A 00 N R O O

WO 03/060751 Al

(19) World Intellectual Property Organization

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

International Bureau

(43) International Publication Date

(10) International Publication Number

24 July 2003 (24.07.2003) PCT WO 03/060751 Al
(51) International Patent Classification”: GO6F 17/00 Elizabeth; 14537 Sunrock Road, Nevada City, CA 95959
(US). REYNOLDS, Ronald, Joseph; 1328 Via Colonna
(21) International Application Number: PCT/US02/41189 Terrace, Davis, CA 95616 (US). RASMUSSEN, Steven,
JOhn; 7596 Watson Way, Citrus Heights, CA 95610 (US).
(22) International Filing Date: LUCKY, David, Eugene; 4951 Dahboy Way, Orangevale,
24 December 2002 (24.12.2002) CA 95662 (US).
(25) Filing Language: English ~ (74) Agent: LEAL, Peter, R.; Gray Cary Ware & Freidenrich
LLP, Patent Department, 1755 Embarcadero Road, Palo

(26) Publication Language: English Alto, CA 94303 (US).

(30) Priority Data: (81) Designated States (national): AE, AG, AL, AM, AT, AU,
60/342,098 26 December 2001 (26.12.2001) US AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
60/426,761 15 November 2002 (15.11.2002) US CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
60/427,395 18 November 2002 (18.11.2002) US GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, 1.C,
10/329,153 23 December 2002 (23.12.2002) US LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,

MX, MZ,NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,

(71) Applicant: COMPASS AT, INC. [US/US]; 5090 Robert SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU,

J. Mathews Parkway, Suite 1, El Dorado Hills, CA 95762 ZA, 7ZM, ZW.
(US).
(84) Designated States (regional): ARIPO patent (GH, GM,

(72) Inventors: ALUMBAUGH, Elizabeth, A.; 3957 Royal KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

Troon Drive, El Dorado Hills, CA 95762 (US). BO-
HORQUEZ, Yuri, Adrian, Tijerino; 811 Kentfield
Court, Cameron Park, CA 95682 (US). BAIN, Mary,

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SI, SK,

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR AUTONOMOUSLY GENERATING HETEROGENEOUS DATA SOURCE INTER-
OPERABILITY BRIDGES BASED ON SEMANTIC MODELING DERIVED FROM SELF ADAPTING ONTOLOGY

PEUT ETRE UNE SOURCE
D DONNEE
COMPATIB

FONCTIONNEMENT DU SYSTEME

DUCTION, FICHIER « CROSS-WALK
IAPPAGE DE DONNEES, CONVERSIONS

DINFORMATIONS CODEES

MICRO-AGEN'
VERIFICATIOI

EUT ETRE UNE SOURGE D DONNEES
OMPATIBLE A ODEC/JDBC

7
LE MICRO-AGENT DE VERIFICATION
SURVEILLE LE CHANGEMENTS
AFFECTANT LES
APPLICATIONS. EI

N CAS DE
CHANGEMENT, IL PRODUITUN FICHIER
DE SPECIFICATIONS DE CHANGEMENTS
2 - L'ATELIER D'ONTOLOGIE
D’APPLICATION CREE DES ONTOLOGIES
D'APPLICATION AU MOYEN D'UNE

BIBLIOTHEQUE
3 —LE MAPPI

D'ONTOLOGIE COMMUNE!
UDE ,

EUR DE SIMILIT!

APP2APP3 CREE UNE CARTE DE
SIMILITUDES APP2APP3 A PARTIR DES
ONTOLOGIES D'APPLICATION

4 - CARTE DE SIMILITUDES APP3APP3
UTILISEE PAR LE PLANIFICATEUR. LE

PLANIFICATEUR UTILISE DES
ALGOTRITHMES DE PLANIFICATION
POUR PRODUIRE UN
PLAN D'INTEGRATION TESTE, MIS
EN ORDRE
§ - LE GENERATEUR DE CODE «
{AGENT CODEGEN) CREE UN CODE
DINTEGRATION A

= PARTIR D'UN PLAN D'INTEGRATION

(57) Abstract: A system, including software components, that efficiently and dynamically analyzes changes to data sources, in-
cluding application programs, whithin an integration environment and simulatneously re-codes dynamic adapters between the data
sources is disclosed. The system also monitors at least two of said data sources to detect similarities (3) within the data structures of
said data sources and generates new dynamic adapters to integrate said at least two of said data sources. The system also provides

generated (5) under changing environmental conditions.

real time error validation of dynamic adapters as well as performance optimization of newly created dynamic adapters that have been

w0 03/060751 A1 NNV 000 0

TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, For two-letter codes and other abbreviations, refer to the "Guid-
GW, ML, MR, NE, SN, TD, TG). ance Notes on Codes and Abbreviations" appearing at the begin-

ning of each regular issue of the PCT Gazette.
Published:

— with international search report

10

16

20

25

30

WO 03/060751 PCT/US02/41189

System and Method for Autonomously Generating Heterogeneous Data Source
Interoperability Bridges based on Semantic Modeling Derived from Self Adapting
Ontology

PRIORITY TO PRIOR PROVISIONAL APPLICATIONS

Priority is claimed to Provisional Applications Serial Nos. 60/342,098, filed on December 27,
2001, 60/426,761 filed on November 15, 2002 and 60/427,395 filed on November 18, 2002.

FIELD OF THE INVENTION

This invention relates to a system and method for efficiently and dynamically analyzing
changes to software applications that exist within a systems integration environment
containing multiple heterogeneous data sources; and for providing for the simultaneous data
mapping, coding, and maintenance support of interfaces between multiple software
applications in real time event driven actions.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material which is protected by
copyright. The copyright owner has no objection to the facsimile reproduction by anyone of
this patent document, but otherwise reserves all copyright rights including, without limitation,
making derivative works of the material protected by éopyright.

BACKGROUND OF THE INVENTION

Providing application integraion between heterogeneous software applications,
environments and data resources (data sources) requires some type of provision for
transformation, format, interface, and data connectivity services. These services are
provided by a collection of software components that are collectively called adapters.
Adapters integrate software application and database resources so they can- interoperate
with other disparate data sources and applications. They provide the interface between the
application and, with most current integration approaches, the messaging subsystems that
connects to the various applications.

Historically adapters have been viewed as the weakest link in application integration. This is
because adapters are built to specific versions of software, such as business or database
applications, and are specific to the platform upon which those applications operate. Most
integration adapters aren’t reusable and virtually all require extensive manual customization
and ongoing maintenance. Customization almost always adds unforeseen weeks and
months to the integration effort and greatly increases the complexity, cost, and time required

10

15

20

25

30

35

WO 03/060751 PCT/US02/41189

for adapter maintenance and support efforts. Yet customization is almost unavoidable as
business rules and data transformation occurs within integration adapters. These issues are
compounded whenever any of the software applications and data sources within the
integration environment change.

Each time a data source is upgraded, patched, revised or customized the integration
adapters between the modified application and all other applications within the integrated
environment must be rewritten. Even relatively simple or minor modifications to mission-
critical data sources require extensive manual effort to determine the impact of the revision
on the integration environment. Prior to this invention a self-generating and auto repairing
solution for building, maintaining and supporting integration adapters did not exist. The prior
art for adapter development requires some form of manual user intervention/manipulation to
build, maintain and/or support integration infrastructures. Integrating heterogeneous
applications is accomplished through the use of a variety of software or hardware based
“tools” wielded by highly technical software professionals. For example Patent Number
6,016,394 requires the manual development and maintenance of a single'monoliihic
database to address integration needs; Patent Number 6,167,564 aggregates multiple
integration tools from a variety of vendors within a single coherent development framework
S0 that users only have to navigate one application (which is still manual) pertaining to
building integration adapters; Patent Number 6,308,178 allows the user to manipulate a
graphically enhanced data mapping/code generation and wizard driven screen system that
guides the process of configuring inputs, creating interface tables, naming source files, and
adding custom integration options; Patent Number 6,256,676 requires a user to use a series
of middleware tools known as an Application Development Kit (ADK) to manually build
integration adapters; Patent Number 6,236,994 provides a method and apparatus for
manually developing and managing a metadata taxonomy catalog containing the referential
linkages of data between multiple heterogeneous documents and multiple heterogeneous
data sources.

It has been estimated that from 60-80% of the annual $10.7B software integration market
(year 2001-2002) is spent on manual adapter development, maintenance and support efforts
rather than on software licensing. The majority of this cost is for the systems analysis, data
mapping, hard coding and testing of integration adapters. When done manually, the
transformations and validations needed for data integration can require significant developer
time and effort. In fact, these tasks are often the cause of costly implementation delays and
project overruns. Rapidly evolving business demands, combined with ever-tightening
budgets and time constrains, mean that organizations need an integration adapter solution

10

15

20

25

30

WO 03/060751 PCT/US02/41189

that can be disassociated from specific software applications, version and operating
platforms. Additionally organizations need an effective integration platform that can
dynamically and intelligently adjust to the reality of continuously morphing or changing
applications and computing environments.

Managing change across software and database applications accounts for approximately
33% of a company’s entire IT budget, according to some estimates. The majority of this cost
is for detailed systems analysis required to understand the impact of product upgrades,
revisions and patches on a company's existing computing infrastructure. Prior to this
invention, this activity required manual significant effort, was inordinately expensive, time
consuming and fraught with error. Users frequently upgraded an application only to find that
management reports no longer functioned, integration adapters were compromised, or that
the application itself has become unstable. The prior art falls short of these needs and
requires months of manual effort including detailed systems analysis, large budgets, and
long lead times, as well as additional maintenance and support expenses.

The object, therefore, of the present invention is to provide a system to efficiently, in terms of
both time and resources, and dynamically, in terms of real time event driven actions, analyze
changes to data sources, and dynamically, in terms of real time event driven actions,
analyze changes to data sources within an integration environment and provide for
simultaneous re-coding of adapters between multiple heterogeneous data sources. In
addition, the present invention intelligently analyzes the conceptual relationships and
alternative data mapping strategies by utilizing intelligent computer programs that can
analyze and adapt to structural, contextual and semantic differences between multiple data
sources. It is a further object of the present invention to be disassociated from application
specific platforms, business logic and coding structures that are inherent to the specific data
source thereby allowing automatic supportability and maintainablity of interoperability
adapters that conforms to the specific requirements of the source systems. It is also an
object of the present invention to provide real time error validation of dynamic adapters as
well as performance optimization of newly created adapters that have been generated under
changing environmental conditions while maximizing the use of existing integration
infrastructures. One of the embodiments of the invention can help users gain control over
data source change thus reducing the risk, time, costs and efforts associated with adapter
maintenance and support allowing users to optimize the value of IT investments and
establish governance, visibility and control.

10

15

20

25

30

WO 03/060751

PCT/US02/41189

INTEGRATION ADAPTER REQUIREMENTS AND TYPES

Providing complete application integration between heterogeneous environments and

resources requires the provision of the following services:

Data flow services to provide work and process flow flexibility that can reflect
business processes;

Transformation services to provide data syntax resolution and validation
management;

Format Services to provide schema and semantic messages;

interface services to provide reconciliation and translation of interfaces
including SQL, RPC, IDL, CGl, APlIs, etc.;

Network services to provide such as queuing, multiplexing, ordering, routing,
security, compression, and recovery; and

Connectivity services to provide such as TCP, HTTP, SOAP, CORBA, and
SNA.

These services are provided by a collection of software components that exist within most

integration environments. Adapters provide some of these services; transformation, format,

interface and connectivity. Adapters connect software into the integration environment so

that disparate applications and data stores can interoperate with other connected resources.

There are many different techniques and approaches to achieving interoperability. Since

many of these choices are complex, expensive and cumbersome the selected method

should align with the companies long-term business needs without causing the business to

lose its ability to quickly exploit opportunities created by new technologies.

There are five categories of adapters — application, language, environment, data, and

middleware.

Application adapters tie disparate software systems together by mapping
processes, workflows or functions from a source software program to a target
application. Application adapters’ use specialized "bridge" programs that are
written so that one program can work with the data or the output from
functions in another program. The result of this type of integration may be a
new application with its own user interface or the capability of a desktop or
mainframe application to handle data and includes capabilities borrowed from
other applications.

10

15

20

25

30

WO 03/060751

PCT/US02/41189

Language adapters accomplish integration by mapping the syntax of one
programming language with another (COBAL, RPC, C, Basic, IDL, Tcl, and
others) so that older legacy software systems can connect to new
applications using the same programming standards (JAVA, XML, COM, EJB,
Visual Basic, and the like) that the more modern systems use to communicate
with each other.

Environment adapters provide platform level integration by using standards
such as CICS, SNA, and Mainframe OSI to provide connectivity.

Data adapters provide connectivity by mapping information between
applications from flat files, data sources and database connections using the
applications underlying data store (such as Oracle, Sybase, VSAM, and
others) Data adapters tend to be used inside applications to provide tightly
coupled synchronous access to heterogeneous databases intended for direct
use, for which an application-level (API) interface is not preferred or doesn't

exist.

Middleware adapters provide connectivity and interoperability by using
specialized bridging applications that support application interoperability and
data interchange. Middleware adapters use languages and protocols such as
XML, FTP, MQ Series and ODBC to accomplish environmental connectivity,
transapplication workflow, data mapping, and programmatic exchanges
across applications that in turn initiates an event that causes additional
programmatic actions.

Products that exist within each of the above listed adapter categories can be further

segmented into the following types - static, intelligent, and dynamic.

A static adapter is one that is predefined; custom developed, both application
and version specific, and provides basic application integration to a targeted
resource. Static adapters provide very little, if any, data transformation,
validation, or filtering; they simple shuttle data from one application to another
in either real-time or batch transmission modes.

An intelligent adapter implements data manipulation, validation, and business
rules processing by blending new applications and processes with existing
systems. Intelligent adapters are aware of application metadata and they
provide integration performance improvements by moving business rule
processing from centralized integration brokers to the distributed application

10

15

20

25

30

WO 03/060751 PCT/US02/41189

adapter, thus reducing network traffic. However, not all intelligent adapters
are equal. Each one’s functionality is directly controlled by the depth, breath
and amount of application knowledge that has been encapsulated into the
adapter by the supplier. Intelligent adapters reduce the amount of custom
coding and application expertise required to support an integrated
environment because they are designed to address the underlying business
logic of version-specific products within the integrated environment. While
labeled as “smart,” intelligent adapters usually fail to address
application/database/logic customizations created by end user customers.
Intelligent adapters require manual intervention and custom augmentation
whenever an application is modified or upgraded.

. A dynamic adapter has the advantages of an intelligent adapter with few, if
any, of the weaknesses. It actually learns from performing its data
manipulations and can change its behavior by detecting changes in a
monitored application. A dynamic adapter is capable of sensing changes in
the integrated environment; automatically re-programming itself once a
change has been detected and fine-tunes its performance as the result of
newly learned operational information. Only dynamic adapters can
seamlessly function within all five of the above mentioned adapter categories
without custom coding.

Our invention provides a novel system that overcomes the above shortcomings.

Accordingly, it is an object of the invention to monitor an application and to automatically
detect changes in the application’s database structure and record this information in a format
such as XML format in a knowledge base repository.

It is another object of the invention to “learn” user preferences and data mapping criteria
each time the application is used.

It is a further object the invention to automatically detect application changes, reducing the
need for extensive database analysis.

It is yet a further object of the invention to use dynamic syntactic processes to create adapter
maintenance and support plans automatically.

