wO 20207123149 A1 |0 0000 KPP0 Q0 0 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property '

Organization
=

International Bureau

(43) International Publication Date

‘O 00 00O A
(10) International Publication Number

WO 2020/123149 Al

18 June 2020 (18.06.2020) WIPOIPCT

(51) International Patent Classification:
GO6F 9/50 (2006.01)

(21) International Application Number:
PCT/US2019/063363

(22) International Filing Date:
26 November 2019 (26.11.2019)

(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
16/216,568 11 December 2018 (11.12.2018) US

(71) Applicant: AMAZON TECHNOLOGIES, INC.
[US/US], P.O. Box 81226, Seattle, Washington 98108-1226
(Us).

(72) Inventors: SHEVADE, Upendra Bhalchandra; 410 Ter-
ry Avenue North, Seattle, Washington 98109-5210 (US).
GUPTA, Diwakar; 410 Terry Avenue North, Seattle,
Washington 98109-5210 (US). FURR, Michael B.; 410
Terry Avenue North, Seattle, Washington 98109-5210
(US). SMITH, Kevin P.; 410 Terry Avenue North, Seat-
tle, Washington 98109-5210 (US). MEHTA, Nishant;
410 Terry Avenue North, Seattle, Washington 98109-5210
USs).

(74)

@81)

84

Agent: KOWERT, Robert C.; Kowert, Hood, Munyon,
Rankin & Goetzel, P.C., P.O. Box 398, Austin, Texas 78767
(US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

(54) Title: COMPUTING SERVICE WITH CONFIGURABLE VIRTUALIZATION CONTROL LEVELS AND ACCELERATED

LAUNCHES
(57) Abstract: A first virtualization control mode to be used for configur-
As part of inifialization of virtualization host (which may be identified/selected based lng onc or morc Compute instances iS determined. Based at leaSt partly on
on virtualization control mode in use), VCS control plane creates parent VNI, control the mode preparatory conﬁguration operations fOI‘ launching a compute
s

plane agent (CPA) 1101

Client sends “launchComputelnstance” request to VCS confrol plane 1104

]

Acsll of the VCS control plane performs additional network configuration actions

“setupNetworkForCl” command via control plane agent (CPA) API to CPA at

!

CPA issues “createSNID” commands to software network interface device (SNID)
managers, such as CNI plugins, at virtualization host 1110

!

SNID managers create requested devices, provide information such as IDs/names of
created SNIDs to CPA m

!

CPA informs VCS control plane that requested network configuration operations for
Cl have been performed 1116

!

CPA includes SNID information in request sent to launch CI m

FIG. 11

3 instance are initiated. The operations include transferring at least a portion

of a machine image to a storage device accessible from a host, and initial-

ization of a virtual network interface. A compute instance is instantiated

using the machine image at the host. The compute instance is a thread of

{e.g., creating a child VNI if needed for the compute instance (C1)) and issues a an intermediary process launched by an administrative agent at the host in
irtualization host 1107 response to a launch request.

[Continued on next page]

WO 2020/123149 AT | [I 000000000 0T 00

Published:
— with international search report (Art. 21(3))

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

COMPUTING SERVICE WITH CONFIGURABLE VIRTUALIZATION CONTROL LEVELS AND ACCELERATED LAUNCHES

BACKGROUND

[0001] Many companies and other organizations operate computer networks that interconnect
numerous computing systems to support their operations, such as with the computing systems
being co-located (e.g., as part of a local network) or instead located in multiple distinct
geographical locations (e.g., connected via one or more private or public intermediate networks).
For example, data centers housing significant numbers of interconnected computing systems have
become commonplace, such as private data centers that are operated by and on behalf of a single
organization, and public data centers that are operated by entities as businesses to provide
computing resources to customers. Some public data center operators provide network access,
power, and secure installation facilities for hardware owned by various customers, while other
public data center operators provide “full service” facilities that also include hardware resources
made available for use by their customers.

[0002] The advent of virtualization technologies for commodity hardware has provided
benefits with respect to managing large-scale computing resources for many customers with
diverse needs, allowing various computing resources to be efficiently and securely shared by
multiple customers. For example, virtualization technologies may allow a single physical
virtualization host to be shared among multiple users by providing each user with one or more
“guest” virtual machines hosted by the single virtualization host. Each such virtual machine may
represent a software simulation acting as a distinct logical computing system that provides users
with the illusion that they are the sole operators of a given hardware computing resource, while
also providing application isolation and security among the various virtual machines. Instantiating
several different virtual machines on the same host may also help increase the overall hardware
utilization levels at a data center, leading to higher returns on investment.

[0003] A network-accessible service that provides virtualized computing functionality may
have to manage hundreds of thousands, or even millions, of virtual machines concurrently. Some
of the virtual machines, established for long-running client applications, may remain operational
for weeks, months, or years, and may each consume a substantial amount of computing, memory
and storage resources. Other virtual machines may be short-lived, e.g., lasting for just a few
minutes or seconds to perform a specific task on behalf of a client, may each consume a smaller
amount of resources, and may benefit more from short startup times. The same client may need a
variety of different types of virtual machines for different applications and use cases, and the

1

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

demand for the different types vary substantially over time. Designing a virtualization service that
can efficiently handle large, dynamically changing mixes of virtual machines with widely differing

functional and performance requirements remains a non-trivial technical challenge.

BRIEF DESCRIPTION OF DRAWINGS
[0004] FIG. 1 illustrates an example system environment in which a virtualized computing

service that supports virtual machines with short launch times and customizable levels of user
control regarding various types of administrative tasks may be implemented, according to at least
some embodiments.

[0005] FIG. 2 illustrates examples of virtualization control modes that may be supported at a
virtualized computing service, according to at least some embodiments.

[0006] FIG. 3 illustrates examples of virtualization control mode-based placement decisions
for compute instances, according to at least some embodiments.

[0007] FIG. 4 and FIG. 5 collectively illustrate example programmatic interactions between
clients and a virtualized computing service, according to at least some embodiments.

[0008] FIG. 6a illustrates example isolated virtual networks that may be established on behalf
of clients of a virtualized computing service, according to at least some embodiments.

[0009] FIG. 6b illustrates three types of communication channels that may be set up for
compute instances such as micro virtual machines, according to at least some embodiments.
[0010] FIG. 7 illustrates examples of attributes of virtual network interfaces that may be
configured for compute instances, according to at least some embodiments.

[0011] FIG. 8 illustrates an example of a multiplexed virtual network interface, according to
at least some embodiments.

[0012] FIG. 9 illustrates example subcomponents of an offloaded virtualization management
component card which may be employed at virtualization hosts, according to at least some
embodiments.

[0013] FIG. 10 illustrates example aspects of networking configuration at a virtualization host
at which multiple compute instances such as micro virtual machines may be instantiated, according
to at least some embodiments.

[0014] FIG. 11 is a flow diagram illustrating aspects of operations that may be performed to
prepare a networking configuration for a compute instance before the compute instance is
launched, according to at least some embodiments.

[0015] FIG. 12 illustrates example persistent storage options for micro virtual machines and/or

other types of compute instances, according to at least some embodiments.

2

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363
[0016] FIG. 13 illustrates an example tiered hierarchy of persistent storage that may be

employed for micro virtual machines and/or other types of compute instances, according to at least
some embodiments.

[0017] FIG. 14 illustrates an example of a workflow involving the use of a machine image size
optimizer tool that may be provided to clients by a virtualized computing service to help accelerate
compute instance launches, according to at least some embodiments.

[0018] FIG. 15 illustrates an example caching technique for portions of boot images used for
micro virtual machines and/or other types of compute instances, according to at least some
embodiments.

[0019] FIG. 16 illustrates an example collection of threads which may be configured at a
swappable virtualization intermediary process at a virtualization host, according to at least some
embodiments.

[0020] FIG. 17 illustrates examples of the generation of snapshots from source compute
instances to help shorten the time taken for configuration operations at cloned compute instances,
according to at least some embodiments.

[0021] FIG. 18 is a flow diagram illustrating aspects of operations that may be performed at a
virtualized computing service to clone micro virtual machines from snapshots, according to at least
some embodiments.

[0022] FIG. 19 illustrates a high level overview of factors that may collectively enable very
large numbers of compute instances to be launched at a single virtualization host, according to at
least some embodiments.

[0023] FIG. 20 provides a high-level overview of an example architecture of a control plane
cell of a virtualized computing service, according to at least some embodiments.

[0024] FIG. 21 illustrates a provider network environment at which one or more types of
virtualized computing services may be implemented, according to at least some embodiments.
[0025] FIG. 22 is a flow diagram illustrating aspects of operations that may be performed at a
virtualized computing service to support accelerated launch times and client-selectable levels of
virtualization control, according to at least some embodiments.

[0026] FIG. 23 is a block diagram illustrating an example computing device that may be used
in at least some embodiments.

[0027] While embodiments are described herein by way of example for several embodiments
and illustrative drawings, those skilled in the art will recognize that embodiments are not limited
to the embodiments or drawings described. It should be understood, that the drawings and detailed

description thereto are not intended to limit embodiments to the particular form disclosed, but on

3

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363
the contrary, the intention is to cover all modifications, equivalents and alternatives falling within
the spirit and scope as defined by the appended claims. The headings used herein are for
organizational purposes only and are not meant to be used to limit the scope of the description or
the claims. As used throughout this application, the word “may” is used in a permissive sense (i.e.,
meaning having the potential to), rather than the mandatory sense (i.e., meaning must). Similarly,
the words “include,” “including,” and “includes” mean including, but not limited to. When used

in the claims, the term “or” is used as an inclusive or and not as an exclusive or. For example, the

phrase “at least one of x, y, or zZ” means any one of x, y, and z, as well as any combination thereof.

DETAILED DESCRIPTION

[0028] Various embodiments of methods and apparatus for implementing a virtualized
computing service (VCS) that can support the rapid instantiation of large numbers of compute
instances such as virtual machines on individual virtualization hosts, while enabling a variety of
levels of user control over administrative decisions such as selection of virtualization hosts,
resource oversubscription and the like are described. The term “compute instance” may be used in
various embodiments to refer generally to a variety of types of program execution environments
that may be set up at virtualization hosts of a VCS, including for example full-fledged virtual
machines in which the vast majority or all hardware devices of a host are virtualized, “bare-metal”
instances in which a significant subset of hardware devices are directly controlled by the compute
instance’s operating system processes, and so on. Some compute instances may be referred to in
various embodiments as “micro” virtual machines (mVMs), as their respective resource
requirements and/or expected lifetimes may lie below certain pre-selected thresholds, thus
facilitating their instantiation at virtualization hosts whose hardware and software stacks are
optimized for hosting thousands of small-resource-footprint virtual machines. In at least some
embodiments, a virtualized computing service that is designed primarily or specifically to host
micro virtual machines may be implemented. Note that techniques similar to those described
herein may of course also be used to support fewer compute instances per host; in general, the
techniques may allow substantial flexibility in the number and characteristics of compute instances
that can be supported on individual hosts, and the extent to which clients of the service can control
various aspects of compute instance administration.

[0029] As one skilled in the art will appreciate in light of this disclosure, certain embodiments
may be capable of achieving various advantages, including some or all of the following: (a)
reducing the overall amount of CPU, memory and storage resources that are utilized at a virtualized

computing service to set up and run applications that utilize compute instances while meeting

4

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

customer-specified levels of control over virtualization decisions, functionality and performance
requirements, (b) improving the overall responsiveness of a virtualized computing service with
respect to compute instance configuration requests, especially pertaining to starting up short-lived
or small-resource-footprint virtual machines, (¢) simplifying the user experience of customers that
wish to control various aspects of virtualization management such as placement, oversubscription
and the like, and/or (d) deploying groups of cooperating compute instances that collaborate on a
given set of tasks, e.g., using fast local communication channels at a given host, such that the
compute instances of a group can communicate efficiently with each other using local
communication channels that do not require the use of networking devices, thereby reducing the
overall resource usage for such collaborative applications.

[0030] The resources and artifacts of a network-accessible virtualized computing service may
be logically subdivided into at least two high-level groups in various embodiments: a control plane
and a data plane. The control plane may be used primarily for administrative operations, such as
provisioning the hardware to be used for compute instances, establishing and maintaining network
connectivity, monitoring various components to ensure availability and failure resilience at desired
levels, and so on. The data plane may be used primarily for running client applications on client-
requested compute instances, storing and transmitting client application data, and so on. In some
embodiments, the control plane may be implemented primarily using one set of computing
devices, while the data plane may be implemented primarily using a different set of computing
devices, e.g., in an attempt to reduce the probability of failures in one plane from affecting the
other. In at least some embodiments, a given computing device of a virtualized computing service
may comprise components of both the control plane and the data plane —e.g., as discussed below
in further detail, an agent of a control plane cell may run on a virtualization host at which a client-
requested compute instance is launched. In at least some embodiments, the VCS may be one
among several network-accessible services implemented at a provider network or public cloud
environment, and some virtual machines may be set up at the VCS on behalf of one or more of the
other services. For example, a service that supports software container-based computing may
utilize micro virtual machines of the VCS to set up software containers for its clients in one
embodiment; such services may be referred to as intermediary services as they utilize the VCS on
behalf of their own clients.

[0031] In various embodiments, the set of clients or users of a VCS may have widely varying
levels of expertise regarding virtualization. Some clients may wish to leave the vast majority of
virtualization administration decisions to the control plane components of the VCS, while other

clients may prefer to have the ability to make fine-grained administrative decisions such as

5

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

selecting specific dedicated hosts at which respective compute instances are to be launched. In
order to help support such diverse requirements, in at least some embodiments a number of
virtualization control modes (VCMs) may be supported at a VCS. For example, in one embodiment
at least a shared managed mode (SMM), a dedicated managed mode (DMM) and a dedicated
power-user mode (DPM) may be supported. In the SMM, for example, more decisions regarding
virtualization administration (such as the selection of hosts for specific compute instances) may
be made at the VCM than in the DMM or the DPM, with the client being provided the highest
level of administrative control among the VCMs when the DPM is being used in at least some
embodiments. The VCMs may differ from one another in regard to host multi-tenancy versus
single tenancy as well in at least some embodiments, with virtualization hosts being potentially
shared among compute instances of multiple clients in the SMM mode, and with virtualization
hosts being dedicated for compute instances of individual clients in the DMM and DPM modes.
The number and types/definitions of VCMs supported at the VCS may differ in different
embodiments.

[0032] The VCS may provide information about the supported modes, including the particular
types of administrative decisions that a client may make in respective supported modes, via one or
more programmatic interfaces (e.g., a web-based console, a set of application programming
interfaces (APIs), command-line tools, graphical user interfaces and the like) in various
embodiments. The client may select a particular VCM to be used for a particular group (or all) of
the compute instances to be set up on the client’s behalf, and provide an indication of the VCM to
the VCS in at least some embodiments (e.g., via one or more programmatic requests). In at least
some embodiments, the number and types of programmatic interactions between a client and the
VCS with respect to establishing and using a set of compute instances may be based at least in part
on the selected VCM — e.g., the client may obtain a set of candidate virtualization host identifiers
to be used programmatically in the DPM or the DMM, but not in the SMM in one embodiment.
The amount of preparatory configuration work that can be done to help speed up compute instance
launches using specified machine images may vary from one VMC to another in at least some
embodiment. Such preparatory configuration work may include, for example, one or more of the
set of networking configuration steps needed to enable a compute instance to communicate with
various types of endpoints (including for example endpoints within one or more types of isolated
virtual networks of the client). As a result, in one embodiment, launches of micro-VMs or other
compute instances, and/or the total time taken by the compute instances to start doing useful
application processing (which may at least in some cases involve network communication with

external endpoints) may be accelerated to a greater extent when DPM is employed than when

6

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363
DMM is used, and to a greater extent when DMM is used than when SMM is used. As such, in

various embodiments, the set of supported VCMs may represent a spectrum of tradeoffs between
the extent of administrative decision making done by clients, and the speed with which useful
application work can be initiated at compute instances. Generally speaking, in at least some
embodiments, the more decisions that the client is willing to make, the faster their instances may
potentially be brought online, and the more quickly the applications on those compute instances
can start performing useful work.

[0033] According to at least some embodiments, a network-accessible computing service such
as a VCS may comprise a set of computing devices that store program instructions. When executed
on or across one or more processors, the instructions may cause the computing devices to obtain
an indication of (a) a machine image to be used to instantiate one or more compute instances (such
as micro virtual machines which meet a first resource capacity criterion), (b) an isolated virtual
network to which connectivity from the one or more compute instances is to be established, and
(c) a first virtualization control mode (VCM) associated with the one or more compute instances.
An isolated virtual network (IVN) may comprise a collection of computing and/or other resources
in alogically isolated section of a provider network or cloud environment in various embodiments.
The indication(s) of the machine image, the IVN and/or the first VCM may be received via one or
more of the VCM’s programmatic interfaces in various embodiments. Machine images may also
be referred to as boot images in some embodiments. Based at least in part on the first VCM, one
or more preparatory configuration operations enabling an accelerated response to a future launch
request for one or more compute instances may be initiated in at least some embodiments. The
preparatory configuration operations may, for example, include (a) a transfer of the machine image
to a storage device accessible from a first virtualization host and (b) an initialization of one or
more virtual network interfaces at the first virtualization host. Virtualization hosts may also be
referred to as “virtualization servers” in various embodiments. In some embodiments, at least some
virtualization hosts may include a respective virtualization offloading card configured to process
network traffic between one or more virtual network interfaces of the host (i.e., programmatically
attached to one or more compute instances or other software entities running at the host) and one
or more endpoints external to the host. In at least one embodiment, a programmatic request to
prepare the resources needed for one or more later compute instance launch requests may be
submitted by the client, and the preparatory operations may be performed in response to such a
prepare request.

[0034] Later, after at least some of the preparatory operations are completed, at least a first

compute instance (such as a micro virtual machine) may be caused to be instantiated using the

7

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

specified machine image at the first virtualization host in various embodiments. The first compute
instance may comprise at least one thread of an intermediary process launched by an administrative
agent of the computing service at the first virtualization host in response to a launch request in
some embodiments. The first compute instance may be configured to communicate with one or
more endpoints within the isolated virtual network using the virtualization offloading card and at
least one virtual network interface in various embodiments. As such, the compute instance may be
configured within the isolated virtual network in such embodiments.

[0035] According to some embodiments, depending on the VCM in use, at least a second
compute instance may later be caused to be instantiated at the first virtualization host after the first
compute instance is launched. An indication that the first virtualization host is to be used for the
second compute instance may be obtained, e.g., from the client on whose behalf the first compute
instance was set up. In at least some cases, the instantiation of the second compute instance at the
first virtualization host may result in an oversubscription, permitted in accordance with the VCM
being used, of at least a first type of resource of the first virtualization host (such as virtual and/or
physical CPUs (central processing units), memory, disk space, networking bandwidth, or the like).
The term oversubscription may be used in various embodiments to refer to a scenario in which the
nominal total resource capacity of a given host, with respect to a given type of resource, is
exceeded by the sum of the requested resource capacities of the individual compute instances at
the host. In at least one embodiment, the client may make oversubscription-related decisions in
one or more of the virtualization control modes (but not necessarily in all the modes). For example,
in some embodiments, when the dedicated power user mode (DPM) is used, the client may obtain
information programmatically about the requested resource capacities of the compute instances
currently instantiated at a given virtualization host H1, as well as some measures or metrics of the
actual resource usage of the compute instances over some recent time period at H1, and request
that one or more additional compute instances be started up at H1 even if the launch of the
additional instances would result in exceeding a resource capacity limit of H1.

[0036] In one embodiment, if the dedicated power user mode or another equivalent mode is in
use, the VCS may start up an additional compute instance at a specified virtualization host without
verifying whether a requested resource level of the additional compute instance with respect to
one or more resource types would cause the nominal resource capacity of the host to be exceeded,
in contrast, if other VCMs are in use, the VCS may at least in some cases place a requested compute
instance on a particular host only after checking whether the nominal resource capacity of the host
would be exceeded by introducing the additional compute instance. In some embodiments, a client

may begin using one or more virtualization hosts in a particular VCM, and later submit a

8

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

programmatic request to change the VCM to be used at the virtualization hosts going forward (e.g.,
for subsequent compute instance launches). The VCM may, in various embodiments, store
metadata indicating the particular VCM being used at respective virtualization hosts.

[0037] In some embodiments, a given launch request may indicate that a group of compute
instances, e.g., a group collectively implementing at least a part of the functionality of an
application or a set of related applications, is to be instantiated at one or more virtualization hosts,
and multiple compute instances may be set up accordingly. In one embodiment, local channels of
communication, e.g., using buffers implemented in a region of shared volatile or non-volatile
memory of the virtualization host, may be set up for the collaborating compute instances. The
types of communication channels to be set up for the group of compute instances may be indicated
in a launch request for the group, and/or in a request for preparatory operations pertaining to the
group in some embodiments.

[0038] In at least some embodiments, a number of additional techniques may be implemented
at a VCS to help increase the speed of compute instance launches, and/or to decrease the usage of
resources required for individual compute instances at a given virtualization host. For example, in
some embodiments, state information (e.g., processor state, memory state) etc. of a running or
partially-configured compute instance may be captured in the form of a snapshot, and such
snapshots may be used to launch copies or clones of the instances more quickly (since the
snapshots may already include the results of some types of configuration operations that would
have had to be re-performed if the snapshots were not used). In some embodiments, the particular
phases/stages of execution at which one or more respective useful snapshots may be generated
from a compute instance may be automatically detected by components of the VCS, and snapshots
may be automatically generated without corresponding client requests. In other embodiments, a
client may submit programmatic requests for generating such snapshots from a compute instance.
[0039] In at least one embodiment, a VCS may provide a machine image optimization tool,
and/or execution platforms/environments at which such tools may optionally be used by clients.
Such a tool may be used, for example, to detect modules of operating systems kernels, shared
libraries and/or application code that are included in a particular machine image, but are not used
during the executions of some applications run using compute instances. Such unused modules
may be eliminated from the machine image used for the compute instances with the help of such
tools, resulting in smaller machine images that also help speed up compute instance launches
and/or execution, reduce the total storage required for the compute instances, and so on.

[0040] According to at least some embodiments, the VCS may enforce lifetime limits (e.g., T

hours of execution) for at least some types of compute instances. After a compute instance reaches

9

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

its advertised lifetime limit, it may be terminate automatically by the VCS, e.g., without a client-
submitted termination request in such embodiments. Such auto-terminations may help avoid
scenarios in which, for example, a given compute instance runs for so long that it is unable to
utilize security-related bug fixes and the like which have been released since the compute instance
began running. Such long-running compute instance may become more susceptible to attacks.
Forced lifetime-limit based terminations may lead to at least some compute instances used for
long-lasting applications being restarting periodically, using updated versions of the underlying
virtualization software, operating system software and/or application code, and may reduce such
vulnerabilities in various embodiments.

