcagccgc	cgcattgcat	cagccatgat	ggatactttc	tcggcaggag	3180
atagcegege tgeetegtee tgeagtteat teagggeace ggaaaggteg gtettgacaa 3360 aaagaacegg gegeeeetge getgacagee ggaacaegge ggeateagag eageeggat 3420 tetgttgtge eeagteatag eegaatagee tetecacea ageggeegga gaacetgegt 3480 geaateeate ttgtteaate atgegaaaeg ateeteatee tgtetettga teagatettg 3540 ateeeetgeg eeateagate ettggeggea agaaageeat eeagttaet ttgeaggget 3600 teeeaaeett aceagaggge geeeeagtg geaatteega egte 3644 <210> SEQ ID NO 116 <211> LENGTH: 6654 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1730 <400> SEQUENCE: 116 caggeeagtg cacaaeeaat acttaaataa ataetaetea gtaataaeet atteettage 60 attettgaeg aaattegeta tttegtaga gtetttaea ceattgtet ceaeeetee gettaeetea acaeceaataa egeeattaa tetaagegea teeteetee 240 agaaategag teeeaatea aagtaeget teeggggete tettgeete eaaeeaggg 300 aataaaegga tgeaaetea aaagtee etgeeggee actgagtagt atgetgeagt etttgaaa 360 taetagagtett ttaataaetg geaaacegag gaacettgg tattettgee aegaeteate 420 teetageagt tggaegatat caatgeegta ateattgaee agaeceaaaa eateeteet 480 aggttgatta egaaaeege caaeceagta ttteggagtg eetgaaeta tttettage 540	caaggtgaga	tgacaggaga	tcctgccccg	gcacttcgcc	caatagcagc	cagtcccttc	3240
aaagaaccgg gegeeeetge getgacagee ggaacaegge ggeateagag eageegattg 3420 tetgttgtge eeagteatag eegaatagee tetecaecea ageggeegga gaacetgegt 3480 geaateeate ttgtteaate atgegaaacg ateeteatee tgtetettga teagatettg 3540 ateeeetgeg eeateagate ettggeggea agaaageeat eeagttaet ttgeagget 3600 teeeaacett accagaggge geeeeagetg geaatteega egte 3644 <le><210> SEQ ID NO 116 <le><211> LENGTH: 6654 <le><212> TYPE: DNA <le><213> ORGANISM: Artificial Sequence <le><220> FEATURE: <le><223> OTHER INFORMATION: Plasmid pGV1730 <le><400> SEQUENCE: 116 caggeaagtg cacaaacaat acttaaataa ataetaete gtaataacet atteetage 60 attettgaeg aaattegea tettggtagget teegggete tettgeette caacceagte 240 agaaategag tteeaatea aagteaget teegggete tettgeette caacceagte 240 agaaategag tteeaatea aaagteae tgteecaect gettetgaat caacaaggg 300 aataaacgaa tgaggttet gtgaagetge aetgagtagt atgttgeagt ettttggaaa 360 taeggaett ttaataactg geaaacceag gaactettgg tattettgee acgaetae 420 teeatgeagt tggaegatat caatgeegta ateattgee agageeaaa cateeteet 480 aggttgatta egaaacaege caaccaagta ttteeggagtg cetgaactat ttttatate 540</le></le></le></le></le></le></le>	ccgcttcagt	gacaacgtcg	agcacagctg	cgcaaggaac	gcccgtcgtg	gccagccacg	3300
tctgttgtgc ccagtcatag ccgaatagce tctccaccca agoggccgga gaacetgegt 3480 gcaatecate ttgtteaate atgegaaaeg atecteatee tgtetettga teagatettg 3540 ateceetgeg ccateagate ettggeggea agaaageeat ecagtttaet ttgeaggget 3600 teceaaeett aceagaggge geeceagetg geaatteega egte 3644 <210> SEQ ID NO 116 (211> LENGTH: 6654 (212> TYPE: DNA (213> ORGANISM: Artificial Sequence (220> FEATURE: (223> OTHER INFORMATION: Plasmid pGV1730 <400> SEQUENCE: 116 caggeaagtg cacaaaeaat aettaaataa atactaetea gtaataaeet atteettage 60 attettgaeg aaattegeta tttegtaga gtettttaee ceattgete ceaeeetee 120 gettacatea acaecaataa egeeatttaa tetaagegea teaeeaaeat tteetggegt 180 cagteeaetaa acaecaataa egeeattaa tetaagegea teaeeaeat tteetggegt 180 cagteeaetaa aagteeaet teggggete tettgeette caaaeeagg 300 aataaaeegaa tgaggttee gtgaageege acegagtagt atgttgeagt ettttgaaa 360 tacgagtett ttaataeetg geaaaeega gaaeetetgg tattettgee acageaetae 420 teeatgeegt tegaagetat caatgeegta ateattgaee agageeaaaa cateeteet 480 aggttgatta egaaaeaege caaecaagta ttteggagtg eetgaaetat ttttatage 540	atagccgcgc	tgcctcgtcc	tgcagttcat	tcagggcacc	ggacaggtcg	gtcttgacaa	3360
<pre>gcaatccatc ttgttcaatc atgcgaaacg atcctcatcc tgtctcttga tcagatcttg 3540 atcccctgcg ccatcagatc cttggcggca agaaagccat ccagtttact ttgcagggct 3600 tcccaacctt accagagggc gccccagctg gcaattccga cgtc 3644 </pre>	aaagaaccgg	gcgcccctgc	gctgacagcc	ggaacacggc	ggcatcagag	cagccgattg	3420
atcccctgcg ccatcagatc cttggcggca agaaagccat ccagtttact ttgcagggct 3600 tcccaacctt accagagggc gccccagctg gcaattccga cgtc 3644 <210> SEQ ID NO 116 <211> LENGTH: 6654 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1730 <400> SEQUENCE: 116 caggcaagtg cacaaacaat acttaaataa atactactca gtaataacct atttcttagc 60 atttttgacg aaattgcta ttttgttaga gtcttttaca ccattgtct ccacacctcc 120 gcttacatca acaccaataa cgccatttaa tctaagcgca tcaccaacat tttctggcgt 180 cagtccacca gctaacataa aatgtaagct ttcggggctc tcttgccttc caacccagtc 240 agaaatcgag ttccaatcca aaagttcacc tgtcccacct gcttctgaat caaacaaggg 300 aataaacgaa tgaggtttct gtgaagctgc actgagtagt atgttgcagt ctttggaaa 360 tacgagtctt ttaataactg gcaaaccgag gaactcttgg tattcttgcc acgactcatc 420 tccatgcagt tggacgatat caatgccgta atcattgacc agagccaaaa catcctcctt 480 aggttgatta cgaaacacgc caaccaagta tttcggagtg cctgaactat ttttatatgc 540	tctgttgtgc	ccagtcatag	ccgaatagcc	tctccaccca	agcggccgga	gaacctgcgt	3480
tccccaacctt accagagggc gccccagctg gcaattccga cgtc3644<210> SEQ ID NO 116<211> LENGTH: 6654<212> TTFE: DNA<213> ORGANISM: Artificial Sequence<220> FEATURE:<223> OTHER INFORMATION: Plasmid pGV1730<400> SEQUENCE: 116caggcaagtg cacaaacaat acttaaataa atactactca gtaataacct atttcttagc60atttttgacg aaatttgcta ttttgttaga gtcttttaca ccatttgtct ccacacctcc120gcttacatca acaccaataa cgccatttaa tctaagcgca tcaccaacat tttctggcgt180cagtccacca gctaacataa aatgtaagct ttcggggctc tcttgccttc caaccagtc240agaaatcgag ttccaatcca aaagttcacc tgtcccacct gcttctgaat caaacaaggg300aataaacgaa tgaggtttct gtgaagctgc actgagtagt atgttgcagt cttttggaaa360tacgagtctt ttaataactg gcaaaccgag gaactcttgg tattcttgcc acgactcatc420tccatgcagt tggacgatat caatgccgta atcattgacc agagccaaaa catcctcctt480aggttgatta cgaaacacgc caaccaagta tttcggagtg cctgaactat ttttatatgc540	gcaatccatc	ttgttcaatc	atgcgaaacg	atcctcatcc	tgtctcttga	tcagatcttg	3540
<pre><210> SEQ ID NO 116 <211> LENGTH: 6654 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1730 <400> SEQUENCE: 116 caggcaagtg cacaaacaat acttaaataa atactactca gtaataacct attcttagc 60 atttttgacg aaatttgcta ttttgttaga gtcttttaca ccattgtct ccacacctcc 120 gcttacatca acaccaataa cgccatttaa tctaagcgca tcaccaacat tttctggcgt 180 cagtccacca gctaacataa aatgtaagct ttcggggctc tcttgccttc caacccagtc 240 agaaatcgag ttccaatcca aaagttcacc tgtcccacct gcttctgaat caaacaaggg 300 aataaacgaa tgaggtttct gtgaagctgc actgagtagt atgttgcagt cttttggaaa 360 tacgagtctt ttaataactg gcaaaccgag gaactcttgg tattcttgcc acgactcatc 420 tccatgcagt tggacgatat caatgccgta atcattgacc agagccaaaa catcctcctt 480 aggttgatta cgaaacacgc caaccaagta tttcggagtg cctgaactat ttttatatgc 540</pre>	atcccctgcg	ccatcagatc	cttggcggca	agaaagccat	ccagtttact	ttgcagggct	3600
<pre><211> LENGTH: 6654 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1730 <400> SEQUENCE: 116 caggcaagtg cacaaacaat acttaaataa atactactca gtaataacct attcttagc 60 atttttgacg aaatttgcta ttttgttaga gtcttttaca ccatttgtct ccacacctcc 120 gcttacatca acaccaataa cgccatttaa tctaagcgca tcaccaacat tttctggcgt 180 cagtccacca gctaacataa aatgtaagct ttcggggctc tcttgccttc caacccagtc 240 agaaatcgag ttccaatcca aaagttcacc tgtcccacct gcttctgaat caaacaaggg 300 aataaaacgaa tgaggttct gtgaagctgc actgagtagt atgttgcagt cttttggaaa 360 tacgagtctt ttaataactg gcaaaccgag gaactcttgg tattcttgcc acgactcatc 420 tccatgcagt tggacgatat caatgccgta atcattgacc agagccaaaa catcctcctt 480 aggttgatta cgaaacacgc caaccaagta tttcggagtg cctgaactat ttttatatgc 540</pre>	tcccaacctt	accagagggc	gccccagctg	gcaattccga	cgtc		3644
caggcaagtg cacaaacaat acttaaataa atactactca gtaataacct atttcttagc60atttttgacg aaatttgcta ttttgttaga gtcttttaca ccatttgtet ccacacetec120gcttacatca acaccaataa cgccatttaa tctaagcgca tcaccaacat tttetggegt180cagtecacca getaacataa aatgtaaget tteggggete tettgeette caaeceagte240agaaategga ttecaateca aaagtteace tgteceacet gettetgaat caaacaaggg300aataaacgaa tgaggtttet gtgaagetge actgagtagt atgttgeagt ettttggaaa360taegagtett ttaataactg geaaacegag gaactettgg tattettgee acgaeteate420tecatgeagt tggacgatat caatgeegta ateattgaee agagceaaa cateeteet480aggttgatta egaaacaege caaecaagta ttteggagtg eetgaactat ttttatatge540	<211> LENGT <212> TYPE <213> ORGAN <220> FEATU	TH: 6654 : DNA NISM: Artif: JRE:	_				
atttttgacg aaatttgcta ttttgttaga gtcttttaca ccatttgtct ccacacctcc 120 gcttacatca acaccaataa cgccatttaa tctaagegca tcaccaacat tttetggegt 180 cagtecaaca getaacataa aatgtaaget tteggggete tettgeette caaeceagte 240 agaaategag ttecaateca aaagtteaee tgteceaeet gettetgaat caaacaaggg 300 aataaaeegaa tgaggtttet gtgaagetge aetgagtagt atgttgeagt ettttggaaa 360 taegagtett ttaataaetg geaaaeegag gaaetettgg tattettgee aegaeteaet 420 teeatgeagt tggaegatat caatgeegta ateattgaee agageeaaa eateeteet 480 aggttgatta egaaaeeege caaecaagta ttteggagtg ectgaaetat tttatatge 540	<400> SEQUE	ENCE: 116					
gcttacatca acaccaataa cgccatttaa tctaagcgca tcaccaacat tttctggcgt180cagtccacca gctaacataa aatgtaagct ttcggggctc tcttgccttc caacccagtc240agaaatcgag ttccaatca aaagttcacc tgtcccacct gcttctgaat caaacaaggg300aataaacgaa tgaggtttct gtgaagctgc actgagtagt atgttgcagt cttttggaaa360tacgagtctt ttaataactg gcaaaccgag gaactcttgg tattcttgcc acgactcatc420tccatgcagt tggacgatat caatgccgta atcattgacc agagccaaaa catcctcctt480aggttgatta cgaaacacgc caaccaagta tttcggagtg cctgaactat ttttatatgc540	caggcaagtg	cacaaacaat	acttaaataa	atactactca	gtaataacct	atttcttagc	60
cagtccacca gctaacataa aatgtaagct ttcgggggctc tcttgccttc caacccagtc 240 agaaatcgag ttccaatcca aaagttcacc tgtcccacct gcttctgaat caaacaaggg 300 aataaacgaa tgaggtttct gtgaagctgc actgagtagt atgttgcagt cttttggaaa 360 tacgagtctt ttaataactg gcaaaccgag gaactcttgg tattcttgcc acgactcatc 420 tccatgcagt tggacgatat caatgccgta atcattgacc agagccaaaa catcctcctt 480 aggttgatta cgaaacacgc caaccaagta tttcggagtg cctgaactat ttttatatgc 540	atttttgacg	aaatttgcta	ttttgttaga	gtcttttaca	ccatttgtct	ccacacctcc	120
agaaatcgag ttccaatcca aaagttcacc tgtcccacct gcttctgaat caaacaaggg 300 aataaacgaa tgaggtttct gtgaagctgc actgagtagt atgttgcagt cttttggaaa 360 tacgagtctt ttaataactg gcaaaccgag gaactcttgg tattcttgcc acgactcatc 420 tccatgcagt tggacgatat caatgccgta atcattgacc agagccaaaa catcctcctt 480 aggttgatta cgaaacacgc caaccaagta tttcggagtg cctgaactat ttttatatgc 540	gcttacatca	acaccaataa	cgccatttaa	tctaagcgca	tcaccaacat	tttctggcgt	180
aataaacgaa tgaggtttct gtgaagctgc actgagtagt atgttgcagt cttttggaaa 360 tacgagtctt ttaataactg gcaaaccgag gaactcttgg tattcttgcc acgactcatc 420 tccatgcagt tggacgatat caatgccgta atcattgacc agagccaaaa catcctcctt 480 aggttgatta cgaaacacgc caaccaagta tttcggagtg cctgaactat ttttatatgc 540	cagtccacca	gctaacataa	aatgtaagct	ttcgggggctc	tettgeette	caacccagtc	240
tacgagtett ttaataactg geaaacegag gaaetettgg tattettgee acgaeteate 420 tecatgeagt tggaegatat caatgeegta ateattgaee agageeaaaa cateeteett 480 aggttgatta egaaacaege caaceaagta ttteggagtg eetgaaetat ttttatatge 540	agaaatcgag	ttccaatcca	aaagttcacc	tgtcccacct	gcttctgaat	caaacaaggg	300
tccatgcagt tggacgatat caatgccgta atcattgacc agagccaaaa catcctcctt 480 aggttgatta cgaaacacgc caaccaagta tttcggagtg cctgaactat ttttatatgc 540	aataaacgaa	tgaggtttct	gtgaagctgc	actgagtagt	atgttgcagt	cttttggaaa	360
aggttgatta cgaaacacgc caaccaagta tttcggagtg cctgaactat ttttatatgc 540	tacgagtctt	ttaataactg	gcaaaccgag	gaactcttgg	tattcttgcc	acgactcatc	420
	tccatgcagt	tggacgatat	caatgccgta	atcattgacc	agagccaaaa	catcctcctt	480
ttttacaaga cttgaaattt teettgeaat aacegggtea attgttetet ttetattggg 600	aggttgatta	cgaaacacgc	caaccaagta	tttcggagtg	cctgaactat	ttttatatgc	540
	ttttacaaga	cttgaaattt	tccttgcaat	aaccgggtca	attgttctct	ttctattggg	600

cacacatata	atacccagca	agtcagcatc	ggaatctaga	gcacattctg	cggcctctgt	660	
gctctgcaag	ccgcaaactt	tcaccaatgg	accagaacta	cctgtgaaat	taataacaga	720	
catactccaa	gctgcctttg	tgtgcttaat	cacgtatact	cacgtgctca	atagtcacca	780	
atgccctccc	tcttggccct	ctccttttct	tttttcgacc	gaattaattc	ttaatcggca	840	
aaaaaagaaa	agctccggat	caagattgta	cgtaaggtga	caagctattt	ttcaataaag	900	
aatatcttcc	actactgcca	tctggcgtca	taactgcaaa	gtacacatat	attacgatgc	960	
tgtctattaa	atgetteeta	tattatatat	atagtaatgt	cgttgacgtc	gccggcagga	1020	
gagtgaaaga	gccttgttta	tatattttt	tttcctatgt	tcaacgagga	cagctaggtt	1080	
tatgcaaaaa	tgtgccatca	ccataagctg	attcaaatga	gctaaaaaaa	aaatagttag	1140	
aaaataaggt	ggtgttgaac	gatagcaagt	agatcaagac	accgtctaac	agaaaaaggg	1200	
gcagcggaca	atattatgca	attatgaaga	aaagtactca	aagggtcgga	aaaatattca	1260	
aacgatattt	gcattaaatc	ctcaattgat	tgattattcc	atagtaaaat	accgtaacaa	1320	
cacaaaattg	ttctcaaatt	cataaattat	tcattttttc	cacgagcctc	atcacacgaa	1380	
aagtcagaag	agcatacata	atcttttaaa	tgcataggtt	atgcattttg	caaatgccac	1440	
caggcaacaa	aaatatgcgt	ttagcgggcg	gaatcgggaa	ggaagccgga	accaccaaaa	1500	
actggaagct	acgtttttaa	ggaaggtatg	ggtgcagtgt	gcttatctca	agaaatatta	1560	
gttatgatat	aaggtgttga	agtttagaga	taggtaaata	aacgcgggggt	gtgtttatta	1620	
catgaagaag	aagttagttt	ctgccttgct	tgtttatctt	gcacatcaca	tcagcggaac	1680	
atatgctcac	ccagtcgcga	catccaattt	atagaaatca	gcttgtgggt	attgttcaga	1740	
gaatttttca	atcattggag	caatcatttt	acatggaccg	caccaagtgg	cgtagaaatc	1800	
tacgacaact	agcttgtctt	gagcaattgc	agagtcgaat	tcgctggcag	ttttgaattg	1860	
agtaaccatt	atttgtatcg	aggtgtctag	tcttctatta	cactaatgca	gtttcagggt	1920	
tttggaaacc	acactgttta	aacagtgttc	cttaatcaag	gatacctctt	ttttttcct	1980	
tggttccact	aattcatcgg	tttttttt	ggaagacatc	ttttccaacg	aaaagaatat	2040	
acatatcgtt	taagagaaat	tctccaaatt	tgtaaagaag	cggacccaga	cttaagccta	2100	
accaggccaa	ttcaacagac	tgtcggcaac	ttcttgtctg	gtctttccat	ggtaagtgac	2160	
agtgcagtaa	taatatgaac	caatttattt	ttcgttacat	aaaaatgctt	ataaaacttt	2220	
aactaataat	tagagattaa	atcgcggccg	cggatcccta	gagagctttc	gttttcatga	2280	
gttccccgaa	ttctttcgga	agcttgtcac	ttgctaaatt	aacgttatca	ctgtagtcaa	2340	
ccgggacatc	aatgatgaca	ggcccctcag	cgttcatgcc	ttgacgcaga	acatctgcca	2400	
gctggtctgg	tgattctacg	cgtaagccag	ttgctccgaa	gctttccgcg	tatttcacga	2460	
tatcgatatt	tccgaaatcg	accgcagatg	tacgattata	tttttcaat	tgctggaatg	2520	
caaccatgtc	atatgtgctg	tcgttccata	caatgtgtac	aattggtgct	tttaaacgaa	2580	
ctgctgtctc	taattccata	gctgagaata	agaaaccgcc	atcaccggag	actgatacta	2640	
cttttctcc	cggtttcacc	aatgaagege	cgattgccca	aggaagcgca	acgccgagtg	2700	
tttgcatacc	gttactaatc	attaatgtta	acggctcgta	gctgcggaaa	taacgtgaca	2760	
tccaaatcgc	gtgtgaaccg	atatcgcaag	tcactgtaac	atgatcatcg	actgcgtttc	2820	
gcaattcttt	aacgatttca	agaggatgca	ctctgtctga	tttccaatct	gcaggcacct	2880	

gctcaccctc	atgcatatat	tgttttaaat	cagaaaggat	cttctgctca	cgttccgcaa	2940
agtctacttt	cacagcatcg	tgttcgatat	gattgatcgt	agatggaata	tcaccgatca	3000
gttcaagatc	cggctggtaa	gcatgatcaa	tgtcagccag	aatctcgtct	aaatggatga	3060
tcgtccggtc	tccattgaca	ttccagaatt	tcggatcata	ttcaattggg	tcatagccga	3120
ttgtcagaac	aacatcagcc	tgctcaagca	gcagatcgcc	aggctggttg	cggaataaac	3180
cgatccggcc	aaaatactga	tcctctaaat	ctctcgtaag	agtaccggca	gcttgatatg	3240
tttcaacgaa	tggaagctgc	acttttttca	atagettgeg	aaccgcttta	atcgcttccg	3300
gtetteegee	cttcatgccg	actaaaacga	caggaagttt	tgctgtttga	atttttgcaa	3360
tggccatact	gattgcgtca	tctgctgcgg	gaccaagttt	tggcgctgcg	acagcacgta	3420
cgttttttgt	atttgtgact	tcattcacaa	catcttgcgg	aaaactcaca	aaagcggccc	3480
cagcctgccc	tgctgacgct	atcctaaacg	catttgtaac	agcttccggt	atattttta	3540
catcttgaac	ttctacactg	tattttgtaa	tcggctggaa	tagcgccgca	ttatccaaag	3600
attgatgtgt	ccgttttaaa	cgatctgcac	ggatcacgtt	cccagcaagc	gcaacgacag	3660
ggtcaccttc	agtgtttgct	gtcagcagtc	ctgttgccaa	gttcgaagca	cctggtcctg	3720
atgtgactaa	cacgactccc	ggttttccag	ttaaacggcc	gactgcttgc	gccataaatg	3780
ctgcattttg	ttcatgccgg	gcaacgataa	tttcaggccc	tttatcttgt	aaagcgtcaa	3840
ataccgcatc	aatttttgca	cctggaatgc	caaatacatg	tgtgacacct	tgctccgcta	3900
agcaatcaac	aacaagctcc	gcccctctgc	ttttcacaag	ggatttttgt	tcttttgttg	3960
cttttgtcaa	catgtcgact	ttatgtgatg	attgattgat	tgattgtaca	gtttgtttt	4020
cttaatatct	atttcgatga	cttctatatg	atattgcact	aacaagaaga	tattataatg	4080
caattgatac	aagacaagga	gttatttgct	tctcttttat	atgattctga	caatccatat	4140
tgcgttggta	gtctttttg	ctggaacggt	tcagcggaaa	agacgcatcg	ctctttttgc	4200
ttctagaaga	aatgccagca	aaagaatctc	ttgacagtga	ctgacagcaa	aaatgtcttt	4260
ttctaactag	taacaaggct	aagatatcag	cctgaaataa	agggtggtga	agtaataatt	4320
aaatcatccg	tataaaccta	tacacatata	tgaggaaaaa	taatacaaaa	gtgttttaaa	4380
tacagataca	tacatgaaca	tatgcacgta	tagcgcccaa	atgtcggtaa	tgggatcggc	4440
gageteeage	ttttgttccc	tttagtgagg	gttaattgcg	cgcttggcgt	aatcatggtc	4500
atagctgttt	cctgtgtgaa	attgttatcc	gctcacaatt	ccacacaaca	taggagccgg	4560
aagcataaag	tgtaaagcct	ggggtgccta	atgagtgagg	taactcacat	taattgcgtt	4620
gcgctcactg	cccgctttcc	agtcgggaaa	cctgtcgtgc	cagctgcatt	aatgaatcgg	4680
ccaacgcgcg	gggagaggggg	gtttgcgtat	tgggcgctct	tccgcttcct	cgctcactga	4740
	tcggtcgttc					4800
acggttatcc	acagaatcag	gggataacgc	aggaaagaac	atgtgagcaa	aaggccagca	4860
	aaccgtaaaa					4920
	cacaaaaatc					4980
	gcgtttcccc					5040
	tacctgtccg					5100
acgctgtagg	tatctcagtt	cggtgtaggt	cgttcgctcc	aagctgggct	gtgtgcacga	5160

accccccgtt cagecegaee getgegeett atceggtaae tategtettg agtecaaeee	5220							
ggtaagacac gacttatcgc cactggcagc agccactggt aacaggatta gcagagcgag	5280							
gtatgtaggc ggtgctacag agttcttgaa gtggtggcct aactacggct acactagaag	5340							
gacagtattt ggtatctgcg ctctgctgaa gccagttacc ttcggaaaaa gagttggtag	5400							
ctcttgatcc ggcaaacaaa ccaccgctgg tagcggtggt ttttttgttt gcaagcagca	5460							
gattacgcgc agaaaaaaag gatctcaaga agatcctttg atcttttcta cggggtctga	5520							
cgctcagtgg aacgaaaact cacgttaagg gattttggtc atgagattat caaaaaggat	5580							
cttcacctag atccttttaa attaaaaatg aagttttaaa tcaatctaaa gtatatatga	5640							
gtaaacttgg tetgacagtt accaatgett aatcagtgag geacetatet eagegatetg	5700							
tctatttcgt tcatccatag ttgcctgact ccccgtcgtg tagataacta cgatacggga	5760							
gggettaeca tetggeeeca gtgetgeaat gataeegega gaeeeaeget eaeeggetee	5820							
agatttatca gcaataaacc agccagccgg aagggccgag cgcagaagtg gtcctgcaac	5880							
tttatccgcc tccatccagt ctattaattg ttgccgggaa gctagagtaa gtagttcgcc	5940							
agttaatagt ttgcgcaacg ttgttgccat tgctacaggc atcgtggtgt cacgctcgtc	6000							
gtttggtatg gcttcattca gctccggttc ccaacgatca aggcgagtta catgatcccc	6060							
catgttgtgc aaaaaagcgg ttagctcctt cggtcctccg atcgttgtca gaagtaagtt	6120							
ggccgcagtg ttatcactca tggttatggc agcactgcat aattctctta ctgtcatgcc	6180							
atccgtaaga tgcttttctg tgactggtga gtactcaacc aagtcattct gagaatagtg	6240							
tatgeggega eegagttget ettgeeegge gteaataegg gataataeeg egeeacatag	6300							
cagaacttta aaagtgctca tcattggaaa acgttcttcg gggcgaaaac tctcaaggat	6360							
cttaccgctg ttgagatcca gttcgatgta acccactcgt gcacccaact gatcttcagc	6420							
atettttaet tteaceageg tttetgggtg ageaaaaaca ggaaggeaaa atgeegeaaa	6480							
aaagggaata agggcgacac ggaaatgttg aatactcata ctcttccttt ttcaatatta	6540							
ttgaagcatt tatcagggtt attgtctcat gagcggatac atatttgaat gtatttagaa	6600							
aaataaacaa ataggggttc cgcgcacatt tccccgaaaa gtgccacctg acgt	6654							
<210> SEQ ID NO 117 <211> LENGTH: 6597 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1745								
<400> SEQUENCE: 117 taagaaacca ttattatcat gacattaacc tataaaaata ggcgtatcac gaggcccttt	60							
cgtcttcacc tcgagaattg tgagcggata acaattgaca ttgtgagcgg ataacaagat	120							
actgagcaca teagcaggae geactgaceg aatteattag tegacaggag aaaggtacta	180							
tgcgaattgg cataccaaga gaacggttaa ccaatgaaac ccgtgttgca gcaacgccaa	240							
aaacagtgga acagctgctg aaactgggtt ttaccgtcgc ggtagagage ggegegggte	300							
aaacagegga acageegeeg aaacegggee eracegeege gytagagage gyegegggee aactggcaag tittgacgat aaagegtitg tgcaageggg egetgaaatt gtagaaggga	360							
atagogtotg goagtoagag atoattotga aggtoaatgo googttagat gatgaaatg	420							
	420							
cgttactgaa teetgggaca aegetggtga gttttatetg geetgegeag aateeggaat	100							

taatgcaaaa	acttgcggaa	cgtaacgtga	ccgtgatggc	gatggactct	gtgccgcgta	540
tctcacgcgc	acaatcgctg	gacgcactaa	gctcgatggc	gaacatcgcc	ggttatcgcg	600
ccattgttga	agcggcacat	gaatttgggc	gcttctttac	cgggcaaatt	actgcggccg	660
ggaaagtgcc	accggcaaaa	gtgatggtga	ttggtgcggg	tgttgcaggt	ctggccgcca	720
ttggcgcagc	aaacagtctc	ggcgcgattg	tgcgtgcatt	cgacacccgc	ccggaagtga	780
aagaacaagt	tcaaagtatg	ggcgcggaat	tcctcgagct	ggattttaaa	gaggaagctg	840
gcagcggcga	tggctatgcc	aaagtgatgt	cggacgcgtt	catcaaagcg	gaaatggaac	900
tctttgccgc	ccaggcaaaa	gaggtcgata	tcattgtcac	caccgcgctt	attccaggca	960
aaccagcgcc	gaagctaatt	acccgtgaaa	tggttgactc	catgaaggcg	ggcagtgtga	1020
ttgttgacct	ggcagcccaa	aacggcggca	actgtgaata	caccgtgccg	ggtgaaatct	1080
tcactacgga	aaatggtgtc	aaagtgattg	gttataccga	tcttccgggc	cgtctgccga	1140
cgcaatcctc	acagetttae	ggcacaaacc	tcgttaatct	gctgaaactg	ttgtgcaaag	1200
agaaagacgg	caatatcact	gttgattttg	atgatgtggt	gattcgcggc	gtgaccgtga	1260
tccgtgcggg	cgaaattacc	tggccggcac	cgccgattca	ggtatcagct	cagccgcagg	1320
cggcacaaaa	agcggcaccg	gaagtgaaaa	ctgaggaaaa	atgtacctgc	tcaccgtggc	1380
gtaaatacgc	gttgatggcg	ctggcaatca	ttctttttgg	ctggatggca	agcgttgcgc	1440
cgaaagaatt	ccttgggcac	ttcaccgttt	tcgcgctggc	ctgcgttgtc	ggttattacg	1500
tggtgtggaa	tgtatcgcac	gcgctgcata	caccgttgat	gtcggtcacc	aacgcgattt	1560
cagggattat	tgttgtcgga	gcactgttgc	agattggcca	gggcggctgg	gttagcttcc	1620
ttagttttat	cgcggtgctt	atagccagca	ttaatatttt	cggtggcttc	accgtgactc	1680
agcgcatgct	gaaaatgttc	cgcaaaaatt	aaggggtaac	atatgtctgg	aggattagtt	1740
acagctgcat	acattgttgc	cgcgatcctg	tttatcttca	gtctggccgg	tctttcgaaa	1800
catgaaacgt	ctcgccaggg	taacaacttc	ggtatcgccg	ggatggcgat	tgcgttaatc	1860
gcaaccattt	ttggaccgga	tacgggtaat	gttggctgga	tcttgctggc	gatggtcatt	1920
ggtggggcaa	ttggtatccg	tctggcgaag	aaagttgaaa	tgaccgaaat	gccagaactg	1980
gtggcgatcc	tgcatagctt	cgtgggtctg	gcggcagtgc	tggttggctt	taacagctat	2040
ctgcatcatg	acgcgggaat	ggcaccgatt	ctggtcaata	ttcacctgac	ggaagtgttc	2100
ctcggtatct	tcatcggggc	ggtaacgttc	acgggttcgg	tggtggcgtt	cggcaaactg	2160
tgtggcaaga	tttcgtctaa	accattgatg	ctgccaaacc	gtcacaaaat	gaacctggcg	2220
gctctggtcg	tttccttcct	gctgctgatt	gtatttgttc	gcacggacag	cgtcggcctg	2280
caagtgctgg	cattgctgat	aatgaccgca	attgcgctgg	tattcggctg	gcatttagtc	2340
gcctccatcg	gtggtgcaga	tatgccagtg	gtggtgtcga	tgctgaactc	gtactccggc	2400
tgggcggctg	cggctgcggg	ctttatgctc	agcaacgacc	tgctgattgt	gaccggtgcg	2460
ctggtcggtt	cttcggggggc	tatcctttct	tacattatgt	gtaaggcgat	gaaccgttcc	2520
tttatcagcg	ttattgcggg	tggtttcggc	accgacggct	cttctactgg	cgatgatcag	2580
gaagtgggtg	agcaccgcga	aatcaccgca	gaagagacag	cggaactgct	gaaaaactcc	2640
cattcagtga	tcattactcc	ggggtacggc	atggcagtcg	cgcaggcgca	atatcctgtc	2700
gctgaaatta	ctgagaaatt	gcgcgctcgt	ggtattaatg	tgcgtttcgg	tatccacccg	2760

gtcgcgggggc	gtttgcctgg	acatatgaac	gtattgctgg	ctgaagcaaa	agtaccgtat	2820
gacatcgtgc	tggaaatgga	cgagatcaat	gatgactttg	ctgataccga	taccgtactg	2880
gtgattggtg	ctaacgatac	ggttaacccg	gcggcgcagg	atgatccgaa	gagtccgatt	2940
gctggtatgc	ctgtgctgga	agtgtggaaa	gcgcagaacg	tgattgtctt	taaacgttcg	3000
atgaacactg	gctatgctgg	tgtgcaaaac	ccgctgttct	tcaaggaaaa	cacccacatg	3060
ctgtttggtg	acgccaaagc	cagcgtggat	gcaatcctga	aagctctgta	acgtcgacat	3120
tatgcggccg	cggatccata	aggaggatta	attaagactt	cccgggtgat	cccatggtac	3180
gcgtgctaga	ggcatcaaat	aaaacgaaag	gctcagtcga	aagactgggc	ctttcgtttt	3240
atctgttgtt	tgtcggtgaa	cgctctcctg	agtaggacaa	atccgccgcc	ctagacctag	3300
ctagggtacg	ggttttgctg	cccgcaaacg	ggctgttctg	gtgttgctag	tttgttatca	3360
gaatcgcaga	tccggcttca	gccggtttgc	cggctgaaag	cgctatttct	tccagaattg	3420
ccatgatttt	ttccccacgg	gaggcgtcac	tggctcccgt	gttgtcggca	gctttgattc	3480
gataagcagc	atcgcctgtt	tcaggctgtc	tatgtgtgac	tgttgagctg	taacaagttg	3540
tctcaggtgt	tcaatttcat	gttctagttg	ctttgtttta	ctggtttcac	ctgttctatt	3600
aggtgttaca	tgctgttcat	ctgttacatt	gtcgatctgt	tcatggtgaa	cagctttaaa	3660
tgcaccaaaa	actcgtaaaa	gctctgatgt	atctatcttt	tttacaccgt	tttcatctgt	3720
gcatatggac	agttttccct	ttgatatcta	acggtgaaca	gttgttctac	ttttgtttgt	3780
tagtcttgat	gcttcactga	tagatacaag	agccataaga	acctcagatc	cttccgtatt	3840
tagccagtat	gttctctagt	gtggttcgtt	gtttttgcgt	gagccatgag	aacgaaccat	3900
tgagatcatg	cttactttgc	atgtcactca	aaaattttgc	ctcaaaactg	gtgagctgaa	3960
tttttgcagt	taaagcatcg	tgtagtgttt	ttettagtee	gttacgtagg	taggaatctg	4020
atgtaatggt	tgttggtatt	ttgtcaccat	tcatttttat	ctggttgttc	tcaagttcgg	4080
ttacgagatc	catttgtcta	tctagttcaa	cttggaaaat	caacgtatca	gtcgggcggc	4140
ctcgcttatc	aaccaccaat	ttcatattgc	tgtaagtgtt	taaatcttta	cttattggtt	4200
tcaaaaccca	ttggttaagc	cttttaaact	catggtagtt	attttcaagc	attaacatga	4260
acttaaattc	atcaaggcta	atctctatat	ttgccttgtg	agttttcttt	tgtgttagtt	4320
cttttaataa	ccactcataa	atcctcatag	agtatttgtt	ttcaaaagac	ttaacatgtt	4380
ccagattata	ttttatgaat	tttttaact	ggaaaagata	aggcaatatc	tcttcactaa	4440
aaactaattc	taatttttcg	cttgagaact	tggcatagtt	tgtccactgg	aaaatctcaa	4500
agcetttaac	caaaggattc	ctgatttcca	cagttetegt	catcagetet	ctggttgctt	4560
tagctaatac	accataagca	ttttccctac	tgatgttcat	catctgagcg	tattggttat	4620
aagtgaacga	taccgtccgt	tettteettg	tagggttttc	aatcgtgggg	ttgagtagtg	4680
ccacacagca	taaaattagc	ttggtttcat	gctccgttaa	gtcatagcga	ctaatcgcta	4740
gttcatttgc	tttgaaaaca	actaattcag	acatacatct	caattggtct	aggtgatttt	4800
aatcactata	ccaattgaga	tgggctagtc	aatgataatt	actagtcctt	ttcccgggag	4860
atctgggtat	ctgtaaattc	tgctagacct	ttgctggaaa	acttgtaaat	tctgctagac	4920
cctctgtaaa	ttccgctaga	cctttgtgtg	tttttttgt	ttatattcaa	gtggttataa	4980
tttatagaat	aaagaaagaa	taaaaaaaga	taaaaagaat	agateccage	cctgtgtata	5040

