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Abstract of the Disclosure

A new design procedure for constructing a family of DES-like
Substitution-Permutation Network (SPN) cryptosystems with desirable '
cryptographic properties including provable resistance to differential
cryptanalysis, linear cryptanalysis, and related-key cryptanalysis 1s
described. New cryptosystems, called CAST ciphers, constructed
according to the procedure are also described. Details of the design
choices in the procedure are given, including those regarding the
component substitution boxes (s-boxes), the overall framework, the key
schedule, and the round function. A fully specified example CAST
cipher, an output of this design procedure, 1s presented as an aid to
understanding the concepts and to encourage detailed analysis by the

cryptologic community.
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Constructing Symmetric Ciphers Using the CAST Design
Procedure”

Field of the Invention

The 1invention resides generally in symmetric cryptosystems and their construction
procedures. In particular, it 1s directed to new ciphers which belong in a family of
DES-like substitution-permutation network cryptosystems and to methods of
cryptographically transforming plaintext into ciphertext using such novel ciphers.
The invention relates also to prcedures for constructing such new ciphers.

Background of the Invention

1. Introduction and Motivation

This paper describes the CAST design procedure for a family of encryption
algorithms. The ciphers produced, known as CAST ciphers, are provably resistant
to differential cryptanalysis [8], linear cryptanalysis [31], and related-key
cryptanalysis [13]. Furthermore, they can be shown to posses a number of
desirable cryptographic properties such as avalanche [19, 20], Strict Avalanche
Criterion (SAC) [49], Bit Independence Criterion (BIC) [49], and an absence of
weak and semi-weak keys [25, 16, 36]. CAST ciphers are based on the well-
understood and extensively-analyzed framework of the Feistel cipher {19, 20] — the
framework used in DES - but with a number of improvements (compared to DES)
in both the round function and the key schedule which guarantee good
cryptographic properties in fewer rounds than DES. These ciphers theretfore have
very good encryption / decryption performance (comparing very favourably with
many alternatives of similar cryptographic strength) and can be designed with

parameters which make them particularly suitable for software implementations on
32-bit machines.

The search for a general-purpose design procedure for symmetric encryption
algorithms 1s motivated by a number of factors, including the following.

* Version: Fri., Sept. 29, 1995.
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e Despite years of speculation and warning regarding the inevitable limit to the

useful lifetime of the Data Encryption Standard (as originally defined in [37]),
this algorithm remains firmly entrenched in a number of environments partly

because there 1s no obvious candidate for a DES replacement with acceptable
speed and security.

e New and powerful cryptanalytic attacks have forced re-designs of suggested

candidates such as FEAL [34, 35, 9], LOKI [14, 10, 15], and IDEA [29, 30].
Thus, such attacks must be accounted for and avoided in the design procedure
itself, so that algorithms produced by the procedure are known to be immune to
these attacks.

e The continued disparity between “domestic-strength” cryptography and

“exportable-strength” cryptography, along with the potential for multiple
flavours of exportable-strength cryptography (perhaps depending on
“commercial escrow’’ considerations), means that the paradigm of a single DES
replacement algorithm almost certainly has to be abandoned in favour of a
design procedure describing a family of algorithms where keysize is at least one
parameter defining a specific instance of the family. Recent cipher proposals

such as RC-2, RC-4, and RC-5 have recognized and addressed this
requirement. -

1.1. Background

Some aspects of the CAST design procedure were discussed in [1, 5-7].
Analysis of CAST-like ciphers containing purely randomly-generated s-boxes with
respect to both linear and differential cryptanalysis was presented in [24, 28]. As
well, cryptanalysis of a 6-round CAST cipher was described in [43]; this statistical
attack requires a work factor of roughly 243 operations.

1.2. Outline of the Paper

The remainder of the paper is organized as follows. Section 2 presents an
overview of the CAST design procedure, with subsections covering substitution
box design, Feistel-type Substitution-Permutation Network (SPN) considerations,
the importance of key scheduling, and possibilities for the round function. Section
3 presents a deeper treatment of the design procedure, giving further details, along
with assertions and theorems, regarding these four main aspects of CAST cipher
design. The fourth section covers design alternatives available for both the SPN
framework and the implementation of the round function. Section 5, along with
Appendix A, gives the full specification for an example CAST cipher, one produced
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using the design procedure described 1n this paper. Finally, Section 6 closes the
paper with some concluding comments.

Objects of the Invention

It 1s therefore an object of the inventio to provide a novel construction procedure
for symmetric ciphers.

It is another object of the invention to provide novel symmetric ciphers which
have one or more desirable properties such as resistance to differential
cryptanalysis, linear cryptanalysis, and related-key cryptanalysis.

It is a further object of the invention to provide a method of cryptographically
transforming palintext into ciphertex using novel round functions.

Summary of the Invention

Briefly stated, according to one aspect, the invention relates to a data encryption
method of cryptographically transforming plaintext into ciphertext in data blocks ot
a predetermined bitlength comprising a plurality of consecutive transformation
rounds of half of each data block. Each consecutive transformation round
comprises steps of combining the half data block with a first masking key of
predetermined length using a first binary operation to generate a first modified halt
data block and combining the first modified half data block with a second masking
key of predetermined length using a second (different) binary operation to generate
a second modified half data block. The method fruther includes steps of processing
the second modified half data block by a plurality of (m x n) mutually different
substitution boxes to generate a third modified half data block and XORing the third
modified half data block with the remaining half of the data block to generate a
transformed half data block of a transformation round.

Brief Description of the Drawings
Figure 1 is a known SPN (Substitution-Permutation Network) cipher.
Figure 2 shows a round function according to one embodiment of the invention.

Detailed Description of the Preferred Embodiments of the Invention
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2. Overview of the CAST Design Procedure

This section gives a brief overview of the concepts and considerations relevant
to the CAST design procedure. The four main aspects of a CAST cipher (s-boxes,
framework, key schedule, and round function) are covered in separate subsections.

2.1. S-Box Design Overview

An mXn substitution box 1s a 2”xn lookup table, mapping m input bits to »

output bits. It substitutes, or replaces, the input with the output in a nonlinear way
so that any change to the input vector results in a random-looking change to the
output vector which is returned. The substitution layer in an SPN cipher is of
critical importance to security since it is the primary source of nonlinearity in the
algorithm (note that the permutation layer 1s a linear mapping from input to output).

The dimensions m and » can be of any size; however, the larger the dimension
m, the (exponentially) larger the lookup table. For this reason m 1s typically chosen
to be less than 10. The CAST design procedure makes use of substitution boxes
which have fewer input bits than output bits (e.g., 8X32); this is the opposite of

DES and many other ciphers which use s-boxes with more input bits than output
bits (e.g., 6x4).

Research into cipher design and analysis suggests that s-boxes with specific
properties are of great importance in avoiding certain classes of cryptanalytic attacks
such as differential and linear cryptanalysis. Furthermore, it 1s significantly more
difficult (and, in some cases, impossible) to satisfy certain properties using “small”
s-boxes. The CAST design procedure therefore incorporates a construction
algorithm for “large™ s-boxes which possess specific cryptographic properties.

2.2. Framework Design Overview

Ciphers designed around a new basis for cryptographic security (most notably
RC-5, based upon the conjectured security of data-dependent rotation operations)
may prove to be extremely attractive candidates for DES replacement algorithms,
but are not yet mature enough to be recommended for widespread use. The CAST
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procedure 1s 1nstead based upon a framework which has been extensively analysed
by the cryptologic community for several decades.

The CAST framework 1s the “Substitution-Permutation Network™ (SPN)
concept as originally put forward by Shannon [46]. SPNs are schemes which
alternate layers of bit substitutions with layers of bit permutations, where the
number of layers has a direct impact on the security of the cipher. Furthermore,
CAST uses the Feistel structure [19, 20] as opposed to the “tree structure” [22, 23]
to implement the SPN. This is because the Feistel structure 1s well-studied and
appears to be free of basic structural weaknesses, whereas the tree structure has
some 1nherent weaknesses [22, 41] unless a significant number of layers are added

(which may destroy the one property, “completeness”!, which tree structures are
provably able to achieve).

The following diagram illustrates a general Feistel-structured SPN. Basic

operation 1s as follows. A message block of » bits is input and split into a left half
L and a night half R. The right half and a subkey Kj are input to a “round function”,

f1, the output of which is used to modify (through XOR addition) the left half.

Swapping the left and right halves completes round one. This process continues for
as many rounds as are defined for the cipher. After the final round (which does not
contain a swap in order to simplify implementation of the decryption process), the
left and right halves are concatenated to form the ciphertext.

The parameters which can be selected for the framework are the blocksizes (the
number of bits in both the plaintext and ciphertext data blocks) and the number of
rounds. For all cases “higher” typically means greater security but (particularly for
the number of rounds) reduced encryption / decryption speed. In practice, it is
common to choose the plaintext and ciphertext blocksizes to be equal so that the
encryption process results in no data expansion (an important consideration in many
applications).

As is evident in recent work by Biham [12] and by Knudsen [27], good s-box
design i1s not sufficient to guarantee good SPN cryptosystems (both results show
that finding 6x4 s-boxes resistant to differential cryptanalysis in 1solation — that 1s,

with relatively flat Output XOR distributions — and putting them directly in DES

ICompleteness states that output bit j can be changed by inverting only input bit i in some input
vector, for all i, j [26].
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makes the “improved’ algorithm much more susceptible to differential cryptanalysis
than the original?). It is therefore of great importance to design the substitution-
permutation network such that it takes advantage of the good properties of the s-
boxes without introducing any cryptographic weaknesses.

2.3. Key Schedule Design Overview

Keying in the CAST design procedure 1s done in the manner typical for Feistel
networks. That 1s, an input key (a “primary key”) is used to create a number of
subkeys according to a specified key scheduling algorithm; the subkey for a given
round is 1nput to the round function for use in modifying the input data for that
round.

The design of a good key schedule is a crucial aspect of cipher design. A key
schedule should possess a number of properties, including some guarantee of
key/ciphertext Strict Avalanche Criterion? and Bit Independence Criterion4 in order
to avoid certain key clustering attacks [23, 48]. Furthermore, it should ensure that
the primary key bits used 1n round i to create subkey i are different from those used
in round i+1 to create subkey i+1 (this 1s due to the work of Grossman and
Tuckerman [21], who showed that DES-like cryptosystems without a key that
varies through successive rounds can be broken). Finally, if any key bit 1s used 1n
round N (the last round) for the first time then the network fails the key/ciphertext
completeness testd, since complementing that bit can affect at most half the

2Note that the susceptibility of DES-like cryptosystems employing flat-output-XOR-distribution
s-boxes to differential cryptanalysis 1s due primarily to the fact that these s-boxes have more input
bits than output bits [5], and not to the fact that the output XOR distribution 1s flat, as was
implied 1n (12, 45]. This is one of the main reasons that the CAST design procedure has
concentrated on mxn s-boxes where m << n.

3The Strict Avalanche Criterion (SAC) states that s-box output bit j should change with
probability 1/2 when any single input bit i is inverted, for all 7, j (note that for a given i and j the

probability is computed over the set of all pairs of input vectors which differ only in bit i) [48,
49].

4The (output) Bit Independence Criterion (BIC) states that s-box output bits j and & should change
independently when any single input bit i is inverted, for all , j, k (note that for a given i, j, and &
the independence is computed over the set of all pairs of input vectors which differ only in bit i)

[48, 49].

INote that completeness tests can involve the input and output of an s-box, the input and output
of a round function, the plaintext and ciphertext of a cipher, or the key and ciphertext of a cipher.
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ciphertext bits. All key bits must therefore be used by round N-1. In fact, the
CAST procedure stipulates that they all be used by at most round N/2 and reused,
after one or more “key transformations’ (see detailed key schedule in Section 3.3),
in the lower halt of the network (this ensures good key avalanche for both
encryption and decryption, as well as other properties discussed in Section 3.3).

The critical difference between the key schedule proposed in the CAST design
procedure and other schedules described in the open literature is the dependence
upon substitution boxes for the creation of the subkeys. Other key schedules (the
one In DES, for example) typically use a complex bit-selection algorithm to select
bits of the primary key for the subkey for round i. As is clear from the work by
Biham [13], any weaknesses in this bit selection algorithm can lead to simple
cryptanalysis ot the cipher, regardless of the number of rounds. The schedule
proposed in CAST instead uses a very simple bit-selection algorithm and a set of
“key schedule s-boxes™ to create the subkey for each round. These s-boxes must

possess specific properties to ensure cryptographically good key schedules (see
Section 3.3 below).

2.4. Round Function Design Overview

The round function in CAST, as stated above, makes use of s-boxes which
have fewer input bits than output bits. This 1s accomplished as follows. Within the
round function the input data half is modified by the subkey for that round and 1s
split into several pieces. Each piece is input to a separate substitution box; the s-box
outputs are combined; and the result is the output of the round function. Although
each mXxn s-box on its own necessarily causes data expansion (since m<n), using
the set of s-boxes in this way results in no expansion of the message half, allowing
the SPN to have input and output blocksizes which are equal.

2.4.1. Avoiding Certain Attacks

Another aspect of round function design involves a specific proposal to guard
against differential and linear attacks. Differential [8, 12] and linear [31]
cryptanalysis appear to be fairly general-purpose attacks which may be applied to a
variety of substitution-permutation network (DES-like) ciphers. The successful (in
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a theoretical sense) attacks on DES have been widely reported, as have attacks on
FEAL, LOKI, Snefru, and generalized versions of DES, among others [9-11].
Both methods work on the principle of finding high-probability attacks on a single
round and then building up “characteristics” (sets of consecutive rounds which
interact in useful ways); characteristics which include a sufficient number of rounds
can lead to cryptanalysis of the cipher. The probability of a characteristic is equal to
the product of the probabilities of the included rounds; this “characteristic
probability” determines the work factor of the attack. If the work factor of the
attack is less than the work factor for exhaustive search of the key space, the cipher
1s theoretically broken.

From the above description it can be seen that adding rounds to a DES-like
cipher can always be done to increase the work factor of a differential or linear
attack, until the work factor surpasses that of exhaustive key search. This makes
the cipher computationally resistant to these attacks. The disadvantage of this
approach is that the encryption/decryption speed of the cipher is reduced, perhaps
drastically, since each added round slows the cipher down by a factor of 1/N,
where N 1s the number of rounds in the original cipher.