[0041] When requesting a compute instance (CI), a client of a VCS may have to specify
various performance-related characteristics or requirements of the requested CI in some
embodiments. This may be done in a variety of ways. In some embodiments, a VCS may enable
clients to select from among a discrete set of standardized pre-defined configurations when
requesting a particular CI or virtual machine. Each such pre-defined configuration may, for
example, indicate a computing capacity (expressed, for example, in terms of virtual CPUs, where
the definition of a virtual CPU may be specified by the VCS), a memory capacity, a storage
capacity, a networking capacity, and the like. In other embodiments, a VCS may provide more
flexibility with regard to CI capabilities: e.g., a client may specify their own combination of
performance requirements with respect to processing, memory, storage, networking and the like
for a given set of one or more Cls. In at least some embodiments, both pre-defined CI types and
client-specified flexible-capacity CIs may be supported. CIs whose capabilities are specified by
clients, and do not necessarily correspond to pre-defined standardized configurations supported by
the VCS, may be referred to as “flexible” or “flexible-capability” CIs in some embodiments.
[0042] Compute instances whose resource requirements (e.g., along one or more dimensions
such as CPU, memory, storage, networking and the like) and/or whose lifetimes (duration between
launch and termination) are below thresholds defined by the VCS may be designated as micro
VMs in at least some embodiments as indicated earlier. Compute instances whose resource
requirements exceed the threshold may be referred to as macro VMs in some embodiments. In at
least one embodiment, the VCS may pre-define a number of micro VM categories or types, while
in other embodiments, a flexible-capacity CI whose resource requirements and/or expected
lifetime fall below pre-selected thresholds may be classified as a micro VM — that is, the
designation of a CI as a micro VM may be independent of whether the CI belongs to a pre-defined
category or not. In one example scenario, if a particular type of hardware server is being used as a

virtualization host for micro VMs, and the memory requirement of a particular CI is below (1/N)

10

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

times the available physical memory of an individual hardware server of that type, where N is a
parameter established by the VCS control plane, the CI may be considered a micro VM, and the
CI may be classified as a non-micro VM otherwise. The resource or lifetime thresholds
distinguishing a micro VM from non-micro VMs may change over time in various embodiments,
e.g., as the resource capabilities of individual hosts increase. It is noted that while a micro VM is
used as a primary example of the kind of compute instance that is launched at a VCS in at least
part of the subsequent description, the techniques described herein for flexible user control over
virtualization decisions and accelerated startup of compute instances, are not limited to micro
VMs; such techniques may be applied with equal success to any type of compute instance in
various embodiments, including for example bare-metal instances, high-resource-use virtual
machines, long-lifetime virtual machines and so on.

[0043] According to at least some embodiments, a combination of software and hardware
optimized for hosting large numbers of micro VMs may be used for at least a subset of
virtualization hosts of a VCS. In such embodiments, a virtualization host that is to be used for
micro VMs may comprise one or more processors, a memory and one or more virtualization
offloading cards. As indicated by the name, a virtualization offloading card may comprise a
hardware card (with its own processors, firmware and/or software) that performs at least a subset
of virtualization management functionality, thereby offloading or reducing the virtualization
management workload of the primary processors (e.g., CPUs) and main memory of the
virtualization host. Such cards may also be referred to as offloaded virtualization manager
components (OVMCs) or OVMC cards in some embodiments. In one implementation, at least one
virtualization offloading card may be attached to the host via a peripheral interconnect such as a
PCI (Peripheral Component Interconnect) bus. A given virtualization host may comprise several
different virtualization offloading cards in some embodiments — e.g., one may be used for
offloading networking-related virtualization management tasks, another for offloading disk
storage-related virtualization management tasks, etc. The memory of a virtualization host may
store program instructions to implement components of an optimized or stripped down version of
an operating system in some embodiments, as well as a set of processes directly involved in
instantiating virtual machines. In at least some embodiments, the memory may comprise
instructions that when executed on the processors of the virtualization host cause an administrative
agent of the VCS control plane to determine that a compute instance such as a micro VM is to be
instantiated at the virtualization host on behalf of a VCS client.

[0044] The virtualization host may have been selected as the recipient of a request for the new

compute instance (e.g., by a VCS control plane cell, and/or by a client, depending on the VCM

11

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

being used) based at least in part on a determination that the resource requirements of the requested
VM are below a threshold used for classifying VMs as micro VMs. The administrative agent at
the host, which may be referred to as a control plane agent or CPA process in various embodiments,
may serve as a local API (application programming interface) endpoint for the VCS control plane
in some embodiments — e.g., the VCS control plane may communicate with the virtualization host,
as and when needed, by invoking APIs implemented by the CPA, and the VCS control plane may
not need to communicate directly with the compute instances launched at the virtualization host in
such embodiments. Operations that are to be performed at the virtualization host in response to
control plane requests (e.g., launches/terminations of compute instances, configuration changes to
accommodate new compute instances, etc.) may be initiated locally by the CPA process in at least
some embodiments. The determination that a compute instance is to be set up at the host may be
made based at least in part on analyzing a request received at the agent process from a component
of the VCS control plane (which may be running as part of a separate control plane cell as described
below) in various embodiments. The control plane component may transmit such a request to the
CPA in response to a request from a VCS client to launch a compute instance in various
embodiments — that is, a launch request may be directed from a VCS client to the VCS control
plane component, and an internal version of the request may be directed from the VCS control
plane component to a CPA at a selected virtualization host. In at least one embodiment, a resource
requirement of a micro virtual machine to be launched (which, as indicated above, may meet a
threshold criterion for designation of the requested virtual machine as a micro VM) may be
indicated in the version of the request received by the CPA.

[0045] In response to receiving the request, a launch workflow may be initiated by the CPA in
various embodiments. As part of the workflow, a copy of a machine image to be used may be
generated or obtained, and one or more configuration operations may be initiated by the CPA in
some embodiments. Depending on the type of compute instance or micro VM requested, the
virtualization control mode being used, and/or the identity of the requesting client, the set of
configuration operations required may vary. In one embodiment, for example, a configuration
operation to enable connectivity, using a particular virtualization offloading card, for
administrative network traffic (e.g., traffic with the control plane of some service other than the
VCS itself) associated with a micro VM may be initiated in one or more VCMs. In another
embodiment, in addition to or instead of enabling connectivity for administrative traffic, a
configuration operation to enable connectivity for non-administrative network traffic (e.g., traffic
with compute instances or data-plane resources belonging to the same client on whose behalf a

micro VM is being launched) may be initiated by the CPA in at least one VCM (such as DPM or

12

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

DMM). Configuration operations to configure storage devices for use by the micro VM or compute
instance may be initiated in some embodiments by the CPA.

[0046] After the CPA has performed its set of configuration operations to prepare the
virtualization host for the new CI (compute instance), in at least some embodiments, the CPA may
issue a command, via a programmatic interface of a local virtualization intermediary process
(VIP), to launch the CI. In at least some embodiments, the CPA may launch the VIP process, and
the VIP process may create a new child thread implementing the CI. The command issued by the
CPA to the VIP may, in some embodiments, indicate various properties of the CI and/or results of
the preliminary configuration operations initiated by the CPA — e.g., the command may indicate
resource requirements of the CI, the particular machine image to be used, and/or various
configured objects (e.g., software network interface device objects) that the CI is to use. In some
embodiments, after the CI is launched, it may perform various client-specified application tasks,
communicating with other entities as needed using the virtualization offloading card(s) of the
virtualization host.

[0047] In some embodiments, the VCS may implement one or more types of virtual network
interfaces (VNIs), enabling some networking-related attributes such as IP (Internet Protocol)
addresses to be transferred relatively easily between compute instances (e.g., including micro
VMs) without necessarily reconfiguring physical network cards. Such attribute transfers may be
accomplished, for example, by detaching a virtual network interface programmatically from one
compute instance or operating system instance and attaching it programmatically to another CI or
operating system instance. In some embodiments, VNIs may be set up in a multiplexed
configuration, with some number of child (or “branch”) VNIs being programmatically associated
with a parent (or “trunk™) VNI, such that the use of some software objects or resources may be
shared among the child VNIs. For example, only a single PCI device object may be created and
associated with the parent VNI at an operating system installed on the virtualization host in some
embodiments, and the child VNIs may not require their own PCI devices. Such multiplexed VNI
configurations may be especially beneficial for virtualization hosts at which numerous micro VMs
are instantiated, as the total number of PCI device objects that can be created may be limited.
According to some embodiments, a parent multiplexed VNI may be configured at the virtualization
host (e.g., by the VCS control plane or by the CPA) prior to launching at least some micro VMs
at the host. In such an embodiments, one of the configuration operations performed by the CPA
when it receives a request to launch a micro VM may include programmatically attaching a child

VNI (for use by the micro VM) to the parent VNI

13

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363
[0048] In some embodiments, multiple child VNIs of a parent VNI may be used for respective

types of network traffic of a micro VM or other CI. For example, in some embodiments a micro
VM may be set up on behalf of an intermediary network-accessible service other than the VCS
itself, such as a software container service (SCS). An SCS may use a micro VM for one or more
software containers established on behalf of a client of the SCS. In such embodiments, the control
plane of the intermediary service may have to communicate with the micro VM (e.g., with an SCS
agent thread or process which is launched within the micro VM), and a special communication
channel may be set up for such control plane or administrative traffic. In one such embodiment, a
single child VNI at the virtualization host may be used, in conjunction with a Port Address
Translation (PAT) algorithm, to support such administrative traffic for a number of micro VMs
that are to communicate with the intermediary service’s control plane. As discussed below in
further detail, in some embodiments, a common networking namespace may be established for
PAT with respect to such administrative traffic. As part of the configuration operations performed
before a particular micro VM is launched, the CPA may configure a link level simulation device
(also referred to as a tap device) associated with a bridge in the common PAT namespace for the
micro VM. The bridge may be programmatically connected to the child VNI being shared for the
administrative traffic of several micro VMs in various embodiments, and a DHCP (Dynamic Host
Configuration Protocol) server process instantiated at the virtualization host may assign respective
distinct network addresses to each of the micro VMs for their administrative traffic.

[0049] According to one embodiment, the VCS may establish isolated virtual networks (IVNs)
on behalf of various clients and/or other network-accessible services such as the SCS mentioned
above. An IVN may comprise a collection of computing and/or other resources in a logically
isolated section of a provider network or cloud environment, and may in some cases be established
at the request of a particular customer or client of the VCS of the provider network. The customer
may be granted substantial control with respect to networking configuration for the devices
included in an IVN set up on the customer’s behalf in some embodiments. In one embodiment, for
example, a customer may select the IP (Internet Protocol) address ranges to be used for VNIs to
be attached to various ones of the customer’s compute instances (including for example micro
VMs) in the IVN, manage the creation of subnets within the IVN, and/or the configuration of at
least some types of routing metadata (e.g., including one or more route tables associated with
respective subnets) for the IVN. In some embodiments, resources that are to be used to perform
the operations of one or more other services (e.g., services that help provide secure connectivity
to resources at client-owned or client-managed data centers outside the provider network, software

container management services, file storage services, or database services) implemented at the

14

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

provider network may also be organized in one or more IVNs. According to some embodiments,
a request to launch a micro VM (or another type of compute instance) may indicate one or more
properties or settings of an IVN in which the requested micro VM is to be configured, such as the
name/ID of the IVN itself, a subnet ID, one or more private or public IP addresses to be assigned
to the micro VM within the range of IP addresses of the IVN, and the like. Based at least in part
on one or more settings indicated in the request, the CPA may in some embodiments determine at
least some networking properties of a micro VM, such as one or more network addresses, thereby
enabling data-plane (non-administrative) network traffic to flow between the micro VM and
various other resources (such as other micro VMs, or other compute instances) within the IVN. In
some embodiments, a respective child VNI may be designated for such IVN data plane traffic per
micro VM —that is, if a particular virtualization host comprises K micro VMs, K child VNIs may
be configured for their data plane traffic. In other embodiments, a single child VNI may be
assigned for data plane traffic of several different micro VMs, enabling even higher levels of
scalability.

[0050] According to some embodiments, the CPA may configure local communication
channels of the kind indicated earlier for messages between individual micro VMs launched at the
host, which do not require the use of the virtualization offloading cards and/or networking
resources external to the host itself. For example, for some applications, multiple collaborating
micro VMs arranged in a logical pipeline or cluster configuration may be set up at a given
virtualization host, and at least some of the messages exchanged among such micro VMs may be
transmitted via message buffers or queues set up in the memory of the virtualization host. In at
least some embodiments, the virtualization intermediary process whose thread is used for a micro
VM may be swappable — e.g., in response to detecting that the amount of memory available at the
virtualization host is below a threshold, at least a portion of the memory being used for the micro
VM may be swapped or written to persistent storage.

[0051] A number of different options may be supported with regard to the types of persistent
storage that can be used by micro VMs or other types of compute instances in different
embodiments. For example, a virtualization host’s locally attached rotating disks and/or solid state
drives, network-attachable block device volumes managed by the VCS, network-attachable block
device volumes managed by a service other than the VCS, object storage devices enabling access
to storage via a web services interface, and/or a combination of such device types may be used in
various embodiments. The different options may offer different combinations of performance,
availability, fault-tolerance/resilience, and security in various embodiments, and the appropriate

combinations may be selected for a given compute instance based on the client’s preferences

15

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

and/or on the VCS’s default settings for compute instance storage. In some embodiments, storage
may be shared among compute instances — e.g., a tiered storage system may be implemented at
the virtualization host, with some storage sections or objects being shared among all the compute
instances, other sections being shared among sub-groups of compute instances, and others sections
being designated for exclusive use by individual compute instances. In at least some embodiments,
in order to help speed up launch times, portions of several different boot images corresponding to
several categories of compute instances may be cached at the virtualization host, with the CPA
being responsible for retrieving the uncached portion (if any) needed to construct the full image to
be used to launch a requested compute instance.

[0052] In some embodiments, as indicated earlier, one or more categories of compute instances
supported by the VCS may not necessarily comprise full-fledged virtual machines as such. For
example, in one embodiment, a “bare-metal” compute instance supported by the VCS may
comprise various processes of an operating system that directly control at least a portion of the
hardware of the host being used, without utilizing virtualization (although a small subset of the
hardware functionality may be virtualized in some cases). In such an embodiment, a hypervisor or
a special operating system dedicated to virtualization management may not be required. In other
embodiments, at least some bare-metal compute instances may comprise a full-fledged virtual
machine, with most or all hardware functionality being virtualized. Bare-metal compute instances
may be instantiated at virtualization hosts in some embodiments, and then micro VMs may be
launched within the bare-metal instances.

[0053] In some embodiments, the VCS control plane may comprise several layers. One layer
of the VCS control plane may comprise a plurality of autonomous cells in various embodiments,
with each cell responsible for administering a respective set of virtual machines without interacting
with any other cell (at least during normal operation). Such a control plane layer may be referred
to as a “cell-based” layer in various embodiments. As discussed below in further detail, in some
embodiments a given cell may comprise a collection of interacting components including one or
more request processing nodes, one or more reconciliation or anti-entropy nodes, a log-based
persistent data store for storing state information, and metadata indicating a group of virtualization
hosts used for the virtual machines managed using the cell. In one such embodiment, the cell-
based layer may be used primarily for administering relatively small (in terms of resource
requirements) and/or flexible compute instances such as micro VMs. In other embodiments, the
cell-based control plane layer may be used for additional types of compute instances, including at

least some larger standardized compute instance categories supported by the VCS. In one

16

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

embodiment, a cell-based control plane may be used for all compute instances of the VCS. In some
embodiments, the virtualization hosts being managed may be considered elements of the cell.
[0054] In at least one embodiment, a VCS control plane may comprise a layer which is
intended primarily for administering pre-defined or standardized compute instances, e.g., in
addition to a cell-based layer used primarily for flexible compute instances. In some embodiments,
the administrative responsibilities of a multi-layer VCS control plane may be divided based
primarily on compute instance performance capabilities rather than flexibility. For example, in one
such embodiment, compute instances whose performance needs (e.g., with respect to some
combination of processing, memory, storage, or networking) are less than a threshold may be
managed by a cell-based layer of the control plane, regardless of whether the compute instances
belong to pre-defined standardized categories or not, while other compute instances may be
managed using a different layer which does not comprise cells. In various embodiments, a VCS
may also include other layers, such as a request routing layer (comprising one or more request
routers responsible for receiving client requests for administering compute instances, and directing
them to the appropriate cell or other control plane component), a control plane management layer
(which may for example include a cell pool manager responsible for configuring the cells, and/or
other components for administering the control plane itself), and so on.

Example system environment

[0055] FIG. 1 illustrates an example system environment in which a virtualized computing
service that supports virtual machines with short launch times and customizable levels of user
control regarding various types of administrative tasks may be implemented, according to at least
some embodiments. As shown, system 100 may comprise resources and artifacts of a virtualized
computing service (VCS) 102 in the depicted embodiment, which may be broadly divided into a
control-plane 105 and a data plane 150. The data plane 150 may include a plurality of virtualization
hosts 155, such as 155A and 155B. A given virtualization host such as 155A may comprise a
stripped-down or minimized version of an operating system 165 (within which various processes
used to implement micro virtual machines and/or other types compute instances may be
instantiated), one or more offloaded virtualization manager components 176 and/or a set of storage
devices 155 in the depicted embodiment.

[0056] The control plane 105 may comprise at least a flexible-capacity compute instance (CI)
management layer 112 in various embodiments, which may perform administration operations for
one or more categories of compute instance including micro VMs. In some embodiments, the
control plane may comprise one or more additional layers not shown in FIG. 1, such as a layer

dedicated to managing pre-defined standardized compute instance families that are not classifiable

17

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

as micro virtual machines. The flexible-capacity CI management layer 112 may comprise a pool
114 of autonomous control plane cells in the depicted embodiment, such as cells 116A and 116B,
as well as one or more cell pool manager(s) 118 responsible for establishing the pool, adding new
cells and/or decommissioning cells in various embodiments. In at least some embodiments, the
control plane 105 may also include a set of metadata 197 pertaining to a plurality of virtualization
control modes (VCMs) that may be supported — e.g., metadata defining the features of the various
VCMs, the specific VCM being used at a particular set of virtualization hosts, and so on.
Individual VCMs may differ from one another along any of several dimensions in various
embodiments, such as the tenancy of the virtualization hosts (single-tenant versus multi-tenant),
the extent to which clients can make decisions regarding the selection of virtualization hosts to be
used for various compute instances, the types of preparatory configuration operations that can be
completed prior to the launches of compute instances so as to help make the eventual response to
launch requests faster, and so on. In at least one embodiment, the VCS 102 may also include a set
of resources 122 that can be used to optimize machine images used for the compute instances, e.g.,
by eliminating unused modules/packages at various layers of the software stack including the
kernel layer, system libraries and so on, thereby reducing image sizes and speeding up launches
even further.

[0057] The VCS 102 may implement a set of programmatic interfaces 177, such as a set of
APIs, a web-based console, command-line tools and the like which can be used by VCS clients to
submit programmatic requests in the depicted embodiment. For example, in one embodiments,
programmatic requests such as “provisionVirtualizationHosts” (to identify a set of candidate
virtualization hosts to be dedicated to compute instances of a client), “prepareForLaunches” (to
perform preparatory configuration operations at some set of candidate hosts prior to the submission
of actual launch requests for micro VMs or other compute instances), “launchComputelnstances”
(to launch requested groups of one or more compute instances), and so on may be submitted via
interfaces 177 by VCS clients 180. Note that VCS clients may include components of other
network-accessible services in some embodiments — e.g., a network-accessible service which sets
up software containers may use the interfaces 177 to set up micro VMs within which containers
may be established. Such other services which use ClIs provided by the VCS to serve their own
customers may be referred to in various embodiments as intermediary services. Individual users
associated with customer accounts of the VCS may also or instead use programmatic interfaces
177 in various embodiments to establish and interact with micro VMs and/or other types of

compute instances.

18

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

[0058] In at least some embodiments, one or more computing devices of the VCS 102 may
obtain an indication, e.g., via one or more programmatic interfaces 177, of (a) a machine image to
be used to instantiate one or more micro virtual machines, (b) an isolated virtual network to which
connectivity from the one or more micro virtual machines is to be established, and (c) a
virtualization control mode associated with the one or more micro virtual machines. The compute
instances to be established/instantiated may be designated as micro virtual machines because they
meet one or more resource capacity criteria in the depicted embodiment — e.g., if the requested
requirements of an individual compute instance with respect to virtual or physical CPUs, memory
etc. lies below a threshold, that CI may be designated a micro virtual machine.

[0059] A number of operations may be performed at the VCS 102 based at least in part on the
VCM that is to be used for the micro VMs in various embodiments. For example, a set of
preliminary configuration operations to be performed prior to receiving a launch request for the
micro VMs, to help speed up or accelerate the actual launch subsequent to the request, may be
identified based at least partly on the VCM. Such preparatory configuration operations may
include, among others, (a) a transfer of the virtual machine image to a storage device (such as a
device 175) accessible from a particular virtualization host 155 (such as VH 155A) and (b) an
initialization of one or more virtual network interfaces at the virtualization host in some
embodiments. The virtualization host 155 may comprise an offloaded virtualization manager
component 176 in at least some embodiments, such as a virtualization management offloading
card configured to process network traffic between at least a first network address assigned to a
first virtual network interface of the VH and one or more endpoints external to the VH.

[0060] A launch request for one or more micro VMs may be obtained at the VCS 102 in
various embodiments, e.g., at a particular control plane cell 116 via the programmatic interfaces
177 after at least some preparatory configuration operations for the launch have already been
initiated or completed. In response to a launch request, the VCS control plane may cause at least
one micro virtual machine to be instantiated, using the machine image indicated earlier, at the
particular virtualization host 155 in the depicted embodiment. Such a micro VM may be
implemented using at least one thread (e.g., a micro-VM thread 169-1) of a virtualization
intermediary process (e.g., VIP 168-1) launched by an administrative or control plane agent 167
of the VCS at the virtualization host 155 in some embodiments. The micro virtual machine may
be configured to communicate with one or more endpoints within the isolated virtual network
indicated earlier using the virtualization management offloading card and at least one virtual
network interface in various embodiments; as such, the micro VM may be configured as a part of

the isolated virtual network. In one embodiment, at least some micro VMs may be terminated

19

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363
automatically by the VCS after they reach a threshold lifetime duration (e.g., T hours of execution

time), e.g., by terminating the corresponding VIP 168.

[0061] In at least some embodiments, one or more additional micro VMs (e.g., comprising
mVM thread 169-10000 of another VIP 168-10000), may also be instantiated at the particular
virtualization host, e.g., in response to subsequent launch requests. Depending on the VCM being
used, an indication that the particular virtualization host such as 155A is to be used for the
additional micro virtual machine may be obtained from the client on whose behalf the additional
micro-VM is being set up in at least some embodiments — e.g., the client may control the placement
of a requested VCM in some modes of virtualization control. Furthermore, in the depicted
embodiment, the client may make resource oversubscription decisions in accordance with some
VCMs —e.g., instantiation of the additional micro VM at the host selected by the client may result
in an oversubscription, permitted in the VCM being used, of at least a first type of resource of the
first virtualization host (such as virtual or physical CPUs, memory, network bandwidth, storage,
etc.).

[0062] In some embodiments, the VCS 102 may support launch requests for a group of
collaborating or cooperating compute instances, e.g., a plurality of micro VMs that are expected
to work together on some application, while being at least partially isolated from one another for
one or more reasons such as the separation of roles/responsibilities among different components
of the application, different sources and security characteristics of the micro-VMs, and so on.
Thus, in the depicted example scenario shown in FIG. 1, a co-operating compute instance group
199 may comprise at least two micro VMs, one implemented using mVM thread 169-1 of VIP
168-1 and a second implemented using mVM thread 169-2 of VIP 168-2. In at least some
embodiments, fast local channels of communication may be established for such collaborating ClIs,
e.g., using on-memory buffers or queues of the VH 155, so that the CIs do not have to utilize
networking devices to interact with one another.

[0063] In one or more of the VCMs supported in the depicted embodiment, such as a Dedicated
Power-user Mode (DPM), respective identifiers of one or more candidate virtualization hosts such
as VH 155A may be provided programmatically to a client 180 of the VCS, and a given launch
request from the client may comprise an identifier of one such host (as such, placement decisions
mapping Cls to VHs may be made by the client in such VCMs). In other VCMs, such as a Shared
Managed Mode (SMM), identifiers of candidate virtualization hosts may not be provided to a
client. In some VCMs (such as DPM and a Dedicated Managed Mode (DMM)) individual ones of

the VHs 155 may be dedicated exclusively for CIs requested of a particular client or customer; in

20

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363
other modes such as SMM, an individual VH may at least potentially be used for CIs requested by

several different clients.

