PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

_INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GOG6F 9/46 Al

(11) International Publication Number:

(43) International Publication Date:

WO 99/63438

9 December 1999 (09.12.99)

(21) International Application Number: PCT/US99/12553

(22) International Filing Date: 4 June 1999 (04.06.99)

(30) Priority Data:

60/088,200 5 June 1998 (05.06.98) us

(71) Applicant: MYLEX CORPORATION [US/US]; 34551 Arden-
wood Boulevard, Fremont, CA 94555 (US).

(72) Inventors: OTTERNESS, Noel, S.; 3827 Paseo Del Prado,
Boulder, CO 80301 (US). SKAZINSKI, Joseph, G.; 207
Cheyenne Drive, Bertoud, CO 80513 (US).

(74) Agents: ANANIAN, R., Michael et al; Flehr, Hohbach,
Test, Albritton & Herbert LLP, Suite 3400, 4 Embarcadero
Center, San Francisco, CA 94111-4187 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB,
GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG,
KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, §],
SK, SL, TI, T™M, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW,
ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG,
ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI,
FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE,
SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: APPARATUS, SYSTEM AND METHOD FOR N-WAY RAID CONTROLLER

(57) Abstract

This invention describes
structure and method for an
efficient architecture allowing
n—controllers to work together

1/0 Operations | /101

)

5709

to improve system performance
and fault tolerance, when n is
greater than two. This invention
provides a new type of RAID
architecture using operational

DAG
Builder

Configuration
Database

1
/00

\l 02

primitives in a message passing i
multi—controller environment Token Available

Y’07
Token Ready

YIOJ Y704

to solve the problems presented Queue
in having multiple controllers
distribute a non-uniform
workload. This architecture
allows for expansion of the I/O

Token Dispotch
Unit

Queue

[TOKEN COMPLETION 128
Token Execution
Unit
[TOKEN FETCH UNIT 127)

processing capability limited
only by the efficiency of the
underlying message transport
method. In simple terms, the
inventive technique breaks
input/output (I/O) operations
into a set of simple methods
which can then be passed around
as tokens, or pieces of work
to be executed by whichever
controller has the least amount
of work to perform. o
operations include all operations

Interprocessor
Massage Control
Unit

needed to perform the tasks of a RAID controller. These include host read/write commands, rebuilds, data migration, etc.). The workload
distribution adapts to the available types of processing resources available in the system. The advantage of this type of architecture is that
additional processing resources can be added to the system to address specific areas which need higher throughput without the need to

rethink the software architecture.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
CuU
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
1L
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Tceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
™D
TG
TJ
™
TR
T
UA
uG
us
Uz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

WO 99/63438 PCT/US99/12553

APPARATUS,SYSTEM AND METHOD FOR N-WAY RAID CONTROLLER

Field of the Invention:

This invention pertains generally to a computer structure and method that provides
a plurality of controllers using operational primitives in a message passing multi-
controller non-uniform workload environment, and more particularly to a RAID computer

architecture employing this structure and method.

Background of the Invention:

Modern computers require a large, fault-tolerant data storage system. One
approach to meeting this need is to provide a redundant array of independent disks or
RAID operated by a disk array controller. A conventional disk array controller consists
of several individual disk controllers combined with a rack of drives to provide a fault-
tolerant data storage system that is directly attached to a host computer. The host
computer is then connected to a network of client computers to provide a large, fault-
tolerant pool of storage accessible to all network clients. Typically, the disk array
controller provides the brains of the data storage system, servicing all host requests,
storing data to multiple (RAID) drives, caching data for fast access, and handling drive

failures without interrupting host requests.

10

15

20

25

30

WO 99/63438 PCT/US99/12553

-2-

Traditionally, the storage pool is increased by adding additional independent racks
of disk drives and disk array controllers, all of which require new communications
channels to the host computer. One problem with this conventional configuration is that
adding additional racks of disk drives to the network configuration typically requires a
lot of intervention on the part of the system administrator. Also, because the disk array
controllers are independent there is no provision for automatically distributing a workload
across any of the available controllers, the burden of determining how to best attach and
utilize the I/O processing resources falls upon the person responsible for setting up the
system. Moreover, if the utilization of the I/O processors changes for any reason the

system utilization may no longer be optimal.

An additional drawback of this conventional architecture, is that while adding
more subsystems also adds more storage capacity to the system, it does not necessarily
add additional processing capabilities. This is generally the case, because all controllers

work independently with no cooperation amongst each other.

Some recent attempts to produce high-performance RAID systems having
improved system utilization have used a single high-performance, monolithic controller.

Because there is one controller, there is no possibility of an unbalanced workload between

‘multiple independent controllers. Although the system utilization is improved, the cost

of building the high-performance, monolithic controller dramatically increases the cost

of the RAID sy“stem, which in the competitive computer memory market is highly

undesirable. Another, more fundamental problem with this approach, as with all single
controller systems, is that the failure of a single element, i.e., the controller, to renders the

~ entire RAID system inoperable.

Dual active controllers were implemented to circumvent this problem of a single
point of failure that all single controller RAID systems exhibit. Dual active controllers
are connected to each other through a special communications channel as a means of
detecting if the alternate controller malfunctions. The controller redundancy is provided

by allowing a single controller in a system to fail and then having its workload picked up

10

15

20

25

WO 99/63438 PCT/US99/12553

-3-

by the surviving controller. In order for one controller to take over the tasks which were
being performed by the failed controller it must have information on what work was in
progress on the controller which failed. To keep track of the work the partner controller
is working on, messages are passed between the two controllers to mirror host writes and
send configuration information back and forth. To fulfill these two requirements, two
classes of controller to controller messages are required, data and configuration messages.
The data messages can be considered to be static in that the information contained within
the message is not generally processed until the partner controller fails. The
configuration messages can be considered to be dynamic in that they are processed by the
receiving controller immediately upon receipt and causes a change in the receiving
controller’s state. Although, dual active controllers eliminate the problems caused by
failure of a controller in earlier systems with multiple independent controllers or a single
monolithic controller, they still suffer from one of the same drawbacks. Namely, that
there is no provision which would allow the controllers to distribute the workload across

the controllers, and therefore the system utilization is not optimal.