An alternate approach which has been pursued by a number of researchers is to
decrease the attack probability of an individual round by improving the properties of
the round s-boxes (see [4, 3, 18, 39, 45, 47], for example). This results in a lower
characteristic probability for the same number of rounds and therefore has the
potential to make the cipher resistant to these attacks without degrading throughput.
However, there is always the possibility that for a given cipher the round
probability cannot be made low enough to avoid the need to add rounds.
Furthermore, there 1s always the possibility that for a given cipher the best

characteristic has not yet been found (and when it is found, it will render the cipher
breakable).

The approach proposed in the CAST design procedure is neither of the above.
Instead, a slight alteration 1s suggested for the typical DES-like round function
which renders it “intrinsically immune” (as opposed to computationally immune) to
differential and linear cryptanalysis. Such an alteration is generally applicable to all
DES-like ciphers and may, in some ciphers, be added with little degradation in
encryption / decryption speed.
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3. Detailed Design

This section covers the four main aspects of a CAST cipher (s-boxes,
framework, key schedule, and round function) in more detail than the previous

section and provides a number of proofs regarding the cryptographic properties
relevant to each aspect.

3.1. Detailed S-Box Design

For the design of mxn (m < n) s-boxes®, let n be an integer multiple of m; in

particular, let n=rm where r>1 and r is chosen such that m < logoC(n,n/2) = logo( “n
choose nf2” ). Such s-boxes can be constructed as follows. Choose n distinct
binary bent (see, for example, [38, 42, 3]) vectors ¢; of length 27 such that linear
combinations of these vectors sum (modulo 2) to highly nonlinear vectors
(Nyberg's work [39] shows that these linear combinations cannot all be bent since
m<2n; however, it is important that they be highly nonlinear or the resulting s-box
will not come close to satisfying the Output Bit Independence Criterion).
Furthermore, choose half the ¢; to be of weight (27-1 + 2(m/2)-1) and the other half
to be of weight (27-1 - 2(m/2)-1); these are the two weights possible for binary bent
vectors of length 2™, Set the n vectors ¢; to be the columns of the matrix M

representing the s-box.

Check that M has 2™ distinct rows and that the Hamming weight of each row
and the Hamming distance between pairs of rows is close to n/2 (i.e., that the set of
welghts and the set of distances each have a mean of n/2 and some suitably small —
but nonzero — variance)’. As well, if the i row of M is denoted by r;, it should be
verified that (r; @ rj) # (i @ j) for any i,j € {1, ..., 2™}, i #j so that a non-zero
input XOR 1s never equal to its resulting output XOR in the s-box (which may

6 An mxn s-box is represented as a 2”'xn binary matrix M where each column is a vector which
corresponds to a Boolean function of the m input variables and which defines the response of a

single output bit to any given input. Row i of M, I1<i<2™, is therefore the n-bit output vector
which results from the i## input vector.

"Note that this is impossible if m2n but 1S quite feasible if 2 < C(n,n/2).
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greatly facilitate finding a differential characteristic for the cipher). This latter
condition will, in general, hold if the Hamming distance condition is met. If these

conditions are not all satisfied, continue choosing suitable bent vectors (i.e.,
candidate ¢;) and checking the resulting matrix until the conditions are satisfied.

Note that it is not difficult to construct 8x32 s-boxes which meet these conditions.

The following assertions and theorems apply to substitution boxes constructed
according to the above procedure.

Assertion 1: Requiring each column of an mXxn s-box (where m < logoC(n,n/2))

to be bent and each row to have Hamming weight approximately »/2 ensures that
the s-box will provide good confusion.

Discussion: According to Shannon [46], the purpose of “confusion” in a cipher
1S to make the relation between the statistics of the output and a simple description
of the input a very complex and involved one. The conditions on the s-box rows
and columns ensure that the s-box outputs behave statistically like a collection of
random binary vectors of length n. Therefore, any relation between this set of
vectors and a simple description of the input vectors cannot be trivial.

Assertion 2: S-boxes with more output bits than input bits accomplish diffusion.

Discussion: The purpose of “diffusion” in a cipher is to dissipate the local
statistical structure 1n the input into long-range statistics (those involving long — or
longer — combinations of output bits) [46]. S-boxes of size mXxn (m < n)
accomplish this because all n output bits depend on the m input bits, so that any
statistical structure inherent in the input will be spread out over the output bits.

Assertion 3: Requiring the sum (modulo 2) of any pair of rows in an mXxn s-box
to have Hamming weight approximately n/2 ensures that the s-box will provide
good avalanche for any given input vector.

Discussion: As discussed in [19, 20] (and echoed in [26]), “avalanche” refers to
the property that approximately half the output bits change when any small change
1s made to the input (1.e., a small input change causes an “avalanche effect” which
results in a large, unpredictable change in the output). The condition that any pair
of rows 1s approximately »/2 bits apart in Hamming distance clearly provides good
avalanche since it ensures that any input change (i.e., including small input
changes) results in a change of approximately half the output bits.



10

15

20

25

30

2164768

11

Theorem 1: Using bent binary vectors as the columns of the 2”x»n matrix which

describes an s-box ensures that the s-box will respond “ideally” in the sense of
highest-order strict avalanche criterion [2, 4]8 to arbitrary changes in the input
veCtor.

Proof: Highest-order SAC is guaranteed for each output bit — this is a property of
bent Boolean functions which was proven in [32]. By definition [49], an s-box
satisfies the highest-order SAC if and only if each of its output bits satisfies the
highest-order SAC.

Theorem 2: If the columns in the s-box matrix are bent vectors which are highly
nonlinearly related, then the s-box will show close proximity to highest-order
(output) bit independence criterion. That is, any change in the m input bits will
cause each of the n output bits to change virtually independently of all the other
output bits. Furthermore, such s-boxes aid in immunity to linear cryptanalysis
[31].

Proof: It can be shown that if columns ¢ and ¢ sum modulo 2 to a linear vector,
then s-box output bits j and £ will either always change together or never change
together when any input bit i is inverted (i.e., they will have a correlation coefficient
of £1). At the other extreme, if ¢; and ¢ sum to a bent vector, then j and k will
change independently for any input change. Because it is impossible for all column
sums to be bent (since m<2n), the CAST design procedure uses s-boxes which are
partially bent-function-based, where many of the column sums are bent and the
remainder are nonlinear but not bent. Using the highest (non-bent) nonlinearity
possible ensures that bits j and k£ will act “virtually” independently (i.e., will have a
correlation coetficient which is nonzero, but as small as possible), for all input
changes. In highest-order BIC the sums of all column subsets are considered (not
just pairs). Requiring that these sums have the highest nonlinearity possible
guarantees that the s-box will have close proximity to highest-order BIC®. Such s-
boxes aid 1n immunity to linear cryptanalysis because there is no linear combination

of component functions which has a small Hamming distance to an affine Boolean
function (see the discussion in Section 8.1 of [45]). ¢

PP AP AP S

SThis has independently been called the Propagation Criterion of degree n in [42].

Note that highest-order BIC itself (i.e., total independence of output bits over the full set of input
changes) cannot be achieved except in Nyberg's "perfect nonlinear” 2nxn s-boxes [39], where all
column sums are bent.
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Theorem 3: mxn s-boxes designed according to the above procedure can be made
to be &-robust against differential cryptanalysis, where (1-2M2) <g<(1-21-m),

Proof: The definition of robustness against differential cryptanalysis for an s-box
1s given in terms of €[45]: €=(1-A(27™))(1-B(27") ), where A is the largest
value 1n the difference distribution table of the s-box and B is the number of
nonzero entries 1n the first column of the table (the value 27 in the first row is not
counted 1n either case). Given that m < n and all input vectors are mapped to unique
output vectors, B equals zero (i.e., there are no input XORs which result in output

XORs of zero). Thus, it is sufficient to show that s-boxes can be constructed such
that 2 <A <2m/2,

Let a CAST s-box be constructed by beginning with Nyberg's “perfect nonlinear”
mxm/2 s-box and adding binary bent vectors as matrix columns until the full 27xn
matrix M 1s complete (adhering to the design constraints given above). Without
loss of generality, assume that the first 7/2 columns of M correspond to a perfect
nonlinear s-box (i.e., these columns are bent and all nonzero linear combinations of
these columns (modulo 2) are also bent). Consider the 27-1xn matrix M’ of
avalanche vectors corresponding to a given change in the s-box input (see [4] for
details). In this matrix all columns are of Hamming weight 2"-2 (since the columns
of M are bent) and all nonzero linear combinations of the first m/2 columns are also
of Hamming weight 27-2 (linear combinations of other subsets of columns will be
of Hamming weight greater than or less than 27-2 since in M those subsets are
nonlinear but not bent). It is not difficult to see that within the first m/2 columns of
M’, therefore, each m/2-bit “row” will occur exactly T = 2m-1/2m/2 times, so that
regardless of the remaining columns of M’, each full n-bit row can occur a
maximum of T times. Thus, the largest value in the difference distribution table for
this s-box is A <27 = 2m/2, Clearly, each additional column in M’ (beyond the
m/2 1nitial columns) has the ability to reduce T; in the limit (when 7 is sufficiently
large compared with m), every row of M’ is unique, so that 7=1. Therefore A>2.

Remark: Although starting with a perfect s-box provides a guaranteed upper bound
on A, 1n practice the same result can be achieved without the perfect s-box if n is
sufficiently large. For example, it is not difficult to construct 8x32 s-boxes with
A=2 which do not have four component columns which form a perfect s-box. This

is why the use of a perfect s-box has not been made a stipulation of the s-box
design procedure given above. ¢
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3.2. Detailed Framework Design

As was stated previously, the primary parameter options in framework design
are blocksize(s) and number of rounds. It 1s preterable in many applications 1if the
plaintext and ciphertext blocksizes are equal (we will therefore hereafter reter to the
blocksize of a cipher), but aside from the constraint that the blocksize be large
enough to prevent an exhaustive compilation of plaintext / ciphertext pairs for a
single key, the only real blocksize consideration is ease of implementation. On
current machines, 64 bits (the blocksize of DES) is an attractive choice because left
and right data halves and other variables fit nicely into 32-bit registers. However,
in the future another choice may be attractive for other reasons.

The number of rounds in the framework appears to be a much more important
and delicate decision. There need to be enough rounds to provide the desired level
of security, but not so many that the cipher 1s unacceptably slow for its intended
applications. In an SPN of the Feistel type it is clear that the left half of the input
data 1s modified by the output of the round function in rounds 1, 3, 5, 7, and so on,
and the right half is modified in rounds 2, 4, 6, 8, and so on. Thus, 1t is clear that
for equal treatment of both halves the number of rounds must be even. However, it
is less obvious how many rounds is “enough”.

Differential and linear cryptanalysis, the two most powerful attacks currently
known for DES-like ciphers, have helped to quantify this design parameter. It has
long been known, for example, that DES with 5 or 6 rounds can be broken, but not
until 1990, with the introduction of differential cryptanalysis [8], was it clear why
16 rounds were actually used in its design — fewer rounds could not withstand a
differential attack [17]. With subsequent improvements to the differential attack
[11] and with the introduction of linear cryptanalysis, it now appears that 18-20
rounds would be necessary for DES to be theoretically as strong as its keysize.

A prudent design guideline, therefore, is to select a number of rounds which has
an acceptably high work factor for both differential and linear cryptanalysis and then
either add a few more rounds or modify the round function to make these attacks
even more difficult (in order to add a “safety margin™). As will be seen in Section
3.4, the CAST design procedure chooses the second approach for both security and
performance reasons.
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Theorem 4: Ciphers designed according to the CAST procedure are immune to
differential cryptanalysis for an appropriate choice of parameters (in that the work
tactor for differential cryptanalysis is higher than exhaustive search of the
keyspace).

Proof: Recall from above that the largest value in the difference distribution table
of CAST-designed mxn s-boxes is L, where L <2M/2, Therefore, the highest
probability in the table is P = L/2m <2-m/2, Consider now the f function of this
SPN. If a multi-bit change is made to the vector V which is input to f (so that a
change 1s made to the input of each of x of the component s-boxes used for f), then
the differential [30] of f (that is, the most successful differential cryptanalytic attack
for that single round) has probability at most Pr= 2-X(m/2). Therefore, the strategy
for differential cryptanalysis in this cipher must be to change the inputs of the
smallest number of s-boxes possible in f1in each round.

Let AV be an input XOR for f for which the corresponding output XOR is zero. It
is conceivable (although unlikely) that such a AV involves only two s-boxes!?; the

probability of this differential could therefore be as high as P, = 2-2(m/2) = 2-m,

Hence, assuming an N-2 round characteristic (for an N-round cipher), the
probability of the characteristic could be as high as PN-2.

For example parameters (m=8, N=10), therefore, the total differential probability
would be 2-64 (sufficient for a 64-bit key); similarly, a 12-round cipher would be
sutficient tor an 80-bit key. Even if an improved characteristic i1s found
subsequently, recall that 8x32 CAST s-boxes can be found with a differential
probability of 21-7, bringing the probability of the full cipher to approximately 22(1-
m)(N-2), Tt is therefore not difficult to ensure a higher work factor than exhaustive
search of any reasonable keyspace by using CAST with N=12 (or more) rounds. ¢

Theorem 35: Ciphers designed according to the CAST procedure are immune to
linear cryptanalysis for an appropriate choice of parameters (in that the work factor
for linear cryptanalysis 1s higher than exhaustive search of the keyspace).

Proof: The relationship in a CAST cipher between the minimum nonlinearity of
the mXxn substitution boxes i1n the round function (Nyyin), the number of rounds in

101t cannot involve only one s-box (due to the s-box design), and is much more likely to involve 3
or 4 s-boxes 1n f (if such a differential exists at all for the s-boxes chosen in a specific
implementation).
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the overall cipher (N), and the number of known plaintexts required for the

recovery of a single key bit (Nz) has been given by Heys and Tavares [24] (based
on the results in [31]):

22—4N

N, 2

______Zm_l-N. AN
S

Substituting Nyjp = 74 and N = 12 results in NJ, being lower-bounded!! by

approximately 262, so that recovering 64 bits of key would require approximately
268 known plaintexts (more than adequate security for a 64-bit key). It should be
noted that 8x32 s-boxes with minimum nonlinearity Nyjn = 74 have been
constructed using the CAST procedure; more rounds, higher nonlinearity s-boxes,
or additional operations in the round function (see Section 3.4) would all permit

CAST ciphers with longer keys to be used with guaranteed resistance to linear
cryptanalysis. ¢

3.3. Detailed Key Schedule Design

As 1ndicated 1n Section 2.3 above, the key schedule used in the CAST design
procedure has three main components: a relatively simple bit-selection algorithm
mapping primary key bits to “partial key’” bits; one or more “key transformation”
steps; and a set of “key schedule s-boxes™ which are used to create subkeys from
partial keys in each round. An example key schedule for an 8-round algorithm
employing a 64-bit key is as follows.