[0064] In some embodiments, a request to launch or instantiate a CI such as a micro VM may
be processed initially by a request handler layer (not shown in FIG. 1) of the control plane 105,
and transmitted to a particular cell 116 such as cell 116B. The particular cell may be selected based
on a variety of considerations, such as load balancing considerations, locality considerations and
the like. The cell 116 may itself comprise a plurality of components as described below in further
detail, including for example request processing nodes, reconciliation nodes, and a high
performance data store instance. One of the components of the cell 116B may transmit an internal
version of the request to launch the CI to a control plane agent (CPA) process running within an
operating system 165 of a selected virtualization host 155 in the depicted embodiment. In some
embodiments, a request may be directed to a CPA 167 only if the resource requirements of the
requested VM are small enough for it to be characterized as a micro VM, if the resource
requirements exceed a threshold, a different type of virtualization host (not shown in FIG. 1)
dedicated to supporting larger VMs may be selected. In at least one embodiment, the cell
component may start up a control plane agent process if one is not yet up and running at the
selected wvirtualization host. The CPA 167 may implement an internal set of application
programming interfaces, referred to as a CPA API 178, in the depicted embodiment, which may
be used for communication with the VCS control plane. In effect, the CPA API 178 may represent
a contract governing the types of operations that are to be implemented at a VH 155 at the request
of the VCS control plane, regardless of the specific implementation details of the CPA or other
components of the VH 155.

[0065] Based at least in part on the request received from the control plane cell 116, the CPA
167 may identify various characteristics of a desired micro VM, including for example its targeted
resource usage mix, networking connectivity requirements and the like in the depicted
embodiment. In some embodiments, a number of different boot images for micro VMs may be
available at the VCS, and the CPA may create or obtain a local boot image to be used for the
requested micro VM. The CPA 167 may also be responsible for performing at least some of the
preliminary networking configuration indicated above, such as the establishment of one or more
virtual network interfaces (VNIs) in various embodiments. Additional details regarding the
configuration of different types of VNIs in various embodiments, such as use of a combination of
trunk and child VNIs, for micro VM-related network traffic, are provided below. The CPA 167
may also perform storage setup operations for the micro VM to be launched in some embodiments,

e.g., by creating, configuring and/or verifying storage objects that will be used by the micro VM.

21

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363
[0066] After the CPA 167 has initiated, and/or verified the successful completion of, one or

more configuration operations for a requested micro VM, in some embodiments the CPA 167 may
launch a swappable virtualization intermediary process (VIP) such as VIP168-1. Initially, in the
depicted embodiment, the VIP process 168-1 may comprise an API handler thread, which is
configured to receive API requests or commands issued by the CPA 167. The CPA 167 may then
issue a command to actually launch the micro VM, and a new child thread 169-1 of the VIP 168-
1 may be launched to implement the requested micro VM. The command that results in the
launching of the micro VM thread 169-1 may include parameters indicating for example the
bootable machine image to be used, the resource requirements for the micro VM, the results of the
configuration operations performed by the CPA specifically for the micro VM, and so on. The
command to instantiate a micro VM may be submitted via a second internal API of the VCS,
referred to as the VIP API 179 in the depicted embodiment. Just as the CPA API represented a
contract between the VCS control plane and the CPA, in various embodiments, the VIP API may
represent another contract indicating the types of requests that are to be processed by an entity that
is responsible for launching and terminating micro VMs with a particular range of isolation and
performance requirements, regardless of the specific implementation details or process/thread
structure of the entity (e.g., the VIP).

[0067] As new requests for micro VMs are received at the CPA 167, the CPA workflow
indicated above with respect to the launch of the micro VM thread 169-1 may be repeated in the
depicted embodiment — e.g., micro VM specific configuration operations may be performed by the
CPA prior to launching a VIP, and one of the threads of the VIP may be used for the requested
micro VM. As suggested by the label VIP 168-10000, a large number (e.g., tens of thousands) of
micro VMs may be created at a given host 155 in the depicted embodiment. Note that the actual
number of micro VMs that can be instantiated to run concurrently at a host 155 may differ in
different embodiments, depending for example on the overall resource mix available at the host,
the version of the software/hardware stack installed, the resource oversubscription policy/policies
in effect, the VCMs in used, and so on, and may be larger or smaller than the 10000 number shown
in FIG. 1 by way of example. The use of swappable parent VIPs 168 may enable higher levels of
memory oversubscription in the depicted embodiment at VH 155A than may otherwise have been
feasible — e.g., the total requested memory usage of the set of micro VMs running at the VH 155A
may exceed the amount of memory available.

[0068] When a request to terminate a micro VM is received at the VCS control plane, and/or
when the lifetime limit of a micro VM is reached, a corresponding message may be transmitted

via an API invocation to the CPA, and the VIP whose thread is used for the targeted micro VM

22

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

may be terminated in the depicted embodiment. That is, in at least one embodiment, there may be
a 1-to-1 relationship between the number of running micro VMs and the number of running VIPs.
In other embodiments, a variation of the process architecture shown in FIG. 1 may be employed —
e.g., a given VIP may spawn multiple micro VMs as respective threads, multiple CPAs may be set
up at the VH, and so on. In some embodiments the VIP and/or a separate process used for a micro
VM may not be swappable. In at least one embodiment, snapshots of micro VMs that have been
launched may be generated and stored, and such snapshots may be employed to quickly launch
cloned versions of the micro VMs (i.e., similarly-configured micro VMs may be configured
quickly using the saved configuration settings etc. in the snapshots). As mentioned earlier, the
control plane and data plane components depicted in FIG. 1 may be used to configure compute
instances that may not necessarily be designated as micro VMs in at least some embodiments —
e.g., compute instances with high resource requirements may also be implemented using such
components in at least some embodiments.

Example virtualization control modes

[0069] FIG. 2 illustrates examples of virtualization control modes that may be supported at a
virtualized computing service, according to at least some embodiments. In the depicted
embodiment, at least a shared managed mode (SMM) 210, a dedicated managed mode (DMM)
220, and a dedicated power-user mode (DPM) 230 may be included in a set of example VCMs
205 defined by and supported at the VCS to enable the kinds of flexibility with respect to
virtualization decisions and with respect to launch time speedup discussed above. As indicated by
arrow 200, the different modes are arranged from top to bottom in FIG. 2 in order of increasing
extent of administrative control offered to VCS clients/users. The greater the extent to which
administrative decisions such as placement-related decisions are made by clients in advance of
actual launch requests, the greater the ratio of preparatory configuration work that may be possible
in advance in at least some embodiments; as such, as one moves from SMM to DMM to DPM, the
extent to which launches can be sped up by the VCS may increase in such embodiments.

[0070] In some embodiments, one of the supported VCMs, such as SMM 210, may be
designated as the default VCM —the mode to be used if a client does not programmatically indicate
a particular VCM to be used for a particular set of compute instances (or for any of their compute
instances). In some embodiments, other virtualization control modes may also or instead be
supported at a virtualized computing service — e.g., a client may request the creation of a custom
VCM in which the client controls one or more aspects of virtualization decisions. In such a

scenario, if the new type of virtualization control mode requested by the client can be supported

23

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363
by the VCS, the VCS may store metadata defining the custom VCM, and enable one or more

clients to use the custom VCM for their compute instances.

[0071] As indicated in the properties column 250 of FIG. 2, in the SMM 210, virtualized hosts
may potentially be shared among CIs of several different clients in the depicted embodiment. The
placement of individual CIs may be managed by the VCS control plane rather than by the client,
and decisions regarding resource oversubscription (if such oversubscription is implemented) may
be managed by the VCS control plane rather than by the client in the depicted embodiment.
Oversubscription decisions may include, for example, determining whether to instantiate a new
compute instance at a host even if doing so may exceed the nominal resource capacity of the host
with respect to one or more types of resources.

[0072] In the dedicated managed mode (DMM) 220, in various embodiments individual
virtualization hosts may be designated for compute instances set up on behalf of a particular VCS
client (e.g., a client associated with a particular customer account of the VCS). In some
embodiments, a group of collaborating clients or customers that indicate their cooperation
programmatically to the VCS control plane may also use dedicated hosts in accordance with the
DMM 220. The placement of CIs, as well as oversubscription (if any) may be managed by the
VCS control plane in the DMM in the depicted embodiment.

[0073] In the dedicated power-user mode (DPM) 230, in various embodiments individual
virtualization hosts may also be designated for compute instances set up on behalf of a particular
VCS client. In some embodiments, as in the DMM, a group of collaborating clients or customers
that indicate their cooperation programmatically to the VCS control plane may also use dedicated
hosts in accordance with the DPM 230. The placement of CIs, as well as oversubscription (if any)
may be managed by the client rather than by the VCS control plane in the DPM in the depicted
embodiment. If either of the dedicated modes (DMM or DPM) is employed for a particular set of
virtualization hosts on behalf of a client, metadata indicating that the hosts are to be used
exclusively for requests from that client may be stored, e.g., at the VCS control plane in various
embodiments. In some embodiments, metadata indicating that a set of virtualization hosts is to be
used in shared or multi-tenant mode, e.g., for clients in whose behalf the SMM is to be used, may
be stored at the VCS. As discussed below in further detail, in at least one embodiment a client may
programmatically change the VCM to be used, e.g., for subsequent CIs to be set up at a specified
host or group of hosts. In some embodiments, the VCM to be used may be specified at a per-
compute-instance level, e.g., instead of for all the compute instances requested by a client during

some time interval.

24

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

Example placement techniques

[0074] FIG. 3 illustrates examples of virtualization control mode-based placement decisions
for compute instances, according to at least some embodiments. In the depicted embodiment, a
given compute instance (CI) 310, such as a micro virtual machine, may have a respected requested
resource capacity (RRC) 312 with respect to one or more types of resources, such as virtual CPUs
(vCPUs), memory, persistent storage, network bandwidth or messages/second, and so on. The
RRC 312 for the CI 310 may have been indicated in a programmatic request to launch the CI in
some embodiments. In other embodiments, a set of pre-defined CI categories may have been
defined by the virtualization computing service being used for the CIs, with respective resource
capacities being specified for individual ones of the CIs, such that a request to launch a CI of a
particular category is in effect translated into a request for the pre-defined amount of resource
capacity for that category.

[0075] After a CI is launched at the VCS, the actual usage of resources by the CI may be
monitored, e.g., using any desired combination of tools at one or more layers of the
hardware/software stack being used for the CI, such as the application layer, the operating system,
various virtualization management layers, hardware monitors at the virtualization host, etc., and/or
by tools external to the virtualization host, such as networking tools at one or more networking
intermediary devices being used for the CI’s traffic. Measured resource usage (MRU) metrics 314
with respect to various time intervals (as indicated by the “interval” in the MRU tuple shown in
FIG. 3) may be available from such tools in at least some embodiments. In some embodiments,
the VCS may attempt (e.g., using throttling techniques implemented by virtualization management
components at the virtualization hosts being used) to ensure that the actual usage of a given
resource such as vCPUs, memory and the like, by a CI does not exceed the requested resource
capacity for that CI, at least over sustained time periods.

[0076] A given virtualization host 321 may have a total available capacity (TAC) 327 with
respect to individual ones of the resource types requested and used by ClIs in various embodiments.
At a point in time when a decision to place a newly-requested CI at a host 321 is to be made, the
set of currently-running CIs (CurrentCISet) 323 may include zero or more ClIs 310 in the depicted
embodiment, e.g., including CI 310A with RRC 312A and MRU 314A, CI 310B with RRC 312B
and MRU 314B, and so on.

[0077] Depending on the virtualization control mode being used for the to-be-launched CI, the
decision as to whether one or more of the resource types should be oversubscribed at the VH 321
may be made by the client on whose behalf the Cl is to be instantiated, or by the VCS control plane

in the depicted embodiment. If a dedicated power-user mode (DPM) of virtualization control

25

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

(similar to the DPM discussed earlier) is being used, for example, the client 335 may
programmatically obtain indications of the requested and actual resource usage (e.g., over some
specified recent interval) of the CurrentCISet 323 at individual ones of one or more candidate
virtualization hosts 321 in some embodiments. The client may then make the decision as to
whether the new CI should be launched at a given host, even if doing so would result in an
oversubscription scenario, in which the cumulative requested resource capacities of the Cls at the
selected host 321 exceed the total available capacity 327 for one or more resource types. In some
embodiments, the client may make an oversubscription decision based on expert knowledge of
how the CIs of the CurrentCISet are likely to behave with respect to future resource usage, and/or
based on a goal of co-locating the new CI with one or more of the currently-running Cls even if
this may result in potentially negative side effects of oversubscription, such as slowing down one
or more of the Cls.

[0078] In at least some other virtualization control modes 332 that may be supported at the
VCS, the VCS control plane 338 may determine the particular VH at which a CI should be
launched. In some embodiments, the VCS control plane 338 may also allow oversubscription with
respect to one or more resource types at a given set of virtualization hosts, e.g., based on
preferences indicated by the client and/or based on oversubscription policies of the VCS itself. In
at least some embodiments, the VCS control plane may attempt to avoid or prevent
oversubscription with respect to at least some resource types and at least some hosts.

Example proerammatic interactions

[0079] FIG. 4 and FIG. 5 collectively illustrate example programmatic interactions between
clients and a virtualized computing service, according to at least some embodiments. The
virtualized computing service (VCS) 412, which may have similar capabilities and features as the
VCS 102 of FIG. 1, may implement a set of programmatic interfaces 477 in the depicted
embodiment, such as APIs, web-based consoles, graphical user interfaces, command-line tools and
the like. Using the programmatic interfaces 477, a client 410 may in some embodiments submit a
programmatic request to provision a set of candidate virtualization hosts for compute instances
that are to be launched later on behalf of the client. Such a provisionVirtualizationHosts request
414 may in at least some embodiments indicate one or more resource requirements (e.g., via a
resourcelnfo descriptor passed as a parameter) or a set of applications to be implemented using the
hosts. Candidate hosts may be assigned to the client 410 in dedicated (single-tenant) mode in
response to a provisionVirtualizationHosts request in some embodiments, and host identifiers
(hostIDs) of the candidate hosts may be provided in a hostsProvisioned response 415. In some

embodiments, only those clients that wish to utilize a particular subset of supported virtualization

26

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

control modes (similar to the DPM or DMM modes discussed earlier), may submit optional
requests 414 to provision, and obtain identifiers of, virtualization hosts. In the Shared Managed
Mode (SMM), for example, as indicated earlier, the hosts used may not be dedicated for exclusive
use of a given client, so providing host identifiers to clients may not be beneficial in various
embodiments.

[0080] In at least one embodiment, a client 410 may submit a programmatic request 421 to
initiate one or more types of preparatory configuration operations that may help speed up
subsequent VCS responses to launch requests. Such a prepareForLaunches request 421 may, in at
least some embodiments, include an optional virtualizationControlMode parameter specifying the
VCM being used for the CIs. A descriptor preplnstanceSetDescriptor may be included as a
parameter in some embodiments, indicating for example one or more types of CI resource
requirements (e.g., for vCPUs, memory etc.), the machine image(s) to be used, the isolated virtual
network(s) within which the ClIs are to be configured, other types of connectivity requirement
information (e.g., whether access to the public Internet is required from the Cls, or access via
VPNs (virtual private networks) or dedicated physical links to external networks outside the VCS
is required), and so on. In at least some embodiments, the specific set of virtualization hosts at
which the preparatory configurations are to be performed may be identified in the
prepareForLaunches request 421, e.g., using the hostIDs obtained earlier in response to a
provision VirtualizationHosts request. In response to the prepareForLaunches request, the VCS
control plane may initiate a number of different types of configuration operations of the kind
discussed earlier, based at least in part on the VCM being used, such as the pre-loading of a
machine image to a storage cache accessible from a set of candidate hosts, setting up VCS control
plane agents, virtual network interfaces and the like at the virtualization hosts. After the
preparatory operations are completed, in some embodiments a resourcesReady message 423 may
be sent to the client.

[0081] A client may submit requests to launch compute instances in one of several ways in the
depicted embodiment. In one approach, a launchComputelnstances request 425 may be submitted,
indicating (e.g., via a runlnstanceSetDescriptor parameter) the number of CIs to be launched. In
some embodiments, the specific virtualization hosts to be used for individual ones of the CIs may
be indicated in the launch request. In response to a launchComputelnstances request 425, the VCS
control plane may cause respective ClIs to be launched at the virtualization hosts. An
instancesLaunched message 427 may be transmitted to the client via the interfaces 477 in at least
some embodiment. The instancesLaunched response may, at least in some embodiments, include

identifiers (instIDs) of the instantiated Cls. In some embodiments, for at least some types of Cls

27

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

such as micro VMs, a maximum lifetime limit may be imposed by the VCS 412, and an indication
of the lifetimes (maxLifetimes) may be included in the instancesLaunched message, e.g., to remind
the client that the instances may be terminated automatically after they reach the lifetime limit. In
some embodiments, the runlnstanceSetDescriptor (and/or the preplnstanceSetDescriptor of a
prepareForLaunches request) may indicate the kinds of mechanisms to be used by a group of Cls
for communication with one another. For example, in one embodiment, a client may indicate that
a group of N collaborating CIs are to be set up at a given virtualization host and that a particular
type of local communication channel (e.g., using shared memory buffers, virtual sockets, or the
like) should be set up for the collaborating CIs. The requested channels may be established by the
VCS, e.g., either as part of the preparation operations, or in response to the launch request in
various embodiments.

[0082] In a second approach towards, instead of requesting specific CIs, a client 410 may
request that an application be launched. Some business organizations that utilize the VCS to
support their own customers may, for example, provide application descriptors to the VCS control
plane, indicating the set of Cls that are to be launched to implement an instance of a particular
application on behalf of such customers. In one example scenario, in some embodiments a business
organization Orgl may provide (via a set of programmatic interactions not shown in FIG. 4) an
indication to the VCS of a set of CIs {CI1, CI2, CI3, ..., CI10} needed to implement a particular
instance Applnstl of an application Appl, designed/developed by Orgl, when such an instance is
requested by a customer Ocl of Orgl. Communication/connectivity requirements for the CIs may
also be indicated to the VCS in various embodiments — e.g., the kinds of local and/or over-the-
network communication channels to be used by the CIs to communicate with one another to
implement Appl’s functionality may be indicated. In such an example scenario, Orgl may be
considered a first-level or direct client of the VCS, while OC1 may be considered a second-level
or indirect client of the VCS (and a first-level client of Orgl). Orgl may have initiated preparatory
operations (e.g., using requests similar to provisionVirtualizationHosts, prepareForLaunches etc.)
to support various instances of Appl in the example scenario. OC1, the client of Orgl, may submit
a launchApplicationInstance request 429 via programmatic interfaces 477 in some embodiments.
The application request may indicate an application identifier (AppID), which may be translated
internally at the VCS into the equivalent of one or more launchComputelnstances commands in at
least some embodiments. In other embodiments, the client may submit a request for an application
to Orgl, and Orgl may submit the launchApplicationlnstance request to the VCS 412. After the
ClIs of the application have been set up, and communication channels between the CIs (if needed)

have been configured, in at least some embodiments the VCS may transmit an appLaunched

28

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

response 431 to the requester of the application. In some embodiments, the application instance
may have a set of one or more network endpoints (appEndpointSet), usable by clients to obtain
results and/or status information from the application, and such endpoints may be indicated in the
appLaunched response.

[0083] If and when a client 410 wishes to terminate a set of Cls, a terminatelnstances request
433 may be submitted via the programmatic interfaces 477 in the depicted embodiment. In
response, the VCS control plane may terminate the specified instances and transmit a
terminationComplete message 435 to the client in at least some embodiments.

[0084] In some embodiments, e.g., depending on the VCM being used, a client may be able to
obtain information about requested and/or actual resource usage at one or more virtualization hosts
of the VCS. As shown in FIG. 5, a getCIResourcelnfo request 514 may be submitted by a client
410 to the VCS 412 for such information, e.g., specifying the identifiers of the virtualization hosts
(hostIDs) and the types of resources (resourceTypes) such as vCPUs, memory etc. for which
information is desired. In response the VCS control plane may verify that the VCM in use permits
such information to be provided in some embodiments. The VCS may then provide, for the
specified virtualization hosts, information about the requested resource capacities and
measurements of current resource usage (e.g., similar to the RRCs and MRUs for the currentCISet
323 discussed in the context of FIG. 3) to the client 410, e.g., in a currentCIResourcelnfo message
515 in one embodiment. Based at least in part on the requested and/or current resource usage, the
client 410 may make placement and/or oversubscription decisions as discussed earlier, and submit
alaunchComputelnstancesOnDedicatedHost request 525, indicating the particular host(s) at which
individual ones of one or more CIs are to be launched. Details of the requirements of the CIs may
be indicated via a ClInfo parameter in some embodiments, while the identifiers of the hosts to be
used may be provided in the hostIDs parameter. Note that the request to launch CIs on specific
hosts may only be supported in specific virtualization control modes in at least some embodiments
— eg, only in DPM or DMM. After the requested CIs are instantiated, in at least some
embodiments an instanceL.aunched message 527 may be set to the client 410.

[0085] In some embodiments, clients 410 using VCMs in which dedicated virtualization hosts
are used may submit requests to add more dedicated hosts to the set of candidate virtualization
hosts set aside for the clients. An assignAdditionalDedicatedHosts request 529, specifying the
requirements (hostRequirements) may be submitted for such hosts in some embodiments, and an
identifier (hostID) 531 of the newly-dedicated host may be provided in response by the VCS.
Similarly, using the equivalent of a releaseDedicatedHost message 533, a client 410 may request

that a specified dedicated host be freed or released. The VCS may store metadata indicating that

29

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

the host is no longer dedicated exclusively for the client 410, and transmit a hostReleased message
535 to the client in some embodiments.

[0086] In at least one embodiment, a client 410 may submit a request (changeVCMode) 537
to change the virtualization control mode being implemented at one or more virtualization hosts.
The request may indicate the identifiers (hostIDs) of the targeted hosts and/or a VCM (to-mode)
which is to be used for subsequent CIs set up at the hosts in the depicted embodiment. In response,
the VCS control plane may store metadata indicating the VCM to be used for subsequent CIs, and
transmit a VCModeChanged message 539 to the client 410 in some embodiments. It is noted that
the VCS may support other types of programmatic interactions in some embodiments than those
shown in FIG. 4 and/or FIG. 5.

Example connectivity needs for compute instances

[0087] As mentioned earlier, in some embodiments compute instances and other resources of
a VCS may be organized into logically distinct isolated virtual networks (IVNs), and the
networking configuration requirements for a given compute instance such as a micro VM may
depend on the configurations of the IVNs set up on behalf of the client (or intermediary service)
that requested the micro VM. FIG. 6a illustrates example isolated virtual networks that may be
established on behalf of clients of a virtualized computing service, according to at least some
embodiments. An IVN may comprise a collection of computing and/or other resources in a
logically isolated section of a provider network or cloud environment. The entity on whose behalf
the IVN is created may be granted substantial control with respect to networking configuration for
the devices included in the IVN in various embodiments. In some embodiments, for example, a
customer may select the IP (Internet Protocol) address ranges to be used for VNIs to be attached
to various ones of the customer’s compute instances (including for example micro VMs) in the
IVN, manage the creation of subnets within the IVN, and/or the configuration of at least some
types of routing metadata (e.g., including one or more route tables associated with respective
subnets) for the IVN. In some embodiments, resources that are to be used to perform the operations
of one or more other services (e.g., services that help provide secure connectivity to resources at
client-owned or client-managed data centers outside the provider network, software container
services, file storage services, or database services) implemented at the provider network may also
be organized in one or more [VNs.