Therefore, there remains a need to overcome the above limitations in the existing
art which is satisfied by the inventive structure and method described hereinafter. In
particular, there is a need for a memory system comprising a plurality of disk array
controllers in which a failure of one or more of the controllers does not render the system
inoperative or any of the data stored in the system inaccessible. There is also a need for
a memory system to which additional controllers or memory arrays can be added to
increase processing capabilities. There is a further need for memory system having an
architecture which does not require extensive alterations either to the software or the

hardware to expand the system.

10

15

20

25

30

WO 99/63438

Summary of the Invention

Heretofore, RAID system performance and fault tolerance have been limited by
the use of one or two independent controllers. This invention provides structure and
method for an efficient architecture allowing n-controllers to work together to improve

computer and disk system performance and fault tolerance, when » is greater than two.

The invention provides a new type of RAID architecture using operational
primitives in a message passing multi-controller environment to solve the problems
presented in having multiple controllers distribute a non-uniform workload. In simple
terms, the inventive technique breaks input/output (I/O) operations into a set of simple
methods which can then be passed around as tokens, or pieces of work to be executed by
whichever controller has the least amount of work to perform. The advantage of this type
of architecture is that additional processing resources can be added to the system to
address specific areas which need higher throughput without the need to rethink the

software architecture.

The present invention is directed to a memory system for controlling a data
storage system, the memory system comprising a plurality of memory controllers coupled
by a communications path. The memory controllers are adapted to dynamically distribute
tokens to be executed amongst the memory controllers via the communications path. The
communication path is a high speed channel connected directly between the memory
controllers, and can comprise one or more of a fibre channel, a small computer system
interface, a mercury interconnect. Preferably, each of the memory controllers comprises
a shared-memory controller and the communications path is coupled to the memory
controller through the shared-memory controller. More preferably, the shared-memory
controller comprises a computer readable medium with a computer program stored
therein for dynamically distributing tokens amongst the memory controllers. The
memory system of the present is particularly suited for use in a networked computer
system comprising a server computer coupled to a plurality of client computers, and in
which the data storage system comprises a plurality of disk drives in a RAID

configuration.

PCT/US99/12553

10

15

20

25

30

WO 99/63438 5.

In another aspect, the invention is directed to a computer program product for
dynamically distributing tokens amongst a plurality of memory controllers. The memory
controllers are adapted to control a data storage system, and to transfer data between the
data storage system and at least one host computer in response to an instruction from the
host computer. The computer program comprises (i) a dispatch unit for receiving at least
one token which is ready to be executed from a host computer and storing the token in a
token ready queue, (ii) an execution unit for taking a token from the token ready queue
which the memory controller is qualified to perform, instructing the associated memory
controller to perform the token, and transmitting a completion signal to other memory
controllers, and (iii) an interprocessor message control unit for transmitting tokens, data,
and completion signals between memory controllers. Preferably, each of the memory
controllers comprise a computer readable medium with the computer program stored
therein. In one embodiment, the computer program further comprises a token generation
unit for parsing an instruction from the host computers into component procedures which
are communicated as tokens. In yet another embodiment, at least one of the host
computers comprise a computer readable medium having an instruction program stored
therein, and the instruction program comprises a token generation unit for parsing an
instruction from the host computer into component procedures which are communicated

as tokens.

In yet another aspect, the present invention is directed to a method for operating
a memory system comprising a plurality of memory controllers, the memory system
adapted to transfer data between a data storage system and one or more host computers
in response to instructions therefrom. In the method, the plurality of memory controllers
are coupled with a communications path. An instruction from a host computer is parsed
to identify at least one instruction component procedure. A token representing each
instruction component procedure is broadcast to the memory controllers and stored in a
token ready queue in each of the memory controllers. Preferably, the method comprises
the further step of dynamically distributing the tokens amongst the memory controllers

via the communications path to balance a workload on each of the memory controllers.

PCT/US99/12553

10

15

20

25

30

WO 99/63438 PCT/US99/12553

Brief Description of the Drawings:

Additional objects and features of the invention will be more readily apparent
from the following detailed description and appended claims when taken in conjunction
with the drawings, in which:

FIG. 1 shows a diagrammatic illustration of an embodiment of a Software Block
Level Architecture;

FIG. 2 shows a diagrammatic illustration of an embodiment of a System State
Diagram;

FIG. 3 shows a diagrammatic illustration of an embodiment of a Token Execution
Unit;

FIG. 4 shows a diagrammatic illustration of an embodiment of an exemplary Write
Operation (write through LUN));

FIG. 5 shows a diagrammatic illustration of an embodiment of an exemplary Write
Back Operation;

FIG. 6 shows a diagrammatic illustration of an embodiment of a Token Dispatch
operation; and

FIG. 7 shows a diagrammatic illustration of an embodiment of a Controller and

Controller operation.

