
INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION 
International Bureau

(51) International Patent Classification 6 ;

H04L 12/50, H04Q 5/22, 1V00 Al
(11) International Publication Number: WO 99/62232

(43) International Publication Date: 2 December 1999 (02.12.99)

(21) International Application Number: PCT/US99/10614

(22) International Filing Date: 13 May 1999 (13.05.99)

(81) Designated States: AU, CA, European patent (AT, BE, CH, 
CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, 
PT, SE).

(30) Priority Data: 
09/084,081 22 May 1998 (22.05.98) US

Published
With international search report.

(71) Applicant: CABLETRON SYSTEMS, INC. [US/US]; 35
Industrial Way, Rochester, NH 03866 (US).

(72) Inventor: AYBAY, Gilnes; Apartment 533, 870 East El
Camino Real, Sunnyvale, CA 94087 (US).

(74) Agent: WILSON, Mark; Law Offices of Mark Wilson, PMB: 
348, 2530 Berryessa Road, San Jose, CA 95132 (US).

(54) Title: FORWARDING VARIABLE-LENGTH PACKETS IN A MULTIPORT SWITCH

(57) Abstract

A method and apparatus for forwarding variable-length packets 
between channel-specific packet processor (82, 84, 86 and 88) and a 
crossbar (60) of a multiport switch involve segmenting variable-length 
packets (150) into fixed-length payload segments and multiplexing the 
payload segments with response or request data to form fixed-length 
switching blocks (160). The fixed-length switching blocks are transferred 
to and from the crossbar over respective input and output connections 
in order to minimize the number of connections between the packet 
processors and the crossbar. The input and output connections enable 
the transfer of a current packet through the crossbar while supplying 
the crossbar with request information necessary to schedule subsequent 
packets through the crossbar. In a preferred embodiment of the invention, 
packets are timed to pass through the crossbar one after another in order 
to utilize the maximum bandwidth of the crossbar.



FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL Albania ES Spain LS Lesotho SI Slovenia
AM Armenia FI Finland LT Lithuania SK Slovakia
AT Austria FR France LU Luxembourg SN Senegal
AU Australia GA Gabon LV Latvia SZ Swaziland
AZ Azerbaijan GB United Kingdom MC Monaco TD Chad
BA Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Togo
BB Barbados GH Ghana MG Madagascar TJ Tajikistan
BE Belgium GN Guinea MK The former Yugoslav TM Turkmenistan
BF Burkina Faso GR Greece Republic of Macedonia TR Turkey
BG Bulgaria HU Hungary ML Mali TT Trinidad and Tobago
BJ Benin IE Ireland MN Mongolia UA Ukraine
BR Brazil IL Israel MR Mauritania UG Uganda
BY Belarus IS Iceland MW Malawi US United States of America
CA Canada IT Italy MX Mexico uz Uzbekistan
CF Central African Republic JP Japan NE Niger VN Viet Nam
CG Congo KE Kenya NL Netherlands YU Yugoslavia
CH Switzerland KG Kyrgyzstan NO Norway zw Zimbabwe
CI Cdte d’Ivoire KP Democratic People’s NZ New Zealand
CM Cameroon Republic of Korea PL Poland
CN China KR Republic of Korea PT Portugal
CU Cuba KZ Kazakstan RO Romania
CZ Czech Republic LC Saint Lucia RU Russian Federation
DE Germany LI Liechtenstein SD Sudan
DK Denmark LK Sri Lanka SE Sweden
EE Estonia LR Liberia SG Singapore



WO 99/62232 PCT/US99/10614

FORWARDING VARIABLE-LENGTH PACKETS IN A MULTIPORT SWITCH

5

10

15

20

25

30

35

TECHNICAL FIELD

The invention relates generally to a high bandwidth multiport 
switch, for instance as used in gigabit ethernet networks. More particularly, 
the invention relates to the forwarding of variable-length packets through the 
crossbar of a multiport switch.

BACKGROUND OF THE INVENTION

Networks are widely used to transfer voice, video, and data 
between various network devices such as telephones, televisions, and com
puters. Data transmitted through a network is typically segmented into finite 
portions. Under some network protocols, data is segmented into fixed-length 
cells. For example, asynchronous transfer mode (ATM) protocol requires 
data to be segmented into 53-byte cells, with 5 bytes of each cell designated 
for a header and 48 bytes of each cell designated for payload. Other network 
protocols, such as ethernet, allow data to be segmented into variable-length 
packets. For example, an ethernet packet has a 14-byte header and a 
payload size that can vary from 64 bytes to 1,500 bytes.

Transmitting fixed-length cells, such as ATM cells, through a 
network device such as a switch is made easier by the fact that each cell is 
the same size and by the fact that each cell can be switched independently of 
any other cell, even if a group of cells is from the same source and headed to 
the same destination. Because ATM cells are all of a fixed length, the time 
for propagation of each cell through a switch is predictable. Knowing the time 
required for an ATM cell to propagate through a switch makes it easy to 
arrange for cells to pass through the switch one after another in a pipelined 
fashion, where pipelined or pipelining are terms used to describe a group of 
data units that are transferred over a single data path in series with no gap 
between the data units.

