a2 United States Patent

Cocagne et al.

US011410019B1

US 11,410,019 B1
*Aug. 9, 2022

(10) Patent No.:
45) Date of Patent:

(54) VERIFYING SYSTEM REGISTRY FILES IN A
STORAGE NETWORK

(71) Applicant: Pure Storage, Inc., Mountain View, CA
(US)

(72) Inventors: Thomas D. Cocagne, Elk Grove
Village, IL (US); Jason K. Resch,
Chicago, 1L (US)

(73) Assignee: PURE STORAGE, INC., Mountain
View, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 98 days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 16/986,599

(22) Filed: Aug. 6, 2020

Related U.S. Application Data

(63) Continuation of application No. 16/145.481, filed on
Sep. 28, 2018, now Pat. No. 10,748,055, which is a

(Continued)
(51) Imt.CL
G1IC 29/00 (2006.01)
GO6N 3/04 (2006.01)
(Continued)

(52) US.CL
CPC oo GOG6N 3/04 (2013.01); GOGF 3/064
(2013.01); GOGF 3/067 (2013.01); GOGF
3/0619 (2013.01):

(58) Field of Classification Search
CPCccvue GOG6F 11/079; GO6F 11/0727; GO6F
11/0751; GO6F 11/0769; GO6F 11/1092;
GOG6F 3/0619; GOGF 3/064; GOGF 3/067
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

4,092,732 A
5,454,101 A

5/1978 Ouchi
9/1995 Mackay et al.

(Continued)

OTHER PUBLICATIONS

Chung; An Automatic Data Segmentation Method for 3D Measured
Data Points; National Taiwan University; pp. 1-8; 1998.

(Continued)

Primary Examiner — Samir W Rizk
(74) Attorney, Agent, or Firm — Garlick & Markison;
Timothy W. Markison; Bruce E. Stuckman

(57) ABSTRACT

A method for execution by a dispersed storage and task
(DST) execution unit includes receiving system registry
integrity data via a network that corresponds to a plurality of
system registry files, a request for a subset of the plurality of
system registry files is generated for transmission to a
dispersed storage network (DSN) unit via the network. The
subset of system registry files are received from the DSN
unit via the network. Integrity check data is generated based
on the received subset of the plurality of system registry files
and the system registry integrity data, where the integrity
check data includes a verification indicator. The system
registry files are stored in memory when the verification
indicator indicates that verification was successful.

(Continued) 20 Claims, 7 Drawing Sheets
. file list and integrity check info
managing
unit 18 system registry files .
- file st system regisfry files DST EX unit 1
—compufingcore 26 processing module 34
memory 88 T
system files request memory 88
system registry files
system regist
system files ¥ flles xf)i i
file fist request =
integrity check info fleli . . .
fle list and integrity check info p
DST EX unit2
processing module 84
memory 88
H
file list and integrity check info
R — oy DST EX unitn
processing module 84
memory 88

US 11,410,019 B1
Page 2

Related U.S. Application Data

continuation of application No. 15/262,808, filed on
Sep. 12, 2016, now Pat. No. 10,157,094, which is a
continuation-in-part of application No. 15/058,408,
filed on Mar. 2, 2016, now Pat. No. 10,037,171.

(60) Provisional application No. 62/154,886, filed on Apr.
30, 2015.
(51) Int. CL
GO6F 11/07 (2006.01)
GO6F 3/06 (2006.01)
GO6F 16/00 (2019.01)
GO6F 11/10 (2006.01)
GO6F 16/182 (2019.01)
GO6F 16/23 (2019.01)
GO6N 3/063 (2006.01)
GO6N 3/08 (2006.01)
GO6N 3/06 (2006.01)
(52) US. CL
CPC GO6F 11/079 (2013.01); GO6F 11/0727
(2013.01); GO6F 11/0751 (2013.01); GO6F
11/0769 (2013.01); GO6F 11/1092 (2013.01);
GO6F 16/00 (2019.01); GOGF 16/182
(2019.01); GO6F 16/2365 (2019.01); GO6N
3/0454 (2013.01); GO6N 3/0635 (2013.01);
GO6N 3/08 (2013.01); GO6F 2211/1028
(2013.01); GO6N 3/06 (2013.01)
(56) References Cited
U.S. PATENT DOCUMENTS
5485474 A 1/1996 Rabin
5,774,643 A 6/1998 Lubbers et al.
5,802,364 A 9/1998 Senator et al.
5,809,285 A 9/1998 Hilland
5,890,156 A 3/1999 Rekieta et al.
5,987,622 A 11/1999 Lo Verso et al.
5,991,414 A 11/1999 Garay et al.
6,012,159 A 1/2000 Fischer et al.
6,058,454 A 5/2000 Gerlach et al.
6,128,277 A 10/2000 Bruck et al.
6,175,571 Bl 1/2001 Haddock et al.
6,192,472 Bl 2/2001 Garay et al.
6,256,688 Bl 7/2001 Suetaka et al.
6,272,658 Bl 8/2001 Steele et al.
6,301,604 Bl 10/2001 Nojima
6,356,949 Bl 3/2002 Katsandres et al.
6,366,995 Bl 4/2002 Vilkov et al.
6,374,336 Bl 4/2002 Peters et al.
6,415,373 Bl 7/2002 Peters et al.
6,418,539 Bl 7/2002 Walker
6,449,688 Bl 9/2002 Peters et al.
6,567,948 B2 5/2003 Steele et al.
6,571,282 Bl 5/2003 Bowman-Amuah
6,609,223 Bl 8/2003 Wolfgang
6,718,361 Bl 4/2004 Basani et al.
6,760,808 B2 7/2004 Peters et al.
6,785,768 B2 8/2004 Peters et al.
6,785,783 B2 8/2004 Buckland
6,826,711 B2 11/2004 Moulton et al.
6,879,596 Bl 4/2005 Dooply
7,003,688 Bl 2/2006 Pittelkow et al.
7,024,451 B2 4/2006 Jorgenson
7,024,609 B2 4/2006 Wolfgang et al.
7,080,101 Bl 7/2006 Watson et al.
7,103,824 B2 9/2006 Halford
7,103,915 B2 9/2006 Redlich et al.
7,111,115 B2 9/2006 Peters et al.
7,140,044 B2 11/2006 Redlich et al.
7,146,644 B2 12/2006 Redlich et al.
7,171,493 B2 1/2007 Shu et al.

7,222,133 Bl 5/2007 Raipurkar et al.
7,240,236 B2 7/2007 Cutts et al.
7,272,613 B2 9/2007 Sim et al.
7,636,724 B2 12/2009 de la Torre et al.
10,037,171 B2* 7/2018 Baptistccoeeeenenen GO6F 3/067
10,157,094 B2* 12/2018 Cocagne GO6N 3/0454
10,748,055 B2* 8/2020 Cocagne GOG6F 3/064
2002/0062422 Al 5/2002 Butterworth et al.
2002/0166079 Al 11/2002 Ulrich et al.
2003/0018927 Al 1/2003 Gadir et al.
2003/0037261 Al 2/2003 Meffert et al.
2003/0065617 Al 4/2003 Watkins et al.
2003/0084020 Al 5/2003 Shu
2004/0024963 Al 2/2004 Talagala et al.
2004/0122917 Al 6/2004 Menon et al.
2004/0215998 Al 10/2004 Buxton et al.
2004/0228493 Al 11/2004 Ma
2005/0100022 Al 5/2005 Ramprashad
2005/0114594 Al 5/2005 Corbett et al.
2005/0125593 Al 6/2005 Karpoff et al.
2005/0131993 Al 6/2005 Fatula
2005/0132070 Al 6/2005 Redlich et al.
2005/0144382 Al 6/2005 Schmisseur
2005/0229069 Al 10/2005 Hassner et al.
2006/0047907 Al 3/2006 Shiga et al.
2006/0136448 Al 6/2006 Cialini et al.
2006/0156059 Al 7/2006 Kitamura
2006/0224603 Al 10/2006 Correll
2007/0079081 Al 4/2007 Gladwin et al.
2007/0079082 Al 4/2007 Gladwin et al.
2007/0079083 Al 4/2007 Gladwin et al.
2007/0088970 Al 4/2007 Buxton et al.
2007/0174192 Al 7/2007 Gladwin et al.
2007/0214285 Al 9/2007 Au et al.
2007/0234110 A1 10/2007 Soran et al.
2007/0283167 Al 12/2007 Venters et al.
2009/0094251 Al 4/2009 Gladwin et al.
2009/0094318 Al 4/2009 Gladwin et al.
2010/0023524 Al 1/2010 Gladwin et al.
2010/0169415 Al 7/2010 Leggette et al.
2011/0225204 Al 3/2011 Liguori

OTHER PUBLICATIONS

Harrison; Lightweight Directory Access Protocol (LDAP): Authen-
tication Methods and Security Mechanisms; IETF Network Work-
ing Group; RFC 4513; Jun. 2006; pp. 1-32.