Detailed Description of Embodiments of the Invention

The invention will now be described in detail by way of illustrations and examples
for purposes of clarity of understanding. It will be readily apparent to those of ordinary
skill in the art in light of the teachings of this invention that certain changes and
modifications may be made thereto without departing from the spirit or scope of the
appended claims. We first provide a top level architectural description. Section headings
are provided for convenience and are not to be construed in limiting the disclosure, as all
various aspects of the invention are described in the several sections whether specifically

labeled as such in a heading.

The RAID system of the present invention comprises an N-Way Controller which

provides a dynamic and cooperative architecture. One that scales from one to any number

10

15

20

25

30

WO 99/63438 -7
of controllers, providing additional storage, additional fault tolerance, and additional
processing capabilities. The N-Way Controller solution provides an advance architecture

where all controllers work together to service all data requests from a host computer.

The N-Way Controller architecture is modeled on a loosely coupled processor
architecture theme. The idea is to be able to break a piece of work into smaller pieces
which are independent of each other. Each of the smaller pieces can then be distributed
to any of the available processing resources in the system. For example, I/O instructions
from a host computer are parsed or divided into tasks or tokens representing instruction
component procedures to be executed by one or more of a plurality of memory
controllers. Certain multi-processor message primitives are required to insure the proper
order of execution and to protect critical data paths. This new N-Way Controller
architecture provides the structure, methods, and capability to intelligently and
cooperatively distribute the pieces of work dynamically to any of the available I/O

processing elements in the system.

This new architecture also couples numerous lower cost memory controllers
together to achieve a new performance level. This architecture and structural topology
provides higher performance, and greater reliability at a lower costs then the currently

employed single or dual high end controllers.

The N-Way Controller architecture provides a new data distribution layer. As the
original RAID architecture achieved higher performance and lower cost by distributing
data amongst many low cost disk drives, this new architecture achieves higher
performance and lower cost by distributing work amongst many lower cost memory
controllers. This new architecture also provides a dynamically cooperative environment

which can be quickly and easily expanded to include any number of memory controllers.

Message Primitives

To describe this architecture, a notation based upon directed acyclic graphs

(DAG) is used. (This notation is described in the reference by Garth Gibson, William

PCT/US99/12553

10

15

20

25

30

WO 99/63438 e
Courtright IT, Mark Holland, Jim Zelenka, “RAID frame: Rapid prototyping for disk
arrays”, October 18, 1995, CMU-CS-95-200, hereby incorporated by reference.) The
DAGs provide an easy way to describe parallelism in operations. For that reason, DAGs
are used to help present how multiple controllers can be used in building a high
performance, fault tolerant RAID system. The DAGs are made up of a series of message
primitives linked together by ordered dependencies. The invention includes an extension
of the methodology to allow for the design of an n-way controller based, load balancing,
cache coherent, and fault tolerant type of architecture. The extension comes in the form
of a message passing capability and the removal of the restriction that the message

primitives are tied to a particular memory controller.

Software Block Level Architecture

The I/O subsystem architecture is designed around the need to process operations,
generate tokens, move messages between controllers, and process tokens. To accomplish
this task, four basic execution units are used in the system. As illustrated in FIG. 1, there
are:

* DAG Builder or Token Generation Unit 102 — This is used to convert an
operation into a directed acyclic graph for execution.

* Token Dispatch Unit 103 — This is responsible for taking a list of tokens which
need to be executed and distributing them to the appropriate processing resource.

» Token Execution Unit 104 — This is responsible for taking tokens from a token
ready queue 107, executing them, and sending out the appropriate completion
status.

* Inter-processor Message Control Unit 105 — This is responsible for handling all
inter-processor communications, whether it is to send tokens between controllers,
copying data between controller, or simply handling general communications

between controllers.

The various execution units communicate to each other through various queues to
allow them to operate asynchronously and independently. For example, the DAG Builder

102 receives 1/0 operations from an I/O operation unit 101, and configuration information

PCT/US99/12553

10

15

20

25

30

WO 99/63438 PCT/US99/12553

-9-

from a configuration database 109. Then the DAG generation unit 102 communicates
with Token Dispatch Unit 103 via Token Available Queue 106; and Token Dispatch Unit
103 communicates with Token Unit 104 via Token Ready Queue 107. The goal is to
allow whichever unit has work to do, to be able to complete the work without relying on
other execution units to complete a task. FIG. 1 shows an exemplary embodiment
illustrating how the various software and hardware elements cooperate with each other
to build a controller I/O execution machine. There are other pieces of additional support
code which are not shown in this diagram but may readily be appreciated by those
workers having ordinary skill in the art. Each of these blocks could run under its own
context in the event a multi-threaded operating system was used to provide the underlying

platform support.

To keep track of the various operations going on in the system at any one time
state information is kept stored at numerous different levels. An exemplary state diagram
is illustrated in FIG. 2. Relevant state information 120 includes controller states 121, 122
(including state of hardware resources and capabilities), and system state 123 (including
for example, LUN configuration, drive status, number of controllers, etc.). The state
information can be looked at in two ways, (i) its level of system wide relevance, (ii) and
its level of transitory nature. As each system component becomes smaller, the amount
of state information they need to maintain becomes less relevant to the overall system and
more transient in nature. There is the overall system configuration, which includes how
the system drives logical unit numbers (LUNs) are defined, the state of individual drives,
etc. At a controller level, each controller is responsible for knowing its available
resources and their current state. Local resources to a controller includes the number of
number of ports available to access backing storage devices, how much data cache is
available, the number of host ports, etc. Individual I/O operations have a state which is
used to track the operatidn through completion. At the finest level of granularity, each

token keeps track of its current state.

This type of software architecture needs only a reasonably efficient hardware

structure and method for passing messages around between the various processing units.