In contrast to protocols that require fixed-length data segments, 
protocols such as ethernet that include variable-length data segments are 
more difficult to pipeline data within a switch because the time required for the



WO 99/62232 PCT/US99/10614

5

10

15

20

25

30

35

-2-

segment to pass through the switch is unpredictable. In order to make switch
ing of variable-length packets more manageable, variable-length packets can 
be further segmented into fixed-length switching blocks that pass through the 
crossbar of the switch in a fixed amount of time. The fixed-length switching 
blocks have a header portion and a payload portion and the number of fixed- 
length switching blocks per packet is directly related to the size of the packet. 
The fixed-length switching blocks are only used internally by the switch and 
the switching blocks related to a particular packet are typically forwarded 
through the switch one after another.

Since the number of switching blocks for a particular packet 
depends on the size of the packet, the time required to forward variable- 
length packets through a switch varies. The varying time required to forward 
a packet through a switch makes it more difficult to pipeline one variable- 
length packet after another through a switch. In addition to the timing 
problems created by variable-length packets, various system timing delays 
related to, for example, scheduling arbitration and the retrieval of packets 
from buffers, increase the difficulty of determining when to start the process of 
supplying subsequent packets to a switch crossbar.

One example of a technique commonly used to pipeline 
variable-length packets through a switch involves providing multiple physical 
connections on a channel-by-channel basis between input buffers and the 
crossbar of a switch. Referring to Fig. 1, in a four-channel switch fabric, there 
are four connections between each packet processor 2, 4, 6, and 8 and a 
crossbar 10. For example, there may be separate input and output connec
tions between the packet processors and the crossbar for transmitting the 
payload portion of a switching block and there may be separate input and 
output connections between the packet processors and the crossbar for 
transmitting the request and response portions of the switching block header. 
While the described technique may work well for its intended purpose, 
requiring four physical connections for each switching channel increases the 
number of signal pins required on the crossbar integrated circuit (IC) and 
limits the number of signal pins that can be used for other functions.

Another example of a technique used to forward variable-length 
packets through a switch involves providing large buffers in the switch fabric, 
so that packets can be forwarded through the switch fabric one after another 
until the buffers are full, without regard to the availability of target output 
channels. While this technique works well for its intended purpose, again the



WO 99/62232 PCT/US99/10614

5

10

15

20

25

30

35

-3-

additional buffers in the switch fabric occupy valuable space on the integrated 
circuits that make up the switch.

In view of the efficiencies gained by pipelining variable-length 
packets and the added complexity of prior art solutions, what is needed is a 
method for communicating within a switch that accounts for timing delays and 
enables the pipelining of variable-length packets while requiring a minimum 
number of physical connections.

SUMMARY OF THE INVENTION

A method and apparatus for forwarding variable-length packets 
between channel-specific packet processors and a crossbar of a multiport 
switch involve multiplexing payload data with response or request data into 
switching blocks that are transferred to and from the crossbar over respective 
input and output connections in order to minimize the number of connections 
between the packet processors and the crossbar and to enable the transfer of 
a current packet through the crossbar while preparing the transfer of subse
quent packets through the crossbar. In an additional aspect of the invention, 
packets are timed to pass through the crossbar one after another in order to 
utilize the maximum bandwidth of the crossbar.

To minimize the number of connections between the packet 
processors and the crossbar, the packet processors segment the incoming 
variable-length packets into fixed-length payloads and then multiplex the 
fixed-length payloads with request information related to a subsequent packet 
that is awaiting transfer through the crossbar. The input packet processors 
create fixed-length switching blocks that are transferred to the crossbar over a 
single data connection instead of two separate connections, one each for the 
payload and the request. At the crossbar, fixed-length payloads are 
multiplexed with response information related to a subsequent packet that is 
awaiting transfer through the crossbar to create fixed-length switching blocks. 
The switching blocks containing a payload and a response are transferred to 
the packet processors over a single data connection instead of two separate 
connections. A new packet can be ready for transfer through the crossbar as 
soon as the current packet is transferred through the crossbar.

To enable the transfer of packets with one immediately following 
another, the time interval from the issuance of a request from an input packet 
processor to the arrival at the crossbar of the first switching block related to 
the request is measured so that a new packet can be ready for transfer



WO 99/62232 PCT/US99/10614

5

10

15

20

25

30

35

-4-

through the crossbar as soon as the current packet is transferred through the 
crossbar. In an additional aspect of the invention, data identification 
information specific to a payload of a switching block that is currently being 
transferred is multiplexed with the payload in order to identify the end of the 
current variable-length packet transfer. The data identification information 
includes a cell sequence vector that identifies how many switching blocks 
remain from a current packet transfer. Because the time interval between 
issuance of a request and arrival of a related packet at the crossbar is known 
and because the time required to transfer the remaining switching blocks 
through the crossbar can be determined from the cell sequence vector, 
communications between the input packet processors and the crossbar can 
be tuned such that packets are transferred through the crossbar one after 
another with no decline in crossbar utilization between packets.