It is an additional object of the invention to significantly reduce the time and manpower
required to plan, analyze, design, and generate an interoperability plan for applications.

10

15

20

25

WO 03/060751 PCT/US02/41189

It is another object of the invention to provide a system that automatically checks for errors in
new adapters, minimizing the number of staff required for this task.

It is still another object of the invention to automatically maintain and support adapters,
reducing the need for expensive integration programmers.

it is still an additional object of the invention to provide error management components that
automatically test updated adapters before they are placed into a production environment.

It is a further object of the invention to automatically detect application changes, so that end
users do not need an in-depth understanding of the structure of each application.

It is another object of the invention to generate programming code automatically, so that end
users do not need to learn numerous interface programming languages.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a general representation of the overall system architecture useable in the invention.

Fig. 2 is an alternate illustration of the general operation of the invention, including
processes associated with Assessment, Modification Planner, Hub, Error Validation and
Code Generation components.

Fig. 3 illustrates some of the information collected by the Schema Manager, which
information becomes the input for ontology generation.

Fig. 4 illustrates the steps for generating a change specification between to different
instances of an application’s schemas.

Fig. 5 illustrates the steps necessary to create an application ontology from an application
schema

Fig. 6 illustrates the steps necessary to generate a similarity map between two disparate
applications.

Fig. 7 illustrates the three main steps that go into planning an integration adapter.

In describing our invention we will be using terms used in the software and artificial
intelligence technologies. Some of these terms, as used in this patent document, are
defined below.

10

15

20

25

30

WO 03/060751 PCT/US02/41189

DEFINITIONS

“Adapter” means software code that allows heterogeneous software applications and data
sources to interoperate and share data with each other.

“Application Ontology Factory” means the concept engine that is responsible for the
development of an Application Specific Ontology. The Application Ontology Factory is
common and reusable across any application and in turn produces an application specific
ontology (conceptual model that is an axiomatic characterization of data and meaning) for
each monitored data source, by mapping application schema elements, relationships
between those elements and other constraints to a common ontology.

“Application Program Interface (API)’ means a series of functions that programs can use to
make the operating system do a specific function. Using Windows APls, for example, a
program can open windows, files, and message boxes--as well as perform more complicated

tasks--by passing a single instruction.

“Assessment Microagent’ means an intelligent software program that can independently and
in an event driven fashion analyze selected data sources (software applications and
databases) thereby creating a point in time situation assessment and application specific
concept model of the data source as well as a comparison record that shows the differences
between two or more point-in-time snapshots of a data source.

“Change Specification File” means the record that represents the detailed summary
attributes of information about differences between two or more specific point-in-time
snapshots of an application which is inclusive of the data sources underlying schema.

“Change Specification Manager” means the mechanism that handles the persistence
operations that are associated with retrieving and storage of multiple versions of change
specifications files.

“Code Generator Agent’ means an intelligent software program whose purpose is to
generate interoperability adapter code from a generic Integraton Plan to a specific
implementation programming language selected by a human user.

“Common ontology” is a general purpose ontology that contains definitions for concepts and
relationships among those concepts that have wide coverage among multiple domains. In
the ontology community this is sometimes called the upper ontology.

10

15

20

25

30

WO 03/060751 PCT/US02/41189

“Communicator’ means the graphic user interface that supports human interaction with all
the systems microagents contained in the instant invention. The Communicator implicitly

directs the various microagents to be responsive to the plans and goals of the human users.

“Concept Hierarchy” refers to concepts in an ontology and means the compendium of all
concepts'and relationships between those concepts as they define a given concept. In other
words, “Concept Hierarchy” means all the more abstract concepts and their relationships
used to define a concept in an ontology.

“Constraint” means an attribute of a table which restricts the values that a field can have.
(e.g., NOT NULL, UNIQUE, efc.)

“Cyclic Redundancy Check” or “CRC” means an algorithm applied to a block of data which
produces a number, typically 32-bits or more, which has a very high probability of being

- unique for that block of data. Note, this is more widely known as a "Message Digest" or

"Hash" algorithm and for the record CRC's are used primarily to detect data transmission
errors whereas hashes are used to determine uniqueness (though having duplicate CRC's
for dissimilar blocks of data is also very unlikely and CRC's are typically faster to produce
than hashes). Commonly used message digest algorithms include CRC-32, MD5, and SHA-
1.

“Data Source” means any software system with a data structure such as a database, an
enterprise application, or flat data files.

“Deployment Agent” means an intelligent software program whose purpose is to deploy
newly generated adapter interoperability code to a user specified location such as a secured
server using a deployment strategy that is identified by a system user. Deployment
strategies may include File Transfer Protocol (FTP), file-copy, telnet and Secure Socket
Shell (SSH).

“Document Type Definition” or “DTD” means a file used to validate the structure of an XML
document. DTDs are used so that a validating XML parser can validate that the tag structure
and attributes in an XML document are valid based on the rules laid out in the DTD.

“Dynamic” means performed when a program is running.

“Enterprise Application Integration (EAI)” means a method of integrating software applications
that is workflow driven.

10

15

20

25

WO 03/060751 PCT/US02/41189

10

“Error Management Microagent’ means an intelligent software program that evaluates newly
created interoperability adapter code to detect errors in code generation, data extraction,
aggregation and insertion or would hinder the software application programs to interoperate
(process a transaction and exchange data).

“Event-Driven” means a trigger that allows a program to react independent of human
intervention to changes that have occurred in a software environment.

“‘Event of Interest” means an event, such as a structure change in a table, that is of
significance to the system.

“Extensible Markup Language (XML)” means a semantic-preserving markup language used
for interchanging data between heterogeneous systems.

“Foreign Key” means a value stored in a table which is the Primary Key of another table.
Used to create a reference between two tables, such as Person.addrld and Address.id.

“Global Ontology” is synonym with Common Ontology as defined above.

“Hub” means the central entry point into the system from external interfaces and from the
GUL. The hub controls session management activities including user authentication, retaining
information for a specific user about the time between logging inand logging out, and routing
of user requests to the appropriate system components and routing of the results back to the
requestor.

“Immutability” means an inability to change. Immutable objects, once created, never change
their value, which allows for certain assumptions and optimizations to be made when using
them.

“Implementation Language” is a "programming"” language in which an integration plan can be
implemented. This includes languages such as Perl, Java, and so forth, but also languages
such as XML which are not true programming languages per-se.

“Index” means a hash value calculated for a row based on fields within that row which can
then be used for faster querying, such as creating an index of Person.LastName so that
queries for Person records by LastName will be faster.

“Integration Validation” means performing an error check to determine the comrectness of
newly generated interoperability adapter code as well as ensuring that the newly generated

10

15

20

25

30

WO 03/060751 PCT/US02/41189
11

code will not corrupt transported information or adversely impact the targeted data source,
as well as other existing interoperability code structures.

“Interface” means a boundary across which two independent systems meet and act on or
communicate with each other.

“Language Descriptor” is an object which describes a language in a form readable by
software. A descriptor would include things like the name of the language, the statement-
terminator character, the comment character, the string constant-delimiter, and so forth.

“Microagent” means an intelligent software program that can be viewed as perceiving its
environment through sensors that communicate what should be accomplished and in tumn
act upon that environment through effectors which are software tools and services that
dynamically determine how and where to satisfy the request.

“Micro Agent (software robots)” means intelligent software programs that use software tools
and services on a person's behalf. Also known as softbots. Micro agents allow a person to
communicate what they want accomplished and then dynamically determine how and where
to satisfy the person’s request.

“Modification Planning Microagent’ means an intelligent software program that defines data
mapping and interoperability operations between two or more application specific ontologies.
The Modification Planning Micro Agent uses expert traces to dynamically synthesise
transformation information between two or more ontologies by means of an inferance engine
(algorithm) to develop a sequence of actions (plans) that will achieve concept mapping and
data transformation conditions which are representitive of the ideal interoperability state
required by the two or more application specific ontologies that exist within an integration
enviornment.

“Ontological Comparative Knowledge Base” means the application specific Ontology that
maintains information that pertains to a data source’s infrastructure (Tables, Columns,
Indexes, Foreign Keys, Triggers, Stored Procedures, Primary Keys, Other Constraints,
Views, Aliases / Synonyms, efc.). The Assessment Microagent compares one point in time
Ontological Comparative Knowledge Base to other point in time snapshots to detemine if a
change has occurred. Identified changes between two point-in-time versions of the
Ontological Comparative Knowledge Base can be used to facilitate understanding,
organizing, and formalizing information about the monitored data source supportive of the
operational needs of the other micro agents.

10

15

20

25

30

WO 03/060751 PCT/US02/41189

12

“Ontology” means the specification of conceptualizations, used to help programs and
humans share knowledge. In this usage, an ontology is a set of concepts - such as things,
events, and relations - that are specified in some way (such as specific natural language) in

order to create an agreed-upon vocabulary for exchanging information.

“Ontology Editor” means the mechanism that allows editing of existing ontology settings
including information on specific concepts and relationships of a common or application
specific ontology.

“Ontology Manager” means the mechanism that manages the persistence operation
associated with storage and refrieval of various versions of the common ontology,
application ontologies and application-to-application ontology mappings.

“Open Database Connectivity (ODBC)” means a widely accepted application programming
interface (API) for database access that makes it possible to access different database
systems with a common language. ODBC is based on CLI (Call Level Interface). There are
ODBC drivers and development tools for a variety of operating systems such as Windows,
Macintosh, UNIX and OS/2.

“Persistence” means that the information stored in a view has to continue to exist even after
the application that saved and manipulated the data presented in the view has ceased to
run. Persistence provides a mechanism for server-side components to create, read, update,
and delete and store multiple versions of system data.

“Planner” means the intelligent software program that takes input from application specific
ontology generation processes, understands the differences and similarities between two or
more heterogeneous application specific ontologies and generates an integration plan that
includes the detailed concept mapping and data transformation rules between
heterogeneous applications.

“Polling” means querying a source on a recurring schedule, such as once every 10 minutes.

“Primary Key” or “PK” is an identifier which uniquely identifies a single instance of a particular
type of object. (e.g., a SSNis a Primary Key for a uU.s. citizen).

“Schema” means the logical organization or structure for representing data that exists in a
database. Schema includes definitions and relationships of data and shows abstract
representations of an object's characteristics and its relationships to other objects. This
process is completed by evaluating the data source’s metadata, meta-relationships inclusive
of the basic notions of parenthood, integrity, identity, and dependence, etc., which in turn,

10

15

20

25

30

WO 03/060751 PCT/US02/41189

13

are compiled into a tag library that becomes the foundation of an application specific
Ontological Comparative Knowledge Base.

“Script Executor Microagent” means as the Code Generator Agent generates interoperability
code from a generic Integration Plan to a specific implementation programming language
selected by a human user, the Script Executor Microagent executes that code.

“State Machine” means a construct used to describe a flow of events given input and the
results of the currently executed state within the machine. State-machines allow for very
flexible sequencing and decoupling of their component parts to allow the user of the state-
machine to alter and customize its behavior with a minimum of effort. State-machines are
nomally represented as a directional graph in which each node of the graph represents a
state of the machine ("startup”, "login", "ftp", "done”, "failure") and the branches within the
graph represent the flow of control from state to state ('success' at the 'login’ state resuits in
a transition to the 'ftp' state, 'failure’ at the 'login’ state results in a transition to the ‘failure’
state, and so forth).

“Stored Procedure” means a compiled query stored on the database server and used for
efficiency and encapsulation process.

“Structured Query Language (SQL)” means a scripting language used to communicate with
a database.

“Synectics” means the human problem-solving process based on logical elimination of
options and heuristic reasoning.

“Trigger” means an entity within a database which is notified when a specified event occurs,
such as a row being added to a table.

“Validating XML Parser” means a parser that, when parsing XML, validates both that the
XML is well formed and that the XML is valid based on the rules specified in a specified DTD
or XML-Schema file.

“WordNet” means a specific online lexical database of the English language, which is
maintained by the Cognitive Science Laboratory at Princeton University. The WordNet is
commonly used in the computer science field to compare words based on their meanings.

“Use case” means a formal description of a particular functionality or behavior that the
system displays for specific situations.

10

15

20

25

30

WO 03/060751 PCT/US02/41189
14

“View” means a "fake" table nommally composed of data from various tables which appears
to the user as a regular database table, such as a consolidated view showing data from both
Person and Address data in a single table.

“XML (Extensible Markup Language)’ means a markup language developed by the World
Wide Web Consortium (W3C) to organize and deliver content more reliably through the use
of customized tags.

DESCRIPTION OF THE PREFERRED EMBODIMENT

We will now describe the various aspects of our invention.
INVENTION OVERVIEW

Every organization is unique and each company has its own distinctive configuration of
hardware, software, databases, enterprise applications, product customizations and network
infrastructure. Fixed models for integration don’t scale because they fail to address a
company’s individuality. Our invention treats each monitored application within the
integration environment as the center of its own unique universe, continually examining the
application (data, business logic, etc.) for changes while accommodating the uniqueness of
each application within the integration environment. This approach provides a system that
efficiently and dynamically (in terms of time, resources, and event driven actions) analyzes
changes to heterogeneous software applications, integration environments and/or data
resources that is both platform and application independent and provides a robust
application change management control that allows the user to immediately determine the
downstream impact of installing product revisions, patches or new versions within his or her
integration environment. Its revision control infrastructure can help solve data integration
adapter maintenance and support issues, reduce dependencies on integration professional
services consulting, enhance data security and decrease the risks associated with software
upgrades.

The main aspect of our invention is as an automated interoperability analysis and code
generation tool, or intelligent, dynamic universal adaptor, that dynamically detects
application changes, analyzes revisions, generates data mapping between heterogeneous
applications, performs error validation, and executes necessary adapter modifications. It
features a robust software infrastructure for adapter construction, maintenance and support
that consistently develops, deploys and monitors Intelligent, Dynamic Adapters. When a
monitored application has been modified, the invention uses a proactive planning and
learning approach to determine how best to update the application’s integration adapters.

10

15

20

25

30

WO 03/060751 PCT/US02/41189

15

This significantly reduces the amount of human intervention as well as the risk, cost, time,
and manual effort required to update application integration environments.

SYSTEM ARCHITECTURE

The system including our invention can be built on a highly extensible, flexible and robust
distributed architecture allowing it to scale for an almost unlimited amount of users and
enterprise applications. The benefits of this architecture include providing ability for
deployment in highly complex IT environments, the ability to distribute processing
requirements across the IT environment without affecting other critical IT systems, the ability
to support fail over, among other functions. |

The distributed architecture can be built on Jini technology from Sun Microsystems, which
allows highly distributed components to coexist independent of each other. Jini provides the
infrastructure necessary for components to log services and allows other components to find
those services when required. Along with Jini, other technologies can be used to further
allow flexibility, extensibility and robustness. These technologies include Remote Method
Invocation (RMI) for inter-process communication between different components and the use
of JavaSpaces as a standard way to persist objects and messages across components.

System architectures can be viewed in different ways. Two ways that have been used are
Logical Architecture and Physical Architecture.

The Logical Architecture describes the behavior of a system's application. Since the system
of the current invention can be written in Java, the descriptions of the logical architecture
map directly to Java packages and classes. For the most part, component types can be
mapped to Java packages. Components can be mapped to Java classes.

The Physical Architecture shows how the logical architecture is mapped to physical things,
such as operating system (OS) processes and machines. Put another way, the components
defined in the Logical Architecture are allocated onto OS processes and machines. This
provides the perspective of how components map to the real, physical world. Because the
system components can exist in multiple OS processes on multiple machines, the system
architecture is distributed.