Kubiatowicz, et al.; OceanStore: An Architecture for Global-Scale
Persistent Storage; Proceedings of the Ninth International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2000); Nov. 2000; pp. 1-12.

Legg; Lightweight Directory Access Protocol (LDAP): Syntaxes
and Matching Rules; IETF Network Working Group; RFC 4517,
Jun. 2006; pp. 1-50.

Plank, T1: Erasure Codes for Storage Applications; FAST2005, 4th
Usenix Conference on File Storage Technologies; Dec. 13-16, 2005;
pp. 1-74.

Rabin; Efficient Dispersal of Information for Security, Load Bal-
ancing, and Fault Tolerance; Journal of the Association for Com-
puter Machinery; vol. 36, No. 2; Apr. 1989; pp. 335-348.

Satran, et al.; Internet Small Computer Systems Interface (iSCSI);
IETF Network Working Group; RFC 3720; Apr. 2004; pp. 1-257.
Sciberras; Lightweight Directory Access Protocol (LDAP): Schema
for User Applications; IETF Network Working Group; RFC 4519,
Jun. 2006; pp. 1-33.

Sermersheim; Lightweight Directory Access Protocol (LDAP): The
Protocol; IETF Network Working Group; RFC 4511; Jun. 2006; pp.
1-68.

Shamir; How to Share a Secret; Communications of the ACM; vol.
22, No. 11; Nov. 1979; pp. 612-613.

Smith; Lightweight Directory Access Protocol (LDAP): String
Representation of Search Filters; IETF Network Working Group;
RFC 4515; Jun. 2006; pp. 1-12.

Smith; Lightweight Directory Access Protocol (LDAP): Uniform
Resource Locator; IETF Network Working Group; RFC 4516; Jun.
2006; pp. 1-15.

US 11,410,019 B1
Page 3

(56) References Cited
OTHER PUBLICATIONS

Wildi; Java iSCSi Initiator; Master Thesis; Department of Computer
and Information Science, University of Konstanz; Feb. 2007; 60
pgs.

Xin, et al.; Evaluation of Distributed Recovery in Large-Scale
Storage Systems; 13th IEEE International Symposium on High
Performance Distributed Computing; Jun. 2004; pp. 172-181.
Zeilenga; Lightweight Directory Access Protocol (LDAP): Techni-
cal Specification Road Map; IETF Network Working Group; RFC
4510; Jun. 2006; pp. 1-8.

Zeilenga; Lightweight Directory Access Protocol (LDAP): Direc-
tory Information Models; IETF Network Working Group; RFC
4512; Jun. 2006, pp. 1-49.

Zeilenga; Lightweight Directory Access Protocol (LDAP): Interna-
tionalized String Preparation; IETF Network Working Group; RFC
4518; Jun. 2006, pp. 1-14.

Zeilenga; Lightweight Directory Access Protocol (LDAP): String
Representation of Distinguished Names; IETF Network Working
Group; RFC 4514; Jun. 2006; pp. 1-15.

* cited by examiner

US 11,410,019 B1

Sheet 1 of 7

Aug. 9, 2022

U.S. Patent

07 (NSQ) Homyau
abeuo)s ‘pasiadsip Jo ‘panquisip

} "Ol4

81 Jun
Buibeuew

¢ 2109
Bunndwod

F Y

£C 0oy

7¢ Mowaw NSa

0¢ yun
Buissesosd Aubajul

OF Jun sbe.ojs

9%

ooe (NS) uun abeiois

9g 9109

Bunndwod

77 yomau

71 9omap bupndwoo

Operp —

0% S0eToW 0% S0Eom AR
57 6100 S— .
Bugnduwod vt Sinpou
Jueid 8d

07 9102 bugndwiod

g7 921mep Bugndwiod

F

A 4
TC 0B Lo

A

Yy
¢€ 9%l

%

!

$E ainpow
usIp sa

¢ 2100 bunndwoo

21 9o1nep Bupndwos

US 11,410,019 B1

Sheet 2 of 7

Aug. 9,2022

U.S. Patent

A

A 4
GG Jun buissasoud
sojyde.B ospin

¢ 9l
r—-—— - ""----"""""""""""""""""-"---"-"-"—- - a
I
9/ 9|npow ¥Z 9inpow 7/ 9|npow ageuajul 0/ 8|npow 80 9npow 00 9|npow
3oelauI NSQ aoeual OH ysep 3o lBJUI YJoMm}au 3oelAI YgH aoeuduI gsSN

A _ A A A A A _
I I
I I
I I
_ Y VY I VvVY _
“ g5 soepslul |0d 795019 “
_ 'y _\/_om _
| 1 |
_ A 4 A >0 _

— — a|npow

“ G J9]|0u09 CEREIENT Nm%rmﬂc_ “
I Ol Ol v 293P 0| I
I y I
I I
I I
| — = — |
| v ¢S 0 snpow |
| Alowsw ulew €1 Jg|j04u09 Alowsw [Buissadsoid |
I I
I I
I I
I I
I I
I I
I I
I I

0z 9109 Bunpndwoo

US 11,410,019 B1

Sheet 3 of 7

Aug. 9, 2022

U.S. Patent

9914
Ojul “A8J alloslqoelep | glynea | #uswbss ejep # Je|d
08 aweu 99j|s
¢ Ol
176sa3 pGX €6X 78X 18X 0 u w
X E X SPX ThX LpX _ | N _
16503 | | X eex eex lex c¢ia 1id 0a 6d Ly
= = | 81 0 90 Sa *
WANE] X X X 1eX J) p
ELE PIX EIX TUX LIX va €a <¢a ia 9 q e
SAI 0TS — — — —
(0) 3)
(Wo) _
H _HxEmE pspos = d —|,‘_>_m_ XUjew Qm& _H_\Mm_vwmwmmE 1 ¥ ol
391|S Blep papooud = (3
sWweu 9dIIs = NS _‘ z w_ _Al a - wl.@ﬂ_.
A §sa3l A ¥ 803 A €803 A ¢sad AL sa3d A Jusuwibes
A SNS A NS A ENS A ZNS A VNS A__U@c_e ~ Elep
° ° ® ° ° 9 nmc_o__w ™ 0F Yoslqo
: : : : : dupooe & — | e
- - - - = lol9 Bunuawibos
EE! EE IEE AN EE | Juswhbas
G NS L7 NS I ENS I ZNS L INS — elep
9€ G# NS 9€ ## NS € €#NS 9€ NS o€ 1#NS 9710 ¢ damap bupndwiod

US 11,410,019 B1

Sheet 4 of 7

Aug. 9, 2022

U.S. Patent

8 Ol

_M/_m_) Xujew E,W_ —Hx_:mE vmvooH_ —H

) Xupew
Buipoosp

I

JADE!
INCEE INCEE A €503 A ¢Sa3 INTEE JQUETTES
A S NS A VNS A ENS A NS A LNS _H._v €ep
Buipoosp = 198(d0
o e S s o 10119 e _HV oﬁm%
° ° ° ° ° 9 Bulolsap ° suiqud?
EE | vSa3 EE WALE 1~} 503 IRIEIES
G NS I VNS I € NS I ZNS I NS _Hv €ep
IESHNS 9 NS 9S4 NS 9 NS 9 1#NS 9710 ¢} 8omap Bupndwoo