In the preferred embodiment, the switch architecture includes 
channel-specific input packet processors, channel-specific output packet 
processors, and a crossbar. The input packet processors manage packet 
traffic to the crossbar. Specifically, the input packet processors receive 
packets in their original variable-length format and then segment the variable- 
length packets into fixed-length payloads which are multiplexed with requests 
to form switching blocks that are sent to the crossbar via channel-specific 
unidirectional data paths.

The crossbar preferably consists of channel modules, a data 
path multiplexer, and a scheduler. The channel modules are channel-specific 
devices that are responsible for demultiplexing and multiplexing response or 
request command portions of switching blocks. For a switching block coming 
from an input packet processor to a channel module, the request command is 
demultiplexed from the switching block and sent to the scheduler. For a 
switching block going from a channel module to an output packet processor, a 
response command generated from the scheduler is multiplexed into a 
switching block and sent to the output packet processor. The data path 
multiplexer of the crossbar is connected to all of the channel modules and 
provides the physical path for transferring the payload and data identification 
portions of the switching blocks between channels of the crossbar. The 
scheduler of the crossbar is connected to all of the channel modules and 
utilizes the request command portions of the switching blocks transferred 
from the channel modules to manage traffic through the data path multiplexer 
in a manner that maximizes the throughput of the switching blocks without 
unfairly delaying any particular switching block. The scheduler arbitrates



WO 99/62232 PCT/US99/10614

5

10

15

20

25

30

35

-5-

among multiple request commands and then generates a response 
command. The response command identifies when a grant has been issued 
to a packet that is awaiting transfer through the crossbar.

The output packet processors receive fixed-length switching 
blocks from the crossbar via channel-specific unidirectional paths and 
reassemble the payload portions of the original variable-length packets for 
transfer out of the switch. The output packet processors are connected to the 
input packet processors via bypass data paths that allow messaging informa
tion to be transferred from the crossbar to the input packet processors.

In order to completely pipeline packet transfers, the crossbar 
must know the total delay time from the issuance of a request from an input 
packet processor to the arrival of the switching block that is related to the 
request at the crossbar. Once the delay time is known, the system can be 
tuned such that a request for a new packet is issued from an input packet 
processor in sufficient time to allow a switching block related to the request 
to arrive at the crossbar just after the last switching block from the current 
packet transfer passes into the crossbar.

In a preferred case where a fixed-length switching block passes 
through the crossbar in eighteen clocks, the total delay from issuance of a 
request to arrival of a switching block is adjusted to be equal to three times 
the number of clocks required to transmit one switching block. The number of 
switching blocks from the current transfer passing through the crossbar can 
then be monitored utilizing the cell sequence vector such that a new request 
related to the next packet is issued from the input packet processor at the 
point when there are three switching blocks remaining from the current packet 
transfer. The request process is timed such that switching blocks for the new 
request are sent to the crossbar right after the current packet transfer is 
complete.

An advantage of the invention is that pipelining of packets 
through the crossbar and scheduling of subsequent packets is accomplished 
using only one input connection and one output connection between the 
packet processing units and the crossbar, thereby minimizing the number of 
connections needed between the packet processing units and the crossbar 
while allowing maximum bandwidth utilization. With a minimum number of 
connections utilized on the crossbar, pin connections required on the 
crossbar IC are minimized. Another advantage of the invention is that excess 
buffers are not needed within the crossbar to store packets waiting for 
available output channels.



WO 99/62232 PCT/US99/10614

5

10

15

20

25

30

35

-6-

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a depiction of a four-channel switch fabric with multiple 
input and output connections between packet processors and a crossbar in 
accordance with the prior art.

Fig. 2 is a depiction of the preferred architecture of a multiport 
switch in accordance with the invention.

Fig. 3 is a depiction of a data packet and an expanded view of a 
switching block in accordance with the invention.

Fig. 4 is a depiction of a switching block including the fields 
within the request-specific command header in accordance with the invention.

Fig. 5 is a depiction of the request command and data ID 
portions of the request-specific command header of Fig. 4 in accordance with 
the invention.

Fig. 6 is a depiction of a switching block including the fields 
within the response-specific command header in accordance with the inven
tion.

Fig. 7 is a depiction of the response command and data ID 
portions of the response-specific command header of Fig. 6 in accordance 
with the invention.

Fig. 8 is a depiction of the transfer of two requests and two 
responses via two channels of the switch of Fig. 2.

Fig. 9 is a process flow of a preferred method for forwarding 
variable-length packets in accordance with the invention.

Fig. 10 is a depiction of exemplary minimum frame transmission 
time delays for a frame transmission cycle in an architecture as depicted in 
Fig. 2.

Fig. 11 is a depiction of the channel synchronization process 
that is carried out between the crossbar and an IPP in a switch with the 
architecture of Fig. 2.

Fig. 12 is a depiction of the timing intervals for a single 
transaction cycle.