The system architecture is illustrated generally in Fig. 1 showing both logical architecture
and physical architecture.

10

15

20

25

WO 03/060751 PCT/US02/41189
16

LOGICAL ARCHITECTURE

A number of major component types of the Logical Architecture can be classified as:

-

Model
Managers
Factories
Agents
Desktop Client
Hub
Notifications

Jini and JavaSpaces

© ©® N o o &> w N

RMI
10. Exceptions

Each is described below.
The Model

Model components contain data used by other components within the system. When data is

exchanged between server and client components, the data is packaged as one or more

Model objects. Examples of the Model component types, along with their components, are:
1. Job (Jobld, JobStatus, JobSummary, Step)

System (Application, Appld)

User (UserData, Userld, User, UserName, UserPassword, UserPreferences)

Change Specification

Schema

Application Ontology

App2App Similarity Map

® N @ o A © N

Common Ontology

9. Database

WO 03/060751 PCT/US02/41189
17

System Managers

Backend server components are implemented in the form of managers that address different
aspects of the system. The Managers provide the server-side functionality for the system of
our invention. Put another way, Managers provide the business behavior and rules for the
system. Examples of Managers seen in Fig. 1 are:

1. System Manager 2, which manages system-wide settings and data.

2. Schema Manager 4, which provide, store, list, and delete schemas.

3. User Manager 6, which manages users and their preferences.

4. Change Specification Manager 8, which manages storage and retrieval of

change specifications. Each change specification represents the changes between
two specific snapshots of a schema.

5. Job Manager 10, which manages jobs that may run for a long time. Typically,
jobs perform heavy analysis and automation.

. Task Manager 12, which manages and runs scheduled tasks.

7. Ontology Manager 14, which maps the access to and modification of the
Common Ontology and other application ontologies.

8. Language Manager 16, which manages the different programming languages
in which the system can produce integration adaptors, also referred to as dynamic
adapters. This managérs allows an advanced user to set preferences for the delivery
of language-specific adaptors.

System Factories

The system of our invention has several factories running on the server side which produce
specific kinds of models. Besides production of models, the factories also have the role of
managing persistence operations for the models. These are seen below with reference to
FIG. 1.

1. Application Ontology Factory 18, which maps application schemata to the
Common Ontology 35 and produces application-specific ontologies.

10

15

20

25

30

WO 03/060751 PCT/US02/41189

18

2. App2App Similarity Mapper 20, which maps a specific application ontology to
another application ontology and produces a map of potential integration points
between the two applications.

3. Ontology Editor 22, which acts both as a manager and a factory, manages
direct human interaction with the Common Ontology 35 for validation, expansion and
modification of the Common Ontology. It also provides a visual representation of the
Common Ontology 35.

4. - Planner 24, which produces an interactive integration plan between two
disparate applications based on the App2App Similarity Map.

System Agents

The system implements agents that run on the server side, are highly adaptive and
autonomous in nature and interact with internal and external components in a goal-oriented
manner. These include:

1. CodeGen Agent 26, which interacts with Planner 24, ChangeSpécification
Manager 8 and extemnal application-specific settings such as version and
programming language to generateand adapt integration code.

2. Deployment Agent 28, which interacts with external application environment
elements and the CodeGen Agent 26 to deploy and validate code in a self-adapting
fashion. It is self-adapting to the extent that when a change such as an |IP address
change occurs, it is detected and the deployment agent makes the necessary
modification autonomously or semi-autonomously by further inquiring input from the
human operator to insure the continued operation of the code.

Deskiop Client

The system Desktop Client is seen in Fig. 1 in logical architecture form 7 and in physical
architecture form 9. It is used to provide the graphical user interface (GUI) between users
and the system. The Desktop Client runs on users’ or clients’ desktops. It can make
requests of the system server components via system Proxies, receive data from those
requests, and present that data to the user. Even though the Desktop Client is a full desktop
application, it does not need to provide any business logic.

The Desktop Client contains the following views each functioning as indicated:

1. Application Context, illustrated as Application Manager 11

10

15

20

25

30

WO 03/060751

PCT/US02/41189
19
. Lists the applications which were previously defined by the users.
. Shows detailed information for the selected application.
. Adds, modifies or removes application definitions in response to user
requests.
Schema Context 13
. Lists the previously collected schemas.
. Shows detailed information for the selected schema.
. Adds or removes schemas in response to system or user requests.
Change Specification Context 15
. Lists the previously created Change Specifications.
. Shows detailed information for the selected change specificatibn.
. Add, or remove change specifications in response to system or user
requests.
Report Generation Context 17
. Uses a File selection dialog to open previously saved reports.
. Creates a new report from an existing schema or change

specification.

. Saves the current report to the local disk, in HTML or XML.

Task List Context 19
. List the pending/scheduled tasks for the current user.
. Adds, modifies or remove a task.

User Administration Context 21

. Lists the users of the system
. Sets up new users
o Administers passwords

Notification Context23
. Displays notifications
. Sets up notification preferences

Application Ontology View Context 25
. Lists Application Ontologies
. Displays Application Ontologies for browsing

10

15

20

25

30

WO 03/060751 PCT/US02/41189

20

9. App2App Similarity Mapping Context 27

. Lists App2App Similarity Maps

. Displays App2App Similarity Maps for browsing and user acceptance
10. Plan View Context 29

o Lists integration Plans

. Displays Plan for user browsing and acceptance

11. Language Edibr 31

. Lists language supported
. Displays specific language settings for user browsing and preference
selection

12. Code Browser Context 33
. Displays code in specific language for user browsing, saving and
preference settings

A context as used above is a particular view or component of the user interface that the user
can use to perform specific tasks, browse through system output or interact with the system
in general. Each context has a server side counterpart with which it interacts to produce the
desired functionality.

System Hub

The System Hub 30 is a broker, which means that it is used to connect client components
with server components. It need not, and usually does not, however, perform the
communication between clients and servers. Rather, the Hub provides clients (typically the
Desktop Client) with components that can be used to directly communicate with server
components using Java RMI (Remote Method Invocation) 32. In system terms, the Hub
provides Proxies to clients. These Proxies know how to communicate directly with
Managers, which run on the server.

A portion of the Hub runs on both clients and a server. The portion of the Hub running on
the server registers itself with Jini as a Jini service. To register in Jini, means that it makes
an entry in Jini that other services can look up and connect to if necessary. Once this
registration takes place, client Hubs can now find the server Hub. Communication between
client Hubs and the server Hub takes places using RMI/JJRMP.

A Proxy running on the client finds its associated Manager after the Manager has registered
itself as an RMI server object with the server Hub. Once that registration takes place,

10

15

20

25

30

WO 03/060751 PCT/US02/41189

21

Proxies can find Managers and they can communicate directly using RMI/JRMP. Manager
registration is part of the initialization step for the Hub running on the server.

From the Deskiop Client's perspective, communication with Managers to perform the
needed processing is straightforward. When the Desktop Client is started, the client Hub is
automatically created and initialized. Afterwards, the Desktop Client can ask the client Hub
to provide a Proxy. The Desktop Client can then use the Proxy to communicate directly with
its associated manager, bypassing the client Hub completely.

System Notifications

Notifications provide events of interest to the system components. For example, a Desktop
Client component may want to know when a particular job has been completed. The
component would register interest for a "job completion” event for a specific user. Since
registration takes place through Jini, other services that have been registered in Jini will be
able to read the request and provide the information if available. When the job for that user
has éompleted, a noftification is sent to the registered Desktop Client component.
Notifications, managed by Notifications Manager 34, provide a way to check on status rather
than continuously polling that status. The system uses both push and pull methods of

notifications. Notifications can be persistent, or stored, 4 rather than transient. This
means that a registered component receiving a notification does not have to be online at the
time of the notfification to receive the event. The component can register interest for a
particular notification, disconnect from the system, reconnect at a later time, and receive any
outstanding events. Notifications can also be set up to be distributed via email, SMS or any
other kind of delivery mechanism.

Jini and JavaSpaces

Jini 36 is an object-oriented, distributed processing infrastructure technology developed by
Sun to enable the creation of dynamic distributed processing networks of services. Jini
provides a way for servers to register their services (with Jini). Clients can use Jini to obtain
access to those services. Services may run completely on either the server or client, or
partially on both. Once a client has found a service, Jini is not used to facilitate the
communication between clients and servers. Instead, the client and server communicate
directly using the protocol defined by the service. Jini does, however, use RMI as its
mechanism for servers to register services and clients to find those services.

JavaSpaces 38 is a Jini technology that provides transactionally secure, asynchronous
object exchange and object storage for distributed applications. Instead of direct,

10

15

20

25

WO 03/060751 PCT/US02/41189

22

synchronous communications, JavaSpaces allow applications to communicate indirectly and
asynchronously. Using JavaSpaces allows application components to put objects into one
or more JavaSpaces. Those objects can be retrieved later by other application components
(in the same or different application) using JavaSpaces. JavaSpaces are Jini services,
which can have leases so they can come and go on the network.

The system uses Jini services in two places:
1. The Hub, which is a Jini service.
2. Notifications, which use JavaSpaces, which, in turn, are Jini services.

The system uses JavaSpaces in two ways:

1. Asynchronous messaging mechanism to support system notifications.
2. Short-term data storage mechanism (e.g., holds job status for short period of
time).

Java RMI

RMI (Remote Method Invocation), shown at 40 in Fig. 1 in respect of desktop clients, is a
Java network protocol, which provides the distributed mechanism that allows system Proxies
to communicate with Managers. RMI can host two other higher-level transport protocols,
JRMP (Java Remote Method Protocol) and IIOP (Internet Inter-ORB Protocol). JRMP is the
native, defadlt, and Java-only higherdevel protocol. IIOP allows Java objects to
communicate with CORBA or J2EE objects. RMI relies on TCP/IP for its underlying network
protocol.

RM! is used for communication between system Proxies and Managers, as well as the client
and server portions of the Hub. The system currently can use the default RMI/JJRMP.

Java Swing

Swing 42 is a technology that is part of standard Java. It provides (along with other
complimentary technologies, such as AWT) a framework and list of graphical components
for building portable graphical user interfaces. Swing is usually used to build Intranet-based
application (i.e., those applications that exist behind company firewalls). Typically, Swing is
not used for Internet-based applications.

10

15

20

25

WO 03/060751 PCT/US02/41189
23

XML
XML 44 is used to represent the following kinds of data:
1. Schemas on the Desktop Client. DOM XML technology is used.

2. Change Specifications on the Desktop Client (only written at this time). DOM
XML technology is used.

3. Reports on the Desktop Client. These reports can be transformed using a
report template (XSLT) into an HTML file, which can be viewed later by the user.

4, Properties on the Desktop Client (manually written, automatically read)
5. Properties on the Server (manually written, automatically read)

DETAILED DESCRIPTION OF INVENTION COMPONENTS

The invention is illustrated in an alternate illustration in Fig. 2 and includes processes
associated with Assessment Micro Agent, App2App Similarity Mapper, Planner, Hub, Error
Validaton and Code Generation components. Note that some of the components in Fig 1
are in fact subcomponents of the functional components described hereafter. For instance,
the Assessment Micro Agent component is composed of the Schema, Change Specification,
Task and Job Managers in Fig. 1. In other words, the combination of these managers are an
embodiment of the Assessment Micro Agent.

The functional components of the invention are described in Fig. 2. This figure shows how
the functional components interact with each other and with two applications that are the
target for integration.

First of all, applications A and B, which may be any ODBC or JDBC compliant data sources,
are monitored by the Assessment Micro Agent component of the invention. Note that ODBC
and JDBC are just examples of data source standards, but the Assessment Micro Agent
might support other standards as well such as XML, HL7 or any other standard available that
provides data structure information. The Assessment Micro Agent, when first installed,
creates a complete inventory of the data structure and functionality of the data source and
makes it available to other components of the invention as described below. If a change
occurs in either of the applications the Assessment Micro Agent interacts notifies other
components of the invention that then act upon this information as described below.

10

15

20

25

30

WO 03/060751 PCT/US02/41189
24

Once the Assessment Micro Agent has been installed in two or more applications, it is
possible to produce similarity maps between those applications based on the data structure
inventory provided by it. In order to accomplish this, the Application Ontology Factory uses
application data structure information provided by the Assessment Micro Agent and the
information provided in the Common Ontology library to produce the application ontologies.
Then the App2App Similarity Mapper then uses the information in the application ontologies
to produce a similarity map between the applications. Once the similarity map is completéd,
the Planner uses the information contained in the similarity map to produce an integration
plan. Then the CodeGen Agent uses the information provided in the integration plan to
produce the integration code. After the integration code is validated by the Error
Management Micro Agent, the it is deployed as the x-walk file between the applications and
thus they become integrated. *

The details for the process of each of these components are described in more detail in the
following sections.

Assessment Micro Agent

The Assessment Micro Agent serves three primary functions: schema discovery, change
monitoring and system or user notification of changes.

. Fig. 3 illustrates the process of schema discovery. The first time the
Assessment Micro Agent 320 is installed for a given application 310, schema
discovery is initiated. Schema discovery involves reading the meta-data
stored in a data source 310 to produce a schema 360 that is placed into a
memory model, which can then be displayed in textual 380 or graphic 390
form. This process is carried out by the Schema Manager 4 of Fig. 1. and
includes collecting the following: data source information, data source driver
information, table names, table types, indexes, foreign keys, column names,
column data types, column precision, column nullability, primary key
designation, view definitions, synonym and alias references, and remarks
stored in the database schema as illustrated by 330, 340 and 350. The
collected information can then be displayed by the client 17 of Fig. 1 in either
a textual presentation 380 or graphic presentation 390. The schema 360

- extracted in this manner becomes the input for ontology generation.

. The invention's change monitoring capabilty provides detailed analysis
through the Change Specification Manager 8 of software under consideration

10

15

20

25

30

WO 03/060751

PCT/US02/41189
25

so that the user knows exactly what is different between product versions.
The Change Specification Manager receives input of schemas from the
Schema Manager 4. The Change Specification Manager 8 then creates
change specifications if something has change between versions of the
schema. It can manage revision control against new versions, patches and
application upgrades that may affect data interoperability and in turn makes
possible the development, maintenance and support of intelligent, dynamic
adapters that contain application-level business logic, dependencies and
constraints at the sub-modular level. Using an event driven model that is
triggered by a system change, the Change Specification Manager 8
automatically detects alterations in the database structure of an application by
making comparisons of schemas generated by the Schema Manager 4.
When an application is being monitored, the Change Specification Manager 8
proceeds to analyze the change by comparing the new schema to a previous
schema or schemas. First the Change Specification Manager 8 is triggereid
by a user or a system event 410. As seen in Fig. 4, the Change Specification
Manager, described subsequently, compares schema information 420 for one
historical view of the schema of one application to another historical view of
the same application. The trigger mechanism 410 can be set as a scheduled
task in the task manager or by some application dependent event such as a
trigger mechanism, which usually is included in most commercial database
management systems. The comparisons are done first at the table level for
name or type differences 430. Then for each table the Change Specification
Manager 8 compares meta-data information 440 such as name and type and
length changes for the fields, columns, indices, primary keys, foreign keys,
etc. The changes are then stored in as a change specification 450 for use by
other components of the invention. If required to do so, the Change
Specification Manager can show the change specification to the user via the
Change Specification Browser 15.

The Assessment Micro Agent resides on an application server. The
Assessment Micro Agent is application/product/version agnostic, which
means that because its focus is exclusive on data structures, it does not
depend on particular implementations of applications, products or versions of
those applications of products.