Let KEY = kjkokskqkskek7ks, where k; is the i byte of the primary key. The
partial keys K'; are selected from the primary key according to the following bit-
selection algorithm: K'j=kjks, K'2=k3ky, K'3=ksks, K'4=k7kg, K's=kq'k3’,
K's=kok;’, K'7=kg'k7', K's=kg'ks’, where KEY 1s transformed to KEY' =
ki'k2'k3'kqe'ks'ke'k7kg' between round 4 and round 5. The key transformation step
1s defined by:

Ki'k2’ks'kq' = kikakzkq @ Sy[ks] @ S2[k7];
ks'ke'k7ks = kskek7ks @ S1[k2’] @ Sa2[k4'].

11Note that it is not currently known how tight this lower bound is for CAST-designed ciphers.
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The bytes of KEY' are used to construct the final four partial keys, as shown

above. The set of partial keys 1s used to construct the subkeys K; using key
shedule s-boxes S; and S»:

Ki=381(K';1) @ $2(K'; 2)

where K; ;denotes the jth byte of K;. Although a similar schedule can be
constructed for a 12- or 16-round system or for different block or key sizes, for

simplicity of notation and concreteness of explanation, the theorems below apply to
the specific example given here.

3.3.1. Definitions Related to Key Scheduling

In a block cipher, an inverse key I for a given encryption key K is defined to be a
key such that ENCyp) = ENCgi(p) = DECg(p) for any plaintext vector p.

Furthermore, a fixed point of a key K 1s a plaintext vector x such that ENCg(x) =
X.

From work done on cycling properties and key scheduling in DES [16, 25, 36], the
following definitions have been introduced. A key is weak if it is its own inverse
(such keys generate a palindromic set of subkeys!? and have 232 fixed points in
DES). A key is semi-weak if it is not weak but its inverse is easily found — there
are two subclasses: a key 1s semi-weak, anti-palindromic if its complement is its
inverse (such keys generate an anti-palindromic set of subkeysl3 and have 232
fixed points in DES); a key 1s semi-weak, non-anti-palindromic if its inverse is also

semi-weak, non-anti-palindromic (such keys generate a set of subkeys with the
property that K; @ Ky4+7.; = V, where N is the number of rounds and V =

000...0111...10r111...1000...0 in DES). DES has 4 weak keys, 4 semi-weak

anti-palindromic keys, and 8 semi-weak non-anti-palindromic keys.

Let H and K be keys which generate sets of subkeys H; and K;,i =1, ..., N,
respectively, for an N-round DES-like (Feistel-type SPN) cipher. We define H to
be a subkey reflection inverse key of K (denoted inversesg) if K; = Hn4+7.,1 =1,

I2A palindromic set of subkeys 1s one with the property that K; @ Ky, ;.; = 0, where N 1s the
number of rounds in the cipher and 0 1s the all-zero vector.

13 An anti-palindromic set of subkeys 1s one with the property that K; @ Ky, ;.; = 1, where N 1s
the number of rounds in the cipher and 7 is the all-one vector.
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..., V. It 1s clear that a subkey reflection inverse key of K is an inverse key of KX
whether the converse always holds true for DES-like ciphers is an open question.
Thus, for a given key K, {H} < {I}. In DES the semi-weak key pairs are subkey
retlection inverses of each other and the weak keys are subkey reflection inverses of
themselves.

3.3.2. Key Schedule Theorems

Theorem 6: Ciphers using the key schedule proposed in Section 3.3 can be
shown to have no inversesg key He {0,1}04 for any key Ke{0,1}64.

Proof: There are two steps to this proof. Let S;[/k2’] @ Sa2[k4’] be equal to the 4-
byte vector ajazaszaq and let S;[ks] @ Sa[k7] be equal to the 4-byte vector b;brb3b4.
In the first (general) step, we prove that for the transformation given in the key
schedule of Section 3.3, if inversegr keys exist for the cipher then aj=ay, az=ay,
bj=by, and b3=b4 all simultaneously hold. The second step, which is specific to
each implementation of the CAST design, is to examine the specific s-boxes chosen
in the implementation to verify that the equalities do not hold simultaneously (note
that s-boxes satisfying this condition do exist).

Step 1
Theorem: For the transformation given in the key schedule of Section
3.3, if inversegRr keys exist for the cipher then a;=a»y, az=ay4, b;=b>, and
 b3=by4 all simultaneously hold, where g; and b; are defined as above.

Proof: Let H and K be cipher keys whose respective key schedules are
given by Section 3.3. If H is the inversesr of K then h;=k¢’, hr=ks’,
hi=kg', hy=k7, hs=ko', hg=kj’, hy=ky4', hg=k3’, and h;'=kg, hy'=ks,
h3'=kg, hy'=k7, hs'=k), hg'=k;, h7'=ky4, hg'=k3. Substituting these
equalities into the key schedule gives:

hi'hp'h3'hy’ = hjhahshg @ Si[hs] @ Sz[h7]
or kekskgky = keksks'ky @ Si[ky’] @ Sa[kq']
= kg'ks'kg’k7 @ ksksk7kg @ ks'kg'k7kg’

hs'hg'h7’hg = hshehyhg @ S1[hy'] @ Sa[hye']
or kakjkqks = ko'kikegks @ Silks] & Sa2[k7]
= ko'kp'kg'ky @ kjkrokskg @ kpko'kz'ky
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Theretore, kg = kg’ @ ks @ ks’ = kg’ @ aj, whence aj=ajr. Similarly, the
remaining substitutions yield az=ay, bj=b;, and b3=b4. Note that these

must hold simultaneously since the equalities given for the 4; and £;
necessarily hold simultaneously. ¢

Step 2:
For any specific implementation of the CAST design, the key schedule
s-boxes (S1 and So) can be examined to determine whether a;=a»,
az=aq, by=bs, and b3=b4 hold simultaneously. If these do not hold
simultaneously then the cipher has been shown to have no inversegr

key H for any given key K (otherwise a new S1 and S» can be chosen
and Step 2 can be repeated). ¢

Although the proof above applies to an 8-round implementation of a CAST
cipher, the result can easily be extended to higher numbers of rounds. This may be
done by modifying the proof itself (using essentially the same format and
procedure, but with notation based on the new key schedule), or simply by using
the eight subkeys above as the first four and last four subkeys in an N-round cipher
(N > 8). This latter approach works because if the cipher has inversegr keys, then
certain equalities must hold between the first four and last four subkeys. Verifying
that the equalities do not hold for these eight subkeys, then, ensures that the N-
round cipher has no inversegr keys.

Theorem 7: Ciphers using the key schedule proposed in this paper are immune to
related-key cryptanalysis.

Proof: There are no related keys in the key schedule described in Section 3.3 (i.e.,
the derivation algorithm of a subkey from previous subkeys 1s not the same 1n all
rounds because of the construction procedure and the transformation step), and so
ciphers using this key schedule are not vulnerable to the *“chosen-key-chosen-
plaintext”, “chosen-key-known-plaintext”, or “chosen-plaintext-unknown-related-
keys” attacks [13]. Furthermore, the CAST procedure has no known
complementation properties (unlike DES, for example) and so CAST-designed

ciphers appear not to be vulnerable to reduced key searches based on this type of
weakness. ¢
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3.3.3. Discussion of Key Scheduling Theorems

The above properties of the key schedule are due to the fact that s-boxes are
employed in the schedule itself (i.e., in the generation of the subkeys), rather than
simply in the use of the subkeys. To the author's knowledge, this is a novel
proposal in key scheduling which appears to have some interesting properties.

Conjecture: Ciphers using the key schedule proposed in Section 3.3 have no
easily-found fixed points for any key.

Discussion: From Theorem 6 above, this key schedule avoids all inverseggr
keys. It 1s therefore guaranteed to avoid the fixed points associated with weak and
semi-weak keys in DES (since using this key schedule in DES would guarantee the
non-existance of weak and semi-weak keys). It can be shown that a large random
mapping from a set of binary vectors onto itself has a non-zero expected number of
fixed points [40]. Since a cryptographically strong block cipher should appear, by
any statistical analysis, to act like a random mapping for every key, it is not clear
that guaranteeing the non-existence of fixed points of encryption is a desirable
objective. However, such fixed points should be found no more easily for any
given key than for any other. From all evidence available thus far in the open
literature, fixed points have only been easily!4 found in DES-like ciphers for weak
and semi-weak keys; this leads to the open research question stated above as a
conjecture .

3.4. Detailed Round Function Design

The round function given in Section 2.4 for a CAST cipher with a 64-bit
blocksize and 8x32 s-boxes can be illustrated as follows. A 32-bit data half is input

to the function along with a subkey K;. These two quantities are combined using

6 %Y

operation “a’”’ and the 32-bit result is split into four 8-bit pieces. Each piece is input
to a different 8x32 sbox (§;, ..., S4). S-boxes §; and S are combined using

operation “b”; the result is combined with S3 using operation *“c”’; this second result

1s combined with S4 using operation “d”’. The final 32-bit result is the output of the
round function.

l4Requiring a level of effort for an n-bit block cipher of roughly 272 operations rather than 2”
operations.
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A simple way to complete the definition of the CAST round function is to
specify that all operations (a, b, ¢, and d) are XOR additions of 32-bit quantities,
although other — more complex — operations may be used instead (for example, see
the discussion 1n the following subsection regarding the first operation a).

Assertion 4: Diffusion is achieved in a CAST cipher by the end of the third
round.

Discussion: Because each s-box diffuses its input statistics over the full output
vector (see Assertion 2 in Section 3.1), in any given round local statistics in the
right half are spread evenly over the modified right half. From the Feistel
framework, then (see Fig.1 in Section 2.2), any local statistics in R1 are diffused
evenly over R2, and again diffused over R3. In the same way, local statistics in L1
(which 1s modified to become R2) are diffused over R3, and again diffused over
R4. Given that R3 is identical to L4, all local statistics in the plaintext block
{L1,R1} are diffused over the full block {L4,R4} which is used as input to round

four. Note that diffusion also holds for the subkeys used at each round: the subkey
which 1s 1nput to round i is diffused over the full block by the end of round i+1. ¢

Assertion S: Confusion is achieved in a CAST cipher by the end of the third
round.

Discussion: A similar argument to the one above can be used to show that a
measure of confusion is achieved by the end of round three. In this case, however,

additional rounds serve to increase the complexity of the mapping from plaintext or
key statistics to ciphertext statistics. ¢

Theorem 8: For appropriate design choices, CAST ciphers are guaranteed to
exhibit highest-order SAC tor both plaintext and key changes.

Proof: Given that each s-box satisfies the avalanche property and guarantees
highest-order SAC!> (see Section 3.1), any change to the input of s-box S; causes
approximately half its output bits to change. If operations b, ¢, and 4 in the round
function fare XOR addition (see above), then approximately half the bits in the
modified message half will be inverted. Let V be the vector of changes to the output
of §; when 1ts input is changed. Then V = (vy, vy, ..., v,), where v; is a random
binary vanable with Prob(v;=0) = Prob(vi=1) = 1/2. Similarly, let W = (wy, w,

I5Note that the avalanche property relates to any specific input change; the SAC, on the other
hand, 1s an average calculated over the full input space.
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..., W) be the vector of changes to s-box §; when its input is changed. Clearly, if
Z =V &W,then Prob(z;=0) = Prob(vi=w;) = 1/2 if v; and w; are independent (that
1s, have a correlation coefficient of zero over all possible inputs). This is
guaranteed for §; and S; if columns ¢; and ¢; in the corresponding s-box matrices
sum (modulo 2) to a bent vector. This means that if changes are made to both S;
and §j, 1t 1s still the case that the outputs of f will change with probability 1/2. This
argument generalizes to any number of the s-boxes (once the corresponding output
bits are independent), which proves that any change to the input of f changes each

bit in the output of f with probability 1/2 over all inputs. The limit to the number of
mXn s-boxes with independent corresponding output bits is a direct result of -

Nyberg's “perfect” s-box theorem: it is m/2. Therefore, if r <m/2 (where r is the
number of s-boxes used for the data half in f), the simplest way to achieve the
independence is to choose the corresponding columns in the s-box matrices such
that they are the columns of an mxm/2 “perfect” s-box. Note that key/ciphertext
highest-order SAC 1mposes no requirement beyond that needed for
plaintext/ciphertext highest-order SAC because of the definition of f.

Remark: In practice, close proximity to highest-order SAC appears to be readily

achieved after a number of rounds without the requirement that operations b, ¢, and

d be XOR addition and even without the requirement that perfect s-boxes be used as
the columns for corresponding output bits. ¢

Assertion 6: For appropriate design choices, CAST ciphers exhibit close
proximity to highest-order BIC for both plaintext and key changes.

Discussion: A similar argument to the one above can be used to show that close
proximity to highest-order BIC can be achieved for both plaintext and key changes
when operations b, ¢, and d are XOR addition. Again, however, in practice it

appears that this prOperty 1s readily achieved after several rounds whether or not
XOR addition 1s used as the binary operation. ¢

3.4.1. Operation “a’” and Intrinsic Immunity to Attacks

As discussed previously, the number of rounds and the properties of the round
function s-boxes can be chosen to guarantee computational immunity to differential
and linear cryptanalysis. In the following subsections we discuss the proposal that
extra work in the round function — specifically, some care in the choice of operation
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“a” — can conceivably give intrinsic immunity to these attacks (in that these attacks
can no longer be mounted); see subsection 3.4.2 (and also 4.2).

3.4.1.1. Review of Differential and Linear Cryptanalysis

Ditferential and linear cryptanalysis (chosen- and known-plaintext attacks,
respectively) are similar in flavour in that both rely on s-box properties to formulate
an attack on a single s-box. Each then defines a general approach to attacking the
round function and builds on this approach to formulate a variety of particular round
function attacks. These particular attacks are then extended to create a number of
characteristics for the overall cipher. The most successful characteristic (that is, the
one with highest probability) is essentially the principal differential or linear attack
on the cipher, and the cipher is theoretically broken if the work factor for this
principal attack is less than the work factor for exhaustive search of the key space
(even 1if the attack requires an impractical amount of chosen or known plaintext).