[0088] In FIG. 6a, three IVNs 605A, 605B and 605C are shown by way of example. [IVN 605A
is established on behalf of a client C1 of the VCS, and has a set of owner-selected networking
settings 606A applicable to (a) a set 607A of standardized (non-micro VM) compute instances and
(b) a set 609A of micro VMs. IVN 605B, established on behalf of a client C2, includes a set of

30

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363
micro VMs 609B and associated settings 606B; IVN 605B does not include any standardized

compute instances. [IVN 605C may have been established on behalf of another network-accessible
service (termed an intermediary service) in the depicted embodiment, such as a software container
service. [IVN 605C may include some number of standardized compute instances of set 607B, as
well as a set of micro-VMs 609C set up for the containers of clients of the container service. For
example, one or more software containers may be established within a given micro-VM of set
609C. Network settings 6306C for IVN 605C may be selected by the intermediary service in the
depicted embodiment. Some IVNs (not shown in FIG. 6a) may not include any micro VMs in
various embodiments.

[0089] FIG. 6b illustrates three types of communication channels that may be set up for
compute instances such as micro virtual machines, according to at least some embodiments. In the
depicted embodiment, micro VMs 660A, 660B and 660C have been established at a virtualization
host 650 (similar in features and capabilities to virtualization hosts 155 of FIG. 1). At least micro
VM 660A has been established on behalf of a particular customer or client Cl1, e.g., by an
intermediary service such as a software container service or by C1. The micro VM 660A may run
applications, one or more software containers, and/or an operating system that is to communicate
with three types of entities, and may therefore need three types of networking configuration or
channel setup in the depicted embodiment.

[0090] To exchange messages with administration or control plane components 670 of an
intermediary service, a communication channel designated as type CCT #1 may be established for
micro VM 660A in the depicted embodiment. For data-plane traffic exchanged with other entities
(such as other micro VMs or compute instances instantiated at other hosts) 680 within one or more
IVNs, a channel of type CCT #2 may be established in some embodiments. Finally, for intra-
virtualization-host network traffic with other micro VMs such as 660B and 660C, a third type of
channel designated as type CCT #3 may be used in at least some embodiments. As described below
in further detail, multiplexed virtual network interfaces may be employed for CCT #1 and CCT #2
in at least some embodiments. Local communication channels, e.g., memory buffer or queue-based
channels that do not require the use of networking resources (such as virtual network interfaces)
may be used for the third type of channel (CCT #3) in at least some embodiments. Depending on
the virtualization control mode being used, one or more types of communication channels of the
kind shown in FIG. 6b may be at least partially set up in preliminary configuration operations in

various embodiments, before the micro VMs that use the channels are launched.

31

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

Virtual network interfaces

[0091] In various embodiments, virtual network interfaces (VNIs) (which may also be referred
to as “elastic network interfaces”) may be configured at a VCS, enabling some networking-related
attributes such as IP (Internet Protocol) addresses to be transferred relatively easily between
compute instances (including micro VMs) without necessarily reconfiguring physical network
cards. Such attribute transfers may be accomplished, for example, by detaching a virtual network
interface programmatically from one compute instance and attaching it programmatically to
another compute instance. FIG. 7 illustrates examples of attributes of virtual network interfaces
that may be configured for compute instances, according to at least some embodiments. As shown,
one or more VNIs such as 791A or 791B may be attached to (or detached from) a given compute
instance 790 (such as a micro VM) via programmatic operations 793, independently for example
of the specific hardware network interface cards (NICs) of the host at which the virtual machine
runs in the depicted embodiment.

[0092] A generalized list of example attributes 795 of any given VNI 791 is shown in FIG. 7,
not all of which may necessarily be used for all VNIs in at least some embodiments. Only a subset
of the attributes or properties shown in FIG. 7 may be implemented in some embodiments, and not
all the implemented attribute fields may have to be populated (i.e., some of the attributes may be
left blank or null). Respective records comprising fields/entries containing the attributes 795 of
various VNIs may be stored in a persistent metadata store in some embodiments, e.g., a store that
is accessible from various control-plane or administrative components of the provider network or
the VCS.

[0093] When a new VNI is created, e.g., in response to a programmatic request from a client
of a virtualized computing service which supports VNIs, a new interface identifier 701 may be
generated for it in the depicted embodiment. In some implementations, a description field 702 may
be filled in by the client that requested the creation of the VNI, e.g., “Interface 554 for client group
CG-X of container service”. As discussed earlier, a VCS within which the VNI is to be used may
comprise a plurality of isolated virtual networks (IVNs) in some embodiments. The attributes 795
may contain an [IVN identifier 703 (indicating an IVN within which the VNI is configured) in such
embodiments.

[0094] Any of several types of network addressing-related fields may be included within the
set of attributes of a VNI in different embodiments. One or more private IP addresses 705 may be
specified in some embodiments, for example. Such private IP addresses, also referred to herein as
non-public addresses, may be used internally for routing within a provider network, and may not

be directly accessible from outside the provider network (or from within other IVNs) in various

32

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

embodiments. In some embodiments, at least some non-public IP addresses associated with a VNI
may not be IP addresses; that is, addressed formatted according to a proprietary protocol of the
provider network may be used, or addresses formatted according to a different public-domain
protocol may be used. In general, zero or more public IP addresses 715 may also be associated
with VNIs in some embodiments; these IP addresses may be visible outside the provider network,
e.g., to various routers of the public Internet or peer networks of the provider network. One or
more subnet identifiers 725 (e.g., expressed in Classless Inter-Domain Routing or CIDR format)
may be included within attributes 795 in some embodiments, such as identifiers of subnets set up
by a client within an IVN in which the VNI is to be used. In one embodiment an identification of
a Domain Name Server (DNS) responsible for propagating address(es) associated with the VNI,
or other DNS-related information 427, may be included in the attributes 795 as well.

[0095] In some embodiments the attributes 795 may include security-related properties 735.
Some provider networks may allow users to specify rules, including for example firewall-related
rules, for the types of incoming and/or outgoing traffic allowed at compute instances to which a
VNI may be attached. Such rules may be termed “security groups” and identified via security
group(s) fields 745. Various port and protocol restrictions may be enforced using such rules in
some embodiments, and multiple rules may be associated with each VNI. For example, a client
may use security groups to ensure that only HTTP and HTTPs outgoing or incoming traffic is
allowed, to limit the set of TCP or UDP ports to which traffic is permitted, to filter incoming and
outgoing traffic according to various policies, and so on. In some implementations an attacher list
747 may be specified, indicating which users or entities are allowed to request attachments of the
VNI In some cases a separate detacher list may be used to specify which entities can detach the
VNI, while in other cases a single list such as attacher list 747 may be used to identify authorized
attachers and detachers. The collection of users or entities that are allowed to set or modify IP
addresses (e.g., public IP addresses 715 and/or private IP addresses 705) of the VNI may be
provided in IP address setter list 749, and the set of users or entities that own (or can modify
various other fields of) the VNI may be specified in owner/modifier field 753 in some
embodiments. For example, an owner/modifier identified in field 753 may be permitted to change
the attacher list 747 or the IP address setter list in some implementations, thus changing the set of
entities permitted to attach or detach the VNI or modify its IP address(es). While the term “list”
has been used for fields 747, 749, and 753, logical data structures other than lists (such as arrays,
hash tables, sets and the like) may be used to represent the groups of entities given various security

privileges, roles and/or capabilities in various embodiments.

33

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

[0096] In some embodiments, users of the virtualized computing service of a provider
network may be allowed to terminate compute instances (Cls), including micro VMs,
programmatically. For example, a client may set up Cls, attach VNIs to the Cls, run a desired set
of computations on the Cls, and then issue a request to terminate the instances when the desired
computations are complete. In such embodiments, a “DeleteOnTerminate” setting 751 may be
used to specify what happens to attached VNIs when a CI is terminated. The DeleteOnTerminate
setting may be used in a similar manner in some embodiments in which Cls are terminated based
on reaching a maximum lifetime threshold. If DeleteOnTerminate is set to “true” for a VNI
attached to the CI being terminated, the VNI may be deleted (e.g., a persistent record comprising
attributes 795 for the VNI may be removed from the repository in which it was being stored). If
DeleteOnTerminate is set to “false”, the VNI may be retained, so that for example it may be
attached again to some other CI or other computing platforms. In one embodiment, when a VNI is
attached to a CI, an attachment record separate from the VNI attributes 795 may be created to
represent that relationship, and the DeleteOnTerminate property may be associated with the
attachment record instead of or in addition to being associated with the VNI itself. In such an
embodiment, the VNI’s attributes 795 may include a reference or pointer to the attachment record
or records for each of the attachments in which the VNI is currently involved, and different values
of “DeleteOnTerminate” may be set for each attachment record.

[0097] In one embodiment, the attributes 795 may contain routing-related information such as
an indication 765 of whether a source and/or destination check is to be performed for network
packets transmitted to a compute instance to which the VNI is attached. If the source/destination
check setting is set to “false” or “off”, routing decisions may be made based on a packet’s source
and destination IP addresses, e.g., the packet may be forwarded from one subnet to another; and if

29

the setting is “true” or “on”, the computing platform may not perform routing in some
embodiments. Thus the source/destination field 765 may be used in some embodiments to control
whether a CI to which the VNI is attached performs routing or gateway functions on packets for
which it is not the final destination, or whether it ignores such packets. Other types of routing-
related information, such as route table entries, may also or instead be included in attributes 795
in other embodiments. Billing-related information may be included in attributes 4795 in some
implementations, identifying for example the entity or user to be billed for network traffic
associated with the VNI

[0098] The interface status field 768 may be used to indicate a current state of the VNI - e.g.,

whether the VNI is “available”, “disabled”, or “in-repair”. Similarly, the attachment status field

769 may be used to indicate whether the VNI is currently attached, detached or in the process of

34

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

being attached or detached in some embodiments. In one implementation, as described above, a
record of an attachment may be created at the time the corresponding attachment operation is
performed, and an identifier or identifiers of the current attachments of the VNI may be stored in
attachment id field 771. Identifiers of the CIs to which the VNI is currently attached may be stored
in attached-to instance field 773, and the user or entity that requested the attachment may be
identified via attachment owner field 775 in some embodiments. In one embodiment, a list of
identifiers of the physical network interface card (NIC) or NICs currently usable for traffic directed
to/from the IP addresses of the VNI may be maintained, e.g., in the form of a MAC address(es)
field 777. In some implementations, monitoring information 779, such as statistics about the
amount of traffic flowing to or from the IP addresses of the VNI, may also be retained among
attributes 795. In at least one embodiment in which VNI multiplexing or parent-child hierarchies
are supported, pointers 781 to child or branch VNIs of the VNI may be included. Other fields not
shown in FIG. 7 may be included in various embodiments.

[0099] In one embodiment, some of the fields shown in FIG. 7 may be replaced by references
or pointers to other objects. For example, security information for a VNI may be stored in a
separate security object, and the attributes 795 may include a reference to the security object.
Similarly, each attachment of a computing platform to a VNI may be represented by an attachment
object, and the attributes 795 may include pointers to the appropriate attachment objects in some
implementations.

[00100] In some embodiments, virtual network interfaces may be configured in a trunk-branch
or parent-child relationship, such that at least some resources associated with the trunk or parent
VNI can be shared among the branches or children while still providing the benefits of virtualized
network configuration to the compute instances to which the branch/child VNIs are attached.
These types of VNI relationships may be referred to as multiplexed VNIs in some embodiments.
Because of the sharing of resources, such configurations may facilitate greater scalability with
respect to the number of network connections that can be sustained at a given virtualization host
or a group of virtualized hosts. FIG. 8 illustrates an example of a multiplexed virtual network
interface, according to at least some embodiments. A parent or trunk VNI 810 may be configured
at a virtualization host first, and then some number of child or branch VNIs 820 (e.g., 820A —
820K) may be programmatically associated or attached to the parent VNI 810 as needed. For
example, as discussed in further detail below, in some embodiments, if there are K micro VMs
running concurrently at a virtualization host, at least K+1 child/branch VNIs may be associated
with a single parent/trunk VNI, with one child VNI being used for the data-plane traffic of each

micro VM, and one child VNI being shared for control-plane traffic. In at least some embodiments

35

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363
in which PCI is being used for the virtualization offloading cards, only the parent/trunk VNI may

require a software PCI device object to be created at the virtualization host, while the child/branch
VNIs may not require such objects of their own. As such, in embodiments in which the total
number of PCI devices permitted by the operating system (within which CPA and the VIP
processes of the kind discussed in the context of FIG. 1 are launched) is limited, the use of the
multiplexed VNIs may help avoid operating system-imposed networking bottlenecks.

Example virtualization offloading card

[00101] FIG. 9 illustrates example subcomponents of an offloaded virtualization management
component card which may be employed at virtualization hosts, according to at least some
embodiments. As mentioned earlier, such a card may also be referred to as a virtualization
offloading card in various embodiments. As shown, offloaded virtualization management
component (OVMC) card 902 (similar in features and capabilities to OVMC 176 of FIG. 1) may
comprise a pair of systems-on-chip (SOCs) 915 and 916 with respective sets of offloading
processors 917A and 917B (as distinguished from the primary CPUs of the virtualization host at
which the OVMC card is attached and used). One of the SOCs (e.g., 915) may be used for a boot
controller, while the other may be used primarily or specifically for network processing offloading
in the depicted embodiment. Other distributions of virtualization-related responsibilities may be
implemented in different embodiments. A secure boot ROM 925 may be used for an initial phase
of a multi-phase boot operation of the virtualization host itself by the boot controller in some
embodiments. The OVMC card 902 may also include a security module (such as a trusted platform
module (TPM)) 930, which may also be used extensively during the boot procedure and/or for
post-boot state verification in some embodiments.

[00102] In addition, the OVMC card 902 may comprise a number of storage, power and
connectivity-related components in various embodiments. For example, one or more flash
devices/interfaces (or SSDs) 935 may be incorporated within the offload card. These devices may
be used, for example, to store firmware and/or software corresponding to various virtualization
management components, compute instance components, and the like. PCI-E interfaces 940 may
be used for communicating with processes such as the CPA and the VIPs and/or for
communication among the SOCs in various embodiments. In other embodiments, other types of
interconnects and corresponding interfaces may be used, such as variants of the QuickPath
interconnect (QPI) or the UltraPath interconnect (UPI). Network interfaces 745 may be used for
communications between the virtualization manager and the control plane of the virtualized
computing service in some embodiments, as well as for data-plane communications between the

compute instances launched on the host and various network endpoints in at least one embodiment.

36

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

The OVMC card 902 may also comprise a power source 960 in some embodiments, e.g., sufficient
to keep the OVMCs working for at least some targeted number of hours or days in the event of
extended power failures. In some implementations, a supercapacitor-based power source may be
used.

[00103] Separate SOCs on the same card may not be required for the offloaded virtualization
manager components in some embodiments. For example, a single SOC capable of performing the
boot controller functions as well as network offloading tasks may be utilized in one embodiment.
In other embodiments, a separate card may be used for performing network processing tasks than
is used for the boot controller. In some embodiments, respective OVMC cards may be used for
data plane versus control plane traffic to/from a virtualization host. The set of offload card
components shown in FIG. 9 is not intended to be comprehensive; several other components, such
as timers and the like, may be incorporated at the card in some embodiments. In various
implementations, at least some of the components shown in FIG. 9 may not be required.

Example networking configuration of virtualization host

[00104] FIG. 10 illustrates example aspects of networking configuration at a virtualization host
at which multiple compute instances such as micro virtual machines may be instantiated, according
to at least some embodiments. In the depicted embodiment, virtualization host 1010 (which may
be similar in features and capabilities to the virtualization hosts shown in earlier figures including
FIG. 1) comprises a control plane agent (CPA) or administrative agent 1030 and two micro VMs
1032A and 1032B by way of example. The micro VMs may be implemented as threads within
respective virtualization intermediary processes launched at a stripped down version of an OS
1020 in some embodiments, and the control plane agent 1030 may be implemented as another
process within OS 1020, as discussed earlier in the content of FIG. 1. In other embodiments, the
micro VMs and/or the administrative agent may be implemented as processes or threads launched
within a bare metal compute instance.

[00105] Inthe depicted embodiment, networking configuration operations may potentially have
to be performed for network messages of at least three types: (a) messages between the CPA 1030
and the VCS control plane (b) data-plane messages between the micro VMs 1032 and other entities
in the IVNs of customers on whose behalf the micro VMs have been set up and (c) control plane
messages between an intermediary service, such as a container service, and the micro VMs, which
may be used to implement features of the intermediary service (e.g., software containers may be
set up at the micro VMs, which may have to interact with an intermediary container service). The

volume of traffic expected for the three types of messages may differ (e.g., fewer control plane

37

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

messages may be expected to flow than data plane messages) in at least some embodiments, and
isolation may be required between the different types of messages.

[00106] In order to efficiently enable at least these three types of message flows, a number of
virtual network interfaces (VNIs) configured in a parent-child tree (or trunk/branch) arrangement
may be established in the depicted embodiment using the offloaded virtualization management
component (OVMC) card 1070. A single parent or trunk VNI (PVNI) 1072, may be created for
the virtualization host, and child or branch VNIs (CVNIs) 774 may be dynamically attached to or
detached from the parent VNI as needed to accommodate varying numbers of micro VMs (and/or
other types of compute instances) and different types of traffic.

[00107] For VCS control plane traffic, the PVNI 1072, which may be attached
programmatically to OS 1020 (or to a bare-metal instance of which OS 1020 is a component) may
itself be used in the depicted embodiment. The PVNI 1072 may be created during initialization of
the virtualization host 1010 in at least some embodiments, e.g., when the virtualization host 1010
is first set up as one of the hosts to be managed by a VCS control plane cell. In at least one
embodiment a PVNI 1072 may be set up as part of the preparatory configuration operations for a
group of compute instances (e.g., in response to a provision VirtualizationHosts request of the kind
discussed in the context of FIG. 4, or in response to a prepareForLaunches request of the kind also
discussed in the context of FIG. 4). In some embodiments in which a variant of Linux or a similar
operating system is used for OS 1020, the PVNI 1072 may appear as the “eth0” software
networking interface device (SNID) 1034Z in the default namespace of the virtualization host
1070. In one implementation, the default namespace of host 1070 may comprise the ethO interface
linked to the PVNI, a loopback interface and a default route pointing to the PVNI 1072. In at least
one embodiment, security settings on the PVNI may restrict access to only allow VCS control
plane traffic, thereby isolating this type of traffic from data-plane traffic or control-plane traffic
associated with services other than the VCS itself. The PVNI’s source/destination check flag (e.g.,
similar to flag 765 of FIG. 7) may be turned off to allow the PVNI to accept traffic destined for all
attached CVNIs. The PVNI’s lifetime may be coupled closely with that of the OS 1020 (or a bare
metal instance to which the PVNI is attached) in some embodiments — e.g., the PVNI may remain
configured as long as the OS 1020 is configured for use to instantiate compute instances.

[00108] With respect to data plane traffic between the micro VMs and client IVNs, one CVNI
per micro VM may be programmatically associated with the PVNI 1072 in the depicted
embodiment. For example, for traffic 1015C between a client C1’s IVN 1009 and micro VM
1032A established on behalf of client C1, CVNI 1074A may be configured. Similarly, for traffic
1015D between micro VM 1040B, established on behalf of client C2, and client C2°s IVN 1011,

38

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363
CVNI 1074B may be attached to PVNI 1072. Note that micro VMs of different clients C1 and C2

may only be permitted in a subset of virtualization control modes, such as the shared managed
mode (SMM) in some embodiments. Each CVNI used for data-plane traffic to client IVNs (such
as CVNI 1074A or 1074B) may be connected to a respective “macvtap” interface in a per micro
VM namespace in some implementations. One or more network addresses (e.g., private and/or
public IP addresses) address from within the client IVN’s range of network addresses may be
assigned to each IVN-associated CVNI in at least some embodiments, e.g., from the associated
client IVN using DHCP.

[00109] For control plane traffic 1015B between an intermediary service 1007 and a plurality
of the micro VMs, Port Address Translation (PAT) may be used in conjunction with a single shared
CVNI 1074C in the depicted embodiment. A shared PAT namespace 1040 may be established,
with an associated DHCP server 1050, a bridge 1051 (e.g., a virtual networking device to which
other software network devices can be linked, which may be referred to as a “Linux bridge” in
some embodiments) and [PTables 1052 or a similar mechanism for implementing port translation.
In at least some embodiments, at least a pair of software network interface devices 1034 may be
configured at a micro VM, one for the data plane traffic to the client IVN, and another for the
control plane traffic to the intermediary service. For example, in an embodiment in which a variant
of Linux or a similar operating system is used for OS 1020, an SNID 1034B appearing as ethO at
the micro VM 1032A may be linked to bridge 1051, while SNID 1034A appearing as ethl may be
linked to CVNI 1074A. Similarly, with respect to micro VM 1040B, CVNI 1074C may be
associated with one SNID 1034D, while another SNID 1034C linked to bridge 1051 may be used
for traffic with the intermediary service control plane 1007. A respective “tap” interface (a link
layer simulation device), slaved to the bridge 1051, may be configured within the PAT namespace
for individual ones of the micro VMs 1040 in some embodiments. Netfilter [PTables rules may be
used to implement PAT, so that the traffic is sent to the correct micro VM in at least one
embodiment. The DNCP server 1050 may, for example, assign respective private IP addresses to
the micro VMs for the control plane traffic. The CVNIs 1074 may each be instantiated in some
embodiments as VL AN interfaces on the PVNI. The use of Port Address Translation as described
above may help reduce the total number of CVNIs that have to be associated with the PVNI 1072,
and may thus also help support large numbers of micro VMs on a given host.

[00110] In at least some embodiments, one or more aspects of the networking configuration of
a virtualization host may differ from the example networking configuration shown in FIG. 10. For
example, in some embodiments, instead of using a trunked or hierarchical set of VNIs, a set of

VNIs that are not hierarchically linked (i.e., all PVNIs) may be used. In one embodiment, PAT

39

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

may not be employed in the manner discussed above. Different networking virtualization protocols
may be used in various embodiments — e.g., instead of using VLAN, GRE (Generalized Routing
Encapsulation) may be used in one embodiment. In some embodiments, a virtualization host 1010
may be provisioned with more than one OVMC card 1070 — e.g., one OVMC card for control
plane or administrative network traffic and another OVMC card for data plane traffic. In one such
embodiment, an OVMC card used for control plane traffic may not necessarily utilize a
parent/trunk VNI

[00111] In some embodiments, a special “I/O intermediary” micro VM may be established to
handle I/O requests on behalf of other micro VMs at the virtualization host — e.g., the other micro
VMs may funnel their networking and/or persistent storage read/write requests to the 1/O
intermediary micro VM, which may perform at least some aspects of I/O virtualization. In contrast
to the micro VMs established on behalf of specific customers, such an I/O intermediary micro VM
may be persistent in at least some embodiments — e.g., it may remain in existence as long as the
virtualization host is being used to respond to micro VM launch and terminate requests. In some
embodiments, multiple I/O intermediary micro VMs may be instantiated if needed, e.g., if the total
networking and storage request rates of the set of client-requested micro VMs exceeds a threshold.

Networking configuration workflow example

[00112] FIG. 11 is a flow diagram illustrating aspects of operations that may be performed to
prepare a networking configuration for a compute instance before the compute instance is
launched, according to at least some embodiments. As shown in element 1101, in some
embodiments, a parent VNI and a control plane agent (CPA) may be configured at a virtualization
host during the initialization of the virtualization host, e.g., in response to a request to provision
virtualization hosts or prepare for launches of compute instances such as micro virtual machines.
The host may be identified/selected based at least in part on the virtualization control mode being
used on behalf of the client in at least some embodiments.

[00113] A client of the VCS may transmit the equivalent of a “launchComputelnstance” request
or command to the VCS control plane (element 1104) in the depicted embodiment. The request
may indicate various desired properties of the compute instance (CI), such as one or more network
addresses, an indication of the subnet(s) of one or more IVNs within which the CI is to be
configured, security metadata, a flag indicating whether a public IP address is to be assigned to the
CI, the expected or maximum permitted inbound and/or outbound message rates, and so on in
various embodiments. In some implementations in which a CI is being established by an

intermediary service such as a container service, the launch command may indicate respective sets

40

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363
of networking properties for two types of traffic — the data plane traffic of the CI, and the control

plane traffic with the intermediary service.