10

15

20

25

30

WO 99/63438

However, for this architecture to operate efficiently, the time spent obtaining and passing
messages around is desirably a small percentage of the amount of time required to process
the message and process its payload. For this reason certain hardware architectures are

better suited to this software architecture than others.

Token Execution Unit 104
Each processor card includes a token execution unit (execution engine) 104 that
contains the intelligence to know which tokens to obtain and execute, the tools or
methods to execute the tokens, and to broadcast or transmit information operations. As
illustrated in FIG. 3, the Token Execution Unit 104 pulls the tokens from the token ready
queue 107 as they are set to a “ready” state. The tokens reach a “ready” state when all
the prior dependencies are fulfilled. The token execution unit 104 is comparable to a
pipelined processor in which multiple tokens can be in various stages of execution and
all in parallel. The execution unit 104 includes instruction fetch unit 127 which can also
implement filtering for which type of tokens it wants to accept. By allowing the
instruction fetch unit to perform filtering, the system allows for greater flexibility, for
example a host processor board might not have any local cache and thus could ignore all
cache invalidate broadcast messages.
The currently defined primitives 130 for the tokens include:
* Move data (locally or between controllers) 131
o Calculate Parity 132
* Allocate memory 133
o Invalidate memory 134
* Read data from backing store 135
» Write data to backing store 136
* - Broadcast/transmit results 137
. Get data from host 138
* Write data to host 139
» Send status to host 140
» Invalidate and lock sector range 141

s Release sector lock 142

10 PCT/US99/12553

10

15

20

25

30

WO 99/63438

All I/O operations that the controllers are capable of performing can be broken up
into these primitives in one form or another. Each primitive 130 can have a micro state
machine 144 to allow it to perform operations in pieces. This allows a disk read to be
broken up into pieces which match the available memory in the system. In addition to the
state kept in the primitives, there is an I/O state which keeps track of how the host or
internal operation is progressing through the system at a global level. Examples of host
activity which are handled by the execution unit 104 would be reads or writes. Internally
generated operations would include rebuild parity, check parity, and initialize parity. The
primitives can represent either software or hardware operation depending upon the
available hardware. For example, on one controller the parity generation operation may
be carried out by a dedicated piece of hardware, while on another it is a software or
firmware procedure executing on a general purpose or specialized processor, connected
to memory which defines a data structure to store the procedural instructions, data, and

the like.

The token fetch unit 127 is responsible for pulling tokens which are “ready” from
the token ready queue 107. A token is ready for execution when all of its prior conditions
are met. All prior conditions are met when, all tokens connected to the input side of a
token have completed execution. The token completion unit 128 is responsible for
passing completion status to all dependent tokens, whether they reside locally or on a

remote processing unit.

Directed Acyclic Graph Generation Unit 102
In addition, to the Token Execution Unit 104, there is a DAG generation unit 102

facility. The DAG generation facility uses the configuration information available on a
system wide and local basis and stored or otherwise available from a configuration
database 109 to create the list of tokens to execute and their dependencies upon each other
and concurrent system activities. This list of tokens 146 is then placed upon an execution
pending queue 147. All controllers need to have access to this queue or queues to obtain
tokens to execute. The broadcast queue 148 is a subset of the execution pending queue

147, in which, whenever all the prior conditions are met for the broadcast to be executed,

11 PCT/US99/12553

10

15

20

25

30

WO 99/63438 PCT/US99/12553

-12-

the token is sent to all other controllers. It is then up to the other controllers to execute
or discard the broadcast message. Broadcast messages come in two forms, ones which
require immediate execution and those which need only to be executed before further host

I/0 or a failover/failback is performed.

Directed Acyclic Graph Examples
In FIG. 4, there is shown an exemplary directed acyclic graph 151. The graph 151

shows an exemplary sequence of operations or procedures including: allocate memory
152, invalidate memory (broadcast) 153, allocate copy memory (alternate controller) 154,
get data from host 155, copy data to alternate controller 156, and send status to host 157.
The graph 151 also illustrates the manner in which the broadcast message needs only to
be executed by the alternate controller 154 before the copy data operation takes place.
All other controllers can defer execution until an I/O operation arrives for that area
(logical block) in the system drive. The initial application of the broadcast message is to
provide an easy technique for keeping multiple caches coherent in a multiple controller
system. Due to limitations in host communications, the initial allocate memory 152, get
data from host 155, and send status to host 157, must be executed on the controller which
received the write command. This is due to a multiple path limitation for accepting and
sending data between a host bus adapter (HBA) and a storage device rather than being a
limitation of the software and/or architecture. Because certain tokens are related to other,
as illustrated in FIG. 4, the allocate on the alternate controller 154, and the copy data to
alternate controller 156, need to both execute on the same controller, a method is needed
to be able to relate tokens. This is done through the use of a unique token execution
thread identifier. Through this identifier, the controller which allocates the memory can
be told which memory to place the copy data into.

FIG. 5 shows a more complicated operation (Write Back Operation) 160 to
demonstrate a larger degree of parallelism. In this example, depending on the design of
the XOR engine 161, the old data allocate 162, and data read 163, the parity allocate 164
and invalidate 165, could all be done on different controllers. Generally, this would only

work if the XOR engine 161 did not require the data to come from a local memory pool.

10

15

20

25

30

WO 99/63438 13-

Token Dispatch Unit 103
Structure and operation of the Token Dispatch Unit 103 is now described relative

to the diagrammatic illustrations of FIG. 1 and FIG. 6. Certain tokens can only be
executed by a specific processor, others can be executed by whichever processor has
spare bandwidth, and some must be executed by all processors. The token classes
include:

* Processor Dependent Token — This type of token is tied to a particular processor,
either due to an I/O operation constraint, or due to a prior token.