US 11,410,019 B1

Sheet 5 of 7

Aug. 9, 2022

U.S. Patent

33 Aowsw

73 sinpow Buisssooud

V6 Ol

ujunxq 1sd

88 Mowsw

¥8 sinpow Buissesoid

A

A|||.
ojur ooy ABajur pue 1s1) aly

¢iunx31sd

XXX S|l
AnsiBal weishs

33 Aowsw

78 a|npow Buissaso.d

A

Al
ojul 93y Ajbajul pue 1si| ajy

158nbai
SOl WISISAS

L IunX3 18d

ojul Y082 Aubsyul

1Sl 81y

so|l Ansibas woyshs

oJu1 300y AuBajul pue 1S1| Sl

sanbal sa|lj Wa)sAs
' !.._“_P.vy 88 Aowsw
< » §7 5105 bunnauion
sojl} Ansibal weyshs i i o
so|l Aysibal wojsAs gl Jun
«— Buibeuew

US 11,410,019 B1

Sheet 6 of 7

Aug. 9, 2022

U.S. Patent

38 Aowaw

78 ainpow Buissaooud

ujunx3 1Sd

g6 Old

159nbal s9|1} Wa)sAs
A|||

Solly
Ansibal wayshs

88 Aowsw

¥8 a|npow Buissasoid

¢hunx4 18d

Sol
Ansibas Wwig)sAs

9% Aowaw

$8 9npow Buissaooid

so|y Ansibal wajshs
A.IIII.

A

—_—
158nbal s8|l) WaISAS

159nbai so|l} Wa)sAsS
A.I

Ojul 3980 Ajubajul

sh ey

so|l} Aisibas wieyshs

} un'X3 1SA

XXX 19s Jiun abe.o)s

so|l} Ansifal wajshs

Qg Aowsaw

¢ 9100 BUNAWod

3T wun
buibeuew N1SQA

US 11,410,019 B1

Sheet 7 of 7

Aug. 9, 2022

U.S. Patent

01 "Old

[NJSS8INS SEM UOIRINLIBA
1By} SajedIpul JOJRIIpUI UOKRILLIBA B}
usym Aiowsw ul oy Ansibas walsAs ay) a10)s

00 i

J0JeoIpul UOHRIYLISA
B Sapn|oul elep Yoayd Ajubajl sy} aleym ‘eep
Auba Ansibal waysAs sy pue saju Ansibal
WBISAS Jo Ajiean|d sy} 40 18sgNns panlegal
3y} uo paseq ejep yo8yo Abajul sjessush

~

5007 1

yiomjau
3y} BIA Jun NSQ 1sJu 8y} woyy sajl Ansibal
WiISAs J0 AJljeunid sy} JO 19SQNS By} SAIB08I

[{e]

007 1

yiomjau
ay) ein wun (NSQ) yJomau abelols passadsip

1511} B 0} uoIssiwsue.l) 1o} sayly Aisibal wa)sAs Jo
Ajfean|d ay} Jo J1asgns e 1oy 1senbai e sjesoush

I f

so|l} Aisibal
wiIsAs 40 Ajljeun|d e 0} Spuodsaliod eep
Aubajun Ansibal wa)sAs syl asaym fJomjau
e eI ejep Aubayul Ansibas wa)sAs anigoal

¢001

US 11,410,019 Bl

1
VERIFYING SYSTEM REGISTRY FILES IN A
STORAGE NETWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present U.S. Utility Patent application claims priority
pursuant to 35 U.S.C. § 120 as a continuation of U.S. Utility
application Ser. No. 16/145,481, entitled “VALIDATING
SYSTEM REGISTRY FILES IN A DISPERSED STOR-
AGE NETWORK?, filed Sep. 28, 2018, which is a continu-
ation of U.S. Utility application Ser. No. 15/262,808,
entitled “VALIDATING SYSTEM REGISTRY FILES IN A
DISPERSED STORAGE NETWORK?”, filed Sep. 12, 2016,
issued as U.S. Pat. No. 10,157,094 on Dec. 18, 2018, which
is a continuation-in-part of U.S. Utility application Ser. No.
15/058,408, entitled “ACCESSING COMMON DATA IN A
DISPERSED STORAGE NETWORK?, filed Mar. 2, 2016,
issued as U.S. Pat. No. 10,037,171 on Jul. 31, 2018, which
claims priority pursuant to 35 U.S.C. § 119(e) to U.S.
Provisional Application No. 62/154,886, entitled “BAL-
ANCING MAINTENANCE AND ACCESS TASKS IN A
DISPERSED STORAGE NETWORK?™, filed Apr. 30, 2015,
all of which are hereby incorporated herein by reference in
their entirety and made part of the present U.S. Utility Patent
Application for all purposes.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not applicable.

INCORPORATION-BY-REFERENCE OF
MATERIAL SUBMITTED ON A COMPACT
DISC

Not applicable.

BACKGROUND OF THE INVENTION
Technical Field of the Invention

This invention relates generally to computer networks and
more particularly to dispersing error encoded data.

Description of Related Art

Computing devices are known to communicate data,
process data, and/or store data. Such computing devices
range from wireless smart phones, laptops, tablets, personal
computers (PC), work stations, and video game devices, to
data centers that support millions of web searches, stock
trades, or on-line purchases every day. In general, a com-
puting device includes a central processing unit (CPU), a
memory system, user input/output interfaces, peripheral
device interfaces, and an interconnecting bus structure.

As is further known, a computer may effectively extend
its CPU by using “cloud computing” to perform one or more
computing functions (e.g., a service, an application, an
algorithm, an arithmetic logic function, etc.) on behalf of the
computer. Further, for large services, applications, and/or
functions, cloud computing may be performed by multiple
cloud computing resources in a distributed manner to
improve the response time for completion of the service,
application, and/or function. For example, Hadoop is an

10

15

20

25

30

35

40

45

50

55

60

65

2

open source software framework that supports distributed
applications enabling application execution by thousands of
computers.

In addition to cloud computing, a computer may use
“cloud storage” as part of its memory system. As is known,
cloud storage enables a user, via its computer, to store files,
applications, etc. on an Internet storage system. The Internet
storage system may include a RAID (redundant array of
independent disks) system and/or a dispersed storage system
that uses an error correction scheme to encode data for
storage.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

FIG. 1 is a schematic block diagram of an embodiment of
a dispersed or distributed storage network (DSN) in accor-
dance with the present invention;

FIG. 2 is a schematic block diagram of an embodiment of
a computing core in accordance with the present invention;

FIG. 3 is a schematic block diagram of an example of
dispersed storage error encoding of data in accordance with
the present invention;

FIG. 4 is a schematic block diagram of a generic example
of an error encoding function in accordance with the present
invention;

FIG. 5 is a schematic block diagram of a specific example
of an error encoding function in accordance with the present
invention;

FIG. 6 is a schematic block diagram of an example of a
slice name of an encoded data slice (EDS) in accordance
with the present invention;

FIG. 7 is a schematic block diagram of an example of
dispersed storage error decoding of data in accordance with
the present invention;

FIG. 8 is a schematic block diagram of a generic example
of an error decoding function in accordance with the present
invention;

FIG. 9A is a schematic block diagram of an embodiment
of a dispersed or distributed storage network (DSN) in
accordance with the present invention;

FIG. 9B is a schematic block diagram of an embodiment
of a dispersed or distributed storage network (DSN) in
accordance with the present invention; and

FIG. 10 is a logic diagram of an example of a method of
validating system registry files in accordance with the pres-
ent invention.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 is a schematic block diagram of an embodiment of
a dispersed, or distributed, storage network (DSN) 10 that
includes a plurality of computing devices 12-16, a managing
unit 18, an integrity processing unit 20, and a DSN memory
22. The components of the DSN 10 are coupled to a network
24, which may include one or more wireless and/or wire
lined communication systems; one or more non-public
intranet systems and/or public internet systems; and/or one
or more local area networks (LAN) and/or wide area net-
works (WAN).