3.4.1.2. A Brief Description of Differential Cryptanalysis

In differential cryptanalysis the s-box property which is exploited is its “input
XOR" to “output XOR” mapping. It was noted by Biham and Shamir that for a
given pattern of change in the input of the DES s-boxes, some output change
patterns are much more likely to occur than others, over the space of all possible
inputs. (This analysis was repeated for all possible input change patterns, so that an
XOR table could be created for each s-box [8].) Thus, for any specific input, a
given change to that input will cause a given output change with a certain

probability. The attack takes advantage of the large probabilities (some as high as
0.25) which occur in some s-boxes.

The general round attack which uses the above mapping is as follows. In DES
the 1nput to the round is the right half of the data, R, and the subkey, K, for that

round. After an expansion step for R, the data and key are XOR'ed together, so
that the input to the set of s-boxes is X = E(R) @ K. The output of the set of s-

boxes 1s Y = S(X), which 1s then permuted to form the output of the round function

R’ = P(Y). Since the expansion step is linear, two data vectors R; and R» which
differ by AR (so that AR =R} @ R)), produce AX =X; ® X, =E(R;)) @K D
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ER7) @ K = E(R]) © E(R2) = E(AR) during two encryptions with the same key.
It 1s therefore not difficult to choose AR such that AX has a desired pattern.
Furthermore, since the permutation step is also linear, it is not difficult to find a AY

such that AR" = P(Y;) @ P(Y2) = P(AY) has a desired pattern.

The 1mplication of the above comments is that it is possible to choose a
particular AR such that a particular AX occurs (one which presents a desired set of

input XORs to a desired set of s-boxes). With a known probability, a particular AY
will result (a desired set of output XORs from the s-boxes), which will be reflected
in a particular AR’. Finding AR pairs which result in useful AR’ pairs constitutes
the set of particular round function attacks on the cipher. In this context, a AR’ pair
1s “useful” 1f 1t can act as a desired AR pair in the following round, so that particular

round function attacks can be iterated and concatenated into characteristics with high
overall probability.

3.4.1.3. A Brief Description of Linear Cryptanalysis

In linear cryptanalysis the s-box property which is exploited is linearity. It was
noted by Matsui that for some of the DES s-boxes, the XOR sum of a subset of the
input bits 1s equal to the XOR sum of a subset of the output bits significantly more
or less often than half the time, over the space of all possible inputs. (This analysis
was repeated for all possible input and output subsets, so that a distribution table
could be created for each s-box [31].) Thus, for any specific input, the input sum
will be equal to the output sum with a certain probability. The attack takes
advantage of the fact that in some s-boxes the probabilities are significantly different
from the 1deal of 0.5 (some as low as 0.19).

The general round attack which uses the linearity property is as follows. For
DES the values R, K, X, Y, and R’, and the operations E(e) and P(e) are as
discussed above. With a probability given by the distribution tables, a subset of the
bits of Y will sum to a value (zero or one) which i1s equal to the sum of a subset of
the bits of X. Thus, 2.(Y) = 3.(X), where the operation J3,(e) is taken to mean the
XOR sum of a specific subset of the bits in the argument. This implies that 2(Y) =
2EMR)DK)=J(ER)) ® X(K), and so Y (K) = Y(E(R)) @ X(Y). Now,
knowing R immediately yields 2(E(R)) and knowing R’ immediately yields 3,(R)
= 2p(P(Y)) = 2(Y), where the operation 2,(e) is defined to be the XOR sum of the
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permuted indices of the subset of bits used in )(¢). Therefore, knowledge of R and
R’ can be used to solve for the equivalent of one key bit, 2,(K), with a known
probability.

The particular round function attacks on the cipher consist of those 2.(R)
subsets which result in useful 2 (R") subsets. In this context, a 3,(R") subset is
“useful” if it can be XOR'ed with a desired 2. (L) subset from the previous round
(where L is the left half of the data) to yield a desired 2.(R) subset for the following
round, so that particular round function attacks can be iterated and concatenated into
characteristics with high overall probability.

3.4.2. Modification of Operation “a”

The goal behind moditying the round function is to eliminate the possibility of
both differential and linear cryptanalytic attacks against the cipher. This is done by
inserting a nonlinear, key-dependent operation before the s-box lookup to
eftectively mask the inputs to the set of s-boxes. If these inputs are well “hidden”,
then s-box properties (such as the input XOR to output XOR mapping, or linearity)
cannot be exploited 1n a general round function attack because the actual inputs to
the s-boxes will not be known.

More specifically, the following modification to the round function f is
proposed:

fR,K)=f(R,K},K?)=5aR ® K}, K3))
where a(e, ) 1s an operation with properties as defined below. For DES, the
expansion operation can be placed either around R or around (R @ K;) — that is,
fIR,K)=8(a(E(R) ®Kj,K?))or f(R,K)=S(a(E(R ® K|), K2)) — depending on
whether K; 1s 32 or 43 bits in length. As well, the permutation operation can be
placed around S(e) as is done in the current round definition.

Several properties are required of the function a(e, ¢). These will be discussed
below, but they are enumerated here for reference.
(1) The subset sum operation must not be distributive over a(e, ).

(2) a(e, ») must represent a nonlinear mapping from its input to 1ts output, so
that any linear change in either input leads to a nonlinear change in the
output vector.
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(3) af(s, ) must be relatively simple to implement in software (in terms of code
size and complexity).

(4) a(e, ) must execute efficiently (no more slowly than the remainder of the
round function, for example).

(5) a(e, o) must effectively “hide” its R (or E(R)) input if K; and K, are
unknown (in the sense that there must be no way to cancel the effect of the

keys in the round function using an operation on a single R value or a pair
of R values).

A function which appears to encompass all the properties listed above is
modular multiplication, for an appropriate choice of modulus. If R, K;, and K> are
32 bits in length, two candidate moduli are (232 - 1) and (232 + 1). Meijer [33] has
given a simple algorithm to carry out multiplication modulo (232 - 1) in a high-level
language using only 32-bit registers, and has shown that multiplication with this
modulus 1s a “complete” operation (in that every input bit has the potential to modify
every output bit [26]), so that this modulus appears to satisfy nonlinearity,
simplicity, and data hiding. However, this modulus does not satisfy the fifth
property ideally, since zero always maps to zero, and (232 - 1) always maps to
either (232 - 1) or zero (depending on the implementation), regardless of the key in
use. (Note, however, that in a practical implementation it is a simple matter to
ensure that the computed subkey K is never equal to O or to (232 - 1), and masking
R with K ensures that it 1s not easy for the cryptanalyst to choose R such that (R @

K)) is equal to 0 or to (232 - 1).)

The modulus (232 + 1) may be a better choice with respect to property five than
(232 - 1) if either of two simple manipulations are performed. Firstly, each input
can be incremented by one, so that the computation is actually done with (R+1) and
(K+1). Thus the arguments belong to the set [1, 232] rather than [0, 232 - 1],
avoiding both the zero and the (232 + 1) “fixed point” inputs. Alternatively, the
inputs can be left as 1s (so that the computation is done with R and K), with only the
zero input mapped to the value 232 (and the 232 output mapped back to zero).
Implementation of multiplication using this modulus 1s thus only slightly more
difficult using a high-level language with 32-bit registers than for the modulus (232
- 1), and on platforms where the assembly language instructions give access to the
full 64-bit result of a 32-bit multiply operation, the modular reduction can be
accomplished quite simply and efficiently. Furthermore, as for (232 - 1),
multiplication with this modulus represents a nonlinear mapping from input to

output.
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In order to ensure that the modular multiplication does not perform badly with
respect to property five, it is necessary that the subkey K> be relatively prime to the
modulus. Thus, when the subkeys are being generated, the K5 used in each round
must not have 3, 5, 17, 257, or 65537 as factors if the modulus n = (232 - 1), and
must not have 641 or 6700417 as factors if n = (232 + 1).

Finally, it appears that either modulus can be used to satisfy property one, since
the subset sum operation is not distributive over modular multiplication.

3.4.2.1. Making the Round Function Intrinsically Immune to Differential
Cryptanalysis

Property five listed above prevents a differential attack as described by Biham
and Shamir, and property two prevents a simple modification to their description.
Recall the equation given in Section 3.4.1.2:

AX=X]DX2=ER)DKDER) ®K=ER])® E(R>) = E(AR)
during two encryptions with the same key. This is the critical component of the
differential attack because it shows that the XOR sum of two data inputs (R; and
R7) completely determines the input XOR for the round s-boxes. This is why this
attack would 1deally be mounted using chosen plaintext (so that the cryptanalyst can
select the input XORs which will construct the highest-probability characteristic).
Property five prevents such an attack by the requirement that no operation on a pair
of R values can cancel the effect of the key. Modular multiplication appears to
achieve property five in the modified equation

AX =X;® X>
=aR; ®K},K2) ® aR2 @Ky, K»)
=(((R; © K1) *Kz)mod n) @ ((R2 @ K;) * K2) mod n)

since knowledge of R; and R» does not seem to reveal AX if K; and K» are not

known. Thus, the input XOR to output XOR mapping of the round s-boxes cannot
be exploited through knowledge/choice of R; and R».

Modular multiplication also appears to satisfy property two because it is not

obvious that any simple modification to the differential attack will cause knowledge
of R; and R to reveal information about AX if K; and K> are not known. This is

not true of arbitrary operations which may be proposed for a(s, ¢). For example, if
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a(e, *) 1s real addition (modulo n), then re-defining AX to be subtraction (modulo »)

yields
AX =(X; - X?) mod n
= (a(R; ® K}1,K2) — a(Ry ® K1, K32)) mod n
=((R;@Kj)+Kr)ymodn) — (R2 ®K)) + K») mod n) ) mod
n

=(R)DPK))- (R D K;) ) mod n

In such a situation the difference between R; and R> (XOR or real subtraction)
reveals a significant amount of information about AX which may be used in

subsequent rounds to construct a characteristic.

3.4.2.2. Making the Round Function Intrinsically Immune to Linear Cryptanalysis

Property one given above prevents a linear attack as described by Matsui.
Recall the equation given in Section 3.4.1.3;

2()=2(X)=2ER)®K)=3ER)) ® 3K)
Therefore, 2.(K) = J(E(R)) @ 3. (V)

Thus 1s the critical component of the linear attack because the distributive nature of
the subset sum operation 2(e) over the XOR operation allows the equivalent of one
key bit to be computed using only knowledge of 2(E(R)) and 3(Y). This is why
this attack would typically be mounted using known plaintext (so that the
cryptanalyst can use knowledge of J.(plaintext) and 3(ciphertext) to work through
intermediate rounds to solve for various key bits). Property one prevents such an
attack by the requirement that 2 () not be distributive over a(e, o). Modular
multiplication appears to achieve this requirement, as seen in the modified equation

2(N)=2(X)=2((R®K;) * K2) mod n)

since 1t appears that this equation cannot be rearranged in any way to solve for

subset sums of K; and K given only subset sums of R and Y. (Note that either
E(R) or E(R ® K) may be substituted in the above equation, if required.)
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3.4.3. Implementing Operation “a” in a CAST Cipher

A CAST cipher implemented with a blocksize and keysize of 64 bits, four §x32

s-boxes S;...84 in the round function, and 32-bit subkeys in each round, has been
shown to have a work factor for differential and linear attacks which is greater than
exhaustive search of the key space if 12 or more rounds are used. If operations a,
b, ¢, and d are all XOR addition, the round function f may be computed simply as:

fR,K)=8;( B @ ... ® S4(B@)
where B =R @ K and BU) is the jth byte of B. Application of the technique

described 1n this section yields the modified computation of operation “a”, where f
remains identical but B is now computed as

B =(R®K))*K3) mod n.

Examination of the assembly language instructions required for the modular
multiplication step alone (using either (232 - 1) or (232 + 1) as the modulus) shows
that multiplication takes approximately the same amount of time as the remainder of
the round on a Pentium-class PC, so that there is a performance impact of about a

€¢ 9% 2

factor of two, compared with a version of CAST where operation “a” is simple
XOR addition.

4. Alternative Operations and Design Choices

A number of options are available both for the round function operations and for
the framework design which do not appear to compromise security and do not
degrade encryption / decryption perfomance of the resulting cipher. In fact, for
some choices 1t appears that security or performance may be enhanced, thus
motivating the use of these alternatives in practice.

4.1. Binary Operations in the Round Function

Throughout this paper the operations a, b, ¢, and d in the round function have

been given as the eXclusive-OR of two binary quantities (i.e., addition modulo 2).
It should be clear, however, that other binary operations may be used instead.



10

15

20

25

2164768

Particularly attractive are addition and subtraction modulo 232, since these
operations take no more time than XOR and so will not degrade encryption /
decryption performance in any way. Experimental evidence suggests that using
such alternative operations may significantly increase security against linear
cryptanalysis [51], but in any case appears to make both linear and differential
characteristics more difficult to find.

4.2. Extension to Operation “a”

Discussed in the previous section was the proposal to add extra computation
(using extra key bits) to the operation “a” in the round function. The specific
computation suggested was multiplication with another 32-bit subkey using a
modulus of either (232 - 1) or (232 + 1). However, it was noted that this suggestion
can degrade performance by as much as a factor of two. An alternative operation
which appears to be quite attractive is rotation (i.e., circular shifting) by a given
number of bits. This operation is similar to the central operation of the cipher RC-
5, except that this 1s a key-dependent rotate (controlled by a 5-bit subkey) rather
than a data-dependent rotate, since data-dependent rotation may be less appropriate

for a Feistel-type structure.

The extended “a” operation for a CAST cipher with a 64-bit blocksize is then
aR,K) =a(R, K1, K2) = (R« K]) <<< K2),

€29 ¢

where “¢” is any binary operation (such as XOR or addition modulo 232), “<<<” is
the circular left shift operator, K is a 32-bit subkey, and K> is a 5-bit subkey. The
primary advantage of the rotation operation over modular multiplication is speed:
on typical computing platforms an n-bit rotation (0 < n < 31) can be accomplished
in a small number of clock cycles, thus causing minor performance degradation in
the overall cipher. Rotation satisfies property (1) from Section 3.4.2 because it
prevents a linear attack as described by Matsui for all cases except the extreme case
where the input subset considered consists of the full set of input bits. It is highly
unlikely that this extreme case applied in every round of an N-round cipher will
describe a successful linear characteristic for the cipher.
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4.3. Non-Uniformity within the Round Function

The discussion thus far implies that the binary operation in a, b, ¢, and d must
be the same 1n all four instances (e.g., XOR). However, there is no reason that this
needs to be the case. For example, it would be perfectly acceptable for b and d to
use addition modulo 232 while ¢ uses XOR (this is precisely the combination used
in the Blowfish cipher [44]). Certainly many variations are possible, and while it is
not clear that any one variation 1s significantly better than any other, it does appear
to be the case that the use of different operations within a, b, ¢, and d can add to the
security of the overall cipher (note that the IDEA cipher has long advanced the

conviction that operations over different groups contribute to cipher security [29]).