* Processor Independent Single Token — This type of token can be executed by any
available processor which has the appropriate resources.

» Processor Independent All Token — This type of token will be executed by all the
processors which make up the system, though there 1s no requirement that all need
to take action on the token.

Based upon the token class, the token dispatch unit 103 can make decisions as to which

processor a token can be sent to.

Each controller has a Token Dispatch Unit which has is used to distribute the
workload across the various processing resources which are available in the system. This
token distribution can be done through either a push model or procedure or a pull model
or procedure. In the push model, each dispatch unit has knowledge of what the other
controllers are currently working on, i.e. how many outstanding tokens the processor is
working on, and from that information can determine which processor can be given more

work.

In the pull model, each controller only knows what it is working on, and when it
reaches a threshold it will request work from the other controllers in the system. In FIG.
6, an exemplary single Token Dispatch Unit 102 is shown which receives host commands
from a host processor 184 and, which can pass tokens off to any of the available
controllers 181, 182, 183 in the system. The diagram is shown this way to indicate that

the token dispatch unit is not tied to any particular controller. In other words, the

PCT/US99/12553

10

15

20

25

30

WO 99/63438 _14-

behavior of a controller does not change if it is accessing tokens from a local Token

Dispatch Unit (such as within the controller itself) or from a remote dispatch unit.

Controller-to-Controller Messages

For communications between the controllers the message packets can be broken
up into three types or groupings. There are messages for which: (i) a response is required,
(ii) the response is optional, and (iii) other in which the response is ignored. These
messages are used to transmit tokens between controllers, in addition to providing a

generic structure and procedure to allow controllers to communicate.

Exemplary Embodiment of the Controller Hardware Architecture

FIG. 7 shows an exemplary embodiment of an abstract hardware architecture for
a RAID Controller 201 which represents one possible expansion to a Fibre/Fibre
controller which provides hardware support for the message passing architecture. To
allow for n-way controllers, the high speed controller communications path 202 needs to
be able to provide a single shared memory image to as many controllers as possible.
The communication path 202 is distinct from and not to be confused with a system bus
connecting the memory controllers to a host computer system. The communication path
comprises a high speed communication path extending directly between a first and second
memory controller, and can comprise one or more of a Fibre Channel, a Small Computer

System Interface, or a Mercury Interconnect.

In one exemplary architecture (DAC960SX) the disk channel connection scheme
is also used to provide the controller-to-controller communications path. This works
reasonably well when the processor does not need to be interrupted to handle each
transaction. It may become somewhat limited as the amount of information or data grows
and the size of the packets sent between controllers shrinks in size. Also, it should be
noted that the disc channels are different from disc channels those used in conventional
RAID systems which connect directly from a controller to a disc drive, and in which any

connection from one controller to another is incidental and generally undesirable.

PCT/US99/12553

10

15

20

25

30

WO 99/63438 PCT/US99/12553

-15-

Controller 201 includes a local memory store 204 for storing local
data/program/code for the central processing unit (CPU) 206 which implements the code
execution engine and interfaces to memory store 204 and to two busses (for example PCI
busses) or other data paths 240, 242 between the various elements in the controller card.
Host-Fiber Channel interface blocks 208,210 (typically implemented with single chips),
provide hardware support to connect to a fibre Channel communications channel. Disk
interface blocks 212, 214, 216, 218 (typically implemented with single chips), provide
an interface and connection between disk drives 224, 226, 228, and 230 respectively over
communication channels or links 250, 252, 254, and 256 respectively. These disk
interface blocks may also typically be implemented with single chips and could support

SCSI or Fibre Channel connection schemes.

Controller 210 also includes an exclusive OR (XOR) engine 220, typically a
hardware implementation used to generate parity used in the RAID (e.g. RAID level 5)
data striping procedure. A single “XOR” engine 220 supports both busses 240, 242 as
illustrated in FIG. 7. RAID data cache 221 coupled to busses 240, 242 provides a high-
speed storage area for data which is written by the host and needs to be stored on disk.
Data cache 221 also provides a staging area for data which has been read from disk and

eeds to be transferred to the host.

Shared memory controller 221, also coupled to the other controller 201 elements
via busses 240, 242, is the structure (usually implemented in hardware) through which
the High-speed Controller communications path 202 allows one controller to access data
in the other controller’s data cache 221. Note that High-speed communications path 202
couples the RAID data cache 221 in each of the controllers 201 through their respective
shared memory controllers 222. Shared memory controller 222 may also optionally be
used to keep areas of the RAID data caches coherent, that is as the data changes in one
cache, the changes are reflected in the other data cache. Shared memory controller 222
and RAID data cache 221 provide hardware support for passing the message primitives
between controllers. Of course although two controllers are illustrated in the embodiment

of FIG. 7, it is understood that more controllers may be configured in analogous manner

10

15

20

25

30

WO 99/63438 PCT/US99/12553

-16 -

and the communications path 202 would connect each of the controllers to the other

controllers in like manner.

Storage devices 224, 226, 228, 230 have been described relative to the disk fibre
interface hardware, but it is further noted that although these storage devices may
typically be disk drives such as the type having rotatable magnetic disks, any other type
of non-volatile storage device or system may be used, including but not limited to
magneto-optical disks, optical disks, writable CD ROM devices, tape, electronic storage

media, and so forth.