207

-con	ti	nu	ed

actcactact ttagtcagt	t ccgcagtatt	acaaaaggat	gtcgcaaacg	ctgtttgctc	5100
ctctacaaaa cagacctta	a aaccctaaag	gcttaagtag	caccctcgca	agetegggea	5160
aatcgctgaa tattccttt	t gtctccgacc	atcaggcacc	tgagtcgctg	tctttttcgt	5220
gacattcagt tcgctgcgc	t cacggctctg	gcagtgaatg	ggggtaaatg	gcactacagg	5280
cgccttttat ggattcatg	c aaggaaacta	cccataatac	aagaaaagcc	cgtcacgggc	5340
ttctcagggc gttttatgg	c gggtctgcta	tgtggtgcta	tctgactttt	tgctgttcag	5400
cagtteetge eetetgatt	t tccagtctga	ccacttcgga	ttatcccgtg	acaggtcatt	5460
cagactggct aatgcaccc	a gtaaggcagc	ggtatcatca	acaggcttac	ccgtcttact	5520
gtccctagtg cttggattc	t caccaataaa	aaacgcccgg	cggcaaccga	gcgttctgaa	5580
caaatccaga tggagttct	g aggtcattac	tggatctatc	aacaggagtc	caagcgagct	5640
ctcgaacccc agagtcccg	c tcagaagaac	tcgtcaagaa	ggcgatagaa	ggcgatgcgc	5700
tgcgaatcgg gagcggcga	t accgtaaagc	acgaggaagc	ggtcagccca	ttcgccgcca	5760
agctcttcag caatatcac	g ggtagccaac	gctatgtcct	gatagcggtc	cgccacaccc	5820
agccggccac agtcgatga	a tccagaaaag	cggccatttt	ccaccatgat	attcggcaag	5880
caggcatcgc catgggtca	c gacgagatcc	tcgccgtcgg	gcatgcgcgc	cttgageetg	5940
gcgaacagtt cggctggcg	c gagcccctga	tgctcttcgt	ccagatcatc	ctgatcgaca	6000
agaccggctt ccatccgag	t acgtgctcgc	tcgatgcgat	gtttcgcttg	gtggtcgaat	6060
gggcaggtag ccggatcaa	g cgtatgcagc	cgccgcattg	catcagccat	gatggatact	6120
ttctcggcag gagcaaggt	g agatgacagg	agatcctgcc	ccggcacttc	gcccaatagc	6180
agccagtccc ttcccgctt	c agtgacaacg	tcgagcacag	ctgcgcaagg	aacgcccgtc	6240
gtggccagcc acgatagcc	g egetgeeteg	tcctgcagtt	cattcagggc	accggacagg	6300
tcggtcttga caaaaagaa	c cgggcgcccc	tgcgctgaca	gccggaacac	ggcggcatca	6360
gagcagccga ttgtctgtt	g tgcccagtca	tagccgaata	gcctctccac	ccaagcggcc	6420
ggagaacctg cgtgcaatc	c atcttgttca	atcatgcgaa	acgatcctca	tcctgtctct	6480
tgatcagatc ttgatcccc	t gcgccatcag	atccttggcg	gcaagaaagc	catccagttt	6540
actttgcagg gcttcccaa	c cttaccagag	ggcgccccag	ctggcaattc	cgacgtc	6597
<pre><210> SEQ ID NO 118 <211> LENGTH: 3625 <212> TYPE: DNA <213> ORGANISM: Arti <220> FEATURE: <223> OTHER INFORMAT <400> SEQUENCE: 118</pre>	-				
taagaaacca ttattatca	t gacattaacc	tataaaaata	ggcgtatcac	gaggcccttt	60
cgtcttcacc tcgagaatt					120
actgagcaca tcagcagga					180
cgtcgacgag gagacaaca					240
ctggcgcaac tgggtaagt					300
tatctgcaag gcaagaagg					360
ctgaatatgc gcgacagcg					420
		5 5 5-	0 0 00-		

gaaaaacgtg	ctagctggcg	caaggctact	gagaacggct	tcaaggttgg	cacctatgag	480
gagetgatte	cgcaagctga	cctggttatc	aatctgaccc	cagataaaca	acatagcgac	540
gttgttcgta	ctgttcaacc	gctgatgaag	gatggtgctg	ctctgggtta	tagccacggc	600
tttaacattg	ttgaggtagg	tgaacaaatt	cgcaaggaca	ttactgttgt	tatggtggct	660
ccaaagtgtc	cgggtactga	ggttcgcgag	gaatataagc	gcggttttgg	tgttccaacc	720
ctgatcgcgg	tgcatccaga	gaatgaccca	aagggtgagg	gtatggctat	cgcgaaggcg	780
tgggctgcgg	cgactggcgg	ccatcgcgct	ggcgttctgg	agagcagctt	tgtggctgag	840
gttaagagcg	atctgatggg	tgaacagact	attctgtgtg	gtatgctgca	agcgggtagc	900
ctgctgtgtt	ttgataaact	ggttgaggag	ggcactgacc	cggcgtatgc	ggagaagctg	960
atccaatttg	gctgggagac	tattactgag	gcgctgaagc	aaggtggtat	tactctgatg	1020
atggatcgcc	tgagcaatcc	agctaagctg	cgcgcgtacg	ctctgagcga	gcaactgaag	1080
gaaattatgg	caccgctgtt	tcaaaagcac	atggatgata	tcattagcgg	tgagtttagc	1140
agcggcatga	tggctgattg	ggcgaatgac	gacaaaaagc	tgctgacttg	gcgcgaggaa	1200
actggtaaga	ctgctttcga	gactgctcca	caatacgagg	gtaagattgg	tgaacaagaa	1260
tattttgaca	agggtgttct	gatgatcgct	atggttaagg	ctggtgtgga	gctggctttt	1320
gagactatgg	ttgacagcgg	tattatcgag	gaaagcgcgt	actacgagag	cctgcatgaa	1380
ctgccactga	tcgcgaatac	tattgcgcgc	aaacgcctgt	atgagatgaa	tgttgtgatt	1440
agcgacactg	cggaatatgg	caattacctg	tttagctatg	cgtgcgttcc	actgctgaag	1500
ccattcatgg	cggaactgca	gccaggtgat	ctgggcaagg	cgatcccaga	gggtgctgtt	1560
gacaatggtc	agctgcgcga	cgttaatgag	gctatccgtt	ctcacgctat	cgaacaagtt	1620
ggcaaaaagc	tgcgtggtta	catgaccgac	atgaagcgca	tcgcggtggc	tggctaacct	1680
agggcgttcg	gctgcggcga	gcggtatcag	ctcactcaaa	ggcggtaata	cggttatcca	1740
cagaatcagg	ggataacgca	ggaaagaaca	tgtgagcaaa	aggccagcaa	aaggccagga	1800
accgtaaaaa	ggccgcgttg	ctggcgtttt	tccataggct	ccgcccccct	gacgagcatc	1860
acaaaaatcg	acgctcaagt	cagaggtggc	gaaacccgac	aggactataa	agataccagg	1920
cgtttccccc	tggaagctcc	ctcgtgcgct	ctcctgttcc	gaccctgccg	cttaccggat	1980
acctgtccgc	ctttctccct	tcgggaagcg	tggcgctttc	tcatagetca	cgctgtaggt	2040
atctcagttc	ggtgtaggtc	gttcgctcca	agctgggctg	tgtgcacgaa	ccccccgttc	2100
agecegaceg	ctgcgcctta	tccggtaact	atcgtcttga	gtccaacccg	gtaagacacg	2160
acttatcgcc	actggcagca	gccactggta	acaggattag	cagagcgagg	tatgtaggcg	2220
gtgctacaga	gttcttgaag	tggtggccta	actacggcta	cactagaagg	acagtatttg	2280
gtatetgege	tctgctgaag	ccagttacct	tcggaaaaag	agttggtagc	tcttgatccg	2340
gcaaacaaac	caccgctggt	agcggtggtt	tttttgtttg	caagcagcag	attacgcgca	2400
gaaaaaaagg	atctcaagaa	gatcctttga	tcttttctac	ggggtctgac	gctcagtgga	2460
acgaaaactc	acgttaaggg	attttggtca	tgactagtgc	ttggattctc	accaataaaa	2520
aacgcccggc	ggcaaccgag	cgttctgaac	aaatccagat	ggagttetga	ggtcattact	2580
ggatctatca	acaggagtcc	aagcgagctc	gtaaacttgg	tctgacagtt	accaatgctt	2640
aatcagtgag	gcacctatct	cagcgatctg	tctatttcgt	tcatccatag	ttgcctgact	2700

-continued

ccccgtcgtg tagataacta cgatacggga gggcttacca tctggcccca gtgctgcaat 2760 gataccgcga gacccacgct caccggctcc agatttatca gcaataaacc agccagccgg 2820 aagggccgag cgcagaagtg gtcctgcaac tttatccgcc tccatccagt ctattaattg 2880 ttgccgggaa gctagagtaa gtagttcgcc agttaatagt ttgcgcaacg ttgttgccat 2940 tgctacaggc atcgtggtgt cacgctcgtc gtttggtatg gcttcattca gctccggttc 3000 ccaacgatca aggcgagtta catgatcccc catgttgtgc aaaaaagcgg ttagctcctt 3060 cggtcctccg atcgttgtca gaagtaagtt ggccgcagtg ttatcactca tggttatggc 3120 agcactgcat aattetetta etgteatgee ateegtaaga tgettttetg tgaetggtga 3180 gtactcaacc aagtcattet gagaatagtg tatgeggega cegagttget ettgeeegge 3240 gtcaatacgg gataataccg cgccacatag cagaacttta aaagtgctca tcattggaaa 3300 acgttcttcg gggcgaaaac tctcaaggat cttaccgctg ttgagatcca gttcgatgta 3360 acccactcgt gcacccaact gatcttcagc atcttttact ttcaccagcg tttctgggtg 3420 3480 agcaaaaaca ggaaggcaaa atgccgcaaa aaagggaata agggcgacac ggaaatgttg aatactcata ctcttccttt ttcaatatta ttgaagcatt tatcagggtt attgtctcat 3540 gageggatae atatttgaat gtatttagaa aaataaacaa ataggggtte egegeacatt 3600 teccegaaaa gtgecacetg acgte 3625 <210> SEQ ID NO 119 <211> LENGTH: 8870 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV1914 <400> SEOUENCE: 119 tegegegttt eggtgatgae ggtgaaaaee tetgacaeat geageteeeg gagaeggtea 60 120 caqcttqtct qtaaqcqqat qccqqqaqca qacaaqcccq tcaqqqqcqcq tcaqcqqqtq ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180 accatatgeg gtgtgaaata eegcacagat gegtaaggag aaaataeege ateaggegee 240 attcgccatt caggctgcgc aactgttggg aagggcgatc ggtgcgggcc tcttcgctat 300 tacgccagct ggcgaaaggg ggatgtgctg caaggcgatt aagttgggta acgccagggt 360 tttcccagtc acgacgttgt aaaacgacgg ccagtgaatt cataccacag cttttcaatt 420 caattcatca tttttttt attcttttt ttgatttcgg tttccttgaa atttttttga 480 ttcggtaatc tccgaacaga aggaagaacg aaggaaggag cacagactta gattggtata 540 tatacgcata tgtagtgttg aagaaacatg aaattgccca gtattcttaa cccaactgca 600 cagaacaaaa acctgcagga aacgaagata aatcatgtcg aaagctacat ataaggaacg 660 tgetgetact cateetagte etgttgetge caagetattt aatateatge acgaaaagea 720 aacaaacttg tgtgcttcat tggatgttcg taccaccaag gaattactgg agttagttga 780 agcattaggt cccaaaattt gtttactaaa aacacatgtg gatatcttga ctgatttttc 840 catggagggc acagttaagc cgctaaaggc attatccgcc aagtacaatt ttttactctt 900 cgaagacaga aaatttgctg acattggtaa tacagtcaaa ttgcagtact ctgcgggtgt 960 atacagaata gcagaatggg cagacattac gaatgcacac ggtgtggtgg gcccaggtat 1020

tgttagcggt	ttgaagcagg	cggcagaaga	agtaacaaag	gaacctagag	gccttttgat	1080
gttagcagaa	ttgtcatgca	agggeteeet	atctactgga	gaatatacta	agggtactgt	1140
tgacattgcg	aagagcgaca	aagattttgt	tatcggcttt	attgctcaaa	gagacatggg	1200
tggaagagat	gaaggttacg	attggttgat	tatgacaccc	ggtgtgggtt	tagatgacaa	1260
gggagacgca	ttgggtcaac	agtatagaac	cgtggatgat	gtggtctcta	caggatctga	1320
cattattatt	gttggaagag	gactatttgc	aaagggaagg	gatgctaagg	tagagggtga	1380
acgttacaga	aaagcaggct	gggaagcata	tttgagaaga	tgcggccagc	aaaactaaaa	1440
aactgtatta	taagtaaatg	catgtatact	aaactcacaa	attagagctt	caatttaatt	1500
atatcagtta	ttaccctatg	cggtgtgaaa	taccgcacag	atgcgtaagg	agaaaatacc	1560
gcatcaggaa	attgtaaacg	ttaatatttt	gttaaaattc	gcgttaaatt	tttgttaaat	1620
cageteattt	tttaaccaat	aggccgaaat	cggcaaaatc	ccttataaat	caaaagaata	1680
gaccgagata	gggttgagtg	ttgttccagt	ttggaacaag	agtccactat	taaagaacgt	1740
ggactccaac	gtcaaagggc	gaaaaaccgt	ctatcagggc	gatggcccac	tacgtgaacc	1800
atcaccctaa	tcaagttttt	tggggtcgag	gtgccgtaaa	gcactaaatc	ggaaccctaa	1860
agggagcccc	cgatttagag	cttgacgggg	aaagccggcg	aggactgcaa	tagcacaaga	1920
ttaagataga	atggcttcaa	acageegeet	tttatacata	ttggtaaaag	ctcgcgaatc	1980
gcaccatatc	ccttatcctg	taatcaaatc	gatctaggtg	cagatacaga	tcaattcata	2040
aaaagaaatt	gaagcaccag	tttatcacta	ctacactatc	tttttcttt	tttttttt	2100
ttgcgcagtt	tcgccctttg	ttcaatatca	cttgataagt	tgtgggcttt	ttctgtcact	2160
cattcggctt	aaaaagtatt	cgttcttttg	tgttttatga	aaagggaacg	tgatataaaa	2220
aaacatcctt	tggtgtggga	catgggcttt	tgtttagaga	atggttatca	ctaccgcccc	2280
cacccttgaa	agccacagaa	aatgaaaaag	tatgtgaata	aggtgtgaac	tctataacat	2340
tttggccaaa	tgccacagcc	gatctgcata	ttccaatgga	catgatgcaa	caacaattga	2400
tgtcacattc	tcttacacac	ttcgattggt	ccgtacgtag	tactttttac	ataactgact	2460
caggcgtttc	cttcattgaa	atgeteatet	attgccaagt	acatagaatc	cacagtgcat	2520
aggttaacgc	attgtaccca	aacgacggga	aacaaggaag	gatgcagaat	gagcacttgt	2580
tatttataaa	aagacacggg	aggggggaatc	ccgtctttcg	tccgtcggag	ccaaagagat	2640
gagccaaagc	agaaaaacag	gggacgccgc	ccttcttccg	tcccgtgcgt	gaggggggggg	2700
cggccattcg	gtttttgcaa	tatgacctgt	gggccaaaaa	tcgaaaaaaa	aaaaaaaat	2760
aagaggcggc	tgcggaattt	tataagacaa	gcgcagggcc	aaagaaaaaa	taataattga	2820
cgtggctgaa	caacagtctc	tccccacccc	tttccaaaaa	ggggaatgaa	atacgagttc	2880
tttttcccaa	ttggtagata	ttcaacaaga	gacgcgcagt	acgtaacatg	cgaattgcgt	2940
aattcacggc	gataacgtag	tatttagatt	tagtataatt	tgaaccgatg	tatttatttg	3000
tctgattgat	ttatgtattc	aaactgtgta	agtttattta	tttgcaacaa	taattcgttt	3060
gagtacacta	ctaatggcgg	ccgcttagat	gccggagtcc	cagtgcttgg	tccactggat	3120
ggcctccagg	gtgcccaagt	ccagtttcca	gatggctccg	ttctggttca	gctcgatagc	3180
cttgacgaag	tteteggege	aggccaacga	gggctgggtg	ggatgagcca	ggagettete	3240
ggcaacctga	ggctcaacat	ccaaccagga	gttgaacgtg	tgcaccaggg	tggtgcgggt	3300

gatgccgggg	ttcacagtgt	aagccgtcac	gccggtaatg	ggggccagtt	tcgccaggga	3360
gctggtgaag	ttgaccacgg	cggccttggt	gccggagtag	acgggcacct	ggtagatggc	3420
attgaatcca	gtgacggatc	caatgttgca	gatgatacca	ccgggaccgc	ccttgcgctt	3480
gtcccagaag	tccagaatgg	ccgtcgtggt	gttgaccagg	ccagtgtagt	tgacggcaat	3540
ggtgcgctcg	atctggtgat	cgtccaggat	accageteeg	ttgatcagga	catcgacggt	3600
cttcagctgg	gcgaagatgg	tcttcagcag	cttggtggtc	tcggcaatgg	gcacggtcac	3660
atcatagggg	tagaaggtga	cggtcacctt	tggattgatt	gccttcagct	cggcaatggc	3720
agccgggttc	tcaatgcggt	cgaggatcac	caggttcttc	agatcgcgct	tgagcagctc	3780
cttgctggtg	tccagaccaa	tgcctcccag	accggcaacg	aaaatcacgt	tcttgttggt	3840
caaagtaaac	gacataccgg	tatctcctag	atccgtcgaa	gtcgaaacta	agttctggtg	3900
ttttaaaact	aaaaaaaga	ctaactataa	aagtagaatt	taagaagttt	aagaaataga	3960
tttacagaat	tacaatcaat	acctaccgtc	tttatatact	tattagtcaa	gtaggggaat	4020
aatttcaggg	aactggtttc	aacctttttt	ttcagctttt	tccaaatcag	agagagcaga	4080
aggtaataga	aggtgtaaga	aaatgagata	gatacatgcg	tgggtcaatt	gccttgtgtc	4140
atcatttact	ccaggcaggt	tgcatcactc	cattgaggtt	gtgcccgttt	tttgcctgtt	4200
tgtgcccctg	ttctctgtag	ttgcgctaag	agaatggacc	tatgaactga	tggttggtga	4260
agaaaacaat	attttggtgc	tgggattett	ttttttctg	gatgccagct	taaaaagcgg	4320
gctccattat	atttagtgga	tgccaggaat	aaactgttca	cccagacacc	tacgatgtta	4380
tatattctgt	gtaacccgcc	ccctattttg	ggcatgtacg	ggttacagca	gaattaaaag	4440
gctaatttt	tgactaaata	aagttaggaa	aatcactact	attaattatt	tacgtattct	4500
ttgaaatggc	gagtattgat	aatgataaac	tggatcctta	ggatttattc	tgttcagcaa	4560
acagettgee	cattttcttc	agtaccttcg	gtgcgccttc	tttcgccagg	atcagttcga	4620
tccagtacat	acggttcgga	tcggcctggg	cctctttcat	cacgctcaca	aattcgtttt	4680
cggtacgcac	aattttagac	acaacacggt	cctcagttgc	gccgaaggac	tccggcagtt	4740
tagagtagtt	ccacataggg	atatcgttgt	aagactggtt	cggaccgtgg	atctcacgct	4800
caacggtgta	gccgtcattg	ttaataatga	agcaaatcgg	gttgatcttt	tcacgaattg	4860
ccagacccag	ttcctgtacg	gtcagctgca	gggaaccgtc	accgatgaac	agcagatgac	4920
gagattettt	atcagcgatc	tgagagccca	gcgctgccgg	gaaagtatag	ccaatgctac	4980
cccacagcgg	ctgaccgata	aaatggcttt	tggatttcag	aaagatagaa	gacgcgccga	5040
aaaagctcgt	accttgttcc	gccacgatgg	tttcattgct	ctgggtcagg	ttctccacgg	5100
cctgccacag	gcgatcctgg	gacagcagtg	cgttagatgg	tacgaaatct	tcttgctttt	5160
tgtcaatgta	tttgccttta	tactcgattt	cggacaggtc	cagcagagag	ctgatcaggc	5220
tttcgaagtc	gaagttctgg	atacgctcgt	tgaagatttt	accctcgtcg	atgttcaggc	5280
taatcatttt	gttttcgttc	agatggtgag	tgaatgcacc	ggtagaagag	tcggtcagtt	5340
taacgcccag	catcaggatg	aagtccgcag	attcaacaaa	ttctttcagg	ttcggttcgc	5400
tcagagtacc	gttgtagatg	cccaggaaag	acggcagagc	ctcgtcaaca	gaggacttgc	5460
cgaagttcag	ggtggtaatc	ggcagtttgg	ttttgctgat	gaattgggtc	acggtcttct	5520
ccagaccaaa	agaaatgatt	tcgtggccgg	tgatcacgat	tggtttcttt	gcgtttttca	5580

gagactcctg	gattttgttc	aggatttcct	ggtcgctagt	gttagaagtg	gagttttctt	5640
tcttcagcgg	caggctcggt	ttttccgctt	tagctgccgc	aacatccaca	ggcaggttga	5700
tgtaaactgg	tttgcgttct	ttcagcagcg	cagacagaac	gcggtcgatt	tccacagtag	5760
cgttctctgc	agtcagcagc	gtacgtgccg	cagtcacagg	ttcatgcatt	ttcatgaagt	5820
gtttgaaatc	gccgtcagcc	agagtgtggt	ggacgaattt	accttcgttc	tgaactttgc	5880
tcgttgggct	gcctacgatc	tccaccaccg	gcaggttttc	ggcgtaggag	cccgccagac	5940
cgttgacggc	gctcagttcg	ccaacaccga	aagtggtcag	aaatgccgcg	gctttcttgg	6000
tacgtgcata	accatctgcc	atgtagcttg	cgttcagttc	gttagcgtta	cccacccatt	6060
tcatgtcttt	atgagagatg	atctgatcca	ggaactgcag	attgtaatca	cccggaacgc	6120
cgaagatttc	ttcgataccc	agttcatgca	gacggtccag	cagataatca	ccaacagtat	6180
acatgtcgac	aaacttagat	tagattgcta	tgctttcttt	ctaatgagca	agaagtaaaa	6240
aaagttgtaa	tagaacaaga	aaaatgaaac	tgaaacttga	gaaattgaag	accgtttatt	6300
aacttaaata	tcaatgggag	gtcatcgaaa	gagaaaaaaa	tcaaaaaaaa	aattttcaag	6360
aaaaagaaac	gtgataaaaa	tttttattgc	ctttttcgac	gaagaaaaag	aaacgaggcg	6420
gtctctttt	tcttttccaa	acctttagta	cgggtaatta	acgacaccct	agaggaagaa	6480
agaggggaaa	tttagtatgc	tgtgcttggg	tgttttgaag	tggtacggcg	atgcgcggag	6540
tccgagaaaa	tctggaagag	taaaaagga	gtagaaacat	tttgaagcta	tgagetecag	6600
cttttgttcc	ctttagtgag	ggttaattgc	gcgcttggcg	taatcatggt	catagctgtt	6660
tcctgtgtga	aattgttatc	cgctcacaat	tccacacaac	ataggagccg	gaagcataaa	6720
gtgtaaagcc	tggggtgcct	aatgagtgag	gtaactcaca	ttaattgcgt	tgcgctcact	6780
gcccgctttc	cagtcgggaa	acctgtcgtg	ccagctgcat	taatgaatcg	gccaacgcgc	6840
ggggagaggc	ggtttgcgta	ttgggcgctc	ttccgcttcc	tcgctcactg	actcgctgcg	6900
ctcggtcgtt	cggctgcggc	gagcggtatc	agctcactca	aaggcggtaa	tacggttatc	6960
cacagaatca	ggggataacg	caggaaagaa	catgtgagca	aaaggccagc	aaaaggccag	7020
gaaccgtaaa	aaggccgcgt	tgctggcgtt	tttccatagg	ctccgccccc	ctgacgagca	7080
tcacaaaaat	cgacgctcaa	gtcagaggtg	gcgaaacccg	acaggactat	aaagatacca	7140
ggcgtttccc	cctggaagct	ccctcgtgcg	ctctcctgtt	ccgaccctgc	cgcttaccgg	7200
atacctgtcc	gcctttctcc	cttcgggaag	cgtggcgctt	tctcatagct	cacgctgtag	7260
gtatctcagt	tcggtgtagg	tcgttcgctc	caagctgggc	tgtgtgcacg	aaccccccgt	7320
tcagcccgac	cgctgcgcct	tatccggtaa	ctatcgtctt	gagtccaacc	cggtaagaca	7380
cgacttatcg	ccactggcag	cagccactgg	taacaggatt	agcagagcga	ggtatgtagg	7440
cggtgctaca	gagttettga	agtggtggcc	taactacggc	tacactagaa	ggacagtatt	7500
tggtatctgc	gctctgctga	agccagttac	cttcggaaaa	agagttggta	gctcttgatc	7560
cggcaaacaa	accaccgctg	gtagcggtgg	ttttttgtt	tgcaagcagc	agattacgcg	7620
cagaaaaaaa	ggatctcaag	aagatccttt	gatcttttct	acggggtctg	acgctcagtg	7680
gaacgaaaac	tcacgttaag	ggattttggt	catgagatta	tcaaaaagga	tcttcaccta	7740
gatcctttta	aattaaaaat	gaagttttaa	atcaatctaa	agtatatatg	agtaaacttg	7800
gtctgacagt	taccaatgct	taatcagtga	ggcacctatc	tcagcgatct	gtctatttcg	7860

ttcatccata	gttgcctgac	tccccgtcgt	gtagataact	acgatacggg	agggcttacc	7920
atctggcccc	agtgctgcaa	tgataccgcg	agacccacgc	tcaccggctc	cagatttatc	7980
agcaataaac	cagccagccg	gaagggccga	gcgcagaagt	ggtcctgcaa	ctttatccgc	8040
ctccatccag	tctattaatt	gttgccggga	agctagagta	agtagttcgc	cagttaatag	8100
tttgcgcaac	gttgttgcca	ttgctacagg	catcgtggtg	tcacgctcgt	cgtttggtat	8160
ggcttcattc	agctccggtt	cccaacgatc	aaggcgagtt	acatgatccc	ccatgttgtg	8220
caaaaaagcg	gttageteet	tcggtcctcc	gatcgttgtc	agaagtaagt	tggccgcagt	8280
gttatcactc	atggttatgg	cagcactgca	taattctctt	actgtcatgc	catccgtaag	8340
atgettttet	gtgactggtg	agtactcaac	caagtcattc	tgagaatagt	gtatgcggcg	8400
accgagttgc	tettgeeegg	cgtcaatacg	ggataatacc	gcgccacata	gcagaacttt	8460
aaaagtgctc	atcattggaa	aacgttette	ggggcgaaaa	ctctcaagga	tettaceget	8520
gttgagatcc	agttcgatgt	aacccactcg	tgcacccaac	tgatcttcag	catctttac	8580
tttcaccagc	gtttctgggt	gagcaaaaac	aggaaggcaa	aatgccgcaa	aaaagggaat	8640
aagggcgaca	cggaaatgtt	gaatactcat	actcttcctt	tttcaatatt	attgaagcat	8700
ttatcagggt	tattgtctca	tgagcggata	catatttgaa	tgtatttaga	aaaataaaca	8760
aataggggtt	ccgcgcacat	ttccccgaaa	agtgccacct	gacgtctaag	aaaccattat	8820
tatcatgaca	ttaacctata	aaaataggcg	tatcacgagg	ccctttcgtc		8870
<220> FEATU	TH: 9516 DNA NISM: Artif: NRE:	icial Sequer DN: Plasmid				
<400> SEQUI	ENCE: 120					
ccagttaact	gtgggaatac	tcaggtatcg	taagatgcaa	gagttcgaat	ctcttagcaa	60
ccattattt	tttcctcaac	ataacgagaa	cacacagggg	cgctatcgca	cagaatcaaa	120
ttcgatgact	ggaaattttt	tgttaatttc	agaggtcgcc	tagaaatat		
actgaaaaat	tqqqaqaaaa			lyacycalal	acctttttca	180
		aggaaaggtg	agagcgccgg			180 240
tagagaagcg		aggaaaggtg aatgcttgca		aaccggcttt	tcatatagaa	
aaggacctat	ttcatgacta tgttttttcc	aatgcttgca aataggtggt	tcacaatact tagcaatcgt	aaccggcttt tgaagttgac cttactttct	tcatatagaa aatattattt aacttttctt	240 300 360
aaggacctat accttttaca	ttcatgacta tgttttttcc tttcagcaat	aatgettgea aataggtggt atatatatat	tcacaatact tagcaatcgt atatttcaag	aaccggcttt tgaagttgac cttactttct gatataccat	tcatatagaa aatattattt aacttttctt tctaatgtct	240 300 360 420
aaggacctat accttttaca gcccctaaga	ttcatgacta tgttttttcc tttcagcaat agatcgtcgt	aatgcttgca aataggtggt atatatatat tttgccaggt	tcacaatact tagcaatcgt atatttcaag gaccacgttg	aaccggcttt tgaagttgac cttactttct gatataccat gtcaagaaat	tcatatagaa aatattattt aacttttctt tctaatgtct cacagccgaa	240 300 360 420 480
aaggacctat accttttaca gcccctaaga gccattaagg	ttcatgacta tgtttttcc tttcagcaat agatcgtcgt ttcttaaagc	aatgettgea aataggtggt atatatatat tttgeeaggt tatttetgat	tcacaatact tagcaatcgt atatttcaag gaccacgttg gttcgttcca	aaccggcttt tgaagttgac cttactttct gatataccat gtcaagaaat atgtcaagtt	tcatatagaa aatattattt aacttttctt tctaatgtct cacagccgaa cgatttcgaa	240 300 360 420 480 540
aaggacctat accttttaca gcccctaaga gccattaagg aatcatttaa	ttcatgacta tgtttttcc tttcagcaat agatcgtcgt ttcttaaagc ttggtggtgc	aatgcttgca aataggtggt atatatatat tttgccaggt tatttctgat tgctatcgat	tcacaatact tagcaatcgt atatttcaag gaccacgttg gttcgttcca gctacaggtg	aaccggcttt tgaagttgac cttactttct gatataccat gtcaagaaat atgtcaagtt ttccacttcc	tcatatagaa aatattattt aacttttctt tctaatgtct cacagccgaa cgatttcgaa agatgaggcg	240 300 360 420 480 540 600
aaggacctat accttttaca gcccctaaga gccattaagg aatcatttaa ctggaagcct	ttcatgacta tgtttttcc tttcagcaat agatcgtcgt ttcttaaagc ttggtggtgc ccaagaaggc	aatgettgea aataggtggt atatatatat tttgeeaggt tatttetgat tgetategat tgatgeegtt	tcacaatact tagcaatcgt atatttcaag gaccacgttg gttcgttcca gctacaggtg ttgttaggtg	aaccggcttt tgaagttgac cttactttct gatataccat gtcaagaaat atgtcaagtt ttccacttcc ctgtgggtgg	tcatatagaa aatattattt aacttttctt tctaatgtct cacagccgaa cgatttcgaa agatgaggcg tcctaaatgg	240 300 420 480 540 600
aaggacctat accttttaca gcccctaaga gccattaagg aatcatttaa ctggaagcct ggtaccggta	ttcatgacta tgtttttcc tttcagcaat agatcgtcgt ttcttaaagc ttggtggtgc ccaagaaggc gtgttagacc	aatgcttgca aataggtggt atatatatat tttgccaggt tatttctgat tgctatcgat tgatgccgtt tgaacaaggt	tcacaatact tagcaatcgt atatttcaag gaccacgttg gttcgttcca gctacaggtg ttgttaggtg ttactaaaaa	aaccggcttt tgaagttgac cttactttct gatataccat gtcaagaaat atgtcaagtt ttccacttcc ctgtgggtgg tccgtaaaga	tcatatagaa aatattattt aacttttctt tctaatgtct cacagccgaa cgatttcgaa agatgaggcg tcctaaatgg acttcaattg	240 300 420 480 540 600 660 720
aaggacctat accttttaca gcccctaaga gccattaagg aatcatttaa ctggaagcct ggtaccggta tacgccaact	ttcatgacta tgtttttcc tttcagcaat agatcgtcgt ttcttaaagc ttggtggtgc ccaagaaggc gtgttagacc taagaccatg	aatgcttgca aataggtggt atatatatat tttgccaggt tatttctgat tgctatcgat tgatgccgtt tgaacaaggt taactttgca	tcacaatact tagcaatcgt atatttcaag gaccacgttg gttcgttcca gctacaggtg ttgttaggtg ttactaaaaa tccgactctc	aaccggcttt tgaagttgac cttactttct gatataccat gtcaagaaat atgtcaagtt ttccacttcc ctgtgggtgg tccgtaaaga ttttagactt	tcatatagaa aatattattt aacttttctt tctaatgtct cacagccgaa cgatttcgaa agatgaggcg tcctaaatgg acttcaattg atctccaatc	240 300 420 480 540 600 660 720 780
aaggacctat accttttaca gcccctaaga gccattaagg aatcatttaa ctggaagcct ggtaccggta tacgccaact aagccacaat	ttcatgacta tgtttttcc tttcagcaat agatcgtcgt ttcttaaagc ttggtggtgc ccaagaaggc gtgttagacc taagaccatg ttgctaaagg	aatgcttgca aataggtggt atatatatat tttgccaggt tatttctgat tgctatcgat tgatgccgtt tgaacaaggt taactttgca	tcacaatact tagcaatcgt atatttcaag gaccacgttg gttcgttcca gctacaggtg ttgttaggtg ttactaaaaa tccgactctc gttgttgtca	aaccggcttt tgaagttgac cttactttct gatataccat gtcaagaaat atgtcaagtt ttccacttcc ctgtgggtgg tccgtaaaga ttttagactt gagaattagt	tcatatagaa aatattattt aacttttctt tctaatgtct cacagccgaa cgatttcgaa agatgaggcg tcctaaatgg acttcaattg atctccaatc gggaggtatt	240 300 420 480 540 600 660 720 780 840
aaggacctat accttttaca gcccctaaga gccattaagg aatcatttaa ctggaagcct ggtaccggta tacgccaact aagccacaat tactttggta	ttcatgacta tgtttttcc tttcagcaat agatcgtcgt ttcttaaagc ttggtggtgc ccaagaaggc gtgttagacc taagaccatg ttgctaaagg agagaaagga	aatgcttgca aataggtggt atatatatat tttgccaggt tatttctgat tgctatcgat tgatgccgtt tgaacaaggt taactttgca	tcacaatact tagcaatcgt atatttcaag gaccacgttg gttcgttcca gctacaggtg ttgttaggtg ttactaaaaa tccgactctc gttgttgtca gatggtgtca	aaccggcttt tgaagttgac cttactttct gatataccat gtcaagaaat atgtcaagtt ttccacttcc ctgtgggtgg tccgtaaaga ttttagactt gagaattagt cttgggatag	tcatatagaa aatattattt aacttttctt tctaatgtct cacagccgaa cgatttcgaa agatgaggcg tcctaaatgg acttcaattg gggaggtatt tgaacaatac	240 300 420 480 540 600 660 720 780

ccaccattgc	ctatttggtc	cttggataaa	gctaatgttt	tggcctcttc	aagattatgg	1020
agaaaaactg	tggaggaaac	catcaagaac	gaattcccta	cattgaaggt	tcaacatcaa	1080
ttgattgatt	ctgccgccat	gatcctagtt	aagaacccaa	cccacctaaa	tggtattata	1140
atcaccagca	acatgtttgg	tgatatcatc	tccgatgaag	cctccgttat	cccaggttcc	1200
ttgggtttgt	tgccatctgc	gtccttggcc	tctttgccag	acaagaacac	cgcatttggt	1260
ttgtacgaac	catgccacgg	ttctgctcca	gatttgccaa	agaataaggt	caaccctatc	1320
gccactatct	tgtctgctgc	aatgatgttg	aaattgtcat	tgaacttgcc	tgaagaaggt	1380
aaggccattg	aagatgcagt	taaaaaggtt	ttggatgcag	gtatcagaac	tggtgattta	1440
ggtggttcca	acagtaccac	cgaagtcggt	gatgctgtcg	ccgaagaagt	taagaaaatc	1500
cttgcttaaa	aagattetet	tttttatga	tatttgtaca	taaactttat	aaatgaaatt	1560
cataatagaa	acgacacgaa	attacaaaat	ggaatatgtt	catagggtag	acgaaactat	1620
atacgcaatc	tacatacatt	tatcaagaag	gagaaaaagg	aggatgtaaa	ggaatacagg	1680
taagcaaatt	gatactaatg	gctcaacgtg	ataaggaaaa	agaattgcac	tttaacatta	1740
atattgacaa	ggaggagggc	accacacaaa	aagttaggtg	taacagaaaa	tcatgaaact	1800
atgattccta	atttatatat	tggaggattt	tctctaaaaa	aaaaaaata	caacaaataa	1860
aaaacactca	atgacctgac	catttgatgg	agttgccggc	ttgatcgaga	atggcagctc	1920
ttatatacaa	gttcttttag	caagcgccgc	tgcattattc	aagtctcatc	atatgaaatt	1980
tctttcgaga	gattgtcata	atcaaaaaat	tgcataatgc	atttcttgca	acacattttc	2040
tgatataatc	ttaccttaat	gcaggtttac	gtattagttt	ttctaaaaga	aacgcgacct	2100
ttggatatgg	aggcttttcc	cataaacgca	tgtagtatgc	atttacgatg	agaatcaatt	2160
tttttccaag	gggcgcaaaa	cgcataaacg	cataaagtat	gcatcagaag	gattctcacc	2220
tggttgcaac	catacaggtg	ttagcgacag	taatagaaaa	aaaattaaaa	taatggtgtt	2280
attgttattt	gctttatttc	cttggccttt	gttgaaggaa	ttcgtatacg	tattacaaat	2340
aactagtatc	gaggaacttg	aaagagctga	aatttttgca	ttcttcttcg	gtgattatgc	2400
ctaagccaat	gaggtcgccc	caaaagaccg	caatcttgtc	acgaccataa	gccatataat	2460
cgcgaacaaa	aacccgtttt	taggaaggac	agaggtccat	atcaatataa	ttaagaaggc	2520
atgttggcct	ctgtttctta	atatattcta	aataagatgt	aaggccttgt	aattcagttt	2580
gttcacaaaa	ttaaaaactg	tttaatgttt	tttgttttgt	tgtagtattc	gagcattaag	2640
gataaaaaaa	gcttgtgaat	aaaaatcttt	cgctaaaaat	caatataaga	aaatggtaag	2700
cagctgaaag	ataataaggt	atggttaaag	atcacaccac	cctcttcaat	tagctaagat	2760
catagctaaa	ggtacaaaac	cgaatacgaa	agtaaataaa	ttaatcagca	taaaattaaa	2820
taataaacca	cctaaaatat	tagaagctaa	tctttaacct	ggaagacagg	acagaaaagt	2880
aattacaaga	acatatgtga	aaaaaatag	ttgatatttt	aaaccaaatc	agaaatttat	2940
tatactaaaa	ctatatctat	gccaattatt	tacctaaaca	tctataacct	tcaaaagtaa	3000
aaaaatacac	aaacgttgaa	tcatgagttt	tatgttaatt	aggcggccgc	ggatetteat	3060
cctgccactg	caattctttt	catatcggtc	atatatcctc	tcagcttttt	acccacctgt	3120
tctatagcat	gtgaacgaat	agcttcattt	acgtctctca	gttggccatt	gtcaaccgct	3180
ccttccggaa	tagccttccc	caaatcacca	ggttgtaact	cggccatgaa	gggctttaac	3240