4.4. Non-Uniformity From Round to Round

Another design option is to vary the definition of the round function itself from
round to round. Thus, in an N-round cipher there may be as many as N distinct
rounds, or there may be a smaller number of distinct rounds with each type of
round being used a certain number of times. The variations in the round definitions
may be due to the kinds of options mentioned in the previous subsection or may be
more complex in nature.

Whether the idea of a number of distinct rounds [50] in a cipher adds in any
significant way to its cryptographic security is an open question. However, it
certainly appears to complicate the analysis of the cipher, which is sometimes
effective in complicating the cryptanalysis of the cipher. '

S. An Example CAST Cipher

In order to facilitate detailed analysis of the CAST design procedure, and as an
aid to understanding the procedure itself, an example CAST cipher (an output of the
design procedure described in this paper) is provided in this section (with further
details given in the Appendix). This 12-round cipher has a blocksize of 64 bits and
a keysize of 80 bits; it uses the rotation operation to provide intrinsic immunity to
linear and differential attacks; it uses a mixture of XOR, addition and subtraction
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(modulo 232) for the operations a, b, ¢, and d in the round function; and it uses
three variations of the round function itself throughout the cipher. Finally, the 8x32

s-boxes used 1n the round function each have a minimum nonlinearity of 74 and a
maximum entry of 2 in the difference distribution table.

This example cipher appears to have cryptographic strength in accordance with
its keysize (80 bits) and has very good encryption / decryption performance: over 1

MByte/sec on a 486-DX?2 66MHz PC, and over 2.5 MBytes/sec on a 90 MHz
Pentium.

5.1. Pairs of Round Keys

This instance of a CAST cipher uses a pair of subkeys per round; a 32-bit
quantity Km 1s used as a “masking” key and a 5-bit quantity K; is used as a
“rotation’ key.

5.2. Non-Identical Rounds

Three different round functions are used in this example CAST cipher. The
rounds are as follows (where “D” is the original input to the f function and “I,,” —
“I4” are the most significant byte through least significant byte of I, respectively).
Note that “+” and “-” are addition and subtraction modulo 232, “A” is bitwise XOR,
and “<<<” is the circular left-shift operation. -

Type 1: I = ((Kpy + D) <<< Kypy)

£f = ((S1[Ig] ©~ S2[Ip]) - S3[I:]) + S4[1I4]
Type 2: I = ((Kmi ~ D) <L<L Kri)

f = ((S1[Iz)] - S2[Ip]l) + S3[I]1) ~ S4[I4]
Type 3: I = ((Kp; - D) <<< Kpy)

£ = ((S1[Iz] + S2[Ipl]) ~ S3[Is]) - S4[I4Z)

Rounds 1, 4, 7, and 10 use f function Type 1.
Rounds 2, 5, 8, and 11 use f function Type 2.
Rounds 3, 6, 9, and 12 use f function Type 3.
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5.3. Key Schedule

Let the primary 80-bitkey be A = ala2a3a4a5a6a7aB8a%9a0, where each ajisa

byte.

Let Kmy, ..., Km, be twelve 32-bit masking subkeys (one per round).
Let K., . Kr1, betwelve 32-bit rotate subkeys (one per round); only the least
significant 5 bits are used in each round.

See Appendix A for a detailed description of how to generate K, and K., from a.

5.4. Substitution Boxes

This example CAST cipher uses eight substitution boxes: s-boxes S1, S2, S3,
and S4 are round function s-boxes; S5, S6, S7, and S8 are key schedule s-boxes.

See Appendix A for the s-box contents.

6. Conclusions

The CAST design procedure can be used to produce a family of encryption
algorithms which are provably resistant to differential cryptanalysis, linear
cryptanalysis, and related-key cryptanalysis. CAST ciphers also possess a number
of other desirable cryptographic properties and have good encryption / decryption
speed on common computing platforms.

Analysis of the procedure described in this paper by members of the cryptologic
community 1s strongly encouraged so as to increase confidence in the various
aspects of the design presented.
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A. Appendix

This appendix provides full details of the example CAST cipher given in Section 5.

A.1. Key Schedule
Let the primary 80-bit key be A = ala2a3a4a5a6a7a8a9a0, where each aj is a byte.

Let Kmi, ..., Km, betwelve 32-bit masking subkeys (one per round).

Let K.y, . Kr1, betwelve 32-bit rotate subkeys (one per round); only the least
significant 5 bits are used in each round.

Let b1...b8, through gi1...g8 and bw, bx, by, bz through gw, gx, gy, gz
be intermediate (temporary) bytes.

Let si[] represent s-box i and let “~~ represent XOR addition.

The subkeys are formed from the primary key as follows.
Masking subkeys:

blb2b3b4 alaZa3ad4 ~ S5[a6] ~ S6[a8] ~ S7([ab] ~ S8([a7] ~ S7[a9]

bSbo6b7b8 = abat6a7a8 ~ S5[bl] ~ S6[b3] ~ S7[b2] ~ S8[b4] ~ S8[a0]
bwbxbybz = bSbéb7b8 ~ S5[a9] ~ S6[a0] ~ S7[a9] ~ S8[al]

Kml = S5[bl] ~ S6[b2] ~ S7[b8] ~ S8[b7] ~ S$5[bw]

Km2z = S5[b3] ~ S6[b4] ~ S7[{b6] ~ S8[b5])] ~ S6[bx]

Km3 = 85[b5] ~ S6[b6] ~ S7[b4] ~ S8[b3] ~ S7[by]

Kmd = S5[b7] ~ S6{b8] ~ S7[b2] ~ S8([bl] ~ S8[bz]

clc2c3c4 = blb2b3b4 ~ S5[(b5] ~ S6[b7]1 ~ S7[b6] ~ S8[b8] ~ S7[bw]
cocobc7/c8 = b5b6b7b8 ~ S5[c2] ~ S6[cd] ~ S7[cl] ~ S8[c3] ~ S58[bx]
cwcxcycz = cococ7c8 & S5[bw] ~ S6[bx] ~ S7[by] ~ S8([bz]

KmS = S55[c4] ~ S6[c3] ~ S7[c5] ~ 88[¢6] ~ S5[cw]

Kmb = S5[c2] ™ S6[cl} ~ S7[c7] ~ S8[c8] ~ S6[cx]

Km7 = S85([c8] ~ S6[c7] ~ S7([cl] ~ S8[c2] ~ S7(cy]

Km8 = S5{c6] ™ S6[c5] ~ S7[c3] ~ 88[c4] ~ S8([cz]

d1d2d3d4d = clc2c3cd4d ~ S5[c5] ~ S6[c7] ~ S7[{c6] ~ S8[c8] ~ S7[cw]
d5d6d7d8 = c5c6c7c8 2 S5[d2] ~ S6([d4] ~ S7([dl] ~ S8[d3] ~ S8[cx]
dwdxdydz = d5d6d7d8 ~ S5[cw] »~ S6[cx] ~ S7([cy] "~ S8[cz]

Km9 = S5([d4] ~ S6[d3] ~ S7[d5] ~ S8[d6] ~ S5[dw]

Kml0 = S5[d2] ~ S6[dl] ~ S7[d7] ~ S8[d8] ~ S6[dx]

Kmll = 85([d8] ~ S6[d7] ~ S7[dl] ~ S8[d2] ~ S7[dy]
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Kml2 = S5[d6] ~ Se6[d5] ~ S7[d3] ~ S8[d4] ~ S8[dz]
Rotate subkeys:

eleZe3ed = dld2d3d4 ~ S5[d6] ~ S6[d8] ~ S7[d5] ~ S8[d7] ~ S7[dw]
ed>ebe’eB8 = d5ded7d8 ~ S5([el] ~ S6[e3] ~ S7[e2] ~ S8[ed4] ~ S8[dx]
ewexeyez = edbebe’e8 ~ S5[dw] ”~ S6[dx] ~ S7[dy] ~ S8[dz]

Krl = S5[el] ~ Se6[e2] ~ ST7[e8] ~ S8[e7] ~ SS[ew]

Kr2 = S5[e3] ~ S6[ed4] ~ S7[eb6] ~ S8[e5] ~ S6[ex]

Kr3 = S5[e5] ~ S6[e6] ~ S7[ed4] ~ S8[e3] ~ S7[ey]

Krd = $S5[e7] © S6[e8] ~ S7[e2] ™ S8[el] ~ S8([ez]

f1f2f3f4 = eleZ2e3ed4 ~ S5[e5] ~ S6{e7] ~ S7[e6] ~ S8[e8] ~ S7[ew]
£5f6f7£8 = ebetbe7e8 ~ S5({f2] ~ S6[f4] ~ S7[fl] ~ S8[f3] ~ S8[ex]
fwifxfyfz = £5f6£7£8 ~ S5(ew] ™ S6[ex] ~ S7[ey] ~ S8[ez]

Kr5 = S85([f4] ~ S6[f3] ™ S7[f5] ~ S8[f6] ™~ SS[fw]

Kré = S5[f2] ~ S6(fl] ~ S7[f7] ~ S8[f8] ~ S6[fx]

Kr7 = S5[f8] ~ S6[£f7] ~ S7[f1] ~ S8[f2] ~ S7[fy]

Kr8 = S5([f6] ™ S6[f5] ~ S7[f3] ~ S8[f4] ~ S8({fz]

glg2g3g4 = f1f2f3f4 ~ S5[£5] ~ S6[f7] ~ S7T[f6] ~ S8[f8] ~ S7[fw]
gogebg/g8 = £5f6f7f8 ~ S5[g2] ~ S6[g4] ~ S7([gl]l ~ S8([g3] ™ S8[fx]
gwgxgygz = gdg6g7g8 ~ S5[fw] ~ S6[fx] ~ S7[fy] ~ S8[fz]

Kr9 = S5[g4] ~ S6[g3] ~ S7{g5] ~ S8[g6] "~ S5[gw]

Kr1i0 = S5[g2] ~ Se6[gl] ~ S7[g7] ~ S8[g8] " S6[gx]

Krll = S5[g8] ~ S6[g7] ~ S7[gl]l ~ S8[g2] ~ S7[gy]

Krlz = S5[g6] ~ S6[gS5] ~ S7[g3] ~ S8[g4] ~ S8([gz]

A.2. Substitution Boxes

This example CAST cipher uses eight substitution boxes: s-boxes S1, S2, S3, and S4
are round function s-boxes; S5, S6, S7, and S8 are key schedule s-boxes. The s-box
contents are written in hexadecimal and are to be read left to right, top to bottom.

A.2.1. S-Box S1

O0xc6b00ble,
0x128a2452,
O0x5faefl24,
O0x4b776caa,
O0xcaa98800,
0x7c612b9d,
O0xd21lcdbce,
O0xe8dff3ba,
0x890c5e39,

0xd08d094d,
0xQ0f3ff37a,
O0x4ed3e8bd,
Oxf£75ab5d,
0x7576516¢c,
Oxcf7ffdfb,
0x3194b822,
0x07c9c831,
0x84a28601,

0x959¢cb449,
0xd13e2600,
0x08ad43a43,
0xf91ladcft9,
0x4150fdfb,
0x80ea38a2,
0x8498a509,
Oxe35%af3f,
0x8b67ff1l6,

0x8d531db4,
0xcd088c51,
0x1b77f7fDb,
Ox4a’7a7a4dd,
O0xfb37£9fa,
0x68922405,
0x666378af,
O0x0dofabfc,
0x80ac9028,

O0x4bel73c6,
0x8e296754,
O0xc0af%ed79,
0x71514583,
0xf657b43f,
OxdadfaB8f7,
0xb05d8ac?2,
0xb5al05a25,
0x88e79bf2,

0x576843%b,
0x9f7£55ff,
0x7281c4db7,
Oxcbd5dlds,
O0x4f3ff3ef,
0x3c8adocl,
0x5264708¢c,
0x5977d3£f8,
0x854511f5,



0x8f7fbd25,
O0x6d5f6ads,
0x3fa7791e,
0x03286987,
0x83bed710,
0x0b7d85ba,
OxaZ2aa30b8,
Oxc3ee7b71,
0x36926ade,
O0xfl1l4de(078,
0x384d3281,
0x28471d46,
0x9cfB8aefe,
0x5a574491,
0x559ffale,
0x813£9826,
Oxble5daf9,
0xddc56b61,
Oxebd9278e,
Oxfbe9df9c,
0xb4362776,
0x21510485,
0xde0c0486,
O0xcl53el51,
0x97e9cff4,
Oxb6addlachb,
0x0el593ef,
O0xbfd36706,
0xc9528578,
0x56e63420,
0xld7clcbe,
0x8££7b49c,
0x28041£f0Db,
Oxcabdcl3f,

0x8b76c5ff,
O0x6abfdf50,
Oxeedadaa3,
Oxd66be246,
O0x586dlabc,
0x£92£979%a,
0x586432ad,
0x8b%04102,
0x7461b37c,
Oxbf3566fb,
0xl2fe72eb,
0x00£f0£3£7,
O0xb86574bf,
0x9cfe7eeb,
0x96cdB88ad,
0x8b159%e9,
0xb2610e8a,
0xd6a92685,
0x851c83ad,
0x91d2c5e8,
0xd0el2e86,
OxfcdSaeba,
0x0bea2485,
0x75f7e74a,
0x2bl14183c,
0xd8e00719,
0x1lb4e51bb,
O0xaz255be29,
0xda0c523d,
Oxfob7126c,
0xb27a2776,
0x£1d068c6,
0x5ec42a38,
Oxbe8c30be,

A.2.2. S-Box S2

O0xc2adl2cbe,
0x21£3ded3,
0x24dc2fal,
0x11c78559,
0x508f6b36,
0x57b890e7,
0x26594784,
Oxbfcb6df20,
Oxadaaaldb,
0x966ed435,
O0x3beobalalg,
0xb358b096,
0x29d8fele,
0x326£fc08c,