Fig. 13 is a depiction of various waveforms for a pipelined 
packet transfer in the case where k = 3 in accordance with the invention.

DETAILED DESCRIPTION

Fig. 2 is a depiction of the preferred architecture of a multipoint 
switch that is compatible with network protocols such as ethernet and TCP/IP. 
Although a four-channel switch is shown for description purposes, the switch



WO 99/62232 PCT/US99/10614

5

10

15

20

25

30

35

-7-

may have a different number of channels. The preferred architecture 
includes data links 22, 24, 26, and 28 connected to input/output (I/O) 
controllers 12, 14, 16, and 18. The I/O controllers are connected to channel- 
specific packet processing units 82, 84, 86, and 88 which are connected to 
channel modules 112, 114, 116, and 118 of a switch crossbar 60. The 
channel modules are connected separately to a data path multiplexer 130 
and a scheduler 132. The preferred embodiment of the invention provides a 
method and apparatus for exchanging messages between the packet 
processing units and the crossbar that minimizes the number of connections 
needed between the packet processing units and the crossbar while enabling 
packets to be passed through the crossbar in an efficient manner.

The data links 22-28 connected to the I/O controllers 12-18 
provide the medium for transferring packets of data into and out of the 
switch. In a preferred embodiment, the number of data links connected to 
each I/O controller is based on the bandwidth capacity of the data link. For 
example, in Fig. 2 the single and double data links 22, 24 and 26 represent 
1,000 Megabits per second (Mbps) connections and the eight data links 28 
represent 10 and/or 100 Mbps connections although these connection 
bandwidths can be smaller or larger. In addition, the physical makeup of the 
data links are preferably twisted pair wires and/or single mode optical fiber, 
although other data links such as coaxial cable, multi mode optical fiber, 
infrared, and/or radio frequency links are possible.

The I/O controllers 12-18 connected to the data links 22-28 
and the packet processing units 82-88 provide the packet control between 
the data links and the internal switch fabric which includes the packet 
processing units and the crossbar 60. The I/O controllers receive incoming 
packets from the data links and transform the packets into digital data 
packets that are compatible with the switch. The I/O controllers also transmit 
data out onto the data links. The I/O controllers may buffer incoming and/or 
outgoing packets and the I/O controllers may perform some network traffic 
control. Finally, the I/O controllers supply the packet processing units via 
data paths 62, 64, 66, and 68 with packets for processing through the 
crossbar.

The packet processing units 82-88 are preferably broken up 
into input packet processors (IPPs) 92, 94, 96, and 98 and output packet 
processors (OPPs) 102, 104, 106, and 108. The IPPs manage packet traffic 
from the I/O controllers 12-18 and to the switch crossbar 60. More specifi
cally, the IPPs receive packets from the I/O controllers in their original



WO 99/62232 PCT/US99/10614

5

10

15

20

25

30

35

-8-

variable-length format and then segment the variable-length packets into 
fixed-length switching blocks before the switching blocks are sent to the 
crossbar via unidirectional data paths 32, 34, 36, and 38. The variable-length 
packets are segmented into fixed-length switching blocks to enable orderly 
and efficient transfer of packets through the crossbar. The majority of the 
data that makes up a particular switching block is data from an associated 
packet, but some of the data in the switching block is added header informa
tion that is used to transfer internal messages between the packet processors 
and the crossbar as part of an internal messaging protocol. The data and 
the messaging header are multiplexed together for simplicity of design and 
efficiency purposes.

In the preferred embodiment, the fixed-length switching blocks 
generated by the IPPs consist of 36 bytes. Referring to Fig. 3, a variable- 
length packet 150 is segmented into multiple fixed-length, or finite, switching 
blocks and one expanded fixed-length switching block is shown for 
description purposes. Each 36-byte switching block consists of a 4-byte 
command header 142 and a 32-byte payload 144. Using 16-bit channels, 
each switching block is sent through the switch over eighteen clocks and a 
framing pulse 146 is used to indicate the termination of one switching block 
and the beginning of an adjacent switching block. Each command header 
consists of two fields. The first field is a request or response field that is used 
to exchange messages related to request arbitration. The first field is not 
related to the information in the second field or to the payload but instead to a 
subsequent packet that is awaiting transfer through the crossbar. When a 
switching block is traveling from an IPP to the crossbar, the first field in the 
command header is a request command, and when a switching block is 
traveling from the crossbar to an OPP, the first field in the command header is 
a response command, both of which are described in more detail below. The 
second field in the command header is a data identifier (datalD) that carries 
information related to the data in the attached payload. The first field and the 
second field of the command header do not necessarily utilize the same 
number of bits and the payload carries data that is part of a larger packet 
from which the payload was segmented.