aacgggacac	atgcgtagct	aaataagtaa	ttaccatatt	ctgcagtgtc	tgatatgaca	3300
acattcatct	cgtaaagtct	ttttcttgca	atagtatttg	ctatcaaagg	caattcatgc	3360
aaagactcat	agtatgcaga	ttcttcaatg	ataccggagt	caaccatagt	ttcgaatgca	3420
agttctaccc	ctgccttcac	catagctatc	atcaatactc	ccttatcaaa	gtattcttgt	3480
tcaccaattt	taccttcgta	ttgtggggct	gtctcgaatg	ccgtcttgcc	ggtttcttct	3540
ctccacgtca	ataacttttt	atcatcgttt	gcccaatctg	ccatcattcc	tgaggaaaac	3600
tcaccggaga	taatatcgtc	catgtgcttt	tggaataatg	gtgccatgat	ctcttttagt	3660
tgctcagata	aggcgtaggc	tcttagcttg	gccggatttg	aaagtctatc	catcatcaat	3720
gttatgccac	cttgtttaag	tgcctcggtg	attgtctccc	aaccaaattg	tatcaacttt	3780
tcagcatagg	caggatctgt	accetetteg	accaatttat	caaagcatag	taaagaccct	3840
gcctgcaaca	ttccgcacag	aatggtttgt	tcacccatta	agtcactctt	gacctcagct	3900
acgaaagaac	tctctaacac	acccgctcta	tgacctccgg	ttgcggctgc	ccatgccttc	3960
gcaattgcca	taccttcacc	tttggggtca	ttttcaggat	gtacggcgat	caatgtaggt	4020
acaccaaaac	ccctcttgta	ctcctctctg	acttccgtac	ctgggcactt	tggtgcaacc	4080
attacgactg	ttatatcttt	tctgatctgc	tcgcccactt	caacgatatt	aaagccatga	4140
gagtaaccta	aagctgcccc	atccttcatc	agcggttgaa	ctgttcttac	tacgtctgag	4200
tgaaccttat	ctggtgttag	gttaatcact	aaatctgcct	gagggatcag	ttcttcgtaa	4260
gtaccaactt	tgaacccatt	ttccgtcgct	ttacgccagg	aggccctctt	ttctgcaatt	4320
gcctctttcc	tcaatgcata	cgaaatatcc	agacctgaat	ctctcatgtt	taaaccttgg	4380
tttagaccct	gagcaccgca	gccaacaatt	actactttct	ttccttgcag	ataagaagca	4440
ccatcagcaa	actcgtccct	tcccataaat	ctgcacttac	ccagttgagc	caattgttgt	4500
ctcaaattta	atgtgttaaa	atagttggcc	atctcgagtc	gaaactaagt	tctggtgttt	4560
taaaactaaa	aaaaagacta	actataaaag	tagaatttaa	gaagtttaag	aaatagattt	4620
acagaattac	aatcaatacc	taccgtcttt	atatacttat	tagtcaagta	ggggaataat	4680
ttcagggaac	tggtttcaac	ctttttttc	agetttttcc	aaatcagaga	gagcagaagg	4740
taatagaagg	tgtaagaaaa	tgagatagat	acatgcgtgg	gtcaattgcc	ttgtgtcatc	4800
atttactcca	ggcaggttgc	atcactccat	tgaggttgtg	cccgtttttt	gcctgtttgt	4860
gcccctgttc	tctgtagttg	cgctaagaga	atggacctat	gaactgatgg	ttggtgaaga	4920
aaacaatatt	ttggtgctgg	gattetttt	ttttctggat	gccagcttaa	aaagcgggct	4980
ccattatatt	tagtggatgc	caggaataaa	ctgttcaccc	agacacctac	gatgttatat	5040
attctgtgta	accegeeece	tattttgggc	atgtacgggt	tacagcagaa	ttaaaaggct	5100
aattttttga	ctaaataaag	ttaggaaaat	cactactatt	aattatttac	gtattctttg	5160
aaatggcgag	tattgataat	gataaactgg	atcctcaagc	atctaaaaca	caaccgttgg	5220
aagcgttgga	aaccaactta	gcatacttgg	atagagtacc	tcttgtgtaa	cgaggtggag	5280
gtgcaaccca	actttgttta	cgttgagcca	tttccttatc	agagactaat	aggtcaatct	5340
tgttattatc	agcatcaatg	ataatctcat	cgccgtctct	gaccaacccg	ataggaccac	5400
cttcagcggc	ttcgggaaca	atgtggccga	ttaagaaccc	gtgagaacca	ccagagaatc	5460
taccatcagt	caacaatgca	acatctttac	ccaaaccgta	acccatcaga	gcagaggaag	5520

gitttig at ticaggata octgiggac octcitggac ticataag gaacticg 5500 ciggittitte accittig atticacce tittocaaggi ticataag gaacticc 5700 ciggitcace diggiccat gaacciae gaattiga agiaccitt gittiggit goottigtig 5700 gittiggagai tiggittaat atcictigt ottocaaggi gittiggit tittiggit 5800 atagatacti atcacagat tiggitace caacgitaat caacagoot gitgitgit 5800 ciggitgaag tiggittaa atcictigt ottocaggita caaggace caacagoot gitgitgita 5800 ciggitgaaca ottgaagtag caacgategit gitgitate atgatett diggaacaac 6800 ciggitgaaca ottgaagag caacgagoot caaggacaa caacgacaga 6800 ciggitgaaca ottgaagaga caacgacgittig aaagooto tittiggaga 6800 ciggaccace gitgeaagg acatagta tiggitgagata acagcatag 6800 ciggaccace gitgeaagg acatagta tiggicagtat atgateac aaagooto gitgitga 6800 ciggaccace gitgeaag acatagta tiggicagtat atgateaca aaagootag 6800 ciagaacta atcicctig gaacgigag gigagitigga atggitaga atgitgaa 6800 ciagaacta tiggitge gaacagaga gigattitg caacagag gigagitigga atgitgaga acacaga 6600 6800 ciagitgita cigatagt tiggitaca acacgitg gigagitaga aaagatag 6800 cittiggitgi gigatata acacagitg gigataga acacagada 6600 6800 cittiggitgi tittigatigit tictictictig agaagatag aaagataga aaaagatag 6800 cittiggitgi tiggittigi							
cttogaacta acgtgetta ccettgaagt aagtactu cttaceggta atttaacca 5700 caggtecaac iggtgetaat gaacegtaag gaattigeag gigacggig goetiggt goetiggt 5760 gigtgggagag iggtetaata attettige ctteaggtag getteggteg cttittie 5820 gitteigeeaa aggeteeg gitaacagtea tigtittee gitgeacatig tigtittittee 5880 atagataett aateeagat tigggtaecae caaegttaa caaateggee atgeagtatt 5940 taeeagaagg titgaagtea cogateaatg gitgitagtate actgattett tiggaagteat 6000 ciggtgeacaa cttgaacee goetgaag gaagtgag gaagtegaa aeageetat 6100 ciggtgeacaa cttgaece goetgaaggeg gigagggaag giggtttgga atggteace 6100 cacagadg taaataece aatteettig tetteetta taeacaea tiggtgaa 6100 cacageada ctteettig gaaacgaa goeattigtig tiggaagtaa gaggttigga atggteaca 6100 cacageada ctteettig tetteetta taeacaea tiggeettite 6100 cacageada tiggattge aaegeaga goeattigtig tiggaagtaa digategaa tiggetae 6100 cadactee gitggeaga goeattigtig tiggaagtaag aggetgegaa 6100 taatteace gitggattg aaegeaga goeattigtig tigaagtee atgattegaa 6400 taatteace diggeetge gigeaaggaag gogattega gaagtegega 6400 tagteetee catggeetee atgaecegg geetgeetge ataecege aggattege 6400 tiggetgetig tiggeetge titeeaeggeeatgaaeeaeaeegge 6400	gctttagcat	ttcaggcata	cctggtgcac	ctcttggacc	ttcatatctg	ataacaacaa	5580
cagetteeae tygtgeeaat gaacegtea gaattigeaa gigaeegtig geettigatig 5760 gigtgggagag tiggettaata ateetetigte etteaggtag gettiggteet tietettigeae gittetgeeaa adjigteaeeg gaacagtea tiggigtaee diggegeaeatg tiggittetea taeeagaagg titgaagtea eegaagtag eacaageeae caaagteaat eaateeggee atgaegtatt 5940 taeeagaagg titgaagtea eegaagtag eacaageee caaatgeeaa acageeatag 6060 tiggigeeaeae eggitgeaag acataagtaa tiggegtttee aaageeett tiggaageae gittetgeeae eggitgeaeg acataagtaa tiggegtttee aaageeett titggaaga acceageag taaaataee atteeattig tettetiga giatteeae atgetgaa acageeag tagaeeeae gittgeaeg eacaagee gigaggaaga gigagttigga atgeteaeae 5240 etageaette ageegeagaa geeattigt tigelagatat eataeeaeae adgetgaa 6240 etageaette ageegeagaa geeattigt tigelagata eataeeae adgetgaa 6360 taatteeae gaagatag geeagatag taeeeeata taeeeatgag gaaggaegg 6420 aaceaegat tiggatgeeg geeagatag taeeeeat taeeeatgag gaaggeegg 6420 aaceaegt tiggatgeeg geeagatag taeeeeata taeeeatgag gaaggeegg 6440 tatteee gaaggateg geeagatag taeeeeata taeeeatgag gaaggeegg 6440 tagteeae eatggeeate atgeeeagg eatgettti greeataga gigagteegg 6440 tagteeae eatggeeatg tigeeagaa tiggtteeaa gigagteega atgeetge 6440 etagtgette ettigaateet teettettig taeeeagag eataeegg 6640 tiggtigtaa etgeeatget teeeaggee ettigaa acaeeegg 6640 etgaggett ettigaatet teettettiga aaeeggege ataageatg geetggaag 6420 aaaeetaga tagatgeatg ttaeeagge tateaggaa eacaeeeegg 6640 ettigageet ettigaatet teettettiga aeeggege ataageatg geetggaag 6420 aaaeetaga tagatgeatg ttaeeagge taeeggege ataageatg 6640 etagageet atagatgeat taeettiga aaeeggege ataageatg geetggaag 6440 eacaetaga tagatgeatg ttaeeagaga egaataega gaeeggaa 7000 ettigagget ettigaatetge aggaaaaa ateeagae egaagaaga aaaggegg 7000 ettagage gitaaeaa aggaaaaaa ateeagaee gaagaagaa aaagtigta 7000 ettigagg gitaetega aggaaaaaa ateeagaee egaaggaa aagagegga 7200 atteatagg gigtaatae eggetaat aeegaeeee tagaggaaga aagaggaga 7200 attatgaaea gitaaaaagg agtagaaaa tuttaaga etagageeg giageeegaga 7200 ettiaggaggaa gistaetega etagagaee giaaeegge gigaeeegaga 7400 ettigggagaag gi	cggttttttc	accettettg	atttcacctc	tttccaaggc	ttcaataaag	gcacetteet	5640
ggtgggagag tggettata ateetettge etteaggtag gettggtet teettgaae gttetgeeaa agtgeeteeg gaaeagtea ttgtgttee gtgeaeeatg ttgttteat 5880 atagataett ateeeagat tgggtaeeae caagttat caateggee atgaegatat 5940 taeeagaagg ttgaagtea eegaagtag eacaagteat eatgetat tggaaateat 6000 etggtgaeea ettgaeeee geaggagtag eacaagtea taegteat ettggaaateat 6000 etggtgaeea ettgaeeee geaggagtag eacaagtea tggettte aaaageett ttggaageae ggaeeegag taaaataee atteeatg tettettga gtatteeae atgetgae 6120 tateeegagg taaaateee atteeatg tettettga gtatteeae atgetgae 6240 etageaette ageegeaga geeatggt tggeagtaa eataegtaa faceee atgetggae 6240 etageaette ageegeaga geeatggt tggeagtaa eataegtaa faceee atgetggae 6420 aaceaegta etteeett gaaeegeeg geaggag egataegat gtettagag atgetegaa 6420 aaceaegta tggatgte aaeaaette tettette teagtgaa tgettggaa 6420 aaceaetgt tggatgaeeg geeagaa geattegat gtettagag ateetegag 6420 aaceaetgt tggatgeeg geeagaa geattegat gtettagag ateetegag 6420 aaceaetgt tggatgeeg geeagaa geattegat gtettagag ateetegag 6420 tatgeaete etaggeet geeagaatg taeceeeta taecaetga ggaggegg 6440 tatgeaete gtaggttgt geeacaetg tgetteeaa ggagtetge atgattee 6600 tggtgttgaa etgeatgetg taeceeeg geatgtttt geeadaa eatgeetg 6640 tggtgettgaa etgeatgetg taeceeeg geatgettt geaaeaeega 6660 tggtgettgaa etgeatgetg taeceeeg ettetteaa ggagtetge atgaeege 6840 eeeetggee ettaggteag tteeatggg taecegae gaaeaega 6900 eeaaettaga tegatgetg taeetggg taecegae aaaageag geetggaa 6900 eeaaettaga tagatgeat gegaaaaa ateaagaa gaaeegge ggeetgeaa 7000 ettagagea gtaaaatga etgaaettg agaaatga gaeeggaa aaagtga 7000 etgataaaa attttatg eetttet tetaaaeaa aaattteea gaaaagaa 7000 eeggaaaa gtaaaagg ggaaaaaa ateaaaaa aaattteea gaaaagaaa 7200 attagaae ggeggaag gataaaaa ttuagae etgaeegga gaeeggaa 7200 attagaae ggagtaatg eggetage gaaeegee gaaeegag geeggaaa 7200 etttaga gggttaatte egeetgge gaaeaege ggaaegaa agagggaa 7200 etttaga gggttaatte egeetge gtaaeaege ggaaegaa agaggaga 7200 etttaga gggttaatg egeetgge gaaeaea ataattee 7300 eeggagaaa ggagaaaa attatage tggeeega egeegga 7440 etggggagaa ggggagaaa attaggae t	cttcgaacac	acgtgctcta	cccttgaagt	aagtaccttc	cttaccggta	attttaccca	5700
gttetgecaa agtgetaeceg gtaacagtea ttgtgttaee gtgeaaeatg ttgtttteat 5880 atagataett aateaeagat tgggtaeeae caaegtaat eaateggee atgaegtatt 5940 taeeagaagg tttgaagtea eegaagtgag caaeageeae caaategeaa acageatag 6000 etggtgecaa ettgeaeeee gegtgegaeg aeateggeettte aaaageeett ttggaaateat 6000 tggaeeeaee ggttgeaaeg aeataegtaa tggegtttte aaaageeett ttggaageae 6240 ettaeeagagg taaaataeee aatteeattg tettettgat gtatteeae atgstgteeae 6240 ettaeeagagg taaaataeee aatteeattg tegeagtate aeategeag 6300 gaeetggegea tgeeatgtee aeaaegeeag ggaagtgag ggagttgga atggtegaa 6300 aateaeggea tgeeatgtee aeaaeeee ggaaggaag egaategga ggagttgga atggtegaa 6300 aateaeggea tgeeatgtee aeaaeeeg ggaaggaag ggagttgga atggtegaa 6300 aateaeeeg gtggaagga geeattggt tggeeagtat eateeeeae aagaaeeeg 6300 aateaeeeg gtggatgg aaegeagga egaateega gttttagga atettegaag 6420 aaceaeatg tggatgeeg ggeeagatag taeeeeeata taeeatgga ggatggega 6540 tgttageete gtaggtteg geeateeg ggeaggatgg tgeetgetg gaaggeegg 6540 tgttageete gtaggtteg geeateegg eatgettet gteeaag ggateegga 6540 tgttageate gtaggtegt geeateegg eatgetteega ggatgeega 6660 tggtgtgaa eegaetaete teaeeeeg etteteaa ggagteega atgatteet 6600 tagttgtaa eegaetaete teaeeeeg etteteaa ggagteega atgattee 6600 etgaggeet ettegaaeet teeaaeeeg etteteaa ggagteega atgattee 6600 etgaggeet ettegaaeet teeateeeg etteteaa ggagteega aeaeeeega 6660 etgaggeet ettegaaeet gtaeeeggee ataaeeaga geeeggaag 6640 eaeettaga etgeataget geeateegge etteteaa ggageeggae 6840 eaeettaga ttagatgeet geeagataet aeeggeege ataaaeeag geeeggaag 6900 eaaeettagg ttagatgee atgetgette teetageega 6900 eaaeettagg ttagatgee atgetgeeg ataaaeeag geeegteet 700 ateaaggeg ggeeatega agaaaaa ateaaaaaa aaatteea gaaaagaag 7000 eaaeettagg taagatae etgaaaettg agaaetaga gaaegageg geeegaaa 7200 attagaaea gaaaaaaga atgagaaeaa tttagaae aaagtage geeteett 7100 eettagaag gtaaaaaag agtagaaaea tttegaeeg atgeeegaa aagagegaa 7200 attagaae ggggtaateg agtagaaaa ateaaaaaa aaatteea gaagaggag 7200 attagaaa gggtaateg ggaaaaaa gtagaaeeee gaagaeeea geeegeeegeet 7100 eeggegaaa geegetag ggaaaeaa ataag	cagetecace	tggtgccaat	gaaccgtaca	gaatttgcaa	gtgaccgttg	gccttgattg	5760
atagatactt aatacacgat tgggtaccae caacgttaat caaatcggce atgacgtatt 5940 taccagaagg tttggagtee eggacatgg gtgatgate actgatett tggaaateat 6000 etggtgacae ettgeaeeg acatagtaa tggegttte aaaageete ttgggagae 6120 tateeegagg taaaatacee aatteeattg tetteettgat gtateeaee atgetgteee 6180 acteagegg taaaatacee aatteeattg tetteettgat gtateeaee atgetgteee 6180 acteagegg taaaatacee aatteeattg tetteettgat gtateeaee atgetgteee 6180 acteaget tetteettg gaaeeggetg ggaaggaag ggagttgga atggeeaeee 6300 gaeeeggee tgeatgttee acaaeetet ettettee tteagtgaat tgeetggaaa 6300 tatateee gtaggtegg geeaggatg egategg gtateeaee atgeetggaaa 6300 aaceaeetg tggatgtee acgeeggeag egateggetg ttettaggg atteeteggaa 6400 tatteee gtaggtege ggeeaggate geeategge gttettagg gaagtegg 6400 tatteee gtaggtege ggeeaggate geeategge gttettegg gaaggeegg 6540 tgttageate gtaggtege geeaggateg geeategge gaagteegg atgeegge 6540 tgttageate gtaggtegt geeategg taceeetag ggategega atgegetge 6600 taettegaa eggeeatget teeaeetag gatecget gaaaceeeg 6600 etggtgtgaa etgeeatget teeaeetag gatecgete gaaaceeeg 6780 ettgagete ettgaatet etteetteg aaeeggege ataageetg geetggeeg 6840 eacettggee ettaggteg aggaaaaa ggaagteeg aggaegtegga 6840 eacettggee ettaggte atgedtette teeatagag gaegettet teatgegaa 6660 atagaaceag aaaatgaa etgaaeett gaaaatgaa gaegttet taaettaaat 7020 ateaatgge ggeetegaa aggaaaaaa ateaaaaaa aaattteea gaaaagaaa 7080 eggaaaaatgga geetetteg eggaaaaaa ateaaaaaa aaattteea gaaaaggaa 7200 attagaae attteattg eettteeg egaagaee tagageeg gaeeeggaa 7200 attagaae gegaaagg agaaaaaa tteaaaaaa aaattteea gaaaaggaa 7200 attagaag gegtaatte egegetat aeeggeeg egaeegga geeggaagaa 7260 ateggaag gegtaatte gegeetge gaaaeee tagageeg gaeeeggaa 7260 ateggaag gegtaatte gegeetge gaaeeeg gaageegga 7560 eegettgeg taaggaga gaaaaa ttatagee geegeeggeg 7560 eegettgeg taaggaga actgeege ettaggeeg eggeeggag 7560 eegettgeg tateggeget teeegete ettagaeee geegeegeeg 7560 eegettge eggegaaaga aeatggae eaaggeeg aaaggeeg eggaeegaa 7600 eegettge eggaagga aeatggae eatgaeee ataggeeg egaaeegaa 7600 eegettge eggeega aeeegeeg eaag	ggtgggagag	tggcttaata	atctcttgtc	cttcaggtag	gcttggtgct	ttctttgcac	5820
taccagaagg tttgaagtca ccgatcaatg gtgagtatc actgattCtt tggaaatcat 6000 ctggtgacaa cttgacacce gcagatgag cacaagccae caaagccaa acagcatag 6120 tatcacgagg taaaatace aattecattg tettettga gtatteace atgttgteae 6180 acteageta etteteettg gaaaggetg ggaaggaag ggagttgga atggteaaa 6240 ctagcaette ageggeagaa geeattgtt tggeagtata eataceae aagaaceag 6300 gacetgggea tgeatgtee acaacatet etettette tetagtgaa tggtegaaa 6420 aaceacatgt tggatgaeeg ggeaagaag egatategat gtuttagag atettegaag 6420 aaceacatgt tggatgaeeg ggeaagatag taceaceat aceatgatg gaaggtegg 6420 aaceacatgt tggatgaeeg ggeaagatag taceaceat aceatgatg gaaggtegg 6420 aaceacatgt tggatgaeeg ggeaagtag taceaceat aceatgatg ggagggggag ggegttgaa etgeatgtte acaacatet etettette teagtgaa tggtegaa 6600 tgtageate etaggeateg ggeaagtag taceaceat aceatgatg ggaggggg gaggtetae etaggeateg tgeeageaga egatategat gttttagag atettegaag 6600 tgtageate etaggeatet atgaeacegg geatgtttt gteaeatgat gggatggega 6600 tggtgtgaa etgeatgttg eceatega tggtteeaa ggagteega acaeceega 6780 etugagget ettgaagttg tacatgggt taceggaee acaacaggaa caaceecega 6780 etugagget etugaatet teettettg aceeggaea ecaacaggaa caaceecega 6780 etugagget etugatgat gtgatgata acggagtee taaageatg geetgggaeg 6840 caacettage etugatteg aggatate teetagge aggagtata aaagettg 6900 caaacttage tagatgetg tacetgge tacaggae aaaagatag 6900 caaacttage tagatteg atgettett tetaatgae aggaegtaa aaagttet 6960 atagaacaag aaaatgaa etgaaactg agaaatgaa gacegttat taaettaaa 7020 ateaagga gteatega aggaaaaa ateaaaaaa aattteaa gaaaagaa 7080 egggtaaaa atttateg etgettetga egagaaaaa acaagatag 7220 atttagtag eggetaatg eggetaat acgageace tagagagag agaggaga 7220 atttagtag eggetaatg eggetage gtaacaece tagagaaga agaggagga 7230 eettagga ggaaaaagg agtagaaaa ttttagge tagagetea geetgegaa 7260 atetggaag ggaaggag ggagagaaga eggeggaga egaaggae ggageggag 7260 etutagta eggetaatg egegetge etaacagge egaagaata agtgaaga 7260 atetggaag ggaagaagg ggaagaaaa etagaace ggaageacgag 7260 atetggaag ggaagaagg ggaagaaca ttttgaage fagageegaaga 7260 atetggaag ggaagatag gga	gttctgccaa	agtgtcaccg	gtaacagtca	ttgtgttacc	gtgcaacatg	ttgttttcat	5880
ctggtgaca cttgacacc gcagagtgag caacagcac caatgcaa acagcattag 6060 tggacccacc ggttgcaacg acatagtaa tggcgtttc aaaagcctc tttgtgagda 6120 tatcacagag taaaatacc aattccattg tcttcttgat gtatcacca atgttgcaa 6180 actcagctaa cttctccttg gaacggctg ggaaggaag ggagttgga atggtcaaca 6240 ctagcacttc ageggcagaa gccattgtg tggcagtat cataccacca caagaaccag 6300 gacctgggca tgcatgtc acaacatct ctctttct tctagtgaa tggtcaaa 6420 aaccacatg tggatgac ggcaagaag cgatacgat gttttagag atctcgaag 6420 aaccacatg tggatgac ggcaagaag cgatatcga gtatcgat gttttagag atctcgaag 6420 aaccacatg tggatgac ggcaagaag cgatgttt gtcacatgat ggaaggcgg gaggtgtga ctgcatgtg acgcagga cgatgttt gtcacatgat ggaaggcgg tgtagcat gtaggttg gccacatga tggttcaaa ggagtctga atgattcta fuggtgttgaa ctgcatagct tcaaccacg cttttaa ggataccgt gaaacaccga 6600 tgttgtgaa ctgcatagct tcaaccacg cttttcaat ggatagga caaccgga 6600 tggtgttgaa ctgcatagct tcaaccacg cttttcaat ggatagga caaccgga 6780 cttgaggct cttgaatct catccttag taccggaca ccaacaggaa ccaacccga 6780 cttgaggct cttgaat tccttctga acggagac gaagatag gacgttgg 6840 caacttaga tagatgcatg ttacatggg taccggaca ccaacaggaa ccaacccga 6900 caaacttaga tagatgca gtgatgata acggagga agaagtaa aaaagttg 6900 caaacttaga ttagatgca gtgatgata acgagtact gtgagata aaagatg 6900 caaactagg agaaaatgaa ctgaaactg agaaatga gaccgtta taacttaaa 7020 atcaatggag ggcacgaa agagaaaaa atcaaaaaa aaatttcaa gaaaagtaa 7080 cgtgataaaa attttatg cctttctg cgaagaaaa agaacgagg ggtctcttt 7140 ttctttcca accttagt acgggtaat acgagtacc tagagaaaa gaagggga 7200 attagtag ggtaatga gggaaaca tttgaagc agaagtaa agagggga 7200 attagtag ggataatg cgcgctgg gtaaccag ctagggc gaagag 7400 attagtag ggtaattg cgcgctgg gtaaccag ctaggga ggaggag 7200 attagtag ggataatg ggagaaca tttgaagc ggaagaaa agagggga 7200 attagtag ggataatg ggagaaca tttgaagc ggaagaaa agagggga 7200 attagtag ggataatg gcgacggg gtagggaac attaggac gaagacgag ggaggaaga 7200 attagtag ggaaaaagg agtagaaaca tttgaagc ggaagaaa agaggggaa 7200 attagtag ggataatg gcgacgag gtaggaaca attgagga fgaagacg 7200 attagtag ggaaaaagg ggaagaaca tttgaagc ggaagaaa	atagatactt	aatcacagat	tgggtaccac	caacgttaat	caaatcggcc	atgacgtatt	5940
tggacciacc ggttgcaacg acataagtaa tggogtttc aaaagcctct tttgtgagga 6120 tatcacgagg taaaatacc aattccattg tcttcttga gtattcacca atgttgtcac 6180 actcagcta cttctccttg gaacggetg ggaaggaag ggagttgga atggtcaac 6240 ctagcacttc ageggcaga gccattgtg tggcagtat cataccacca caagaaccag 6300 gacctgggca tgcatgttc acaacatct ctcttttct ttcagtgaat tgcttggaa 6360 tatattcacc gtaggattgg aacgcaggag cgatatcga gttttagag atctcgaag 6420 aaccacatgt tggatgacog ggcaagatag taccaccat taccatgatg gaaggtctga 6420 tatgtcatc catggccat atgacacgg gcatgtttt gtcacatgat ggaaggccga 6540 tggtagtac gtagtgttg gccatcatga tggtttcaaa ggagtctga atgattcc 6600 tactttgtaa cgagtatcg tccactaga tggtttcaa ggatgcgca atgattctc 6600 tactttgtaa cgatgatcg ttcaaacccg cttttcaat ggattgagaa catctgtta 6720 tcaagtccaa tagatgcatg ttcaaggg taccggtac acaaggaa caaccccga 6780 cttggggctt cttgaaatct tcctttga aaccggggca ataaggatg gcctgggacg 6840 caccttggc cttaggtca gtgatgata acgggtagt ataaggatg gcctgggacg 6840 caccttggc cttaggtca gtgatgata acgggtact gtagagtat tactggga 6900 caaacttaga ttagattgc atgcttct tctaatgag gaccgttat tacttaat 7020 atcaaggg ggtcatcga aggagaaaa atcaaaaaa aatttcaa gaaaagga 7000 cagagtgga ggtcatcga aggagaaaa atcaaaaaa aatttcaa gaaaaagaa 7080 cgggataaa attttatg ccttttcga cgaagaaca gaacgagg ggtcctttt 7140 ttctttcca aaccttag acggtaat acggagacc taaggaga agagggga 7260 attaggag ggtcatcga ggggaaaaa atcaaaaaa aaatttcaa gaaaaagaa 7260 attagtag ggtaatag cgggtaat acggagacg gatggcgga gtccgagaa 7260 attagtag ggtaatag gcgctggg gtactagg ggaagaaaa agaagggga 7440 ctggggaga gtaaaaaagg agtagaaaca tttgaagc atgagctag ggacgagaa agagggga 7440 ctgggggc taatgagtg gcacgegg gtaccaca aggagcg ggaagaa agagggg 7560 ccagtcggg aaccgtcg gcagggt ctcccc atagaggcg ggacgaga agagggg 7560 cggttggg datggg gcaacgag gcagggag acagggga aaaggcgg gacgggag 7560 cggttggg datgggg gaagada catggagc aaaggcga gacagga ggacggaga 7400 ctgggggg caagggg aacagtgg gcaagggag aaaagggga acaggggga aaaggggg gacggag 7560 cggttggg aacgggg gaaggag acagtgag aaaagggga aaaggggga aaaggggg ggaagga aaaagggg gaaggagg	taccagaagg	tttgaagtca	ccgatcaatg	gtgtagtatc	actgattctt	tggaaatcat	6000
tatcacgagg taaaataccc aattcattg tettettga gattcacca atgttgteac 6180 acteageata etteteettg gaaagggetg ggaaggaag ggagttgga atggteaac 6240 etageaette ageggeaga geeattgtg tggeagtat eataceaeca eaagaaceag 6300 gaeetgggea tgeatgtte acaaeatett etettette tteagtgaat tgettggaa 6420 aaceaeatgt tggatggee ggeaagatag taeeaeeta taeeatgag gaaggtetgg 6420 aaceaeatgt tggatgeeg ggeaagatag taeeaeeta taeeatgag ggaaggaegg 6420 aaceaeatgt tggatgeeg ggeaagatag taeeaeeta taeeatgat ggaaggeega 6540 tagteaee etaggeate atgaeeegg geatgttt geeatgte gaaggeega 6540 tagteaee etaggeate atgaeeegg geatgtttt geeatgat ggatgeega 6660 tggtgttgaa etgeatget geeateatga tggtteaa ggateega atgattee 6600 taetttgtaa egagtaeet etaeeettg taeeeggaea eaaggeega eaagaeegga 6660 tggtgttgaa etgeatget teeaaeeeg ettetteaa ggattggaa eatetgtta 6720 teeagteea tagatgeat teeaaeeeg ettetteaa ggattggaa eatetgtta 6720 ettgggett ettgaaatet teettega aaeeggtgge ataageatg geetgggaeg 6840 eaeettggee ettaggtea gtgatgata aeggateet gttgggette tteatgeega 6800 eaaeettag tagattget ageettett tetaatgge aagaagtaa aaagttgta 6960 atagaaeaag aaaaatgaa etgaaaettg agaaattga gaeegttat taaettaat 7020 ateaagggg ggetaetega aggaaaaa ateaaaaaa aaatttea gaaaaagaa 7080 egggataaa attttatg eettteeg egaagaaa gaaeeggge ggeteettt 7140 tteettee aaeettag aeggtaat aeggaeee tagggaegg ggeteettt 7140 etteggaga gtaaaaaag aggaaaaa teaaaaaa aaattteaa gaaaagaga 7200 atttagtag eggtaattg eegettgg gtaateag egaagee gaagegeg geteetttt 7320 eettagtag ggtaattg eegeettgg gtaaeae tttgaage taggeee agetgeegga gteegaaaa 7260 atteggaag gtaaaaagg agtagaaaea tttgaagee ggaageata aggggaaa afgtaaaa 7740 etggggtgee taatgagtg ggtaaetee attaatgee tgeegeegg ggeeggag 7560 eeggettgeg aaeetgeeg geeegga eteegeeg egagegegg eggeggag 7560 eeggettgeg aaeetgeeg eedeetge eteegeeg egagegae 7620 atteggeegge eegegaa eedeetgeeg etaeegeeg egagegeeg eegeggag 7620 eeggetgeeg eageggaa eedeetgeeg eaaaggeeg aaaggeeg eggaageegga 7620 eeggetgeeg eageggaa eedeetgeeg eaaaggeeg egaageetgeeg eeggagage 7620	ctggtgacaa	cttgacaccc	gcagagtgag	caacagccac	caaatgcaaa	acagcattag	6060
actoagctaa cttcccttg gaacggctg ggaaggaaga ggagttgga atggtcaaac 6240 ctagcacttc ageggcaga gccattgtg tggcagtat cataccacca caagaaccag 6300 gacetggga tgeatgttce acaacatct eteettette tteagtgaat tgettggaa 6420 aaccacatgt tggatgge ggecagatag taccaccat taccatgatg gaaggtetgt 6480 tatgtcace catggceat atgacacegg gcatgtttt gteacatgat gggatggega 6540 tggtagcate gtagtgttg gccatcatg tggttCaaa ggagtetge atgatteee 6600 tagttagcate gtagtgttg gccatcatg tggttCaaa ggagtetge atgatteee 6600 tagttgtaa etgeatget teaaceettg taccacga gatacegt gaagateega 6660 tggtgtgga etgeatgtte atacettag taccatag gatacegt gaagateega 6660 tggtgtgga etgeatget tteaaceeg ettetteaa ggatgagaa categgea 6780 cttggagett ettgaatee teettetga aceggtge ataaggeag ecaaceega 6840 cacettgge etgaagteg tacettettg aaceggtge ataageatg geetgggae 6840 cacettgge ettagatee atgettetg agagatee geetggeag 6840 cacettgge ettagate teettettga aceggtge ataageatg geetgggae 6840 cacettgge ettagate teettettga aceggtage agaagtaa aaagetga 6960 atagaacaag aaaatgaa etgaaaettg agaaattga gacegttat taaettaa 7020 atcaagtega ggetaega agagaaaaa ateaaaaaa aattteaa gaaaagaa 7080 egtggataaa attttatg eettettega egagaaaaa gaacgage ggeteettt 7140 tteettteea aacettag aegggaata acgagaaaaa gaacgage ggeteegaa 7260 attagtag ggtaaega ggeggtaat acgagaacae tagageeg gatgeegag feeegagaa 7260 attagtag ggttaatg egegettge gtagtage dagagee gaageataa agagggaa 7260 attagtag ggtaaaaag gagaaaaa tttgaagee ggaageataa agagggaa 7260 attagtag ggtaaatag egegetge gtagedee gaagataa agaggaga 7260 attagtag ggttaatg egegettge gtaateatg teatagetg tteetggtg 7380 eettagtag ggttaatg egegettge gtaaceae etgaagee gaagataa agagggaa 7260 atetggaag ataaaaag ag agaaaaaa tttgaagee gaagataa agagggaa 7260 atetggaag gtaaaaaag agagaaaaa tttgaagee ggaagataa agagggaa 7260 atetggaag gtaaaaaag agaggaaaa tttgaagee gaagaeaa 7260 atetgaaga gtaaaaaag agaggaaaaa tttgaagee gaagaeaa 7260 atetgaaga gtaaaaaag agagaaaaa tataggae gaageegt 7380 eettagtga ggetatag egeettge geetgee gaagaee gaagaeaa 7380 eettagga ggaagaaaa atetae ataatgee gaagaeaa aftetge 7680 eegetg	tggacccacc	ggttgcaacg	acataagtaa	tggcgttttc	aaaagcctct	tttgtgagga	6120
ctagcacttc ageggcagaa gccattgtgt tggcagtata cataccacca caagaaccag gacetgggca tgcatgttce acaacatett etettette tteagtgaat tgettggaaa f420 aaccacatgt tggatgaceg ggcaagatag taccaccata taccatgatg gaaggtetgt f480 tatgtetace catggceate atgacacegg gcatgtttt gteacatgat gggatggega f540 tggtagtace gtagtgttg gccatcatga tggtteaa ggagtetge atgattee f480 tatgteaa egagtatet atacettag taccactag ggaagtetge atgattee f480 tatgteaa egagtatet atacettag taccactag ggateggea atgattee f480 tatgteaa egagtatet atacettag taccatag ggateggea atgattee f540 tegtggtgtaa etgeatget tteaaceeg etttteaa ggateggaa eaceegga f540 tegaggett ettgaaget tteaaceeg etttteaa ggateggaa eaceegga f540 etagtgett ettgaaatet teettetga aaceggtge ataageatg geetgggae f660 etagageet ettgagate dgatgatat aeggateet gttgagete tteatgea f540 eaaeettaga tagatgea gtgatgatat aegagtett gttgagete tteatgtega f640 eaaeettaga ttagatege atgatgatat aegagteet gttgagete tteatgtega f540 eaaeettagg ggteatega agagaaaaa ateaaaaaa aaatteea gaaaagaa f740 etgggaga aaaaatgaa etgaaaettg agaaattgaa gaaeggaga aagagggaa f720 attagtaga ggtaaaaag agggaaaaa ttegaagee gaagegga gteeggaa f720 attagtag ggtatatg egegettge gtaateatg taegegga gteeggaa f720 attagtaga ggaaaaag agtagaaaa ttegaage daagagaga aagaggggaa f720 attagtag ggtaaaaag agtagaaaa ttegaage daagagaga aagagggaa f720 attagtag ggtaaaaag agtagaaaa ttegaage gaagedea agaggagaa f720 attagtag gggtaatg egegetge gtaateatg taegegeg gateegga feeggaa f720 eettagtag gggtaatg gegeetge gtaateatg teagegeg gteeggaa f740 eetgggggee taatgagtag ggtaaceea ataatggae ggaageata agtgtaage f760 eeggttgee taatgagta ggaaacea tteatagaa ggeaacege gegggaggg f760 eeggttgee taatgagta ggaaacea tteatgaat ggeeacege gegggagga f760 eeggttgee taatgageg egageget eeteegete geeeggeeg gaacegee graggaaga f760 eeggetgeeg egagagaa acatgtega eaaeggeeg aaaaggeeg gaacegta f760 eeggetgeeg egagagaa acatgtegae aaaggeega aaaaggeeg gaacegeega graecegae f760	tatcacgagg	taaaataccc	aattccattg	tcttcttgat	gtattcacca	atgttgtcac	6180
gacetgggea tgeatgttee acaacatett ettettette tteagtgaat tgeetggaaa 6360 tatatteace gtaggattgg acegeagaag egatategat gtttetagag ateeteggaag aaceacatgt tggatgaceg ggeaagatag taceaceat taceatgatg gaaggteggea 6420 aaceacatgt tggatgaceg ggeaagatag taceaceat taceatgatg ggaaggteggea 6540 tagtetace eatggeeate atgacacegg geatgtttet gteacatgat gggatggeega 6540 tggtageate gtagtgttg geeateatga tggtteaaa ggagteegea atgatteee 6660 tggtgtgaa etgeatget teeaaceeg ettetteaa ggattgagaa cateetgtat 6720 teeaagteeaa tagatgeatg taceatggt taceggaeea ecaaceggaa ecaaceega 6780 ettgaggett ettgaaatet teettettag aaceggtgge ataaageatg geetgggaeg 6840 caceetggee ettaggtea gtgatgatat aceggtgee ataaageatg geetgggaeg 6840 caceetggee ettaggtea gtgatgatat aceggtgee ataaageatg geetgggae 6840 caceetggee ettaggtea gtgatgatat acegagtaet gttgagette tteatgtega 6960 atagaacaag aaaaatgaa etgaaaetg gagaattgaa gaeegttat taaeettaat 7020 ateaatggga ggeetaegaa agagaaaaa ateaaaaaa aaatteeaa gaaaagaaa 7080 egtgataaa attettattg eetttetga egagaaaaa gaaegagge ggeeteett 7140 tteettteea aacettag aceggtaatt acegacaeee tagaggaaga agaggggaa 7200 attagtaga ggaaaaag gatggaaaca tteggaege gatgeegga gteegagaa 7200 attagtaga ggataatg egegetage gtaggaege gatgeegga gteeggaga 7200 attagtaga ggaaaaaag agagaaaaa ttegaaetg tagageeg gatgeegga feesgagaa 7200 attagtaga ggataatg egegetgee gtaateatg tagagee gaggeegga feesgagaa 7200 cettagtga gggttaatg egegetgee gtaateatg tagagee gaggeegga feesgagaa 7440 etggggggee taatgagtg ggaaacea ttegaaee ggeaaceae geegggaggag 7560 eeggttgee taatgagtg ggaaacea tteatagae ggeaacaee geegggaggag 7560 eeggttgee taatgagtg ggaaacea tteatagae ggeaaceee geegggaggag 7680 aggeggatae geagaaaga acatgtgae aaaggeegg aaaaggee gaaaceee gaeeggaa 7680 eeggetgeeg egaeeggaa cadegtege eaaaggeeg aaaaggeeg gaaaceae f7680 eeggetgeeg egaeeggaa eaadgeega aaaaggeega aaaaggeeg gaaaceae f7680 eeggetgeeg egaeeggaa eaeadgeega aaaaggeega aaaaggeeg gaaaceae f7680 eeggetgeeg egaeeggaa eaeadgeega aaaaggeega eaaaggeega egaeegaeagae 7680 eegaeegga egaaaea acedegaa aaaggeega aaaaggeega eg	actcagctaa	cttctccttg	gaaacggctg	ggaaggaaga	ggagtttgga	atggtcaaac	6240
tatattcacc gtaggattgg accgcagaga cgatatcgat gtttttagag atcttcgaag 6420 aaccacatgt tggatgaccg ggcaagatag taccaccat taccatgatg gaaggtctgt 6480 tatgtctacc catggccatc atgacaccgg gcatgtttt gtcacatgat gggatggcga 6540 tggtagtcat gtagtgttg gccatcatga tggtttcaaa ggagtctgca atgatttctc 6600 tactttgtaa cgagtatct atacctttag tacccataga ggataccgtt gaacaccga 6660 tggtgttgaa ctgcataget ttcaaacceg cttttcaat ggattgagaa catctgttat 6720 tcaagtccaa tagatgcatg ttacatggg taccggacca ccaacaggaa ccaaccega 6780 cttgaggett cttgaaatct tecttctga aaccggtgg ataaagcatg gectgggag 6840 caccttggc cttaggtca gtgatgata acgagtact gttgagett ttcatgtega 6900 caaacttaga ttagattget atgetttet tetaatgag agaagtaaa aaagttgta 6960 atagaacaag aaaaatgaaa etgaaacttg agaaattgaa gacegttat taacttaaat 7020 atcaaggga ggtcategaa agagaaaaaa atcaaaaaaa aaattteaa gaaaaagaa 7080 cgtgataaaa attttattg cettttega egagagaaa gaacgagg ggtcetttt 7140 ttettteca aacetttag acgggtaat acgggtacge gatgegegg gtcegagaa 7200 attagtag tggtgttatg egggtagt atacgggacce tagaggaga agaggggaa 7200 attagtag gggttaatg egggtagg gtaggeg gtaggegg gtceggag 7200 attagtag gggttaatg egggtagg gtaggeg gatgegegg gtceggaga 7200 attagtag gggttaatg egggtagg gtagacce tagaggag agagggag 7200 attagtag gggttaatg egggtage ggaggegg gtcegagaa 7260 cetttagtga gggttaattg egegettge gtaatcatgg tcatagetg tteetgtge 7380 cetttagtga gggttaattg egegettge gtaatcatgg teatagetg tteetgtgeg 7380 aaattgtta cegetcacaa tteeacaa cataggage ggaageataa agtgtaaage 7440 ctggggtge taatgagtg ggtaaccea attaattge ttgegetca tgecegett 7500 ccagteggga aacctgteg gcagetgea taatgagate ggecaacge eggaggagg 7560 cggtttgegt attgggeget teteegete etegecae gacegeg egggagagg 7560 cggttgeg ageggata cagetcae ataatgege gaacegae geagegg effecgae 7620 teggetgeg egageggat eagetcaete aaaggegga aacegtge geteggteg 7620 agggggataac gcaggaaaga acatgtgag aaaaggegg aaaaggee gaacegae gaacegae 7680 agggggataac geaggaaaga acatgtgae aaaaggeegga aaaaggeeg geagegae 7620	ctagcacttc	agcggcagaa	gccattgtgt	tggcagtata	cataccacca	caagaaccag	6300
aaccacatgt tggatgaccg ggcaagatag taccaccata taccatgatg gaaggtctgt6480tatgtctacc catggccatc atgacaccgg gcatgtttt gtcacatgat gggatggcga6540tgttagcatc gtagtgttg gccatcatga tggtttcaa ggatctgca atgattctc6600tactttgta cgggtatct atacctttag tacccataga gataccgtc gaaacaccga6660tggtgttga ctgcataget ttcaaacceg cttttcaat ggattgagaa catctgttat6720tcaagtccaa tagatgcatg ttacatgggt taccggacca ccaacaggaa ccaaccccga6780cttgaggett cttgaaatet tcettettga aaccggtgg ataagagtatg gctgggaga6840caacttaga tagatgcatg atgatgatat acggatact gttgagette ttcatgtgga6900caaacttaga ttagattge atgetgtet atgatgata acgagtage agaagtaa aaaagtgtga6900caaactagg gagaaagaa atgaaaaa atcaaaaaa aaatttcaa gaaaaagaa7020atcaatggga ggtcatcgaa agagaaaaa atcaaaaaa aaatttcaa gaaaaagaaa7080cgtgataaa attttatg cettttega cgaagaaaa gaacgagge ggtcettt7140ttcttteca aaccttag agggtaat acgggtaag atgaggaag aagagggaa7200attagtatg ctgtgetteg gtgtttgaa gtggtacge gatgecgga gtccgagaa7200attagtatg ctgtgetteg gtgtttgaa gtggtacge gatgecgga gtccgagaa7200attagtatg ctgtgettg gtgtttgaa gtggtacge gatgecgga gtccgagaaa7200attagtag gggtaattg cgcgcttge gtaatcatg tcatagetg ttcetgtgt7380aaatgtta ccgctcaca ttccacaca cataggage ggaccaca aggtgaagg7440ctggggtg aaccgg ggtaaccg accgccg cggggagag7500ccagtcggg aaccgg gcggtat cagetcac tatagtgat ggccacacge cggggagag7500ccagtcggg aaccgcg cgacggaa caaccgca gaaccgac gaaccgacg gcgggaga7600ccagtgggg aaccgcg cageggaa taagagag gcacgaca caacggcg ggggagag7600ccgggggga a	gacctgggca	tgcatgttcc	acaacatctt	ctctttcttc	ttcagtgaat	tgcttggaaa	6360
tatgtctace catggecate atgaeacegg geatgtttt gteacatgat gggatggega 6540 tgttageate gtagtgttg geeateatga tggttteaa ggagtetgea atgattetee 6600 taetttgtaa egagtatete ataeetttag taeceatag gataeegtet gaaacaeega 6660 tggtgttgaa etgeataget tteaaaeeeg etttteaat ggattgagaa eatetgttat 6720 teaagteeaa tagatgeatg ttaeatgggt taeeggaee ecaacaggaa eaeeeggae 6840 caeettggee ettaggttea gtgatgatat aeeggtgge ataaageatg geetgggaeg 6840 caeettggee ettaggttea gtgatgatat aegagtaett gttgagette tteatgtega 6900 caaeettaga ttagattget atgetteett tetaatgage aagaagtaaa aaaagttgta 6960 atagaacaag aaaaatgaa etgaaaettg agaaattgaa gaeegttat taaettaaa 7020 ateaatgga ggteatega agagaaaaa ateaaaaaa aaattteea gaaaaagaa 7080 egtgataaaa attettatg eettttega egagaaaaa gaaaegagge ggteetettt 7140 tteettteee aaeeettag egegtagg gtagtatt aeegageaee tagaggaaga aagagggaa 7260 attagtag eggetategg egagegta taeeggee gaageegga gteegagaa 7260 attagtag eggetaatg egegettgg gtattega gtagtaege gaageataa agtgtaage 7260 attagtag eggetaatg egegettgg gtaateatgg teatagetg tteetgteg 7380 cettagtag gggttaattg egegettge gtaateatgg teatagetg tteetgteg 7380 caaattgtat eegeteaa tteecaeaa eataggage ggaegetaa agtgtaaag 7440 ettgggatge taatgagtg ggtaacea ttatgaate ggeeaaegg eggegga 7560 eeggetgee taatgagtg ggaacea ttaatgeg tgegeeaa agtgaagag 7560 eeggttgega aacetgteg eeestee eteeceet gaeegege eggeggag 7560 eeggttgeg atgegeget etteegette eteegeteae gaeegetge egeggegg 7560 eeggttgeg atgegeget etteegette eteegeteae gaeegetge eteggetegt 7620	tatattcacc	gtaggattgg	aacgcagaga	cgatatcgat	gtttttagag	atcttcgaag	6420
tgttagcatc gtagtgttg gccatcatga tggtttcaa ggagtctgca atgatttctc 6600 tactttgtaa cgagtatct atacctttag tacccataga gataccgtct gaaacaccga 6660 tggtgttgaa ctgcatagct ttcaaacccg cttttcaat ggattgagaa catctgttat 6720 tcaagtccaa tagatgcatg ttacatgggt taccggacca ccaacaggaa ccaaccccga 6780 cttgaggctt cttgaaatct tccttcttga aaccggtgge ataaagcatg gcctgggacg 6840 caccttggce cttaggttca gtgatgatat acgagtactt gttgagctte ttcatgtcga 6900 caaacttaga ttagattget atgetttett tctaatgage aagaagtaaa aaaagtgta 6960 atagaacaag aaaatgaaa ctgaaacttg agaaattgaa gaccgtttat taacttaaat 7020 atcaatggga ggtcatcgaa agagaaaaa atcaaaaaa aaatttcaa gaaaagaaa 7080 cgtgataaaa attttattg ccttttcga cgaagaaaaa gaaacgagge ggtctcttt 7140 ttettttcca aaccttagt acggtatat acgagtacce tagaggaaga aagagggaa 7200 attagtag ctgtgcttgg gtgtttgaa gtggtacgge gatgcgcgga gtccgagaa 7260 atctggaaga gtaaaaaagg agtagaaaca tttgaaget atgagctca getttgtte 7320 cctttagtga gggttaattg cgcgettgge gtaatcatgg tcatagetg ttecctgttg 7380 aattggtag gggtaattg cgcgettgge gtaatcatg ttgegetca tgeccggtt 7380 caggggga aaccgtgeg gcagctga ttaatgge ggaagcataa agtgtaaag 7440 ctggggtgee taatgagtga ggtaactcaa attaattgeg ttgegetca tgeccggtt 75500 ccagtcggga aacctgteg gccagtge ttaatgate ggccaacge ggaggagag 7560 cggtttgegt attgggeget cttcegette ctegetcae gactgege getcggege 7560 cggtttgegt attgggeget cttcegette ctegetcae gactgege getcggege 7680 agggggataa gcaggaaga acatgtgage aaaaggega aaaaggcca gaaaggega 7680 regettgege cgageggtat cagetcaet ataaggege aaaaggege getceggteg 7680	aaccacatgt	tggatgaccg	ggcaagatag	taccaccata	taccatgatg	gaaggtetgt	6480
tactttgtaa cgagtatctc atactttag tacccataga gataccgtct gaaacaccga6660tggtgttgaa ctgcatagct ttcaaacccg cttttcaat ggattgagaa catctgtta6720tcaagtccaa tagatgcatg ttacatgggt taccggacca ccaacaggaa ccaacccga6780cttgaggctt cttgaaatct tccttctga aaccggtgge ataaagcatg gcctgggacg6840caacttaga ttagattgct atgcttctt tctatgca aggagtaat acgagtact gttgagette ttcatgtca6900caaacttaga ttagattget atgcttctt tctatgge aggaagtaaa aaaagtgta6960atcaatggga ggtcatcgaa agagaaaaa atcaaaaaa aaatttcaa gaaaaagaa7020atcattgga ggtcatcgaa agagaaaaa atcaaaaaa aaatttcaa gaaaagaga7080cgtgataaa attttattg ccttttcga cgaagaacae tagagcagg ggtcctttt7140ttctttcca aaccttag tgggtgtgtggg gtaaccgg gatggacg gatgcggag gtccgagaa7260atcaaggag ggttaatg cggcgtgg gtagaaca tttggage gatgaggta agggggaa7380aattggag gggttaattg cggcgtgg gtaaccaa cataggage ggagcataa agtgtaaga7440ctgggggg caacgga aacctgtgg gcagctga ttaatggg ttgggttggg	tatgtctacc	catggccatc	atgacaccgg	gcatgtttt	gtcacatgat	gggatggcga	6540
tggtgttgaa ctgcataget ttcaaacceg ctttttcaat ggattgagaa catetgttat 6720 tcaagtccaa tagatgcatg ttacatgggt taceggacca ccaacaggaa ccaaccecga 6780 cttgaggett ettgaaatet teettettga aaceggtgge ataaageatg geetgggaeg 6840 caeettggee ettaggttea gtgatgatat aegagtaett gttgagette tteatgtega 6900 caaaettaga ttagattget atgetteett teetaatgage aagaagtaaa aaaagtegta 6960 atagaaccaag aaaaatgaaa etgaaaettg agaaattgaa gaeegttat taaeettaaat 7020 ateaatggga ggteategaa agagaaaaaa ateaaaaaa aaattteea gaaaaagaaa 7080 egtgataaaa attttattg eettteega egaagaaaaa gaaaegagge ggteetttt 7140 tteettteea aacetttagt aegggtaatt aacgacaeee tagaggaaga aagagggaa 7200 atetaggag gtaaaaaagg agtagaaaea ttetgaage gatgegegga gteegagaa 7260 atetggaaga gtaaaaaagg agtagaaea ttttgaaget atgageteea gettegtte 7320 eetttagtga gggttaattg egegettgge gtaateatgg teatagetgt tteetgtgg 7380 aaattgtta eegeetaa tteeeaeae eataggagee ggaageataa agtgtaaage 7440 etggggtgee taatgagtga ggtaaeteae ataatgeg ttgegeteae tgeeegett 7500 eeggttgegg aaeeetgteg geeagetgea ttaatgaate ggeeaaegge ggteggg 7560 eeggttgeg attggeeget etteegette etegeteaet gaetegeege geteggtegt 7620 teggetgegg egageggtat eageteaete aaaggeegg aaeaeggee geteggtegt 7680 agggggataae geaggaaaga acatgtgage aaaaggeegg aaaaggeea gaaecegtaa 7680 agggggaaae geagagaaa acatgtgage aaaaggeeag aaaggeeae gaaeeetgaaa 7680	tgttagcatc	gtagtgttgt	gccatcatga	tggtttcaaa	ggagtctgca	atgatttctc	6600
tcaagtccaa tagatgcatg ttacatgggt taccggacca ccaacaggaa ccaaccccga 6780 cttgaggctt cttgaaatct tccttcttga aaccggtggc ataaagcatg gcctgggacg 6840 caccttggcc cttaggttca gtgatgatat acgagtactt gttgagcttc ttcatgtcga 6900 caaacttaga ttagattgct atgcttctt tctaatgagc aagaagtaaa aaaagttgta 6960 atagaacaag aaaaatgaaa ctgaaacttg agaaattgaa gaccgtttat taacttaaat 7020 atcaatggga ggtcatcgaa agaggaaaaa atcaaaaaaa aaatttccaa gaaaaagaaa 7080 cgtgataaaa attttattg ccttttcga cgaagaaaaa gaaacgaggc ggtctcttt 7140 ttcttttcca aacctttagt acgggtaatt aacgacaccc tagaggaaga aagagggaa 7200 attagtatg ctgtgcttgg gtgttttgaa gtggtacggc gatgcgcgga gtccgagaaa 7260 atcggaaga gtaaaaaagg agtagaaaca ttttgaagct atgagctcca gctttgttc 7320 cctttagtga gggttaattg cgcgcttggc gtaatcatgg tcatagctgt ttcctgtgtg 7380 aaattgttat ccgctcacaa ttccacacaa cataggagce ggaagcataa agtgtaaagc 7440 ctggggtgcc taatgagtga ggtaactcac attaattgcg ttgcgctcac tgcccgctt 7500 ccagtcggga aacctgtcgt gccagctgca ttaatgaatc ggccaacgcg cggggagag 7560 cggtttgcgt attgggcgt cttccgette ctcgctcact gactggteg getcggtcg 7620 tcggctgcgg cgacggtat cagctcactc aaaggcggta atacggta cgacagac 7680 aggggataac gcaggaaga acatgtgagc aaaaggcca gaaacgac ggaaccgtaa 7740	tactttgtaa	cgagtatctc	atacctttag	tacccataga	gataccgtct	gaaacaccga	6660
cttgaggettcttgaaatetteettettgaaaceggtggeataaageatggectgggaegcacettggeecttaggtteagtgatgatatacgagtaettgtgaggettetteatgtegacaaacttagattagattgetatgetteettettaatgageaaaaggtgtaaaaaagttgtaatagaacaagaaaaatgaaactgaaacttgagaaattgaagaaaattgaa7020atcaatgggaggtcatcgaaagagaaaaaaatcaaaaaaaaaattteaa7080cgtgataaaattttattgcettttegacgaagaaaaagaaacaggggtcatctt7140ttettteeaaacetttagtacgggtaattaacgacaecetagaggagaaaa7260attagtatgctgtgettgggtgttttgaagtggtacggegtetttgte7320atteggaagagtaaaaaaggagtgaaacatttgaaget7380aaattgttatcegetcaeaatteeacaeaacataggage7440ctggggtgetaatgagtgaggacaeteacttaatgaace7500ccagteggaaacetgtegtgecagetgeattaatgaace7500ccagteggaaacetgtegtgecagetgeattaatgaate7620ccggttgeetatgggegetcteegeteacgaecegeteg7620teggetgegcgaceggggaagaaaaggeggaaaaaaaaaggeggaagaaca7680aggggataacgecagetgeattaatgaateggecagetgea7620ctggetgegcagecggeggatcagetcaecaaaggeggaaac7620teggetgegcagecggaagaaaaaggeggaaaaa7680aggggaaacgaacegetgeataatgaac7680aggggaaac<	tggtgttgaa	ctgcatagct	ttcaaacccg	ctttttcaat	ggattgagaa	catctgttat	6720
caccttggcc cttaggttca gtgatgatat acgagtactt gttgagcttc ttcatgtcga caacttaga ttagattgct atgctttctt tctaatgagc aagaagtaaa aaaagttgta atagaacaag aaaaatgaaa ctgaaacttg agaaattgaa gaccgttat taacttaaat 7020 atcaatggga ggtcatcgaa agagaaaaa atcaaaaaaa aaatttcaa gaaaagaaa cgtgataaaa attttattg ccttttcga cgaagaaaaa gaaacgaggc ggtcctttt 7140 ttcttttcca aacctttagt acgggtaatt aacgacaccc tagaggaaga aagaggggaa 7260 atcaggaga gtaaaaaagg agtagaaca tttggaagct atgagctca gcttggtc 7260 atctggaaga gtaaaaaagg agtagaaca tttggaagt atgagccgg gtcctttt 7320 cctttagtga gggttaattg cgcgcttggc gtaatcatgg tcatagctgt ttcctgtgtg 7380 aaattgttat ccgctcaca ttccacaca cataggagc ggaagcataa agtgtaaagc 7440 ctggggtgcc taatgagtga ggtaactcac attaattgcg ttgcgctcac tgcccgctt 7500 ccagtcggga aacctgtcgt gccagctgca ttaatgaatc ggccaacgcg cggggagag 7620 tcggctgcgg cgagcggtat cagctcact aaaggcggta atacggttat ccacagaatc 7680 aggggataac gcaggaaaga acatgtgagc aaaaggccag caaaaggcca ggaaccgtaa 7740	tcaagtccaa	tagatgcatg	ttacatgggt	taccggacca	ccaacaggaa	ccaaccccga	6780
caaacttaga ttagattgct atgctttctt tctaatgagc aagaagtaaa aaaagttgta 6960 atagaacaag aaaaatgaaa ctgaaacttg agaaattgaa gaccgtttat taacttaaat 7020 atcaatggga ggtcatcgaa agagaaaaaa atcaaaaaaa aaattttcaa gaaaaagaaa 7080 cgtgataaaa attttattg ccttttcga cgaagaaaaa gaaacgaggc ggtctctttt 7140 ttcttttcca aacctttagt acgggtaatt aacgacaccc tagaggaaga aagaggggaa 7200 atttagtatg ctgtgcttgg gtgtttgaa gtggtacggc gatgcgcgga gtccgagaaa 7260 atctggaaga gtaaaaaagg agtagaaaca ttttgaagct atgagctcca gctttgttc 7320 cctttagtga gggttaattg cgcgcttggc gtaatcatgg tcatagctgt ttcctgtgtg 7380 aaattgttat ccgctcacaa ttccacacaa cataggagc ggaagcataa agtgtaaagc 7440 ctggggtgcc taatgagtga ggtaactcac attaattgcg ttgcgctcac tgcccgcttt 7500 ccagtcggga aacctgtcgt gccagctgca ttaatgaatc ggccaacgcg cggggagagg 7660 cggtttgcgt attgggcgct cttccgcttc ctcgctcac gactcggt gctcggtcgt 7620 tcggctgcgg cgagcggtat cagctcact aaaggcgga aacggta atacggtat ccacagaatc 7680 aggggataac gcaggaaaga acatgtgagc aaaaggccag caaaaggcca ggaaccgtaa 7740	cttgaggctt	cttgaaatct	tccttcttga	aaccggtggc	ataaagcatg	gcctgggacg	6840
atagaacaag aaaatgaaa ctgaaacttg agaaattgaa gaccgtttat taacttaaat 7020 atcaatggga ggtcatcgaa agagaaaaa atcaaaaaaa aaattttcaa gaaaaagaaa 7080 cgtgataaaa attttattg ccttttcga cgaagaaaaa gaaacgaggc ggtctcttt 7140 ttcttttcca aaccttagt acgggtaatt aacgacaccc tagaggaaga aagaggggaa 7200 atttagtatg ctgtgcttgg gtgtttgaa gtggtacggc gatgcgcgga gtccgagaaa 7260 atctggaaga gtaaaaaagg agtagaaaca ttttgaagct atgagctcca gctttgttc 7320 cctttagtga gggttaattg cgcgcttggc gtaatcatgg tcatagctgt ttcctgtgtg 7380 aaattgttat ccgctcacaa ttccacacaa cataggagcc ggaagcataa agtgtaaagc 7440 ctggggtgcc taatgagtga ggtaactcac attaattgcg ttgcgctcac tgcccgcttt 7500 ccagtcggga aacctgtcgt gccagctgc ttactgg ttgcgctcac tgcccgctt 7500 cggtttgcgt attgggcgct cttccgcttc ctcgctcac gactcgcg gccgggagagg 7620 tcggctgcg cgagcggtat cagctcact aaaggcgga atacggta tacggtat ccacagaatc 7680 aggggataac gcaggaaaga acatgtgagc aaaaggccag caaaaggcca ggaaccgtaa 7740	caccttggcc	cttaggttca	gtgatgatat	acgagtactt	gttgagette	ttcatgtcga	6900
atcaatgggaggtcatcgaaagagaaaaaaatcaaaaaaaaaattttcaagaaaaagaaa7080cgtgataaaaattttattgcctttttcgacgaagaaaaagaaacgaggeggtctctttt7140ttcttttccaaacctttagtacgggtaattaacgacaccetagaggaagaaagaggggaa7200atttagtatgctgtgcttgggtgttttgaagtggtacggegatgcgggaagaagaggggaaa7200atctggaagagtaaaaaaggagtgtattgaagtggtacggegatgcgggaaga7200atctggaagagtaaaaaaggagtgtagaacattttgaagetgtggtcca7320cctttagtgagggttaattgcgcgettggegtaatcatggtcatagetgt7380aaattgttatccgctcacaattccacacaacataggageggaagcataaagtgtaaagectggggtgcetaatgagtgaggtaactcacattaattgegttgccgctget7500ccagtcgggaaacctgtcggccagctgcattaatgaateggccaacgegcggggagagg7620tcggctgcggcaggcggtatcagctcacteaaaggcggtaatccggtcg7620tcggctgcgggaagcggtatcagctcacteaaaggcggtaatacggtta7620tcggctgcggcgagcggtatcagctcacteaaaggcggtaatacggtta7620tcggctgcggcgagcggtatcagctcacteaaaggcggtaatacggtta7620tcggetgcggcgagcggtatcagctcacteaaaggcggta76207620tcggctgcggcgagcggtatcagctcacteaaaggcggtaatacggtta7680aggggataacgcaggaagaaaaaggccacaaaaggcca<	caaacttaga	ttagattgct	atgetttett	tctaatgagc	aagaagtaaa	aaaagttgta	6960
cgtgataaaa attttattg ootttttoga ogaagaaaaa gaaacgaggo ggtototttt 7140 ttottttoca aacotttagt acgggtaatt aacgacacco tagaggaaga aagaggggaa 7200 atttagtatg otgtgottgg gtgtttgaa gtggtacggo gatgogogga gtocogagaaa 7260 atotggaaga gtaaaaaagg agtagaaaca ttttgaagot atgagotoca gotttgtto 7320 ootttagtga gggttaattg ogogottggo gtaatcatgg toatagotgt ttootgtgtg 7380 aaattgttat oogotoaca ttocacaaa cataggagoo ggaagoataa agtgtaaago 7440 otggggtgoo taatgagtga ggtaactoac attaattgog ttgogotoac tgocogottt 7500 ccagtoggga aacotgtogt gocagotgoa ttaatgaato ggocaacgoo gogggagagag 7560 oggtttgogt attgggogot ottoogotto otogotoac gactogotgo gotoggtogt 7620 toggotgoo gaagoggaa catgtgago aaaaggooga atacggta tacaggtat coacagaato 7680 aggggataac goaggaaaga acatgtgago aaaaggocag caaaaggoca ggaacogtaa 7740	atagaacaag	aaaaatgaaa	ctgaaacttg	agaaattgaa	gaccgtttat	taacttaaat	7020
ttottttoca aacotttagt acgggtaatt aacggacacco tagaggaaga aagaggggaa 7200 atttagtatg otgtgottgg gtgttttgaa gtggtacggo gatgogogga gtoogagaaa 7260 atotggaaga gtaaaaaagg agtagaaaca ttttgaagot atgagotoca gottttgtto 7320 ootttagtga gggttaattg ogogottggo gtaatcatgg toatagotgt ttootgtgtg 7380 aaattgttat oogotoacaa ttoocacaaa cataggagoo ggaagoataa agtgtaaago 7440 otggggtgoo taatgagtga ggtaactoac attaattgog ttgogotoac tgocogottt 7500 ccagtoggga aacotgtogt gcoagotgoa ttaatgaato ggocaacgog oggggagagg 7560 oggtttgogt attgggogot ottoogotto otogotoac gactogotgo 7620 toggotgoog cgagoggtat cagotoacto aaaggoggta atacggtat coacagaato 7680 aggggataac gcaggaaaga acatgtgago aaaaggocag caaaaggoca ggaaccgtaa 7740	atcaatggga	ggtcatcgaa	agagaaaaaa	atcaaaaaaa	aaattttcaa	gaaaaagaaa	7080
atttagtatg ctgtgcttgg gtgtttgaa gtggtacggc gatgcgcgga gtccgagaa7260atctggaaga gtaaaaaagg agtagaaaca ttttgaagct atgagctcca gctttgttc7320cctttagtga gggttaattg cgcgcttggc gtaatcatgg tcatagctgt ttcctgtgtg7380aaattgttat ccgctcacaa ttccacacaa cataggagcc ggaagcataa agtgtaaagc7440ctggggtgcc taatgagtga ggtaactcac attaattgcg ttgcgctcac tgcccgcttt7500ccagtcggga aacctgtcgt gccagctgca ttaatgaatc ggccaacgcg cggggagag7560cggtttgcgt attgggcgct cttccgcttc ctcgctcac gactcgctgc gctcggtcgt7620tcggctgcgg cgagcggtat cagctcact aaaggcggta atacggttat ccacagaatc7680aggggataac gcaggaaaga acatgtgagc aaaaggccag caaaaggcca ggaaccgtaa7740	cgtgataaaa	atttttattg	cctttttcga	cgaagaaaaa	gaaacgaggc	ggtctcttt	7140
atctggaaga gtaaaaaagg agtagaaaca ttttgaagct atgagctcca gctttgttc 7320 cctttagtga gggttaattg cgcgcttggc gtaatcatgg tcatagctgt ttoctgtgtg 7380 aaattgttat ccgctcacaa ttccacacaa cataggagcc ggaagcataa agtgtaaagc 7440 ctggggtgcc taatgagtga ggtaactcac attaattgcg ttgcgctcac tgcccgctt 7500 ccagtcggga aacctgtcgt gccagctgca ttaatgaatc ggccaacgcg cggggagagg 7560 cggtttgcgt attgggcgct cttccgcttc ctcgctcact gactcgctgc gctcggtcgt 7620 tcggctgcgg cgagcggtat cagctcactc aaaggcggta atacggttat ccacagaatc 7680 aggggataac gcaggaaaga acatgtgagc aaaaggccag caaaaggcca ggaaccgtaa 7740	ttcttttcca	aacctttagt	acgggtaatt	aacgacaccc	tagaggaaga	aagaggggaa	7200
cctttagtga gggttaattg cgcgcttggc gtaatcatgg tcatagctgt ttoctgtgtg 7380 aaattgttat ccgctcacaa ttoccacaaa cataggagco ggaagcataa agtgtaaago 7440 ctggggtgco taatgagtga ggtaactcao attaattgog ttgcgctcao tgoccgottt 7500 ccagtoggga aacetgtogt gocagetgoa ttaatgaato ggocaacgog eggggagagg 7560 eggtttgegt attgggeget etteegetto etegeteaet gaetegetgo geteggtegt 7620 teggetgegg egageggtat cageteaet aaaggeggta ataeggttat ccacagaato 7680 aggggataac geaggaaaga acatgtgago aaaaggeegg caaaaggeea ggaacegtaa 7740	atttagtatg	ctgtgcttgg	gtgttttgaa	gtggtacggc	gatgcgcgga	gtccgagaaa	7260
aaattgttat ccgctcacaa ttccacaaa cataggagcc ggaagcataa agtgtaaagc 7440 ctggggtgcc taatgagtga ggtaactcac attaattgcg ttgcgctcac tgcccgcttt 7500 ccagtcggga aacctgtcgt gccagctgca ttaatgaatc ggccaacgcg cggggagagg 7560 cggtttgcgt attgggcgct cttccgcttc ctcgctcact gactcgctgc gctcggtcgt 7620 tcggctgcgg cgagcggtat cagctcactc aaaggcggta atacggttat ccacagaatc 7680 aggggataac gcaggaaaga acatgtgagc aaaaggccag caaaaggcca ggaaccgtaa 7740	atctggaaga	gtaaaaaagg	agtagaaaca	ttttgaagct	atgageteca	gcttttgttc	7320
ctggggtgcc taatgagtga ggtaactcac attaattgcg ttgcgctcac tgcccgcttt 7500 ccagtcggga aacctgtcgt gccagctgca ttaatgaatc ggccaacgcg cggggagagg 7560 cggtttgcgt attgggcgct cttccgcttc ctcgctcact gactcgctgc gctcggtcgt 7620 tcggctgcgg cgagcggtat cagctcactc aaaggcggta atacggttat ccacagaatc 7680 aggggataac gcaggaaaga acatgtgagc aaaaggccag caaaaggcca ggaaccgtaa 7740	cctttagtga	gggttaattg	cgcgcttggc	gtaatcatgg	tcatagctgt	ttcctgtgtg	7380
ccagteggga aacetgtegt gecagetgea ttaatgaate ggeeaaegeg eggggagagg 7560 eggtttgegt attgggeget etteegette etegeteaet gaetegetge geteggtegt 7620 teggetgegg egageggtat eageteaete aaaggeggta ataeggttat eeaeagaate 7680 aggggataae geaggaaaga acatgtgage aaaaggeeag eaaaaggeea ggaaeegtaa 7740	aaattgttat	ccgctcacaa	ttccacacaa	cataggagcc	ggaagcataa	agtgtaaagc	7440
cggtttgcgt attgggcgct cttccgcttc ctcgctcact gactcgctgc gctcggtcgt 7620 tcggctgcgg cgagcggtat cagctcactc aaaggcggta atacggttat ccacagaatc 7680 aggggataac gcaggaaaga acatgtgagc aaaaggccag caaaaggcca ggaaccgtaa 7740	ctggggtgcc	taatgagtga	ggtaactcac	attaattgcg	ttgcgctcac	tgcccgcttt	7500
tcggctgcgg cgagcggtat cagctcactc aaaggcggta atacggttat ccacagaatc 7680 aggggataac gcaggaaaga acatgtgagc aaaaggccag caaaaggcca ggaaccgtaa 7740	ccagtcggga	aacctgtcgt	gccagctgca	ttaatgaatc	ggccaacgcg	cggggagagg	7560
aggggataac gcaggaaaga acatgtgagc aaaaggccag caaaaggcca ggaaccgtaa 7740	cggtttgcgt	attgggcgct	cttccgcttc	ctcgctcact	gactcgctgc	gctcggtcgt	7620
	tcggctgcgg	cgagcggtat	cageteacte	aaaggcggta	atacggttat	ccacagaatc	7680
aaaggeegeg ttgetggegt tttteeatag geteegeeee eetgaegage ateacaaaaa 7800	aggggataac	gcaggaaaga	acatgtgagc	aaaaggccag	caaaaggcca	ggaaccgtaa	7740
	aaaggccgcg	ttgctggcgt	ttttccatag	gctccgcccc	cctgacgagc	atcacaaaaa	7800