0x194d87b3,

O0xfd4cdeb2?2,
0xfa5958¢£5,
0x9d32faea,
Oxde7accal,
0xdl10d7al,
0x75568779,
0xe732d018,
0x549d7b56,
O0x6fab506d4ds,
Oxceb8822e,
0x3ealflf9,
Oxa777e6eb,
Oxbbef3432,
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Ox6bcabbcl,
O0x66a6c4f9,
0xb0dal081,
Oxbdc2aa8’,
Ox8ab38ce,
0x6b618a40,
0x44497b78,
0x005567£4,
Oxc2f5cedh,
0x3fba3326,
0x8b0c54b5,
0xd44154ff,
0x8d06d47d,
O0x7blcf9lc,
Oxa63a2e77,
O0x72ela3d3,
0x131fd57e,
0x2d£394d0,
Oxa3aeaelc,
0xdl49%aeco,
Oxcabca3o64,
O0xcceb2967,
0xd6c97583,
Oxf3eedb8e,
0x0545¢c904,
0x5dd7d584,
0x7430a737,
0x76e3121f,
0x8581d3ef,
O0xc0fb4dac?,
0x57220041,
0x9c044011,
0x7c28bb5e5,
0xd2956e74,

0x82cll’ce,
0x88c5295¢c,
0x6b72774c,
0x16239%af7,
0x447b55a7,
0x61152b5e,
0x9616£f2b3,
O0x4fflebbd,
0x6d3all24,
0xc805995¢f,
0xf732c5b5,
O0xald7%aZc,
0x5359%1efc,
0x0e505514,

0x6bdg3dbo,
0x6b7fb9f8,
0x64722b5c,
0x6ccl98bc,
0x71898970,
0x986¢cle92,
0xbd6536bc,
0x4£918356,
0x8946951Db,
Ox7a6d3ebf,
0xa640fe22,
O0xfl16f301c,
0x491bfd432,
0xb6ad2ell,
0x654535e1,
0x76eld4e(7,
0xloc20411,
0x26e96085,
O0xcal028754,
Oxbe7915443,
0x1d36537¢,
0x12c21880,
0x03290al2,
0x4821e210,
Oxba2222fc,
Oxee(04183d,
0x6£404522,
Ox6e(dl23c,
0x2df9cba3si,
0x620893c9,
0xfb5c4470,
0xed4976ate,
0x0cbbd354,
Oxaelcl63e

0x56bb0629,
Ox5eba7la’,
0xbb2283d0,
0x9£f7254a5,
Oxc75adlal,
0x38882409,
O0xc805baasa,
0x1d72£223,
0x93107081,
0x3304b3b4,
0x0d3e5645,
0x2fbble3l,
O0xdf2b260a,
0x12262b00,
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0x679al9e8,
O0x85l1laclcd,
0x0180ed45,
O0x3c263a67,
O0xe87ca369,
0xc99%ach587,
0x273fc5ca,
Oxf8abbe8d,
0x0bl5be3d,
O0xc3b8b63e,
0x744f7dbo,
0x6edd219b,
0xa62a7926,
0x78ac797c,
0x8932c728,
0x40a8918b,
Oxeae620a3,
O0xc97a6fc3,
O0x8d0e7a7f,
0x%ac9b069,
0x20d417279,

0x305a0c9d,
0x3734fb8c,
0xae9%3d829,
0x398bc832,
Oxc4dal6de,
Oxb7Z2aeach,
0x00245bdg,
Oxle3cl772,
0x86bebided,
Oxcld3bl8a,
0x3d45343d,
0x6228bbbe,

0x688a0d7a,
O0xcbldefdb?,
0x069d6a56,
0x0618cfa8,
0x41475489,
0xd9%ac7bdd,
0x01c014da,
O0xfc6bl58c,
0x597c701a,
0x0739%abal,
O0xcb70dblc,
0xd8ee991,
0x4d05f86Db,
0xb99a5217,

0x627efbchb,
0x53%ee5c¢ca,
0xdd7d3aa9,
Oxec8925ba,
0x1ld254ble,
O0x3eleldab,
0xdc6530bc,
O0xb2ded2eb,
0x443505£2,
Oxe7bbd4246,
0x588£f08b8,
0x48e51a03,
Ox64c7daf8,
Oxbebeb314,
0x42e10a85,
0x43eac70a,
Oxe2al2694,
0xal04515hb,
Oxeffbaeb,
O0xf6£97688,
0xf93a7752,
OxeB86delec,
Oxel2e9248606,
0x101be9dd,
Ox8a8cbalsl,
O0xd7e22bdl,
Oxael73e32,
0x1b0clc29,
0xb9£f8b9ch,
0x250£d4d£f80,
0x6c043c3e,
0x402fbef2,
0x170410ad,

O0xb726dlc2,
0xl16b6dl57,
0x83fbdc6d,
0x83d22bal,
O0xcf33d385,
0x88258fbd,
0x55670ac4,
O0xa7b3fe37,
O0xaba2f99c,
0xf662d3ee,
0x40d450£7,
0x55d05¢cf0,
Oxc3cd407a3,
Oxadaf(05ab,



Oxc7faabl0,
Ox65ebeael,
0x684cdclc,
0x2£8b2d63,
0xb6681l4a3,
0x3d67eeb2,
0x891cceld,
Oxcfaf32e7,
0x37e3a276,
0x645e65b7,
OxaffeedbSe,
0x9d564aaa,
O0xde54f681,
0xa29%2fcd’,
Oxcaf7b6d2,
0x05529a84,
0x1060d4712,
OxacZaldad,
0x6fdS5a8eb,
0x9e035d66,
O0xeb85a994,
0x3d3f02ec,
0x65d76£83,
0xcb631642,
0x39221421,
0x3f1£f5a94,
0x0a73e5f£3,
0xaa365000,
0x1d37a73c,

0xd73f23c7,
O0x7ed726c¢0,
0x5911bb51,
0x195ccdb68,
0x84efabdh,
0x6a8d8fe?2,
0xda9dlcee,
0x94e76107,
0x181lc52ca,
0x4d8c5f11,
0x4c89506b,
O0x7ceeB8dad,
0x340a5d8f,
0xallb01b5,
Oxceleabc?2,
0x08967477f,
Oxed4c(07b94,
0x5d685fag,
0x241d0106,
0xd7372d07,
0xa3235c50,
0xd0607eb5e,
0x8b224d0c,
O0xZ2e6adl54,
0x892e04543,
0xBaobabébcc,
0x2dcS5bad?2,
0x84dd8070,
0x3760048Db,

A.2.3. S-Box §3

0x86f5c342,
0xe(0382359,
Oxeb6lbfdaZz,
0x0cdf5081,
0x47aa8bdsb,
0xfabb0177,
0xf457a25b,
0xde35b50b,
0xa8560728,
0x13936002,
0x4bl8fe7b,
0x208c9%e97,
0x7352cced,
0x33df£722,
0xd9286aae,
0x30343cae,
0xa23856a3,
0x4d514109,
0x8dfac44d,

0xc231dal3,
0xb%bal244,
0x91lec?2964,
O0xlZ2eabl4f,
0x6b132788,
O0xdbb2ef5h,
0x842d2285,
0x9d49e649,
0x94c66e8e,
0x311£4£f3d,
0x4098dc82,
Ox465edfeb,
Ox3acd4caaZz,
0x5e034584,
0xb8d21069,
0x5f6bfb08,
0x265f49a0,
0xcf91lbc9a,
O0x2a9fdebb,
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0x7e513060,
0x115a0beb,
0x0035¢c48d,
0x9059¢ch1l8,
0xd5f6alie,
0x78e56££f9,
Oxlead3de’,
0x69f7a056,
0x38e1754Db,
0x3da381lal,
0x5a9d2as54d,
0x1bb5cf3e,
0x2c8lleed,
0x6£505¢c8¢c,
Oxalad7228,
0x0dc5254e,
0x8d005835,
0x22952fah,
0xa79bel6b,
0xddlcaab9,
0x24aab0079,
0x9779d%e3,
0xf12b9212,
OxcceS5afeb,
0x59467096,
0xa6886858,
0x29¢c09691,
0x9dd59cea,
0x3b6ad310,

0x64140aed,
0x72524815,
0x27dee3ca,
0x99f%aef4,
0x60ebaad4,
0x07el82db,
0x8998d5b3,
0x59a24077,
O0x7cd4dlac9,
0x232cfff2,
0x9382d372,
0x7a2c93ds,
0x52908857,
0xa72d38b8,
0x2£5af870,
0x8dd72£98,
Oxb3ffbcd?2,
0x5dbb5028,
0xaf57cd9s,

Oxbadbbde’7,
0x062e24e5,
0x303c784f,
Oxadaadb589,
Oxe73a09d5,
O0x23ef86de,
O0xd4fef24bd,
0x427b29bd,
0x19d5e52a,
0x1541£fcf9,
0xb6027ee0,
0x£f54445a5,
0xc80859e9,
O0x6edcOc71,
Oxac085e5c,
Oxfbe7faSc,
0x72f££fa0d9,
0xd1820424,
0xe863800c,
0x93eab513,
0x69534185,
0x73825630,
0x1a225575,
O0x7dd0e7ac,
O0xe9ddbc9f,
0x100bf6éb6,
0x0ed2f415,
O0xbe777711,
0x106610b0

0x129ec99e,
0x3a75%e48,
0x5a3adlfe,
0x980a4411,
0x5fba6f72,
0x73cecdds,
O0xdbd06aa?z,
O0xZ2ec75a8e,
O0x7blad37a,
Oxldafdb72,
0x9b986d5e,
0x2b8a9d67,
0x0b475f24,
0xd9a959d0,
0x7573554f,
0xd51bdf40,
0x1£517bc0,
0xe5801277,
0x18d7216d,

2164768

0xd1123474,
Oxafab67b7,
0x4fd460d6,
0xf£8b0863,
Oxace39d04,
Oxeea723ff,
O0x5bbbd7ct,
0x69fd88cc,
0x63feB254,
0x3248£846¢0,
0x695£19fb,
Oxefd49d2a3,
Oxcad3a756,
0x0£2450Db9,
0x60eeb6869,
0x96629628,
0x33333457,
0xbc084bbd,
0x51dlcadf,
0x13ec6d03,
Oxa8ccl2de3,
0x0ael4a9d,
0x51b6561cC,
Oxadfdbc78,
0x54919%06ef,
0xc330d2b9,
0x8e06370¢e,
O0xbad86dl4,

0x3efd07ec,
0xb3491e6d,
0x22bdbecO,
O0x8fc26eb5a,
0xd95ebb20,
0x6777b8e8,
0xbd2bd4do,
O0xlbléec97d,
OxdeaSf3ad,
0xde68f9bf,
0x02bcl73a,
0x44bl25e3,
0x32837b58,
0x680684bb,
ODxeb6e30fbe,
0x5e6ach0d,
0x704f£34al,
O0x6ffc3171,
0x0c568150,

Oxcfe33bff,
O0xb88dale3,
O0x7dcb70aa,
Oxceatf?2777,
0xfd40c427,
0xb678d983,
0x07a57d7e,
0x4£858823,
0x45d8ddad,
0x16610998,
0x8430dead,
0x0c505deb,
0xc3b6870Db,
0x077b34a2,
0x66695e2f,
0x6820£489,
O0xc81137b4,
0x4640d804d,
O0x1f7e52c6,
0x5bee57b3,
0x42ab58f9,
OxeaB8edld,
0xb2e85510,
0x16£d4d09b8,
0xe01lc8b70,
0x77e07c62,
0xa372fb29,
0x9b1lab570a,

0x6fcb995¢f,
Oxcb8edbbe,
0x2dc09f7a,
O0xab58acl3’,
0xd14249b8,
0x0b9%1adb8,
0xed38849d,
Oxd4cefb517,
0x£fd1ldl91b,
0xd9822476,
0x56211le’7b,
0x3d7ad4’c,
0x553cafdc,
0x37738535,
0x8a4331f2,
0x1f7b7b21,
O0xc0064a63d,
0xdd003233,
OxalleeB24,



0x48845eb3,
0x63f56b0a,
0x17130708,
0x84fffbfa,
0x0ad4(0eb’b,
0x9bf44adl,
0xf£f8b9678,
0x61014390,
0x572ccédda,
0x8d602160,
0xe38f95f9,
O0xe6d46c0f3f,
0x24750c8¢,
0x85dal5Sf0,
Oxcbl787af,
0x37357d11,
0xa7£28773,
0x28812cd5,
0x5998ceecd,
0xbd7£37c8,
0x291a3299,
0x83728ebf,
0xl4bdeafl,
0xd0356ec8,

0xde83c700,
0xfdf60£f08,
0x8£f50£924,
0x1£f54c56f,
0xb9931a68§,
O0xdd7b4d2dc,
0x95a33d06,
O0x21lcbblOc,
O0x7b8cb55ad,
0x9d55583b,
0x£6026905,
0xcdl2e98a,
0xa30b5941,
0x591319b0,
0x329cfeb’,
0xd2caad?e,
0x39c586£f8,
0x8635bble,
0xd89d78e8,
0x4700a556,
0xd8621dfa,
O0x67e0cabd,
Oxfe31dd8b,
0x0Obbbdell,

A.2.4. S-Box S4

0x154b0bc?2,
0x18af89ad,
0xb5503fbb,
Oxaeobdelf,
0x204229c2,
0xed4d0£f00Db,
0xdled31lag0,
0x3e970216,
0x636e0fal,
0x5931665¢,
O0xfaallOcZlc,
0xd70faf92,
0x3df59079,
0x£357¢c830,
Oxfe4b8a9l,
0x016d7343,
0x0e960151,
0x250£0044,
0x00438b42,
O0x996afbac,
O0xd38ec8ed,
O0xe9%9a8deal,
0x17b2eeb?,
0x9841d998,

0x%e82acdb,
O0x8cb5df89,
0x3db35e39,
0x7£8£5d12,
0x£8175a3f,
0x3bb53e56,
0xb20c2b68,
0x566919c¢ceo,
0x4%aa2l1cO,
0x7£370e7e,
0xd6355ele,
0xd7a79£88,
0x20b8ff96,
Oxe84bdc8d,
O0xe02f47de,
0x006614715,
0x£9042c75,
O0xdf2dfdde,
Oxec2bd783,
Ox£e507047,
Oxa6a9l154e,
0x805dd72d,
Oxd4cd437dle,
0xc86e604Db,
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O0x1lebd43557,
0xlea97dch,
O0x3ebc3e77,
0x10617eea,
0x1c520414,
Oxbcd4achb6,
0x363747d2,
0x42b2d541,
0x06985ecd,
0x672c491c,
0x188df738,
Oxab%all24,
Oxbb83074f,
0xe738b55f,
0x3574c3a’,
0x74£97c5H9,
Oxdcdao943,
0xb5¢c63£63,
O0x2ccch5068,
0x82b76a4l,
0x8888c380,
0x0f60f57e,
0xe4054d64,
0x58a504c1,