Referring back to Fig. 2, the IPPs 92-98 are responsible for 
generating the request commands and the datalDs that are transmitted with a 
switching block from an IPP to the crossbar 60. Fig. 4 is a depiction of a 
switching block 160, as generated by an IPP, that includes a 4-byte request- 
specific command header 162 and a 32-byte payload 164. Fig. 5 identifies



WO 99/62232 PCT/US99/10614

-9-

which portion of the request-specific command header forms the request 
command 166 and which portion of the header forms the datalD 168. The 
request command 166 of the command header is specific to a subsequent 
packet that is awaiting transfer through the crossbar and the datalD 168 is

5 specific to the attached payload 164 that is part of the switching block. The 
specific vectors within the command header and the datalD are explained 
below in conjunction with the operation of the system.

Referring back to Fig. 2, the OPPs 102-108 receive fixed-length 
switching blocks from the crossbar 60 on unidirectional data paths 42, 44, 46,

10 and 48 and reassemble the payload portions into the original variable-length 
packets for transfer to the I/O controllers 12-18. The OPPs may buffer 
switching blocks and/or packets before the packets are transferred to the I/O 
controllers. The OPPs are connected to the IPPs via bypass data paths 52, 
54, 56, and 58 that allow messaging information to be transferred from the

15 crossbar 60 to the IPPs 92-98.
The crossbar 60, which is identified by the dashed line, prefer

ably consists of channel modules 112-118, a data path multiplexer 130, and 
a scheduler 132. The channel modules are channel-specific devices that are 
responsible for demultiplexing and multiplexing the response/request com-

20 mands, the datalD, and the payload of each switching block. For a packet 
coming from an IPP to a channel module, the request command is demulti
plexed from the switching block and the request command is sent to the 
scheduler, while the datalD and the payload are sent to the data path multi
plexer. For a packet going from a channel module to an OPP, a response

25 command generated from the scheduler is multiplexed with a datalD and a 
payload from the data path multiplexer. The channel modules also track, on 
a channel-specific basis, the number of switching blocks that have passed 
through the crossbar in order to track the beginning and end of new packets.

The data path multiplexer 130 is connected to all of the channel
30 modules 112-118 and provides the physical paths for transferring the payload 

and datalD portions of switching blocks between channels of the crossbar. 
The preferred data path multiplexer has the ability to unicast and multicast the 
payload and datalD portions of switching blocks. In the preferred embodi
ment, the channel modules, the data path multiplexer, and the scheduler 132

35 are combined into a single integrated circuit (IC).
The scheduler 132 is connected to all of the channel modules

112-118 and utilizes the request commands transferred from the channel 
modules to manage traffic through the data path multiplexer 130 in a manner



WO 99/62232 PCT/US99/10614

5

10

15

20

25

30

35

-10-

that maximizes the throughput of the switching blocks without unfairly delay
ing any particular switching block. The scheduler arbitrates among multiple 
request commands and then generates a response command for a command 
header. The response command identifies when a grant has been issued to 
a packet that is awaiting transfer through the crossbar.

Response commands are generated by the scheduler 132, 
transferred to the related channel modules, and then multiplexed with 
datalD fields and payloads into a switching block 170, as shown in Fig. 6, to 
create response-specific command headers 172. Referring to Fig. 7, as with 
the request command, the response command 176 is not related to the 
datalD 178 or the payload 174 that make up a switching block. The specific 
vectors within the request-specific command header will be discussed in 
detail below in conjunction with the operation of the system.

In operation, switching blocks go through the crossbar in strict 
order, however there can be holes (switching blocks with no valid data) in the 
data stream during the transmission of a packet. Holes between the switch
ing blocks typically occur when an IPP is momentarily not able to deliver valid 
data during the transfer of a packet due to momentary bandwidth conflicts.
An output channel can be assigned to a new input channel only after the last 
switching block of the packet currently being transferred on the output chan
nel is delivered. Once the crossbar delivers the first switching block of a 
packet to an output channel, the crossbar will continue delivering subsequent 
switching blocks from the same packet, or alternatively blank switching 
blocks, until the packet transfer is completed or aborted. Blank switching 
blocks act as markers to keep the channel available for the current transfer. 
Output channels must drop the current packet and start receiving a new 
packet if they get a first switching block of the new packet before they receive 
the final switching block of the current packet transfer.

In order to maximize the efficiency of the switching system, it is 
desirable to transfer packets through the crossbar one after another with 
minimal or no delay between packets. However, there are several different 
sources of delay that accumulate through different stages of packet transfer 
that make it difficult to transfer packets through the crossbar one after 
another. For example, “crossbar delay” is a delay that is mostly due to 
registers on the data path multiplexer. “Crossbar arbitration delay” is a delay 
that is caused by the arbitration between requests that is performed by the 
scheduler. “Transport" and “register delay across communications channels” 
are delays that originate from registers placed before pin drivers and after



WO 99/62232 PCT/US99/10614

5

10

15

20

25

30

35

-11-

input buffers to simplify pin and/or board timing. For high speed serial data 
(HSSD) based implementations, serializers and deserializers can add four to 
eight extra clocks between transfers. “Arbitration delays” at the IPPs are 
delays that are caused by multiplexing packets from multiple data links onto 
one switch channel. “Data streaming delays” are delays between the IPPs 
and the packet memories generated during packet transfers.