tcgacgctca	agtcagaggt	ggcgaaaccc	gacaggacta	taaagatacc	aggcgtttcc	7860
ccctggaagc	tccctcgtgc	gctctcctgt	tccgaccctg	ccgcttaccg	gatacctgtc	7920
cgcctttctc	ccttcgggaa	gcgtggcgct	ttctcatagc	tcacgctgta	ggtatctcag	7980
ttcggtgtag	gtcgttcgct	ccaagctggg	ctgtgtgcac	gaaccccccg	ttcagcccga	8040
ccgctgcgcc	ttatccggta	actatcgtct	tgagtccaac	ccggtaagac	acgacttatc	8100
gccactggca	gcagccactg	gtaacaggat	tagcagagcg	aggtatgtag	gcggtgctac	8160
agagttcttg	aagtggtggc	ctaactacgg	ctacactaga	aggacagtat	ttggtatctg	8220
cgctctgctg	aagccagtta	ccttcggaaa	aagagttggt	agctcttgat	ccggcaaaca	8280
aaccaccgct	ggtagcggtg	gttttttgt	ttgcaagcag	cagattacgc	gcagaaaaaa	8340
aggatctcaa	gaagatcctt	tgatcttttc	tacggggtct	gacgctcagt	ggaacgaaaa	8400
ctcacgttaa	gggattttgg	tcatgagatt	atcaaaaagg	atcttcacct	agatcctttt	8460
aaattaaaaa	tgaagtttta	aatcaatcta	aagtatatat	gagtaaactt	ggtctgacag	8520
ttaccaatgc	ttaatcagtg	aggcacctat	ctcagcgatc	tgtctatttc	gttcatccat	8580
agttgcctga	ctccccgtcg	tgtagataac	tacgatacgg	gagggcttac	catctggccc	8640
cagtgctgca	atgataccgc	gagacccacg	ctcaccggct	ccagatttat	cagcaataaa	8700
ccagccagcc	ggaagggccg	agcgcagaag	tggtcctgca	actttatccg	cctccatcca	8760
gtctattaat	tgttgccggg	aagctagagt	aagtagttcg	ccagttaata	gtttgcgcaa	8820
cgttgttgcc	attgctacag	gcatcgtggt	gtcacgctcg	tcgtttggta	tggcttcatt	8880
cageteeggt	tcccaacgat	caaggcgagt	tacatgatcc	cccatgttgt	gcaaaaaagc	8940
ggttagctcc	ttcggtcctc	cgatcgttgt	cagaagtaag	ttggccgcag	tgttatcact	9000
catggttatg	gcagcactgc	ataattctct	tactgtcatg	ccatccgtaa	gatgcttttc	9060
tgtgactggt	gagtactcaa	ccaagtcatt	ctgagaatag	tgtatgcggc	gaccgagttg	9120
ctcttgcccg	gcgtcaatac	gggataatac	cgcgccacat	agcagaactt	taaaagtgct	9180
catcattgga	aaacgttctt	cggggcgaaa	actctcaagg	atcttaccgc	tgttgagatc	9240
cagttcgatg	taacccactc	gtgcacccaa	ctgatcttca	gcatcttta	ctttcaccag	9300
cgtttctggg	tgagcaaaaa	caggaaggca	aaatgccgca	aaaaagggaa	taagggcgac	9360
acggaaatgt	tgaatactca	tactcttcct	ttttcaatat	tattgaagca	tttatcaggg	9420
ttattgtctc	atgagcggat	acatatttga	atgtatttag	aaaaataaac	aaataggggt	9480
tccgcgcaca	tttccccgaa	aagtgccacc	tgacgt			9516
<220> FEAT	IH: 6679 : DNA NISM: Artif: JRE:	icial Sequer DN: Plasmid				
<400> SEQUI	ENCE: 121					
ttggatcata	ctaagaaacc	attattatca	tgacattaac	ctataaaaat	aggcgtatca	60
cgaggccctt	tcgtctcgcg	cgtttcggtg	atgacggtga	aaacctctga	cacatgcagc	120
tcccggagac	ggtcacagct	tgtctgtaag	cggatgccgg	gagcagacaa	gcccgtcagg	180
gcgcgtcagc	gggtgttggc	gggtgtcggg	gctggcttaa	ctatgcggca	tcagagcaga	240

ttgtactgag	agtgcaccat	accacagett	ttcaattcaa	ttcatcattt	ttttttatt	300	
ctttttttg	atttcggttt	ctttgaaatt	tttttgattc	ggtaatctcc	gaacagaagg	360	
aagaacgaag	gaaggagcac	agacttagat	tggtatatat	acgcatatgg	caaattaaag	420	
ccttcgagcg	tcccaaaacc	ttctcaagca	aggttttcag	tataatgtta	catgcgtaca	480	
cgcgtctgta	cagaaaaaaa	agaaaaattt	gaaatataaa	taacgttctt	aatactaaca	540	
taactataaa	aaaataaata	gggacctaga	cttcaggttg	tctaactcct	tccttttcgg	600	
ttagagcgga	tgtgggggga	gggcgtgaat	gtaagcgtga	cataagaatt	cttagaaaaa	660	
ctcatcgagc	atcaaatgaa	actgcaattt	attcatatca	ggattatcaa	taccatattt	720	
ttgaaaaagc	cgtttctgta	atgaaggaga	aaactcaccg	aggcagttcc	ataggatggc	780	
aagatcctgg	tatcggtctg	cgatcccgac	tcgtccaaca	tcaatacaac	ctattaattt	840	
cccctcgtca	aaaataaggt	tatcaagtga	gaaatcacca	tgagtgacga	ctgaatccgg	900	
tgagaatggc	aaaagcttat	gcatttcttt	ccagacttgt	tcaacaggcc	agccattacg	960	
ctcgtcatca	aaatcactcg	cgtcaaccaa	accgttattc	attcgtgatt	gcgcctgagc	1020	
gaggcgaaat	acgcgatcgc	tgttaaaagg	acaattacaa	acaggaatcg	aatgcaaccg	1080	
gcgcaggaac	actgccagcg	catcaacaat	attttcacct	gaatcaggat	attcttctaa	1140	
tacctggaat	gctgttttgc	cgggggatcgc	agtggtgagt	aaccatgcat	catcaggagt	1200	
acggacaaaa	tgcttgatgg	tcggaagagg	cataaattcc	gtcagccagt	ttagtctgac	1260	
catctcatct	gcaacatcat	tggcaacgct	acctttgcca	tgtttcagaa	acaactctgg	1320	
cgcatcgggc	ttcccataca	atcgatagat	tgtcgcacct	gattgcccga	cattatcgcg	1380	
agcccattta	tacccatata	aatcagcatc	catgttggaa	tttaatcgcg	gcctcgaaac	1440	
gtgagtettt	tccttaccca	tactagtttt	tagtttatgt	atgtgttttt	tgtagttata	1500	
gatttaagca	agaaaagaat	acaaacaaaa	aattgaaaaa	gattgattta	gaattaaaaa	1560	
gaaaaatatt	tacgtaagaa	gggaaaatag	taaatgttgc	aagttcacta	aactcctaaa	1620	
ttatgctgcc	ctttatattc	cctgttacag	cagccgagcc	aaaggtatat	aggeteettt	1680	
gcattagcat	gcgtaacaaa	ccacctgtca	gtttcaaccg	aggtggtatc	cgagagaatt	1740	
gtgtgattgc	tttaattaat	ttcggagaat	ctcacatgcc	actgaagatt	aaaaactgga	1800	
tgccagaaaa	ggggtgtcca	ggtgtaacat	caatagagga	agctgaaaag	tcttagaacg	1860	
ggtaatcttc	caccaacctg	atgggttcct	agatataatc	tcgaagggaa	taagtagggt	1920	
gataccgcag	aagtgtctga	atgtattaag	gtcctcacag	tttaaatccc	gctcacacta	1980	
acgtaggatt	attataactc	aaaaaatgg	cattattcta	agtaagttaa	atatccgtaa	2040	
tctttaaaca	gcggccgcag	atctctcgag	tcgaaactaa	gttctggtgt	tttaaaacta	2100	
aaaaaaagac	taactataaa	agtagaattt	aagaagttta	agaaatagat	ttacagaatt	2160	
acaatcaata	cctaccgtct	ttatatactt	attagtcaag	taggggaata	atttcaggga	2220	
actggtttca	accttttttt	tcagcttttt	ccaaatcaga	gagagcagaa	ggtaatagaa	2280	
ggtgtaagaa	aatgagatag	atacatgcgt	gggtcaattg	ccttgtgtca	tcatttactc	2340	
caggcaggtt	gcatcactcc	attgaggttg	tgecegtttt	ttgcctgttt	gtgcccctgt	2400	
tctctgtagt	tgcgctaaga	gaatggacct	atgaactgat	ggttggtgaa	gaaaacaata	2460	
ttttggtgct	gggattettt	tttttctgg	atgccagctt	aaaaagcggg	ctccattata	2520	