[00114] The client’s request may be routed to a particular cell of the VCS control plane in
various embodiments. One or more components of the cell (e.g., a request processing component)
may perform additional network configuration actions (element 1107), e.g., prior to transmitting a
request to the CPA. For example, a child VNI specific to the micro VM, to be used for data plane
traffic of the CI, may be established and associated with the parent VNI if needed. In some
embodiments, such child VNIs may be set up in response to a prepareForLaunches request of the
kind discussed earlier (e.g., prior to the launchComputelnstance request). At least in some
embodiments, prior to creating a new child VNI, the VCS control plane may first ascertain whether
any existing child VNIs can be re-used. In one implementation, reference counts may be stored for
each child VNI, indicating the number of CIs attached to the child VNI, and if the reference count
of a child VNI goes down to zero, the child VNI may be re-used. In at least one embodiment,
instead of using a separate child VNI for each CI’s data plane traffic, a given child VNI may be
used concurrently for several different Cls, in which case the VCS control plane may simply
identify an appropriate in-use child VNI for the to-be-launched CI instead of creating a new child
VNI The VCS control plane may then transmit the equivalent of a “setupNetworkForCI” request
to the CPA at the virtualization host selected for the client’s CI in some embodiments for further
stages of network configuration to be initiated at the host itself. In various embodiments, such a
request may be transmitted by invoking a control plane API implemented by the CPA, which may
differ from the APIs implemented by the virtualization intermediary process (VIP) used for the
CIs themselves. The request sent to the CPA may, for example, include VLAN identifiers for the
child VNI(s) identified/created for the new CI to be launched, the SNID names/IDs for the child
VNI(s), and MAC addresses of the parent VNI and the child VNI(s) in some embodiments.
[00115] In response to the “setupNetworkForCI” request, the CPA may issue commands to
create the necessary software network interface devices (the equivalent of “createSNID”
commands) to local interface device managers at the virtualization host (element 1110). In some
embodiments in which the Cls are being used for instantiating software containers, the local
software network interface device managers may include plugins implementing the Container
Network Interface or CNIL In one embodiment, multiple SNIDs may be set up in parallel. After
the requested devices are created, their identifiers/names may be provided to the CPA (element
1113). In some embodiments, the CPA may inform the VCS control plane that the requested
network configuration operations have been completed for the CI (element 1116). When the CPA

launches a virtualization interface process (VIP) and issues a command via the VIP’s API to launch

41

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363
a CI, information about the objects created for the CI may be passed on to the VIP (element 1119),

and from the VIP to the thread launched to implement the CI. In various embodiments, the
virtualization control mode being used may influence the extent to which the kinds of networking-
related configuration operations indicated in FIG. 11 can be performed in advance of the actual
launch of the VIP thread used for the compute instance. For example, in one embodiment, if the
dedicated power user mode (DPM) is used, only operations corresponding to element 1119 may
have to be performed when the CI is actually launched, with the remaining operations performed
in advance.

Example storage configuration options

[00116] Persistent storage from a variety of sources may be used singly or in combination for
compute instances such as micro VMs in some embodiments. FIG. 12 illustrates example
persistent storage options for micro virtual machines and/or other types of compute instances,
according to at least some embodiments. As shown, the options 1202 may include on-
virtualization-host storage devices 1205, network-attached volumes 1215 managed by an
intermediary service such as a software container service, network-attached volumes 1225
managed by the VCS, and/or hybrid storage devices 1235 which combine local and network-
attached storage for the micro VMs.

[00117] In some embodiments, the locally attached on-virtualization host storage devices 1205
may include rotating disks and/or solid state drives (SSDs); in other embodiments, only rotating
disks may be used, or only SSDs may be used. Similarly, the network-attached volumes 1215 or
1225 may be set up using any desired type of physical storage device in various embodiments,
including rotating disks, solid state drives, and the like. The locally attached storage may provide
faster access (e.g., read or write I/O latencies) than the network-attached volumes in some
embodiments. The network-attached volumes, which may for example present block device
interfaces, may provide higher fault tolerance and availability than the local storage in some
embodiments. The particular combination of storage devices that are used for a given micro VM
may depend on I/O requirements indicated by the client in various embodiments. In some
embodiments, the local and network attached storage may be combined to configure the storage
accessible from a given micro VM — e.g., an array configuration, similar in concept to some types
of RAID (redundant arrays of inexpensive disks) architectures, using both local and network-
attached storage devices may be used to form a hybrid storage device 1235. In at least some
embodiments, a default storage device type (e.g., locally-attached SSDs) may be used if a client
does not indicate specific storage requirements for a micro VM. In at least some embodiments,

e.g., depending on the virtualization control mode in use, the storage devices for a given micro

42

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363
VM may be initialized/prepared by the control plane agent (CPA) as part of the pre-launch

configuration, and passed as parameters to the VIP in the request to launch the micro VM.

Shared tiered storage

[00118] As mentioned earlier, in some embodiments a given virtualization host may be used
for thousands, or tens of thousands, of compute instances (CIs) such as micro VMs. In many cases,
with respect to storage requirements, many of the CIs may be similar — e.g., they may be booted
from similar machine images, they may access similar operating storage modules in a read-only
manner, and so on. To help instantiate very large numbers of micro VMs on a single host, a shared
tiered hierarchy of storage may be implemented in some embodiments, with at least some storage
objects or devices being shared by multiple micro VMs, thereby reducing the overall storage
requirements.

[00119] FIG. 13 illustrates an example tiered hierarchy of persistent storage that may be
employed for micro virtual machines and/or other types of compute instances, according to at least
some embodiments. In the depicted embodiment, a virtualization host 1302 (which may be similar
in features and capabilities to virtualization hosts shown in earlier figures including FIG. 1) may
be used for a number of micro VMs that can be subdivided into groups with at least some overlap
in the set of storage objects accessed. In the simplified example depicted, six micro VMs 1350A
— 1350F are shown, divided into three groups based on storage access similarities. Group A
comprises micro VMs 1350A and 1350B, Group B comprises micro VMs 1350C and 1350D,
while group C comprises micro VMs 1350E and 1350F.

[00120] A tiered micro VM storage hierarchy 1307 may comprise a base tier comprising storage
space section 1310 for data shared among all micro VMs at the host 1302, per-group storage
sections 1320A, 1320B and 1320C, and per-micro VM storage sections 1330A — 1330F in the
depicted embodiment. A given micro VM 1350 may be granted access to the entire storage section
1310, the particular shared storage space section 1320 for the group to which the micro VM
belongs, and a private section 1330 to which no other micro VM is granted access. For example,
the storage accessible by micro VM 1350A may comprise private section 1330A, group A shared
section 1320A, and the globally shared section 1310. Similar combinations of storage sections
from all three layers may be configured for access by other micro VMs. The tiered hierarchy may
be defined at various levels of abstraction in different embodiments — e.g., in some embodiments,
the sections 1310, 1320 and 1330 may comprise respective portions of file systems, while in other
embodiments, at least some of the sections may comprise portions of volumes, or whole volumes.

Any desired types of storage devices may be used for the sections in various embodiments — e.g.,

43

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

local storage, network-attached storage, or hybrid storage of the kind discussed in the context of
FIG. 12 may be employed.

Machine image size reduction and caching

[00121] In some embodiments, a VCS may implement one or more optimization techniques or
tools related to the machine images that are used for launching compute instances such as virtual
machines. FIG. 14 illustrates an example of a workflow involving the use of a machine image size
optimizer tool that may be provided to clients by a virtualized computing service to help accelerate
compute instance launches, according to at least some embodiments.

[00122] As shown, in some embodiments a baseline machine image 1410 may be generated by
a client of the VCS, e.g., by combining an off-the-shelf or standard machine image 1405 with a
set of client-selected additional modules/libraries suitable for the application(s) that the client
wishes to run at the VCS. In at least some embodiments, it may sometimes be the case that the
baseline client-generated machine image 1410 contains a number of modules that are not used
during the execution of the client’s applications. In order to help the client reduce the size of the
machine image, one or more usage analysis tools 1420 may be provided by the VCS in some
embodiments, which can identify a transitive closure of the actually-used modules 1425 of the
baseline machine image 1410. The VCS may, for example, provide access to a set of virtualization
hosts at which instrumented compute instances (e.g., compute instances using low-level module
invocation tracing instrumentation or the like) can be run to identify a list of modules at various
levels of the software stack, including the kernel, shared libraries etc., that are utilized during one
or more tests or benchmarks of the applications in some embodiments. A list of all the
modules/packages included in the machine image may be compared to the list of
modules/packages that were actually used, thereby identifying the set of modules/packages that
are not utilized in such embodiments. The usage analysis tools 1420 may, for example, be part of
a suite of machine image size optimization tools accessible from the VCS in some embodiments.

[00123] A VCS-provided image size optimizer tool 1430 may be deployed to eliminate at least
some of the unused kernel components, shared libraries and/or application module from the
baseline image 1410 in the depicted embodiment, and generate an optimized machine image 1435
that is smaller than the baseline image but retains all the functionality needed for the client’s
applications. Such an optimized image 1435 may then be used at virtualization hosts 1440 of the
VCS to implement compute instances for the client in the depicted embodiment.

[00124] Other machine image-related optimization techniques may be employed in at least
some embodiments, e.g., in addition to or instead of utilizing the image size optimization technique

illustrated in FIG. 14. By default, numerous machine images, to be used for different types of

44

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

compute instances or micro VMs (mVMs), may be stored at a VCS control plane repository in one
embodiment. Several (or all) of the images may share common files and/or other storage objects
in some embodiments — that is, an overlap may exist between the set of storage objects included
in different images. To help speed up the process of launching a compute instance, while still
keeping the total amount of storage being used for the images within reasonable limits, in some
embodiments common portions of one or more boot images may be cached ahead of time at a
virtualization host, with the final image being constructed by combining cached portions with
portions retrieved from a VCS repository.

[00125] FIG. 15 illustrates an example caching technique for portions of boot images used for
micro virtual machines and/or other types of compute instances, according to at least some
embodiments. In at least some embodiments, such caching may be done in advance of receiving
launch requests, e.g., as part of the preparatory configuration operations performed in response to
requests similar to the provisionVirtualizationHosts or prepareForLaunches requests discussed
earlier. In the depicted embodiment, a number of different boot images may be used for respective
categories of micro VMs (e.g., categories which differ from one another in resource usage, one or
more layers of a software stack, etc.), such as categories 1550A — 1550F. A cache 1510 in local
storage of a virtualization host may be used for common image portions 1520A, 1520B and 1520C
as shown. Individual ones of the common image portions 1520 may be combinable with category-
specific portions 1530 (e.g., one of 1530A — 1530F) that are stored at a VCS repository to obtain
the to-be-booted final image. In some embodiments, the control-plane agent process 1567 at the
virtualization host may store a set of image combination rules 1569, which indicate the specific
repository-based portions 15130 that are to be combined with a particular cached portion 1520 to
assemble the final micro VM image 1570 for a particular request. For example, as shown, the
specific image portion 1530D may be combined by the CPA 1567 with cached common image
portion 1520B to generate the final image 1570 for a particular request from a client.

Example virtualization intermediary process threads

[00126] As mentioned earlier, in some embodiments individual compute instances including
micro VMs may be implemented using a child thread of a virtualization intermediary process (VIP)
launched by a control plane agent (CPA) at a virtualization host. FIG. 16 illustrates an example
collection of threads which may be configured at a swappable virtualization intermediary process
at a virtualization host, according to at least some embodiments. As shown, a swappable VIP 1610
may comprise (among others), an API handler thread 1620, a micro VM thread 1630, a metrics
collection and propagation thread 1640, a metadata provider thread 1650 and/or other

administrative threads 1660 in the depicted embodiment.

45

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363
[00127] When the VIP is launched, e.g., in response to a command issued by a CPA, at least

the API handler thread 1620 may be instantiated in the depicted embodiment, enabling the VIP to
receive commands/requests for various operations including launching/terminating a micro VM.
In at least some embodiments, a 1:1 relationship may exist between micro VMs and VIPs, and the
VIP may be terminated when a request to terminate the micro VM is received (e.g., via the API
handler thread). The micro VM thread 1630 may comprise its own operating system 1631 and a
software stack comprising one or more applications, software containers and the like as indicated
in element 1632. The metrics collection and propagation thread 1640 may gather various kinds of
measurements pertaining to the micro VM and provide them to the VCS control plane, e.g. in
response to command issued from the CPA via the API handler thread in some embodiments. In
some embodiments, such measurements may be included in the data provided to a client regarding
resource usage of the current set of compute instances at a virtualization host, e.g., in response to
a request similar to the getCIResourcelnfo request discussed in the context of FIG. 5. The
measurements may be helpful in making oversubscription decisions in various embodiments, e.g.,
by the VCS control plane and/or by a client when the dedicated power-user mode of virtualization
control is in use.

[00128] The metadata provider thread 1650 may be sent various elements of metadata
pertaining to the micro VM by the CPA in the depicted embodiment, such as an identifier of the
machine image used for the micro VM, block device mappings of the micro VM, an IP hostname
of the micro VM, information about the authorization roles (if any) associated with the micro VM,
scripts that may have been used when launching the micro VM, networking configuration,
monitoring information (which may have been collected initially by the metrics thread 1640) and
so on. Such metadata may be accessed from the micro VM itself, e.g., even in the absence of
connectivity to entities outside the VIP, and may be used for example to troubleshoot problem
states, make configuration changes and the like. The VIP may also comprise one or more additional
components which enforce a set of I/O and networking rate limits 1621 in some embodiments,
throttling the I/O or network requests issued from the micro VM thread 1630 to ensure that the
micro VM does not exceed its expected quotas of resources. In at least some embodiments, as
discussed below, different rate limits may be enforced during respective phases of operation of a
micro VM - that is, rate limits with respect to be or more resources may not necessarily be kept
unchanged during the entire lifetime of a given micro VM. Early on in the lifetime of a micro VM,
for example, when initialization-related operations that may involve extensive communication
with external entities (such as a container service) are being performed, higher rates of I/O may be

permitted than later on in the lifetime of the micro VM.

46

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363
[00129] In some embodiments, VIPs with the kind of thread collection shown in FIG. 16 may

not be employed to instantiate micro VMs. Instead, a different process/thread collection which
also responds to a similar set of APIs invoked from a control plane agent, and generates a micro
VM thread or process with a similar level of isolation with respect to other micro VMs may be
employed in such embodiments.

Compute instance snapshots

[00130] Insome embodiments, state information of a micro VM or other compute instance (e.g.,
CPU state, memory state, device state of one or more I/O devices) etc. may be saved in the form
of a snapshot, and such snapshots may later be used as the starting points for instantiating other
compute instances, which may be referred to as clones of the original compute instance. A compute
instance whose state is saved in the form of a snapshot may be referred to as a source compute
instance in various embodiments. Because the saved state information may include the results of
some partially (or fully) completed configuration operations, the clones may not need to re-
perform at least some configuration operations, so the overall time taken by the clones to start
performing their application-level tasks may be reduced as a result of using the snapshots as
starting points.

[00131] FIG. 17 illustrates examples of the generation of snapshots from source compute
instances to help shorten the time taken for configuration operations at cloned compute instances,
according to at least some embodiments. Along a lifetime timeline 1701 of a source compute
instance, a set of common initialization steps 1705 (that are likely to be required for other compute
instances launched in the future) may be followed by instance-specific configuration steps 1708
(that are not likely to be replicated exactly for other compute instances). A snapshot 1710 may be
generated after the common initialization steps are performed, and before the instance-specific
configuration operations are performed in at least some embodiments. The execution of the source
compute instance may be paused in various embodiments before the snapshot is saved to a
repository, and the execution may be resumed after the snapshot has been generated. The snapshot
1710 may be generated in response to a programmatic request from a VCS client in some
embodiments. In at least one implementation, a VCS client may insert a command, e.g., within a
configuration script or program being executed in the compute instance, to generate a snapshot at
one or more stages of the operations of the compute instance, such as between the two
configuration phases indicated along timeline 1701.

[00132] In at least some embodiments, the VCS may be able to automatically identify one or
more points during the lifetime of a compute instance at which snapshots that are likely to be

usable later can be generated. For example, along timeline 1751 of another source compute

47

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

instance, a first set of operations labeled Stage 1 operationsl 1725 may represent example tasks
that are likely to be re-performed at a large number of other compute instances, and a second set
of operations labeled Stage 2 operations 1735 may be likely to be re-performed at a smaller number
of other compute instances. A component of the VCS control plane may automatically identify
respective snapshot generation points between Stage 1 and Stage 2, and also between Stage 2 and
Stage 3 in the depicted embodiment. Such detection may, for example, be based on a client-
requested analysis by the VCS control plane of configuration and/or application steps performed
at numerous compute instances in various embodiments. In effect, in such embodiments, the VCS
may (if requested, or by default) identify commonalities in the operations performed at a set of
compute instances, and insert snapshot generation operations/instructions into the compute
instances at points selected based on the extent to which various sets of tasks before those points
are likely to be repeated in additional compute instances. A descriptor of a given snapshot such as
1730 or 1740 may be generated as well by the VCS in some embodiments, indicating the
operations whose results are incorporated into that snapshot. A client may submit a programmatic
request indicating the particular snapshot to be used for a cloned compute instance in various
embodiments, e.g., based on such descriptors (in the case where the VCS automatically generated
the snapshots) and/or based on the client’s knowledge of the state of the compute instance at the
time of the snapshot (in the case where the snapshots are generated in response to client
command/requests).

[00133] FIG. 18 is a flow diagram illustrating aspects of operations that may be performed at a
virtualized computing service to clone micro virtual machines from snapshots, according to at least
some embodiments. After a first set of preliminary configuration operations of the kind discussed
above are performed, a compute instance such as a micro VM (mVM1) may be launched at a
virtualization host with a virtualization offloading card in the depicted embodiment (element
1801). For example, using the type of process architecture discussed above, mVMI may be
implemented using a child thread of a virtualization intermediary process (VIP) to which an API
call is directed from a VCS control plane administrative agent in some embodiments. At least some
of the first set of configuration operations initiated prior to launching mVM1 may be performed
in response to one or more programmatic requests in some embodiments, such as the
prepareForLaunches request discussed earlier. In at least some embodiments, the set of operations
that can be performed in the first set may depend on the virtualization control mode (VCM) being
used.

[00134] In some embodiments, at least a portion of the configuration information of mVM1

(e.g., various aspects of storage and/or networking settings, initial rate limits, and the like) may be

48

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

saved as a snapshot (element 1804), e.g., in response to a “create VM Snapshot” request received
at the VCS control plane via a programmatic interface. Such a request may, for example, be
submitted by a client of the VCS in anticipation of needing to launch a large number of similarly-
configured micro VMs (“clones” of mVM1) in some embodiments. The snapshot may, for
example, be stored at a repository managed by the VCS control plane in some embodiments, at a
storage device other than the local storage of the virtualization host where mVM1 was launched.
In some embodiments, the snapshot may be generated based on an automated detection by the
VCS of a snapshot point during the lifetime of mVM]1; in such embodiments, a client-submitted
request to generate the snapshot at a client-selected snapshot point or stage of execution may not
be required.

[00135] One or more additional preparatory configuration operations (e.g., to set up software
devices etc.) for clones of mVM1 may optionally be performed at one or more virtualization hosts
in the depicted embodiment (element 1807). In some embodiments, such operations may be
performed in response to a “prepareToClone” request received via a programmatic interface. In at
least one embodiment, such configuration operations may not be required.

[00136] Inresponse to a request to clone mVMI1 (e.g., a “cloneVM” API call), a respective VIP
process may start up a child thread implementing the requested clone, using the saved snapshot
and/or the results of the additional preparatory configuration operations (if any) in the depicted
embodiment (element 1810). In some embodiments, the snapshot may comprise the configuration
of the VIP process as a whole, not just the configuration of the child thread implementing mVMI1.

Scalability factors

[00137] FIG. 19 illustrates a high level overview of factors that may collectively enable very
large numbers of compute instances to be launched at a single virtualization host, according to at
least some embodiments. Even as more and more performant hardware becomes available for
individual virtualization hosts, each host may have various types of resource constraints which
tend to limit the number of compute instances (such as micro VMs) that can be launched on it. In
order to alleviate or limit the impact of such constraints, a number of techniques may be employed
in various embodiments, so that for example thousands or tens of thousands of micro VMs may
be instantiated without saturating the utilization of various types of resources of the hosts.

[00138] A number of the techniques may help to alleviate overall constraints 1920 for several
types of resources, including, among others, memory and CPU resources of the virtualization
hosts. Such techniques may include, for example, the use of virtualization offloading cards to
reduce the virtualization-related overhead on the CPUs and memory of the host, the use of

oversubscription (which may be based on the virtualization control mode selected by the client) in

49

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

combination with swapping out micro VMs as needed, the use of streamlined versions of operating
systems from which support for rarely-used legacy devices has been stripped, and/or intelligent
placement algorithms that attempt to place combinations of micro VMs that differ in their
individual resource usage mixes. Intelligent placement may, for example, attempt to ensure that
no single type of resource becomes the bottleneck at a virtualization host while other types of
resources remain under-utilized — for example, the VCS may avoid scenarios in which a thousand
micro VMs with disk-intensive workloads are placed on the same host while the host’s CPUs
remain at a less than 20% overall utilization level. Intelligent placement may be implemented by
the VCS control plane in one or more virtualization control modes (e.g., SMM or DMM) in some
embodiments, while placement decisions for at least some compute instances may be made by the
client in other VCMs (e.g., DPM).

[00139] Any combination of several techniques may be used to alleviate networking-related
constraints 1930 of a virtualization host in at least some embodiments. Such techniques may
include, for example, the use of multiplexed (parent-child) VNI hierarchies as discussed earlier,
Port Address Translation using a single child VNI for some types of traffic from all the micro VMs
on the host, special optimized on-host channels for connectivity among micro VMs at a given host,
re-using existing VNIs or SNIDs, and/or passing some types of network processing tasks on to
off-host networking devices. In the latter technique, when a certain type of packet is received at
an OVMC card responsible for networking-related virtualization, the card may generate an
encapsulation packet and transfer the received packet in encapsulated form to an off-host network
processing device. As a result, portions of the overall workload associated with networking for
virtual machines of the host may be farmed out not just to the OVMC cards, but also to external
devices in such embodiments.

[00140] With respect to alleviation of persistent storage constraints 1940, the techniques
employed in some embodiments may include sharing sections of storage among micro VMs using
a tiered storage hierarchy and/or using combinations of locally attached storage and network-
attached storage as discussed earlier. With respect to constraints on micro VM launch latency
1950, the use of caching of boot/machine image portions as discussed earlier may help shorten
launch times. Reducing the sizes of machine images using a VCS-provided tool set as discussed
earlier may also help reduce launch times in various embodiments. The generation and use of
snapshots, and/or the implementation of preparatory configuration steps in advance of launch
requests may further make launches of compute instances such as micro VMs faster in at least

some embodiments. A number of other techniques may be used in some embodiments to support

50

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

the launching of large numbers of compute instances including micro VMs on individual hosts,
and/or some of the techniques indicated in FIG. 19 may not be used.