In view of all of the different delays that occur during packet 
transfer, it is desirable to start the process of identifying new packets for 
transfer from the IPPs and through the crossbar before the time that new 
packets are actually needed at the crossbar, so that the new packets can be 
sent from the IPPs immediately after packets that are in the process of being 
transferred. This process is known as “pipelining” because packets are sent 
from the IPPs one after another without delay through the crossbar similar to 
the flow of fluid through a pipe. Complete pipelining provides the maximum 
bandwidth utilization of the data paths between the crossbar and the 
IPPs/OPPs.

Referring back to Fig. 2, the preferred embodiment of the inven
tion multiplexes requests and responses with payloads and datalDs in order 
to minimize the number of connections between the packet processors and 
the crossbar and in order to enable the pipelining of variable-length packets 
from the IPPs 92-98, through the crossbar 60, and out to the OPPs 102-108. 
Fig. 8 is a depiction of a simplified flow of switching blocks from IPPs 0 and 1 
to OPPs 0 and 1 in accordance with the invention.

In the example of Fig. 8, at IPP 0, 92, payload W, related datalD 
field W, and unrelated request command A are multiplexed together into a 
switching block and the switching block is transmitted from IPP 0 to the 
crossbar 60. The payload W and datalD W are destined to be switched by 
the crossbar and will likely emerge from the data path multiplexer 130 out of 
sync with request A. At IPP 1, 94, payload X, related datalD X, and 
unrelated request command B are multiplexed together into a switching block 
and the switching block is transmitted from IPP 1 to the crossbar. The 
payload X and datalD X are destined to be switched at the crossbar and will 
likely emerge from the data path multiplexer out of sync with request B.
When the switching blocks arrive at their respective channel modules 112 
and 114, the request commands A and B are demultiplexed from their 
respective payloads and datalDs, W and X. The request commands from 
both switching blocks are sent to the scheduler 132 for arbitration and the 
datalDs and payloads are sent to the data path multiplexer for switching. The



WO 99/62232 PCT/US99/10614

5

10

15

20

25

30

35

-12-

datalDs and payloads typically pass through the data path multiplexer in less 
time than it takes for the request commands to go through the arbitration 
process in the scheduler and, as a result, the datalD fields and payloads are 
most likely multiplexed with different responses upon exiting the crossbar.

Response commands A and B are generated by the arbitration 
process of the scheduler from respective request commands A and B and the 
response commands are output from the scheduler and transferred to the 
respective channel modules 112 and 114. At the channel modules, response 
commands A and B are multiplexed with new datalD fields and payloads,
Y and Z respectively, to form complete switching blocks. The datalDs and 
payloads are different from the datalDs and payloads that the request com
mands originally traveled with because of timing differences between the time 
required for a payload to travel through the data path multiplexer 130 and the 
time required by the scheduler 132 for an arbitration cycle. The switching 
blocks that are formed by the channel modules are then transferred to the 
OPPs 102 and 104, where the response commands are passed to the 
respective IPPs via the bypass data paths and the payloads are reassembled 
into their original variable-length packets.

Fig. 9 is a flow diagram of a preferred method of the invention.
In a first step 200, incoming variable-length packets are segmented into pay- 
loads. In a next step 202, payloads and request information are multiplexed 
together into switching blocks. The request information in the switching 
blocks includes output channel destinations of a variable-length packet that is 
different from the variable-length packet related to the current payload trans
fer. In a next step 204, multiplexed switching blocks are forwarded to the 
crossbar of the switch. In a next step 206, the payload and request informa
tion of the switching block are demultiplexed so that the request information 
can be used by the crossbar for scheduling arbitration. In a next step 208, 
response information is generated from the request information. The 
response information indicates whether or not an awaiting variable-length 
packet can be forwarded through the crossbar. In a next step 210, the 
payload and response information are multiplexed together into switching 
blocks. In a next step 212, the multiplexed switching blocks are forwarded to 
a packet processor. In a preferred method, the payload segments and the 
switching blocks are fixed in length.

The information contained in the request commands, the 
response commands, and the datalD fields are important to ensuring that the 
pipelining of packets can occur. Referring back to Figs. 4-7, the fields in the



WO 99/62232 PCT/US99/10614

5

10

15

20

25

30

35

-13-

request-specific and response-specific command headers are now described 
in detail.