tttagtggat gccaggaata aactgttcac ccagacacct acgatgttat atatt taacccgccc cctatttgg gcatgtacgg gttacagcag aattaaaagg ctaat gactaaataa agttaggaaa atcactacta ttaattatt acgtattct tgaa agtattgata atgataaact ggatccgtcg acaaacttag attagattgc tatg ttctaatgag caagaagtaa aaaaagttgt aatagaacaa gaaaaatgaa actg gagaaattga agaccgttta ttaacttaaa tatcaatggg aggtcatcga aagag aatcaaaaaa aaaatttca agaaaaagaa acgtgataaa aattttatt gcctt acgaagaaaa agaaacgagg cggtctcttt ttcctttcc aaaccttag tacgg taacgacacc ctagaggaag aaagagggga aattagtat gctgtgcttg ggtgt agtggtacgg cgatgcgcgg agtccgagaa aatctggaag agtaaaaaag gagta attttgaagc tatgagctc agctttgtt ccctttagtg agggtaatt gcgg	ttttt 2640 atggcg 2700 ctttct 2760 aaactt 2820 gaaaaa 2880 ttttcg 2940
gactaaataa agttaggaaa atcactacta ttaattatt acgtattet tgaaa agtattgata atgataaact ggateegteg acaaacttag attagattge tatga ttetaatgag caagaagtaa aaaaagttgt aatagaacaa gaaaaatgaa actga gagaaattga agacegttta ttaacttaaa tateaatggg aggteatega aaga aateaaaaaa aaaatttea agaaaaagaa acgtgataaa aattttatt geett acgaagaaaa agaaacgagg eggtetett tteettee aaacettag taeg taacgacace etagaggaag aaagagggga aattagtat getgtgettg ggtgd agtggtacgg egatgegegg agteeggaaa aatetggaag agtaaaaaag gagta attetgaage tatgagetee agetttgtt ecettagtg agggtaatt geege	atggcg 2700 ctttct 2760 aaactt 2820 gaaaaa 2880 ttttcg 2940
agtattgata atgataaact ggatccgtcg acaaacttag attagattgc tatga ttctaatgag caagaagtaa aaaaagttgt aatagaacaa gaaaaatgaa actga gagaaattga agaccgttta ttaacttaaa tatcaatggg aggtcatcga aagag aatcaaaaaa aaaatttca agaaaaagaa acgtgataaa aattttatt goctt acgaagaaaa agaaacgagg cggtctcttt tttctttcc aaacctttag tacgg taacgacacc ctagaggaag aaagagggga aattagtat gctgtgcttg ggtg agtggtacgg cgatgcgcgg agtccgagaa aatctggaag agtaaaaaag gagta attttgaagc tatgagctcc agctttgtt ccctttagtg agggtaatt gcgo	ctttct 2760 aaactt 2820 gaaaaa 2880 ttttcg 2940
ttctaatgag caagaagtaa aaaagttgt aatagaacaa gaaaaatgaa actga gagaaattga agaccgttta ttaacttaaa tatcaatggg aggtcatcga aagag aatcaaaaaa aaaatttca agaaaaagaa acgtgataaa aattttatt goott acgaagaaaa agaaacgagg cggtctcttt tttctttcc aaacctttag tacg taacgacacc ctagaggaag aaagagggga aattagtat gctgtgcttg ggtg agtggtacgg cgatgcgcgg agtccgagaa aatctggaag agtaaaaaag gagta attttgaagc tatgagctcc agctttgtt ccctttagtg agggtaatt gcgo	aaactt 2820 gaaaaa 2880 ttttcg 2940
gagaaattga agaccgttta ttaacttaaa tatcaatggg aggtcatcga aaga aatcaaaaaa aaaatttca agaaaaagaa acgtgataaa aattttatt goott acgaagaaaa agaaacgagg cggtctctt tttctttcc aaacctttag tacgg taacgacacc ctagaggaag aaagagggga aattagtat gctgtgcttg ggtgt agtggtacgg cgatgcgcgg agtccgagaa aatctggaag agtaaaaaag gagta attttgaagc tatgagctcc agctttgtt ccctttagtg agggtaatt gcgc	gaaaaa 2880 ttttcg 2940
aatcaaaaaa aaaattttca agaaaaagaa acgtgataaa aattttatt goott acgaagaaaa agaaacgagg cggtotottt tttotttoo aaacotttag tacgg taacgacacc ctagaggaag aaagagggga aattagtat gotgtgottg ggtgt agtggtacgg cgatgogogg agtoogagaa aatotggaag agtaaaaaag gagta attttgaago tatgagotoo agottttgtt cootttagtg agggtaatt googo	ttttcg 2940
acgaagaaaa agaaacgagg cggtctcttt tttcttttcc aaacctttag tacgg taacgacacc ctagaggaag aaagagggga aatttagtat gctgtgcttg ggtgt agtggtacgg cgatgcgcgg agtccgagaa aatctggaag agtaaaaaag gagta attttgaagc tatgagctcc agcttttgtt ccctttagtg agggttaatt gcgcg	5
taacgacacc ctagaggaag aaagagggga aatttagtat gctgtgcttg ggtgt agtggtacgg cgatgcgcgg agtccgagaa aatctggaag agtaaaaaag gagta attttgaagc tatgagctcc agcttttgtt ccctttagtg agggttaatt gcgcg	
agtggtacgg cgatgcgcgg agtccgagaa aatctggaag agtaaaaaag gagta attttgaagc tatgagctcc agcttttgtt ccctttagtg agggttaatt gcgc	ggtaat 3000
attttgaagc tatgagctcc agcttttgtt ccctttagtg agggttaatt gcgcg	ttttga 3060
	agaaac 3120
	gcttgg 3180
cgtaatcatg gtcatagetg ttteetgtgt gaaattgtta teegeteaca attee	cacaca 3240
acataggagc cggaagcata aagtgtaaag cctggggtgc ctaatgagtg aggta	aactca 3300
cattaattgc gttgcgctca ctgcccgctt tccagtcggg aaacctgtcg tgcca	agctgc 3360
attaatgaat cggccaacgc gcggggagag gcggtttgcg tattgggcgc tctto	ccgctt 3420
cctcgctcac tgactcgctg cgctcggtcg ttcggctgcg gcgagcggta tcago	ctcact 3480
caaaggcggt aatacggtta tccacagaat caggggataa cgcaggaaag aacat	tgtgag 3540
caaaaggcca gcaaaaggcc aggaaccgta aaaaggccgc gttgctggcg tttt	tccata 3600
ggeteegeee eeetgaegag cateacaaaa ategaegete aagteagagg tggee	gaaacc 3660
cgacaggact ataaagatac caggcgtttc cccctggaag ctccctcgtg cgcto	ctcctg 3720
tteegaeeet geegettace ggatacetgt eegeettet eeetteggga agegt	tggcgc 3780
tttctcatag ctcacgctgt aggtatctca gttcggtgta ggtcgttcgc tccaa	agctgg 3840
getgtgtgca cgaaceeece gtteageeeg acegetgege ettateeggt aaeta	atcgtc 3900
ttgagtccaa cccggtaaga cacgacttat cgccactggc agcagccact ggtaa	acagga 3960
ttagcagagc gaggtatgta ggcggtgcta cagagttctt gaagtggtgg cctaa	actacg 4020
gctacactag aaggacagta tttggtatct gcgctctgct gaagccagtt acctt	tcggaa 4080
aaagagttgg tagetettga teeggeaaae aaaceaeege tggtageggt ggttt	ttttg 4140
tttgcaagca gcagattacg cgcagaaaaa aaggatctca agaagatcct ttgat	tctttt 4200
ctacggggtc tgacgctcag tggaacgaaa actcacgtta agggattttg gtcat	tgagat 4260
tatcaaaaag gatcttcacc tagatccttt taaattaaaa atgaagtttt aaato	caatct 4320
aaagtatata tgagtaaact tggtctgaca gttaccaatg cttaatcagt gaggo	caccta 4380
teteagegat etgtetattt egtteateea tagttgeetg aeteeeegte gtgta	agataa 4440
ctacgatacg ggagggctta ccatctggcc ccagtgctgc aatgataccg cgaga	acccac 4500
geteacegge tecagattta teageaataa aceageeage eggaagggee gagee	gcagaa 4560
gtggtcctgc aactttatcc gcctccatcc agtctattaa ttgttgccgg gaago	ctagag 4620
taagtagttc gccagttaat agtttgcgca acgttgttgc cattgctaca ggcat	tcgtgg 4680
tgtcacgete gtegtttggt atggetteat teageteegg tteecaaega teaag	ggcgag 4740
ttacatgatc ccccatgttg tgcaaaaaag cggttagctc cttcggtcct ccgat	tcgttg 4800

-continued

tcagaagtaa	gttggccgca	gtgttatcac	tcatggttat	ggcagcactg	cataattctc	4860
ttactgtcat	gccatccgta	agatgctttt	ctgtgactgg	tgagtactca	accaagtcat	4920
tctgagaata	gtgtatgcgg	cgaccgagtt	gctcttgccc	ggcgtcaata	cgggataata	4980
ccgcgccaca	tagcagaact	ttaaaagtgc	tcatcattgg	aaaacgttct	tcggggcgaa	5040
aactctcaag	gatcttaccg	ctgttgagat	ccagttcgat	gtaacccact	cgtgcaccca	5100
actgatcttc	agcatcttt	actttcacca	gcgtttctgg	gtgagcaaaa	acaggaaggc	5160
aaaatgccgc	aaaaaggga	ataagggcga	cacggaaatg	ttgaatactc	atactcttcc	5220
tttttcaata	ttattgaagc	atttatcagg	gttattgtct	catgagcgga	tacatatttg	5280
aatgtattta	gaaaaataaa	caaatagggg	ttccgcgcac	atttccccga	aaagtgccac	5340
ctgaacgaag	catctgtgct	tcattttgta	gaacaaaaat	gcaacgcgag	agcgctaatt	5400
tttcaaacaa	agaatctgag	ctgcatttt	acagaacaga	aatgcaacgc	gaaagcgcta	5460
ttttaccaac	gaagaatctg	tgcttcattt	ttgtaaaaca	aaaatgcaac	gcgagagcgc	5520
taatttttca	aacaaagaat	ctgagctgca	ttttacaga	acagaaatgc	aacgcgagag	5580
cgctattta	ccaacaaaga	atctatactt	ctttttgtt	ctacaaaaat	gcatcccgag	5640
agcgctattt	ttctaacaaa	gcatcttaga	ttactttttt	tctcctttgt	gcgctctata	5700
atgcagtctc	ttgataactt	tttgcactgt	aggtccgtta	aggttagaag	aaggctactt	5760
tggtgtctat	tttctcttcc	ataaaaaaag	cctgactcca	cttcccgcgt	ttactgatta	5820
ctagcgaagc	tgcgggtgca	tttttcaag	ataaaggcat	ccccgattat	attctatacc	5880
gatgtggatt	gcgcatactt	tgtgaacaga	aagtgatagc	gttgatgatt	cttcattggt	5940
cagaaaatta	tgaacggttt	cttctatttt	gtctctatat	actacgtata	ggaaatgttt	6000
acattttcgt	attgttttcg	attcactcta	tgaatagttc	ttactacaat	tttttgtct	6060
aaagagtaat	actagagata	aacataaaaa	atgtagaggt	cgagtttaga	tgcaagttca	6120
aggagcgaaa	ggtggatggg	taggttatat	agggatatag	cacagagata	tatagcaaag	6180
agatacttt	gagcaatgtt	tgtggaagcg	gtattcgcaa	tattttagta	gctcgttaca	6240
gtccggtgcg	tttttggttt	tttgaaagtg	cgtcttcaga	gcgcttttgg	ttttcaaaag	6300
cgctctgaag	ttcctatact	ttctagagaa	taggaacttc	ggaataggaa	cttcaaagcg	6360
tttccgaaaa	cgagcgcttc	cgaaaatgca	acgcgagctg	cgcacataca	gctcactgtt	6420
cacgtcgcac	ctatatctgc	gtgttgcctg	tatatatata	tacatgagaa	gaacggcata	6480
gtgcgtgttt	atgcttaaat	gcgtacttat	atgcgtctat	ttatgtagga	tgaaaggtag	6540
tctagtacct	cctgtgatat	tatcccattc	catgcggggt	atcgtatgct	tccttcagca	6600
ctacccttta	gctgttctat	atgctgccac	tcctcaattg	gattagtctc	atccttcaat	6660
gctatcattt	cctttgata					6679

<210> SEQ ID NO 122 <211> LENGTH: 13805 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV2082

<400> SEQUENCE: 122

ttggatcata ctaagaaacc attattatca tgacattaac ctataaaaat aggcgtatca 60

cgaggccctt	tcgtctcgcg	cgtttcggtg	atgacggtga	aaacctctga	cacatgcagc	120	
teceggagae	ggtcacagct	tgtctgtaag	cggatgccgg	gagcagacaa	gcccgtcagg	180	
gcgcgtcagc	gggtgttggc	gggtgtcggg	gctggcttaa	ctatgcggca	tcagagcaga	240	
ttgtactgag	agtgcaccat	accacagett	ttcaattcaa	ttcatcattt	ttttttatt	300	
ctttttttg	atttcggttt	ctttgaaatt	tttttgattc	ggtaatctcc	gaacagaagg	360	
aagaacgaag	gaaggagcac	agacttagat	tggtatatat	acgcatatgg	caaattaaag	420	
ccttcgagcg	tcccaaaacc	ttctcaagca	aggttttcag	tataatgtta	catgcgtaca	480	
cgcgtctgta	cagaaaaaaa	agaaaaattt	gaaatataaa	taacgttctt	aatactaaca	540	
taactataaa	aaaataaata	gggacctaga	cttcaggttg	tctaactcct	tccttttcgg	600	
ttagagcgga	tgtgggggga	gggcgtgaat	gtaagcgtga	cataactaat	tacatgactc	660	
gageggeege	ttagatgccg	gagtcccagt	gcttggtcca	ctggatggcc	tccagggtgc	720	
ccaagtccag	tttccagatg	gctccgttct	ggttcagctc	gatagccttg	acgaagttct	780	
cggcgcaggc	caacgagggc	tgggtgggat	gagccaggag	cttctcggca	acctgaggct	840	
caacatccaa	ccaggagttg	aacgtgtgca	ccagggtggt	gcgggtgatg	ccggggttca	900	
cagtgtaagc	cgtcacgccg	gtaatggggg	ccagtttcgc	cagggagctg	gtgaagttga	960	
ccacggcggc	cttggtgccg	gagtagacgg	gcacctggta	gatggcattg	aatccagtga	1020	
cggatccaat	gttgcagatg	ataccaccgg	gaccgccctt	gcgcttgtcc	cagaagtcca	1080	
gaatggccgt	cgtggtgttg	accaggccag	tgtagttgac	ggcaatggtg	cgctcgatct	1140	
ggtgatcgtc	caggatacca	gctccgttga	tcaggacatc	gacggtcttc	agctgggcga	1200	
agatggtctt	cagcagcttg	gtggtctcgg	caatgggcac	ggtcacatca	taggggtaga	1260	
aggtgacggt	cacctttgga	ttgattgcct	tcagctcggc	aatggcagcc	gggttctcaa	1320	
tgcggtcgag	gatcaccagg	ttcttcagat	cgcgcttgag	cagctccttg	ctggtgtcca	1380	
gaccaatgcc	tcccagaccg	gcaacgaaaa	tcacgttctt	gttggtcaaa	gtaaacgaca	1440	
tggtacctat	tattgtatgt	tatagtatta	gttgcttggt	gttatgaaag	aaactaagaa	1500	
aagaaaaata	aaataaaaat	aaaagattga	gacaagggaa	gaaaagatac	aaaataagaa	1560	
ttaattacaa	ttgcgtttgc	tataaatacg	ttttaacaa	tcaactctgg	taggaagata	1620	
atgctttttt	tttttatata	tgcttggtgc	cacttgtcac	atacaattct	acaaccttcg	1680	
acaaaaatcc	aaatgatagt	aagatcaaag	ccagaaagca	atggagaaaa	aaaattaatg	1740	
aaccacgatg	aaccaaatga	tcaatacaac	caaagaaact	accctagtga	ggtgtatgct	1800	
gacttggtat	cacacttcat	gaattttgca	tatggcaaag	tccacgaaag	tgggcttcag	1860	
aaaaaggcg	tgcggtgtgt	agatgtatca	attagtggat	gccagttttg	gaacgggatt	1920	
ccactttccg	caagttggtg	cacgtcgtta	gtgacataac	gccgcgttca	tctttgggaa	1980	
gaagcagatg	ctgagcgagg	aggtactata	gagtaaagaa	ccctttctat	acccgcagcc	2040	
ccatggtaag	tgacagtgca	gtaataatat	gaaccaattt	atttttcgtt	acataaaaat	2100	
gcttataaaa	ctttaactaa	taattagaga	ttaaatcgcg	gccgcaaaag	atccttagga	2160	
tttattctgt	tcagcaaaca	gcttgcccat	tttcttcagt	accttcggtg	cgccttcttt	2220	
cgccaggatc	agttcgatcc	agtacatacg	gttcggatcg	gcctgggcct	ctttcatcac	2280	
gctcacaaat	tcgttttcgg	tacgcacaat	tttagacaca	acacggtcct	cagttgcgcc	2340	

gaaggactcc	ggcagtttag	agtagttcca	catagggata	tcgttgtaag	actggttcgg	2400
accgtggatc	tcacgctcaa	cggtgtagcc	gtcattgtta	ataatgaagc	aaatcgggtt	2460
gatcttttca	cgaattgcca	gacccagttc	ctgtacggtc	agctgcaggg	aaccgtcacc	2520
gatgaacagc	agatgacgag	attctttatc	agcgatctga	gagcccagcg	ctgccgggaa	2580
agtatagcca	atgctacccc	acageggetg	accgataaaa	tggcttttgg	atttcagaaa	2640
gatagaagac	gcgccgaaaa	agctcgtacc	ttgttccgcc	acgatggttt	cattgctctg	2700
ggtcaggttc	tccacggcct	gccacaggcg	atcctgggac	agcagtgcgt	tagatggtac	2760
gaaatcttct	tgctttttgt	caatgtattt	gcctttatac	tcgatttcgg	acaggtccag	2820
cagagagctg	atcaggcttt	cgaagtcgaa	gttctggata	cgctcgttga	agattttacc	2880
ctcgtcgatg	ttcaggctaa	tcattttgtt	ttcgttcaga	tggtgagtga	atgcaccggt	2940
agaagagtcg	gtcagtttaa	cgcccagcat	caggatgaag	tccgcagatt	caacaaattc	3000
tttcaggttc	ggttcgctca	gagtaccgtt	gtagatgccc	aggaaagacg	gcagagcctc	3060
gtcaacagag	gacttgccga	agttcagggt	ggtaatcggc	agtttggttt	tgctgatgaa	3120
ttgggtcacg	gtcttctcca	gaccaaaaga	aatgatttcg	tggccggtga	tcacgattgg	3180
tttctttgcg	tttttcagag	actcctggat	tttgttcagg	atttcctggt	cgctagtgtt	3240
agaagtggag	ttttctttct	tcagcggcag	gctcggtttt	tccgctttag	ctgccgcaac	3300
atccacaggc	aggttgatgt	aaactggttt	gcgttctttc	agcagcgcag	acagaacgcg	3360
gtcgatttcc	acagtagcgt	tctctgcagt	cagcagcgta	cgtgccgcag	tcacaggttc	3420
atgcattttc	atgaagtgtt	tgaaatcgcc	gtcagccaga	gtgtggtgga	cgaatttacc	3480
ttcgttctga	actttgctcg	ttgggctgcc	tacgatctcc	accaccggca	ggttttcggc	3540
gtaggagccc	gccagaccgt	tgacggcgct	cagttcgcca	acaccgaaag	tggtcagaaa	3600
tgccgcggct	ttcttggtac	gtgcataacc	atctgccatg	tagcttgcgt	tcagttcgtt	3660
agcgttaccc	acccatttca	tgtctttatg	agagatgatc	tgatccagga	actgcagatt	3720
gtaatcaccc	ggaacgccga	agatttcttc	gatacccagt	tcatgcagac	ggtccagcag	3780
ataatcacca	acagtataca	tgtcgagctt	gttttatatt	tgttgtaaaa	agtagataat	3840
tacttccttg	atgatctgta	aaaaagagaa	aaagaaagca	tctaagaact	tgaaaaacta	3900
cgaattagaa	aagaccaaat	atgtatttct	tgcattgacc	aatttatgca	agtttatata	3960
tatgtaaatg	taagtttcac	gaggttctac	taaactaaac	cacccccttg	gttagaagaa	4020
aagagtgtgt	gagaacaggc	tgttgttgtc	acacgattcg	gacaattctg	tttgaaagag	4080
agagagtaac	agtacgatcg	aacgaacttt	gctctggaga	tcacagtggg	catcatagca	4140
tgtggtacta	aaccctttcc	cgccattcca	gaaccttcga	ttgcttgtta	caaaacctgt	4200
gagccgtcgc	taggaccttg	ttgtgtgacg	aaattggaag	ctgcaatcaa	taggaagaca	4260
ggaagtcgag	cgtgtctggg	tttttcagt	tttgttcttt	ttgcaaacaa	atcacgagcg	4320
acggtaattt	ctttctcgat	aagaggccac	gtgctttatg	agggtaacat	caattcaaga	4380
aggagggaaa	cacttccttt	ttetggeeet	gataatagta	tgagggtgaa	gccaaaataa	4440
aggattcgcg	cccaaatcgg	catctttaaa	tgcaggtatg	cgatagttcc	tcactctttc	4500
cttactcacg	agtaattett	gcaaatgcct	attatgcaga	tgttataata	tctgtgcgtc	4560
ttgagttgag	cctagaattc	ttagaaaaac	tcatcgagca	tcaaatgaaa	ctgcaattta	4620

ttcatatcag	gattatcaat	accatatttt	tgaaaaagcc	gtttctgtaa	tgaaggagaa	4680
aactcaccga	ggcagttcca	taggatggca	agateetggt	atcggtctgc	gatcccgact	4740
cgtccaacat	caatacaacc	tattaatttc	ccctcgtcaa	aaataaggtt	atcaagtgag	4800
aaatcaccat	gagtgacgac	tgaatccggt	gagaatggca	aaagcttatg	catttctttc	4860
cagacttgtt	caacaggcca	gccattacgc	tcgtcatcaa	aatcactcgc	gtcaaccaaa	4920
ccgttattca	ttcgtgattg	cgcctgagcg	aggcgaaata	cgcgatcgct	gttaaaagga	4980
caattacaaa	caggaatcga	atgcaaccgg	cgcaggaaca	ctgccagcgc	atcaacaata	5040
ttttcacctg	aatcaggata	ttcttctaat	acctggaatg	ctgttttgcc	ggggatcgca	5100
gtggtgagta	accatgcatc	atcaggagta	cggacaaaat	gcttgatggt	cggaagaggc	5160
ataaattccg	tcagccagtt	tagtctgacc	atctcatctg	caacatcatt	ggcaacgcta	5220
cctttgccat	gtttcagaaa	caactctggc	gcatcgggct	tcccatacaa	tcgatagatt	5280
gtcgcacctg	attgcccgac	attatcgcga	gcccatttat	acccatataa	atcagcatcc	5340
atgttggaat	ttaatcgcgg	cctcgaaacg	tgagtctttt	ccttacccat	actagttttt	5400
agtttatgta	tgtgttttt	gtagttatag	atttaagcaa	gaaaagaata	caaacaaaaa	5460
attgaaaaag	attgatttag	aattaaaaag	aaaaatattt	acgtaagaag	ggaaaatagt	5520
aaatgttgca	agttcactaa	actcctaaat	tatgctgccc	tttatattcc	ctgttacagc	5580
agccgagcca	aaggtatata	ggctcctttg	cattagcatg	cgtaacaaac	cacctgtcag	5640
tttcaaccga	ggtggtatcc	gagagaattg	tgtgattgct	ttaattaatt	tcggagaatc	5700
tcacatgcca	ctgaagatta	aaaactggat	gccagaaaag	gggtgtccag	gtgtaacatc	5760
aatagaggaa	gctgaaaagt	cttagaacgg	gtaatcttcc	accaacctga	tgggttccta	5820
gatataatct	cgaagggaat	aagtagggtg	ataccgcaga	agtgtctgaa	tgtattaagg	5880
tcctcacagt	ttaaatcccg	ctcacactaa	cgtaggatta	ttataactca	aaaaaatggc	5940
attattctaa	gtaagttaaa	tatccgtaat	ctttaaacag	cggccgcgga	tcttcatcct	6000
gccactgcaa	ttcttttcat	atcggtcata	tatcctctca	gctttttacc	cacctgttct	6060
atagcatgtg	aacgaatagc	ttcatttacg	tctctcagtt	ggccattgtc	aaccgctcct	6120
tccggaatag	ccttccccaa	atcaccaggt	tgtaactcgg	ccatgaaggg	ctttaacaac	6180
gggacacatg	cgtagctaaa	taagtaatta	ccatattctg	cagtgtctga	tatgacaaca	6240
ttcatctcgt	aaagtctttt	tcttgcaata	gtatttgcta	tcaaaggcaa	ttcatgcaaa	6300
gactcatagt	atgcagattc	ttcaatgata	ccggagtcaa	ccatagtttc	gaatgcaagt	6360
tctacccctg	ccttcaccat	agctatcatc	aatactccct	tatcaaagta	ttcttgttca	6420
ccaattttac	cttcgtattg	tggggctgtc	tcgaatgccg	tcttgccggt	ttettetete	6480
cacgtcaata	actttttatc	atcgtttgcc	caatctgcca	tcattcctga	ggaaaactca	6540
ccggagataa	tatcgtccat	gtgcttttgg	aataatggtg	ccatgatctc	ttttagttgc	6600
tcagataagg	cgtaggctct	tagcttggcc	ggatttgaaa	gtctatccat	catcaatgtt	6660
atgccacctt	gtttaagtgc	ctcggtgatt	gtctcccaac	caaattgtat	caacttttca	6720
gcataggcag	gatctgtacc	ctcttcgacc	aatttatcaa	agcatagtaa	agaccctgcc	6780
tgcaacattc	cgcacagaat	ggtttgttca	cccattaagt	cactcttgac	ctcagctacg	6840
aaagaactct	ctaacacacc	cgctctatga	cctccggttg	cggctgccca	tgccttcgca	6900

attgccatac	cttcaccttt	ggggtcattt	tcaggatgta	cggcgatcaa	tgtaggtaca	6960
ccaaaacccc	tcttgtactc	ctctctgact	tccgtacctg	ggcactttgg	tgcaaccatt	7020
acgactgtta	tatcttttct	gatctgctcg	cccacttcaa	cgatattaaa	gccatgagag	7080
taacctaaag	ctgccccatc	cttcatcagc	ggttgaactg	ttcttactac	gtctgagtga	7140
accttatctg	gtgttaggtt	aatcactaaa	tctgcctgag	ggatcagttc	ttcgtaagta	7200
ccaactttga	acccattttc	cgtcgcttta	cgccaggagg	ccctctttc	tgcaattgcc	7260
tctttcctca	atgcatacga	aatatccaga	cctgaatctc	tcatgtttaa	accttggttt	7320
agaccctgag	caccgcagcc	aacaattact	actttctttc	cttgcagata	agaagcacca	7380
tcagcaaact	cgtcccttcc	cataaatctg	cacttaccca	gttgagccaa	ttgttgtctc	7440
aaatttaatg	tgttaaaata	gttggccatc	tcgagtcgaa	actaagttct	ggtgttttaa	7500
aactaaaaaa	aagactaact	ataaaagtag	aatttaagaa	gtttaagaaa	tagatttaca	7560
gaattacaat	caatacctac	cgtctttata	tacttattag	tcaagtaggg	gaataatttc	7620
agggaactgg	tttcaacctt	tttttcagc	tttttccaaa	tcagagagag	cagaaggtaa	7680
tagaaggtgt	aagaaaatga	gatagataca	tgcgtgggtc	aattgccttg	tgtcatcatt	7740
tactccaggc	aggttgcatc	actccattga	ggttgtgccc	gttttttgcc	tgtttgtgcc	7800
cctgttctct	gtagttgcgc	taagagaatg	gacctatgaa	ctgatggttg	gtgaagaaaa	7860
caatattttg	gtgctgggat	tcttttttt	tctggatgcc	agcttaaaaa	gcgggctcca	7920
ttatatttag	tggatgccag	gaataaactg	ttcacccaga	cacctacgat	gttatatatt	7980
ctgtgtaacc	cgccccctat	tttgggcatg	tacgggttac	agcagaatta	aaaggctaat	8040
tttttgacta	aataaagtta	ggaaaatcac	tactattaat	tatttacgta	ttctttgaaa	8100
tggcgagtat	tgataatgat	aaactggatc	cgcggccgct	tacagatcag	taacacaccc	8160
ttccgatgca	ggacgggtta	atttagcgaa	ttttgccaaa	actcccctgg	tggctttcgg	8220
agttggcttc	tgataattag	ctcttctctt	tgcgatttct	tcatcggaaa	ctttcaggga	8280
tatagagttg	ttgactgcat	ctatctctat	tatatcgtca	tcttcaacta	agccgattag	8340
tccaccctca	acggcttcag	gcacaatatg	gccgacaaca	aaaccgtgag	tgccaccgga	8400
gaatctacca	tccgtaatta	acgcgcaact	tttccctaaa	cccgcaccaa	ttaatgctga	8460
tgtaggette	agcatttcgg	gcataccagg	tccgccgacg	ggacctatat	tcctaattac	8520
cgctacatct	ccagcatgca	aacgaccaga	ttctatgccg	tcgataaaat	gttgttcacc	8580
atcaaagact	ctggcagtgc	ctttgaagaa	ctctccttct	ttaccgctaa	tttttgctac	8640
ggaaccccct	tgagctaaat	taccgtacag	aatctgcaag	tggccggtgg	ccttgatagg	8700
attetttagt	ggcctcatga	tatcttgtga	gtcgaaatcc	aagtctaggg	cagtetegae	8760
attetegget	aatgttttac	ccgtcacagt	aaggcagtca	ccatgcaatt	tteetteett	8820
tagaaggtac	ttaagcactg	ctggcaagcc	tccaatttta	tgcaaatctt	ccatcatata	8880
tttacctgaa	ggtttaaaat	cacctagtac	tggagtaatg	tcactaattc	tttggaagtc	8940
atcctgagtt	atttcgacac	ctatcgcgtt	agccattgca	ataatatgca	agacagcatt	9000
agtactaccc	cccaagacca	tcacaatggt	aatagcgttc	tcgaacgcct	ccttagtcat	9060
tatatcacta	ggcttgatgt	ctttttccaa	aagattetta	atggctaatc	caatctcatc	9120
acattcttct	tgtttttctt	gagatactgc	agggttcgaa	gaagaatacg	gcaatgacat	9180

acctagtgtt	tcgatagcgg	cagctaaggt	attagctgtg	tacatccccc	cacatgcccc	9240	
ttgaccagga	atagcattac	aaataacacc	gtgataatct	tcatcagaga	tattgccggt	9300	
aattttctgg	cctagagatt	caaaagccga	tacgatgttc	aatttctcac	ctttatattc	9360	
accgtgttct	attgttcctc	catacaccat	aatgettgge	ctattaagtc	ttgccatacc	9420	
aataatagaa	cctggcatat	ttttgtcaca	acctgggatg	gctacaattg	catcatagta	9480	
ttcagcgcca	gcgttggttt	caatagagtc	agctataact	tctctggaaa	caagggagta	9540	
tctcattccc	aactttccat	ttgctatccc	atcagaaact	cctatcgtat	gaaattgtaa	9600	
gccgatcaga	ccatctgtct	gatttactga	gcttttaatc	tttgatccaa	gggttcctaa	9660	
atgcatgttg	catggatttc	catcccagtc	catcgacact	atacccactt	gagctttctt	9720	
gaaatcttcg	tctttaaacc	cgatgccgta	atacattgcc	tgtgtggcgg	gttgtgtggg	9780	
atcttgtgtc	aacgttttgc	tgtacttatt	cagttcaaca	gattcaactt	tgccgttata	9840	
cttaaactcc	atgtcgacaa	acttagatta	gattgctatg	ctttctttct	aatgagcaag	9900	
aagtaaaaaa	agttgtaata	gaacaagaaa	aatgaaactg	aaacttgaga	aattgaagac	9960	
cgtttattaa	cttaaatatc	aatgggaggt	catcgaaaga	gaaaaaaatc	aaaaaaaaaa	10020	
ttttcaagaa	aaagaaacgt	gataaaaatt	tttattgcct	ttttcgacga	agaaaaagaa	10080	
acgaggcggt	ctctttttc	ttttccaaac	ctttagtacg	ggtaattaac	gacaccctag	10140	
aggaagaaag	aggggaaatt	tagtatgctg	tgettgggtg	ttttgaagtg	gtacggcgat	10200	
gcgcggagtc	cgagaaaatc	tggaagagta	aaaaaggagt	agaaacattt	tgaagctatg	10260	
agctccagct	tttgttccct	ttagtgaggg	ttaattgcgc	gcttggcgta	atcatggtca	10320	
tagctgtttc	ctgtgtgaaa	ttgttatccg	ctcacaattc	cacacaacat	aggagccgga	10380	
agcataaagt	gtaaagcctg	gggtgcctaa	tgagtgaggt	aactcacatt	aattgcgttg	10440	
cgctcactgc	ccgctttcca	gtcgggaaac	ctgtcgtgcc	agctgcatta	atgaatcggc	10500	
caacgcgcgg	ggagaggcgg	tttgcgtatt	gggcgctctt	ccgcttcctc	gctcactgac	10560	
tcgctgcgct	cggtcgttcg	gctgcggcga	gcggtatcag	ctcactcaaa	ggcggtaata	10620	
cggttatcca	cagaatcagg	ggataacgca	ggaaagaaca	tgtgagcaaa	aggccagcaa	10680	
aaggccagga	accgtaaaaa	ggccgcgttg	ctggcgtttt	tccataggct	ccgcccccct	10740	
gacgagcatc	acaaaaatcg	acgctcaagt	cagaggtggc	gaaacccgac	aggactataa	10800	
agataccagg	cgtttccccc	tggaagctcc	ctcgtgcgct	ctcctgttcc	gaccctgccg	10860	
cttaccggat	acctgtccgc	ctttctccct	tcgggaagcg	tggcgctttc	tcatagetea	10920	
cgctgtaggt	atctcagttc	ggtgtaggtc	gttcgctcca	agetgggetg	tgtgcacgaa	10980	
ccccccgttc	agecegaeeg	ctgcgcctta	tccggtaact	atcgtcttga	gtccaacccg	11040	
gtaagacacg	acttatcgcc	actggcagca	gccactggta	acaggattag	cagagcgagg	11100	
tatgtaggcg	gtgctacaga	gttcttgaag	tggtggccta	actacggcta	cactagaagg	11160	
acagtatttg	gtatctgcgc	tctgctgaag	ccagttacct	tcggaaaaag	agttggtagc	11220	
tcttgatccg	gcaaacaaac	caccgctggt	agcggtggtt	tttttgtttg	caagcagcag	11280	
attacgcgca	gaaaaaaagg	atctcaagaa	gatcctttga	tcttttctac	ggggtctgac	11340	
gctcagtgga	acgaaaactc	acgttaaggg	attttggtca	tgagattatc	aaaaaggatc	11400	
ttcacctaga	tccttttaaa	ttaaaaatga	agttttaaat	caatctaaag	tatatatgag	11460	