Cell-based VCS control plane

[00141] In various embodiments, the use of a modular cell-based control plane for the VCS
may also help to improve the overall performance levels and scalability achievable for various
types of virtualization-related requests. As needed, new cells may be added to the control plane to
handle increasing workloads in various embodiments; as a result, the control plane itself may be
eliminated as a potential bottleneck with respect to virtualization operations. FIG. 20 provides a
high-level overview of an example architecture of a control plane cell of a virtualized computing
service, according to at least some embodiments. As shown, an autonomous control plane cell
2005 may comprise some number of request processing nodes (RPNs) 2010 (e.g., 2010A, 2010B
and 2010C), one or more reconciliation nodes 2020, an instance 2030 of a high performance
persistent data store, and metadata 2040 indicating a group of one or more virtualization hosts to
be managed by the cell in the depicted embodiment. In some embodiments the virtualization hosts
may be considered part of the cell. In some embodiments, for virtualization control modes in which
dedicated hosts are assigned for the compute instances of a client, a given client may be assigned
hosts managed by multiple control plane cells. In other embodiments, dedicated hosts may be
assigned to a given client from among the host group 2059 of a single control plane cell (unless
the number of dedicated hosts to be assigned to the client exceeds the number of cells managed by
a cell, in which case virtualization host groups 2059 managed by several different cells may be
assigned).

[00142] In various embodiments, a log-based persistent data store 2030 may be used to store at
least a portion of control plane information of a cell 2005. In at least some embodiments, an
optimistic concurrency control algorithm may be employed for write transaction submitted to the
data store instance 2030. The instance 2030 may serve as a repository storing a sequence of
immutable records related to CI (compute instance) state changes, arranged in the order in which
the corresponding state change events were processed in some embodiments. The instance 2030
may, for example, include records indicating requests for CI state changes received at the RPNs
(such as requests to provision resources for Cls, prepare for launches of CIs, launch CIs or
applications, terminate or modify ClIs or applications, etc.), APl requests submitted to
virtualization hosts (e.g., to control plane agents of the kind described above) to implement
requested configuration changes, results of such API requests, monitoring data, and/or records of
rectification operations which may be initiated by the reconciliation node 2020 in some

embodiments. At least a portion of the contents of the data store instance 2030 may be materialized

51

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

in some embodiments at individual ones of the RPNs and/or the reconciliation node. For example,
a respective materialized view 2015 (e.g., 2015A, 2015B or 2015C) comprising at least a relevant
subset of the contents of the instance 2030 may be generated and updated as needed for each of
the RPNs 2010 (as indicated by arrows 2071A, 2071B and 2071C), and a materialized view 2017
may be generated and updated as needed for the reconciliation node 2020 (as indicated by arrow
2074) in the depicted embodiment.

[00143] When a client of the VCS submits a programmatic request (similar to the requests
discussed earlier, e.g., in the context of FIG. 4 or FIG. 5), a request router of the VCS may direct
the request (or an internal representation of the request) to a selected RPN 2010 at a selected cell
2005 in various embodiments. Any of various properties of the request (e.g. the identity of the
requester, a networking property such as an IVN subnet, etc.) and/or properties of the individual
cells that have been established at the VCS control plane (e.g., resource utilization information
pertaining to the cells or the hosts managed by the cells) may be used to decide which cell should
be responsible for a requested CI. In some embodiments in which the selected cell contains
multiple RPNs, a particular RPN may be selected using a random selection policy. In other
embodiments, a mapping function between one or more VM request properties and an RPN ID
may be used to select the RPN. In some embodiments, after a particular RPN is selected to respond
to the instantiation of a CI, that same RPN may be used for processing any additional state changes
requests for that CI. In contrast, in other embodiments, any of the RPNs may be selected to process
one or more of the state change requests pertaining to a given CI.

[00144] After receiving an indication of a request to instantiate a CI, an RPN 2010 may initiate
at least a portion of a workflow to launch a CI with the properties indicated in the request in the
depicted embodiment. The workflow may comprise a synchronous set of operations and an
asynchronous set of operations in some embodiments, with the synchronous operations being
performed by the RPN 2010, and the asynchronous operations being performed by the
reconciliation node. In one embodiment, the RPN may store a record of the request at the data
store instance 2030 (as indicated by arrows 2072A, 2072B and 2072C), and then submit one or
more API requests to a selected virtualization host 2055 (e.g., 2055A or 2055B) of the group 2059
of virtualization hosts being managed by the cell. The virtualization hosts 2055 shown in FIG. 20
may be similar in features and capabilities to the virtualization hosts shown in earlier figures,
including FIG. 1. Such APIs calls may be used, for example, to perform some of the preparatory
configuration steps (such as the attachment, to a parent VNI at the host, of a child VNI to be used
by the requested CI) discussed earlier, and then to submit the request the launch of a CI to the CPA
at the virtualization host. The invocation of one or more APIs by an RPN 2010, and the

52

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363
corresponding responses, are indicated by arrows labeled 2073 (2073 A, 2073B and 2073C) in FIG.

14.

[00145] In embodiments in which the virtualization host comprises an offloaded virtualization
manager component 2069 (e.g., OVMCs 2069A or 2069B), the portion of the workflow initiated
by the RPN may involve the use of the OVMC —e.g., at least a portion of the network and storage
I/O configuration of the requested VM may be performed with the help of the OVMC. In some
embodiments, a response to the API call may also be recorded in the instance 2030 of the persistent
data store by the RPN. For example, in response to the API invocation, a CPA 2065 (e.g., 2065A
or 2065B) at a virtualization host 2055 (e.g., 2055A or 2055B) may start up a compute instance
2067 (e.g., 2067A, 2067B or 2067C) such as micro VM and provide a CI identifier or other
metadata pertaining to that CI to the RPN in some embodiments. A similar approach may be taken
by an RPN to other types of CI configuration change requests in various embodiments. For
example, when a request to modify or terminate a CI is received, a record of the request may be
stored in the instance 2030 and an API may be invoked to perform the modification or termination.
In some embodiments, the API may for a CI state change may be invoked before, or in parallel
with, the insertion of the record of the request in the data store instance 2030.

[00146] In some cases, a request (such as an API call initiated by the RPN) directed to the
virtualization host 2055 for a CI state change may not succeed, or may take a longer time than
expected. In order to deal with such scenarios, in some embodiments the reconciliation node 2020
may perform one or more anti-entropy iterations, e.g., as part of the asynchronous portion of the
workflow associated with CI state change requests. In a given anti-entropy iteration, the actual
states of one or more CIs may be compared to their respective expected states, and one or more
rectification operations to attempt to change the states of the CIs to their expected state may be
initiated. In one embodiment, the reconciliation node 2020 may examine at least a portion of the
data store instance 2030 to determine the expected states and/or the actual states, as indicated by
arrow 2074. In at least one embodiment, the reconciliation node 2020 may communicate with one
or more of the virtualization hosts 2055 (e.g., with the CPA 2062, or with a Cl itself) to determine
the actual state of a CI, as indicated by arrow 2073D. If a discrepancy between an expected state
and an actual state of a CI is identified, the reconciliation node 2020 may take any of several types
of rectification actions in the depicted embodiment: e.g., a request may be sent to a virtualization
host 2055 via an API invocation, or a request may be sent to an RPN to re-try an operation that
has not succeeded. In at least some embodiments, a record of the rectification action may be added
to the instance 2030 of the data store by the reconciliation node 2020. A number of different types

of triggers may lead to the initiation of an anti-entropy iteration of the reconciliation node in

53

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

various embodiments — e.g., a new iteration may be initiated when a particular amount of time has
elapsed since the previous iteration, when a certain number of state change requests have been
processed by the RPNs since the previous iteration, when an apparent failure is detected at some
component of the cell 2005, or if a request for an anti-entropy iteration is received (e.g., from
another component of the cell 2005, from a virtualization host 2055, or from some other
component of the VCS control plane).

[00147] Various parameters governing the structure and internal organization of a cell 2005
may be tuned or adjusted over time in some embodiments, e.g., by a cell pool manager, in an effort
to ensure that targeted levels of performance, availability and fault tolerance regarding client
requests for CI state changes continue to be maintained. Such parameters may, for example,
include the number of RPNs 2010 to be set up in a cell, the number of reconciliation nodes 2020
to be set up, the write rate capacity of the persistent data store instance 2030, the number and types
of virtualization hosts 2055 managed by the cell, how many distinct hosts are to be used for RPNs
and reconciliation nodes at the cell (e.g., whether there is a 1:1 relationship between RPNs and
hosts, in which case each RPN would be set up on a respective host, or an N:1 relationship) and
so on. In at least some embodiments, the RPNs and/or the reconciliation node may be implemented
at respective compute instances (e.g., as instances of standardized CI types supported at the VCS,
or as instances of micro VMs).

[00148] In various embodiments, information about the particular virtualization control modes
(e.g., the DPM, DMM or SMM modes discussed earlier) being used for various virtualization hosts
2055 being managed at a cell 2005 may be included in the metadata 2040, e.g., in the form of host-
to-VCM mappings 2041. The set of preparatory configuration operations that are performed at a
given host in advance of launch requests for CIs at that host (as opposed to the configuration
operations that can only be performed after the launch requests are received) may be determined,
e.g., at one or more of the RPNs, based at least in part on the VCM information. For example, in
the dedicated power-user mode (DPM), because the set of hosts to be used may be known in
advance, at least some networking-related configuration operations such as establishment of one
or more virtual network interfaces may also be feasible in advance, whereas in shared managed
mode, such operations may have to be performed after a particular host is selected after a launch
request is received.

Provider network environment

[00149] FIG. 21 illustrates a provider network environment at which a virtualized computing
service may be implemented, according to at least some embodiments. Networks set up by an

entity such as a company or a public sector organization to provide one or more network-accessible

54

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

services (such as various types of cloud-based computing, storage or analytics services) accessible
via the Internet and/or other networks to a distributed set of clients may be termed provider
networks in one or more embodiments. A provider network may sometimes be referred to as a
“public cloud” environment. The resources of a provider network may in some cases be distributed
across multiple data centers, which in turn may be distributed among numerous geographical
regions (e.g., with each region corresponding to one or more cities, states or countries).

[00150] In the depicted embodiment, provider network 2101 may comprise resources used to
implement a plurality of services, including, for example, a micro VM service 2107, macro VM
service 2103, a container-based computing service 2143, an event-driven computing service 2155,
a database or storage service 2123, and a machine learning service (MLS) 2171. The virtualization
hosts 2105 (e.g., 2105A — 2105D) of the macro VM service 2103 may be used for longer-lasting
compute instances that individually utilize/request more resources than the threshold resource
usage defined for micro VMs in the depicted embodiment. At the virtualization hosts 2115 (e.g.,
2115A — 2115D) of the micro VM service, one or more of the techniques to accelerate launches
(e.g., preparatory configuration operations being performed in advance, caching and size
optimization of machine images, etc.) and support large numbers of compute instances on a given
host may be implemented in the depicted embodiment. In some embodiments, compute instances
of all sizes and lifetimes may be implemented using a single virtualized computing service — e.g.,
micro VM service 2107 and macro VM service 2103 may be implemented as lower-level services
of a virtualized computing service similar to VCS 102 of FIG. 1.

[00151] Components of a given service may utilize components of other services in the
depicted embodiment — e.g., for some machine learning tasks, a component of the machine
learning service 2171 may utilize micro virtual machines implemented at virtualization hosts such
as 2115A —2115D. The virtualization hosts 2115 may be similar in capabilities and features to the
virtualization hosts shown in FIG. 1 and other figures discussed earlier. Input data, intermediate
results, final results and/or other artifacts of various machine learning algorithms or models, may
be stored at storage servers 2125 (e.g., 2125A — 2125D) of the database or storage service 2123 in
some embodiments. In some embodiments, a storage service 2123 may be utilized by at least some
types of virtual machines instantiated at the macro VM service or the micro VM service, e.g., to
configure volumes that present block-device interfaces for use from micro VMs instantiated at the
VCS. Individual ones of the services shown in FIG. 21 may implement a respective set of
programmatic interfaces 2177 which can be used by external and/or internal clients (where the

internal clients may comprise components of other services) in the depicted embodiment.

55

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363
[00152] A container-based computing service (CCS) 2143 may enable its clients to use software

containers, without having to provision the underlying hardware, virtual machines or operating
systems in the depicted embodiment. Software containers are lightweight mechanisms for
packaging and deploying applications, providing a consistent portable software environment for
applications to easily run and scale. In at least some embodiments, micro VMs implemented at the
service 2107 may be instantiated for container-based computing service clients. Individual ones of
the micro VMs may comprise one or more software containers in such embodiments, established
in response to requests submitted by the CCS on behalf of CCS clients. As such, the CCS may
represent one example of an intermediary service of the kind discussed earlier with respect to at
least some micro VMs. In some embodiments, network channels (e.g., using Port Address
Translation as described in the context of FIG. 10) for interactions between the control plane of
the CCS and the micro VMs may be established by the micro VM service. In such embodiments,
at least some requests to the micro VM service to prepare for and/or instantiate micro VMs may
be submitted by container managers 2147 of the service 2143.

[00153] Atevent-driven computing service (ECS) 2155, resources for requested operations may
be provisioned dynamically using VMs created at the micro VM service and/or the macro VM
service, after a request for the operation triggers the provisioning in the depicted embodiment.
Such computing services which support dynamic event-driven provisioning may be referred to as
“server-less” computing services in some embodiments, as specific (virtual or physical) servers
may not have to be acquired in advance of the processing of various client-requested operations.
In effect, in some embodiments, clients of an event-driven computing service 2155 may package
up some program code that is to be run and submit it to the service for execution at resources
selected by the service; the clients may not necessarily care where their packaged code is run as
long as the results are provided within desired timeframes. As such, for some types of requests
directed at service 2155, micro VMs instantiated using service 2107 may be ideal execution
platforms, and the ECS 2155 may represent another example of an intermediary service that
utilizes micro VM capabilities. As in the case of the CCS 2143, in some embodiments network
channels may be set up at the virtualization hosts 2155 for traffic between the micro VMs and the
control plane of the ECS 2155. In some embodiments, the event-driven computing service 2155
and/or the container-based computing service 2143 may be implemented as subcomponents of a
VCS, e.g., along with the micro VM service and/or the macro VM service.

[00154] A machine learning service 2171 may also utilize micro VMs implemented using
service 2107 in some embodiments, e.g., to instantiate relatively short-lived virtual machines to

run real-time analytics models. Online/real-time analysis managers 2177 of the MLS 2171 may

56

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

submit requests to the micro VM service control plane to obtain virtual machines that can be used
to implement algorithms selected from library 2175 in such embodiments. Longer machine
learning tasks, such as training complex models, may be performed using compute instances
managed by the macro VM service in some embodiments.

Methods for supporting micro VMs

[00155] FIG. 22 is a flow diagram illustrating aspects of operations that may be performed at a
virtualized computing service to support accelerated launch times and client-selectable levels of
virtualization control, according to at least some embodiments. As shown in element 2201, in
various embodiments information about a set of supported virtualization control modes (VCMs)
for compute instances (CIs) of one or more types (e.g., micro-VMs that meet a required resource
capacity criterion) may be provided via programmatic interfaces of a virtualized computing service
(VCS) (e.g., a VCS similar in features and functionality to the VCS 102 of FIG. 1). The supported
VCMs may, for example, include a shared managed mode (SMM), a dedicated managed mode
(DMM), a dedicated power user mode (DPM) and the like in some embodiments. The modes may
differ from one another with respect to the level of client control, and client responsibilities, with
regard to placement decisions for compute instances, resource oversubscription and the like in at
least some embodiments. The particular mode being used for a given client may also influence the
extent to which compute instance launches can be sped up in various embodiments, so clients may
be able to make tradeoffs regarding launch speed versus user control/responsibilities.

[00156] Respective indications of (a) a machine image to be used to instantiate one or more
CIs, (b) an isolated virtual network (IVN) with which connectivity from the one or more compute
instances is to be configured and/or (c) a particular VCM, VCMI, to be used for
configuring/administering a set of compute instances may be obtained, e.g., via a programmatic
interface of the VCS in some embodiments (element 2204). The machine image may, for example,
represent a snapshot that comprises saved state information from an earlier-launched Cl in at least
some embodiments. In one embodiment, one or more tools provided by the VCS may have been
used to generate the image, e.g., by eliminating a set of unused modules at various levels of the
software stack from a baseline image.

[00157] Based at least partly on the selected virtualization control mode VCMI, a set of
preparatory configuration operations that collectively enable faster responses to future CI launch
requests may be initiated/performed (element 2207) in the depicted embodiment. Such operations
may include, for example, caching at least a portion of the machine image at a location accessible
from one or more candidate virtualization hosts (VHs) that each include a wvirtualization

management offloading card, caching additional data objects that may be shared among CIs (such

57

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

as software container images or artifacts), initializing one or more virtual network interfaces, etc.
In at least some embodiments, the extent of advance preparation, and therefore the extent of launch
acceleration that may potentially be achieved, may be greater for VCMs in which the client has
greater control and can, for example, indicate the specific virtualization hosts to be used.

[00158] A launch request for one or more Cls (e.g., a collaborating group of micro-VMs) may
be received at the VCS (element 2210) in various embodiments. Depending on VCM1, the request
may indicate the specific VH(s) at which the respective Cls are to be instantiated. Control plane
components of the VCS may select the host(s) if a VCM in which clients do not make CI placement
decisions is being used.

[00159] Any additional pre-requisite configuration operations required for the requested Cls
may be performed, and the requested CIs may be launched (element 2213) in some embodiments.
An individual CI may, for example, be a thread of a virtualization intermediary process established
by a VCS control plane agent at a VH in response to the launch request. One or more types of
communication channels may be established for the Cls in some embodiments, including over-
the-network channels (e.g., to devices within the IVN, thus configuring the CIs as part of the IVN)
via respective virtual network interfaces whose traffic is processed at a virtualization management
offloading card, local channels for communications with other Cls without using network
resources, etc. In at least one embodiment, a given CI may be terminated after a pre-disclosed
duration, and an indication of the duration may be provided programmatically to the requesting
client.

[00160] Depending on VCM1, detailed information regarding the requested resource capacities
of CIs at a given host and/or measures of actual resources used at that host by the CIs may be
provided to a client in some embodiments (element 2216). Such information may be used, when
requesting additional ClIs, to oversubscribe resources along desired dimensions such as CPU,
memory etc. by the client if desired in one embodiment. For example, a client using a VCM that
permits oversubscription may include the identifier of a particular VH (VH-k) in a launch request,
and the VCS may launch the requested CI at VH-k without verifying or checking whether the
additional CI would lead to exceeding the nominal resource capacity of VH-k.

[00161] In at least some embodiments, snapshots of state information of a CI, including CPU
state, memory state etc. may be generated, e.g., based on requests from programs running at the
CI, requests from clients and/or auto-detection of snapshot points during CI execution (element
2219). Such snapshots may be used to clone CIs (e.g., by specifying the snapshots as the machine
images to be used) that have already been at least partly configured, further shortening the time

taken by a CI to start doing useful application work in such embodiments.

58

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

[00162] It is noted that in various embodiments, some of the operations shown in the flow
diagrams of FIG. 11, FIG. 18 and/or FIG. 22 may be implemented in a different order than that
shown in the figure, or may be performed in parallel rather than sequentially. Additionally, some
of the operations shown in FIG. 11, FIG. 18 and/or FIG. 22 may not be required in one or more
implementations.

Use cases

[00163] The techniques described above, involving the use of a variety of techniques to support
varying levels of client control over virtualization decisions, as well as large numbers of compute
instances per host, at a network-accessible virtualized computing service may be extremely
beneficial for a number of reasons in various scenarios. Many types of computations performed at
a virtualized computing service on behalf of other intermediary services (e.g., services that support
software containers, or services that allow customers to submit programs to be executed at
resources selected by the service instead of the customer) and/or on behalf of individual clients
may require only a limited set of resources, and/or may have fairly short lifespans. The overhead
associated with setting up traditional compute instances, which may assume longer lifespans and
larger resource needs, may not be cost-effective for such small compute instances or “micro” VMs.
At least some clients may be interested in more control over decisions such as compute instance
placement, the level of oversubscription with regard to various types of resources at the hosts used
for the compute instances, and so on. By providing clients options to select from among a plurality
of virtualization control modes, the requirements of such clients may be met. Techniques that
involve the installation of stripped down versions of operating systems at virtualization hosts, the
use of virtualization offloading cards (both of which would enable a larger fraction of the host’s
resources available for client-requested compute instances), fine-grained multiplexing/sharing of
software and hardware networking and storage devices among compute instances, the use of
swappable processes to instantiate the compute instances, and the like may in combination enable
large numbers (e.g., tens of thousands) of compute instances to be set up at a single host without
affecting the overall performance perceived by the clients. Substantial savings in terms of the total
CPU, memory and storage needed to support the compute instances, relative to some conventional
virtualization techniques, may be obtained.

Illustrative computer system

[00164] In at least some embodiments, a server that implements a portion or all of one or more
of the technologies described herein, including the various components of the data plane and/or
control plane of a virtualized computing service, may include a general-purpose computer system

that includes or is configured to access one or more computer-accessible media. FIG. 23 illustrates

59

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

such a general-purpose computing device 9000. In the illustrated embodiment, computing device
9000 includes one or more processors 9010 coupled to a system memory 9020 (which may
comprise both non-volatile and volatile memory modules) via an input/output (I/O) interface 9030.
Computing device 9000 further includes a network interface 9040 coupled to I/O interface 9030.
In some embodiments, one or more of the components shown in FIG. 23 may be attached to a
motherboard.

[00165] In various embodiments, computing device 9000 may be a uniprocessor system
including one processor 9010, or a multiprocessor system including several processors 9010 (e.g.,
two, four, eight, or another suitable number). Processors 9010 may be any suitable processors
capable of executing instructions. For example, in various embodiments, processors 9010 may be
general-purpose or embedded processors implementing any of a variety of instruction set
architectures (ISAs), such as the x86, PowerPC, SPARC, or MIPS ISAs, or any other suitable ISA.
In multiprocessor systems, each of processors 9010 may commonly, but not necessarily,
implement the same ISA. In some implementations, graphics processing units (GPUs) may be used
instead of, or in addition to, conventional processors.

[00166] System memory 9020 may be configured to store instructions and data accessible by
processor(s) 9010. In at least some embodiments, the system memory 9020 may comprise both
volatile and non-volatile portions; in other embodiments, only volatile memory may be used. In
various embodiments, the volatile portion of system memory 9020 may be implemented using any
suitable memory technology, such as static random access memory (SRAM), synchronous
dynamic RAM or any other type of memory. For the non-volatile portion of system memory
(which may comprise one or more NVDIMMs, for example), in some embodiments flash-based
memory devices, including NAND-flash devices, may be used. In at least some embodiments, the
non-volatile portion of the system memory may include a power source, such as a supercapacitor
or other power storage device (e.g., a battery). In various embodiments, memristor based resistive
random access memory (ReRAM), three-dimensional NAND technologies, Ferroelectric RAM,
magnetoresistive RAM (MRAM), or any of various types of phase change memory (PCM) may
be used at least for the non-volatile portion of system memory. In the illustrated embodiment,
program instructions and data implementing one or more desired functions, such as those methods,
techniques, and data described above, are shown stored within system memory 9020 as code 9025
and data 9026.

[00167] In one embodiment, I/O interface 9030 may be configured to coordinate I/O traffic
between processor 9010, system memory 9020, and any peripheral devices in the device, including

network interface 9040 or other peripheral interfaces such as various types of persistent and/or

60

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

volatile storage devices. In some embodiments, I/O interface 9030 may perform any necessary
protocol, timing or other data transformations to convert data signals from one component (e.g.,
system memory 9020) into a format suitable for use by another component (e.g., processor 9010).
In some embodiments, I/O interface 9030 may include support for devices attached through
various types of peripheral buses, such as a variant of the Peripheral Component Interconnect
(PCI) bus standard or the Universal Serial Bus (USB) standard, for example. In some
embodiments, the function of I/O interface 9030 may be split into two or more separate
components, such as a north bridge and a south bridge, for example. Also, in some embodiments
some or all of the functionality of I/O interface 9030, such as an interface to system memory 9020,
may be incorporated directly into processor 9010.