Referring specifically to Figs. 4 and 5, the request-specific 
command header 162 includes the request command 166 and the datalD 168 
field. The request command includes a channel reset vector, a valid request 
frame vector, a packet identified vector, a parity vector, and a crossbar exit 
port descriptor. The channel reset vector, R, is a 1 -bit vector that when set 
clears the scheduler. The valid request frame vector, V, is a 1 -bit vector that 
when set indicates to the scheduler that there is a request to send a new 
packet. The packet identifier vector, PKT, is a 3-bit vector that is used to 
match responses coming back from the crossbar to currently outstanding 
requests at the IPPs. The crossbar exit port descriptor vector, CEP, is a 
16-bit vector that identifies the destination output channels of the packet 
associated with the request. During steady state operation, if the channel 
reset vector bit is set, the scheduler invalidates all of the queued requests 
related to the input channel, clears the channel’s cumulative cyclic redun
dancy check (CRC) register, and at the next opportunity, the scheduler 
responds with R = 0, V = 0, and PKT = 0. An IPP will typically assert the 
channel reset vector after detecting a CRC error in a response from the 
crossbar. Although it is possible to implement a protocol that can repeat 
requests and acknowledgments in the case of error detection, resetting the 
entire channel and starting again is a more desired implementation, since the 
error rate on the data channels is expected to be low enough to justify losing 
multiple requests and/or packets during error handling.

The header parity vector is also part of the request command. 
The header parity vector, PAR, is a 3-bit vector that is a checksum for the 
current request from the IPP. The header parity vector protects all of the 
other data in the request command. If an invalid parity value is received, the 
crossbar controller will ignore the request and issue a channel reset to the 
offending IPP. Parity is evaluated using the following equations:

par[2] = hJ15] © hJM] © hJ13] © hJ12] © hJ11] © hJ33 © h,[2] © hJ1 ] © hJO] © 1

par[1] = h2[15] © h2[14] © h2[13] © h2[12] © h2[11j © h2[10] © h2[9] © h2[8j © hJ7] © I1J6]

par[0] = h2[7] © h2[6] © h2[5j © h2[4] © h2[3] © h2[2] © h2[1] © h2[0] © hJS] © hJ4]



WO 99/62232 PCT/US99/10614

5

10

15

20

25

30

35

-14-

The datalD 168 portion of the request-specific command header 
162, which is similar in both the request-specific and response-specific 
command headers, has three separate vectors. The first datalD vector is a 
1 -bit beginning of new packet vector, N, that when set identifies the beginning 
of a new packet. The N vector is used by the OPPs for queue allocation and 
table look-up scheduling. The second datalD vector is a 1 -bit validating frame 
vector, V, that when set, marks the payload within the switching block as 
valid. Since one or more output channels are allocated exclusively to one 
input channel for the duration of a packet transfer, the IPPs can send empty 
switching blocks by marking empty blocks with a “De-asserted” bit if, for 
example, the IPPs cannot supply switching blocks fast enough. The third 
datalD vector is a 6-bit cell sequence vector, SEQ, that is used to indicate 
which payload of a given packet is being transmitted or to indicate the end of 
a packet. The cell sequence vector is set to the total number of payload 
segments that make up the packet. A copy of the cell sequence vector is 
retained in the channel module and is decremented by one for each payload 
segment that is transferred through the crossbar. The cell sequence vector is 
also used by the OPP to determine the size of an incoming packet and the 
last payload segment of an incoming packet. The cell sequence vector is set 
to an artificial value when a blank switching block is inserted into a packet 
transfer. The artificial cell sequence value prevents the switch from 
determining that the current packet is completely transferred.

The crossbar cannot extend the transfer of switching blocks due 
to blank switching blocks or holes in the input switching block stream once the 
cell sequence vector reaches a threshold value that is used for end-of-packet 
detection. Any hole occurring after the cell sequence vector reaches the 
threshold value will be ignored and the switching block stream will be 
truncated as if there were no holes. It is assumed that the OPP will detect 
and discard these incomplete frames.

Referring to Figs. 6 and 7, the response-specific command 
header 172 includes the response command 176 and the datalD 178 field. 
The response command includes a channel reset vector, a valid response 
frame vector, and an acknowledgment CRC vector. The channel reset vector, 
R, is a 1-bit vector that, when set, indicates that the messaging protocol is 
being re-initialized. The appropriate IPP should respond with a set channel 
reset vector of its own as an acknowledgment. After the exchange of channel 
resets, an initialization protocol is run between the crossbar and the 
appropriate IPP to synchronize the channel. Details of the initialization



WO 99/62232 PCT/US99/10614

5

10

15

20

25

30

35

-15-

protocol are explained below. The valid response frame vector, V, is a 1 -bit 
vector that indicates that a grant for a transmission at the next transmission 
time has been issued. Upon receiving a grant, the IPP is responsible for 
sending either valid switching blocks or blank switching blocks and a cell 
sequence vector set to the packet size in order to claim and keep the channel 
available. The packet identifier, PKT, is 3-bit vector that is used to match 
responses to the currently outstanding requests. Bits thirteen through eight of 
the first byte of the response command are also used to carry a frame adjust
ment count during the initialization protocol. Bits thirteen through eight may 
also be used to implement a pause function in an alternative embodiment.

In addition, the response command 176 includes a 4-bit 
acknowledge CRC vector, CRC, that protects the channel reset vector, the 
valid response frame vector, and the packet identifier vector of the response 
command. The following set of equations, which can detect all single and 
double bit errors, are used to evaluate the response acknowledge CRC 
vector:

crc[4] = hJ1 5] © hJ14] © hJ13] © hJ12]

crc[5] = hJ15] ©^[11] ©^[10] © ^[9]

crc[6] = h1[14] © hjl 3] © h,[11] © hJIO] © Ιη[8]

crc[7] = h1[14] © hJ12] © hJH] © hJ9] © hJ8]

The datalD field 178 of the response-specific command header 172 includes 
the same vectors as the datalD fields of the request-specific command 
header 162.