-continued

taaacttggt ctgacagtta ccaatgctta atcagtgagg cacctatctc agcgatctgt 11520 ctatttcgtt catccatagt tgcctgactc cccgtcgtgt agataactac gatacgggag 11580 ggettaceat etggeeceag tgetgeaatg atacegegag acceaegete aceggeteea 11640 gatttatcag caataaacca gccagccgga agggccgagc gcagaagtgg tcctgcaact 11700 ttatccgcct ccatccagtc tattaattgt tgccgggaag ctagagtaag tagttcgcca 11760 gttaatagtt tgcgcaacgt tgttgccatt gctacaggca tcgtggtgtc acgctcgtcg 11820 tttggtatgg cttcattcag ctccggttcc caacgatcaa ggcgagttac atgatccccc 11880 atgttgtgca aaaaagcggt tagctccttc ggtcctccga tcgttgtcag aagtaagttg 11940 gccgcagtgt tatcactcat ggttatggca gcactgcata attctcttac tgtcatgcca 12000 tccgtaagat gcttttctgt gactggtgag tactcaacca agtcattctg agaatagtgt 12060 atgeggegae egagttgete ttgeeeggeg teaataeggg ataataeege geeaeatage 12120 agaactttaa aagtgeteat eattggaaaa egttettegg ggegaaaaet eteaaggate 12180 ttaccgctgt tgagatccag ttcgatgtaa cccactcgtg cacccaactg atcttcagca 12240 tettttaett teaccagegt ttetgggtga geaaaaacag gaaggeaaaa tgeegeaaaa 12300 aagggaataa gggcgacacg gaaatgttga atactcatac tcttcctttt tcaatattat 12360 tgaagcattt atcagggtta ttgtctcatg agcggataca tatttgaatg tatttagaaa 12420 aataaacaaa taggggttcc gcgcacattt ccccgaaaag tgccacctga acgaagcatc 12480 tgtgcttcat tttgtagaac aaaaatgcaa cgcgagagcg ctaatttttc aaacaaagaa 12540 tetgagetge attittacag aacagaaatg caacgegaaa gegetattit accaacgaag 12600 aatctgtgct tcatttttgt aaaacaaaaa tgcaacgcga gagcgctaat ttttcaaaca 12660 aagaatetga getgeatttt tacagaacag aaatgeaacg egagageget attttaceaa 12720 caaaqaatct atacttcttt tttgttctac aaaaatgcat cccgagagcg ctatttttct 12780 aacaaagcat cttagattac tttttttctc ctttgtgcgc tctataatgc agtctcttga 12840 taactttttg cactgtaggt ccgttaaggt tagaagaagg ctactttggt gtctattttc 12900 tettecataa aaaaageetg acteeaette eegegtttae tgattaetag egaagetgeg 12960 ggtgcatttt ttcaagataa aggcatcccc gattatattc tataccgatg tggattgcgc 13020 atactttgtg aacagaaagt gatagcgttg atgattcttc attggtcaga aaattatgaa 13080 cggtttcttc tattttgtct ctatatacta cgtataggaa atgtttacat tttcgtattg 13140 ttttcgattc actctatgaa tagttcttac tacaattttt ttgtctaaag agtaatacta 13200 gagataaaca taaaaaatgt agaggtcgag tttagatgca agttcaagga gcgaaaggtg 13260 gatgggtagg ttatataggg atatagcaca gagatatata gcaaagagat acttttgagc 13320 aatgtttgtg gaageggtat tegeaatatt ttagtagete gttacagtee ggtgegtttt 13380 tggttttttg aaagtgcgtc ttcagagcgc ttttggtttt caaaagcgct ctgaagttcc 13440 tatactttct agagaatagg aacttcggaa taggaacttc aaagcgtttc cgaaaacgag 13500 cgcttccgaa aatgcaacgc gagctgcgca catacagctc actgttcacg tcgcacctat 13560 atctgcgtgt tgcctgtata tatatataca tgagaagaac ggcatagtgc gtgtttatgc 13620 ttaaatgcgt acttatatgc gtctatttat gtaggatgaa aggtagtcta gtacctcctg 13680 tgatattatc ccattccatg cggggtatcg tatgcttcct tcagcactac cctttagctg 13740

ttctatatgc tgccactcct c	caattggatt	agtctcatcc	ttcaatgcta	tcatttcctt	13800
tgata					13805
<210> SEQ ID NO 123 <211> LENGTH: 14056 <212> TYPE: DNA <213> ORGANISM: Artific <220> FEATURE: <223> OTHER INFORMATION	-				
<400> SEQUENCE: 123					
ttggatcata ctaagaaacc a	attattatca	tgacattaac	ctataaaaat	aggcgtatca	60
cgaggccctt tcgtctcgcg c	cgtttcggtg	atgacggtga	aaacctctga	cacatgcagc	120
teeeggagae ggteaeaget t	tgtctgtaag	cggatgccgg	gagcagacaa	gcccgtcagg	180
gcgcgtcagc gggtgttgggc g	gggtgtcggg	gctggcttaa	ctatgcggca	tcagagcaga	240
ttgtactgag agtgcaccat a	accacagctt	ttcaattcaa	ttcatcattt	ttttttatt	300
ctttttttg atttcggttt c	etttgaaatt	tttttgattc	ggtaatctcc	gaacagaagg	360
aagaacgaag gaaggagcac a	agacttagat	tggtatatat	acgcatatgg	caaattaaag	420
ccttcgagcg tcccaaaacc t	tctcaagca	aggttttcag	tataatgtta	catgcgtaca	480
cgcgtctgta cagaaaaaaa a	agaaaaattt	gaaatataaa	taacgttctt	aatactaaca	540
taactataaa aaaataaata g	gggacctaga	cttcaggttg	tctaactcct	tccttttcgg	600
ttagagcgga tgtgggggga g	gggcgtgaat	gtaagcgtga	cataactaat	tacatgactc	660
gacctaggtt atttagtaaa a	atcaatgacc	attcggcctt	caatttttcc	tgccttcatt	720
tcatcaataa tatcattgat t	tcttccagt	ttgcgtgtcg	caacaattgg	ttttacctta	780
ccttctgctc caaattgaaa a	agettetgee	aagtcaagtc	ttgttccgac	aagtgaacct	840
gcaacctcca ctccgtcaaa a	aacaactgtt	ggaactgata	aagtcatctc	agtattggga	900
agtgccacag caaccatttt g	gcccataggt	ttcaaagaag	caaccgcttg	ttcaaaagca	960
atccttgcaa cagcacaaac t	attgcactt	tgcaccccta	agccgccagt	tatttttta	1020
atttcatcaa ctggatttac a	atcaccagaa	ttgataatca	catcagctcc	aatttttta	1080
gctaaattta atttatcttg a	attaatatca	acagcaatta	cttttgctcc	aaaaacattt	1140
ttagcatatt gaattgctaa a	atttccaagt	cctccagcac	caaaaattac	ttgccaatca	1200
ccaggtttta ctcctgatac t	ttgattgct	ttgtaagttg	ttactccagc	acaagtaatt	1260
gagctagctt caattgggtc a	aagteegtea	ggaactttga	cagcataatc	ggcaacaaca	1320
attgettett cagecattee g	gccatcaact	gaatatcctg	catttttaac	ttctcgacaa	1380
aaagtttcat taccagatac a	acagtattca	cagtgaccac	atccttcaaa	gaaccaagcc	1440
actgaaaccc gatcaccaac t	tgaagcgag	cttacatcag	ctccaatttc	tttgacaatt	1500
ccaattcctt catgaccaag a	aacagtccct	gctttgttgc	cataatcacc	tgctgcaacg	1560
tgcaaatcgg tatgacagac t	ccacaatac	tccatgtcaa	gcaaagcttc	attaggtttg	1620
attgctcgaa gttccttttc a	aacaaggtcc	gcataaccat	ctggattgtg	tcttactact	1680
gctgctttca ttggtaccta t	tattgtatg	ttatagtatt	agttgcttgg	tgttatgaaa	1740
gaaactaaga aaagaaaaat a	aaaataaaaa	taaaagattg	agacaaggga	agaaaagata	1800
caaaataaga attaattaca a	attgcgtttg	ctataaatac	gtttttaaca	atcaactctg	1860

gtaggaagat	aatgcttttt	tttttatat	atgcttggtg	ccacttgtca	catacaattc	1920
tacaacctto	gacaaaaatc	caaatgatag	taagatcaaa	gccagaaagc	aatggagaaa	1980
aaaaattaat	gaaccacgat	gaaccaaatg	atcaatacaa	ccaaagaaac	taccctagtg	2040
aggtgtatgo	tgacttggta	tcacacttca	tgaattttgc	atatggcaaa	gtccacgaaa	2100
gtgggcttca	gaaaaaaggc	gtgcggtgtg	tagatgtatc	aattagtgga	tgccagtttt	2160
ggaacgggat	tccactttcc	gcaagttggt	gcacgtcgtt	agtgacataa	cgccgcgttc	2220
atctttggga	agaagcagat	gctgagcgag	gaggtactat	agagtaaaga	accettteta	2280
tacccgcage	cccatggtaa	gtgacagtgc	agtaataata	tgaaccaatt	tatttttcgt	2340
tacataaaaa	tgcttataaa	actttaacta	ataattagag	attaaatcgc	ggccgcaaaa	2400
gatccttagg	atttattctg	ttcagcaaac	agcttgccca	ttttcttcag	taccttcggt	2460
gcgccttctt	tcgccaggat	cagttcgatc	cagtacatac	ggttcggatc	ggcctgggcc	2520
tctttcatca	cgctcacaaa	ttcgttttcg	gtacgcacaa	ttttagacac	aacacggtcc	2580
tcagttgcgc	cgaaggactc	cggcagttta	gagtagttcc	acatagggat	atcgttgtaa	2640
gactggttcg	gaccgtggat	ctcacgctca	acggtgtagc	cgtcattgtt	aataatgaag	2700
caaatcgggt	tgatcttttc	acgaattgcc	agacccagtt	cctgtacggt	cagetgeagg	2760
gaaccgtcac	cgatgaacag	cagatgacga	gattctttat	cagcgatctg	agagcccagc	2820
gctgccggga	aagtatagcc	aatgctaccc	cacagcggct	gaccgataaa	atggcttttg	2880
gatttcagaa	agatagaaga	cgcgccgaaa	aagctcgtac	cttgttccgc	cacgatggtt	2940
tcattgctct	gggtcaggtt	ctccacggcc	tgccacaggc	gatcctggga	cagcagtgcg	3000
ttagatggta	cgaaatcttc	ttgctttttg	tcaatgtatt	tgcctttata	ctcgatttcg	3060
gacaggtcca	gcagagagct	gatcaggctt	tcgaagtcga	agttctggat	acgctcgttg	3120
aagattttac	cctcgtcgat	gttcaggcta	atcattttgt	tttcgttcag	atggtgagtg	3180
aatgcaccgg	tagaagagtc	ggtcagttta	acgcccagca	tcaggatgaa	gtccgcagat	3240
tcaacaaatt	ctttcaggtt	cggttcgctc	agagtaccgt	tgtagatgcc	caggaaagac	3300
ggcagagcct	cgtcaacaga	ggacttgccg	aagttcaggg	tggtaatcgg	cagtttggtt	3360
ttgctgatga	attgggtcac	ggtcttctcc	agaccaaaag	aaatgatttc	gtggccggtg	3420
atcacgattg	gtttctttgc	gtttttcaga	gactcctgga	ttttgttcag	gatttcctgg	3480
tcgctagtgt	tagaagtgga	gttttctttc	ttcagcggca	ggctcggttt	ttccgcttta	3540
gctgccgcaa	catccacagg	caggttgatg	taaactggtt	tgcgttcttt	cagcagcgca	3600
gacagaacgo	ggtcgatttc	cacagtagcg	ttctctgcag	tcagcagcgt	acgtgccgca	3660
gtcacaggtt	catgcatttt	catgaagtgt	ttgaaatcgc	cgtcagccag	agtgtggtgg	3720
acgaatttac	cttcgttctg	aactttgctc	gttgggctgc	ctacgatctc	caccaccggc	3780
aggttttcgg	cgtaggagcc	cgccagaccg	ttgacggcgc	tcagttcgcc	aacaccgaaa	3840
gtggtcagaa	atgccgcggc	tttcttggta	cgtgcataac	catctgccat	gtagettgeg	3900
ttcagttcgt	tagcgttacc	cacccatttc	atgtctttat	gagagatgat	ctgatccagg	3960
aactgcagat	tgtaatcacc	cggaacgccg	aagatttctt	cgatacccag	ttcatgcaga	4020
cggtccagca	gataatcacc	aacagtatac	atgtcgagct	tgttttatat	ttgttgtaaa	4080
aagtagataa	ttacttcctt	gatgatctgt	aaaaagaga	aaaagaaagc	atctaagaac	4140

ttgaaaaact	acgaattaga	aaagaccaaa	tatgtatttc	ttgcattgac	caatttatgc	4200
aagtttatat	atatgtaaat	gtaagtttca	cgaggttcta	ctaaactaaa	ccaccccctt	4260
ggttagaaga	aaagagtgtg	tgagaacagg	ctgttgttgt	cacacgattc	ggacaattct	4320
gtttgaaaga	gagagagtaa	cagtacgatc	gaacgaactt	tgctctggag	atcacagtgg	4380
gcatcatagc	atgtggtact	aaaccctttc	ccgccattcc	agaaccttcg	attgcttgtt	4440
acaaaacctg	tgagccgtcg	ctaggacctt	gttgtgtgac	gaaattggaa	gctgcaatca	4500
ataggaagac	aggaagtcga	gcgtgtctgg	gttttttcag	ttttgttctt	tttgcaaaca	4560
aatcacgagc	gacggtaatt	tctttctcga	taagaggcca	cgtgctttat	gagggtaaca	4620
tcaattcaag	aaggagggaa	acacttcctt	tttctggccc	tgataatagt	atgagggtga	4680
agccaaaata	aaggattcgc	gcccaaatcg	gcatctttaa	atgcaggtat	gcgatagttc	4740
ctcactcttt	ccttactcac	gagtaattct	tgcaaatgcc	tattatgcag	atgttataat	4800
atctgtgcgt	cttgagttga	gcctagaatt	cttagaaaaa	ctcatcgagc	atcaaatgaa	4860
actgcaattt	attcatatca	ggattatcaa	taccatattt	ttgaaaaagc	cgtttctgta	4920
atgaaggaga	aaactcaccg	aggcagttcc	ataggatggc	aagatcctgg	tatcggtctg	4980
cgatcccgac	tcgtccaaca	tcaatacaac	ctattaattt	cccctcgtca	aaaataaggt	5040
tatcaagtga	gaaatcacca	tgagtgacga	ctgaatccgg	tgagaatggc	aaaagcttat	5100
gcatttcttt	ccagacttgt	tcaacaggcc	agccattacg	ctcgtcatca	aaatcactcg	5160
cgtcaaccaa	accgttattc	attcgtgatt	gcgcctgagc	gaggcgaaat	acgcgatcgc	5220
tgttaaaagg	acaattacaa	acaggaatcg	aatgcaaccg	gcgcaggaac	actgccagcg	5280
catcaacaat	attttcacct	gaatcaggat	attcttctaa	tacctggaat	gctgttttgc	5340
cggggatcgc	agtggtgagt	aaccatgcat	catcaggagt	acggacaaaa	tgcttgatgg	5400
tcggaagagg	cataaattcc	gtcagccagt	ttagtctgac	catctcatct	gcaacatcat	5460
tggcaacgct	acctttgcca	tgtttcagaa	acaactctgg	cgcatcgggc	ttcccataca	5520
atcgatagat	tgtcgcacct	gattgcccga	cattatcgcg	agcccattta	tacccatata	5580
aatcagcatc	catgttggaa	tttaatcgcg	gcctcgaaac	gtgagtcttt	tccttaccca	5640
tactagtttt	tagtttatgt	atgtgttttt	tgtagttata	gatttaagca	agaaaagaat	5700
acaaacaaaa	aattgaaaaa	gattgattta	gaattaaaaa	gaaaaatatt	tacgtaagaa	5760
gggaaaatag	taaatgttgc	aagttcacta	aactcctaaa	ttatgctgcc	ctttatattc	5820
cctgttacag	cagccgagcc	aaaggtatat	aggeteett	gcattagcat	gcgtaacaaa	5880
ccacctgtca	gtttcaaccg	aggtggtatc	cgagagaatt	gtgtgattgc	tttaattaat	5940
ttcggagaat	ctcacatgcc	actgaagatt	aaaaactgga	tgccagaaaa	ggggtgtcca	6000
ggtgtaacat	caatagagga	agctgaaaag	tcttagaacg	ggtaatcttc	caccaacctg	6060
atgggttcct	agatataatc	tcgaagggaa	taagtagggt	gataccgcag	aagtgtctga	6120
atgtattaag	gtcctcacag	tttaaatccc	gctcacacta	acgtaggatt	attataactc	6180
aaaaaatgg	cattattcta	agtaagttaa	atatccgtaa	tctttaaaca	gcggccgcgg	6240
atcttcatcc	tgccactgca	attcttttca	tatcggtcat	atatcctctc	agctttttac	6300
ccacctgttc	tatagcatgt	gaacgaatag	cttcatttac	gtctctcagt	tggccattgt	6360
caaccgctcc	ttccggaata	gccttcccca	aatcaccagg	ttgtaactcg	gccatgaagg	6420

gctttaacaa	cgggacacat	gcgtagctaa	ataagtaatt	accatattct	gcagtgtctg	6480
atatgacaac	attcatctcg	taaagtettt	ttcttgcaat	agtatttgct	atcaaaggca	6540
attcatgcaa	agactcatag	tatgcagatt	cttcaatgat	accggagtca	accatagttt	6600
cgaatgcaag	ttctacccct	gccttcacca	tagctatcat	caatactccc	ttatcaaagt	6660
attettgtte	accaatttta	ccttcgtatt	gtggggctgt	ctcgaatgcc	gtcttgccgg	6720
tttcttctct	ccacgtcaat	aactttttat	catcgtttgc	ccaatctgcc	atcattcctg	6780
aggaaaactc	accggagata	atatcgtcca	tgtgcttttg	gaataatggt	gccatgatct	6840
cttttagttg	ctcagataag	gcgtaggctc	ttagettgge	cggatttgaa	agtctatcca	6900
tcatcaatgt	tatgccacct	tgtttaagtg	cctcggtgat	tgtctcccaa	ccaaattgta	6960
tcaacttttc	agcataggca	ggatctgtac	cctcttcgac	caatttatca	aagcatagta	7020
aagaccctgc	ctgcaacatt	ccgcacagaa	tggtttgttc	acccattaag	tcactcttga	7080
cctcagctac	gaaagaactc	tctaacacac	ccgctctatg	acctccggtt	gcggctgccc	7140
atgccttcgc	aattgccata	ccttcacctt	tggggtcatt	ttcaggatgt	acggcgatca	7200
atgtaggtac	accaaaaccc	ctcttgtact	cctctctgac	ttccgtacct	gggcactttg	7260
gtgcaaccat	tacgactgtt	atatcttttc	tgatctgctc	gcccacttca	acgatattaa	7320
agccatgaga	gtaacctaaa	gctgccccat	ccttcatcag	cggttgaact	gttcttacta	7380
cgtctgagtg	aaccttatct	ggtgttaggt	taatcactaa	atctgcctga	gggatcagtt	7440
cttcgtaagt	accaactttg	aacccatttt	ccgtcgcttt	acgccaggag	gccctctttt	7500
ctgcaattgc	ctctttcctc	aatgcatacg	aaatatccag	acctgaatct	ctcatgttta	7560
aaccttggtt	tagaccctga	gcaccgcagc	caacaattac	tactttcttt	ccttgcagat	7620
aagaagcacc	atcagcaaac	tcgtcccttc	ccataaatct	gcacttaccc	agttgagcca	7680
attgttgtct	caaatttaat	gtgttaaaat	agttggccat	ctcgagtcga	aactaagttc	7740
tggtgtttta	aaactaaaaa	aaagactaac	tataaaagta	gaatttaaga	agtttaagaa	7800
atagatttac	agaattacaa	tcaataccta	ccgtctttat	atacttatta	gtcaagtagg	7860
ggaataattt	cagggaactg	gtttcaacct	ttttttcag	ctttttccaa	atcagagaga	7920
gcagaaggta	atagaaggtg	taagaaaatg	agatagatac	atgcgtgggt	caattgcctt	7980
gtgtcatcat	ttactccagg	caggttgcat	cactccattg	aggttgtgcc	cgtttttgc	8040
ctgtttgtgc	ccctgttctc	tgtagttgcg	ctaagagaat	ggacctatga	actgatggtt	8100
ggtgaagaaa	acaatatttt	ggtgctggga	ttetttttt	ttctggatgc	cagcttaaaa	8160
agcgggctcc	attatattta	gtggatgcca	ggaataaact	gttcacccag	acacctacga	8220
tgttatatat	tctgtgtaac	ccgcccccta	ttttgggcat	gtacgggtta	cagcagaatt	8280
aaaaggctaa	tttttgact	aaataaagtt	aggaaaatca	ctactattaa	ttatttacgt	8340
attctttgaa	atggcgagta	ttgataatga	taaactggat	ccgcggccgc	ttacagatca	8400
gtaacacacc	cttccgatgc	aggacgggtt	aatttagcga	attttgccaa	aactcccctg	8460
gtggctttcg	gagttggctt	ctgataatta	gctcttctct	ttgcgatttc	ttcatcggaa	8520
actttcaggg	atatagagtt	gttgactgca	tctatctcta	ttatatcgtc	atcttcaact	8580
aagccgatta	gtccaccctc	aacggcttca	ggcacaatat	ggccgacaac	aaaaccgtga	8640
gtgccaccgg	agaatctacc	atccgtaatt	aacgcgcaac	ttttccctaa	acccgcacca	8700

attaatgctg	atgtaggett	cagcatttcg	ggcataccag	gtccgccgac	gggacctata	8760	
ttcctaatta	ccgctacatc	tccagcatgc	aaacgaccag	attctatgcc	gtcgataaaa	8820	
tgttgttcac	catcaaagac	tctggcagtg	cctttgaaga	actctccttc	tttaccgcta	8880	
atttttgcta	cggaaccccc	ttgagctaaa	ttaccgtaca	gaatctgcaa	gtggccggtg	8940	
gccttgatag	gattctttag	tggcctcatg	atatcttgtg	agtcgaaatc	caagtctagg	9000	
gcagtctcga	cattctcggc	taatgtttta	cccgtcacag	taaggcagtc	accatgcaat	9060	
tttccttcct	ttagaaggta	cttaagcact	gctggcaagc	ctccaatttt	atgcaaatct	9120	
tccatcatat	atttacctga	aggtttaaaa	tcacctagta	ctggagtaat	gtcactaatt	9180	
ctttggaagt	catcctgagt	tatttcgaca	cctatcgcgt	tagccattgc	aataatatgc	9240	
aagacagcat	tagtactacc	ccccaagacc	atcacaatgg	taatagcgtt	ctcgaacgcc	9300	
tccttagtca	ttatatcact	aggcttgatg	tctttttcca	aaagattett	aatggctaat	9360	
ccaatctcat	cacattette	ttgtttttct	tgagatactg	cagggttcga	agaagaatac	9420	
ggcaatgaca	tacctagtgt	ttcgatagcg	gcagctaagg	tattagetgt	gtacatcccc	9480	
ccacatgccc	cttgaccagg	aatagcatta	caaataacac	cgtgataatc	ttcatcagag	9540	
atattgccgg	taattttctg	gcctagagat	tcaaaagccg	atacgatgtt	caatttctca	9600	
cctttatatt	caccgtgttc	tattgttcct	ccatacacca	taatgcttgg	cctattaagt	9660	
cttgccatac	caataataga	acctggcata	tttttgtcac	aacctgggat	ggctacaatt	9720	
gcatcatagt	attcagcgcc	agcgttggtt	tcaatagagt	cagctataac	ttctctggaa	9780	
acaagggagt	atctcattcc	caactttcca	tttgctatcc	catcagaaac	tcctatcgta	9840	
tgaaattgta	agccgatcag	accatctgtc	tgatttactg	agcttttaat	ctttgatcca	9900	
agggttccta	aatgcatgtt	gcatggattt	ccatcccagt	ccatcgacac	tatacccact	9960	
tgagetttet	tgaaatcttc	gtctttaaac	ccgatgccgt	aatacattgc	ctgtgtggcg	10020	
ggttgtgtgg	gatcttgtgt	caacgttttg	ctgtacttat	tcagttcaac	agattcaact	10080	
ttgccgttat	acttaaactc	catgtcgaca	aacttagatt	agattgctat	gctttctttc	10140	
taatgagcaa	gaagtaaaaa	aagttgtaat	agaacaagaa	aaatgaaact	gaaacttgag	10200	
aaattgaaga	ccgtttatta	acttaaatat	caatgggagg	tcatcgaaag	agaaaaaaat	10260	
caaaaaaaaa	attttcaaga	aaaagaaacg	tgataaaaat	ttttattgcc	tttttcgacg	10320	
aagaaaaaga	aacgaggcgg	tctcttttt	cttttccaaa	cctttagtac	gggtaattaa	10380	
cgacacccta	gaggaagaaa	gaggggaaat	ttagtatgct	gtgcttgggt	gttttgaagt	10440	
ggtacggcga	tgcgcggagt	ccgagaaaat	ctggaagagt	aaaaaaggag	tagaaacatt	10500	
ttgaagctat	gagetecage	ttttgttccc	tttagtgagg	gttaattgcg	cgcttggcgt	10560	
aatcatggtc	atagetgttt	cctgtgtgaa	attgttatcc	gctcacaatt	ccacacaaca	10620	
taggagccgg	aagcataaag	tgtaaagcct	ggggtgccta	atgagtgagg	taactcacat	10680	
taattgcgtt	gcgctcactg	cccgctttcc	agtcgggaaa	cctgtcgtgc	cagctgcatt	10740	
aatgaatcgg	ccaacgcgcg	gggagaggcg	gtttgcgtat	tgggcgctct	tccgcttcct	10800	
cgctcactga	ctcgctgcgc	tcggtcgttc	ggetgeggeg	agcggtatca	gctcactcaa	10860	
aggcggtaat	acggttatcc	acagaatcag	gggataacgc	aggaaagaac	atgtgagcaa	10920	
aaggccagca	aaaggccagg	aaccgtaaaa	aggccgcgtt	gctggcgttt	ttccataggc	10980	

tccqcccccc tgacqaqcat cacaaaaatc qacqctcaaq tcaqaqqtqg cqaaacccqa 11040 caggactata aagataccag gcgtttcccc ctggaagctc cctcgtgcgc tctcctgttc 11100 cgaccctgcc gcttaccgga tacctgtccg cctttctccc ttcgggaagc gtggcgcttt 11160 ctcatagete acgetgtagg tateteagtt eggtgtaggt egttegetee aagetggget 11220 gtgtgcacga accccccgtt cagcccgacc gctgcgcctt atccggtaac tatcgtcttg 11280 agtccaaccc ggtaagacac gacttatcgc cactggcagc agccactggt aacaggatta 11340 gcagagcgag gtatgtaggc ggtgctacag agttcttgaa gtggtggcct aactacggct 11400 acactagaag gacagtattt ggtatctgcg ctctgctgaa gccagttacc ttcggaaaaa 11460 gagttggtag ctcttgatcc ggcaaacaaa ccaccgctgg tagcggtggt ttttttgttt 11520 gcaagcagca gattacgcgc agaaaaaaag gatctcaaga agatcctttg atcttttcta 11580 cggggtctga cgctcagtgg aacgaaaact cacgttaagg gattttggtc atgagattat 11640 caaaaaaggat cttcacctag atccttttaa attaaaaatg aagttttaaa tcaatctaaa 11700 gtatatatga gtaaacttgg tctgacagtt accaatgctt aatcagtgag gcacctatct 11760 cagegatetg tetatttegt teatecatag ttgeetgaet eccegtegtg tagataaeta 11820 cgatacggga gggcttacca tctggcccca gtgctgcaat gataccgcga gacccacgct 11880 caccggctcc agatttatca gcaataaacc agccagccgg aagggccgag cgcagaagtg 11940 gtcctgcaac tttatccgcc tccatccagt ctattaattg ttgccgggaa gctagagtaa 12000 gtagttcgcc agttaatagt ttgcgcaacg ttgttgccat tgctacaggc atcgtggtgt 12060 cacgetegte gtttggtatg getteattea geteeggtte ceaaegatea aggegagtta 12120 catgatecce catgttgtgc aaaaaagegg ttageteett eggteeteeg ategttgtea 12180 gaagtaagtt ggccgcagtg ttatcactca tggttatggc agcactgcat aattctctta 12240 ctgtcatgcc atccgtaaga tgcttttctg tgactggtga gtactcaacc aagtcattct 12300 gagaatagtg tatgeggega eegagttget ettgeeegge gteaataegg gataataeeg 12360 cgccacatag cagaacttta aaagtgctca tcattggaaa acgttcttcg gggcgaaaac 12420 tetecaaggat ettacegetg ttgagateca gttegatgta acceaetegt geaeceaaet 12480 gatetteage atettttaet tteaceageg tttetgggtg ageaaaaaca ggaaggeaaa 12540 atgccgcaaa aaagggaata agggcgacac ggaaatgttg aatactcata ctcttccttt 12600 ttcaatatta ttgaagcatt tatcagggtt attgtctcat gagcggatac atatttgaat 12660 gtatttagaa aaataaacaa ataggggtte egegeacatt teeeegaaaa gtgeeacetg 12720 aacgaagcat ctgtgcttca ttttgtagaa caaaaatgca acgcgagagc gctaattttt 12780 caaacaaaga atctgagctg catttttaca gaacagaaat gcaacgcgaa agcgctattt 12840 taccaacgaa gaatctgtgc ttcatttttg taaaacaaaa atgcaacgcg agagcgctaa 12900 tttttcaaac aaagaatctg agctgcattt ttacagaaca gaaatgcaac gcgagagcgc 12960 tattttacca acaaagaatc tatacttett ttttgtteta caaaaatgea teeegagage 13020 gctatttttc taacaaagca tcttagatta ctttttttct cctttgtgcg ctctataatg 13080 cagtetettg ataacttttt geaetgtagg teegttaagg ttagaagaag getaetttgg 13140 tgtctatttt ctcttccata aaaaaagcct gactccactt cccgcgttta ctgattacta 13200 gcgaagctgc gggtgcattt tttcaagata aaggcatccc cgattatatt ctataccgat 13260

-continued

gtggattgcg catactttgt gaacagaaag tgatagcgtt gatgattctt cattggtcag 13320 aaaattatqa acqqtttctt ctattttqtc tctatatact acqtataqqa aatqtttaca 13380 ttttcgtatt gttttcgatt cactctatga atagttctta ctacaatttt tttgtctaaa 13440 gagtaatact agagataaac ataaaaaatg tagaggtcga gtttagatgc aagttcaagg 13500 agcgaaaggt ggatgggtag gttatatagg gatatagcac agagatatat agcaaagaga 13560 tacttttgag caatgtttgt ggaageggta ttegeaatat tttagtaget egttacagte 13620 cggtgcgttt ttggtttttt gaaagtgcgt cttcagagcg cttttggttt tcaaaagcgc 13680 tctgaagttc ctatactttc tagagaatag gaacttcgga ataggaactt caaagcgttt 13740 ccgaaaacga gcgcttccga aaatgcaacg cgagctgcgc acatacagct cactgttcac 13800 gtcgcaccta tatctgcgtg ttgcctgtat atatatatac atgagaagaa cggcatagtg 13860 cgtgtttatg cttaaatgcg tacttatatg cgtctattta tgtaggatga aaggtagtct 13920 agtacctcct gtgatattat cccattccat gcggggtatc gtatgcttcc ttcagcacta 13980 ccctttagct gttctatatg ctgccactcc tcaattggat tagtctcatc cttcaatgct 14040 atcatttcct ttgata 14056 <210> SEQ ID NO 124 <211> LENGTH: 7795 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV2241 <400> SEQUENCE: 124 ttggatcata ctaagaaacc attattatca tgacattaac ctataaaaat aggcgtatca 60 cqaqqccctt tcqtctcqcq cqtttcqqtq atqacqqtqa aaacctctqa cacatqcaqc 120 tcccggagac ggtcacagct tgtctgtaag cggatgccgg gagcagacaa gcccgtcagg 180 gegegteage gggtgttgge gggtgteggg getggettaa etatgeggea teagageaga 240 ttgtactgag agtgcaccat accacagett ttcaattcaa ttcatcattt ttttttatt 300 ctttttttg atttcggttt ctttgaaatt tttttgattc ggtaatctcc gaacagaagg 360 aagaacgaag gaaggagcac agacttagat tggtatatat acgcatatgt agtgttgaag 420 aaacatgaaa ttgcccagta ttcttaaccc aactgcacag aacaaaaacc tgcaggaaac 480 gaagataaat catgtcgaaa gctacatata aggaacgtgc tgctactcat cctagtcctg 540 ttgctgccaa gctatttaat atcatgcacg aaaagcaaac aaacttgtgt gcttcattgg 600 atgttcgtac caccaaggaa ttactggagt tagttgaagc attaggtccc aaaatttgtt 660 tactaaaaac acatgtggat atcttgactg atttttccat ggagggcaca gttaagccgc 720 taaaggcatt atccgccaag tacaattttt tactcttcga agacagaaaa tttgctgaca 780 ttggtaatac agtcaaattg cagtactctg cgggtgtata cagaatagca gaatgggcag 840 acattacgaa tgcacacggt gtggtgggcc caggtattgt tagcggtttg aagcaggcgg 900 cagaagaagt aacaaaggaa cctagaggcc ttttgatgtt agcagaattg tcatgcaagg 960 gctccctatc tactggagaa tatactaagg gtactgttga cattgcgaag agcgacaaag 1020 attttgttat cggctttatt gctcaaagag acatgggtgg aagagatgaa ggttacgatt 1080 ggttgattat gacacccggt gtgggtttag atgacaaggg agacgcattg ggtcaacagt 1140

atagaaccgt	ggatgatgtg	gtctctacag	gatctgacat	tattattgtt	ggaagaggac	1200
tatttgcaaa	gggaagggat	gctaaggtag	agggtgaacg	ttacagaaaa	gcaggctggg	1260
aagcatattt	gagaagatgc	ggccagcaaa	actaaaaaac	tgtattataa	gtaaatgcat	1320
gtatactaaa	ctcacaaatt	agagcttcaa	tttaattata	tcagttatta	ccctatgcgg	1380
tgtgaaatac	cgcacagatg	cgtaaggaga	aaataccgca	tcaggaaatt	gtaaacgtta	1440
atattttgtt	aaaattcgcg	ttaaattttt	gttaaatcag	ctcattttt	aaccaatagg	1500
ccgaaatcgg	caaaatccct	tataaatcaa	aagaatagac	cgagataggg	ttgagtgttg	1560
ttccagtttg	gaacaagagt	ccactattaa	agaacgtgga	ctccaacgtc	aaagggcgaa	1620
aaaccgtcta	tcagggcgat	ggcccactac	gtgaaccatc	accctaatca	agttttttgg	1680
ggtcgaggtg	ccgtaaagca	ctaaatcgga	accctaaagg	gagcccccga	tttagagctt	1740
gacggggaaa	gccggcgaac	gtggcgagaa	aggaagggaa	gaaagcgaaa	ggagcgggcg	1800
ctagggcgct	ggcaagtgta	gcggtcacgc	tgcgcgtaac	caccacaccc	gccgcgctta	1860
atgcgccgct	acagggcgcg	tcgcgccatt	cgccattcag	gctgcgcaac	tgttgggaag	1920
ggcgatcggt	gcgggcctct	tcgctattac	gccagctggc	gaaagggggga	tgtgctgcaa	1980
ggcgattaag	ttgggtaacg	ccagggtttt	cccagtcacg	acgttgtaaa	acgacggcca	2040
gtgagcgcgc	gtaatacgac	tcactatagg	gcgaattggg	taccggccgc	aaattaaagc	2100
cttcgagcgt	cccaaaacct	tctcaagcaa	ggttttcagt	ataatgttac	atgcgtacac	2160
gcgtctgtac	agaaaaaaaa	gaaaaatttg	aaatataaat	aacgttctta	atactaacat	2220
aactataaaa	aaataaatag	ggacctagac	ttcaggttgt	ctaactcctt	ccttttcggt	2280
tagagcggat	gtggggggag	ggcgtgaatg	taagcgtgac	ataactaatt	acatgacgcc	2340
gcggatcctt	agtggtggtg	gtggtggtgt	cctgccactg	caattctttt	catatcggtc	2400
atatatcctc	tcagcttttt	acccacctgt	tctatagcat	gtgaacgaat	agetteattt	2460
acgtctctca	gttggccatt	gtcaaccgct	ccttccggaa	tagcetteee	caaatcacca	2520
ggttgtaact	cggccatgaa	gggctttaac	aacgggacac	atgcgtagct	aaataagtaa	2580
ttaccatatt	ctgcagtgtc	tgatatgaca	acattcatct	cgtaaagtct	ttttcttgca	2640
atagtatttg	ctatcaaagg	caattcatgc	aaagactcat	agtatgcaga	ttcttcaatg	2700
ataccggagt	caaccatagt	ttcgaatgca	agttctaccc	ctgccttcac	catagctatc	2760
atcaatactc	ccttatcaaa	gtattcttgt	tcaccaattt	taccttcgta	ttgtggggct	2820
gtctcgaatg	ccgtcttgcc	ggtttettet	ctccacgtca	ataacttttt	atcatcgttt	2880
gcccaatctg	ccatcattcc	tgaggaaaac	tcaccggaga	taatatcgtc	catgtgcttt	2940
tggaataatg	gtgccatgat	ctcttttagt	tgctcagata	aggcgtaggc	tcttagcttg	3000
gccggatttg	aaagtctatc	catcatcaat	gttatgccac	cttgtttaag	tgcctcggtg	3060
attgtctccc	aaccaaattg	tatcaacttt	tcagcatagg	caggatctgt	accctcttcg	3120
accaatttat	caaagcatag	taaagaccct	gcctgcaaca	ttccgcacag	aatggtttgt	3180
tcacccatta	agtcactctt	gacctcagct	acgaaagaac	tctctaacac	acccgctcta	3240
tgacctccgg	ttgcggctgc	ccatgccttc	gcaattgcca	taccttcacc	tttggggtca	3300
ttttcaggat	gtacggcgat	caatgtaggt	acaccaaaac	ccctcttgta	ctcctctctg	3360
acttccgtac	ctgggcactt	tggtgcaacc	attacgactg	ttatatcttt	tctgatctgc	3420

tcgcccactt	caacgatatt	aaagccatga	gagtaaccta	aagctgcccc	atccttcatc	3480
agcggttgaa	ctgttcttac	tacgtctgag	tgaaccttat	ctggtgttag	gttaatcact	3540
aaatctgcct	gagggatcag	ttcttcgtaa	gtaccaactt	tgaacccatt	ttccgtcgct	3600
ttacgccaat	cggcatcctt	ttctgcaata	gactctttcc	tcaatgcata	cgaaatatcc	3660
agacctgaat	ctctcatgtt	taaaccttgg	tttagaccct	gagcaccgca	gccaacaatt	3720
actactttct	ttccttgcag	ataagaagca	ccatcagcaa	actcgtccct	tcccataaat	3780
ctgcacttac	ccagttgagc	caattgttgt	ctcaaattta	atgtgttaaa	atagttggcc	3840
atgtcgacaa	acttagatta	gattgctatg	ctttctttct	aatgagcaag	aagtaaaaaa	3900
agttgtaata	gaacaagaaa	aatgaaactg	aaacttgaga	aattgaagac	cgtttattaa	3960
cttaaatatc	aatgggaggt	catcgaaaga	gaaaaaaatc	aaaaaaaaaa	ttttcaagaa	4020
aaagaaacgt	gataaaaatt	tttattgcct	ttttcgacga	agaaaaagaa	acgaggcggt	4080
ctctttttc	ttttccaaac	ctttagtacg	ggtaattaac	gacaccctag	aggaagaaag	4140
aggggaaatt	tagtatgctg	tgettgggtg	ttttgaagtg	gtacggcgat	gcgcggagtc	4200
cgagaaaatc	tggaagagta	aaaaaggagt	agaaacattt	tgaagctatg	agetecaget	4260
tttgttccct	ttagtgaggg	ttaattgege	gettggegta	atcatggtca	tagetgttte	4320
ctgtgtgaaa	ttgttatccg	ctcacaattc	cacacaacat	aggagccgga	agcataaagt	4380
gtaaagcctg	gggtgcctaa	tgagtgaggt	aactcacatt	aattgcgttg	cgctcactgc	4440
ccgctttcca	gtcgggaaac	ctgtcgtgcc	agctgcatta	atgaatcggc	caacgcgcgg	4500
ggagaggcgg	tttgcgtatt	gggcgctctt	ccgcttcctc	gctcactgac	tcgctgcgct	4560
cggtcgttcg	gctgcggcga	gcggtatcag	ctcactcaaa	ggcggtaata	cggttatcca	4620
cagaatcagg	ggataacgca	ggaaagaaca	tgtgagcaaa	aggccagcaa	aaggccagga	4680
accgtaaaaa	ggccgcgttg	ctggcgtttt	tccataggct	ccgcccccct	gacgagcatc	4740
acaaaaatcg	acgctcaagt	cagaggtggc	gaaacccgac	aggactataa	agataccagg	4800
cgtttccccc	tggaagctcc	ctcgtgcgct	ctcctgttcc	gaccctgccg	cttaccggat	4860
acctgtccgc	ctttctccct	tcgggaagcg	tggcgctttc	tcatagctca	cgctgtaggt	4920
atctcagttc	ggtgtaggtc	gttcgctcca	agctgggctg	tgtgcacgaa	ccccccgttc	4980
agcccgaccg	ctgcgcctta	tccggtaact	atcgtcttga	gtccaacccg	gtaagacacg	5040
acttatcgcc	actggcagca	gccactggta	acaggattag	cagagcgagg	tatgtaggcg	5100
gtgctacaga	gttcttgaag	tggtggccta	actacggcta	cactagaagg	acagtatttg	5160
gtatctgcgc	tctgctgaag	ccagttacct	tcggaaaaag	agttggtagc	tcttgatccg	5220
gcaaacaaac	caccgctggt	agcggtggtt	tttttgtttg	caagcagcag	attacgcgca	5280
gaaaaaaagg	atctcaagaa	gatcctttga	tcttttctac	ggggtctgac	gctcagtgga	5340
acgaaaactc	acgttaaggg	attttggtca	tgagattatc	aaaaaggatc	ttcacctaga	5400
tccttttaaa	ttaaaaatga	agttttaaat	caatctaaag	tatatatgag	taaacttggt	5460
ctgacagtta	ccaatgctta	atcagtgagg	cacctatctc	agcgatctgt	ctatttcgtt	5520
catccatagt	tgcctgactc	cccgtcgtgt	agataactac	gatacgggag	ggcttaccat	5580
ctggccccag	tgctgcaatg	ataccgcgag	acccacgctc	accggctcca	gatttatcag	5640
caataaacca	gccagccgga	agggccgagc	gcagaagtgg	tcctgcaact	ttatccgcct	5700