0xe8d3562e,
0x4a28e9cO,
0x558bab589,
0x6814£368,
O0x7eb95eff,
0x804a28e9,
0x9bd07dfc,
0x2£8c62ff,
O0xd7bed?210,
0x7559715c¢,
O0x5f76fflc,
O0xle94dlcl,
0x6563fcch,
0x7£d4d485cf,
0x509bfbbSe,
0x386b179d,
0xB8aebfc85,
0xbe90485b,

0x8c7a93ce,

OxaB8adicdd,
0xal79d£f37,
0x67170782,
O0x8fdb5a’lce,
0x648cbldg,

0x9dcdcde3,
0x99d3700c¢c,
0xb2fc2237,
0x89a3d770,
Oxa9e5d4dl,
Oxe3a3adid,
0x589a529%b,

0x23abl36d,

O0x3cbédell,
0x67d4367f,
Oxadffb308,
0x01b6b60c,
0x30952596,
0x09%bc5808,
0xfd5448df,
0x9bl1l626d,
0x7f26bfa3,
0x1a9df8cO,
Oxe8efdedb,
0x40£79351,
0x6deddd5c,
0xd83544c9,
0x388224c0,
0x88bb6feed

0x607b3270,
Oxcf75d66f,
Oxc784e535,
Oxbfeabelb,
O0xbl35beec,
0xe74801c9,
O0xe072d02f,
Ox5af7fe3f,
O0xe88c49bb,
0x51f5bcb2,
0x7£89fafl,
0x0150192e,
Oxeb7d7£4d7,
0x7857%ad9,
0x402b938Db,
0x3169d7af,
0x7c948b3a,
0x5eaf962a4,
0x7070e3el,
Oxca78a82f,
O0xc08al8a3,
0x29cc85b6,
0xdae9d860,
0x28695051,
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0x534b6428,
0x5£516803,
0x9c5fdeda,
0x8b8bb8al,
0x9f07974e,
0xe3f45286,
O0xlae856a6,
Oxbo6ea7bef,
0x£9810104,
0x232fb845,
O0xc4564efDb,
0xdb232663,
Ox63cb2fi44,
O0xbfd8903f,
0x546682be,
0x219b3356,
O0x60ecffad,
Oxca7728d4d7,
0x3c5b3flf,
0x120f£5a67,
0xa83lb6eee,
0x9b82363a,
0x5b4db7709,

Oxeld8e878,
Oxaab’7d57a,
0x£190ac77,
0x264dl12e3,
Oxafbd2eb64,
0xd5358534,
0x68cc3laz,
0x622e2a72,
O0xe7£155bc,
OxdeaS5fo68f,
0x%ald227a,
O0x4ef2a450,

0xa39e8607,
O0xc0b2d7a7,

0xa714903a,
0x%a860db2,
O0xb7b25818,
0x314b2fae,
Oxeca92618,
Oxc765dfac,
0x947665d4,
0xfa09f946,
Oxledbe781,
O0xe655a748,

0xf167db4s5,
0xc44948fa,
0x2283b18f,
0x02l1lae3ca,
0x20d4709e8,
0xa0011424,
0x65b39345,
0x828935cc,
O0xebd9bafdb,
0x164aa69%b,
0x4253afic,
0x67240£45,
0xe381956¢,
Ox64ea3eal8,
0x86a5fled,
0x9%96ed7b89,
O0xfaab55681,
O0x5a6dd80Db,
0xd0b37c2a,
Oxe31l2312e,
0x5d¢c50280,
0x523dc28d,
0x9%cabfl2c4,

0x7£97£0d6,
0x3cb2462b,
0x278b7320,
Oxfff7fe37,
O0x6ebS5fel’,
0xa34026co,
0x01l6ccfld,
Oxlfbfdeld,
0xddb50597,
Oxffdeelle,
0x90de812a,
O0x53eafo634,
0xa36£7785,
O0xcl5b64ea,
O0xbf437783,
0x846117ae,
0x44c3f£6d0,
0xc9ae207e,
0x8676c879,
0xalebb67860,
Oxelef877a6,
0xb685b898,
0x59abd226,
0xbl78e057,



Ox86eb6a39f,
0x77b99522,

0x396d2205,
0x87edaabh,
Oxfbb23fe3,
0x31788532,
0xdS5afS37e,
0x487ff8cf,
O0xf7b7d1lch,
0xa67770cc,
0x2dbdf79a,
0x8899%9a638,
0x0Ocbfefab,
0xf2297alc,
0x5bb5af987,
0x3c4ad833,
0x83a2d68f,
Oxc9ec8el9,
0xd859%e06b,

0xb775dfe3,
0x4929f4d4d,
0x1lab6bf075,
0x75b6aele,
0xl1l7badcd4,
0xc943dff7,
Oxc96fa6ff,
0x4da84e6df,
0x587£57b5,
0xl1lad490e22,
0x894a8612,
0x4d729555,
OxdeeaB2lc,
0x2d48c631,
0x8ael20ef,
Oxe285dbcl,
0x2977b8cS,
0x69cab6lb,
0x68c88633,

A.2.5. S-Box S5

O0x2bblce’76,
0xa9£f21d400,
0x17176c34,
O0xcb717039,
0xef394063,
O0xbd6faz239,
Oxc82cedab,
0xd20508da,
0x06dd7926,
0xe89%ecab8f,
0x2b089b69,
0x3faf%efs5,
0x470falfe,
0x£fc530776,
0x0d178b38,
0x65779d4c,
0x04cea3f8,
Oxee3l1736e,
Oxef681d41,
0x07£418e7,
0x27b%ad0b,
Oxdcdl77cdd,
Oxbb4dbcSec,
Oxdeed579d,
0x3¢c735928,
O0x673faec9,
Ox7co6d34a6,
0x11d9fa8l,
O0xaedf7098,

0xa24£25c4,
0x35f432ef,
0x915730db,
0x196a7209,
O0x347eedl?2,
0x608eal99,
0x7f8b52ct,
0x65667ee7,
O0x3d8ocadbc,
0xd26793c2,
0x022c02d8,
Ox3ebeabdc,
0x5d9324a8,
OxeB8fl154e5,
O0x76baec3d,
0xlcc9Y5caz,
0x86675360,
0x71laZbe8l,
0x69£f£59914d,
0xa384784f,
0x8cdad190,
0x78d1530e,
Oxfaébfods,
0x8b3cb08d,
O0xc73caf%ef,
0x81d%a697,
0x879aa685,
0x5d6b5d76,
O0xed452debb,
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O0x19b0f07f,
O0x5416afaz2,
0xb380786a,
0x42953fc0,
O0x8¢c690a74,
0x139a00c8,
0xaB847c89e,
0xe971086c,
Oxbalaff(5,
0x36f461c7,
0x7£76350e,
0x76e87b0d,
0x8840867c,
0x64b7f26e,
O0xed08£d4dd9,
Oxab60f2fe,
0xb1430a33,
OxbfaSbl7b,
0xel8f0cbf,

0x831431d4,
0x2cb25fbf,
O0xb2ea75bl,
0x91aa7d£f8,
0x38cac74d,
0x3d73d51a,
0x108calee,
Oxfoedle7c3,
Oxflddce?25,
0x23005bdg,
0xd06caalf,
0x84626376,
0x702cac04,
0x33bee3bZ,
Oxe87alchl,
Oxa36cebld,
Oxefbl513a,
Oxel2Z2ecall,
0x1977dcdf,
Oxfefbfic?,
0x10c3409D,
0x18e8bala,
0xla6a2918,
0xc08£9958,
0x3ea05561,
0x38e9456f%,
0x65b7e261,
0x3bb468e9,
O0xaS57c8cch,

0x2c595352,
0x6e41505¢f,
0x8d4631036,
O0xa3d0b2a8,
0x62bd1ld8eo,
0x1954ae83,
0xa9%e9201c,
0xeleb5074,
Oxleabeadf,
0x89990420,
0xcl482610,
0xa902bf4l,
0x4be83d0Db,

O0xbla5d9%6a,

0x368e2148,
0x640e261c,
0x127183d8,
O0x0£f086751,
0x4974023a

0x0303dbla,
O0xal2Zeb5aad,
0x3d48aae?2,
0x48d732bb,
0xf874a625,

0x98daadeq,
0xb81£4457,
0x4848e'71Db,
0xc73906¢c9,
0x1064a315,
Oxf46cadls,
0x958f1c4d,
0x64505b1l7,
0x59515b714,
0x9%efllcOd,
0xd8725cle,
O0x632eabec,
Ox7a766c2d,
0x83d3517a,
0x4b2£2455,
0xb481dbdb,
0x579621£f8,
0x46a56293,
0x80860547,
O0xcad32615,
Oxc7aeeS0e,
0x9396a505,
0x689a56¢3,
Oxf0f£f8ffhb,

O0xff48fd0b,
Oxc86b543f,
0x£5942429,
0x2c287£f9%e,
0x5b50edbc,
0x6068dc70,
0x268d£f73c,
Ox88aedafc,
0x£f79128ff,
0x686a0fdb,
0x175d75d8,
0xfe908360,
0x7144e403,
Oxcicc2cl?2,
0x9211b%e5,
0x00d3c371,
0xe50c8579,
0x885c2e88,

0x08dbl9f4,
0x8d495f£281,
0x0£031db4,
0x52c7eall,
0x69d5909%e,
O0xe6088fb9,
0x1£973404,
0x35¢ce8218,
0x12460656,
0xd87a3298,
0x070810b0,
0xb54fcb80,
Oxdeae3ae?2,
Oxc8ccabf9,
0x%e84b6f5h,
0x5ad258fh,
0x14959373,
O0xlab87e5d,
0x2f642f64,
0xd02354cft,
0xflbl6lbe,
0xb08d05ec,
0x796a5b67,
0x6332a4dcd,
0x62323980,
0x2b%bb6o6d5,
0x0az2b4dl2?2,
0x215491fo,
0x8141e7fDb,
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0xc9386946,
0xe3433b0d,
0x10160b29,
O0xd62ef3de,
O0xad2df05f,
0x7b5245db,
0x27ab3152,
0x895fd4d079,
0x4d7b6bl9,
0xc05ea648,
0xd756¢c9%e5,
0x290a669e,
Oxbad82632,
0x159dfc0d,
0x57801e92,
0xd9731df4,
0x415df4b8§,
0x2d0b409d,

0x8f£32c2d9,
O0xlaed8191,
Oxddecade3,
0x9048e28Db,
Oxb4cbaz299,
0x4e93582a,
O0xb7cb%aza,
0x866eafod,
0x3796dad3,
0xf43calSc,
0x18f£2d342,
0xb84dc829,
Oxcbeeecedd,
Oxadd78c8f,
0xf8c31e95,
0x3¢c375e9f,
0x8732achb,
0x9fdb2461,
0x943b5329,
0x78da6d54,
0x58915¢c5f,
0xf0b35e46,
0x33b79%e31,
0x2e80ae’e,
0x994606087,
Oxcbad4a719,
0x4943a9d8,
0x6£f0e543Db,
O0xdf£916287,



0x86163764,
Oxeld6l77a,
Oxef23b200,
0x2baf9b33,
0x99280067,
0x16¢c93071,
Oxclel27cSe,
O0xd6abidc(é6,
O0xf4f5e75¢c,
0x78f2e9c0,
0x523e05be,
0x07eb7443,
0x1864ebe8,
Oxfbfecf2d,

O0xdS5fe6abel,
Oxed4fdeef,
Oxe3ad6060,
0xd2d42881,
Ox74e367aa,
O0xe8c024be,
0xcl912776c,
O0xd4ece076,
0xf0d0adfc,
O0x0fdc57a8,
0x35bd2a82,
O0xfc54a8da,
Oxf2f496a7,
0x123717bc,

A.2.6. S-Box S6

0x4301elaa,
0xcl361255,
0x4598280Db,
0x58f14a38,
0x£5421b0d,
Oxecl86eb4,
0xe3d39772,
0x142e1875,
Oxd4e7cb3ef,
Ox17deac59,
0x2373be35,
O0xeb3170£8,
0x60397e0e,
0x415f6746,
Oxae797fce,
O0xdce2l2b387,
0xd4101457,
0x175c4%e8,
0x678d266f,
0x7¢c9d430a,
0x3742883e,
0x0490£f£07,
Oxebbd788e,
0xa9%9f04alc,
0x465e57c3,
0x3b961bll,
0x86a78788,
0x772e9%e28,
0x1110720Db,
O0x£75cc818,
0x0551d80d,
0x35f££f1d7b,
0xd9%e9%ad’73,
0xb39c7b48,

0x934959hbd,
O0x156ebfea,
0x9f02c8c4,
0x87757d83,
Oxac2o6ffe,
Oxbé6deffff,
0x1811450Db,
OxeB87114d4,
0x2bd934fa,
O0xf73eff74,
0x42d5fde0,
0x6318aefc,
0x635£d70a,
0x4cd46¢c392,
0x30d12£76,
0x4977¢c317,
O0x42al3cfd,
0xB8d66c31a,
0x71da0025,
0x17af5cf4,
0xdcbeb968,
0xed4d68309,
Oxe303cbfc,
0xa%977e506,
0x3dc7f6ed,
0x41235427,
0x71£75da6,
0x0286ab54,
0x62¢c8d0c7,
0x88c3543c,
O0xad458aadd,
0x19f1d0bb,
0xdbb370a2,
0x358497b1,
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O0x3ladddfe,
O0xff26e657,
0x3eb8calh,
0x73cf2492,
Oxed285ad9,
0x527429f5,
O0xel7030bf,
0x09d9c32b,
0x2c69c85f,
0x6016bc89,
0x0707e286,
0x69928340,
0x8b9617bc,
0x90f6a77a,