[00168] Network interface 9040 may be configured to allow data to be exchanged between
computing device 9000 and other devices 9060 attached to a network or networks 9050, such as
other computer systems or devices as illustrated in FIG. 1 through FIG. 22, for example. In various
embodiments, network interface 9040 may support communication via any suitable wired or
wireless general data networks, such as types of Ethernet network, for example. Additionally,
network interface 9040 may support communication via telecommunications/telephony networks
such as analog voice networks or digital fiber communications networks, via storage area networks
such as Fibre Channel SANSs, or via any other suitable type of network and/or protocol.

[00169] In some embodiments, system memory 9020 may be one embodiment of a computer-
accessible medium configured to store program instructions and data as described above for FIG.
1 through FIG. 22 for implementing embodiments of the corresponding methods and apparatus.
However, in other embodiments, program instructions and/or data may be received, sent or stored
upon different types of computer-accessible media. Generally speaking, a computer-accessible
medium may include non-transitory storage media or memory media such as magnetic or optical
media, e.g., disk or DVD/CD coupled to computing device 9000 via I/O interface 9030. A non-
transitory computer-accessible storage medium may also include any volatile or non-volatile
media such as RAM (e.g. SDRAM, DDR SDRAM, RDRAM, SRAM, etc.), ROM, etc., that may
be included in some embodiments of computing device 9000 as system memory 9020 or another
type of memory. In some embodiments, a plurality of non-transitory computer-readable storage
media may collectively store program instructions that when executed on or across one or more
processors implement at least a subset of the methods and techniques described above. Further, a
computer-accessible medium may include transmission media or signals such as electrical,
electromagnetic, or digital signals, conveyed via a communication medium such as a network

and/or a wireless link, such as may be implemented via network interface 9040. Portions or all of

61

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

multiple computing devices such as that illustrated in FIG. 23 may be used to implement the
described functionality in various embodiments; for example, software components running on a
variety of different devices and servers may collaborate to provide the functionality. In some
embodiments, portions of the described functionality may be implemented using storage devices,
network devices, or special-purpose computer systems, in addition to or instead of being
implemented using general-purpose computer systems. The term “computing device”, as used
herein, refers to at least all these types of devices, and is not limited to these types of devices.
[00170] Embodiments of the present disclosure can be described in view of the following
clauses:
1. A system, comprising:
one or more computing devices of a network-accessible computing service;
wherein the one or more computing devices comprise program instructions that when
executed on or across one or more processors cause the one or more computing
devices to:
obtain respective indications of (a) a machine image to be used to instantiate one
or more micro virtual machines which meet a resource capacity criterion,
(b) an isolated virtual network to which connectivity from the one or more
micro virtual machines is to be established, and (c) a first virtualization
control mode associated with the one or more micro virtual machines;
initiate, based at least in part on the first virtualization control mode, one or more
preparatory configuration operations enabling an accelerated response to a
future launch request for a micro virtual machine, wherein the one or more
preparatory configuration operations include (a) a transfer of the machine
image to a storage device accessible from a virtualization host and (b) an
initialization of one or more virtual network interfaces at the virtualization
host; and
cause a first micro virtual machine to be instantiated using the machine image at
the virtualization host, wherein the first micro virtual machine is a thread of
an intermediary process launched by an administrative agent of the
computing service at the virtualization host in response to a first launch
request, and wherein the first micro virtual machine is configured within the
isolated virtual network.
2. The system as recited in clause 1, wherein a second launch request indicates that a

plurality of collaborating micro virtual machines, including a second micro virtual machine and a

62

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

third micro virtual machine, are to be instantiated, wherein the one or more computing devices
further comprise program instructions that when executed on or across one or more processors
further cause the one or more computing devices to:

cause the second and third micro virtual machines to be launched at the virtualization host;

and

causing a local channel for communication between the second and third virtual machines

to be established at the virtualization host, wherein the local communication
channel does not utilize a network device.

3. The system as recited in any one of clauses 1 - 2, wherein the one or more
computing devices further comprise program instructions that when executed on or across one or
more processors further cause the one or more computing devices to:

provide, based at least in part on determining that the first virtualization control mode is in

use, respective identifiers of one or more candidate virtualization hosts to a first
client of a computing service, wherein the first launch request comprises an
identifier of the virtualization host, and wherein an identifier of a candidate
virtualization host for a micro virtual machine to be configured using a second
virtualization control mode on behalf of a second client is not provided to the
second client.

4, The system as recited in any one of clauses 1 - 3, wherein the one or more
computing devices further comprise program instructions that when executed on or across one or
more processors further cause the one or more computing devices to:

obtain an indication, via a programmatic request from a client, of an identifier of a

virtualization host to be used for a second virtual machine, wherein instantiation of
the second virtual machine results in an oversubscription of at least one type of
resource.

5. The system as recited in any one of clauses 1 - 4, wherein the one or more
computing devices further comprise program instructions that when executed on or across one or
more processors further cause the one or more computing devices to:

based at least in part on determining that the first virtualization control mode is to be used

for the one or more micro virtual machines, store metadata indicating that one or
more candidate virtualization hosts are dedicated exclusively for a client.

6. A method, comprising:

performing, by one or more computing devices:

63

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

determining a first virtualization control mode to be used for configuring one or
more compute instances;

initiating one or more preparatory configuration operations for launching at least
one compute instance of the one or more compute instances, including (a)
a transfer of at least a portion of a machine image to a storage device
accessible from a virtualization host, and (b) an initialization of one or more
virtual network interfaces; and

causing a first compute instance to be launched using the machine image at the
virtualization host, wherein the first compute instance is a thread of an
intermediary process launched by an administrative agent at the
virtualization host in response to a first launch request.

7. The method as recited in clause 6, wherein determining the first virtualization
control mode comprises obtaining an indication of the first virtualization control mode via a
programmatic interface.

8. The method as recited in any one of clauses 6 - 7, further comprising performing,
by the one or more computing devices:

providing, based at least in part on the first virtualization control mode, respective

identifiers of one or more candidate virtualization hosts to a first client of a
computing service, wherein the first launch request comprises an identifier of the
virtualization host, and wherein an identifier of a candidate virtualization host for
a compute instance to be configured using a second virtualization control mode on
behalf of a second client is not provided to the second client.

0. The method as recited in any one of clauses 6 - 8, wherein the virtualization host
has a resource capacity of a resource type, the method further comprising performing, by the one
or more computing devices:

providing, to a client of a computing service on whose behalf the first compute instance is

launched, respective indicators of (a) requested resource levels, with respect to the
resource type, of a set of compute instances of the virtualization host, and (b) a
metric of measured resource usage, with respect to the resource type, of the set of
compute instances; and

causing, in response to an additional launch request for an additional compute instance, the

additional compute instance to be instantiated at the virtualization host, without
verifying whether a requested resource level of the additional compute instance

with respect to the resource type would cause the resource capacity to be exceeded.

64

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

10. The method as recited in clause 9, wherein the resource type comprises one or more
of: (a) processors, (b) volatile or non-volatile memory, (c) persistent storage, or (d) network
bandwidth.

11. The method as recited in any one of clauses 6 -9, further comprising performing,
by the one or more computing devices:

storing metadata indicating that one or more candidate virtualization hosts are designated

exclusively for compute instances requested by a first client of a computing
service.

12. The method as recited in clause 11, further comprising performing, by the one or
more computing devices:

identifying, in response to a second launch request, a particular virtualization host of the

one or more candidate virtualization hosts at which a second compute instance is
to be instantiated, wherein the second launch request does not include an indication
of a target virtualization host to be used for the second compute instance.

13. The method as recited in clause 11, further comprising performing, by the one or
more computing devices:

based at least in part on determining that a second virtualization control mode is to be used

for a second compute instance on behalf of a second client, causing a second
compute instance, requested by the second client, to be instantiated at a particular
virtualization host; and

causing a third compute instance, requested by a third client, to be instantiated at the

particular virtualization host.

14. The method as recited in any one of clauses 6 — 9 or 11, wherein the first launch
request indicates that a plurality of collaborating compute instances, including the first compute
instance and a second compute instance, is to be instantiated, the method further comprising
performing, by the one or more computing devices:

causing the second compute instance to be launched at the virtualization host; and

causing a local channel for communication between the first and second compute instances

to be established at the virtualization host, wherein the local communication
channel does not utilize a network device.

15. The method as recited in any one of clauses 6-9, 11 or 14, further comprising
performing, by the one or more computing devices:

pausing execution of the first compute instance;

65

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

saving, to a persistent storage device, a snapshot of state information of the first compute

instance; and

in response to a programmatic request, launching a clone compute instance of the first

compute instance.

16. One or more non-transitory computer-accessible storage media storing program
instructions that when executed on or across one or more processors cause one or more computer
systems to:

determine a first virtualization control mode to be used for configuring one or more

compute instances;

initiate, based at least in part on the first virtualization control mode, one or more

preparatory configuration operations for launching at least one compute instance of
the one or more compute instances, including (a) a transfer of at least a portion of
a machine image to a storage device accessible from a virtualization host, and (b)
an initialization of one or more virtual network interfaces to be used at the
virtualization host to communicate with one or more endpoints; and

cause a first compute instance to be launched using the machine image at the virtualization

host, wherein the first compute instance is a thread of an intermediary process
launched by an administrative agent at the virtualization host in response to a
launch request.

17. The one or more non-transitory computer-accessible storage media as recited in
clause 16, storing further program instructions that when executed on or across the one or more
processors further cause the one or more computer systems to:

obtain an indication of the first virtualization control mode via a programmatic interface.

18. The one or more non-transitory computer-accessible storage media as recited in any
one of clauses 16 - 17, wherein the machine image is generated by a machine image optimization
tool of a computing service, wherein to generate the machine image, the machine image
optimization tool eliminates, from a baseline image, based at least in part on a usage analysis, one
or more of: (a) a kernel module, or (b) a system library.

19. The one or more non-transitory computer-accessible storage media as recited in any
one of clauses 16 - 18, storing further program instructions that when executed on or across the
one or more processors further cause the one or more computer systems to:

in response to a mode change request submitted via a programmatic interface, store

metadata indicating that a second virtualization control mode is to be used at the

virtualization host; and

66

10

15

20

25

WO 2020/123149 PCT/US2019/063363

cause, in accordance with the second virtualization control mode, an additional compute

instance to be instantiated at the virtualization host.

20. The one or more non-transitory computer-accessible storage media as recited in any
one of clauses 16 - 19, storing further program instructions that when executed on or across the
one or more processors further cause the one or more computer systems to:

provide an indication, via a programmatic interface, of a lifetime limit of one or more

compute instances including the first compute instance; and

cause the first compute instance to be automatically terminated in response to a

determination that the lifetime limit has been reached by the first compute instance.
Conclusion
[00171] Various embodiments may further include receiving, sending or storing instructions
and/or data implemented in accordance with the foregoing description upon a computer-accessible
medium. Generally speaking, a computer-accessible medium may include storage media or
memory media such as magnetic or optical media, e.g., disk or DVD/CD-ROM, volatile or non-
volatile media such as RAM (e.g. SDRAM, DDR, RDRAM, SRAM, etc.), ROM, etc., as well as
transmission media or signals such as electrical, electromagnetic, or digital signals, conveyed via
a communication medium such as network and/or a wireless link.
[00172] The various methods as illustrated in the Figures and described herein represent
exemplary embodiments of methods. The methods may be implemented in software, hardware,
or a combination thereof. The order of method may be changed, and various elements may be
added, reordered, combined, omitted, modified, etc.
[00173] Various modifications and changes may be made as would be obvious to a person
skilled in the art having the benefit of this disclosure. It is intended to embrace all such
modifications and changes and, accordingly, the above description to be regarded in an illustrative

rather than a restrictive sense.

67

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363
CLAIMS

1. A system, comprising:
one or more computing devices of a network-accessible computing service;
wherein the one or more computing devices comprise program instructions that when
executed on or across one or more processors cause the one or more computing
devices to:
obtain respective indications of (a) a machine image to be used to instantiate one
or more micro virtual machines which meet a resource capacity criterion,
(b) an isolated virtual network to which connectivity from the one or more
micro virtual machines is to be established, and (c) a first virtualization
control mode associated with the one or more micro virtual machines;
initiate, based at least in part on the first virtualization control mode, one or more
preparatory configuration operations enabling an accelerated response to a
future launch request for a micro virtual machine, wherein the one or more
preparatory configuration operations include (a) a transfer of the machine
image to a storage device accessible from a virtualization host and (b) an
initialization of one or more virtual network interfaces at the virtualization
host; and
cause a first micro virtual machine to be instantiated using the machine image at
the virtualization host, wherein the first micro virtual machine is a thread of
an intermediary process launched by an administrative agent of the
computing service at the virtualization host in response to a first launch
request, and wherein the first micro virtual machine is configured within the

isolated virtual network.

2. The system as recited in claim 1, wherein a second launch request indicates that a
plurality of collaborating micro virtual machines, including a second micro virtual machine and a
third micro virtual machine, are to be instantiated, wherein the one or more computing devices
further comprise program instructions that when executed on or across one or more processors
further cause the one or more computing devices to:

cause the second and third micro virtual machines to be launched at the virtualization host;

and

68

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

causing a local channel for communication between the second and third virtual machines
to be established at the virtualization host, wherein the local communication

channel does not utilize a network device.

3. The system as recited in claim 1, wherein the one or more computing devices
further comprise program instructions that when executed on or across one or more processors
further cause the one or more computing devices to:

provide, based at least in part on determining that the first virtualization control mode is in

use, respective identifiers of one or more candidate virtualization hosts to a first
client of a computing service, wherein the first launch request comprises an
identifier of the virtualization host, and wherein an identifier of a candidate
virtualization host for a micro virtual machine to be configured using a second
virtualization control mode on behalf of a second client is not provided to the

second client.

4, The system as recited in claim 1, wherein the one or more computing devices
further comprise program instructions that when executed on or across one or more processors
further cause the one or more computing devices to:

obtain an indication, via a programmatic request from a client, of an identifier of a

virtualization host to be used for a second virtual machine, wherein instantiation of
the second virtual machine results in an oversubscription of at least one type of

resource.

5. The system as recited in claim 1, wherein the one or more computing devices
further comprise program instructions that when executed on or across one or more processors
further cause the one or more computing devices to:

based at least in part on determining that the first virtualization control mode is to be used

for the one or more micro virtual machines, store metadata indicating that one or

more candidate virtualization hosts are dedicated exclusively for a client.

6. A method, comprising:
performing, by one or more computing devices:
determining a first virtualization control mode to be used for configuring one or

more compute instances;

69

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

initiating one or more preparatory configuration operations for launching at least
one compute instance of the one or more compute instances, including (a)
a transfer of at least a portion of a machine image to a storage device
accessible from a virtualization host, and (b) an initialization of one or more
virtual network interfaces; and

causing a first compute instance to be launched using the machine image at the
virtualization host, wherein the first compute instance is a thread of an
intermediary process launched by an administrative agent at the

virtualization host in response to a first launch request.

7. The method as recited in claim 6, wherein the virtualization host has a resource
capacity of a resource type, the method further comprising performing, by the one or more
computing devices:

providing, to a client of a computing service on whose behalf the first compute instance is

launched, respective indicators of (a) requested resource levels, with respect to the
resource type, of a set of compute instances of the virtualization host, and (b) a
metric of measured resource usage, with respect to the resource type, of the set of
compute instances; and

causing, in response to an additional launch request for an additional compute instance, the

additional compute instance to be instantiated at the virtualization host, without
verifying whether a requested resource level of the additional compute instance

with respect to the resource type would cause the resource capacity to be exceeded.

8. The method as recited in claim 6, further comprising performing, by the one or
more computing devices:
storing metadata indicating that one or more candidate virtualization hosts are designated

exclusively for compute instances requested by a first client of a computing service.

9. The method as recited in claim 8, further comprising performing, by the one or
more computing devices:
identifying, in response to a second launch request, a particular virtualization host of the
one or more candidate virtualization hosts at which a second compute instance is
to be instantiated, wherein the second launch request does not include an indication

of a target virtualization host to be used for the second compute instance.

70

10

15

20

25

30

WO 2020/123149 PCT/US2019/063363

10. The method as recited in claim 8, further comprising performing, by the one or
more computing devices:
based at least in part on determining that a second virtualization control mode is to be used
for a second compute instance on behalf of a second client, causing a second
compute instance, requested by the second client, to be instantiated at a particular
virtualization host; and
causing a third compute instance, requested by a third client, to be instantiated at the

particular virtualization host.

11. The method as recited in claim 6, further comprising performing, by the one or
more computing devices:
pausing execution of the first compute instance;
saving, to a persistent storage device, a snapshot of state information of the first compute
instance; and
in response to a programmatic request, launching a clone compute instance of the first

compute instance.

12. One or more non-transitory computer-accessible storage media storing program
instructions that when executed on or across one or more processors cause one or more computer
systems to:

determine a first virtualization control mode to be used for configuring one or more

compute instances;

initiate, based at least in part on the first virtualization control mode, one or more

preparatory configuration operations for launching at least one compute instance of
the one or more compute instances, including (a) a transfer of at least a portion of
a machine image to a storage device accessible from a virtualization host, and (b)
an initialization of one or more virtual network interfaces to be used at the
virtualization host to communicate with one or more endpoints; and

cause a first compute instance to be launched using the machine image at the virtualization

host, wherein the first compute instance is a thread of an intermediary process
launched by an administrative agent at the virtualization host in response to a

launch request.

71

10

15

20

WO 2020/123149 PCT/US2019/063363

13. The one or more non-transitory computer-accessible storage media as recited in
claim 12, wherein the machine image is generated by a machine image optimization tool of a
computing service, wherein to generate the machine image, the machine image optimization tool
eliminates, from a baseline image, based at least in part on a usage analysis, one or more of: (a) a

kernel module, or (b) a system library.

14. The one or more non-transitory computer-accessible storage media as recited in
claim 12, storing further program instructions that when executed on or across the one or more
processors further cause the one or more computer systems to:

in response to a mode change request submitted via a programmatic interface, store

metadata indicating that a second virtualization control mode is to be used at the
virtualization host; and

cause, in accordance with the second virtualization control mode, an additional compute

instance to be instantiated at the virtualization host.

15. The one or more non-transitory computer-accessible storage media as recited in
claim 12, storing further program instructions that when executed on or across the one or more
processors further cause the one or more computer systems to:

provide an indication, via a programmatic interface, of a lifetime limit of one or more

compute instances including the first compute instance; and

cause the first compute instance to be automatically terminated in response to a

determination that the lifetime limit has been reached by the first compute instance.

72

PCT/US2019/063363

1/23

PLALLLLLL L LD LD L L L Ll AL Ll AL Ll ALl Al Al Al Ll Ll Ll Ll Ll Ll L Y

WO 2020/123149

£

L "Old

A)SAS

(e

0l

81 Sjus!d SOA

""" (ojo 'sdnou |0 youne| 0} A peIoads e Ul Saouelsul ainduIo o} Sa0Inosal aledaid 0} B'a) 777 Seeyielul ojewieiBold b

o

MY T T L Y Y T Y T L L T T Y L L T T T Y T T P P Y Y Y T T T Yy

Pl A L L LD L LA L AL LLLLALAELEALLEL ALl Ll LIl LIl Il ALl LIl LIl L Ll TN

...----------------------..-...-..-----------------------------l----/.. (sazIs abew
m H Buionpai Joj “63) ZZ| $82In0sal
' gaGGT HA m |00} uoneziwndo abewi sulyoeyy
] 1 P TI I I I IIIIT
] [P “s
m (pJe2 pAH [eseyduad uo “6-0) 97T : . m
1 usuodwog 6w uonezienuia papeoilO G7] Sainap abeloisg m m !
m m m 817 (s)1ebeuew jood |90 m
; 0000F ' ' '
; 69T peaiy) WAW s ; ; m
[]
N || e eI 0000189 dIn |3 ; : ;
v | | 861 dnoub (10) souessur’s — ' . ‘ ‘ SRR I=TAN | TN '
' ' andwod Bunessdo-09 m m . m m \1 180 19D m
' ' — Jusbe ' 1 '
[] [] [] - L]
B N RS o AT oAesSIUILpE) | ; FTT [00d [[89 SnOWOUoY :
]] _— ' M ’
' ' ' 191 ' ' ' '
] [] 4 ']
m m T507 peaip m F-ww T (dIn) sseo0ud meom_wﬁwmom m m m 717 Joke| uswabeuew (|9) H
' ' — Jejpawisjul ueja-jonu ' ' v | souejsur andwios Anoedes-siqixal4 |
Hik (INAW) A 0101 : - ; m m ! ! . m
H ‘ecocmcnmmccnn=as’ (P Se’ ' (e escccccccccccccccccccccas !
m GOJ SO 10 uoision umop-padduyg m m m ()a %WFMNWMN% — m m
:) o0 comezremn ‘ ' INOA) Spow |04 ezIenuip -~ ¢
vasl hezifenyl ' T T
m m m (sjusuodwod m
) r) [N o

(suoneaidde pue ejyep Juayo Joj pasn suauodwod) G] aueld ejeq

707 (SO @91nuss Bunndwod pazifenuip

anjjessiuiwpe) 5o aueld joauo)

M rrrrrrrrrrr

4
L3

L4

‘GeoeoessssssssssssssssssssrsrsTTTTTTTTTTTTTTTTTTTTSTSTSTTOne?

L4
A)

WO 2020/123149 PCT/US2019/063363

Example virtualization control modes 205 (defined by VCS)

VCM properties 250

Shared (multiple-VCS-client)
hosts, placement of VMs/
compute instances managed
by VCS, resource over-
subscription (if any) managed
by VCS,...

Shared managed mode
(SMM) 210 (e.q., —»
default)

Dedicated (single-VCS-client)
hosts, placement of VMs/
Dedicated managed compute instances managed

mode (DMM) 220 by VCS, resource over-
subscription (if any) managed
by VCS,...

Dedicated (single-VCS-client)
hosts, placement of VMs/
Dedicated power-user compute instances managed
mode (DPM) 230 by clients, resource over-
subscription managed by

v clients,...