-continued

cca	atccagtc	tattaattgt	tgccgggaag	ctagagtaag	tagttcgcca	gttaatagtt	5760
tgo	cgcaacgt	tgttgccatt	gctacaggca	tcgtggtgtc	acgctcgtcg	tttggtatgg	5820
ctt	cattcag	ctccggttcc	caacgatcaa	ggcgagttac	atgatccccc	atgttgtgca	5880
aaa	aaagcggt	tagctccttc	ggtcctccga	tcgttgtcag	aagtaagttg	gccgcagtgt	5940
tat	cactcat	ggttatggca	gcactgcata	attctcttac	tgtcatgcca	tccgtaagat	6000
gct	tttctgt	gactggtgag	tactcaacca	agtcattctg	agaatagtgt	atgcggcgac	6060
cga	agttgctc	ttgcccggcg	tcaatacggg	ataataccgc	gccacatagc	agaactttaa	6120
aaç	gtgctcat	cattggaaaa	cgttcttcgg	ggcgaaaact	ctcaaggatc	ttaccgctgt	6180
tga	agatccag	ttcgatgtaa	cccactcgtg	cacccaactg	atcttcagca	tcttttactt	6240
tca	accagcgt	ttctgggtga	gcaaaaacag	gaaggcaaaa	tgccgcaaaa	aagggaataa	6300
ggg	gcgacacg	gaaatgttga	atactcatac	tetteettt	tcaatattat	tgaagcattt	6360
ato	cagggtta	ttgtctcatg	agcggataca	tatttgaatg	tatttagaaa	aataaacaaa	6420
tag	ggggttcc	gcgcacattt	ccccgaaaag	tgccacctga	acgaagcatc	tgtgcttcat	6480
ttt	gtagaac	aaaaatgcaa	cgcgagagcg	ctaatttttc	aaacaaagaa	tctgagctgc	6540
att	tttacag	aacagaaatg	caacgcgaaa	gcgctatttt	accaacgaag	aatctgtgct	6600
tca	atttttgt	aaaacaaaaa	tgcaacgcga	gagcgctaat	ttttcaaaca	aagaatctga	6660
gct	gcatttt	tacagaacag	aaatgcaacg	cgagagcgct	attttaccaa	caaagaatct	6720
ata	acttcttt	tttgttctac	aaaaatgcat	cccgagagcg	ctatttttct	aacaaagcat	6780
ctt	agattac	ttttttctc	ctttgtgcgc	tctataatgc	agtctcttga	taactttttg	6840
cac	ctgtaggt	ccgttaaggt	tagaagaagg	ctactttggt	gtctattttc	tcttccataa	6900
aaa	aaagcctg	actccacttc	ccgcgtttac	tgattactag	cgaagctgcg	ggtgcatttt	6960
tto	caagataa	aggcatcccc	gattatattc	tataccgatg	tggattgcgc	atactttgtg	7020
aad	cagaaagt	gatagcgttg	atgattcttc	attggtcaga	aaattatgaa	cggtttcttc	7080
tat	tttgtct	ctatatacta	cgtataggaa	atgtttacat	tttcgtattg	ttttcgattc	7140
act	ctatgaa	tagttettae	tacaattttt	ttgtctaaag	agtaatacta	gagataaaca	7200
taa	aaaatgt	agaggtcgag	tttagatgca	agttcaagga	gcgaaaggtg	gatgggtagg	7260
tta	atataggg	atatagcaca	gagatatata	gcaaagagat	acttttgagc	aatgtttgtg	7320
gaa	agcggtat	tcgcaatatt	ttagtagctc	gttacagtcc	ggtgcgtttt	tggtttttg	7380
aaa	agtgcgtc	ttcagagcgc	ttttggtttt	caaaagcgct	ctgaagttcc	tatactttct	7440
aga	agaatagg	aacttcggaa	taggaacttc	aaagcgtttc	cgaaaacgag	cgcttccgaa	7500
aat	gcaacgc	gagetgegea	catacagete	actgttcacg	tcgcacctat	atctgcgtgt	7560
tgo	cctgtata	tatatataca	tgagaagaac	ggcatagtgc	gtgtttatgc	ttaaatgcgt	7620
act	tatatgc	gtctatttat	gtaggatgaa	aggtagtcta	gtacctcctg	tgatattatc	7680
cca	attccatg	cggggtatcg	tatgcttcct	tcagcactac	cctttagctg	ttctatatgc	7740
tgo	ccactcct	caattggatt	agtctcatcc	ttcaatgcta	tcatttcctt	tgata	7795

<210> SEQ ID NO 125 <211> LENGTH: 14056 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence

-continued	
<pre><220> FEATURE: <223> OTHER INFORMATION: Plasmid pGV2242</pre>	
<400> SEQUENCE: 125	
ttggatcata ctaagaaacc attattatca tgacattaac ctataaaaat aggcgtatca	60
cgaggccctt tcgtctcgcg cgtttcggtg atgacggtga aaacctctga cacatgcagc	120
teeeggagae ggteacaget tgtetgtaag eggatgeegg gageagaeaa geeegteagg	180
gcgcgtcagc gggtgttggc gggtgtcggg gctggcttaa ctatgcggca tcagagcaga	240
ttgtactgag agtgcaccat accacagett tteaatteaa tteateattt ttttttatt	300
cttttttttg atttcggttt ctttgaaatt tttttgattc ggtaatctcc gaacagaagg	360
aagaacgaag gaaggagcac agacttagat tggtatatat acgcatatgg caaattaaag	420
ccttcgagcg tcccaaaacc ttctcaagca aggttttcag tataatgtta catgcgtaca	480
cgcgtctgta cagaaaaaaa agaaaaattt gaaatataaa taacgttctt aatactaaca	540
taactataaa aaaataaata gggacctaga cttcaggttg tctaactcct tccttttcgg	600
ttagagcgga tgtggggggga gggcgtgaat gtaagcgtga cataactaat tacatgactc	660
gacctaggtt atttagtaaa atcaatgacc attcggcctt caatttttcc tgccttcatt	720
tcatcaataa tatcattgat ttcttccagt ttgcgtgtcg caacaattgg ttttacctta	780
ccttctgctc caaattgaaa agcttctgcc aagtcaagtc	840
gcaacctcca ctccgtcaaa aacaactgtt ggaactgata aagtcatctc agtattggga	900
agtgccacag caaccatttt gcccataggt ttcaaagaag caaccgcttg ttcaaaagca	960
atccttgcaa cagcacaaac tattgcactt tgcaccccta agccgccagt tatttttta	1020
atttcatcaa ctggatttac atcaccagaa ttgataatca catcagctcc aatttttta	1080
gctaaattta atttatcttg attaatatca acagcaatta cttttgctcc aaaaacattt	1140
ttagcatatt gaattgctaa atttccaagt cctccagcac caaaaattac ttgccaatca	1200
ccaggtttta ctcctgatac tttgattgct ttgtaagttg ttactccagc acaagtaatt	1260
gagctagett caattgggte aagteegtea ggaaetttga eageataate ggeaaeaaea	1320
attgettett eagecattee gecateaact gaatateetg eatttttaae ttetegaeaa	1380
aaagtttcat taccagatac acagtattca cagtgaccac atccttcaaa gaaccaagcc	1440
actgaaaccc gatcaccaac ttgaagcgag cttacatcag ctccaatttc tttgacaatt	1500
ccaatteett catgaceaag aacagteeet gettigtige cataateace tgetgeaacg	1560
tgcaaatcgg tatgacagac tccacaatac tccatgtcaa gcaaagcttc attaggtttg	1620
attgetegaa gtteetttte aacaaggtee geataaceat etggattgtg tettaetaet	1680
gctgctttca ttggtaccta ttattgtatg ttatagtatt agttgcttgg tgttatgaaa	1740
gaaactaaga aaagaaaaat aaaataaaaa taaaagattg agacaaggga agaaaagata	1800
caaaataaga attaattaca attgcgtttg ctataaatac gtttttaaca atcaactctg	1860
gtaggaagat aatgottttt ttttttatat atgottggtg coacttgtoa catacaatto	1920
tacaaccttc gacaaaaatc caaatgatag taagatcaaa gccagaaagc aatggagaaa	1980
aaaaattaat gaaccacgat gaaccaaatg atcaatacaa ccaaagaaac taccctagtg	2040
aggtgtatgc tgacttggta tcacacttca tgaattttgc atatggcaaa gtccacgaaa	2100
gtgggcttca gaaaaaaggc gtgcggtgtg tagatgtatc aattagtgga tgccagtttt	2160

ggaacgggat	tccactttcc	gcaagttggt	gcacgtcgtt	agtgacataa	cgccgcgttc	2220
atctttggga	agaagcagat	gctgagcgag	gaggtactat	agagtaaaga	accettteta	2280
tacccgcagc	cccatggtaa	gtgacagtgc	agtaataata	tgaaccaatt	tattttcgt	2340
tacataaaaa	tgcttataaa	actttaacta	ataattagag	attaaatcgc	ggccgcaaaa	2400
gateettagg	atttattctg	ttcagcaaac	agettgeeca	ttttcttcag	taccttcggt	2460
gcgccttctt	tcgccaggat	cagttcgatc	cagtacatac	ggttcggatc	ggcctgggcc	2520
tctttcatca	cgctcacaaa	ttcgttttcg	gtacgcacaa	ttttagacac	aacacggtcc	2580
tcagttgcgc	cgaaggactc	cggcagttta	gagtagttcc	acatagggat	atcgttgtaa	2640
gactggttcg	gaccgtggat	ctcacgctca	acggtgtagc	cgtcattgtt	aataatgaag	2700
caaatcgggt	tgatcttttc	acgaattgcc	agacccagtt	cctgtacggt	cagctgcagg	2760
gaaccgtcac	cgatgaacag	cagatgacga	gattettat	cagcgatctg	agageeeage	2820
gctgccggga	aagtatagcc	aatgctaccc	cacagegget	gaccgataaa	atggettttg	2880
gatttcagaa	agatagaaga	cgcgccgaaa	aagctcgtac	cttgttccgc	cacgatggtt	2940
tcattgctct	gggtcaggtt	ctccacggcc	tgccacaggc	gatcctggga	cagcagtgcg	3000
ttagatggta	cgaaatcttc	ttgctttttg	tcaatgtatt	tgcctttata	ctcgatttcg	3060
gacaggtcca	gcagagagct	gatcaggett	tcgaagtcga	agttctggat	acgctcgttg	3120
aagattttac	cctcgtcgat	gttcaggcta	atcattttgt	tttcgttcag	atggtgagtg	3180
aatgcaccgg	tagaagagtc	ggtcagttta	acgcccagca	tcaggatgaa	gtccgcagat	3240
tcaacaaatt	ctttcaggtt	cggttcgctc	agagtaccgt	tgtagatgcc	caggaaagac	3300
ggcagagcct	cgtcaacaga	ggacttgccg	aagttcaggg	tggtaatcgg	cagtttggtt	3360
ttgctgatga	attgggtcac	ggtcttctcc	agaccaaaag	aaatgatttc	gtggccggtg	3420
atcacgattg	gtttctttgc	gtttttcaga	gactcctgga	ttttgttcag	gatttcctgg	3480
tcgctagtgt	tagaagtgga	gttttctttc	ttcagcggca	ggctcggttt	ttccgcttta	3540
gctgccgcaa	catccacagg	caggttgatg	taaactggtt	tgcgttcttt	cagcagcgca	3600
gacagaacgc	ggtcgatttc	cacagtagcg	ttctctgcag	tcagcagcgt	acgtgccgca	3660
gtcacaggtt	catgcatttt	catgaagtgt	ttgaaatcgc	cgtcagccag	agtgtggtgg	3720
acgaatttac	cttcgttctg	aactttgctc	gttgggctgc	ctacgatctc	caccaccggc	3780
aggttttcgg	cgtaggagcc	cgccagaccg	ttgacggcgc	tcagttcgcc	aacaccgaaa	3840
gtggtcagaa	atgccgcggc	tttcttggta	cgtgcataac	catctgccat	gtagettgeg	3900
ttcagttcgt	tagcgttacc	cacccatttc	atgtctttat	gagagatgat	ctgatccagg	3960
aactgcagat	tgtaatcacc	cggaacgccg	aagatttctt	cgatacccag	ttcatgcaga	4020
cggtccagca	gataatcacc	aacagtatac	atgtcgagct	tgttttatat	ttgttgtaaa	4080
aagtagataa	ttacttcctt	gatgatctgt	aaaaaagaga	aaaagaaagc	atctaagaac	4140
ttgaaaaact	acgaattaga	aaagaccaaa	tatgtatttc	ttgcattgac	caatttatgc	4200
aagtttatat	atatgtaaat	gtaagtttca	cgaggttcta	ctaaactaaa	ccaccccctt	4260
ggttagaaga	aaagagtgtg	tgagaacagg	ctgttgttgt	cacacgattc	ggacaattct	4320
gtttgaaaga	gagagagtaa	cagtacgatc	gaacgaactt	tgctctggag	atcacagtgg	4380
gcatcatagc	atgtggtact	aaaccctttc	ccgccattcc	agaaccttcg	attgettgtt	4440

acaaaacctg	tgagccgtcg	ctaggacctt	gttgtgtgac	gaaattggaa	gctgcaatca	4500
ataggaagac	aggaagtcga	gcgtgtctgg	gttttttcag	ttttgttctt	tttgcaaaca	4560
aatcacgagc	gacggtaatt	tctttctcga	taagaggcca	cgtgctttat	gagggtaaca	4620
tcaattcaag	aaggagggaa	acacttcctt	tttctggccc	tgataatagt	atgagggtga	4680
agccaaaata	aaggattcgc	gcccaaatcg	gcatctttaa	atgcaggtat	gcgatagttc	4740
ctcactcttt	ccttactcac	gagtaattct	tgcaaatgcc	tattatgcag	atgttataat	4800
atctgtgcgt	cttgagttga	gcctagaatt	cttagaaaaa	ctcatcgagc	atcaaatgaa	4860
actgcaattt	attcatatca	ggattatcaa	taccatattt	ttgaaaaagc	cgtttctgta	4920
atgaaggaga	aaactcaccg	aggcagttcc	ataggatggc	aagatcctgg	tatcggtctg	4980
cgatcccgac	tcgtccaaca	tcaatacaac	ctattaattt	cccctcgtca	aaaataaggt	5040
tatcaagtga	gaaatcacca	tgagtgacga	ctgaatccgg	tgagaatggc	aaaagcttat	5100
gcatttcttt	ccagacttgt	tcaacaggcc	agccattacg	ctcgtcatca	aaatcactcg	5160
cgtcaaccaa	accgttattc	attcgtgatt	gcgcctgagc	gaggcgaaat	acgcgatcgc	5220
tgttaaaagg	acaattacaa	acaggaatcg	aatgcaaccg	gcgcaggaac	actgccagcg	5280
catcaacaat	attttcacct	gaatcaggat	attettetaa	tacctggaat	gctgttttgc	5340
cggggatcgc	agtggtgagt	aaccatgcat	catcaggagt	acggacaaaa	tgcttgatgg	5400
tcggaagagg	cataaattcc	gtcagccagt	ttagtctgac	catctcatct	gcaacatcat	5460
tggcaacgct	acctttgcca	tgtttcagaa	acaactctgg	cgcatcgggc	ttcccataca	5520
atcgatagat	tgtcgcacct	gattgcccga	cattatcgcg	agcccattta	tacccatata	5580
aatcagcatc	catgttggaa	tttaatcgcg	gcctcgaaac	gtgagtcttt	tccttaccca	5640
tactagtttt	tagtttatgt	atgtgttttt	tgtagttata	gatttaagca	agaaaagaat	5700
acaaacaaaa	aattgaaaaa	gattgattta	gaattaaaaa	gaaaaatatt	tacgtaagaa	5760
gggaaaatag	taaatgttgc	aagttcacta	aactcctaaa	ttatgctgcc	ctttatattc	5820
cctgttacag	cagccgagcc	aaaggtatat	aggctccttt	gcattagcat	gcgtaacaaa	5880
ccacctgtca	gtttcaaccg	aggtggtatc	cgagagaatt	gtgtgattgc	tttaattaat	5940
ttcggagaat	ctcacatgcc	actgaagatt	aaaaactgga	tgccagaaaa	ggggtgtcca	6000
ggtgtaacat	caatagagga	agctgaaaag	tcttagaacg	ggtaatcttc	caccaacctg	6060
atgggttcct	agatataatc	tcgaagggaa	taagtagggt	gataccgcag	aagtgtctga	6120
atgtattaag	gtcctcacag	tttaaatccc	gctcacacta	acgtaggatt	attataactc	6180
aaaaaatgg	cattattcta	agtaagttaa	atatccgtaa	tctttaaaca	gcggccgcgg	6240
atcttcatcc	tgccactgca	attcttttca	tatcggtcat	atatcctctc	agctttttac	6300
ccacctgttc	tatagcatgt	gaacgaatag	cttcatttac	gtctctcagt	tggccattgt	6360
caaccgctcc	ttccggaata	gccttcccca	aatcaccagg	ttgtaactcg	gccatgaagg	6420
gctttaacaa	cgggacacat	gcgtagctaa	ataagtaatt	accatattct	gcagtgtctg	6480
atatgacaac	attcatctcg	taaagtcttt	ttettgeaat	agtatttgct	atcaaaggca	6540
attcatgcaa	agactcatag	tatgcagatt	cttcaatgat	accggagtca	accatagttt	6600
cgaatgcaag	ttctacccct	gccttcacca	tagctatcat	caatactccc	ttatcaaagt	6660
attcttgttc	accaatttta	ccttcgtatt	gtggggctgt	ctcgaatgcc	gtcttgccgg	6720

tttcttctct	ccacgtcaat	aactttttat	catcgtttgc	ccaatctgcc	atcattcctg	6780
aggaaaactc	accggagata	atatcgtcca	tgtgcttttg	gaataatggt	gccatgatct	6840
cttttagttg	ctcagataag	gcgtaggctc	ttagcttggc	cggatttgaa	agtctatcca	6900
tcatcaatgt	tatgccacct	tgtttaagtg	cctcggtgat	tgtctcccaa	ccaaattgta	6960
tcaacttttc	agcataggca	ggatctgtac	cctcttcgac	caatttatca	aagcatagta	7020
aagaccctgc	ctgcaacatt	ccgcacagaa	tggtttgttc	acccattaag	tcactcttga	7080
cctcagctac	gaaagaactc	tctaacacac	ccgctctatg	acctccggtt	gcggctgccc	7140
atgccttcgc	aattgccata	ccttcacgtt	tggggtcatt	ttcaggatgt	acggcgatca	7200
atgtaggtac	accaaaaccc	ctcttgtact	cctctctgac	ttccgtacct	gggcactttg	7260
gcgcaaccat	tacgactgtt	ataccttttc	tgatctgctc	gcccacttca	acgatattaa	7320
agccatgaga	gtaacctaaa	gctgccccat	ccttcatcag	cggttgaact	gttcttacta	7380
cgtctgagtg	aaccttatct	ggtgttaggt	taatcactaa	atctgcctga	gggatcagtt	7440
cttcgtaagt	accaactttg	aacccatttt	ccgtcgcttt	acgccaatcg	gcatcctttt	7500
ctgcaataga	ctctttcctc	aatgcatacg	aaatatccag	acctgaatct	ctcatgttta	7560
aaccttggtt	tagaccctga	gcaccgcagc	caacaattac	tactttcttt	ccttgcagat	7620
aagaagcacc	atcagcaaac	tcgtcccttc	ccataaatct	gcacttaccc	agttgagcca	7680
attgttgtct	caaatttaat	gtgttaaaat	agttggccat	gtcgagtcga	aactaagttc	7740
tggtgtttta	aaactaaaaa	aaagactaac	tataaaagta	gaatttaaga	agtttaagaa	7800
atagatttac	agaattacaa	tcaataccta	ccgtctttat	atacttatta	gtcaagtagg	7860
ggaataattt	cagggaactg	gtttcaacct	ttttttcag	ctttttccaa	atcagagaga	7920
gcagaaggta	atagaaggtg	taagaaaatg	agatagatac	atgcgtgggt	caattgcctt	7980
gtgtcatcat	ttactccagg	caggttgcat	cactccattg	aggttgtgcc	cgtttttgc	8040
ctgtttgtgc	ccctgttctc	tgtagttgcg	ctaagagaat	ggacctatga	actgatggtt	8100
ggtgaagaaa	acaatatttt	ggtgctggga	ttetttttt	ttctggatgc	cagcttaaaa	8160
agcgggctcc	attatattta	gtggatgcca	ggaataaact	gttcacccag	acacctacga	8220
tgttatatat	tctgtgtaac	ccgcccccta	ttttgggcat	gtacgggtta	cagcagaatt	8280
aaaaggctaa	ttttttgact	aaataaagtt	aggaaaatca	ctactattaa	ttatttacgt	8340
attctttgaa	atggcgagta	ttgataatga	taaactggat	ccgcggccgc	ttacagatca	8400
gtaacacacc	cttccgatgc	aggacgggtt	aatttagcga	attttgccaa	aactcccctg	8460
gtggctttcg	gagttggctt	ctgataatta	gctcttctct	ttgcgatttc	ttcatcggaa	8520
actttcaggg	atatagagtt	gttgactgca	tctatctcta	ttatatcgtc	atcttcaact	8580
aagccgatta	gtccaccctc	aacggcttca	ggcacaatat	ggccgacaac	aaaaccgtga	8640
gtgccaccgg	agaatctacc	atccgtaatt	aacgcgcaac	ttttccctaa	acccgcacca	8700
attaatgctg	atgtaggett	cagcatttcg	ggcataccag	gtccgccgac	gggacctata	8760
ttcctaatta	ccgctacatc	tccagcatgc	aaacgaccag	attctatgcc	gtcgataaaa	8820
tgttgttcac	catcaaagac	tctggcagtg	cctttgaaga	actctccttc	tttaccgcta	8880
atttttgcta	cggaaccccc	ttgagctaaa	ttaccgtaca	gaatctgcaa	gtggccggtg	8940
gccttgatag	gattctttag	tggcctcatg	atatcttgtg	agtcgaaatc	caagtctagg	9000

gcagtctcga	cattctcggc	taatgtttta	cccgtcacag	taaggcagtc	accatgcaat	9060	
tttccttcct	ttagaaggta	cttaagcact	gctggcaagc	ctccaatttt	atgcaaatct	9120	
tccatcatat	atttacctga	aggtttaaaa	tcacctagta	ctggagtaat	gtcactaatt	9180	
ctttggaagt	catcctgagt	tatttcgaca	cctatcgcgt	tagccattgc	aataatatgc	9240	
aagacagcat	tagtactacc	ccccaagacc	atcacaatgg	taatagcgtt	ctcgaacgcc	9300	
tccttagtca	ttatatcact	aggettgatg	tctttttcca	aaagattctt	aatggctaat	9360	
ccaatctcat	cacattcttc	ttgtttttct	tgagatactg	cagggttcga	agaagaatac	9420	
ggcaatgaca	tacctagtgt	ttcgatagcg	gcagctaagg	tattagctgt	gtacatcccc	9480	
ccacatgccc	cttgaccagg	aatagcatta	caaataacac	cgtgataatc	ttcatcagag	9540	
atattgccgg	taattttctg	gcctagagat	tcaaaagccg	atacgatgtt	caatttctca	9600	
cctttatatt	caccgtgttc	tattgttcct	ccatacacca	taatgcttgg	cctattaagt	9660	
cttgccatac	caataataga	acctggcata	tttttgtcac	aacctgggat	ggctacaatt	9720	
gcatcatagt	attcagcgcc	agcgttggtt	tcaatagagt	cagctataac	ttctctggaa	9780	
acaagggagt	atctcattcc	caactttcca	tttgctatcc	catcagaaac	tcctatcgta	9840	
tgaaattgta	agccgatcag	accatctgtc	tgatttactg	agcttttaat	ctttgatcca	9900	
agggttccta	aatgcatgtt	gcatggattt	ccatcccagt	ccatcgacac	tatacccact	9960	
tgagetttet	tgaaatcttc	gtctttaaac	ccgatgccgt	aatacattgc	ctgtgtggcg	10020	
ggttgtgtgg	gatcttgtgt	caacgttttg	ctgtacttat	tcagttcaac	agattcaact	10080	
ttgccgttat	acttaaactc	catgtcgaca	aacttagatt	agattgctat	gctttctttc	10140	
taatgagcaa	gaagtaaaaa	aagttgtaat	agaacaagaa	aaatgaaact	gaaacttgag	10200	
aaattgaaga	ccgtttatta	acttaaatat	caatgggagg	tcatcgaaag	agaaaaaaat	10260	
caaaaaaaaa	attttcaaga	aaaagaaacg	tgataaaaat	ttttattgcc	tttttcgacg	10320	
aagaaaaaga	aacgaggcgg	tctcttttt	cttttccaaa	cctttagtac	gggtaattaa	10380	
cgacacccta	gaggaagaaa	gaggggaaat	ttagtatgct	gtgcttgggt	gttttgaagt	10440	
ggtacggcga	tgcgcggagt	ccgagaaaat	ctggaagagt	aaaaaaggag	tagaaacatt	10500	
ttgaagctat	gagctccagc	ttttgttccc	tttagtgagg	gttaattgcg	cgcttggcgt	10560	
aatcatggtc	atagctgttt	cctgtgtgaa	attgttatcc	gctcacaatt	ccacacaaca	10620	
taggagccgg	aagcataaag	tgtaaagcct	ggggtgccta	atgagtgagg	taactcacat	10680	
taattgcgtt	gcgctcactg	cccgctttcc	agtcgggaaa	cctgtcgtgc	cagctgcatt	10740	
aatgaatcgg	ccaacgcgcg	gggagaggcg	gtttgcgtat	tgggcgctct	tccgcttcct	10800	
cgctcactga	ctcgctgcgc	tcggtcgttc	ggctgcggcg	agcggtatca	gctcactcaa	10860	
aggcggtaat	acggttatcc	acagaatcag	gggataacgc	aggaaagaac	atgtgagcaa	10920	
aaggccagca	aaaggccagg	aaccgtaaaa	aggccgcgtt	gctggcgttt	ttccataggc	10980	
teegeeeee	tgacgagcat	cacaaaaatc	gacgeteaag	tcagaggtgg	cgaaacccga	11040	
caggactata	aagataccag	gcgtttcccc	ctggaagctc	cctcgtgcgc	tctcctgttc	11100	
cgaccctgcc	gcttaccgga	tacctgtccg	cctttctccc	ttcgggaagc	gtggcgcttt	11160	
ctcatagete	acgctgtagg	tatctcagtt	cggtgtaggt	cgttcgctcc	aagctgggct	11220	
gtgtgcacga	accccccgtt	cagecegaee	gctgcgcctt	atccggtaac	tatcgtcttg	11280	

agtccaacce ggtaagacae gaettatege caetggeage agecaetggt aacaggatta 11340 gcagagcgag gtatgtaggc ggtgctacag agttcttgaa gtggtggcct aactacggct 11400 acactagaag gacagtattt ggtatctgcg ctctgctgaa gccagttacc ttcggaaaaa 11460 gagttggtag ctcttgatcc ggcaaacaaa ccaccgctgg tagcggtggt ttttttgttt 11520 gcaagcagca gattacgcgc agaaaaaaag gatctcaaga agatcctttg atcttttcta 11580 cggggtctga cgctcagtgg aacgaaaact cacgttaagg gattttggtc atgagattat 11640 caaaaaaggat cttcacctag atccttttaa attaaaaatg aagttttaaa tcaatctaaa 11700 gtatatatga gtaaacttgg tctgacagtt accaatgctt aatcagtgag gcacctatct 11760 cagcgatetg tetattegt teatecatag ttgeetgaet eeeegtegtg tagataaeta 11820 cgatacggga gggcttacca tctggcccca gtgctgcaat gataccgcga gacccacgct 11880 caccggctcc agatttatca gcaataaacc agccagccgg aagggccgag cgcagaagtg 11940 gtcctgcaac tttatccgcc tccatccagt ctattaattg ttgccgggaa gctagagtaa 12000 gtagttegee agttaatagt ttgegeaacg ttgttgeeat tgetaeagge ategtggtgt 12060 cacgetegte gtttggtatg getteattea geteeggtte ceaaegatea aggegagtta 12120 catgatecee catgttgtge aaaaaagegg ttageteett eggteeteeg ategttgtea 12180 gaagtaagtt ggccgcagtg ttatcactca tggttatggc agcactgcat aattctctta 12240 ctgtcatgcc atccgtaaga tgcttttctg tgactggtga gtactcaacc aagtcattct 12300 gagaatagtg tatgcggcga ccgagttgct cttgcccggc gtcaatacgg gataataccg 12360 cgccacatag cagaacttta aaagtgctca tcattggaaa acgttcttcg gggcgaaaac 12420 tetecaaggat ettacegetg ttgagateca gttegatgta acceaetegt geaceeaact 12480 gatetteage atetttaet tteaceageg tttetgggtg ageaaaaaea ggaaggeaaa 12540 atgccgcaaa aaagggaata agggcgacac ggaaatgttg aatactcata ctcttccttt 12600 ttcaatatta ttgaagcatt tatcagggtt attgtctcat gagcggatac atatttgaat 12660 gtatttagaa aaataaacaa ataggggttc cgcgcacatt tccccgaaaa gtgccacctg 12720 aacgaagcat ctgtgcttca ttttgtagaa caaaaatgca acgcgagagc gctaattttt 12780 caaacaaaga atctgagctg catttttaca gaacagaaat gcaacgcgaa agcgctattt 12840 taccaacgaa gaatctgtgc ttcattttg taaaacaaaa atgcaacgcg agagcgctaa 12900 tttttcaaac aaagaatctg agctgcattt ttacagaaca gaaatgcaac gcgagagcgc 12960 tattttacca acaaagaatc tatacttett ttttgtteta caaaaatgea teeegagage 13020 gctatttttc taacaaagca tcttagatta ctttttttct cctttgtgcg ctctataatg 13080 cagtetettg ataaettttt geaetgtagg teegttaagg ttagaagaag getaetttgg 13140 tgtctatttt ctcttccata aaaaaageet gaeteeaett eeegegttta etgattaeta 13200 gcgaagctgc gggtgcattt tttcaagata aaggcatccc cgattatatt ctataccgat 13260 gtggattgcg catactttgt gaacagaaag tgatagcgtt gatgattctt cattggtcag 13320 aaaattatga acggtttett etattttgte tetatataet acgtatagga aatgtttaea 13380 ttttcgtatt gttttcgatt cactctatga atagttctta ctacaatttt tttgtctaaa 13440 gagtaatact agagataaac ataaaaaatg tagaggtcga gtttagatgc aagttcaagg 13500 agcgaaaggt ggatgggtag gttatatagg gatatagcac agagatatat agcaaagaga 13560

-continued

tacttttgag caatgtttgt ggaagcggta ttcgcaatat tttagtagct cgttacagtc 13620 cggtgcgttt ttggtttttt gaaagtgcgt cttcagagcg cttttggttt tcaaaagcgc 13680 tetgaagtte etataettte tagagaatag gaacttegga ataggaaett eaaagegttt 13740 ccgaaaacga gcgcttccga aaatgcaacg cgagctgcgc acatacagct cactgttcac 13800 gtcgcaccta tatctgcgtg ttgcctgtat atatatatac atgagaagaa cggcatagtg 13860 cgtgtttatg cttaaatgcg tacttatatg cgtctattta tgtaggatga aaggtagtct 13920 agtaceteet gtgatattat eccatteeat gegggggtate gtatgettee tteageacta 13980 ccctttagct gttctatatg ctgccactcc tcaattggat tagtctcatc cttcaatgct 14040 14056 atcatttcct ttgata <210> SEQ ID NO 126 <400> SEQUENCE: 126 000 <210> SEQ ID NO 127 <400> SEQUENCE: 127 000 <210> SEQ ID NO 128 <400> SEQUENCE: 128 000 <210> SEQ ID NO 129 <400> SEOUENCE: 129 000 <210> SEQ ID NO 130 <400> SEQUENCE: 130 000 <210> SEQ ID NO 131 <400> SEQUENCE: 131 000 <210> SEQ ID NO 132 <400> SEQUENCE: 132 000 <210> SEQ ID NO 133 <400> SEQUENCE: 133 000

244

<210> SEQ ID NO 134 <400> SEQUENCE: 134 000 <210> SEQ ID NO 135 <400> SEQUENCE: 135 000 <210> SEQ ID NO 136 <400> SEQUENCE: 136 000 <210> SEQ ID NO 137 <400> SEQUENCE: 137 000 <210> SEQ ID NO 138 <400> SEQUENCE: 138 000 <210> SEQ ID NO 139 <400> SEQUENCE: 139 000 <210> SEQ ID NO 140 <400> SEQUENCE: 140 000 <210> SEQ ID NO 141 <400> SEQUENCE: 141 000 <210> SEQ ID NO 142 <400> SEQUENCE: 142 000 <210> SEQ ID NO 143 <400> SEQUENCE: 143 000 <210> SEQ ID NO 144 <400> SEQUENCE: 144 000

245

<210> SEQ ID NO 145 <400> SEQUENCE: 145 000 <210> SEQ ID NO 146 <400> SEQUENCE: 146 000 <210> SEQ ID NO 147 <400> SEQUENCE: 147 000 <210> SEQ ID NO 148 <400> SEQUENCE: 148 000 <210> SEQ ID NO 149 <400> SEQUENCE: 149 000 <210> SEQ ID NO 150 <400> SEQUENCE: 150 000 <210> SEQ ID NO 151 <400> SEQUENCE: 151 000 <210> SEQ ID NO 152 <400> SEQUENCE: 152 000 <210> SEQ ID NO 153 <400> SEQUENCE: 153 000 <210> SEQ ID NO 154 <400> SEQUENCE: 154 000 <210> SEQ ID NO 155 <400> SEQUENCE: 155 000

```
-continued
```

<210> SEQ ID NO 156 <400> SEQUENCE: 156 000 <210> SEQ ID NO 157 <400> SEQUENCE: 157 000 <210> SEQ ID NO 158 <400> SEQUENCE: 158 000 <210> SEQ ID NO 159 <400> SEQUENCE: 159 000 <210> SEQ ID NO 160 <400> SEQUENCE: 160 000 <210> SEQ ID NO 161 <400> SEQUENCE: 161 000 <210> SEQ ID NO 162 <400> SEQUENCE: 162 000 <210> SEQ ID NO 163 <400> SEQUENCE: 163 000 <210> SEQ ID NO 164 <400> SEQUENCE: 164 000 <210> SEQ ID NO 165 <400> SEQUENCE: 165 000 <210> SEQ ID NO 166 <400> SEQUENCE: 166

247

000 <210> SEQ ID NO 167 <400> SEQUENCE: 167 000 <210> SEQ ID NO 168 <400> SEQUENCE: 168 000 <210> SEQ ID NO 169 <400> SEQUENCE: 169 000 <210> SEQ ID NO 170 <400> SEQUENCE: 170 000 <210> SEQ ID NO 171 <400> SEQUENCE: 171 000 <210> SEQ ID NO 172 <400> SEQUENCE: 172 000 <210> SEQ ID NO 173 <400> SEQUENCE: 173 000 <210> SEQ ID NO 174 <400> SEQUENCE: 174 000 <210> SEQ ID NO 175 <400> SEQUENCE: 175 000 <210> SEQ ID NO 176 <400> SEQUENCE: 176 000 <210> SEQ ID NO 177 <400> SEQUENCE: 177

```
-continued
```

000 <210> SEQ ID NO 178 <400> SEQUENCE: 178 000 <210> SEQ ID NO 179 <400> SEQUENCE: 179 000 <210> SEQ ID NO 180 <400> SEQUENCE: 180 000 <210> SEQ ID NO 181 <400> SEQUENCE: 181 000 <210> SEQ ID NO 182 <400> SEQUENCE: 182 000 <210> SEQ ID NO 183 <400> SEQUENCE: 183 000 <210> SEQ ID NO 184 <400> SEQUENCE: 184 000 <210> SEQ ID NO 185 <400> SEQUENCE: 185 000 <210> SEQ ID NO 186 <400> SEQUENCE: 186 000 <210> SEQ ID NO 187 <400> SEQUENCE: 187 000

<210> SEQ ID NO 188

249

<400> SEQUENCE: 188 000 <210> SEQ ID NO 189 <400> SEQUENCE: 189 000 <210> SEQ ID NO 190 <400> SEQUENCE: 190 000 <210> SEQ ID NO 191 <400> SEQUENCE: 191 000 <210> SEQ ID NO 192 <400> SEQUENCE: 192 000 <210> SEQ ID NO 193 <400> SEQUENCE: 193 000 <210> SEQ ID NO 194 <400> SEQUENCE: 194 000 <210> SEQ ID NO 195 <400> SEQUENCE: 195 000 <210> SEQ ID NO 196 <400> SEQUENCE: 196 000 <210> SEQ ID NO 197 <400> SEQUENCE: 197 000 <210> SEQ ID NO 198 <400> SEQUENCE: 198 000 <210> SEQ ID NO 199

250

<400> SEOUENCE: 199 000 <210> SEQ ID NO 200 <400> SEQUENCE: 200 000 <210> SEQ ID NO 201 <211> LENGTH: 46 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer XX1 <400> SEQUENCE: 201 cgcaccggtt ttctcctctt taatgaattc ggtcagtgcg tcctgc 46 <210> SEQ ID NO 202 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer XX2 <400> SEQUENCE: 202 36 gcggccgccc tagggcgttc ggctgcggcg agcggt <210> SEQ ID NO 203 <211> LENGTH: 56 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer XX3 <400> SEQUENCE: 203 cgcgaattcg gatccgagga gaaaatagtt atgaacaact ttaatctgca cacccc 56 <210> SEQ ID NO 204 <211> LENGTH: 42 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer XX4 <400> SEQUENCE: 204 gcgcctaggg cggccgctta gcgggcggct tcgtatatac gg 42 <210> SEQ ID NO 205 <211> LENGTH: 61 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 50 <400> SEQUENCE: 205 gcagtttcac cttctacata atcacgaccg tagtaggtat cattccgggg atccgtcgac 60 61 С

<210> SEQ ID NO 206

<211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 73 <400> SEQUENCE: 206 ctggcttaag taccgggtta gttaacttaa ggagaatgac gtgtaggctg gagctgcttc 60 <210> SEQ ID NO 207 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 74 <400> SEQUENCE: 207 ctcaaactca ttccaggaac gaccatcacg ggtaatcatc attccgggga tccgtcgacc 60 <210> SEQ ID NO 208 <211> LENGTH: 65 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 116 <400> SEQUENCE: 208 cagegttege tttatatece ttacgetgge eetgtactge tggaagtgta ggetggaget 60 gcttc 65 <210> SEQ ID NO 209 <211> LENGTH: 65 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 117 <400> SEQUENCE: 209 ttcggcttgc cagaaattat cgtcaatggc ctgttgcagg gcttcattcc ggggatccgt 60 65 cgacc <210> SEQ ID NO 210 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 350 <400> SEQUENCE: 210 cttaaattct acttttatag ttagtc 26 <210> SEQ ID NO 211 <211> LENGTH: 65 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 474 <400> SEQUENCE: 211 caaagetgeg gatgatgaeg agattaetge tgetgtgeag aetgaattee ggggateegt 60 cgacc 65

<210> SEO ID NO 212 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 772 <400> SEQUENCE: 212 aggaaggagc acagacttag 20 <210> SEQ ID NO 213 <211> LENGTH: 64 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 868 <400> SEQUENCE: 213 cacaacatca cgaggaatca ccatggctaa ctacttcaat acacgtgtag gctggagctg 60 cttc 64 <210> SEQ ID NO 214 <211> LENGTH: 65 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 869 <400> SEQUENCE: 214 cttaacccgc aacagcaata cgtttcatat ctgtcatata gccgcattcc ggggatccgt 60 cgacc 65 <210> SEQ ID NO 215 <211> LENGTH: 45 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 1030 <400> SEQUENCE: 215 gtcggtgaac gctctcctga gtagggtgta ggctggagct gcttc 45 <210> SEQ ID NO 216 <211> LENGTH: 45 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 1031 <400> SEQUENCE: 216 gaagcagete cageetacae ectaeteagg agagegttea eegae 45 <210> SEQ ID NO 217 <211> LENGTH: 69 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 1032 <400> SEQUENCE: 217 cacaacatca cgaggaatca ccatggctaa ctacttcaat acaccacgag gccctttcgt 60