The DSN memory 22 includes a plurality of storage units
36 that may be located at geographically different sites (e.g.,
one in Chicago, one in Milwaukee, etc.), at a common site,
or a combination thereof. For example, if the DSN memory
22 includes eight storage units 36, each storage unit is
located at a different site. As another example, if the DSN

US 11,410,019 Bl

3

memory 22 includes eight storage units 36, all eight storage
units are located at the same site. As yet another example, if
the DSN memory 22 includes eight storage units 36, a first
pair of storage units are at a first common site, a second pair
of storage units are at a second common site, a third pair of
storage units are at a third common site, and a fourth pair of
storage units are at a fourth common site. Note that a DSN
memory 22 may include more or less than eight storage units
36. Further note that each storage unit 36 includes a com-
puting core (as shown in FIG. 2, or components thereof) and
a plurality of memory devices for storing dispersed error
encoded data.

In various embodiments, each of the storage units oper-
ates as a distributed storage and task (DST) execution unit,
and is operable to store dispersed error encoded data and/or
to execute, in a distributed manner, one or more tasks on
data. The tasks may be a simple function (e.g., a mathemati-
cal function, a logic function, an identify function, a find
function, a search engine function, a replace function, etc.),
a complex function (e.g., compression, human and/or com-
puter language translation, text-to-voice conversion, voice-
to-text conversion, etc.), multiple simple and/or complex
functions, one or more algorithms, one or more applications,
etc. Hereafter, a storage unit may be interchangeably
referred to as a dispersed storage and task (DST) execution
unit and a set of storage units may be interchangeably
referred to as a set of DST execution units.

Each of the computing devices 12-16, the managing unit
18, and the integrity processing unit 20 include a computing
core 26, which includes network interfaces 30-33. Comput-
ing devices 12-16 may each be a portable computing device
and/or a fixed computing device. A portable computing
device may be a social networking device, a gaming device,
a cell phone, a smart phone, a digital assistant, a digital
music player, a digital video player, a laptop computer, a
handheld computer, a tablet, a video game controller, and/or
any other portable device that includes a computing core. A
fixed computing device may be a computer (PC), a computer
server, a cable set-top box, a satellite receiver, a television
set, a printer, a fax machine, home entertainment equipment,
a video game console, and/or any type of home or office
computing equipment. Note that each managing unit 18 and
the integrity processing unit 20 may be separate computing
devices, may be a common computing device, and/or may
be integrated into one or more of the computing devices
12-16 and/or into one or more of the storage units 36. In
various embodiments, computing devices 12-16 can include
user devices and/or can be utilized by a requesting entity
generating access requests, which can include requests to
read or write data to storage units in the DSN.

Each interface 30, 32, and 33 includes software and
hardware to support one or more communication links via
the network 24 indirectly and/or directly. For example,
interface 30 supports a communication link (e.g., wired,
wireless, direct, via a LAN, via the network 24, etc.)
between computing devices 14 and 16. As another example,
interface 32 supports communication links (e.g., a wired
connection, a wireless connection, a LAN connection, and/
or any other type of connection to/from the network 24)
between computing devices 12 & 16 and the DSN memory
22. As yet another example, interface 33 supports a com-
munication link for each of the managing unit 18 and the
integrity processing unit 20 to the network 24.

Computing devices 12 and 16 include a dispersed storage
(DS) client module 34, which enables the computing device
to dispersed storage error encode and decode data as sub-
sequently described with reference to one or more of FIGS.

10

15

20

25

30

35

40

45

50

55

60

65

4

3-8. In this example embodiment, computing device 16
functions as a dispersed storage processing agent for com-
puting device 14. In this role, computing device 16 dispersed
storage error encodes and decodes data on behalf of com-
puting device 14. With the use of dispersed storage error
encoding and decoding, the DSN 10 is tolerant of a signifi-
cant number of storage unit failures (the number of failures
is based on parameters of the dispersed storage error encod-
ing function) without loss of data and without the need for
a redundant or backup copies of the data. Further, the DSN
10 stores data for an indefinite period of time without data
loss and in a secure manner (e.g., the system is very resistant
to unauthorized attempts at accessing the data).

In operation, the managing unit 18 performs DS manage-
ment services. For example, the managing unit 18 estab-
lishes distributed data storage parameters (e.g., vault cre-
ation, distributed storage parameters, security parameters,
billing information, user profile information, etc.) for com-
puting devices 12-14 individually or as part of a group of
user devices. As a specific example, the managing unit 18
coordinates creation of a vault (e.g., a virtual memory block
associated with a portion of an overall namespace of the
DSN) within the DSN memory 22 for a user device, a group
of devices, or for public access and establishes per vault
dispersed storage (DS) error encoding parameters for a
vault. The managing unit 18 facilitates storage of DS error
encoding parameters for each vault by updating registry
information of the DSN 10, where the registry information
may be stored in the DSN memory 22, a computing device
12-16, the managing unit 18, and/or the integrity processing
unit 20.

The DSN managing unit 18 creates and stores user profile
information (e.g., an access control list (ACL)) in local
memory and/or within memory of the DSN memory 22. The
user profile information includes authentication information,
permissions, and/or the security parameters. The security
parameters may include encryption/decryption scheme, one
or more encryption keys, key generation scheme, and/or data
encoding/decoding scheme.

The DSN managing unit 18 creates billing information for
a particular user, a user group, a vault access, public vault
access, etc. For instance, the DSN managing unit 18 tracks
the number of times a user accesses a non-public vault
and/or public vaults, which can be used to generate a
per-access billing information. In another instance, the DSN
managing unit 18 tracks the amount of data stored and/or
retrieved by a user device and/or a user group, which can be
used to generate a per-data-amount billing information.

As another example, the managing unit 18 performs
network operations, network administration, and/or network
maintenance. Network operations includes authenticating
user data allocation requests (e.g., read and/or write
requests), managing creation of vaults, establishing authen-
tication credentials for user devices, adding/deleting com-
ponents (e.g., user devices, storage units, and/or computing
devices with a DS client module 34) to/from the DSN 10,
and/or establishing authentication credentials for the storage
units 36. Network administration includes monitoring
devices and/or units for failures, maintaining vault informa-
tion, determining device and/or unit activation status, deter-
mining device and/or unit loading, and/or determining any
other system level operation that affects the performance
level of the DSN 10. Network maintenance includes facili-
tating replacing, upgrading, repairing, and/or expanding a
device and/or unit of the DSN 10.

The integrity processing unit 20 performs rebuilding of
‘bad’ or missing encoded data slices. At a high level, the

US 11,410,019 Bl

5

integrity processing unit 20 performs rebuilding by periodi-
cally attempting to retrieve/list encoded data slices, and/or
slice names of the encoded data slices, from the DSN
memory 22. For retrieved encoded slices, they are checked
for errors due to data corruption, outdated version, etc. If a
slice includes an error, it is flagged as a ‘bad’ slice. For
encoded data slices that were not received and/or not listed,
they are flagged as missing slices. Bad and/or missing slices
are subsequently rebuilt using other retrieved encoded data
slices that are deemed to be good slices to produce rebuilt
slices. The rebuilt slices are stored in the DSN memory 22.

FIG. 2 is a schematic block diagram of an embodiment of
a computing core 26 that includes a processing module 50,
a memory controller 52, main memory 54, a video graphics
processing unit 55, an input/output (IO) controller 56, a
peripheral component interconnect (PCI) interface 58, an 10
interface module 60, at least one 10 device interface module
62, a read only memory (ROM) basic input output system
(BIOS) 64, and one or more memory interface modules. The
one or more memory interface module(s) includes one or
more of a universal serial bus (USB) interface module 66, a
host bus adapter (HBA) interface module 68, a network
interface module 70, a flash interface module 72, a hard
drive interface module 74, and a DSN interface module 76.

The DSN interface module 76 functions to mimic a
conventional operating system (OS) file system interface
(e.g., network file system (NFS), flash file system (FFS),
disk file system (DFS), file transfer protocol (FTP), web-
based distributed authoring and versioning (WebDAV), etc.)
and/or a block memory interface (e.g., small computer
system interface (SCSI), internet small computer system
interface (iSCSI), etc.). The DSN interface module 76 and/or
the network interface module 70 may function as one or
more of the interface 30-33 of FIG. 1. Note that the 1O
device interface module 62 and/or the memory interface
modules 66-76 may be collectively or individually referred
to as 10 ports.