With both the SCSI and the Fibre controller interconnect schemes, there is a
certain amount of software support required to set up transfers between controllers. In
addition, there may be a significant latency between the time when a data transfer
requests is made until the time when it actually makes it to the other controller. Thus,
with more frequent transfers, the amount of time spent in message overhead becomes a
more significant limiting factor to overall system performance. Devices have become
available that provide this type of functionality in hardware and operate without processor
intervention, thereby providing a lower latency interconnect. One such hardware scheme
is the Scaleable Computer Interface (SCI) interconnect, which is described in the
reference by R. Clark and K. Alnes, “An SCI Interconnect Chipset and Adapter”,
Symposium Record, Hot Interconnects IV, pp 22-235, August 1996, and hereby
incorporated by reference. A second alternative is the Mercury Interconnect, which is
described in the reference by Wolf-Dietrich Weber, Stephen Gold, et all, “The Mercury
Interconnect Architecture: A Cost-effective Infrastructure for High-performance Servers”,
The 24" Annual International Symposium on Computer Architecture, pp 98-107, and also
hereby incorporated by reference. Both of these interconnect schemes are designed to
provide the support for shared memory between processor units in an symmetric
multiprocessor system; however, the inventors are not aware of any attempt to apply this
type of technology in connection with, or applied to, RAID (Redundant Array of
Independent Disks) system.

10

WO 99/63438 PCT/US99/12553

-17-

All publications, patents, and patent applications mentioned in this specification
are herein incorporated by reference to the same extent as if each individual publication
or patent application was specifically and individually indicated to be incorporated by

reference.

The foregoing descriptions of specific embodiments of the present invention have
been presented for purposes of illustration and description. They are not intended to be
exhaustive or to limit the invention to the precise forms disclosed, and obviously many
modifications and variations are possible in light of the above teaching. The embodi-
ments were chosen and described in order to best explain the principles of the invention
and its practical application, to thereby enable others skilled in the art to best use the
invention and various embodiments with various modifications as are suited to the
particular use contemplated. It is intended that the scope of the invention be defined by

the Claims appended hereto and their equivalents.

10

15

20

25

WO 99/63438 PCT/US99/12553

-18 -

We Claim:

1. A memory system for controlling a data storage system, the memory system
comprising a plurality of memory controllers coupled by a communications path, the
memory controllers adapted to dynamically distribute tokens to be executed amongst the

memory controllers via the communications path.

2. A memory system according to claim 1 wherein each of the memory controllers
comprises a shared-memory controller, and wherein the communications path is coupled

to the memory controller through the shared-memory controller.

3. A memory system according to claim 2 wherein the shared-memory controller
comprises a computer readable medium with a computer program stored therein for

dynamically distributing tokens amongst the memory controllers.

4. A memory system according to claim 3 wherein the computer program comprises
a dispatch unit for receiving at least one token which is ready to be executed from a host

computer and storing the token in a token ready queue.

5. A memory system according to claim 3 wherein the computer program comprises
an execution unit for determining if the memory controller is qualified to execute a token,
instructing the memory controller to execute the token, and transmitting a completion

signal to other memory controllers.

6. A memory system according to claim 3 wherein the computer program comprises
an interprocessor message control unit for transmitting tokens, data, and completion

signals between memory controllers.

10

15

20

25

30

WO 99/63438 PCT/US99/12553

-19-

7. A memory system according to claim 3 wherein the computer program comprises:

(a) a dispatch unit for receiving at least one token which is ready to be
executed from a host computer and storing the token in a token ready queue;,

(b) an execution unit for taking a token from the token ready queue which the
memory controller is qualified to execute, instructing the associated memory controller
to execute the token, and transmitting a completion signal to other memory controllers;
and

(c) aninterprocessor message control unit for transmitting tokens, data, and

completion signals between memory controllers.

8. A memory system according to claim 1 wherein the communications path is
selected from the group consisting of a Fibre Channel, a Small Computer System

Interface, a Mercury Interconnect and combinations thereof.

9. A memory system according to claim 1 wherein the data storage system comprises

a plurality of disk drives in a RAID configuration.

10. A memory system according to claim 9 wherein the memory controllers are
coupled to the disk drives by disk channels, and wherein the disk channels serve as the

communications path.

11. A memory system according to claim 1 wherein each of the tokens represents a

a component procedure of an instruction from a host computer.

12. A memory system according to claim 1 wherein each of the tokens represents a

task to be executed by at least one of the memory controllers.

13. A memory system according to claim 1 wherein the memory controllers transfer
data between the data storage system and at least one host computer in response to an
instruction therefrom, and wherein each of the tokens represents a component procedure

of the instruction.

10

15

20

25

30

WO 99/63438 PCT/US99/12553

-20 -

14. A memory system for receiving at least one token from a computer and for
controlling a data storage system, the memory system comprising:

(a) a plurality of memory controllers;

(b) acommunications path interconnecting the memory controllers; and

(c) means for directing the memory controllers to dynamically distribute the

tokens amongst the memory controllers via the communications path.

15. A memory system according to claim 14 wherein the means for directing the
memory controllers to dynamically distribute the tokens comprises a computer program

product.

16. A memory system according to claim 15 wherein the computer program product
includes a computer program comprising:

() a dispatch unit for receiving at least one token which is ready to be
executed from the host computer and storing the token in a token ready queue;

(b) anexecution unit for taking a token from the token ready queue which the
associated memory controller is qualified to perform, instructing the associated memory
controller to perform the token, and transmitting a completion signal to the other memory
controllers; and

(c) aninterprocessor message control unit for transmitting tokens, data, and

completion signals between memory controllers.

17. A memory system according to claim 16 wherein each of the memory controllers

comprise a computer readable medium with the computer program stored therein.