-continued

-continued	
cttcacctc	69
<210> SEQ ID NO 218	
<211> LENGTH: 65	
<212> TYPE: DNA	
<213> ORGANISM: UNKNOWN	
<220> FEATURE: <223> OTHER INFORMATION: Primer 1155	
<400> SEQUENCE: 218	
cccaaccege attetgtttg gtaaaggege aategetggt ttaeggtgta ggetggaget	60
gette	65
<210> SEQ ID NO 219	
<211> LENGTH: 65	
<212> TYPE: DNA	
<213> ORGANISM: UNKNOWN	
<220> FEATURE: <223> OTHER INFORMATION: Primer 1156	
<400> SEQUENCE: 219	
	<u></u>
caatcgcggc gtcaatacgc tcatcatcgg aaccttcagt gatgtattcc ggggatccgt	60
cgacc	65
<210> SEQ ID NO 220	
<211> LENGTH: 65	
<212> TYPE: DNA	
<213> ORGANISM: UNKNOWN <220> FEATURE:	
<223> FRANKE: <223> OTHER INFORMATION: Primer 1187	
<400> SEQUENCE: 220	
cggataaagt tcgtgagatt gccgcaaaac tggggggtca tgtgggtgta ggctggagct	60
gette	65
<210> SEQ ID NO 221	
<211> LENGTH: 65 <212> TYPE: DNA	
<213> ORGANISM: UNKNOWN	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer 1188	
<400> SEQUENCE: 221	
cagacatcaa gtaaccttta tcgcgcagca gattaaccgc ttcgcattcc ggggatccgt	60
cgacc	65
<210> SEQ ID NO 222	
<211> LENGTH: 65 <212> TYPE: DNA	
<212> TIPE: DNA <213> ORGANISM: UNKNOWN	
<pre><220> FEATURE: <223> OTHER INFORMATION: Primer 1191</pre>	
<400> SEQUENCE: 222	
	60
ggcactcacg ttgggctgag acacaagcac acatteetet geaeggtgta ggetggaget	60
gette	65
<210> SEQ ID NO 223	
<211> LENGTH: 65	
<212> TYPE: DNA	

<212> TYPE: DNA

-continued	
<213> ORGANISM: UNKNOWN	
<220> FEATURE: <223> OTHER INFORMATION: Primer 1192	
<400> SEQUENCE: 223	
	<u></u>
gcaccagaaa ccataactac aacgtcacct ttgtgtgcca gaccgattcc ggggatccgt	60
cgacc	65
<210> SEQ ID NO 224 <211> LENGTH: 67 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 1205	
<400> SEQUENCE: 224	
gttatctagt tgtgcaaaac atgctaatgt agccaccaaa tccacgaggc cctttcgtct	60
tcacctc	67
<210> SEQ ID NO 225 <211> LENGTH: 42 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 1218	
<400> SEQUENCE: 225	
gctcactcaa aggcggtaat acgtgtaggc tggagctgct tc	42
<210> SEQ ID NO 226 <211> LENGTH: 42 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 1219	
<400> SEQUENCE: 226	
gaagcagete cageetacae gtattaeege etttgagtga ge	42
<210> SEQ ID NO 227 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 1220	
<400> SEQUENCE: 227	
cgtagaatca ccagaccagc	20
<210> SEQ ID NO 228 <211> LENGTH: 56 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 1296 <400> SEQUENCE: 228	
~ ttttgtcgac ggatccagga gacaacatta tgtctattcc agaaactcaa aaagcg	56
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee	
<210> SEQ ID NO 229 <211> LENGTH: 46 <212> TYPE: DNA	

	-continued	
<213> ORGANISM: UNKNOWN <220> FEATURE:	Deciment 1997	
<223> OTHER INFORMATION:	Primer 1297	
<400> SEQUENCE: 229		
ttttgtcgac gcggccgctt at	ttagaggt gtccaccacg taacgg	46
<pre><210> SEQ ID NO 230 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION:</pre>	Primer 1321	
<400> SEQUENCE: 230		
aatcatatcg aacacgatgc		20
<pre><210> SEQ ID NO 231 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION:</pre>	Primer 1322	
<400> SEQUENCE: 231		
tcagaaagga tettetgete		20
<pre><210> SEQ ID NO 232 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: <400> SEQUENCE: 232</pre>	Primer 1323	
atcgatatcg tgaaatacgc		20
<pre><210> SEQ ID NO 233 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION:</pre>	Primer 1324	
<400> SEQUENCE: 233		
agetggtetg gtgattetae		20
<210> SEQ ID NO 234 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION:	Primer 1341	
<400> SEQUENCE: 234		
tgctgaaaga gaaattgtcc		20
<pre><210> SEQ ID NO 235 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION:</pre>	Primer 1342	

-	С	on	t	1:	n	u	е	d

concinaca		
<400> SEQUENCE: 235		
tttcttgttc gaagtccaag	20	
<210> SEQ ID NO 236		
<211> LENGTH: 37		
<212> TYPE: DNA		
<213> ORGANISM: UNKNOWN		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer 1364		
<400> SEQUENCE: 236		
ttttgcggcc gcttagatgc cggagtccca gtgcttg	37	
<210> SEQ ID NO 237		
<211> LENGTH: 22		
<212> TYPE: DNA		
<213> ORGANISM: UNKNOWN		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer 1365		
<400> SEQUENCE: 237		
agttgttgac gcaggttcag ag	22	
<210> SEQ ID NO 238		
<210> SEQ 1D NO 238 <211> LENGTH: 20		
<211> HENGIN: 20 <212> TYPE: DNA		
<212> TIPE: DNA <213> ORGANISM: UNKNOWN		
<2213 SORGANISM: UNRIVOWN <220> FEATURE:		
<2223> FEATORE: <223> OTHER INFORMATION: Primer 238		
<223> OTHER INFORMATION: FILMEI 238		
<400> SEQUENCE: 238		
aaatgacgac gagcctgaag	20	
aaacgacgac gageeegaag	20	
-010. CEO TO NO 020		
<210> SEQ ID NO 239		
<211> LENGTH: 20		
<212> TYPE: DNA		
<213> ORGANISM: UNKNOWN		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer 1437		
<400> SEQUENCE: 239		
gacctgacca tttgatggag	20	
guoorguooa eergaryyay	20	
010. CEO TE NO 040		
<210> SEQ ID NO 240		
<211> LENGTH: 21		
<212> TYPE: DNA		
<213> ORGANISM: UNKNOWN		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer 1439		
<400> SEQUENCE: 240		
caattggcga agcagaacaa g	21	
010. CEO ID NO 041		
<210> SEQ ID NO 241		
<211> LENGTH: 47		
<212> TYPE: DNA		
<213> ORGANISM: UNKNOWN		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer 1469		
<400> SEQUENCE: 241		
ttttagatct aggagatacc ggtatgtcgt ttactttgac caacaag	47	
	÷ /	

257

<210> SEO ID NO 242 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 1440 <400> SEQUENCE: 242 atcgtacatc ttccaagcat c 21 <210> SEQ ID NO 243 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 1441 <400> SEQUENCE: 243 aatcggaacc ctaaagggag 20 <210> SEQ ID NO 244 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 1442 <400> SEQUENCE: 244 20 aatgggcaag ctgtttgctg <210> SEQ ID NO 245 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 1443 <400> SEQUENCE: 245 tgcagatgca gatgtgagac 2.0 <210> SEQ ID NO 246 <211> LENGTH: 51 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 1470 <400> SEQUENCE: 246 ttttggatcc aggaaataga tctatgatgg ctaacagaat gattctgaac g 51 <210> SEQ ID NO 247 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 1471 <400> SEQUENCE: 247 ttttgcggcc gcttaccagg cggtatggta aagctc 36 <210> SEQ ID NO 248 <211> LENGTH: 64 <212> TYPE: DNA

							-
-	CC	nt	l	n	u	е	d

-continued	
- <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 1479	
<400> SEQUENCE: 248	
ccgataggct tccgccatcg tcgggtagtt aaaggtggtg ttgagtgtag gctggagctg	60
cttc	64
<210> SEQ ID NO 249 <211> LENGTH: 70 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 1485	
<400> SEQUENCE: 249 gcctttattg tacgcttttt actgtacgat ttcagtcaaa tctaacacga ggccctttcg	60
tettcacete	70
<210> SEQ ID NO 250 <211> LENGTH: 65 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 1486	
<400> SEQUENCE: 250	
aagtacgcag taaataaaaa atccacttaa gaaggtaggt gttacattcc ggggatccgt	60
cgacc	65
<210> SEQ ID NO 251 <211> LENGTH: 39 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 1526	
<400> SEQUENCE: 251	
tcgacgagga gacaacattg tgtaggctgg agctgcttc	39
<210> SEQ ID NO 252 <211> LENGTH: 39 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 1527 <400> SEQUENCE: 252	
gaagcagete cageetacae aatgttgtet eetegtega	39
<210> SEQ ID NO 253 <211> LENGTH: 65 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 1539 <400> SEQUENCE: 253	
- ccattctgtt gcttttatgt ataagaacag gtaagcccta ccatggagaa ttgtgagcgg	60
ataac	65

-continued

<210> SEO ID NO 254 <211> LENGTH: 42 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 1561 <400> SEQUENCE: 254 gcaatcctga aagctctgta acattccggg gatccgtcga cc 42 <210> SEQ ID NO 255 <211> LENGTH: 42 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 1562 <400> SEQUENCE: 255 ggtcgacgga tccccggaat gttacagagc tttcaggatt gc 42 <210> SEQ ID NO 256 <211> LENGTH: 70 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 1563 <400> SEQUENCE: 256 caaatcggcg gtaacgaaag aggataaacc gtgtcccgta ttattcacga ggccctttcg 60 tcttcacctc 70 <210> SEQ ID NO 257 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 1566 <400> SEQUENCE: 257 22 teccacecaa teaaggeeaa eg <210> SEQ ID NO 258 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 1567 <400> SEQUENCE: 258 tccacctggt gccaatgaac cg 22 <210> SEQ ID NO 259 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 1587 <400> SEQUENCE: 259 cggctgccag aactctacta actg 24

<210> SEQ ID NO 260

-continued	
<211> LENGTH: 23	
<212> TYPE: DNA	
<212> ORGANISM: UNKNOWN	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer 1588	
<400> SEQUENCE: 260	
gcgacgtcta ctggcaggtt aat	23
<210> SEQ ID NO 261	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: UNKNOWN	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer 1595	
<400> SEQUENCE: 261	
appartente ottagenes a	21
caacctggtg atttggggaa g	21
<210> SEQ ID NO 262	
<211> SEQ 15 NO 202 <211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: UNKNOWN	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer 1597	
<400> SEQUENCE: 262	
gaatgatggc agattgggca	20
<210> SEQ ID NO 263	
<211> LENGTH: 22	
<212> TYPE: DNA	
<213> ORGANISM: UNKNOWN	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer 1598	
<400> SEQUENCE: 263	
CHOOP SEQUENCE: 203	
tattgtgggg ctgtctcgaa tg	22
<210> SEQ ID NO 264	
<211> LENGTH: 19	
<212> TYPE: DNA	
<213> ORGANISM: UNKNOWN	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer 1624	
<400> SEQUENCE: 264	
	10
ccctcatgtt gtctaacgg	19
<210> SEQ ID NO 265	
<210> SEQ 1D NO 265 <211> LENGTH: 24	
<211> LENGTH: 24 <212> TYPE: DNA	
<212> ORGANISM: UNKNOWN	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer 1633	
<400> SEQUENCE: 265	
tccgtcactg gattcaatgc catc	24
<210> SEQ ID NO 266	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: UNKNOWN	
<220> FEATURE:	

261

-continued	
<223> OTHER INFORMATION: Primer 1634	
<400> SEQUENCE: 266	
ttcgccaggg agctggtgaa	20
<210> SEQ ID NO 267 <211> LENGTH: 21	
<212> TYPE: DNA <213> ORGANISM: UNKNOWN	
<220> FEATURE: <223> OTHER INFORMATION: Primer 1798	
<400> SEQUENCE: 267	
gcaaattaaa gccttcgagc g	21
J	
<210> SEQ ID NO 268 <211> LENGTH: 39	
<212> TYPE: DNA	
<213> ORGANISM: UNKNOWN <220> FEATURE:	
<223> OTHER INFORMATION: Primer 1926	
<400> SEQUENCE: 268	
tttttgtcga cggatccagt ttatcattat caatactcg	39
<210> SEQ ID NO 269	
<211> LENGTH: 45 <212> TYPE: DNA	
<213> ORGANISM: UNKNOWN	
<220> FEATURE: <223> OTHER INFORMATION: Primer 1927	
<400> SEQUENCE: 269	
ttttgcggcc gcagatetet egagtegaaa etaagttetg gtgtt	45
<210> SEQ ID NO 270	
<211> LENGTH: 22 <212> TYPE: DNA	
<213> ORGANISM: UNKNOWN	
<220> FEATURE: <223> OTHER INFORMATION: Primer 2091	
<400> SEQUENCE: 270	
cttttcttcc cttgtctcaa tc	22
<210> SEQ ID NO 271	
<211> LENGTH: 39	
<212> TYPE: DNA <213> ORGANISM: UNKNOWN	
<220> FEATURE: <223> OTHER INFORMATION: Primer 2352	
<400> SEQUENCE: 271	
gactogacot aggitattia giaaaatoaa igacoatto	39
<210> SEQ ID NO 272	
<211> LENGTH: 38	
<212> TYPE: DNA <213> ORGANISM: UNKNOWN	
<220> FEATURE: <223> OTHER INFORMATION: Primer 2353	
THE STALL METAPOLICA, LINGE 2000	

<400> SEQUENCE: 272

-contir	nued

-continued		
ctaaataacc taggtcgagt catgtaatta gttatgtc	38	
<210> SEQ ID NO 273		
<211> LENGTH: 30		
<212> TYPE: DNA		
<213> ORGANISM: UNKNOWN		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer KARIpETfor		
<400> SEQUENCE: 273		
attcatatgg cgaattattt caacactctg	30	
<210> SEQ ID NO 274		
<211> LENGTH: 28		
<212> TYPE: DNA		
<213> ORGANISM: UNKNOWN		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer KARIpETrev		
<400> SEQUENCE: 274		
taatctcgag gccagccacc gcgatgcg	28	
<210> SEQ ID NO 275		
<211> LENGTH: 16		
<212> TYPE: DNA		
<213> ORGANISM: UNKNOWN		
<220> FEATURE: <223> OTHER INFORMATION: Primer pETup		
<400> SEQUENCE: 275		
atgcgtccgg cgtaga	16	
<210> SEQ ID NO 276		
<211> LENGTH: 35		
<212> TYPE: DNA		
<213> ORGANISM: UNKNOWN		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer seq_ilvC_pGV		
<400> SEQUENCE: 276		
gcggccgcgt cgacgaggag acaacattat ggcga	35	
<210> SEQ ID NO 277		
<211> LENGTH: 51		
<212> TYPE: DNA		
<213> ORGANISM: UNKNOWN		
<220> FEATURE: <223> OTHER INFORMATION: Primer pGV1994ep_for		
<400> SEQUENCE: 277		
cggtetteaa ttteteaagt tteagtttea tttttettgt tetattaeaa e	51	
eggeeteeda etteleadge eteageteed etteletege teratlacad e	51	
<210> SEQ ID NO 278		
<211> LENGTH: 35		
<212> TYPE: DNA		
<213> ORGANISM: UNKNOWN		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer pGV1994ep_rev		
<400> SEQUENCE: 278		
ctaactcctt ccttttcggt tagagcggat gtggg	35	
<210> SEQ ID NO 279		

-continued	

-continued		
<211> LENGTH: 47		
<212> TYPE: DNA		
<213> ORGANISM: UNKNOWN <220> FEATURE:		
<223> OTHER INFORMATION: Primer Not_in_for		
<400> SEQUENCE: 279		
cctctagaaa taatttgogg cogogttaag aaggagatat acatatg	47	
<210> SEQ ID NO 280		
<211> LENGTH: 41		
<212> TYPE: DNA <213> ORGANISM: UNKNOWN		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer AvrII_in_rev		
<400> SEQUENCE: 280		
ccgaacgccc taggtcagtg gtggtggtgg tggtgctcga g	41	
<210> SEQ ID NO 281		
<211> LENGTH: 28		
<212> TYPE: DNA		
<213> ORGANISM: UNKNOWN <220> FEATURE:		
<223> FEATORE: <223> OTHER INFORMATION: Primer R68DK69Lfor		
<400> SEQUENCE: 281		
tagetatgeg etggaeetgg aggetate	28	
<210> SEQ ID NO 282		
<211> LENGTH: 28		
<212> TYPE: DNA <213> ORGANISM: UNKNOWN		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer R68DK69Lrev		
<400> SEQUENCE: 282		
gatageetee aggteeageg catageta	28	
<210> SEQ ID NO 283		
<211> LENGTH: 28		
<212> TYPE: DNA		
<213> ORGANISM: UNKNOWN <220> FEATURE:		
<223> OTHER INFORMATION: Primer K75VR76Dfor		
<400> SEQUENCE: 283		
aggetatege ggaagttgae getagetg	28	
<210> SEQ ID NO 284		
<210> SEQ 1D NO 284 <211> LENGTH: 28		
<212> TYPE: DNA		
<213 > ORGANISM: UNKNOWN		
<220> FEATURE: <223> OTHER INFORMATION: Primer K75VR76Drev		
<400> SEQUENCE: 284		
cagetagegt caactteege gatageet	28	
engeengege endeeleege guengeee	20	
<210> SEQ ID NO 285		
<211> LENGTH: 28		
<212> TYPE: DNA <213> ORGANISM: UNKNOWN		
<220> FEATURE:		

-	С	or	ιt	i	n	u	е	c

<223> OTHER INFORMATION: Primer R69NNKfor <220> FEATURE: <221> NAME/KEY: misc_feature
<222> LOCATION: (17)..(18) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 285 tagctatgcg ctgcgcnnkg aggctatc 28 <210> SEQ ID NO 286 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer R69NNKrev <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (11)..(12) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 286 gatageetem nngegeageg catageta 28 <210> SEQ ID NO 287 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer K75NNKfor <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (15)..(16) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 287 28 aggctatcgc ggaannkcgt gctagctg <210> SEO ID NO 288 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer K75NNKrev <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (13)..(14) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 288 cagetageae gmnntteege gatageet 28 <210> SEQ ID NO 289 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer R76NNKfor <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (18)..(19) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 289 aggetatege ggaaaaannk getagetgge 30 <210> SEQ ID NO 290

-continued <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer R76NNKrev <220> FEATURE: <221> NAME/KEY: misc_feature
<222> LOCATION: (12)..(13) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 290 gccagctagc mnntttttcc gcgatagcct 30 <210> SEQ ID NO 291 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer R68NNK_for <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (14)..(15) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 291 28 tagetatgeg etgnnkaagg aggetate <210> SEQ ID NO 292 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer R68NNK_rev <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (14)..(15) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 292 gatageetee ttmnncageg catageta 28 <210> SEQ ID NO 293 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer S78NNK_for <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (16)..(17) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 293 gcggaaaaac gtgctnnktg gcgcaaggct act 33 <210> SEQ ID NO 294 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer S78NNK_rev <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (17)..(18) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 294

-continued	
------------	--

-continued		
agtageettg egecamnnag eaegttttte ege	33	
<210> SEQ ID NO 295		
<211> LENGTH: 31		
<212> TYPE: DNA		
<213> ORGANISM: UNKNOWN		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer A71NNK_for		
<220> FEATURE:		
<221> NAME/KEY: misc_feature		
<222> LOCATION: (16)(17)		
<223> OTHER INFORMATION: n is a, c, g, or t		
<400> SEQUENCE: 295		
gcgctgcgca aggagnnkat cgcggaaaaa c	31	
<210> SEQ ID NO 296		
<211> LENGTH: 31		
<212> TYPE: DNA		
<213> ORGANISM: UNKNOWN		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer A71NNK_rev		
<220> FEATURE:		
<221> NAME/KEY: misc_feature		
<222> LOCATION: (15)(16) <223> OTHER INFORMATION: n is a, c, g, or t		
<400> SEQUENCE: 296		
gtttttccgc gatmnnctcc ttgcgcagcg c	31	
<210> SEQ ID NO 297		
<211> LENGTH: 31		
<212> TYPE: DNA		
<213> ORGANISM: UNKNOWN		
<220> FEATURE:		
<223> OTHER INFORMATION: Primer Gln110NNK_for		
<220> FEATURE:		
<221> NAME/KEY: misc_feature		
<222> LOCATION: (16)(17)		
<223> OTHER INFORMATION: n is a, c, g, or t		
<400> SEQUENCE: 297		
ctgaccccag ataaannkca tagcgacgtt g	31	
<210> SEQ ID NO 298		
<211> LENGTH: 31		
<212> TYPE: DNA		
<213> ORGANISM: UNKNOWN		
<220> FEATURE:		
<223> OTHER INFORMATION: Gln110NNK_rev		
<220> FEATURE:		
<221> NAME/KEY: misc_feature		
<222> LOCATION: (15)(16) <223> OTHER INFORMATION: n is a, c, g, or t		
<400> SEQUENCE: 298		
caacgtcgct atgmnnttta tctggggtca g	31	
<210> SEQ ID NO 299 <211> LENGTH: 35		
<211> LENGTH: 35 <212> TYPE: DNA		
<212> TYPE: DNA <213> ORGANISM: UNKNOWN		
<2213 > ORGANISM: UNKNOWN <220> FEATURE:		
<223> OTHER INFORMATION: Primer seq_ilvC_pGV		
<400> SEQUENCE: 299		

	-continued
gcggccgcgt cgacgaggag acaacattat ggcga	35
<210> SEQ ID NO 300	
<211> LENGTH: 31	
<212> TYPE: DNA	
<213> ORGANISM: UNKNOWN	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer Q110Qfor	
<400> SEQUENCE: 300	
gaccccagat aaacaacata gcgacgttgt t	31
<210> SEQ ID NO 301	
<211> LENGTH: 31	
<212> TYPE: DNA	
<213> ORGANISM: UNKNOWN	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer Q110Qrev	
<400> SEQUENCE: 301	
aacaacgtcg ctatgttgtt tatctggggt c	31
<210> SEQ ID NO 302	
<211> LENGTH: 31	
<212> TYPE: DNA	
<213> ORGANISM: UNKNOWN	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer Q110Afor	
<400> SEQUENCE: 302	
gaccccagat aaagcacata gcgacgttgt t	31
<210> SEQ ID NO 303	
<211> LENGTH: 31	
<212> TYPE: DNA	
<213> ORGANISM: UNKNOWN	
<220> FEATURE: <223> OTHER INFORMATION: Primer Q110Arev	
<400> SEQUENCE: 303	
aacaacgtcg ctatgtgctt tatctggggt c	31
<210> SEQ ID NO 304	
<211> LENGTH: 31	
<212> TYPE: DNA	
<213> ORGANISM: UNKNOWN	
<220> FEATURE: <223> OTHER INFORMATION: Primer Q110Vfor	
<400> SEQUENCE: 304	
gaccccagat aaagtacata gcgacgttgt t	31
010. CEO ID NO 205	
<210> SEQ ID NO 305	
<211> LENGTH: 31 <212> TYPE: DNA	
<212> IIPE: DNA <213> ORGANISM: UNKNOWN	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer Q110Vrev	
<400> SEQUENCE: 305	
aacaacgtcg ctatgtactt tatctggggt c	31
-2105 SEO ID NO 204	

-continued <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer R68A71recombfor <400> SEQUENCE: 306 gctatgcgct gckaaaggag dcaatcgcgg 30 <210> SEQ ID NO 307 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer R68A71recombrev <400> SEQUENCE: 307 ccgcgattgh ctcctttmgc agcgcatagc 30 <210> SEQ ID NO 308 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer R76S78recombfor <400> SEQUENCE: 308 30 gaaaaacgtg ctagctggcg caaggctact <210> SEQ ID NO 309 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer R76S78recombrev <400> SEQUENCE: 309 30 agtageettg egecagetag eacgttttte <210> SEQ ID NO 310 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer G76S78recombfor <400> SEQUENCE: 310 gaaaaaggtg ctagctggcg caaggctact 30 <210> SEQ ID NO 311 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer G76S78recombrev <400> SEQUENCE: 311 agtageettg egecagetag cacetttte 30 <210> SEQ ID NO 312 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE:

00 2010/014099/ 8

-continued

<223> OTHER INFORMATION: Primer S76S78recombfor <400> SEQUENCE: 312 gaaaaaagtg ctagctggcg caaggctact 30 <210> SEQ ID NO 313 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer S76S78recombrev <400> SEQUENCE: 313 agtageettg egecagetag caettttte 30 <210> SEQ ID NO 314 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer T76S78recombfor <400> SEQUENCE: 314 gaaaaaactg ctagctggcg caaggctact 30 <210> SEQ ID NO 315 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer T76S78recombrev <400> SEQUENCE: 315 30 agtageettg egecagetag cagttttte <210> SEQ ID NO 316 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer D76S78recombfor <400> SEQUENCE: 316 gaaaaagatg ctagctggcg caaggctact 30 <210> SEQ ID NO 317 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer D76S78recombrev <400> SEQUENCE: 317 agtageettg egecagetag catetttte 30 <210> SEQ ID NO 318 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Unknown R76D78recombfor <400> SEQUENCE: 318

	-continued
gaaaaacgtg ctgactggcg caaggctad	t 30
<210> SEQ ID NO 319	
<211> LENGTH: 30	
<212> TYPE: DNA <213> ORGANISM: UNKNOWN	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	R76D78recombrev
<400> SEQUENCE: 319	
agtageettg egecagteag caegttttt	c 30
<210> SEQ ID NO 320	
<211> LENGTH: 30	
<212> TYPE: DNA	
<213> ORGANISM: UNKNOWN <220> FEATURE:	
<2223> OTHER INFORMATION: Primer	G76D78recombfor
<400> SEQUENCE: 320	
gaaaaaggtg ctgactggcg caaggctad	t 30
<210> SEQ ID NO 321	
<211> LENGTH: 30	
<212> TYPE: DNA	
<213> ORGANISM: UNKNOWN	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	G76D78recombrev
<400> SEQUENCE: 321	
agtageettg egecagteag eacetttt	c 30
<210> SEQ ID NO 322	
<211> LENGTH: 30	
<212> TYPE: DNA	
<213> ORGANISM: UNKNOWN	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	S76D78recombfor
<400> SEQUENCE: 322	
gaaaaaagtg ctgactggcg caaggctad	t 30
<210> SEQ ID NO 323	
<211> LENGTH: 30	
<212> TYPE: DNA	
<213> ORGANISM: UNKNOWN	
<220> FEATURE:	
<223> OTHER INFORMATION: Primer	S76D78recombrev
<400> SEQUENCE: 323	
agtagccttg cgccagtcag cacttttt	c 30
<210> SEQ ID NO 324	
<211> LENGTH: 30	
<212> TYPE: DNA	
<213> ORGANISM: UNKNOWN	
<220> FEATURE: <223> OTHER INFORMATION: Primer	T76D78recombfor
<400> SEQUENCE: 324	
gaaaaaactg ctgactggcg caaggctad	t 30
210 CEO ID NO 225	

<211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer T76D78recombrev <400> SEQUENCE: 325 agtageettg egecagteag eagttttte 3.0 <210> SEQ ID NO 326 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer D76D78recombfor <400> SEQUENCE: 326 gaaaaagatg ctgactggcg caaggctact 30 <210> SEQ ID NO 327 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer D76D78recombrev <400> SEQUENCE: 327 agtageettg egecagteag catetttte 30 <210> SEQ ID NO 328 <211> LENGTH: 56 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer 1994hisrev <400> SEQUENCE: 328 tgactcgagc ggccgcggat ccttagtggt ggtggtggtg gtgtcctgcc actgca 56 <210> SEQ ID NO 329 <211> LENGTH: 51 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer pGV1994ep_for <400> SEQUENCE: 329 cggtcttcaa tttctcaagt ttcagtttca tttttcttgt tctattacaa c 51 <210> SEQ ID NO 330 <211> LENGTH: 35 <212> TYPE: DNA <213> ORGANISM: UNKNOWN <220> FEATURE: <223> OTHER INFORMATION: Primer pGV1994ep_rev <400> SEQUENCE: 330 ctaactcctt ccttttcggt tagagcggat gtggg 35

What is claimed is:

1. A recombinant microorganism comprising an engineered metabolic pathway for producing isobutanol under aerobic and anaerobic conditions, wherein said recombinant microorganism produces isobutanol under anaerobic conditions at a rate higher than a parental microorganism comprising a native or unmodified metabolic pathway.

2. The recombinant microorganism of claim 1, wherein said engineered metabolic pathway comprises an overexpressed transhydrogenase that converts NADH to NADPH.

3. The recombinant microorganism of claim **2**, wherein said transhydrogenase is a membrane-bound transhydrogenase.

4. The recombinant microorganism of claim **3**, wherein said membrane-bound transhydrogenase is encoded by the *Escherichia coli* pntAB genes.

5. The recombinant microorganism of claim **1**, wherein said engineered metabolic pathway comprises an NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase.

6. The recombinant microorganism of claim **5**, wherein said NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase is encoded by the *Clostridium acetobutylicum* gapC gene or the *Kluyveromyces lactis* GDP1 gene.

7. The recombinant microorganism of claim 1, wherein said engineered metabolic pathway comprises one or more enzymes catalyzing conversions in said engineered metabolic pathway that are not catalyzed by glyceraldehyde-3-phosphate dehydrogenase, and wherein said one or more enzymes have increased activity using NADH as a cofactor.

8. The recombinant microorganism of claim **7**, wherein said engineered metabolic pathway comprises genes encoding an NADH-dependent ketol-acid reductoisomerase (KARI) and an NADH-dependent alcohol dehydrogenase (ADH).

9. The recombinant microorganism of claim **8**, wherein said KARI and/or said ADH are identified in nature with increased activity using NADH as a cofactor as compared to the wild-type *E. coli* KARI llvC and a native *E. coli* ADH YqhD, respectively.

10. The recombinant microorganism of claim **9**, wherein said KARI and/or said ADH show at least a 10-fold higher catalytic efficiency using NADH as the cofactor as compared to the wild-type *E. coli* KARI llvC and a native *E. coli* ADH YqhD, respectively.

11. The recombinant microorganism of claim 8, wherein said KARI and/or said ADH have been modified or mutated to have increased activity using NADH as a cofactor as compared to the wild-type *E. coli* KARI llvC and a native *E. coli* ADH YqhD, respectively.

12. The recombinant microorganism of claim **11**, wherein said KARI and/or said ADH show at least a 10-fold higher catalytic efficiency using NADH as the cofactor as compared to the wild-type *E. coli* KARI llvC and a native *E. coli* ADH YqhD, respectively.

13. The recombinant microorganism of claim 11, wherein said KARI and/or said ADH have been modified or mutated to be NADH-dependent.

14. The recombinant microorganism of claim 8, wherein said KARI enhances the recombinant microorganism's ability to convert acetolactate to 2,3-dihydroxyisovalerate under anaerobic conditions.

15. The recombinant microorganism of claim **8**, wherein said KARI enhances the recombinant microorganism's ability to utilize NADH for the conversion of acetolactate to 2,3-dihydroxyisovalerate.

16. The recombinant microorganism of claim **11**, wherein said KARI comprises two or more mutations or modifications at positions corresponding to amino acids selected from the group consisting of: (a) alanine 71 of the wild-type *E. coli* llvC (SEQ ID NO 13); (b) arginine 76 of the wild-type *E. coli* llvC; (c) serine 78 of the wild-type *E. coli* llvC; and (d) glutamine 110 of the wild-type *E. coli* llvC.

17. The recombinant microorganism of claim **16**, wherein said alanine 71 residue of said KARI is replaced with a serine residue, said arginine 76 residue is replaced with an aspartic acid residue, said serine 78 residue is replaced with an aspartic acid residue, and said glutamine 110 residue is replaced with a valine residue.

18. The recombinant microorganism of claim **16**, wherein said KARI has at least about a 25% increased catalytic efficiency with NADH as compared to the wild-type KAR1.

19. The recombinant microorganism of claim **16**, wherein the catalytic efficiency of the KARI with NADH is at least about 25% of the catalytic efficiency with NADPH of the wild-type KAR1.

20. The recombinant microorganism of claim **16**, wherein the KARI preferentially utilizes NADH rather than NADPH.

21. The recombinant microorganism of claim **16**, wherein the KARI demonstrates a switch in cofactor preference from NADPH to NADH as compared to a corresponding wild-type KAR1.

22. The recombinant microorganism of claim **16**, wherein the KARI exhibits at least about a 1:1 ratio of catalytic efficiency (k_{cat}/K_M) with NADH over catalytic efficiency with NADPH.

23. The recombinant microorganism of claim **16**, wherein the KARI exhibits at least about a 1:10 ratio of K_M for NADH over K_M for NADPH.

24. The recombinant microorganism of claim 16, wherein the KARI is selected from the group consisting of Escherichia coli (GenBank No: NP_418222, SEQ ID NO 13), Saccharomyces cerevisiae (GenBank No: NP_013459, SEQ ID NO: 70), Methanococcus maripaludis (GenBank No: YP_001097443, SEQ ID NO: 71), Bacillus subtilis (Gen-Bank Nos: CAB14789, SEQ ID NO: 72), Piromyces sp (Gen-Bank No: CAA76356, SEQ ID NO: 73), Buchnera aphidicola (GenBank No: AAF13807, SEQ ID NO: 74), Spinacia oleracea (GenBank Nos: Q01292 and CAA40356, SEQ ID NO: 75), Oryza sativa (GenBank No: NP_001056384, SEQ ID NO: 76) Chlamvdomonas reinhardtii (GenBank No: XP_001702649, SEQ ID NO: 77), Neurospora crassa (Gen-Bank No: XP_961335, SEQ ID NO: 78), Schizosaccharomyces pombe (GenBank No: NP_001018845, SEQ ID NO: 79), Laccaria bicolor (GenBank No: XP_001880867, SEQ ID NO: 80), Ignicoccus hospitalis (GenBank No: YP_001435197, SEQ ID NO: 81), Picrophilus torridus (GenBank No: YP_023851, SEQ ID NO: 82), Acidiphilium cryptum (GenBank No: YP_001235669, SEQ ID NO: 83), Cyanobacteria/Synechococcus sp. (GenBank No: YP_473733, SEQ ID NO: 84), Zymomonas mobilis (Gen-Bank No: YP_162876, SEQ ID NO: 85), Bacteroides thetaiotaomicron (GenBank No: NP_810987, SEQ ID NO: 86), Vibrio fischeri (GenBank No: YP_205911, SEQ ID NO: 87), Shewanella sp (GenBank No: YP_732498, SEQ ID NO: 88), Gramella forsetti (GenBank No: YP_862142, SEQ ID NO: 89), *Psychromonas ingrhamaii* (GenBank No: YP_942294, SEQ ID NO: 90), and *Cytophaga hutchinsonii* (GenBank No: YP_677763, SEQ ID NO: 91).

25. The recombinant microorganism of claim 16, wherein the KARI is derived from a genus selected from the group consisting of Escherichia, Zymomonas, Staphylococcus, Corynebacterium, Clostridium, Salmonella, Pseudomonas, Bacillus, Lactobacillus, Lactococcus, Enterobactor, Enterococcus, Klebsiella, Saccharomyces, Kluyveromyces, Pichia, Hansenula, Candida, Trichosporon, Yamadazyma, Schizosaccharomyces, Cryptococcus, Aspergillus, Neurospora, Piromyces, Orpinomyces, and Neocallimastix, Piromyces, Buchnera, Spinacia, Oryza, Chlamydomonas, Neurospora. Schizosaccharomyces, Laccaria, Ignicoccus, Picrophilus, Acidiphilium, Cyanobacteria/Synechococcus, Bacteroides, Methanococcus, Vibrio, Zvmomonas. Shewanella, Gramella, Psychromonas, and Cytophaga.

26. The recombinant microorganism of claim **16**, wherein the KARI has further been codon optimized for expression in a host cell, and wherein said host cell is yeast.

27. The recombinant microorganism of claim **16**, wherein the KARI is selected from the group consisting of SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42 and SEQ ID NO: 44.

28. The recombinant microorganism of claim **1**, wherein said engineered metabolic pathway comprises a first dehydrogenase and a second dehydrogenase that catalyze the same reaction, and wherein the first dehydrogenase is NADH-dependent and wherein the second dehydrogenase is NADPH dependent.

29. The recombinant microorganism of claim **28**, wherein said first dehydrogenase is encoded by the *E. coli* gene maeA and the second dehydrogenase is encoded by the *E. coli* gene maeB or wherein said first dehydrogenase is encoded by the *E. coli* gene maeA and the second dehydrogenase is encoded by the *S. cerevisiae* gene MAE1.

30. The recombinant microorganism of claim **1**, wherein said engineered metabolic pathway comprises a replacement of a gene encoding for pyk or homologs thereof with a gene encoding for ppc or pck or homologs thereof.

31. The recombinant microorganism of claim **30**, wherein said engineered metabolic pathway further comprises the overexpression of the genes mdh and maeB or wherein said engineered metabolic pathway further comprises the overexpression of the *S. cerevisiae* genes MDH1 and MAE1.

32 . A recombinant microorganism according to claim 1,						
wherein said i	recombinant mi	croorganism is	selected from			
GEVO1846,	GEVO1886,	GEVO1993,	GEVO2158,			
GEVO2302,	GEVO1803,	GEVO2107,	GEVO2710,			
GEVO2711,	GEVO2712,	GEVO2799,	GEVO2847,			
GEVO2848,	GEVO2849,	GEVO2851,	GEVO2852,			
GEVO2854. C	EVO2855 and G	GEVO2856.				

33. The recombinant microorganism of claim **1**, wherein said recombinant microorganism produces said isobutanol under anaerobic conditions at a yield which is at least about the same yield as under aerobic conditions.

34. The recombinant microorganism of claim **1**, wherein said recombinant microorganism produces isobutanol at substantially the same rate under anaerobic conditions as the parental microorganism produces under aerobic conditions.

35. The recombinant microorganism of claim **1**, wherein said engineered metabolic pathway is balanced with respect to NADH and NADPH as compared to a native or unmodified metabolic pathway from a corresponding parental microorganism, and wherein said native or unmodified metabolic pathway is not balanced with respect to NADH and NADPH.

36. A method of producing isobutanol under anaerobic conditions, comprising:

- (a) providing a recombinant microorganism according to claim 1;
- (b) cultivating the recombinant microorganism under anaerobic conditions in a culture medium containing a feedstock providing the carbon source, until a recoverable quantity of isobutanol is produced; and
- (c) recovering isobutanol.

37. The method according to claim **36**, wherein the recombinant microorganism is selected from:

- (i) *E. coli* that produces isobutanol at a yield of greater than 80% theoretical; and
- (ii) Yeast that produces isobutanol at a yield of greater than 30% theoretical.

38. The method according to claim **36**, wherein isobutanol is produced under anaerobic conditions at a yield which is at least about the same yield as under aerobic conditions.

39. A mutant ketol-acid reductoisomerase (KARI) comprising two or more mutations or modifications at positions corresponding to amino acids selected from the group consisting of: (a) alanine 71 of the wild-type *E. coli* llvC (SEQ ID NO: 13); (b) arginine 76 of the wild-type *E. coli* llvC; (c) serine 78 of the wild-type *E. coli* llvC; and (d) glutamine 110 of the wild-type *E. coli* llvC.

* * * * *