10

15

20

25

30

WO 03/060751 PCT/US02/41189
26

In our implementation of the Assessment Micro Agent, we have further broken it down to at
least four more components that provide distinctively useful functionality. These include:

) Schema_Manager. This component connects to applications through
standard interfaces, which include JDBC, ODBC, Flat File Translators, and
the like. It makes an analysis of the application and extracts the meta-data
model in the form of a schema. The schema manager stores the schema
and then provides an interface to other components to retrieve the schema
when necessary. For instance, the Change Specification Manager retrieves
schemas to produce change specifications on the schemas. The schema
manager also allows the schemas to be exported into other formats, including
XML, Serialized Java Objects, HTML and others.

o Change Specification Managéf. This component performs a complete
analysis of what is different between two different versions of an application
by comparing the schemas associated with each version. It presents the
change specification file to the user in a structured manner with specific
information as to what changed in the schemas, when and how. As itis the
case with the schema manager, it also allows the change specification files to
be exported in other formats.

. Task scheduler. This component allows the user to schedule tasks in an
event-driven or user defined manner. The tasks include the generation of
schemas through the Schema Manager and the generation of change
specifications through the Change Specification Manager.

) Notification Manager. This component provides an interface in which users

can define notifications at several levels of granularity. This includes setting
up notifications on the complete file of the change specifications or on filtered
views of the files according to the user preferences. The Notification
Manager can send notifications via standard mediums such as email, pager
or PDAs according to the user preferences.

Although, these components perform some of the most important tasks of the Assessment
Micro Agent, these components do not provide all the functionality of the Assessment Micro
Agent, as it also performs other processes that provide useful functionality independently of
these components. These processes include the ability to monitor connectivity to the
applications, the ability to orchestrate the schema monitoring, change specification retrieval

10

15

20

25

30

WO 03/060751 PCT/US02/41189

27

and send system-level notifications and user alerts. An additional functionality that is
allowed by the Assessment Micro Agent is the ability to allow user to create filtered views of
changes according to their preferences.

Application Ontology Factory

The Application Ontology Factory 18 converts the schema obtained from the Schema
Manager 4 component of the Assessment Micro Agent into a language compatible to the
mediating representation or common ontology 510. In a sense, this is like describing a
schema utilizing the syntax of the common ontology language. After this conversion, each
schema element identifier is mapped to the WordNet 520 to extract all or substantially all
possible senses of the element 530. These senses are then utilized to extract all possible
mediating ontology concept hierarchies to which the element might be a top-most
specialization 540. Each concept hierarchy is then assigned a confidence factor 550. It is
important to notice that a schema element might be associated with one or more concept
hierarchies because of its possible multiple senses, but each concept hierarchy will have an
independent confidence factor. The collection of concept hierarchies is then merged at the
appropriate level of generalization 560 producing what we refer to as a multi-dimensional
micro-theory 570. A micro-theory, because it captures concepts associated only with a
particular schema. Multi-dimensional, because a schema element might be associated with
one or more concept hierarchies. We refer to a micro-theory as the application ontology as it
is replicated and maintained separately from the common ontology. The application
ontology is made available to the App2App Similarity Mapper 20 or to the Application
Ontology Viewer 25 if required by the user. These steps are illustrated in Fig. 5.

App2App Similarity Mapper

Generating data mapping between heterogeneous applications is the result of the App2App
Similarity Mapper, described heredfter.

The system of our invention uses advanced pattern matching and planning algorithms to
learn how changes are handled for each unique organization and then deals with those
specific configurations. The invention is capable of analyzing alternative data mapping
strategies with or without human intervention by utilizing intelligent computer programs that
analyze and react to changes. A change in a monitored application is viewed by the
invention as a problem that can be solved by analyzing the exact nature of the change,
evaluating alternative data mapping possibilities, and by adjusting the existing adapter
integration code structures to address the new variables. There are a number of strategies

10

15

20

25

30

35

WO 03/060751 PCT/US02/41189

28

to do data mapping. Most importantly, all multi-dimensional aspects of each micro-theory
produced by the Application Ontology Factory 18 are exhausted to produce a list of possible
mappings 690 between the micro-theories. Mappings 690 in the list might consist of one to
one, one to many or many to many element mappings. Each mapping has an associated
confidence factor 695, which reflects the probability of the mapping being accurate. To map
two micro-theories we first utilize the senses of each schema element 430 and search for
synonyms and hypernyms 610 in the WordNet 420 to produce an exhaustive similarity map
between the applications 620 and assign confidence factors 630. This process is illustrated
in Fig. 6. The result is an exhaustive preliminary similarity map between the applications
with an assigned confidence factor for each mapping 640. Then the system extracts
samples of the data for each mapped applications 650 and check for expected data values
of mapped elements 660 to affect the confidence factors positively or negatively depending
on the closeness of data 670. The result is a similarity map between the applications with
refined confidence factors 680.

In addition, we also systematically apply a series of structural comparison techniques to
further refine confidence factors and identify other potential mappings not possibly found
through synonym and hypernym relations or expected data values. These structural
comparison techniques are particularly useful to find mappings for concepts that have been
given arbitrary denominations with no easily identifiable meanings. Some of the pattern
matching algorithms used are well known in the computer science and artificial intelligence
community. These include Naive Bayesian Classifiers, Neural Networks, Induction
Algorithms, and the like. First, an application to ontology mapping is generated for each
application being mapped. The invention utilizes a powerful pattern matching approach to
application to ontology mapping, which is based on evaluating the mathematical probabilities
of lexical and semantic relationships between schema entities and ontology concepts.

Lexical closeness is first determined between the application ontology and global ontology
concepts, in fact producing synonym relationships. The approach goes one step further to
determine mathematical closeness of semantic relationships in the form of hypernyms. A
hypernym is a hierarchical relationship between semantically similar concepts which have a
common parent somewhere in the hierarchy. For instance, a dog and a fox are semantically
similar in that they both belong to the canine family. However, although a cat and a dog are
both carnivorous mammals, and thus are semantically similar, the semantic closeness
between a dog and a cat is not as strong as between dog and a fox. This way we are able
to discover both synonym and hypernym relationships and attaches confidence factors
based on the mathematical probability of being lexically and semantically close respectively.

10

15

20

25

30

WO 03/060751 PCT/US02/41189
29

The next step is to compare the application ontologies of the source and target applications
to determine common concepts. This is a multi-tiered approach which involves several
independentapproaches as follows:

Map source and target application ontology elements using synonym and
hypernym relationships.

. Validate expected data values for source and target application ontology
mappings.
. Compose and decompose semantic relationships between target and source

application ontology elements.
o Unite semantically similar schema elements into new ontology concepts.

Mapping source and target application ontologies using synonym and hypernym
relationships: The mapping of source‘and target application ontologies using synonym and
hypernyms is a straight forward process because both application ontologies share the same
Global Ontology as their mediating representation. The mapping occurs by determining the

combined mathematical closeness of common synonyms and hypernyms.

Validating mappings using expected data values: When source and target application
ontology elements are found to be mathematically close to each other, we go one step
further to validate the closeness using a unigue approach that performs pattern matching on
the data values of both source and target elements. The pattern matching mechanism works
by looking at how close data values for the source and target elements are. We use pattern-
matching methodology that normalizes data properties such as type and length and looks at
the values themselves. This approach is very powerful because it allows us to map data
structure components that might be similarly lexically or semantically, but might have
different data types. For instance, a source application might have a data structure element
called Phone while the target application might have one called Telephone, which map
lexically and semantically. However, Phone might have a string data type and Telephone an
integer data type. The invention’s pattern matching mechanism will be able to determine
data value closeness regardless of this kind of data property differences.

Composing semantic relationships: In some cases, there are application data structure
elements that have designations not easily associated to other elements through synonyms
or hypernyms. For instance, some systems use machine-generated labels that combine
letters and digits to produce an element name such as XYZ123. With our approach it is still

10

15

20

25

30

35

WO 03/060751 PCT/US02/41189

30

possible to determine the semantic similarity by comparing data values and then deriving
semantic similarity based on semantic proximity of other items related to XYZ123. For
instance, assume XYZ123 is a schema element for an application (the source), which we
want to map to another application (the target). Assume further that XYZ 123 has a
functional relationship with items X1, Y2 and Z3. Furthermore, let's say that X1’s data value
contains street names, Y2 contains city names and Z3 contains zip codes. Now, let's
suppose that there is another schema element on the target application called address,
which has a functional relationship with other schema elements called street-number, street-
name, city-name, state-name and zip-code. Using an approach, which determines that the
values of X1 and street-name are similar, Y2 and city-names are similar and that Z3 and zip-
codes are similar, we can now infer that XYZ123 and address are really similar. This is
called composition in our approach, because we composed the relationships between X1
and street-name, Y2 and city-name, and Z3 and zip-code to infer that XYZ123 is similar to
address.

Decomposing semantic relationships: Decomposition works almost the opposite of
composition. Let's suppose that the source application has an element called Add and the
target application had another element called Address. Using the lexical proximity we can
discover that add and address are similar. However, Add has a non-functional relationship
with a string value, while Address has a functional relationship with other schema elements
called Street-number, Street-name, City-name, State-name and Zip-code. A non-functional
relationship in this case could mean that Add is a schema element with a value, while a
functional relationship means that Address is associated with the other schema elements
through primary keys. Because we have already established that Add and Address are
lexically similar, but structurally different, we explore further whether the data values of Add
and Address display any similarity. Therefore, we apply our induction algorithm between the
data values of Add, Street-number, Street-name, City-name, State-name and Zip-code. Let's
suppose that the value of Add contains strings with values such as “123 Main St.
Sacramento, CA 95123,” 4567890 El Camino Real Road Apt 30, Mountain View, CA 94123”
and “1234 Central Boulevard, Carson City, NV 95321.” Using the target schema elements in
conjunction with an induction algorithm, we can associate Street-number, Street-name, City-
name, State-name and Zip-code with portions of the value of Add. In fact, the induction
algorithrm generates rules that can then be stored with the source application’s micro theory
in the form of axioms that logically decompose Add into elements that can be mapped to
Street-number, Street-name, City-name, State-name and Zip-code on the target application.
The obvious question would be “why not just generate general rules that can be used in
general for all situations like this?” The answer is that in most cases the axioms generated

10

16

20

25

30

WO 03/060751 PCT/US02/41189

31

are particular to the way two specific application micro theories map. For instance, in this
example the target application’s Street-name element contains the name of the street (e.g.,
“Main St.,” “El Camino Real Rd,” “Van Ness Boulevard,” etc) and the unit humber (e.g.,
“#100,” “Apt. 200,” “Suite 123,” etc). Other application schemas might make explicit
separations of these elements by further dividing Street-name into Street-name and Unit-
number, therefore requiring a different set of rules, which our induction algorithm generates
automatically.

Uniting schema elements to form a new concept in the ontology: It is also possible to learn
from mappings between schema elements of two disparate applications. to form new
concepts in the ontology. This happens when two or more schema elements from an
application can be mapped to one element in another application. Assume that we have a
source application which has two schema elements called home-address and mail-address.
If the target application has a schema element called address, which has been mapped to a
concept in the ontology called address, then using the techniques described above will result
in both home-address and mail-address being mapped to address in the target application
and subsequently the ontology concept of address. If address is the last concept of a
hierarchy in the ontology and has no children concept, we can now propose that home-
address and mail-address be added to the ontology.

When a mapping is established for the first ime among schema elements, we assign an
initial value according to what pattern matching mechanism was used to arrive at the
mapping. Furthermore, every time a mapping is accomplished by lexical, semantic,
expected data value, composition or decomposition, we increase the confidence factor.
Every time a mapping is refuted by any of these pattern matching mechanisms, especially
the expected data value comparison mechanism, then we lower the confidence factor. For
instance, lexical similarity will have a lower confidence factor than lexical plus semantic
mapping, semantic mapping will have less confidence factor than semantic and expected
data value and so forth.

Planner

The Planner, which was originally known as the Modification Planner Micro Agent, like the
Assessment Micro Agent, is an intelligent software component separate from the application
specific knowledge base that defines the operations to be planned and executed. The
Planner receives the change specification file created by the Change Specification Manager
component of the Assessment Micro Agent and uses a proactive planning and learning
approach to develop and logically test an ordered adapter development plan.

10

15

20

25

30

35

WO 03/060751 PCT/US02/41189

32

As fillustrated in Fig.7 there are three main steps tﬁat go into planning an integration
adapter. First, the planner 24 determines which meta-data mappings between applications
to use through a planning engine 720 that evalutes the confidence factors previously
determined by the App2App Similarity Mapper 10 between each monitored application (e.g.,
705 and 710). The App2App Similarity Mapper 10 produces a similarity map with confidence
factors 715 that have values ranging from 0% to 100%, which identify degree of comfort
about the accuracy of the data mapping. The planning engine 720 produces a list of selected
mappings 725 with high confidence factors that will be the basis for defining the steps to
create interoperability between schema elements. If the confidence factors are low, then the
planner presents alternative steps that reflect the mappings with lower confidence factors.

The second step for the planner is to assign a goal 730 to each mapping and then
determine required data transformation steps 735 that need to occur in order for the goal to
be completed to produce an integration map 740. These tasks are accomplished using a
synectics-based skeletal planning approach to compose multiple courses of action specific
to the monitored software application’s ontology model, which results in detailed plans for
maintaining and supporting integration adapters. These plans will be used by the Script
Generator to develop new integration adapters.

The third step for the planner is to show the resulting plan 745 to the user for his approval or
rejection 750 and to learn from user evaluations of the plan 755. Whenever an end user
edits a data mapping plan, the invention uses the information as input info the system's
planning knowledge repository 760 allowing the system to learn and prepare for future
modifications.

When the Assessment Micro Agent determines that an application’s data structure has
changed, it informs the Planner to generate a new plan if the previously generated plan has
been affected by the changes. The following describes the flow of events for when an
application changes and the invention has already generated an integration plan between
that application and another. When a change has been detected the system attempts to
automatically produce a new integration plan that will serve as the basis to modify the
existing adapter. The first thing that happens is that the system creates a Change
Specification File that describes the changes that occurred at the application’s data structure
level. Once this Change Specification File is available, then the system goes through a
discovery process, which determines which components of the adapter have been affected.
Next, the system maps the affected schema elements into the existing application ontoiogy.
Then it performs lexical and semantic mapping on the affected elements to find new
associations with the target application ontology. If it finds any, it then tries to validate them

10

15

20

25

30

WO 03/060751 PCT/US02/41189

33

using data value validation as explained before in this document. After the validation is
done, or in parallel with this validation, the system attempts to find new mappings for the
affected elements using the expected data values approach. If mappings have not been
found yet, it attempts to find new mappings using other approaches describe above, such as
composition and decomposition. Finally, it produces the new map and presents to the user.
If the user accepts the new mappings, then the mappings are handed off to the planner,
which generates the new plan with its associated confidence factors as obtained during the
mapping process.

CodeGen Agent

The CodeGen Agent takes the approved ordered integration plan as input and executes the
development of new adapters converting the steps in the plan into a user selected
programming language. Reparsing deals with taking a source code in one language and
translating that code into another language. Pseudo code generated by the code generator
can be used, translating it into a target language. Commercially available reparsing software
can be used for doing this.