18. A computer program product for dynamically distributing tokens amongst a
plurality of memory controllers adapted to control a data storage system and to transfer
data between the data storage system and at least one host computers in response to an

instruction from one of the host computers, the computer program product including a

10

15

20

25

30

WO 99/63438 PCT/US99/12553

221 -

computer readable medium and a computer program stored therein, the computer program
comprising at least one of the following:

(a) a dispatch unit for receiving at least one token which is ready to be
executed from a host computer and storing the token in a token ready queue;

(b) anexecution unit for taking a token from the token ready queue which the
associated memory controller is qualified to perform, instructing the associated memory
controller to perform the token, and transmitting a completion signal to the other memory
controllers; or

(c) an interprocessor message control unit for transmitting tokens, data, and

completion signals between memory controllers.

19. A computer program product according to claim 18 wherein each of the memory
controllers comprise a computer readable medium with the computer program stored

therein.

20. A computer program product according to claim 19 wherein the computer
program further comprises a token generation unit for parsing an instruction from the host

computers into component procedures which are communicated as tokens.

21. A computer program product according to claim 18 wherein at least one of the
host computers comprise a computer readable medium having an instruction program
stored therein, and wherein the instruction program comprises a token generation unit for
parsing an instruction from the host computers into component procedures which are

communicated as tokens.

22. A networked computer system comprising:
(a) a server computer with a plurality of client computers coupled thereto; and
(b) amemory system connected to the server computer, the memory system
capable of controlling a data storage system and comprising a plurality of memory

controllers coupled by a communications path, the memory controllers adapted to

10

15

20

25

30

WO 99/63438 PCT/US99/12553

-22-

dynamically distribute tokens to be executed amongst the memory controllers via the

communications path.

23. A networked computer system according to claim 22 wherein each of the memory
controllers comprise a computer readable medium with a computer program for

dynamically distributing tokens amongst the memory controllers stored therein.

24. A networked computer system according to claim 23 wherein the computer
program comprises:

(a) a dispatch unit for receiving at least one token which is ready to be
executed from the server computer and storing the token in a token ready queue;

(b) anexecution unit for taking a token from the token ready queue which the
memory controller is qualified to perform, instructing the memory controller to perform
the token, and transmitting a completion signal to the other memory controllers; and

(© an interprocessor message control unit for transmitting tokens, data, and

completion signals between memory controllers.

25. A networked computer system according to claim 22 wherein the communications
path is selected from the group consisting of a Fibre Channel, a Small Computer System

Interface, a Mercury Interconnect and combinations thereof.

26. A networked computer system according to claim 22 wherein the data storage

system comprises a plurality of disk drives in a RAID configuration.

27. A networked computer system according to claim 26 wherein the memory
controllers are coupled to the disk drives by disk channels, and wherein the disk channels

serve as the communications path.

28. A method for operating a memory system comprising a plurality of memory

controllers, the memory system adapted to transfer data between a data storage system

10

15

20

25

WO 99/63438 23
and one or more host computers in response to instructions therefrom, the method
comprising the steps of’

(1) coupling the plurality of memory controllers with a communications path;

(2) parsing an instruction to identify at least one instruction component
procedure;

(3) broadcasting a token representing each instruction component procedure
to the memory controllers; and

(4) storing tokens in a token ready queue in each of the memory controllers.

29. The method of claim 28 wherein the step of parsing an instruction comprises the

step of identifying a plurality of instruction component procedures.

30. The method of claim 28 comprising the further step of dynamically distributing
the tokens amongst the memory controllers via the communications path to balance a

workload on each of the memory controllers.

31. The method of claim 30 wherein the step of dynamically distributing the tokens
amongst the memory controllers comprises the steps of:

) determining if a memory controller is qualified to perform the component
procedure represented by a token;

(ii) performing the component procedure if qualified; and

(iii) signaling the memory controllers via the communication path to delete the

token from their token ready queue.

PCT/US99/12553

PCT/US99/12553

WO 99/63438

1/7

I ©OI4
ay)
jo43u0) 8bossopy
10558204d18)u]
mQN\\
l
90 \
ZZL LINN HOL34 NIMOL
1 aar
UoIIN29XJ USXOJ ~| yojodsig vaxo; |
8z1 NOILFTAN0I NIXOL PRy V e
T Appdy usxoy £0! 8/qD[IDAY UBXO|
14004 T)
£01 20~
8s0qD)0(- 18pJINg
uo110nbijuo?)] ava
001"
QSV t
10, suonosadyg o/1

SUBSTITUTE SHEET (Rule 26)

PCT/US99/12553

WO 99/63438

¢ 9ld

Sa11{IqDAD?) .
$82.4N0S3y SIOMPIDL «
ESSIPE %,

IED
SUB[j0LUOY) JO USGUUNN
S3)D}S AL
uonoinbiyuoy NA7e
9)D)S WI)SAS

cz1S

2/7

$31)1{1qDdD?) .
$92.N0S3y) SIDMPID}H «
8]D)S 43][04)U0)

A \«

SUBSTITUTE SHEET (Rule 26)

PCT/US99/12553

WO 99/63438

£ Ol4

)07 10)23S 3SD8[3Y

obupy 10)23S 4207 puy S)OPIDAUT

)SOH 0] SnjD}S pusS

JSO 0] D)DG 3 M

1SO wWo.i{ D)0 1399

S]/NS8y JWSuDI| /1SDOPDOIG

Hun NMN\

240)S buiyoog o] DIDG 3}

cotm\QEob R
usyo; 951

3/7

810)S bunoog woi{ p)}oG poaY

Asowsyy sjopioru]