FIG. 3 is a schematic block diagram of an example of
dispersed storage error encoding of data. When a computing
device 12 or 16 has data to store it disperse storage error
encodes the data in accordance with a dispersed storage
error encoding process based on dispersed storage error
encoding parameters. Here, the computing device stores data
object 40, which can include a file (e.g., text, video, audio,
etc.), or other data arrangement. The dispersed storage error
encoding parameters include an encoding function (e.g.,
information dispersal algorithm (IDA), Reed-Solomon,
Cauchy Reed-Solomon, systematic encoding, non-system-
atic encoding, on-line codes, etc.), a data segmenting pro-
tocol (e.g., data segment size, fixed, variable, etc.), and per
data segment encoding values. The per data segment encod-
ing values include a total, or pillar width, number (T) of
encoded data slices per encoding of a data segment i.e., in
a set of encoded data slices); a decode threshold number (D)
of encoded data slices of a set of encoded data slices that are
needed to recover the data segment; a read threshold number
(R) of encoded data slices to indicate a number of encoded
data slices per set to be read from storage for decoding of the
data segment; and/or a write threshold number (W) to
indicate a number of encoded data slices per set that must be
accurately stored before the encoded data segment is
deemed to have been properly stored. The dispersed storage
error encoding parameters may further include slicing infor-
mation (e.g., the number of encoded data slices that will be
created for each data segment) and/or slice security infor-
mation (e.g., per encoded data slice encryption, compres-
sion, integrity checksum, etc.).

10

15

20

25

30

35

40

45

50

55

60

65

6

In the present example, Cauchy Reed-Solomon has been
selected as the encoding function (a generic example is
shown in FIG. 4 and a specific example is shown in FIG. 5);
the data segmenting protocol is to divide the data object into
fixed sized data segments; and the per data segment encod-
ing values include: a pillar width of 5, a decode threshold of
3, a read threshold of 4, and a write threshold of 4. In
accordance with the data segmenting protocol, the comput-
ing device 12 or 16 divides data object 40 into a plurality of
fixed sized data segments (e.g., 1 through Y of a fixed size
in range of Kilo-bytes to Tera-bytes or more). The number
of data segments created is dependent of the size of the data
and the data segmenting protocol.

The computing device 12 or 16 then disperse storage error
encodes a data segment using the selected encoding function
(e.g., Cauchy Reed-Solomon) to produce a set of encoded
data slices. FIG. 4 illustrates a generic Cauchy Reed-
Solomon encoding function, which includes an encoding
matrix (EM), a data matrix (DM), and a coded matrix (CM).
The size of the encoding matrix (EM) is dependent on the
pillar width number (T) and the decode threshold number
(D) of selected per data segment encoding values. To pro-
duce the data matrix (DM), the data segment is divided into
a plurality of data blocks and the data blocks are arranged
into D number of rows with Z data blocks per row. Note that
Z is a function of the number of data blocks created from the
data segment and the decode threshold number (D). The
coded matrix is produced by matrix multiplying the data
matrix by the encoding matrix.

FIG. 5 illustrates a specific example of Cauchy Reed-
Solomon encoding with a pillar number (T) of five and
decode threshold number of three. In this example, a first
data segment is divided into twelve data blocks (D1-D12).
The coded matrix includes five rows of coded data blocks,
where the first row of X11-X14 corresponds to a first
encoded data slice (EDS 1_1), the second row of X21-X24
corresponds to a second encoded data slice (EDS 2_1), the
third row of X31-X34 corresponds to a third encoded data
slice (EDS 3_1), the fourth row of X41-X44 corresponds to
a fourth encoded data slice (EDS 4_1), and the fifth row of
X51-X54 corresponds to a fifth encoded data slice (EDS
5_1). Note that the second number of the EDS designation
corresponds to the data segment number.

Returning to the discussion of FIG. 3, the computing
device also creates a slice name (SN) for each encoded data
slice (EDS) in the set of encoded data slices. A typical format
for a slice name 80 is shown in FIG. 6. As shown, the slice
name (SN) 80 includes a pillar number of the encoded data
slice (e.g., one of 1-T), a data segment number (e.g., one of
1-Y), a vault identifier (ID), a data object identifier (ID), and
may further include revision level information of the
encoded data slices. The slice name functions as, at least part
of, a DSN address for the encoded data slice for storage and
retrieval from the DSN memory 22.

As a result of encoding, the computing device 12 or 16
produces a plurality of sets of encoded data slices, which are
provided with their respective slice names to the storage
units for storage. As shown, the first set of encoded data
slices includes EDS 1_1 through EDS 5_1 and the first set
of' slice names includes SN 1_1 through SN 5_1 and the last
set of encoded data slices includes EDS 1_Y through EDS
5_Y and the last set of slice names includes SN 1_Y through
SN 5_Y.

FIG. 7 is a schematic block diagram of an example of
dispersed storage error decoding of a data object that was
dispersed storage error encoded and stored in the example of
FIG. 4. In this example, the computing device 12 or 16

US 11,410,019 Bl

7

retrieves from the storage units at least the decode threshold
number of encoded data slices per data segment. As a
specific example, the computing device retrieves a read
threshold number of encoded data slices.

To recover a data segment from a decode threshold
number of encoded data slices, the computing device uses a
decoding function as shown in FIG. 8. As shown, the
decoding function is essentially an inverse of the encoding
function of FIG. 4. The coded matrix includes a decode
threshold number of rows (e.g., three in this example) and
the decoding matrix in an inversion of the encoding matrix
that includes the corresponding rows of the coded matrix.
For example, if the coded matrix includes rows 1, 2, and 4,
the encoding matrix is reduced to rows 1, 2, and 4, and then
inverted to produce the decoding matrix.

FIG. 9A illustrates steps of an example of operation of
secure distribution of one or more files amongst one or more
computing devices that have already established trust. The
managing unit 18 can issue a file list and integrity check
information to devices of the DSN, where the file list
includes an identifier list of system registry files for distri-
bution and where the integrity check information includes an
integrity value, such as a cryptographic hash value, for each
file and/or all system registry files associated with the file
list. The issuing includes obtaining the file list, generating
the integrity check information over corresponding system
registry files associated with the file list, and sending, via the
network 24, the file list and integrity check information to
the devices of the DSN. Such DSN units can include, for
example, storage units 36, integrity processing unit 20,
and/or computing devices 12-16. In FIG. 9A, the DSN units
include dispersed storage and task (DST) execution units
1-n, which can be implemented by utilizing storage units 36
of FIG. 1, for example, operating as a distributed storage and
task (DST) execution unit as described previously, operable
to store dispersed error encoded data and/or to execute, in a
distributed manner, one or more tasks on data.

Having received the file list, a DSN unit can issue a
system files status request to one or more other DSN units
affiliated with the DSN unit when the DSN unit requires the
system registry files associated with the file list (e.g., the
system registry files are absent from the DSN unit). Issuing
a system files request includes selecting the one or more
other DSN units generating the files based on the file list, and
sending the files request to the selected one or more other
DSN units. The selecting can be based on proximity with
respect to the DSN unit (e.g., selecting DSN units that are
closest), an expected network loading level, a DST execu-
tion unit performance level, a network performance level,
and/or DSN configuration information. For example, the
processing module 84 of the DST execution unit 1 issues, via
the network 24, a system files status request to the other DST
execution units and to the managing unit 18 when the other
DST execution units in the managing unit 18 are located
within a proximity threshold of the DST execution unit 1.

Having issued the system files status request, the DSN
unit, within a response timeframe, can select a transmitting
DSN unit based on a corresponding files response. For
example, the DST execution unit 1 selects the managing unit
18 when receiving a favorable files response (e.g., indicating
that the system registry files are available) from the man-
aging unit 18 and receiving one or more unfavorable files
responses (e.g., indicating that the system registry files are
not available) from the other DST execution units.