0x08a01c00,
0x07addefe,
0x02c707al,
0x48e24911,
Ox6a77ac372,
0x47822eaa,
0x8440£fd432,
0x509514bd,
Oxeeldbfea,
Oxd4da34de,
0x870ddbf0,
Ox4babcf28,
0x5cd4dd79,
0x5b58e52a,
0x04cZed’74,
0x83az2llal,
O0xaZl0bdl4a,
0x5c55eled,
0x10791bb2,
0x48l666ab,
0x9283celb,
0xc588a876,
Oxff7f6ada,
0x170553f0,
0x8d382192,
0x33cbfl43,
Oxc0dla6a9,
O0xl8ca6fab,
O0xaf93f2cd,
O0xc8£14833,
0xd94375c6,
Oxadeabbe,
0x8a6374da,
0x9d1fdaZ28,

0x2al6a%b0,
Oxe7b697ce,
0x3775bé6c4,
0x92f1df7 £,
0x11f51fch,
Oxad4do6af8o,
0x£f80427fe,
0x10eb6a261,
0x4801a8a3,
0x194¢c5112,
0x61d3e37e,
Ox8f8aS53ac,
0x60f6af73,
0x7476a97d

0x55804207,
0xdOceabdl,
Oxdfdeffoe,
0x13cdc99a,
Oxbeef3fe9,
0x31310013,
Oxfefeffe3,
Oxa7cefefc,
0x0036e03f,
O0x3f2615a3,
0x674ebff>5,
Oxce7elcbc,
0x545233a5,
Oxcaa2600a,
0x1c768384,
Oxlcfa8341,
O0xbdab3cb0,
0x4f9cdee’,
0x05d468398,
Oxabld34ad,
0xf4£fc4758,
0xc7d42384,
0x79e354Db0,
0x10cb00ea,

0x£9a8072c,
0x48bb3cab,
0xb05314a7,
Oxelac2dl’,
0x54dc7ef9,
0x6£fb4ddf3,

0x7d73142e,

0x881816be,
0x074a2a5b,
0x126dc309,
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0x20d4aa7d,
0xf0d01le91,
0x23bd8e4d’,
0xc80d4c9l,
Oxbca2fee’,
0x1£3158d1,
0x227da776,
0x292b9%dda,
0x279fdbfd,
0x4£097162,
0x1550965¢c,
0x72941all,
0x£f8653ffc,

0x8d3d33d7,
0x4a49%al84,
O0xc8c70ddf,
0xd75bd08e,
O0x71beed4d3,
0x219876592,
0x7bcd8915,
0x33e12155,
O0xbe0c8274,
0x7416f6¢c3,
0xd09f1a57,
0x722afc8f,
0x7201c8d9,
Oxfaé6cfefs§,
O0x76d667ed,
0x2£851043,
0x65c4b98d,
Ox22be2cal,
O0xddefS%bla,
Oxeddlc2a3,
Oxalee90d7,
0xd60de7da,
0x35748d28,
O0xB843afdec,
O0xf32falel,
0x73972%aa,
0x491fc7b6,
0x28599744,
0x4288ddce,
0x13d0d460,
0x6ab77e50,
0x£98400ad,
Oxefdd7b89,
0x4092c919,

0x34c8d2d5,
0xe3b42209,
0x2734a894,
0x3f29d7be,
0x4a7e95f4,
0x157ea087,
0x309%fa7ee,
0x34dca7fd,
0x4£295c4f,
0x3610d74e,
0x6fb4aalg,
0x87094df96,
O0xlce6eb518,

0xdd6e22b0,
0x93ca9fob,
0x993a8ed4,
0x0bo6ebf7d,
Oxafea37a8,
0xdf3bc04b,
O0x8c05aalc,
Oxcbdebfb4,
0xdc815251,
Ox176cabab,
0xd0d1£563,
0x76£f68313,
0x7d96b60d,
Oxededdl4s8,
0x6fbb6cb05,
0x3546¢c303,
0x7£81fbf7,
O0x3bela8la,
0x38d94al4,
0x8026c38d,
0xc545c919,
0x5e2d3958,
O0xbe(03402a,
0x01531436,
0x8fc4b096,
0x866254b4,
O0xbS5acebba,
0x527314Db9,
O0xbcd7b7c2,
0xb8fb8ado,
Oxcbbb4f88,
0x51c354ad,
Oxefeclae8,
0x4110b630,
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Oxaf634cda,
0xd05a6aaa,
0x0£fa0725b,
Oxecb327a6,
0x1ll122beac,
0x66fc39e8,
0xd49d9f 3e,
0xd525e4dc4,
0x9988b764,

Oxada081ldb,
Oxf5c6541f,
Oxaddd4ffao,
0x4c34d7a3,
0x8ac36¢cl3,
O0xf8b33dct,
0x33db5ceb5,
0x3594472f,
0x7077ddbf,

A.2.7. S-Box S7

0x813c06d4,
0xad4l139684,
0x2ca939fhb,
0x417891eb,
0x3cbel68c,
0x0e5f8aah,
0xb8512108,
O0xb3618fff,
O0x3ecb36db,
0x22delcca,
Oxfbd0aba9,
Ox2edbdalc,
0x86a3778f,
0xe846885d,
0x2495£708,
0x7d145da’,
0x02b4d7abe,
0xc92918a6,
0x808bl1d2,
0xdf8a9f9c,
0xcl1l8f495c,
0x402££057,
0x8316c491,
0x82bdb3ff,
0x2afd4af863,
O0xbdbef538,
0x63972846,
0x5be76c24,
0x34cbl70a,
Ox78fddoeee,
0x42513027,
0x07£5578¢6,
0x03cdd8c9,
Oxaef949c3,
0x0edaec3c,
0xa3036ca6,
0x7ed5d04b,
0x84847cba,
0xd232d58e,

0x67033b80,
0x57e084fb,
0xd53d3805,
Oxcalb59f43,
O0xba7a97df,
0x94df4acftf,
0x£f£fd49029,
0xfb314ech5,
0x4e29aa’b,
0x473ede’Db,
0x865a9777,
0x4f585cfd,
0xedddbOc7,
0x990df1d6,
0x34dc2abl,
0x73ecfl?3,
0xda7213bd,
0x1998de52,
O0xSfO08ff2f,
0xal3e753b,
0xb40203a0,
0x3a8d6156,
0x241d483dd,
0x24d8332¢,
0x77c6b548,
0xf4e90bea,
0x2498806c,
0x58beetbab,
0x29123f0f,
O0x7da88bca,
O0x6e72e8c9,
0x30028b0b,
O0xa5d8ecfth,
0x15a9583c,
O0xb7e7¢c540,
O0xo68cb4dazd,
0xb0a04490,
0x56a49b38,
0x7da76ade,

0x785d62f3,
Oxbadb69cft,
O0x0aflaba’,
0x557202b3,
Ox64badc6f,
Oxda6fllec,
Oxlebfd778,
0x56303d48,
O0xdSe6édba?l,

0x88a17185,
0x15408c02,
0x3b31££d4d0,
0x6ae64885,
Ox5ee3bala,
0x9£f97093b,
O0xd64d4f2£f23,
Oxe37ceebb,
Oxffb9%adll,
0x3978b2d5,
0x3f5ccfda,
0x56%aecel,
0be3095ddl
O0xb7d418843,
0x00b2d438,
O0xde31067f,
0x666b4d27,
0x214d3e20,
Oxe5f9fdde,
0x57¢c53b9f,
Oxbafl79f5,
0x8acl90b3,
0x2be(81bl,
0x26526cda,
Oxac8feddc,
0x760d4503d,
0xe588fccO,
0x07aeb55fc,
0xfc923a4d,
0x253acléa,
0xe921caeb,
0xd04dfdlc,
Oxcad2a360,
0x77835fc7,
0xd%4a0297,
0x409d9fc3,
0x7¢cl1l897bf,
0x15d4£f236,
0x5c25f0ec,

0xfd344732,
0x9327a982,
0x2e0557b2,
0xc9c3284c,
0x7el4d7b8,
0x453cbé6e3,
0x£09dc9e3,
0x37dclcbb,
0xbdad497a9

O0x7d7ba354,
Oxfabec746,
Oxcffe8e5b,
O0xeS5bfdd34,
Oxc7df8efe,
0xc080eclO,
0x9bffeldf,
Oxalfbclab,
0x97cd4a9e,
0x59£53821,
0x44feledb,
0x39908cc7,
0xd94d331c,
0xa2l263b560,
0x096d23d2,
0xd915a85e,
0xab500celd,
0x£4171£3f,
0x28aca3fz,
0x33efc2f9,
0xc58d8322,
O0x2ad4aca3,
0x8831d04e,
0x9%eeadd3z,
OxeScaca7?,
0x20a980ea,
O0xbf281bda,
0x016b6618,
O0xf6c49970,
0x15defddc,
Oxce89d9ce,
Oxededc246,
0x7£385423,
0xd8bd388b,
0x6d05599c,
0x87dc0279,
0xab5a65928,
Oxaa7alb67,
O0xf9b63518,

0x5a3edlce,
0x37£0d4013,
0xebd448492,
0x2b4d4508,
0x9977e50Db,
0x2b3b0d07,
Oxlcb4c32a,
0x1c95dabs56,

Oxace95364,
0x1907265c,
0x3267bfc2,
0x1341a399,
0x7c02fdf2,
0xf05c3a86,
O0xdd7e4lad,
0x960ec35b,
Oxe9%acd4l?z,
0xed464270,
0x17cfblb1,
0x7ef5al09,
Oxdbded672,
0x910bebbe,
0x4b997905,
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WHAT IS CLAIMED IS:

1. In a data encryption method of cryptographically transforming plaintext into
ciphertext in data blocks of a predetermined bitlength comprising a plurality of
consecutive transformation rounds of half of each data block, each consecutive
transformation round comprising steps of

combining the half data block with a first masking key of predetermined length
using a first binary operation to generate a first modified half data block,

combining the first modified half data block with a second masking key of

predetermined length using a second (different) binary operation to generate a second
modified half data block,

processing the second modified half data block by a plurality of (m X n)
mutually different substitution boxes to generate a third modified halt data block, and

XORing the third modified half data block with the remaining half of the data
block to generate a transformed half data block of a transformation round.

2. The data encryption method of cryptographically transforming plajntext. into
ciphertext in data blocks of predetermined bitlength according to claim 1, wherein the
first binary operation is addition modulo 21, or subtraction modulo 27, or bitwise XOR,

and the second binary operation is multiplication modulo (27 - 1), or multiplication ‘
modulo (21 + 1)

3. The data encryption method of cryptographically transforming plaintext into
ciphertext in data blocks of predetermined bitlength according to claim 1, wherein the
first binary operation is addition modulo 20, or subtraction modulo 21, or bitwise XOR,
and the second binary operation is a circular shift (i.e., rotation) by a number of bits
specified by the second masking key.

4. The data encryption method of cryptographically transforming plaintext into
ciphertext in data blocks of predetermined bitlength according to claim 1, wherein all
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first masking keys and all second masking keys for all the transformation rounds are
generated before the first transformation round is performed.

5. The data encryption method of cryptographically transtorming plaintext into
ciphertext in data blocks of predetermined bitlength according to claim 4, wherein all
first masking kéys and all second masking keys for all the transformation rounds are
generated by a plurality of partially bent-function-based (m x n) substitution boxes from

the key bits, where the key bits comprise a key pattern of z bytes in the following order:
k1, k2, k3, ..., k(z-1), kz.

6. The data encryption method of cryptographically transforming plaintext into
ciphertext in data blocks of predetermined bitlength according to claim 5, wherein each
data block contains 64 bits, the substitution boxes are eight partially bent-function-
based 8x32 s-boxes, S1, S2, S3, ..., S8, and the key bits compriSe a key pattern of 10
bytes in the following order: k1, k2, k3, ..., k9, k0.

7. The data encryption method of cryptographically transforming plaintext into
ciphertext in data blocks of predetermined bitlength according to claim 6, wherein the
transformation round function means has a first plurality of partially bent-function-
based (m x n) s-boxes for processing key bits to generate a first masking key and a
second masking key, and a second plurality of partially bent-function-based (m x n) s-
boxes for processing the second modified data half.

3. The data encryption method of cryptographically transtorming plaintext into
ciphertext in data blocks of predetermined bitlength according to claim 7, wherein the
first plurality of s-boxes comprises four partially bent-function-based 8x32 s-boxes and
the second plurality of s-boxes comprises four partially bent-function-based 8x32 s-

boxes.

9. The data encryption method of cryptographically transforming plaintext into
ciphertext in data blocks of predetermined bitlength according to claim 1, wherein
consecutive transformation rounds may be computed differently due to the presence of
different binary operations within each transformation round.
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10. The data encryption method of cryptographically transforming plaintext into
ciphertext in data blocks of predetermined bitlength according to claim 9, wherein the
choice of which particular binary operations to use in any particular round is dependent
upon the value of certain predetermined bits of the first masking key or the second
masking key, or upon the value of certain predetermined bits of the half data block
being operated upon.

11. The data encryption method of cryptographically transforming plaintext into
ciphertext in data blocks of predetermined bitlength according to claim 9, wherein the -
choice of which particular binary operations to use in each transformation round is fully
specified for all implementations of the method and is independent of any key bits or
data bits.

12. The data encryption method of cryptographically transforming plaintext into
ciphertext in data blocks of predetermined bitlength according to claim 11, wherein the
binary operations addition modulo 2R, subtraction modulo 21, and bitwise XOR can be
used to combine the half data block with the first masking key and to combine the s-box

outputs which result from the processing of the second modified half data block.

13. The data encryption method of cryptographically transforming plaintext into
ciphertext in data blocks of predetermined bitlength according to claim 12, wherein
three different transtormation rounds are used:

Type 1: I =((Kai + D) <<< Kbi)
O = ((S1[Ia] A S2[Ib})) - S3[Ic]) + S4{1d]

Type 2: I =((Kai A D) <<< Kbi)
O = ((S1[1a] - S2[Ib]) + S3[Ic]) A S4[Id]

Type 3: I =((Kai - D) <<< Kbi)
O = ((S1{Ia] + S2[Ib]) ~ S3[Ic]) - S4[1d]

where "D" is the original input to the transformation round, "Ia" - "Id" are the most
significant byte through least significant byte of I, respectively, and "O" 1s the output of
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the transformation round. In this notation "+" and "-" are addition and subtraction
modulo 2**32, "A" 15 bitwise XOR, and "<<<" 1s the circular left-shift operation.

14. The data encryption method of cryptographically transforming plaintext into
ciphertext in data blocks of predetermined bitlength according to claim 13, wherein
twelve transtormation rounds are used in total and

rounds 1, 4, 7, and 10 use transformation round Type 1,
rounds 2, 5, 8, and 11 use transformation round Type 2, and

rounds 3, 6, 9, and 12 use transformation round Type 3.
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