Increasing extent of control by VCS
clients/users 200

P L L L L L L L L e e e L L L L L L L L L L L N

FIG. 2

WO 2020/123149

3/23

PCT/US2019/063363

Compute instance (Cl) 310 (e.g., micro-VM)

Requested resource capacity (RRC) [vCPUs, mem, storage, netwk,...] 312

Measured resource usage (MRU) [interval, vCPUs, mem, storage, netwk,..] 314

Virtualization host 321

Total available capacity (TAC) 327 [resourceTypes]

CurrentClSet 323

Cl 310A Cl 310B
RRC 312A RRC 312B
MRU 314A MRU 314B

Dedicated
power-user
mode (DPM)
330in use

Client 335 decides
whether to launch
another Cl at VH, even
if aggregate requested
capacity would exceed
VH’s TAC

FIG. 3

Other modes
332in use

VCS control plane 338
decides whether to
place another Cl at VH

WO 2020/123149 PCT/US2019/063363

Virtualized computing service (VCS) 412

4/23
.
[] []
[] []
] []
[] []
[] []
[] []
[] []
[] []
[] []
[] []
(optional) HE
provisionVirtualizationHosts(resourcelnfo) 414 H E
[]
L
(] []
(] []
.o
hostsProvisioned(hostIDs) 415 I
(] []
(] []
- .
(] []
(] []
(] []
(] []
prepareForLaunches E E
(virtualizationControlMode,prepInstanceSetDescriptor) 421 '
— >
(] []
| 0
[
resourcesReady 423 :; E
[]
< 4 £ 8
P
. 1.£ 0
Client 410 | FaunchComputelnstances R
(runinstanceSetDescriptor) 425 E E E
[l E [] >
i 8
P
instancesLaunched(instiDs, maxLifetimes) 427 1 ¢
(] []
< HE
(] []
Lo
launchApplicationinstance E :
(AppiD) 429 P
——>
HEH
[] []
P
appLaunched(appEndpointSet) 431 E E
- —
[] []
v
terminatelnstances(instiDs) 433 -
N
P
terminationComplete 435 |!
[] []
- —
[] []
[] []
l‘ ‘l

FIG. 4

WO 2020/123149 PCT/US2019/063363

Virtualized computing service (VCS) 412

5/23
v
v
getCIResourcelnfo(hostIDs, resourceTypes) -
514 ¢
v
-
o
[] [}
P
currentCIResourcelnfo 515 E E
(] []
B -
(] []
(] []
(] []
(] []
v
launchComputelnstancesOnDedicatedHost E E
(Clinfo, hostID) 525 '
] [-
HE
(] []
v
instancesLaunched(instlDs) 527 HE
s
< s <o
¢ B
1 L
{5
Client 410 ' :g '
{E
assignAdditionaDedicatedIHost(hostRequirements) 529 =
=3
e
P
hostlD 531 ¢
v
<] Ld
(] []
(] []
(] []
(] []
v
releaseDedicatedHost(hostID) 533 HE-
[] []
[] []
>
[] []
hostReleased 535 : E
< E -
[] []
[] []
v
changeVCMode(hostIDs, to-mode) 537 I
[] []
[] []
P
VCModeChanged 539 -
- -
Lo

FIG. 5

PCT/US2019/063363

WO 2020/123149

6/23

P L L L L DL L L L LI L L L L Ll L L L LIl Al Ll Ll LAl LI A ALl Ll Ll LI LI I LI LIl Y

L]

4

089
NAI S,19 Jawoisng

q9 ‘Old

10 sjusuodwiod
aue|d eyep J1ayl0

0099

099 INA OIN

9099 A 010N

059 IS0y uonezienyip

(10 1)
V099 INA C101

P L L L Ll A A L L L L L L L I

(SB10 92IAISS JBUIRIOD
1o} dn 38s) D609 39S A 001N

9709 188 [J pazipiepuels

D909 sbumas
}IOM]BU PBJOB|SS-ISUMO-NA|

4
[}
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[}
L)

L)

(991085 JauIRWOD “6°9 ‘92INI8S
Areipawaiul Aq paumo) D509 NAI

ceoccssscssccssccscscacsacaag

L4

L Y L L L L L L L T T X T L X T g Y Y T Y Y Y L L L L LY T4

A}
[]
]
]
]
]
"
"
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
[
Y

eg9 old

PLAL DL L DL LLLLLELL LA L LD

9609 39S WA 0IOIN

secccsccsccccssssssssenscsassnsn,

4

ceccssccsscsscscccccccccccag

g909 sbumes

}IOMJBU PBJOBISS-ISUMO-NAI o

(20 wa119 40}) G509 NAI

Soccscccccccessssssscscscsccsans?’

L)

709 (SO 991nas bunndwoo pazienuip

soccccscssssssssssssasssssn,

oSO eoccnsccsssscscsssnsansnana,

L 3

019
Syuauodwod ulwpe

90IAIBS AleIpawLIBly|

Communication channel

609 185 WA 0J9IN

V200 39S 92uejsul andwiod
(WA 0Jo1W-uou) pazipiepuels

' V909 sbumes
"v__oEmcu&om_mm-_mc;o-z>_

ceccssccsscsscscccccccccccag

(RoRUETIR

10J) VG009 (NAI) SHOM}SU [enuIA paje|os|

LY

4

WO 2020/123149

7/23

PCT/US2019/063363

Compute
instance 790

Interface ID 701

(e.g., Micro VM)

Description 702

IVNID 703

Programmatic attach/
detach operations 793

Private IP address(es) 705

Virtual VNI 791B .
network Public IP address(es) 715
interface (VNI)
791A Subnet ID 725
DNS info 727
VNI attributes 795 Security properties 735
Security group(s) 745

Attacher list 747

IP Address setter list 749

Owner/modifier list 753

DeleteOnTerminate 751

Source/destination check 765

Interface status 768

Attachment status 769

Attachment ID 771

Attached-to compute resource 773

Attachment owner 77

MAC Address(es) 777

Monitoring Information 779

Pointers to child/branch VNIs 781

FIG. 7

PCT/US2019/063363

WO 2020/123149

8/23

(193lqo 991n8p [Dd
ou) M0Z8 INA youelq/piyd

(10elgo aa1nap |0d

ou) g0Z8 INA youeiq/piyd

(193lqo sa1n8p [Dd
ou) V0Z8 INA youeiq/piyd

8 Old

(308)S 21eMY0S Je pajeald 198[qo 80Inap [Dd
Buipuodsariod yym “6-3) 018 INA Junijpualed

PCT/US2019/063363

WO 2020/123149

9/23

6 Old

6

S90RLIS)UI YIOMISN

(paseq
0¥6 saoepsul 3-10d -|dS "6°8)GER sevepl
/S90IASP ASS/Yseld

06 80In0S JOMOd

0¢6
(INdL“6°3) sinpow Ajunodag

43
INOY 1000 J3(|04U0D UOEZIENYIA

d/16
(s)Jossaooud

PEOO

(1opeoyio Buissasoid yiomau)
016 diyo-uo-walsAs

V.16
(s)Jossaooud

PEOO

(13]]0u09 00q)
516 diyo-uo-walsAs

206 PpJed (DINAQ) auodwod Juswabeuew uonezienuia papeowo

PCT/US2019/063363

WO 2020/123149

10/23

0l Ol

(20 waiD)

dov0l WA ORI

.
gvZ01 INAD &
.

070} 9doedssweu

(Lvd) uonejsues
SSaIppy Lod paleys

¢S50l sslgeld|

(0w “6-9)
gveol dINS

(1ue “6°9)
Yre0l dINS
99IA9p SoB AU
}0M}aU BIEMY0S

(10 us0)

VZeol INA ORIN

P

1501 8bpug

V20T (INA
PIIYY) INAD

Ly

peeedeee

0601 Jen1ss 4OHA

S S

4910

[]
VPZ0T INAD
[]

0201 (vdO)jusbe
aue|d joju0)

0201

p1ed (QWAO)
auodwod

Jabeuew
uonezifenuia
papeolO

ALl L L L L LY]

w (INAd) INA

-F

esccoscccscas

]
loecocseeasnded
L]

¢01 SO

(9oedsaweu
Inejap s,0L2 HA ul oue “6'8) Z¥E0T aINS

0101 350y uonezijenyip

'

Y

1101 NAI
¢OWLND

6007 NAI
RORELY)

100}
aue|d [04u09
(9011188
JaUIBJUO0D
“69) 9911
Aeipawsiy|

5007 sueld
[0JJU03 SOA

WO 2020/123149 PCT/US2019/063363

11/23

As part of initialization of virtualization host (which may be identified/selected based
on virtualization control mode in use), VCS control plane creates parent VNI, control
plane agent (CPA) 1101

Y

Client sends “launchComputelnstance” request to VCS control plane 1104
A cell of the VCS control plane performs additional network configuration actions
(e.g., creating a child VNI if needed for the compute instance (Cl)) and issues a

“setupNetworkForCl” command via control plane agent (CPA) API to CPA at
virtualization host 1107

!

CPA issues “createSNID” commands to software network interface device (SNID)
managers, such as CNI plugins, at virtualization host 1110

!

SNID managers create requested devices, provide information such as IDs/names of
created SNIDs to CPA 1113

!

CPA informs VCS control plane that requested network configuration operations for
Cl have been performed 1116

!

CPA includes SNID information in request sent to launch ClI 111

FIG. 11

PCT/US2019/063363

WO 2020/123149

12/23

¢l Old

PL ol L L DL L D L A Ll L L Ll L L L L L L L Ll A el L Ll L L Ll Ll L L Ll L Ll L L IS

4

4

\

.

N

(ebeio)s payoene-yiomau
pue [290] JO SUOHRUIGUIOD

Buisn saoinap ayII-qQIyy “6°9)

€Z1 S9oInap abelos pugAH

Y,

(-)

(sawnjon
pabeuew a2in1as Aleipausiul
se Aljige|ieAe pue asuewouad
Jeqwis) Gzz | sewnjon pabeuew

-SOA PayIeRe-HIoMSN

\. J

4)

(99ueI8|0} B}
Jaybiy ‘ssaooe Jamoys Apybis)
Gl 2} SawnjoA pabeuew-aoIAIas
Aleipawlsiul payoeye-3}IomeN

. J

\

.

(99ueI9|0} YnB} JOMO|
‘S$9008 1SB)) GOZ | S9oINep

N

9be10]S 1SOY-UONBZIBNUIA-UQ

Y,

SINA-0J01W Se Yons saoue)sul aindwiod 104 70z suondo abeloss Jusisisiad

I Ty

4

PCT/US2019/063363

13/23

WO 2020/123149

L0EL
Ayasessiy
abelois
INAW palsl|

PLE L L L L L L Ll L L L L L L L ALl L A Ll Ll Ll Ll LTS

4

9 dnoub Buowe paseys ejep)
D0¢¢ | uonoas soeds shelo)g

(4056
INAW 0} 81eAlid)

40¢£€] uonaes

aoeds abelo)s

L

€L oOld

L d

L

—

(SINAW
|le Buowe paleys eyep) PTTT uonoss adeds abelo)s

L L B B B N A A R R R R R R R R R R R R R R R Al KL LR R R R R R R R R R R R Y
reme EEED Gommn eny,

S

(SINAW

(3056
INAW 0} 81eALd)

J0EE} uondes

aoeds abelos

(@056
INAW 0} 8jeAud

doge| uonoss
aoeds abelo)s

SAw
g dnouf Buowe paieys ejep)
g0z¢| uonoss ageds abelo)s

T,

(0056
INAW 0} 81eALId)

O0EE] uonaes
aoeds abelo)s

/\\m\

Y0SEL NAW
Aq 9)q1sS990E

\ ! 06¢7 obei0ig

(saw
/ v dno.b Buowe pateys elep)
’ Y0zZE] uonoas aoeds abelio)s

(dose

INAW 0} 81eALId) /

d0eE] uopaes
aoeds abelo)s

_ /

(056
INAW 0} 81eALId)

V0eE] uonaes

aoeds abelo)s

cosescccsccscscsccccsancnagl

LY X ¥) -Q

e o -

——

PL AL LD LD L LI LD

L)

®
L]

PL AL LD LD L LI LD LD LD LR

L)

*®
L

Pl L L L

|||||&|||l

L4

406¢€1
AW

406€1

AW

aoscl
AW

a06€1
AW

AW

d0s€1

9 dnoig

Pocacsean

A
o

g dnoio

"sceocscscoesssscossscooan® [

¢0€1 IS0y uoneziienpip

L)
odoccccan

~370GET
(INAW)
A 0JOI

v dnolig

LYY YLy Yy Yy yyyd

L]

WO 2020/123149 PCT/US2019/063363

14/23
Off-the-shelf machine
image 1405 (e.g., from an Client-selected additional
operating system modules/libraries 1407
repository)

\ /

Baseline client-generated machine image
1410

l

Usage analysis tool 1420 (e.g., part of
VCS-provided image size optimizer tool)

l

Transitive closure of actually-used
modules 1425

VCS-provided image size optimizer tool
1430

Tool eliminates at least some unused
kernel components, shared libs

Optimized (smaller)
machine image 1435

Virtualization hosts 1440

FIG. 14

PCT/US2019/063363

WO 2020/123149

15/23

Gl Ol4

Pl L DL L L L L L ALl Ll Ll Ll LIl LAl LIl L LIl LAl LI LIl Ll Ll X

o0¢61
uonJod abewl uowwod AW

PLALLLLLLLLLL AL DL Ll L Y

L]

d0¢al
uonod abewr uowwos AW

0157 abelo)s [290] 1SOY UONEZIfeNUIA Ul 8Yde))

Y0Zsl
uonod abewr uowwos AW

051

abewr AW [eul pa}oogq-aq-0 |

69G] s9nu
uoneuiquod uoiod sbew

abewr AW
[euy a)eald

1951

$s9201d (yYd9D) abe aue|d-jonuo)

«— 0}suoniod
abew

SUIQUI0D

vdO

Q---------------------“

L)

(@oss1 Asobajes
AW J0})
QOES} uonod
abewn oyloadg

(30651 Aobejed
AW J0j)
J0¢G1 uopod
abewn oyloadg

(40651 Aiobajes
INAW 104)
3051 uoniod
abew oyoadg

Z0G1 Aoysodal abewr SOA

9066 Alobajes
INAW Jo})
D0¢G | uoniod
abewn oyoadg

(90551 Aobejed

g0EG} uomsod
abewn oyloadg

(v0ss | Asobejed
AW Joj)
V0£G | uoniod
abewn oyoadg

INAW 10})

PCT/US2019/063363

WO 2020/123149

16/23

91 Ol

0997 (s)peaiyy
uipe Jayi0

A3
SIBUIBJUOD
Juoeol|ddy
0591 0791 peasy) 1€91 SO
peauy} Japinoid uonebedosd
Blepelsw AW JUOI}23][02 SILBIA 0597 pealy)
(INAW) NA-0IIN

.----------------------‘

- []
; 1231 :
b SHWI| Sjel HOMRU pue Of AW §
) [

19T (dIA) ss820ud Ateipauusiul uonezienuia sjgeddems

0291 pea.y
13|puey |4V dIA

WO 2020/123149

Common initialization
steps 1705 (also
performed at other Cls)

17/23

PCT/US2019/063363

Instance-specific
configuration steps 1708
(only performed at this Cl)

Stage 1
operations 1725

Y

Snapshot 1710 (e.g.,
comprising CPU state,
memory state, ...)

N

Compute insta7ce

VCS may detect some snapshot generation
points automatically; the snapshots may be
used to speed up clone Cl launch times

Stage 2
operations 1735

lifetime timeline
1701

Stage 3

operations 1745

Snapshot 1730

-
* Compute instance

Snapshot 1740

FIG. 17

lifetime timeline
1751

WO 2020/123149 PCT/US2019/063363

18/23

After a set of preliminary configuration operations are performed, a compute instance such as a
microVM (mVM1) is launched at a virtualization host with a virtualization offloading card, e.g., as a
child thread of a virtualization intermediary process to which an APl request is directed from a
control plane administrative agent of a virtualized computing service 1801

Y

At least a portion of configuration information of mVM1 is saved as a snapshot, e.g., in response
to a createVMSnapshot request, or based on automated detection of a snapshot point by the VCS
1804

!

Optionally, additional preparatory configuration operations for clones of mVM1 are performed at
one or more virtualization hosts 1807

L]

In response to a request to clone mVM1, a respective VIP process starts up a thread implementing
the requested clone(s), e.q., using the snapshot and the results of the additional preparatory
configuration operations 1810

FIG. 18

PCT/US2019/063363

WO 2020/123149

19/23

6/ Old

sjoysdeus asn ‘eoueape ul suonesado uoneinbyuoo
fiojesedard wiopad ‘sazis abewn yuuys ‘suoniod abewr ayoe)

9beI0)S PayoENe-IoMaU pue [2o0|
JO SUONBUIGUIOD 8sn ‘SNAW Buowe suonoas abelols aleys

0G61 Sjulessuoo
Kousyel-youne

S99INp Bunyiomeu
1S0U-140 0yu0 Buissasoid pajejp.-Huipiomau Jo sadA) swos
ssed ‘sjpuueyd AJARIBUUOD AW ISOY-UO ‘1d ‘SINA Xa1dniniy

0¥61 Sluensuod
obel0)s Jusjsisiod

-~

SO paulweans ‘S|\AW Joj SIS0y 199|9S
0} susaped-abesn-a0inosal-pajoadxa-1e|iwissip Ajjuspl ‘papasu
Se SPAW JNo dems ‘(apowl |0JU09 Uonezi[eniIA pajos|es
-Jual|o uo paseq “6-s) uonduosqnsIano ‘spied Buipeowo

C61 SIBASuoDd
BuryiomaN

161 S100e} Bunnqiyuod Ayjiqeeos

(Aowaw
‘NdO Buipnjoul)
0261 Slulensuod
90IN0S3l |leJANQ

WO 2020/123149 PCT/US2019/063363

Request processing
node (RPN) 2010A

Matenallzed
view 2015A

Reconciliation
node 2020

PL I T XA E A A X A X A R XA R A LT L LR L XL K I

|
| | l :
High performance persistent data store | | | |
instance 2030 (e.g., containing Cl state | 2071C | |
change requests, Cl config API result | | 2073D |
info, monitoring data...) | ' | |
~— - | s | 20730
\ | I |
Managed virtualization hosts metadata 2040 \\ | : l
Host-to-VCM mappings 2041 | | | I’
"""""'""""""""""""J'""‘I"" """) I 77
eseeccseceneecsceecceeceeecccecscnsdaness -l--L F f --.\‘
by ¥ r i
VH 2055A VH 20558 '
[]
Control-plane agent (CPA) process 2062A CPA 206B E
:
[]
Compute o '
instance (Cl) Cl 2067B Cl 2067K I '
2067A ;
[]
Offioaded virtualization OVWMC |1
mgr component (OVMC) [20698 1
2069A ;
[]
Cell-specific virtualization host (VH) group 2059 ,:

PCT/US2019/063363

21/23

LA L A L Ll Al i A A A Al Ll L A A A Al A Ll i L L L LTS

WO 2020/123149

lc Ol4

PLl l ekl ddondbndibrdbdbadbaddbdndbdbndbdbadbadddidbmdbdbadndiddiond Lt lrddldddbdtbtttdtbdddrdbirtlrtdrtdetttttbtttddtlrtdtdtbrdtbrdtbrtdbrddbrdddbdidindad TS
XX L L XX XY XY XX Y XL XYY YY)

0 ettt rdetettt ettt itttk itttk 3

| 7712 Sedeyal onewwelfold)

L

e S EEmsssssssssssssccccccccccaaaaeeon,
PLAL LD AL LELLLLLELLLLLLLLLLLE] P A A LA A A A L LA LA LLL LD LLY]

L) <

7712 Slebeuew
Sishjeue
awij-|ealBuluQ

/Gl¢ Sia|puey Jusng

_ 7 siabeuew Jauejuo
Gl1¢ vk 0

Aieiqi| wiyLoby

GGTC (S03) ao1nuss €12 (S00)
Bunndwo usALIp-JUsAS SSSI-IBNISS, 391A19S Bunndwoo paseq-Iauleuo)

A o A o
Sessccscscscsscccsacssscassasssae Sosscscsscssssssssscsoecsasasse®

4
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
]
1)

P A Al Al Al AL A L AL L L2 4 Iy
soecccccccssssssssasnsanas,

1] 1]
]]
’]
’]
]]
]]
]]
]]
]]
]]
]]
]]
]]
]]
] ’
] ’
] ’
]]
]]
]]
]]
[J [J
4 4

‘scscscscsscscsscscscscsscscsscscscscncnc?

. TZTZ (SW) @91uas Buiuses| aulyoep

)

P AL L L LD LI LA LI L Ll LIl) PLAL L L L A L L AL AL AL AL L L L Ll LT PLAL L L L LI LI DL LI LD L2

4
[4
L4

5012 150y D501 150y
uonezifenin uonezifenin

TSIz 150y DGT1Z 150y
uonezifenin uonezifenin

J5¢le SS

ascle SS

G072 150y V5012 150y
uonezIfenip uonezIfenip

g9l1¢ 1oy V§11¢1s0y

Vacle uoNezIenpIA uonezifenyip

d5¢1¢ SS (SS) Jones abeIOIg

PIELEELEEELEEIIEEIIEELLEEL L XY P
‘ccccccccccccccccccccccccccaa
PXIEIILEELEELLELL LR LY L L Y I
‘ccccccccccccccccccccscscscscsccaa”
PXIEIILEELEELLELL LR LY L L Y I
MYy

€712 90In9s abelo)s/aseqele(

Sosccscncscscncscscnscscncscccscccscccscsccccan?

101 ¢ X10mjBu JapIirold

€0l¢ 99IMSS |AA 01BN

Seescsccscscscsscsscsscnscsassasns’

01 99IAIBS [\ 00N

Soccscscccscccscscsscscascsccnns’

4
[4
[4

L3

P L I N I N NN I I I O Oy

WO 2020/123149 PCT/US2019/063363

22/23

Information about supported virtualization control modes (VCMs) for compute instances (Cls) of one
or more types (e.g., micro-VMs that meet a required resource capacity criterion) such as shared
managed mode (SMM), dedicated managed mode (DMM), dedicated power user mode (DPM) and
the like, is provided via programmatic interfaces of a virtualized computing service (VCS) 2201

v

Respective indications of (a) a machine image to be used to instantiate one or more Cls (which may
represent a snapshot generated from some earlier-launched Cl), (b) an isolated virtual network
(IVN) with which connectivity from the one or more compute instances is to be configured and/or (c)
a particular VCM, VCM1, to be used for configuring/administering the compute instances is
obtained, e.g., via a programmatic interface of the VCS 2204

v

Based at least partly on VCM1, a set of preparatory configuration operations that collectively enable
faster responses to future Cl launch requests is initiated/performed: e.g., caching at least a portion
of the machine image at a location accessible from candidate virtualization hosts (VHs) that each
include a virtualization management offloading card, caching additional data objects that may be

shared among Cls (such as SW container artifacts), initializing one or more virtual network
interfaces, etc.; the extent of advance preparation, and therefore the extent of launch acceleration
achieved, may be greater for VCMs in which the client has greater control and can, for example,
indicate the specific virtualization hosts to be used 2207

!

A launch request for one or more Cls (e.g., a collaborating group of micro-VMs) is received at the
VCS; depending on VCM1, the request may indicate the specific VH(s) at which the respective Cls
are to be instantiated 2210

Y

Any additional pre-requisite configuration operations required are performed, and the requested Cls
are launched, e.g., each implemented as one or more threads of a virtualization intermediary
process established by a VCS control plane agent at a VH in response to the launch request; one or
more types of communication channels may be established for the Cls, including over-the-network
channels (e.g., to devices within the IVN, thus configuring the Cls as part of the IVN) via respective
virtual network interfaces whose traffic is processed at the virtualization management offloading
card, local channels for communications with other Cls without using network resources, efc.; a
given Cl may be terminated after a pre-disclosed duration 2213

!

Depending on VCM1, detailed information regarding the requested capacities of Cls at a given host

and/or measures of actual resources used at that host by the Cls may be provided to a client; such

information may be used, when requesting additional Cls, to oversubscribe resources along desired
dimensions such as CPU, memory etc. by the client if desired 2216

Y

Snapshots of state information of a Cl, including CPU state, memory state etc. may be generated,
e.g., based on requests from clients and/or based on auto-detection of snapshot points during Cl
execution; such snapshots may be used to clone Cls that have already been at least partly
configured, further shortening the time taken by a Cl to start doing useful application work 2219

FIG. 22

WO 2020/123149

PCT/US2019/063363
23/23
Computing device
9000
Processor Processor Processor
9010a 9010b o 9010n

; ; ;

/0 interface 9030

¢ I

System memory 9020 Network interface

Code Data 2040

2025 2026 T

Network(s)
9050

Other device(s)
9060

FIG. 23

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2019/063363

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/50
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

paragraph [0040]
paragraph [0056]

X US 2014/365626 Al (RADHAKRISHNAN ARJUN 1-15
[ZA] ET AL) 11 December 2014 (2014-12-11)

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

18 February 2020

Date of mailing of the international search report

04/03/2020

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Ebert, Werner

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2019/063363
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2014365626 Al 11-12-2014 AU 2014278257 Al 24-12-2015
AU 2017218941 Al 07-09-2017
AU 2019213422 Al 29-08-2019
CA 2914940 Al 18-12-2014
CN 105324760 A 10-02-2016
EP 3008616 Al 20-04-2016
JP 6580035 B2 25-09-2019
JP 2016527604 A 08-09-2016
SG 11201510128U A 28-01-2016
US 2014365626 Al 11-12-2014
WO 2014201053 Al 18-12-2014

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - claims
	Page 71 - claims
	Page 72 - claims
	Page 73 - claims
	Page 74 - claims
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - wo-search-report
	Page 99 - wo-search-report