Having selected the transmitting DSN unit, the DSN unit
can send a system files transmission request to the selected
transmitting DSN unit. For example, the DSTN execution

10

15

20

25

30

35

40

45

50

55

60

65

8

unit 1 generates and sends, via the network 24, the system
files transmission request to the DSTN managing unit 18. In
response to the system files transmission request, the DSN
unit receives the system registry files for storage. For
example, the DST execution unit 1 receives, via the network
24, the system registry files from the DSTN managing unit
18.

Having received the system registry files, the DSN unit
can validate the received system registry files based on one
or more of the integrity check information and the file list.
The validating includes indicating valid when a calculated
integrity check value compares favorably with a received
integrity check value for a portion of the system registry
files. When the system registry files are validated, the DSN
unit facilitates local storage of the received system registry
files. For example, as shown in FIG. 9A, the processing
module 84 of the DST execution unit 1 can store the
validated received system registry files in the memory 88 of
the DST execution unit 1. The processing module 84 and
memory 88 can be implemented utilizing the computing
core of FIG. 2, for example, by specifically utilizing the
processing module 50 and main memory 54 of the comput-
ing core. This protocol is secure against a DSN unit receiv-
ing an invalid file, assuming that no one can determine a
different file that has the same hash value as one of the
common files. This is an assumption for algorithms classi-
fied as cryptographically secure hash functions. In various
embodiments, the DSN unit can send a status transmission
to other DSN units indicating that these system registry files
are available. In various embodiments, the DSN unit can
send a verification error notification, for example for trans-
mission to the monitoring unit 18, when validation was
unsuccessful.

FIG. 9B illustrates further steps of the example of opera-
tion of the distributing of the one or more files, where a
second DSN unit issues a files request to one or more other
DSN units affiliated with the second DSN unit. For example,
the processing module 84 of the DST execution unit 2 can
issue, via the network 24, another system files status request
to the remaining DST execution units of the set of DST
execution units. Having sent the system files status request,
within the response timeframe, the second DSN unit can
select another transmitting DSN unit that is storing the
system registry files based on a corresponding files response.
For example, the DST execution unit 2 selects the DST
execution unit 1 based on a favorable system files response
from the DST execution unit 1 indicating that the system
registry files are stored in the memory 88 of the DST
execution unit 1.

Having selected this second transmitting DSN unit, the
second DSN unit sends another system files transmission
request to this selected transmitting DSN unit. For example,
the DST execution unit 2 can send, via the network 24, this
system files transmission request to the DST execution unit
1 to initiate transmission of the system registry files. Having
sent this system files transmission request, the second DSN
unit can receive the system registry files for storage. Having
received the system registry files, the second DSN unit can
validate the received system registry files based on the
integrity check information and/or the file list. When vali-
dated, the second DSN unit can store the validated received
system registry files in a local memory associated with the
second DSN unit. For example, the processing module 84 of
the DST execution unit 2 stores the validated received
system registry files in the memory 88 of the DST execution
unit 2.

US 11,410,019 Bl

9

In various embodiments, a processing system of a dis-
persed storage and task (DST) execution unit includes at
least one processor and a memory that stores operational
instructions, that when executed by the at least one processor
cause the processing system to receive system registry
integrity data via a network, where the system registry
integrity data corresponds to a plurality of system registry
files. A request for a subset of the plurality of system registry
files for is generated for transmission to a first dispersed
storage network (DSN) unit via the network. The subset of
the plurality of system registry files are received from the
first DSN unit via the network. Integrity check data is
generated based on the received subset of the plurality of
system registry files and the system registry integrity data,
where the integrity check data includes a verification indi-
cator. The system registry files are stored in memory when
the verification indicator indicates that verification was
successful.

In various embodiments, the system registry integrity data
includes a plurality of file identifiers corresponding to the
plurality of system registry files and a plurality of integrity
values corresponding to the plurality of system registry files.
In various embodiments, the plurality of integrity values are
cryptographic hash values corresponding to the plurality of
system registry files. In various embodiments, the integrity
check data is generated by calculating at least one integrity
check value by performing a function on the received subset
of the plurality of system registry files, and comparing the at
least one integrity check value to a corresponding at least
one of the plurality of integrity values of the system registry
integrity data. The verification indicator indicates that veri-
fication was successful when the at least one integrity check
value compares favorably to the corresponding at least one
of the plurality of integrity values.

In various embodiments, a system files status request is
generated for transmission to a set of DSN units via the
network, where the system files status request indicates the
subset of the plurality of system registry files. A plurality of
system file statuses are received via the network from at least
one of the set of DSN units. The first DSN unit is selected
from the set of DSN units based on the plurality of system
file statuses. In various embodiments, the set of DSN units
are selected from a plurality of DSN units further based on
proximity to the DST execution unit, an expected network
loading level, a DST processing unit performance level, a
network performance level, and/or DSN configuration infor-
mation. In various embodiments, the first DSN unit is
selected from the set of DSN units in response to a one of
the plurality of system file statuses corresponding to the first
DSN unit indicating that the subset of the plurality of system
registry files are available. In various embodiments, a sec-
ond DSN is selected from the set of DSN units, where a first
one of the plurality of system file statuses corresponding to
the first DSN unit and a second one of the plurality of system
file statuses corresponding to the second DSN unit indicate
that a first portion of the subset are available from the first
DSN unit and a second portion of the subset are available
from the second DSN unit. The first portion and the second
portion collectively include all of the system registry files of
the subset. A request for the second portion of the subset is
generated for transmission via the network to the second
DSN, and the second portion of the subset is received in
response via the network.

In various embodiments, a verification error notification is
generated for transmission via the network when the veri-
fication indicator indicates that verification was unsuccess-
ful. In various embodiments, a system file status update is

10

15

20

25

30

35

40

45

50

55

60

65

10

generated for transmission via the network to a plurality of
DSN units when the verification indicator indicates that
verification was successful. The system file status update
indicates that the subset of the plurality of system registry
files are available.

FIG. 10 is a flowchart illustrating an example of validat-
ing system registry files. In particular, a method is presented
for use in association with one or more functions and
features described in conjunction with FIGS. 1-9, for execu-
tion by a dispersed storage and task (DST) execution unit
that includes a processor or via another processing system of
a dispersed storage network that includes at least one
processor and memory that stores instruction that configure
the processor or processors to perform the steps described
below. Step 1002 includes receiving system registry integ-
rity data via a network, where the system registry integrity
data corresponds to a plurality of system registry files. Step
1004 includes generating a request for a subset of the
plurality of system registry files for transmission to a first
dispersed storage network (DSN) unit via the network. Step
1006 includes receiving the subset of the plurality of system
registry files from the first DSN unit via the network. Step
1008 includes generating integrity check data based on the
received subset of the plurality of system registry files and
the system registry integrity data, where the integrity check
data includes a verification indicator. Step 1010 includes
storing the system registry files in memory when the veri-
fication indicator indicates that verification was successful.

In various embodiments, the system registry integrity data
includes a plurality of file identifiers corresponding to the
plurality of system registry files and a plurality of integrity
values corresponding to the plurality of system registry files.
In various embodiments, the plurality of integrity values are
cryptographic hash values corresponding to the plurality of
system registry files. In various embodiments, the integrity
check data is generated by calculating at least one integrity
check value by performing a function on the received subset
of the plurality of system registry files, and comparing the at
least one integrity check value to a corresponding at least
one of the plurality of integrity values of the system registry
integrity data. The verification indicator indicates that veri-
fication was successful when the at least one integrity check
value compares favorably to the corresponding at least one
of the plurality of integrity values.

In various embodiments, a system files status request is
generated for transmission to a set of DSN units via the
network, where the system files status request indicates the
subset of the plurality of system registry files. A plurality of
system file statuses are received via the network from at least
one of the set of DSN units. The first DSN unit is selected
from the set of DSN units based on the plurality of system
file statuses. In various embodiments, the set of DSN units
are selected from a plurality of DSN units further based on
proximity to the DST execution unit, an expected network
loading level, a DST processing unit performance level, a
network performance level, and/or DSN configuration infor-
mation. In various embodiments, the first DSN unit is
selected from the set of DSN units in response to a one of
the plurality of system file statuses corresponding to the first
DSN unit indicating that the subset of the plurality of system
registry files are available. In various embodiments, a sec-
ond DSN is selected from the set of DSN units, where a first
one of the plurality of system file statuses corresponding to
the first DSN unit and a second one of the plurality of system
file statuses corresponding to the second DSN unit indicate
that a first portion of the subset are available from the first
DSN unit and a second portion of the subset are available

US 11,410,019 Bl

11

from the second DSN unit. The first portion and the second
portion collectively include all of the system registry files of
the subset. A request for the second portion of the subset is
generated for transmission via the network to the second
DSN, and the second portion of the subset is received in
response via the network.