This is accomplished using an XSL style sheet that contains transform tags that translate
each integration operation (get resultset, fruncate, round, concat, and others) into
compilation-ready source code for the selected adapter language. In the case of object-
oriented languages, packages or libraries with the functionality for each integration operation
are included with the product. In the case of a procedural language, the Scripting Agent
reparses the plan into procedural code of ordered operations. Examples of code generation
include languages including SQL, Java, C++, XML, x.12 or any of a number of other popular
integration programming languages. The libraries are commercially available libraries. It will
work by translating the pseudo code generated by the code generator into a language of
choice of the user. In the case of object-oriented programming languages, it is common to
describe classes, objects, methods and other object oriented constructs. Because most
object oriented languages are similar, the translation from one language to another if fairly
straightforward. In the case of pseudo code, it is even more so, because generated pseudo
code is very general in nature.

Error Management Micro Agent

The Error Management Micro Agent takes expected and actual output from the Planner and
the CodeGen to determine and categorizes program errors and remediation plans. The
Emror Management Agent is capable of detecting errors in code generation (that is, syntactic

10

15

20

25

30

WO 03/060751 PCT/US02/41189

34

correciness of the generated code, through using compiler and script verification
technology), data extraction, aggregation and insertion. Data extraction, aggregation and
insertion refers to the logical correctness of the generated code. This can be done by a) use
of a database emulator and b) comparing the results of the emulations against the desired
goals as identified by the planner. This is for the “local” results of a change. For the system
impacts, a system graph of the interactions will be created with analysis of cyclic
dependendies that are impacted by a change. For all applications in the system impacted by
the changed elements, the database emulator for each impacted application will be used to
evaluate the correctness of the change. System inconsistencies will be reported or if all
system dependencdies are satisfied, the planned code will be marked as validated.

This agent also works in concert with other system components to detect user input errors
(incorrect execution) by checking inputs against valid single values, valid ranges of values,
and discrete lists of values (so-called picklists) to ensure that the value entered by the user
will not jeopardize the integrity of the system.

This Agent also detects user infent errors (mistakes, correct execution of the wrong task)
and breakdowns in coordination across multiple users.

Detecting user intent errors includes (a) enforcing constraints on critical system actions (for
example, a user will not be able to deploy an integration plan that was created based on a
change specification that was generated from a “pseudo” schema — one the user edited; this
is an example of execution with the wrong type of data); (b) checking models of common
usages of the system before execution of critical operations to flag actions and issue
warnings on requests for these critical actions that do not fall within the constraints of the
system or fall outside the models of normal, expected usage. Critical operations are
considered those that have the potential for corrupting application data or producing flawed
results from the targeted applications. For example, creating and deleting the same logical
change specification 10 times within 10 minutes is not a normal usage, but wouldn't be
flagged since it doesn't fall within the definition of a “critical” operation since it has no impact
on the target application itself. Deploying code that has not been validated would be a
critical operation that deviates from the expected nomm. A warning would be issued to the
user and, if so configured, to other users who are registered to be informed of that event by
the escalation system. The action would not be completed unless the warning was
overridden in accordance with the “workflow” configuration defined by the client (e.g.
concurrence with the action from the user and any other designated stakeholder who is on
the escalation list for such actions).

10

15

20

25

30

WO 03/060751 PCT/US02/41189

35

Breakdowns in coordination across multiple users are recognized by the system and
handled via a workflow model. Two examples of breakdowns of coordination include a lack
of an expected action by a user and a conflict between two users. An example of the first
case is when the lack of response from User A impacts the intents of User B to perform his
job adequately. For example, a system could be set up that requires approval from User A
before User B can proceed with the deployment of an integration scenario built by the
system. The workflow engine will detect the expiration of time for the approval and escalate
the action appropriately. This will be integrated with the constraints in applying the
integration plan to allow override in accordance with the configurable, defined corporate
policies for the workflow. An example of the second case is where two users make
conflicting changes to an integration plan. When the conflict is recognized, it is passed for
resolution to the configurable workflow process. The process could be configured to alert
the two users. If in a given amount of time the users did not resolve the conflict, the
workflow process could be configured to escalate the problem to a designated arbitrator in
the corporation.

In addition, putative errors are analyzed for severity of consequences as they pertain to the
integration environment. Errors are corrected and these corrections become input to the
system’'s knowledge repository so to allow the system to learn and prepare for future
modifications.

The Hub Micro Agent

The Hub Micro Agent is a sophisticated real-time intent interpreter that allows a monitored
database to understand and respond to the instructions submitted by its administrators. As
the “nerve center” for the system, the Hub Micro Agent directs the Assessment, Modification
Planner, Script Executor and Error Management micro agent components to be responsive
to the plans and goals of the human users. To implement a change to an integration adapter
the user's End User Integration Project Manager uses the Hub to schedule product
upgrades, review changes to the user's applications, approve integration mapping plans,
and test and execute adapter development plans.

Summary of Process Flow of Invention

In summary, the following are the basic steps taken by the invention with regard to the
dynamic maintenance and development of interoperability between systems.

Software application program A (contains business processes supported by some form of

10

15

20

25

30

WO 03/060751 PCT/US02/41189

36

data) generates a transaction file describing transaction attributes and data elements for a
specific business activity (i.e. business process). The transaction file contains the address of
the target business system and the identification of the sending (source) business system
and provides both data and interoperability instructions for Software application program B.

The system of our invention, which may be on a CD Rom or downloaded from the Internet,
or other apparatus or software components, is installed in the integrated environment. The
invention is composed of a set of intelligent software programs that work in concert to
automate data collection and decision-making tasks and reduce manpower requirements
associated with systems integration by use of realistic, simulations to control the behavior of
application interfaces within an integration framework.

The invention analyzes the current integration state and creates a series of comparative
knowledge bases appropriate to monitor the integration environment.

The system based on the invention lies dormant unless a change occurs to an application
within the integration environment. The invention views a change in the integration
environment as a problem that can be solved by analyzing the delta, retrieving the solution
to a similar problem and identifies plans that will adjust the interface code for the current
situation.

Once the plans are formulated the system can (but is not required) interact with a human to
validate the planning assumptions and enables the invention to generate new interoperability
code. The human user can elect at this time to abort the creation of new integration
linkages. In the event of an abort the comparative knowledgebase is updated with the new
attribute information.

If no abort has been called the invention evaluates information from a comparative
knowledgebase to identify the correct code structure specific to the interoperability state
required by the integration environment and executes muitiple simultaneous scripts, setting
unbound variables according to the context that exists at the moment of execution so as to
dynamically generate new integration code between hosted applications according the plans
identified by the invention.

The Emor Management Micro Agent evaluates the newly created Transaction File code
(a.k.a., cross-walk file) to detect errors in code generation, data extraction, aggregation and
insertion or would hinder the software application programs to interoperate (process a

10

15

20

25

30

WO 03/060751 PCT/US02/41189

37

fransaction and exchange data). Error messages are returned to both the Assessment
Micro Agent as well as to a human systems administrator via a graphic user interface. In the
event of an error the Planner develops a new plan and the process of compiling new
integration code begins again. Once all errors have been eliminated and the integration
environment has been stabilized the invention again becomes a passive observer waiting to
see a systems change.

ANOTHER EMBODIMENT OF THE INVENTION

One aspect of the invention can be considered to be a dynamic analysis and revision
management tool that can reduce the overall cost and effort of understanding the
downstream impact of change on enterprise software applications or data sources.

TYPES OF REVISION MANAGEMENT SOLUTIONS

There are several kinds of revision management systems. The following list describes some
of the most important.

. Source Code Control Systems.

This type of system is very common in software development environments.
These systems allow software developers to work simultaneously on a
common code base without the danger of overwriting, deleting or otherwise
affecting each other's work. They keep track of who made modifications to
the source code and when, and can back out unintended or erroneous
changes to the code, as well as keep track of different versions of the code.
Examples of this type of systems include Rational Software’s ClearCase,
Microsoft's SourceSafe, Serena Software or the popular open source CVS
system.

. Content Management Systems.

This type of system focuses on the management of content, primarily for web-
based applications and portals. In most cases, Content Management
systems enforce policies for changing and updating content and for
establishing connections with content sources. They may also provide
specialized search engines or equivalent functionality. Some of these include
Vignette, Documentum, Broadvision and Serena Software.

10

15

20

25

30

WO 03/060751

PCT/US02/41189
38

Document Management Systems.

Documentum, FileNet, OpenText and other companies offer document
management systems that allow dispersed groups of people to collaborate,
synchronously and asynchronously, in the creation and modification of
documents. Some of these systems also deal with the digitization of legacy
documents, archiving of large amounts of documents and converting between
multiple formats.

Application Revision Management Systems.

These systems discover data source changes between different versions of
an application and determine the downstream impact of those changes. This
can be referred to as application revision management and is generally
regarded as the least understood type of revision management primarily
because it is mostly a manual process. However, it plays an important role in
the enterprise as it deals with changes at the data structure and meta-data
levels that may have a profound effect on mission-critical applications and on
the business itself. Without some kind of revision management tool data
source changes may go unnoticed until it is too late.

Previously, the closest thing to a true application revision management
system were the tools embedded in Database Management Systems
(DBMS).‘ In addition to the data storage, DBMS store information associated
with the application. DBMS usually provide tools to manage revisions of the
data structures. However, DBMS generally pays little attention to how
changes to those data structures might affect the applications they support
and its downstream users. Another aspect 6f our invention is a novel
example of a robust application revision management system. In addition to
discovering changes between software and database revisions and helping to
quickly determine the downstream impact of those changes, this aspect of our
invention continuously monitors data sources, automatically notifies affected
parties of any significant changes and keeps historical logs of all changes.

REQUIREMENTS OF AN APPLICATION REVISION MANAGEMENT SYSTEMS

A robust revision management solution should provide te following functionality,

Discover changes.

10

15

20

25

30

WO 03/060751

PCT/US02/41189
39

Help determine when a change or revision to an application might have a
downstream impact on its users, whether it is a business manager whose ad
hoc report might be affected by the change, or another application that
depends on the data being changed.

Assess the above impacts.

Help to quickly and easily determine the impact of application and database
upgrades, revision and customizations on downstream users and
applications. The system should provide detailed information about each
change, but avoid overwhelming users by providing filtered views and other
tools to (1) quickly focus on significant changes, (2) assess their impact, and
to (3) easily identify users and applications that will be affected by them.

Be capable of continuously monitoring data sources for changes. Changes to
data sources can be introduced at any time, not just during version upgrades
and other planned revisions. For example, enterprises customize off-the-
shelf applications all the time, as required by their business needs.
Continuous monitoring assures that all changes to a data source are captured
as they happen.

Automatically notifying affected users. These automatic notifications should
be targeted for types of users affected. For example, a Systems
Administrator will likely require substantially more detailed technical
information than a Controller will. Moreover, a Controller will be interested
only in changes that affect his applications, whereas an Administrator will
likely be interested in all changes.

Keep a detailed historic record of changes so that application owners can
make mission-critical decisions on what changes to roll back if that becomes
necessary.

Other characteristics of application revision management systems are,

Being substantially non-invasive by delivering value without requiring
significant changes to their target applications of their data sources.

Monitoring multiple applications in heterogeneous IT environments using
multiple OS, DBMS and hardware platforms through standard interfaces.

10

15

20

25

30

WO 03/060751 A PCT/US02/41189

40

THE SYSTEM'S APPROACH TO APPLICATION REVISION MANAGEMENT

. This embodiment of our invention reduces human intervention required for
data structure analysis by automatically analyzing the impact of new
revisions, patches and product modifications on the data structure layer. This
information is critical to understanding and minimizing negative, downstream
impact. This embodiment of our invention further provides accurate data
hierarchies for drill-down data-structure analysis and maximizes productivity
by reducing gigabytes of manually collected revision information to
manageable reports and feedback alerts. It provides a centralized
administration console with an intuitive user interface and minimal click-
through navigation, while making available audit functions that allow a user to
view previous revisions of the data source and roll back changes if needed.

. The invention notifies individuals or groups of users of selected events via
email, pager or mobile phone.

The invention serves three primary functions: data source analysis, impact assessment and
data asset inventory.

Data Source Analysis.

The invention analyzes a data source and creates a baseline documentation of its data

structure. The process can be sequential and can include the steps of:

1. Connecting to the data source through a standard connection such as a
JDBC or ODBC connection.

2. Issues standard commands to extract information about the application.

3. Issues standard commands to exiract meta-data elements in the form of a
schema.

4. Generates structured schema.

This involves collecting data source information, connectivity driver information, table names
and types, indexes, primary keys, foreign keys, column names and types, column precision,
view definitions, synonym and alias references, and remarks stored in the database schema.
Based on this information, the invention then builds an internal model and computes a
schema from it. As illustrated in Fig. 3, the schema, the internal model and the meta-data
represent the baseline for future change discovery and analysis.

10

15

20

25

30

WO 03/060751 PCT/US02/41189
41

Impact Assessment.

The invention helps improve the decision-making capabilties of IT managers, application
developers and non-technical business analysts through a graphic display of real-time
information about product change and its impact on an organization. It eliminates the
mysteries of what is occurring internally to a product by expediting access, intuitively and
interactively, to critical information concerning the physical structure of a data source. This
embodiment of the invention dynamically documents a users selected data sources
inclusive of product customizations. This baseline documentation enables an organization to
implement true thin-client architecture with access to both real-ime and historical models so

that the user can monitor how a data source evolves over time.

The invention's Change Specification reports allow the user to quickly assess the impact of
change across an application and the organization. This embodiment of the invention allows
users to create filtered Impact Analysis Reports and customized views using point-and-click
palettes. The process for doing this can be sequential in nature, including the steps of.

1. Connecting to the data source through a standard connection such as a
JDBC or ODBC connection.

2. Issuing standard commands to extract information about the application.

3. Issuing standard commands to extract meta-data elements in the form of a
schema.

4. Generating structured schema. Displaying schema to user with each schema
element containing a selectable check mark as to allow user to make it part of a filtered view.
5. User selecting schema elements of interests and creates filtered view.

6. User going to task manager and scheduling frequency for generating change
specification.
7. When the task runs and the change specification manager identifies a change

in any of the selected schema elements, it informs the user.

These customized views result in the creation of a personalized visual dashboard that
provides immediate “at-a-glance” insight on data source change. Using these Impact
Analysis Views, users can generate powerful and highly focused Change Specification
reports detailing how specific changes to monitored data sources will impact existing
management reports, ad hoc reports and integration adapters, etc. When the Impact
Analysis feature is enabled, the invention continually and automatically cross-references
identified data source changes to the registered view. When a match is identified, the
invention generates an automatic nofification with the details of the change. This allows

10

15

20

25

30

WO 03/060751 PCT/US02/41189
42

users to spend less time gathéring information about the impact of a change and more time
managing the solution.

Data Asset Inventory

In addition to the above two primary functions, this embodiment of the invention provides the
user with a complete inventory of information related to applications it needs to monitor.
Identifying applications for monitoring is @ manual process and involves that the user types
application names, server name, location, user names, passwords, etc. Once the user has
manually identified the applications of interest they are displayed in the list and an inventory
of each application capabilities is extracted as explained above in respect of the process for
creating a baseline documentation of data structure. This information includes driver type,
types of data it handles, types of schemas, features, SQL versions, transaction types, etc.
Al of this information is made readily available to the user in a very intuitive manner.

Built-In Scheduler

An unplanned change in an organizafion's software and databases can be confusing, or
even disastrous. Our invention's software analysis can be automatically executed on a pre-
defined schedule allowing the user to reduce the risk of unplanned or undesirable changes
creeping into his or her systems. Using a user driven model for scheduled collection of
system changes, the invention automatically detects changes to targeted data sources. This
is done by allowing the user to schedule the collection of change specifications for a
particular application as shown in Fig. 9. Once the user sets the scheduling criteria, the task
is run accordingly to the schedule.