Aiowosp 2)0201y

A1iD4 3)DIN2[DY

(S49]j04)u0D UBOM]Eq 4O A[|DI0]) DJD(SAOH

SNOILVHIdO NAHOL

nun
TIEY
uax0/

HNNN

SUBSTITUTE SHEET (Rule 26)

PCT/US99/12553

WO 99/63438

4/7

v Old

LSOH 01 N3IALTO ST SNLVIS
F§0SF8 HUSIA OL NILLISM ST VIVA — NOILVYHIHO NYHL FLI1dM

/5! 961 GGl
I I I
1SOH 0] . M w\wo:gwm@woo . 1SOH wWouy
SMDJS puss 07 D)o Ado?) D1oQg 199
(43/j04)u0D 9)DUIB}D) (1s02pD0.q)
Asoway Adoy - A10WdW - Asowspy
8)020|Jy
8)Do0|[y 2)opijpAuU]
vml £ ml le

o]

SUBSTITUTE SHEET (Rule 26)

PCT/US99/12553

WO 99/63438

XHSIG 01 NILLIYM SI VIVQ FHL OGNV ISOH Ol N3AI9 SI SNIVIS

S m\h\ FHOVO NI G3¥0LS SI VIVA — NOLLVYYIJO MOVE 3LISM
D)0 - (43/104pu029)DUIB) D)
Aoy Adoy [° Asowspy 8)o20j1y
11 5 NNN l
dow 11g | AJog
Aag 031y [MON)M ~
0/17 691
(1s02p00.1q) (A11104)
ﬂ Asowapy Ao |« Aiowspyy
© ajopijoauf 9)0o0|lY
G9l 5 vml
(ojop pjo)
A)ing 8)0ius9| Eomm » A1owaspy
HOX PIO PDIY 3]020/ly
191 £g1- z91-
doyy jig 0107
Aug os1y | MaN im0 o1eg meN
8917 2917 991
QSR\

SUBSTITUTE SHEET (Rule 26)

PCT/US99/12553

WO 99/63438

9

6/7

Old

\

%

sanany) usxoj

| 48[/04)u0?)

z91°

91

sanant) uaXoj

Z 49[j04)uo)

v91-

Jun

y2)0dsi(] uax0/

1817

%

sanany udxo]

0O 49]/04)u0?)

SpuUDWIWO?) }SOH

SUBSTITUTE SHEET (Rule 26)

PCT/US99/12553

WO 99/63438

7/7

1
_ .
__“ 20z yiog SSS.E:_E_EQE J2]1043u0) Paads ybiK
_ |
| _
P! | Y
| “ “ 13[j04)U0?) “ “ 13[]0J)U0Y)
b | | doopepur | Aiowapw || | @204483uf - Asowaspy
| 2.q14 ¥s1q [paIoys [\Lz» (e ma [T paioys -
| Loiz i 44 | Lotz {4
_“nu 8o0443) U] | | eywoy | mEN _rl sopjssjur | | | 940y | mSN
24q14 Xsig vivag adivy D, 84914 sig Viva aIvy [@oosm10;
Lotz|izz3 § 4 "[6:a:4 150K Lorz|izzd § 4 "|osais 1son
ERIIVENT] | | euwbus | 820443)U] R suibus -
24q14 s!g JOX [@ao20741 24914 4sig [0)¢ [Boormr0;
L1z QNNW 84q14 XSG Lyiz QNN% 184914 1soH
ww%%ﬁw |8 10d v 10d Looz ww%%ﬁm |8 12d v 10d Lopz
zizs zve 0z 223 vz 0vZ
/1 Nndo 1 Nndd
90c 90c
Asowapy /1 Asowaw
vQN\ /D207 J0SS830. ¥0C- | /0207 105582044
102 N ¢ HITIOYINOD 102 N I YITI0YLNOD

SUBSTITUTE SHEET (Rule 26)

INTERNATIONAL SEARCH REPORT

Inte “tional Application No

PCi/US 99/12553

A. CLASSIFICATION OF SUBJECT MATTER

| IPC 6 GO6F9/46

According to intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classification system foilowed by classification symbois)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A US 5 459 864 A (BRENT ET AL.)
17 October 1995 (1995-10-17)
the whole document

A EP 0 747 822 A (HITACHI, LTD.)
11 December 1996 (1996-12-11)
the whole document

11 October 1995 (1995-10-11)
the whole document

P,A WO 98 28686 A (SYMBIOS, INC.)
2 July 1998 (1998-07-02)
the whole document

A EP 0 760 503 A (COMPAQ COMPUTER
CORPORATION) 5 March 1997 (1997-03-05)

1,14,18,
22,28

A EP 0 676 699 A (SYMBIOS LOGIC INC.) 1

D Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or
other means

“P" document published prior to the international filing date but
later than the priority date claimed

"T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular retevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y* document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—
ments, such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report
22 October 1999 29/10/1999
Name and mailing address of the ISA Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
NL ~ 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016 Absalom, R

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Information on patent family members

intr ationai Application No

PC1/US 99/12553

Patent document Publication Patent family Publication
4 cited in search report date member(s) date

US 5459864 A 17-10-1995 JP 2587195 B 05-03-1997

JP 6250983 A 09-09-1994
EP 747822 A 11-12-1996 JP 8335144 A 17-12-1996

us 5720028 A 17-02-1996
EP 676699 A 11-10~1995 JP 8044681 A 16-02-1996
EP 760503 A 05-03-1997 us 5696895 A 09-12-1997

us 5781716 A 14-07-1998
WO 9828686 A 02-07-1998 AU 5604798 A 17-07-1998

Fom PCT/ISA/210 (pat-em family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