In various embodiments, a verification error notification is
generated for transmission via the network when the veri-
fication indicator indicates that verification was unsuccess-
ful. In various embodiments, a system file status update is
generated for transmission via the network to a plurality of
DSN units when the verification indicator indicates that
verification was successful. The system file status update
indicates that the subset of the plurality of system registry
files are available.

In various embodiments, a non-transitory computer read-
able storage medium includes at least one memory section
that stores operational instructions that, when executed by a
processing system of a dispersed storage network (DSN)
that includes a processor and a memory, causes the process-
ing system to receive system registry integrity data via a
network, where the system registry integrity data corre-
sponds to a plurality of system registry files. A request for a
subset of the plurality of system registry files for is generated
for transmission to a first dispersed storage network (DSN)
unit via the network. The subset of the plurality of system
registry files are received from the first DSN unit via the
network. Integrity check data is generated based on the
received subset of the plurality of system registry files and
the system registry integrity data, where the integrity check
data includes a verification indicator. The system registry
files are stored in memory when the verification indicator
indicates that verification was successful.

It is noted that terminologies as may be used herein such
as bit stream, stream, signal sequence, etc. (or their equiva-
lents) have been used interchangeably to describe digital
information whose content corresponds to any of a number
of desired types (e.g., data, video, speech, audio, etc. any of
which may generally be referred to as ‘data’).

As may be used herein, the terms “substantially” and
“approximately” provides an industry-accepted tolerance for
its corresponding term and/or relativity between items. Such
an industry-accepted tolerance ranges from less than one
percent to fifty percent and corresponds to, but is not limited
to, component values, integrated circuit process variations,
temperature variations, rise and fall times, and/or thermal
noise. Such relativity between items ranges from a differ-
ence of a few percent to magnitude differences. As may also
be used herein, the term(s) “configured to”, “operably
coupled to”, “coupled to”, and/or “coupling” includes direct
coupling between items and/or indirect coupling between
items via an intervening item (e.g., an item includes, but is
not limited to, a component, an element, a circuit, and/or a
module) where, for an example of indirect coupling, the
intervening item does not modify the information of a signal
but may adjust its current level, voltage level, and/or power
level. As may further be used herein, inferred coupling (i.e.,
where one element is coupled to another element by infer-
ence) includes direct and indirect coupling between two
items in the same manner as “coupled to”. As may even
further be used herein, the term “configured to”, “operable
t0”, “coupled to”, or “operably coupled to” indicates that an
item includes one or more of power connections, input(s),
output(s), etc., to perform, when activated, one or more its
corresponding functions and may further include inferred
coupling to one or more other items. As may still further be
used herein, the term “associated with”, includes direct

10

15

20

25

30

35

40

45

50

55

60

65

12

and/or indirect coupling of separate items and/or one item
being embedded within another item.

As may be used herein, the term “compares favorably”,
indicates that a comparison between two or more items,
signals, etc., provides a desired relationship. For example,
when the desired relationship is that signal 1 has a greater
magnitude than signal 2, a favorable comparison may be
achieved when the magnitude of signal 1 is greater than that
of'signal 2 or when the magnitude of signal 2 is less than that
of signal 1. As may be used herein, the term “compares
unfavorably”, indicates that a comparison between two or
more items, signals, etc., fails to provide the desired rela-
tionship.

As may also be used herein, the terms “processing mod-
ule”, “processing circuit”, “processor”, and/or “processing
unit” may be a single processing device or a plurality of
processing devices. Such a processing device may be a
microprocessor, micro-controller, digital signal processor,
microcomputer, central processing unit, field programmable
gate array, programmable logic device, state machine, logic
circuitry, analog circuitry, digital circuitry, and/or any device
that manipulates signals (analog and/or digital) based on
hard coding of the circuitry and/or operational instructions.
The processing module, module, processing circuit, and/or
processing unit may be, or further include, memory and/or
an integrated memory element, which may be a single
memory device, a plurality of memory devices, and/or
embedded circuitry of another processing module, module,
processing circuit, and/or processing unit. Such a memory
device may be a read-only memory, random access memory,
volatile memory, non-volatile memory, static memory,
dynamic memory, flash memory, cache memory, and/or any
device that stores digital information. Note that if the
processing module, module, processing circuit, and/or pro-
cessing unit includes more than one processing device, the
processing devices may be centrally located (e.g., directly
coupled together via a wired and/or wireless bus structure)
or may be distributedly located (e.g., cloud computing via
indirect coupling via a local area network and/or a wide area
network). Further note that if the processing module, mod-
ule, processing circuit, and/or processing unit implements
one or more of its functions via a state machine, analog
circuitry, digital circuitry, and/or logic circuitry, the memory
and/or memory element storing the corresponding opera-
tional instructions may be embedded within, or external to,
the circuitry comprising the state machine, analog circuitry,
digital circuitry, and/or logic circuitry. Still further note that,
the memory element may store, and the processing module,
module, processing circuit, and/or processing unit executes,
hard coded and/or operational instructions corresponding to
at least some of the steps and/or functions illustrated in one
or more of the Figures. Such a memory device or memory
element can be included in an article of manufacture.

One or more embodiments have been described above
with the aid of method steps illustrating the performance of
specified functions and relationships thereof. The boundar-
ies and sequence of these functional building blocks and
method steps have been arbitrarily defined herein for con-
venience of description. Alternate boundaries and sequences
can be defined so long as the specified functions and
relationships are appropriately performed. Any such alter-
nate boundaries or sequences are thus within the scope and
spirit of the claims. Further, the boundaries of these func-
tional building blocks have been arbitrarily defined for
convenience of description. Alternate boundaries could be
defined as long as the certain significant functions are
appropriately performed. Similarly, flow diagram blocks

US 11,410,019 Bl

13

may also have been arbitrarily defined herein to illustrate
certain significant functionality.

To the extent used, the flow diagram block boundaries and
sequence could have been defined otherwise and still per-
form the certain significant functionality. Such alternate
definitions of both functional building blocks and flow
diagram blocks and sequences are thus within the scope and
spirit of the claims. One of average skill in the art will also
recognize that the functional building blocks, and other
illustrative blocks, modules and components herein, can be
implemented as illustrated or by discrete components, appli-
cation specific integrated circuits, processors executing
appropriate software and the like or any combination
thereof.

In addition, a flow diagram may include a “start” and/or
“continue” indication. The “start” and “continue” indica-
tions reflect that the steps presented can optionally be
incorporated in or otherwise used in conjunction with other
routines. In this context, “start” indicates the beginning of
the first step presented and may be preceded by other
activities not specifically shown. Further, the “continue”
indication reflects that the steps presented may be performed
multiple times and/or may be succeeded by other activities
not specifically shown. Further, while a flow diagram indi-
cates a particular ordering of steps, other orderings are
likewise possible provided that the principles of causality
are maintained.

The one or more embodiments are used herein to illustrate
one or more aspects, one or more features, one or more
concepts, and/or one or more examples. A physical embodi-
ment of an apparatus, an article of manufacture, a machine,
and/or of a process may include one or more of the aspects,
features, concepts, examples, etc. described with reference
to one or more of the embodiments discussed herein. Fur-
ther, from figure to figure, the embodiments may incorporate
the same or similarly named functions, steps, modules, etc.
that may use the same or different reference numbers and, as
such, the functions, steps, modules, etc. may be the same or
similar functions, steps, modules, etc. or different ones.