The software analysis results can be setup with automatic e-mail and paging alarms or
dynamically exported to databases, web-site or integrated into reports utilizing the flexibility
of automatically generated HTML pages thereby reducing confusion and keeping users up to
date.

While the foregoing has been with reference to particular embodiments of the invention, it
will be appreciated by those skilled in the art that changes in these embodiments may be
made without departing from the principles and spirit of the invention, the scope of which is
defined by the appended claims.

N BWN -

w

N o oA WN - W -

H W -

—

WO 03/060751 PCT/US02/41189
43

What is claimed is:

1. A system connected to multiple heterogeneous data sources each having a
data structure, said system monitoring at least one of said data structures, analyzing
changes to said at least one of said data structure and providing for simultaneous re-coding
of adapters between at least two of said multiple heterogeneous data sources.

2. The system of claim 1 including a system component for monitoring at least
one data source and automatically detecting changes in the data structure of said data
source.

3. A system connected to multiple heterogeneous data sources each having a
data structure, said system monitoring at least two of said data sources to detect similarities
within the data structures of said data sources and generating new dynamic adapters to
integrate said at least two of said data sources.

4. The process in a system within an integration environment for analyzing
changes to multiple heterogeneous data sources each having a data structure and providing
for simultaneous re-coding of dynamic adapters between said multiple heterogeneous data
sources, including the steps of intelligently analyzing the conceptual relationships and
alternative data mapping strategies between a plurality of said data structures by utilizing
intelligent computer programs to analyze and adapt to structural, contextual and semantic
differences between said multiple heterogeneous data sources.

5. The process of claim 3 wherein said system monitors a plurality of dynamic
adapters generated under changing computer environment conditions, said process
including the steps of providing real time error validation of said dynamic adapters and
performance optimization of at least one of said dynamic adapters.

6. The process of claim 5 including the step of using syntactic processes to
automatically create adapter maintenance and support plans.

7. The process of claim 6 wherein the step of using syntactic processes occurs
in an App2App Ontology Mapper and a Planner.

8. The process of claim 6 including the step of automatically checking for errors
in said dynamic adapter.

9. The system of claim 1 further including error management components for
automatically testing said recoded dynamic adapters before they are placed into operation.

N

B WOWODN -

o N O g P WON = W

—

N

~N o o b~ WON -

WO 03/060751 PCT/US02/41189
44

10. The process of claim 2 further including the step of generating programming
code automatically in response to said automatically detecting changes.

11. The process of claim 6 further including the steps of dynamically detecting
changes, including revisions in said at least one data source, analyzing said revisions,
generating data structure mapping between heterogeneous data sources, validating errors,
and executing appropriate adapter modifications.

12. The process of claim 11 further including the step determining an optimum
update for the said dynamic adapters.

13. The system of claim 1 further including models that are jobs, applications,
users, change specifications, schemas, applications, ontologies, App2App similarity maps, at
least one Common Ontology and at least one database.

14. The system of claim 1 further including system managers for managing
system-wide settings and data, schema managers for providing, storing, listing, and deleting
schemas, user managers for managing users and their preferences, change specification
managers for managing storage and retrieval of change specifications, job managers for
managing jobs performing analysis or automation, task managers for managing and running
scheduled tasks, ontology managers for mapping the access to and modification of the
Common Ontology or other application ontologies, language managers for managing
different programming languages in which the system can produce integration adapters.

15. The system of claim 14 wherein each said change specification represents
the changes between two specific snapshots of a schema.

16. The system of claim 14 wherein a language manager allows a user to set
preferences for delivery of language specific adapters.

17. The system of claim 1 further including an application ontology factory for
mapping schemata of a plurality of data sources to the common ontology to produce data
source specific ontologies; an App2App Similarity Mapper for mapping a specific data source
ontology to another data source ontology and producing a map of potential integration points
between the two data sources; an ontology editor functioning both as a manager and a
factory; and a Planner for producing an interactive integration plan between two disparate
data sources based on the App2App similarity map.

N

a A WON =

W N O OB WN -

—

WO 03/060751 PCT/US02/41189

45

18. The system of claim 17 wherein said ontology editor manages direct human
interaction with the common ontology for validation, expansion and modification of said
common ontology.

19. The system of claim 18 wherein said ontology editor provides a visual
representation of the common ontology.

20. The system of claim 19 wherein said factories produce specific kinds of
models.

21. The system of claim 20 wherein said factories manage persistence operations
for said models set forth in claim 13.

22. The system of claim 1 further including (a) a Codegen Agent for interacting
with a planner, a change specification manager, an App2App ontology factory and external
data source-specific settings to generate and adapt integration code, and (b) a.deployment
agent for interacting with external data source environment elements and a Codegen Agent
for deploying code in a self-adapting fashion.

23. The system of claim 22 wherein said Codegen Agent validates said deployed
code.

24. The system of claim 22 wherein said components run on a backend server.

) 25. The system of claim 1 further including a desktop client running on users’ or
clients’ desktops, said desktop capable of making requests of the system server components
via system Proxies, receiving data from those requests, and presenting that data to the user,
said desktop comprising an Application Context, a Schema Context, a change Specification
context, a Report Generation Context, a Task List Context, an Admin Context, a User
Administration context, a Notification context, an Application Ontology View context, an
App2App Similarity Mapping Context, a Plan View context, a Language editor and a Code
Browser context.

26. The system of claim 25 wherein said Application Context lists previously
defined data sources and shows detailed information for the selected data source.

27. The system of claim 26 wherein the Application Context allows a user to add,
modify or remove data source definitions.

WO 03/060751 PCT/US02/41189
46

28. The system of claim 25 wherein the Schema context lists previously collected
schemas and shows detailed information for a selected schema.

29. The system of claim25 wherein the Schema context shows detailed
information for the selected schema and allows a user to add or remove schemas.

30. The system of claim 25 wherein the Change Specification Context lists the
previously created Change Specifications and shows detailed information for the selected
change specification.

31. The system of claim 25 wherein the Change Specification Context allows a
user to add or remove change specifications.

32. The system of claim 25 wherein the Report Generation Context allows
retrieval of previously saved reports.

33. The system of claim 25 wherein the Report Generation Context creates a new
report from an existing schema or change specification.

34. The system of claim 25 wherein the Report Generation Context allows a user
to save the current report.

35. The system of claim25 wherein the Task List Context lists the
pending/scheduled tasks for the current user and allows said user to add, modify or remove
atask.

36. The system of claim 25 wherein the User Administration Context lists users of
the system and allows an administrator user to set up new users and administer passwords.

37. The system of claim 26 wherein the Notification Context displays notifications
and sets up nofification preferences.

38. The system of claim 25 wherein the Application Ontology View Context lists
application ontologies and displays application ontologies for browsing.

39. The system of claim 25 wherein the App2App Similarity Mapping Context lists
App2App Similarity Maps and displays App2App Similarity Maps for browsing and user
acceptance.

40. The system of claim 25 wherein the Plan View Context lists Integration Plans
and displays Integration Plans for user browsing and acceptance.

WO 03/060751 PCT/US02/41189
47

41. The system of claim 25 wherein the Language Editor lists languages
supported by the system and displays specific language settings for user browsing and

preference selection.

42. The system of claim 25 wherein the Code Browser Context displays code in

specific language for user browsing, user saving and user preference settings.

43. The system of claim 1 including a System Hub for providing clients with
components that can be used to directly communicate with server components.

44. The system of claim 1 further including software processes comprising an
Assessment Micro Agent, an App2App Similarity Mapper, a Planner, a Hub, and Error
Validation and Code Generation components.

45. The system of claim 44 wherein said Assessment Micro Agent component
comprises a Schema, Change Specification, a Task Manager and a Job Manager.

46. The process of operating on two data sources within a system including other
components than said two data sources, said other components including at least a
Common Ontology library, including the steps of:

monitoring each of said data sources by an Assessment Micro Agent
including a Schema Manager,

said Assessment Micro Agent creating an inventory of the data structures and
functionalities of said data sources and making said inventory available to predetermined
ones of said other components of said system,

said Assessment Micro Agent detecting a change in either of said data
sources and notifying at least some of said other components of the change.

47. The process of claim 46 further including the step of an Application Ontology
Factory accepting a data structure inventory from said Schema Manager and information
provided from said Common Ontology library to produce data source ontologies.

48. The process of claim 47 including the further step of an App2App Similarity
Mapper accepting the information in the data source ontologies to produce a similarity map
between the two data sources.

49. The process of claim 48 including the further step of a Planner using the
information contained in said similarity map to produce an integration plan.

© oo N O O b

HW N -

A wN

© 0 N O

WO 03/060751 PCT/US02/41189
48

50. The process of claim49 including the further step of a CodeGen Agent
accepting the information provided in the integration plan and using it to produce integration

code.

51. The process of claim 50 including the further steps of validating said
integration code by an Error Management Micro Agent and deploying said integration code
between the two data sources.

52. The process of claim 46 including the further step of the Schema Manager of
said Assessment Micro Agent reading the data structure stored in a data source to produce
a schema that is placed into a memory model.

53. The process of claim52 including the steps of the Schema Manager
collecting data source information, data source driver information, table names, table types,
indexes, foreign keys, column names, column data types, column precision, column
nullability, primary key designation, view definitions, synonym and alias references, and
remarks stored in the database schema and providing said collected information to
predetemined ones of said other components.

54. The process of claim 46 including the further steps of the Assessment Micro
Agent, in response to a change in a monitored data source, detecting alterations including
new information in the database structure of said data source and analyzing said change by
comparing said new information of said alteration to data stored in the Schema Manager.

55. The process of claim 54 wherein said last named step is performed by the
Change Specification Manager comparing one historical view of the schema for one data
source to another historical view of said schema.

56. An Assessment Micro Agent comprising a plurality of components including:

a Schema_Manager connected to at least one data source for analyzing said
at least one data source and extracting a meta-data model in the form of a schema, storing
said schema and providing an interface to certain of said plurality of components for
retrieving the schema;

a Change Specification Manager for performing an analysis of what is
different between two different versions of a data source by comparing the schemas
associated with each version and presenting the change specification file to a user in a
structured manner with specific information indicating changes in the schemas;

10

11
12

w

a B WON =

10
11

WO 03/060751 PCT/US02/41189
49

a Task scheduler for allowing a user to schedule tasks; and

a Notification Manager for providing an interface in which users can define
notifications at several levels of granularity.

57. The Assessment Micro Agent of claim 56 wherein said levels of granularity
include setting up notifications on the complete file of the change specifications or on filtered
views of said files according to user preferences.

58. The Assessment Micro Agent of claim 56 wherein the Notification Manager
can send notifications via standard mediums such as email, pager or PDAs according to
user preferences.

59. The Assessment Micro Agent of claim 56 wherein the tasks include the
generation of schemas through the Schema Manager and the generation of change
specifications through the Change Specification Manager.

60. The Assessment Micro Agent of claim 56 further including the functions of
monitoring connectivity between the Assessment Micro Agent and said data sources,
managing the schema monitoring, retrieving change specifications, sending system-level
notifications and user notifications, and allowing a user to create filtered views of changes

according to one or more user preferences.

61. The process of operating an Application Ontology Factory including the steps
of:

converting the schema obtained from the Schema Manager component of the
Assessment Micro Agent into a language compatible to the Common Ontology;

mapping schema element identifiers to a WordNet to extract at least one of
the senses of said elements;

using said senses to extract all possible Common Ontology concept
hierarchies to which the element might be a top-most specialization;

assigning each concept hierarchy a confidence factor;

merging said concept hierarchies to produce a micro-theory including each of
said senses.

WO N - AW DN N

N

10

WO 03/060751 PCT/US02/41189

50

62. The process of claim 61 wherein a schema element is associated with one or

more concept hierarchies.

63. The process of claim 62 wherein each concept hierarchy has an independent
confidence factor.

64. In an artificial intelligence system connected to multiple heterogeneous data
sources for generating new dynamic adapters to integrate changes in at least two of said
data sources, the process of describing a schema using the syntax of the Common Ontology
language.

65. In a system for automatically re-coding interfaces between heterogeneous
data sources the process of monitoring changes in a monitored data source, analyzing the
exact nature of the change, evaluating alternative data mapping possibilities, and adjusting
the existing dynamic adapter integration code structures to address the changes.

66. The process of claim 65 including the step of using synonym relations for
lexical level mapping by computing lexical proximity of elements in the schemas of the data
sources.

67. The process of claim 65 including the step of finding semantical proximity by
using hypernym relationships.

68. The process of claim 65 including the step of using computing the closeness
of data values on mapped schema elements.

69. In a system for automatically generating dynamic adapters between
heterogeneous data sources the process of monitoring changes in a monitored data source
using pattern matching, said process including the steps of:

generating a data source to ontology mapping for each data source being
mapped by evaluating the mathematical probabilities of lexical and semantic relationships
between schema entities and ontology concepts;

determining lexical closeness between the data source ontology and
Common Ontology concepts using synonym relationships;

determining mathematical closeness of semantic relationships in the form of
hypernyms; and

11
12

B WON -

w N =

AW N -

WO 03/060751 PCT/US02/41189
51

determining confidence factors based on the mathematical probability of said
data source ontology and said Common Ontology being lexically and semantically close.

70. The process of claim 69 including the further steps of:

comparing the data source ontologies of the monitored data sources to
determine common concepts;

mapping a data source ontology to another data source ontology using
synonym and hypernym relationships;

extracting a sample of data element values from each said data sources and
comparing said data element values to determine mathematical closeness;

validating expected data values for said data source ontology mappings;

composing and decomposing semantic relationships between target and
source data source ontology elements; and

uniting semantically similar schema elements into new ontology concepts.

71. The process of claim 70 wherein the step of validating mappings using
expected data values includes the step of validating said closeness by performing pattern
matching on the data values of one data source data element and another data source data
element by determining how close data values for said elements are.

72. The process of claim71 including the step of using pattern-matching to
normalize data properties of the data structures of the data sources including data type and
data length.

73. The process of claim70 wherein the step of composing semantic
relationships includes the steps of comparing data values of data source data structure
elements and deriving semantic similarity thereof based on semantic proximity of one data

source’s data structure elements to another data source’s data structure elements.

74. The process of claim70 wherein the step of decomposing semantic
relationships includes the steps of:

determining that two data structure elements are similar;

O RN - W N = W - 3B O AW N =

N -

WO 03/060751 PCT/US02/41189
52

determining that one of said data structures has data elements with no
associated functional relationship and that said other data structure element has a functional
relationship with other data structure elements;

determining whether said data elements display any similarity with said other
data structure elements.

75. The process of claim 70 wherein the step of uniting data structure elements to
form a new concept in the Common Ontology includes the step of mapping two or more
different data structure elements from a data source to another data source by determining
whether the mapped-to concept in the Common Ontology is the most specialized concept of
a concept hierarchy in the Common Ontology and has no children concept, and adding said
data structure as a concept to the Common Ontology.

76. In a system for automatically generating dynamic adapters between
heterogeneous data sources, a Planner receiving the change specification file created by
the Change Specification Manager and developing and logically testing an ordered dynamic
adapter development plan.

77. In a system for automatically generating dynamic adapters between
heterogeneous data sources, a Planner receiving a similarity map file created by an
App2App Similarity Mapper and developing and logically testing an ordered dynamic adapter
development plan.