Unless specifically stated to the contra, signals to, from,
and/or between elements in a figure of any of the figures
presented herein may be analog or digital, continuous time
or discrete time, and single-ended or differential. For
instance, if a signal path is shown as a single-ended path, it
also represents a differential signal path. Similarly, if a signal
path is shown as a differential path, it also represents a
single-ended signal path. While one or more particular
architectures are described herein, other architectures can
likewise be implemented that use one or more data buses not
expressly shown, direct connectivity between elements, and/
or indirect coupling between other elements as recognized
by one of average skill in the art.

The term “module” is used in the description of one or
more of the embodiments. A module implements one or
more functions via a device such as a processor or other
processing device or other hardware that may include or
operate in association with a memory that stores operational
instructions. A module may operate independently and/or in
conjunction with software and/or firmware. As also used
herein, a module may contain one or more sub-modules,
each of which may be one or more modules.

As may further be used herein, a computer readable
memory includes one or more memory elements. A memory
element may be a separate memory device, multiple
memory devices, or a set of memory locations within a
memory device. Such a memory device may be a read-only
memory, random access memory, volatile memory, non-

10

15

20

25

30

35

40

45

50

55

60

65

14

volatile memory, static memory, dynamic memory, flash
memory, cache memory, and/or any device that stores digital
information. The memory device may be in a form a solid
state memory, a hard drive memory, cloud memory, thumb
drive, server memory, computing device memory, and/or
other physical medium for storing digital information.

While particular combinations of various functions and
features of the one or more embodiments have been
expressly described herein, other combinations of these
features and functions are likewise possible. The present
disclosure is not limited by the particular examples disclosed
herein and expressly incorporates these other combinations.

What is claimed is:

1. A method for execution by a processing system that
includes a processor, the method comprises:

generating a request for a plurality of system registry files;

receiving the plurality of system registry files via a

network;

generating integrity check data based on the plurality of

system registry files and system registry integrity data
corresponding to the plurality of system registry files,
wherein the integrity check data includes a verification
indicator; and

storing the system registry files in memory when the

verification indicator indicates that verification was
successful.

2. The method of claim 1, wherein the system registry
integrity data includes a plurality of file identifiers corre-
sponding to the plurality of system registry files and a
plurality of integrity values corresponding to the plurality of
system registry files.

3. The method of claim 2, wherein the plurality of
integrity values are cryptographic hash values correspond-
ing to the plurality of system registry files.

4. The method of claim 2, wherein the integrity check data
is generated by calculating at least one integrity check value
by performing a function on the plurality of system registry
files, and comparing the at least one integrity check value to
a corresponding at least one of the plurality of integrity
values of the system registry integrity data, and wherein the
verification indicator indicates that verification was success-
ful when the at least one integrity check value compares
favorably to the corresponding at least one of the plurality of
integrity values.

5. The method of claim 1, further comprising:

generating a system files status request for transmission to

a set of storage units via the network, wherein the
system files status request indicates the plurality of
system registry files;

receiving a plurality of system file statuses via the net-

work from at least one of the set of storage units;
selecting a first storage unit from the set of storage units
based on the plurality of system file statuses; and
transmitting the request for the plurality of system registry
files to the first storage unit.

6. The method of claim 5, further comprising:

selecting the set of storage units from a plurality of

storage units further based on at least one of: proximity
to the processing system, an expected network loading
level, a processing system performance level, a net-
work performance level, or storage network configu-
ration information.

7. The method of claim 5, wherein the first storage unit is
selected from the set of storage units in response to a one of
the plurality of system file statuses corresponding to the first
storage unit indicating that the plurality of system registry
files are available.

US 11,410,019 Bl

15

8. The method of claim 5, further comprising:

selecting a second storage unit from the set of storage
units, wherein a first one of the plurality of system file
statuses corresponding to the first storage unit and a
second one of the plurality of system file statuses
corresponding to the second storage unit indicate that a
first portion of the plurality of system registry files are
available from the first storage unit and a second
portion of the plurality of system registry files are
available from the second storage unit, and wherein the
first portion and the second portion collectively include
all of the system registry files of the plurality of system
registry files; and

generating a request for the second portion of the plurality
of system registry files for transmission via the network
to the second storage unit and receiving the second
portion of the plurality of system registry files in
response via the network.

9. The method of claim 1, further comprising:

generating a verification error notification for transmis-
sion via the network when the verification indicator
indicates that verification was unsuccessful.

10. The method of claim 1, further comprising:

generating a system file status update for transmission via
the network to a plurality of storage units when the
verification indicator indicates that verification was
successful, wherein the system file status update indi-
cates that the plurality of system registry files are
available.

11. A processing system of a dispersed storage and task

(DST) execution unit comprises:
at least one processor;
a memory that stores operational instructions, that when
executed by the at least one processor cause the pro-
cessing system to:
generate a request for a plurality of system registry
files;

receive the plurality of system registry files via a
network;

generate integrity check data based on the plurality of
system registry files and system registry integrity
data corresponding to the plurality of system registry
files, wherein the integrity check data includes a
verification indicator; and

store the system registry files in memory when the
verification indicator indicates that verification was
successful.

12. The processing system of claim 11, wherein the
system registry integrity data includes a plurality of file
identifiers corresponding to the plurality of system registry
files and a plurality of integrity values corresponding to the
plurality of system registry files.

13. The processing system of claim 12, wherein the
plurality of integrity values are cryptographic hash values
corresponding to the plurality of system registry files.

14. The processing system of claim 12, wherein the
integrity check data is generated by calculating at least one
integrity check value by performing a function on the
plurality of system registry files, and comparing the at least
one integrity check value to a corresponding at least one of
the plurality of integrity values of the system registry
integrity data, and wherein the verification indicator indi-
cates that verification was successful when the at least one
integrity check value compares favorably to the correspond-
ing at least one of the plurality of integrity values.

w

10

15

20

25

30

35

40

45

50

55

60

65

16

15. The processing system of claim 11, wherein the
operational instructions, when executed by the at least one
processor, further cause the processing system to:

generating a system files status request for transmission to

a set of storage units via the network, wherein the
system files status request indicates the plurality of
system registry files;

receiving a plurality of system file statuses via the net-

work from at least one of the set of storage units;
selecting a first storage unit from the set of storage units
based on the plurality of system file statuses; and
transmitting the request for the plurality of system registry
files to the first storage unit.

16. The processing system of claim 15, wherein the
operational instructions, when executed by the at least one
processor, further cause the processing system to:

select the set of storage units from a plurality of storage

units further based on at least one of: proximity to the
processing system, an expected network loading level,
a processing system performance level, a network
performance level, or storage network configuration
information.

17. The processing system of claim 15, wherein the first
storage unit is selected from the set of storage units in
response to a one of the plurality of system file statuses
corresponding to the first storage unit indicating that the
plurality of system registry files are available.

18. The processing system of claim 15, wherein the
operational instructions, when executed by the at least one
processor, further cause the processing system to:

select a second storage unit from the set of storage units,

wherein a first one of the plurality of system file
statuses corresponding to the first storage unit and a
second one of the plurality of system file statuses
corresponding to the second storage unit indicate that a
first portion of the plurality of system registry files are
available from the first storage unit and a second
portion of the plurality of system registry files are
available from the second storage unit, and wherein the
first portion and the second portion collectively include
all of the system registry files of the plurality of system
registry files; and

generate a request for the second portion of the plurality

of system registry files for transmission via the network
to the second storage unit and receiving the second
portion of the plurality of system registry files in
response via the network.

19. The processing system of claim 11, wherein the
operational instructions, when executed by the at least one
processor, further cause the processing system to:

generate a verification error notification for transmission

via the network when the verification indicator indi-
cates that verification was unsuccessful.

20. A non-transitory computer readable storage medium
comprises:

at least one memory section that stores operational

instructions that, when executed by a processing sys-

tem of a storage network that includes a processor and

a memory, causes the processing system to:

generate a request for a plurality of system registry
files;

receive the plurality of system registry files via a
network;

generate integrity check data based on the plurality of
system registry files and system registry integrity

US 11,410,019 Bl
17 18

data corresponding to the plurality of system registry
files, wherein the integrity check data includes a
verification indicator; and

store the system registry files in memory when the
verification indicator indicates that verification was 5
successful.