78. The Planner of claim 77, said Planner being a software component for
performing the process steps of (a) using a planning engine to evaluate confidence factors
determined by an App2App Similarity Mapper and selecting higher confidence factors as
planning goals and (b) determining the required data transformation steps that need to occur
in order to accomplish said goals.

79. The Planner of claim 78 wherein the mappings having a confidence factor of
100% are provided to a user as planning goals with high degree of confidence and mappings
with less than 100% confidence factors produce a plurality of alternative mapping goals.

80. The Planner of claim 79 including a software process responsive to said
planning goals to produce the required data transformation steps to accomplish said
planning goals.

81. An App2App Ontology Mapper for producing data mapping between schema
elements, said mappings having confidence factors, said App2App Ontology Mapper

(é)]

o Oh W N o b W N =

N = a B~ WO N -

S o AW

~

10
11

12
13

WO 03/060751 PCT/US02/41189
53

including a software process for detecting that said mapping is accomplished by a lexical,
semantic, expected data value, composition or decomposition process and, responsive to

any such detecting, increasing said confidence factor.

82. An App2App Ontology Mapper for producing data mapping between schema
elements, said mappings having confidence factors, said App2App Ontology Mapper
including a software process for detecting that said mapping is refuted by a lexical, semantic,
expected data value, composition or decomposition process and, responsive to any such
detecting, lowering said confidence factor.

83. An App2App Ontology Mapper for producing data mappings between schema
elements, said mappings having confidence factors, said App2App Ontology Mapper
including a software process for assigning é lower confidence factor to mappings
accomplished by lexical similarity than to mappings accomplished by lexical similarity plus
semantic mapping.

84. An App2App Ontology Mapper for producing data mappings between schema
elements, said mappings having confidence factors, said App2App Ontology Mapper
including a software process for assigning a lower confidence factor to mappings
accomplished by semantic mapping than to mappings accomplished by semantic mapping
and expected data value mapping.

85. In a system for generating dynamic adapters between changed data sources,
a process for generating dynamic adapters including the steps of:

after an integration plan between two data sources has been generated, an
Assessment Micro Agent determining that one of said data source’s data structure has
changed and, in response to said detecting, informing a Planner software component to
generate a new plan if the previously generated plan has been affected by said change;

creating a Change Specification File that describes said changes that
occurred;

discovering which schema elements of said dynamic adapter have changed;

mapping the affected schema elements into the existing data source
ontology;

performing lexical and semantic mapping on the affected schema elements to
find new associations with said data source ontology;

14
15

16

WO 03/060751 PCT/US02/41189
54

in response to finding said new associations, validatng said new

associations; and
attempting to find new mappings for the affected elements.

86. The process of claim 85 wherein said attempting to find new mappings is
accomplished using an expected data value process.

87. The process of claim 85 including the further step of in response to finding no
said mappings, attempting to find new mappings using composition and decomposition
processes.

88. The process of claim 85 including the step of producing a new map and
presenting said new map to a user.

89. The process of claim 88 including the step of detecting an indication that said
user accepts said new map and, in response to said detecting of said indication, providing
the map to the Planner.

90. The process of claim 89 wherein said Planner generates the new plan, said
plan having confidence factors associated therewith.

91. In a system for generating revised dynamic adapters between changed data
sources, a process for revising said adapters including the steps of:

a Planner presenting an integration plan approved by a user as input to a
CodeGen Agent,

said CodeGen Agent executing the development of new adapters by
reparsing said integration plan into a user-selected programming language.

92. The process of claim 91 wherein said reparsing is accomplished using a
template file that contains transformation instructions to translate each integration operation
into compilation-ready source code for the selected adapter language.

93. In a system for generating new dynamic adapters between data sources, a
process for generating said adapters including the steps of:

a Planner presenting as input to a CodeGen Agent an integration plan
approved by a user, said integration plan including an indication of a use- selected
programming language;

w

W -

10

‘ WO 03/060751 PCT/US02/41189

55

said CodeGen Agent executing the development of new adapters by
producing programming instructions to accomplish the integration plan in the user-elected
programming language.

94, For use in a system for generating new dynamic adapters between data
sources, an Error Management Micro Agent coupled to a Planner and accepting the output
from said Planner to determine and categorize program errors and remediation plans.

95. The Error Management Micro Agent of claim 94 including a software process
capable of detecting errors in one or more of the group consisting of generated code, data
extraction, data aggregation and data insertion.

96. The Error Management Micro Agent of claim 95 wherein said detecting errors
in said generated code is accomplished by using compiler and script verification technology.

97. The Error Management Micro Agent of claim 95 wherein detecting errors in
data extraction, data aggregation and data insertion is accomplished by detecting one or
more errors in the logical correctness of the generated code.

98. The Error Management Agent of claim 97 wherein the step of detecting one
or more errors in the logical correctness of the code is accomplished by (a)use of a
database emulator to emulate database tasks and, (b)comparing the results of the
emulations against said plan presented by said Planner.

99. A system for automatically re-coding interfaces between heterogeneous data
sources comprising:

means for monitoring modifications made to a data source existing within an
integration environment, wherein the environment contains muitiple heterogeneous data
sources,

means for analyzing said modifications,

means for formulating a set of potential ontological mappings between
heterogeneous data sources,

means for providing interoperability code structures between heterogeneous
data sources.

100. The system of claim 99, wherein the system is additionally comprised of a

means for error detection.

11
12

WO 03/060751 PCT/US02/41189
56

101. A system for automatically re-coding interfaces between heterogeneous data

sources comprising:

means for monitoring and analyzing modification made to a data source
existing within an integration environment, wherein the environment contains multiple

heterogeneous data sources;

means for formulating a set of potential ontological mappings between
heterogeneous data sources and providing interoperability code structures between data
sources.

102. In a system for automatically generating dynamic adapters between
heterogeneous data sources the process of generating a new adapter, said process
including the steps of:

generating a data source to ontology mapping for each data source being
mapped by evaluating the mathematical probabilities of lexical and semantic relationships
between schema entities and ontology concepts;

determining lexical closeness between the data source ontology and
Common Ontology concepts using synonym relationships;

determining mathematical closeness of semantic relationships in the form of
hypernyms;

determining confidence factors based on the mathematical probability of said
data source ontology and said Common Ontology being lexically and semantically close.

103. The process of claim 102 including the further steps of:

comparing the data source ontologies of the monitored data sources to
determine common concepts;

mapping a data source ontology to another data source ontology using
synonym and hypernym relationships;

extracting a sample of data element values from each said data sources and
comparing said data element values to determine mathematical closeness;

validating expected data values for said data source ontology mappings;

10

1

W -

N -

AW -

D oA W N -

—

WO 03/060751 PCT/US02/41189
57

composing and decomposing semantic relationships between target and

source data source ontology elements; and
uniting semantically similar schema elements into new ontology concepts.

104. The process of claim 103 wherein the step of validating mappings using
expected data values includes the step of validating said closeness by performing pattern
matching on the data values of one data source data element and another data source data
element by determining how close data values for said elements are.

105. The process of claim 104 including the step of using pattern-matching to
normalize data properties of the data structures of the data sources including data type and
data length.

106. The process of claim 103 wherein the step of composing semantic
relationships includes the steps of comparing data values of data source data structure
elements and deriving semantic similarity thereof based on semantic proximity of one data
source’s data structure elements to another data source’s data structure.

107. The process of claim 103 wherein the step of decomposing semantic
relationships includes the steps of:

determining that two data structure elements are similar;

determining that one of said data structures has data elements with no
associated functional relationship and that said other data structure element has a functional
relationship with other data structure elements;

determining whether said data elements display any similarity with said other
data structure elements.

108. The process of claim 103 wherein the step of uniting data structure elements
to form a new concept in the Common Ontology includes the step of mapping two or more
different data structure elements from a data source to another data source by determining
whether the mapped-to concept in the Common Ontology is the most specialized concept of
a concept hierarchy in the Common Ontology and has no children concept, and adding said
data structure as a concept to the Common Ontology.

109. The Planner of claim 76, said Planner being a software component for
performing the process steps of (a) using a planning engine to evaluate confidence factors

N -

o o~ W

10
11

12
13

14

WO 03/060751 PCT/US02/41189
58

determined by an App2App Similarity Mapper and selecting higher confidence factors as
planning goals and (b) determining the required data transformation steps that need to occur
in order to accomplish said goals.

110. The Planner of claim 109 wherein the mappings having a confidence factor of
100% are provided to a user as planning goals with high degree of confidence and mappings
with less than 100% confidence factors produce a plurality of alternative mapping goals.

111. The Planner of claim 110 including a software process responsive to said
planning goals to produce the required data transformation steps to accomplish said
planning goals.

112. In a system for generating dynamic adapters between two data sources, a
process for developing dynamic adapters including the steps of:

before an integration plan between said two data sources has been
generated, an App2App Similarity Mapper determining the similarities between said two data
sources and informing a Planner software component to generate a new plan, said App2App
Similarity Mapper performing at least the steps of:

creating an App2App similarity map that describes said similarities;

mapping the schema elements affected by said similarities to an
existing data source ontology;

performing lexical and semantic mapping on the affected schema
elements to find new associations with said data source ontology;

in response to finding said new associations, validating said new
associations; and

attempting to find new mappings for the affected elements.

113. The process of claim 112 wherein said attempting to find new mappings is
accomplished using an expected data value process.

114. The process of claim 112 including the further step of in response to finding
no said mappings, attempting to find new mappings using composition and decomposition
processes.

© 00 N O ok~ WO N = N

-—
I N R)

—

WO 03/060751 PCT/US02/41189
59

115. The process of claim 112 including the step of producing a new map and

presenting said new map to a user.

116. The process of claim 115 including the step of detecting an indication that
said user accepts said new map and, in response to said detecting of said indication,
providing the map to the Planner.

117. The process of claim 116 wherein said Planner generates the new plan, said
plan having confidence factors associated therewith.

118. One or more processor readable storage devices having processor readable
code embodied on said processor readable storage devices, said processor readable code
for programming one or more processors to perform in a system within an integration
environment for analyzing changes to multiple heterogeneous data sources each having a
data structure and providing for simultaneous re-coding of dynamic adapters between said
multiple heterogeneous data sources, the process comprising the step of intelligently
analyzing the conceptual relationships and alternative data mapping strategies between a
plurality of said data structures by utilizing intelligent computer programs to analyze and
adapt to structural, contextual and semantic differences between said multiple
heterogeneous data sources.

119. The one or more processor readable storage devices of claim 118 wherein
said system monitors a plurality of dynamic adapters generated under changing computer
environment conditions where said process includes the further steps of providing real time
error validation of said dynamic adapters and performance optimization of at least one of
said dynamic adapters.

120. The one or more processor readable storage devices of claim 119 where said
process includes the further step of using syntactic processes to automatically create
adapter maintenance and support plans.

121. The one or more processor readable storage devices of claim 120 where said
process includes the further step of using syntactic processes occurs in an App2App
Ontology Mapper and a Planner.

122. The one or more processor readable storage devices of claim 121 where said
process includes the further step of automatically checking for errors in said dynamic
adapter.

» oA W=

\l

10
11

12
13

AW DN -

N

WO 03/060751 PCT/US02/41189
60

123. One or more processor readable storage devices having processor readable
code embodied on said processor readable storage devices, said processor readable code
for programming one or more processors to perform a process of operating on two data
sources within a system including other components than said two data sources, said other
components including at least a Common Ontology library, the process comprising the steps
of:

monitoring each of said data sources by an Assessment Micro Agent
including a Schema Manager,

said Assessment Micro Agent creating an inventory of the data structures and
functionalities of said data sources and making said inventory available to predetemined
ones of said other components of said system;

said Assessment Micro Agent detecting a change in either of said data
sources and notifying at least some of said other components of the change.

124. The one or more processor readable storage devices of claim 123 where said
process includes the further step of an Application Ontology Factory accepting a data
structure inventory from said Schema Manager and information provided from said Common
Ontology library to produce data source ontologies.

125. The one or more processor readable storage devices of claim 124 where said
process includes the further step of an App2App Similarity Mapper accepting the information
in the data source ontologies to produce a similarity map between the two data sources.

126. The one or more processor readable storage devices of claim 125 where said
process includes the further step of a Planner using the information contained in said
similarity map to produce an integration plan.

127. The one or more processor readable storage devices of claim 126 where said
process includes the further step of a CodeGen Agent accepting the information provided in
the integration plan and using it to produce integration code.

128. The one or more processor readable storage devices of claim 127 where said
process includes the further step of validating said integration code by an Error Management
Micro Agent and deploying said integration code between the two data sources.

129. The one or more processor readable storage devices of claim 123 where said
process includes the further step of the Schema Manager of said Assessment Micro Agent

g ON - o O WN =

W N -

10

11

12
13

WO 03/060751 PCT/US02/41189
61

reading the data structure stored in a data source to produce a schema that is placed into a
memory model.

130. The one or more processor readable storage devices of claim 129 where said
process includes the further step of the Schema Manager collecting data source information,
data source driver information, table names, table types, indexes, foreign keys, column
names, column data types, column precision, column nullabilty, primary key designation,
view definitions, synonym and alias references, and remarks stored in the database schema
and providing said collected information to predetermined ones of said other components.

131. The one or more processor readable storage devices of claim 123 where said
process includes the further step of the Assessment Micro Agent, in response to a change in
a monitored data source, detecting alterations including new information in the database
structure of said data source and analyzing said change by comparing said new information
of said alteration to data stored in the Schema Manager.

132. One or more processor readable storage devices having processor readable
code embodied on said processor readable storage devices, said processor readable code
for programming one or more processors to perform a process of operating an Application
Ontology Factory, the process comprising the steps of:

converting the schema obtained from the Schema Manager component of the
Assessment Micro Agent into a language compatible to the Common Ontology;

mapping schema element identifiers to a WordNet to extract at least one of
the senses of said elements;

using said senses to extract all possible Common Ontology concept
hierarchies to which the element might be a top-most specialization;

assigning each concept hierarchy a confidence factor;

merging said concept hierarchies to produce a micro-theory including each of
said senses.

133. The one or more processor readable storage devices of claim 132 wherein
schema element is associated with one or more concept hierarchies.

134. The one or more processor readable storage devices of claim 133 wherein
each concept hierarchy has an independent confidence factor.

= NN OO o AW - D O AW N -

(>4) B -

-~

10
11

12
13

14
15

WO 03/060751 PCT/US02/41189
62

135. One or more processor readable storage devices having processor readable
code embodied on said processor readable storage devices, said processor readable code
for programming one or more processors to perform a process, in an artificial intelligence
system connected to multiple heterogeneous data sources for generating new dynamic
adapters to integrate changes in at least two of said data sources, the process of describing
a schema using the syntax of the Common Ontology language.

136. One or more processor readable storage devices having processor readable
code embodied on said processor readable storage devices, said processor readable code
for programming one or more processors to perform a process, in a system for automatically
re-coding interfaces between heterogeneous data sources, the process comprising the step
of monitoring changes in a monitored data source, analyzing the exact nature of the change,
evaluating alternative data mapping possibilities, and adjusting the existing dynamic adapter
integration code structures to address the changes.

137. The one or more processor readable storage devices of claim 136 where said
process includes the further step of using synonym relations for lexical level mapping by
computing lexical proximity of elements in the schemas of the data sources.

138. One or more processor readable storage devices having processor readable
code embodied on said processor readable storage devices, said processor readable code
for programming one or more processors to perform, in a system for automatically
generating dynamic adapters between heterogeneous data sources, the process of
monitoring changes in a monitored data source using pattern matching, the process
comprising the steps of:

generating a data source to ontology mapping for each data source being
mapped by evaluating the mathematical probabilities of lexical and semantic relationships
between schema entities and ontology concepts;

determining lexical closeness between the data source ontology and
Common Ontology concepts using synonym relationships;

determining mathematical closeness of semantic relationships in the form of
hypernyms; and

determining confidence factors based on the mathematical probability of said
data source ontology and said Common Ontology being lexically and semantically close.

10
11

12

N o g WON =

O O Hh W N =

o A WON =

WO 03/060751 PCT/US02/41189
63

139. The one or more processor readable storage devices of claim 138 where said
process includes the further steps of:

comparing the data source ontologies of the monitored data sources to

determine common concepts;

mapping a data source ontology to another data source ontology using
synonym and hypernym relationships;

extracting a sample of data element values from each said data sources and

comparing said data element values to determine mathematical closeness;
validating expected data values for said data source ontology mappings;

composing and decomposing semantic relationships between target and
source data source ontology elements; and

uniting semantically similar schema elements into new ontology concepts.

140. One or more processor readable storage devices having processor readable
code embodied on said processor readable storage devices, said processor readable code
for programming one or more processors to perform a process in a system for automatically
generating dynamic adapters between heterogeneous data sources, the process comprising
the step of a Planner receiving the change specification file created by the Change
Specification Manager and developing and logically testing an ordered dynamic adapter
development plan.

141. One or more processor readable storage devices having processor readable
code embodied on said processor readable storage devices, said processor readable code
for programming one or more processors to perform a process, in a system for automatically
generating dynamic adapters between heterogeneous data sources, the process comprising
the step of a Planner receiving a similarity map file created by an App2App Similarity Mapper
and developing and logically testing an ordered dynamic adapter development plan.

142. One or more processor readable storage devices having processor readable
code embodied on said processor readable storage deyices, said processor readable code
for programming one or more processors to perform a process in a system for generating
dynamic adapters between changed data sources, said process for generating dynamic
adapters including the steps of:

© 0 N O

10
11

12

13
14

15
16

17
18

19

A W N =~ W

(]

WO 03/060751 PCT/US02/41189
64

after an integration plan between two data sources has been generated, an
Assessment Micro Agent determining that one of said data source’s data structure has
changed and, in response to said detecting, informing a Planner software component to
generate a new plan if the previously generated plan has been affected by said change;

creating a Change Specification File that describes said changes that
occurred;

discovering which schema elements of said dynamic adapter have changed;

mapping the affected schema elements into the existing data source
ontology;

performing lexical and semantic mapping on the affected schema elements to
find new associations with said data source ontology;

in response to finding said new associations, validating said new
associations; and

attempting to find new mappings for the affected elements.

143. The one or more processor readable storage devices of claim 142 wherein
said attempting to find new mappings is accomplished using an expected data value
process.

144. The one or more processor readable storage devices of claim 142 where said
process includes the further step of in response to finding no said mappings, attempting to
find new mappings using composition and decomposition processes.

145. The one or more processor readable storage devices of claim 142 where said
process includes the further step of producing a new map and presenting said new map to a
user.

146. One or more processor readable storage devices having processor readable
code embodied on said processor readable storage devices, said processor readable code
for programming one or more processors o perform, in a system for generating revised
dynamic adapters between changed data sources, a process for revising said adapters the
process comprising the steps of:

a Planner presenting an integration plan approved by a user as input to a
CodeGen Agent;

a A WD = A WO DN =~ ©

(@)

10
11

g~ WN =

N

10

11
12

13
14

WO 03/060751 PCT/US02/41189
65

said CodeGen Agent executing the development of new adapfters by
reparsing said integration plan into a user-selected programming language.

147. The one or more processor readable storage devices of claim 146 wherein
said reparsing is accomplished using a template file that contains transformation instructions
to translate each integration operation into compilation-ready source code for the selected
adapter language.

148. One or more processor readable storage devices having processor readable
code embodied on said processor readable storage devices, said processor readable code
for programming one or more processors to perform, in a system for generating new
dynamic adapters between data sources, a process for generating said adapters, the
process comprising the steps of:

a Planner presenting as input to a CodeGen Agent an integration plan
‘approved by a user, said integration plan including an indication of a use- selected
programming language;

said CodeGen Agent executing the development of new adapters by
producing programming instructions to accomplish the integration plan in the user-elected
programming language.

149. One or more processor readable storage devices having processor readable
code embodied on said processor readable storage devices, said processor readable code
for programming one or more processors to perform, in a system for automatically
generating dynamic adapters between heterogeneous data sources the process of
generating a new adapter, the process comprising the steps of:

generating a data source to ontology mapping for each data source being
mapped by evaluating the mathematical probabilities of lexical and semantic relationships
between schema entities and ontology concepts;

determining lexical closeness between the data source ontology and
Common Ontology concepts using synonym relationships;

determining mathematical closeness of semantic relationships in the form of
hypernyms;

determining confidence factors based on the mathematical probability of said
data source ontology and said Common Ontology being lexically and semantically close.

-3

10

11

12

A AW N -

© 00 ~N O

10

11
12

13
14

15
16

WO 03/060751 PCT/US02/41189
66

150. The one or more processor readable storage devices of claim 149 where said
process includes the further steps of:

comparing the data source ontologies of the monitored data sources to

determine common concepts;

mapping a data source ontology to another data source ontology using

synonym and hypernym relationships;

extracting a sample of data element values from each said data sources and
comparing said data element values to determine mathematical closeness;

validating expected data values for said data source ontology mappings;

composing and decomposing semantic relationships between target and
source data source ontology elements; and

uniting semantically similar schema elements into new ontology concepts.

151. One or more processor readable storage devices having processor readable
code embodied on said processor readable storage devices, said processor readable code
for programming one or more processors to perform, in a system for generating dynamic
adapters between two data sources, a process for developing dynamic adapters, the
process comprising the steps of:

before an integration plan between said two data sources has been
generated, an App2App Similarity Mapper determining the similarities between said two data
sources and informing a Planner software component to generate a new pian, said App2App
Similarity Mapper performing at least the steps of:

creating an App2App similarity map that describes said similarities;

mapping the schema elements affected by said similarities to an existing data
source ontology;

performing lexical and semantic mapping on the affected schema elements to
find new associations with said data source ontology;

in response to finding said new associations, validating said new
associations; and

17

HWwN =

WO 03/060751 PCT/US02/41189
67

attempting to find new mappings for the affected elements.

152. The one or more processor readable storage devices of claim 151 wherein
said attempting to find new mappings is accomplished using an expected data value

process.

153. The one or more processor readable storage devices of claim 151 where said
process includes the further step of, in response to finding no said mappings, attempting to
find new mappings using composition and decomposition processes.

154. A process of managing revision in a data source including the steps of:
connecting an Assessment Micro Agent to a data source;
using the Schema Manager, extracting information about the data source;

using the Schema Manager, building a schema of the data source from at
least some of said extracted information; and

presenting the schema to a user.
155. The process of claim 154 including the additional steps of:

the user selecting schema elements of interest to the user and creating a
filtered view thereof; and

the user using the Task Manager to schedule frequency for generating
schema specifications.

156. The process of claim 155 including the additional steps of:

the Change Specification Manager identifying a change in any of the selected
schema elements during running of said data source; and

in response to said identifying, informing the user of said detected change.

157. The process of claim 154 wherein the step of collecting information includes
the step of collecting data source information, connectivity driver information, table names
and types, indexes, primary keys, foreign keys, column names and types, column precision,
view definitions, synonym and alias references, and remarks stored in a database schema.

WO 03/060751

PCT/US02/41189
1/7
General System Architecture
v 19 a4 17 2t Desktop Client 23 2 27 2 1 5
| ! T T N—
Report Generation [XM Popup, Email,
(XML, HTML, Custom) L Pager, PDA ...
Change o \ || Application | App2App Cod
Schema Task Application | User e Plan | Language| Code
Specs i : . | Notification | Ontology | Mapping| viiew | Editor | Browser
Browsing B’/°W$'“9 Scheduling | Management | Admin View View
\ / Jini 40 —RM! Java Swing 42
\ /]
15 13 36 IE
.m ————————
Client Client
6 i 2 4 2%
:{0 g 1 I12 ’ 1\8) 1 st
: / 1 —
Change App | App2App CodeGen | Deployment
Hub| . 5P | Schema | Task | System| User |Notifications Ontology |Similarity | Planner| Agent ';\gzm
Manager | Manager | Manager | Manager| Manager| Manager Factory | Mapper
: Job . Language
Long-Term Persistence Manager XML (for Properties) Common Manager tfm
Ontology
e
° 35/o logy | Ontol
ntology | Ontology
RMI Jini Infrastructure Editor Manager JavaSpaces
I N N ‘\
| Backend !

One or more machines

Fig. 1

14

38

WO 03/060751 PCT/US02/41189

2/7

Ce s

may be any ODBCHDBC
compliant data source

Common ; : - : S
Ontology) 130108 Assessment MicroAgent monitors -
i RN it P applicalions for change. If 8 change
ocours it produces change
specification file

Application Ontology Factory croates
& Application Ontologies using comman
ontology library. :

A an g
o,ﬂzxogy App2App Similarity Mapper creates
—e & App2App Similarity Map from -
Application Ontologies

App2App Similarity Mep used by
Plannet. Planner Uses planning
algorithms fo produce ordered, tested

N

N integration plan.
Code !
Generator R S
(CodeGen 21 - Code Generator (CodeGen Agent)
_ Age,ﬂ.t)\ g - lm‘,mmn » z : & generatfas integration code from
RN 0001300016 | 7 = . o integration plarni. :

) oyt ey] SEDOTOUOR OO
9 _ T RRE el T

WO 03/060751

3/7

PCT/US02/41189

Schema Discovery

Connection to Data Source

Schema Extraction

Visual Transformation

310

Data Source
(database,
application, flat
file, etc)

Connect (JDBC, ODBC, etc)

320 ~

Assessment

Micro Agent

A 4

Schema Manager

330 l

Extract Data Source
Information and Driver
information

340 l

Extract Table Names and
Types

350 l

For each table extract:
fields names, indexes,
foreign and primary key
designations, column names
and types, column precision
and nullability, view
definitions, synonym and
alias references, and other
remarks.

360 l

17

Client

A 4

Presentation

h

y

370
\

380

/

Textual
Presentation
(XML, HTML, ete)

Graphic
Presentation
(ERDs, etc)

Data Source Schema —

Fig. 3

WO 03/060751

4/7

PCT/US02/41189

Change Specification Generation

Schema Discovery

Change Specification

Discovery

Display Change
Specifcation

360

Schema Manager

Data Source Schema

410

System Event (e.g.,

—

» | trigger, scheduled task,
user request, etc.)

v

420

Compare Application
Schema information
(e.g., version, drivers,
etc)

v

430

Compare Table for
name or type changes

y

440

For each Table
Determine Name, Type
or Length Changes for
fields, columns, indices,
primary keys, foreign

keys, etc.

3

450

If a Change is Detected
Store it in the Change
Specification

v

460

Change Specification

15

ﬂhange

Specification
Browser

v

Fig. 4

WO 03/060751

517

PCT/US02/41189

Application Ontology Factory

Schema Discovery

Application Ontology

Display Change

Specifcation

Schema Manager

360

Data Source Schema

Generation
35
Common Ontology
510 v

Convert Schema to
Language Compatible

Y

with Common Ontology

520 i

WordNet

530 l

For Each Schema

Name Extract all

Possible WordNet
Senses

540

A 4
For Each Schema
Element WordNet
Sense Extract all
Possible Mediating
Ontology concept
Hierarchy

§5 l

For Each Concept
Hierarchy Assign a
Confidence Factor

560 v

Merge Concept
Hierarchies at
Appropriate Level of
Generalization

App2App Similarity
Mapper

570 l‘

25

Multl-Dimensional
Micro-Theory

Application

) 4

Ontology
\Viewer

Fig. 5

WO 03/060751

6/7

PCT/US02/41189

Comparing Applications through Micro-Theories

Application Ontologies
Supported by Common
Ontology

Semantically Mapping
Applications

570\

Application B Multi-

Assigning Confidence

Data-Value Validation

Dimensional Micro-
Theory with CFs

Common
Ontology

570—

Application A
Multi-Dimensional
Micro-Theory with

CFs

Exhaustive Mutti-Dimensional
Semantic Mapping using
Synenyms and Hypernyms
Relations

610

A 4

Exhaustive Preliminary
Similarity Map between

Application Ontologies A &
B

620

Factors
630 550
: |
Assign Confidence Factors Extract Data Samples
—» (CFs) Based on Semantic — for Each Mapped
Closeness Element
650, v
640 Check for
Expected Data Values
in Each Element
Exhaustive Preliminary Mapped
|| Similarity Map between | |
Application Ontologies 67&
A &B with CFs s
Affect Confidence
Factors of Mappings

680 L

Exhaustive Preliminary

Similarity Map between

Application Ontologies
A & B with CFs

Fig. 6

WO 03/060751

717

PCT/US02/41189

Three Steps for planning a change to an adapter

Determine meta-data

Determined required

Learn from user input

mappings to use transformations
730 745, T
™~ Assign an ~
Application Application _» Integration Goal Plan Viewer Shows
A B to each »{ Integration Plan to
Mapping KUser
705 1 I 710 735 T
v NI, -
750
App2App For each Goal _ AN
10— Similarity Determine Plan Viewer Allows
Mapper Required Data User to Accept or
Transformation Reject Goals or
Steps Transformation
Steps
, e
715 | Similarity 740 755
Map with
Confidence
Factors Integﬁgon — Learn from User
p Input to Make
Planner Smarter
y
720~
Planning
Englne 780
Planning
Knowledge
Repository
725
Selected
Mappings

Fig. 7

INTERNATIONAL SEARCH REPORT International application No.
PCT/US02/41189

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) :GOGF 17/00
US CL :707/100
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

usS. : 707/ 1-206

Documentation searched other than minimum documentation to the extent that such documents are included in the fields
searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WEST search terms: database, mapping, code generation

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 6,256,629 B1 (SPROAT ET AL.) 03 JULY 2001, ABSTRACT | 1-157
A US 6269,368 B1 (DIAMOND) JULY 31, 2001, ABSTRACT 1-157
A US 6,295,529 B1 (CORSTON-OLIVER ET AL.) SEPTEMBER 25, | 1-157

2001, ABSTRACT

D Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited documents: e later document published after the international filing date or priority
wan . L date and not in conflict with the application but cited ta understand
A document defining the general state of the art which is not the principle or theory underlying the invention
considered to be of particular relevance
LAl o 1o vy . H invi i 4
"E" earlier document published on or after the international filing date X docu.ment of particular reley «mce,.the cla|n_1ed lnvention cannot be
considered novel or cannot be considered to involve an inventive step
‘LM document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other | . . R . .
special reason (as specified) Y document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
"o document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
"p" document published prior to the international filing date but later. wg» document member of the same patent family
than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report

15 MARCH 2003 ;@f?é ;4{—[2@?\28035 '

Name and mailing address of the ISA/US Authorized officer ()@/ ‘ l '\I\O’C‘/l
Commissioner of Patents and Trademarks =W
Box PCT :25 J l e

Washington, D.C. 20231 DAVID Y. JUNG
&csimile No. (703) 305-3230 Telephone No. (703) 308-5262

Form PCT/ISA/210 (second sheet) (July 1998)%

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