In order to ensure simple, fair, and efficient arbitration by the 
scheduler, the scheduler requires that all current requests and the state of all 
input and output channels be known before the next arbitration cycle starts. 
To ensure that all requests are accessible to the scheduler, the requests 
should be synchronized with the scheduler. Request synchronization 
ensures that all requests arrive at the crossbar at the same time and at fixed 
intervals. Request synchronization has the side effect of aligning the 
beginning of all data transfers, making management of the crossbar data 
path easier.



WO 99/62232 PCT/US99/10614

5

10

15

20

25

30

35

-16-

To accomplish request synchronization, the crossbar generates 
a framing pulse and distributes the pulse to ail OPPs. The OPPs relay the 
framing pulse to their respective IPPs via the bypass data path. All of the 
IPPs go through a synchronization process which aligns the submission of 
their requests to the master framing pulse of the crossbar.

Fig. 10 is a depiction of the minimum frame transmission timing 
delays for a frame transmission cycle from release of a response by the 
crossbar to the transmission of the first related switching block through the 
data path multiplexer. The top time line (xbar_out) identifies the timing of the 
exit of a frame carrying a response (or grant) from the crossbar. The second 
time line (ipp_in) identifies the timing of the entrance of the same frame carry
ing the response into an IPP. The third time line (ipp_out) identifies the timing 
of the exit of a frame carrying a switching block related to the response from 
the IPP. The bottom time line (xbarjn) identifies the timing of the entrance of 
the frame carrying the switching block related to the response into the cross
bar. In accordance with Fig. 9, TRESP is the minimum response propagation 
time from the crossbar through the OPP to the IPP. T,PP is the minimum time 
that the IPP takes to send a request and/or payload. TREQ is the minimum 
request and/or payload propagation time from the IPP to the crossbar. TXBAR 
is the minimum time for a payload to propagate through the crossbar, where 
TXBAR is strictly a function of the number of registers on the data path 
multiplexer. TFRAME is the amount of time necessary to transfer a switching 
block through the switch. To perform packet pipelining as described above, it 
is ideal when the timing delays fit the equation:

TrESP + TlPP + TrEQ + 1"xBAR _ N * TpRAME

where N is preferably a positive integer that is calculated as described below 
and where TFRAME preferably equals eighteen clock cycles. When N is a 
positive integer, TXBAR can be fixed such that switching blocks will arrive at the 
crossbar in time to be pipelined with other switching blocks.

When all interfaces are operated at minimum delay,
Tresp + T,PP + TREQ + TXBAR is likely to be equal to a number of clocks less 
than N * TFRAME. In order to properly synchronize the arrival of a switching 
block at the crossbar, delay can be added within the IPP (to T,PP). Aligning 
the frame transmissions for each input can be achieved by having the 
crossbar scheduler force each IPP to delay its frame pulse a certain number 
of clocks. A preferred synchronization protocol is run during initialization, or



WO 99/62232 PCT/US99/10614

-17-

each time a channel has been reset, wherein the request and response 
commands are utilized in a specific manner during the synchronization 
protocol. During the synchronization protocol, certain bits of the response 
and request commands are utilized, as shown in Table 1 and Table 2.

TABLE 1
RESPONSE COMMAND FIELDS DURING SYNCHRONIZATION

5

10

15

20

25

30

35

Response
Command

xbar data[15] 
(RST)

xbar data[14] 
(V)

xbar_out[13:8] xbar_frame

Reset 1 0 0 inactive

Syncl 1 0 0 active

Sync2 1 1 <delay> active

Standby 0 0 0 active

Online 0 X X active

TABLE 2
REQUEST COMMAND FIELDS DURING SYNCHRONIZATION

Request
Command

ipp data[15] 
(RST)

ipp data[14] 
(V)

ipp_out[13:8] ipp_frame

Reset 1 0 0 inactive

Syncl 1 0 0 active

Sync2 1 1 <delay> active

Standby 0 0 0 active

Online 0 X X active

Fig. 11 is a depiction of the channel synchronization process 
that is carried out between the crossbar 220 and an IPP 222 using the 
command fields from Tables 1 and 2. To initiate the synchronization process, 
both the crossbar and the IPPs exchange Reset commands 224 and 226. 
During a reset, all of the IPPs in the system turn off their frame pulse, set their 
frame pulse delay to some minimum value, and wait for a frame pulse from 
the crossbar marked with a Syncl command. When an IPP receives a Syncl



WO 99/62232 PCT/US99/10614

5

10

15

20

25

30

35

-18-

command 228 and a framing pulse from the crossbar, the IPP turns on its 
own framing pulse and sends its own Syncl command 230 to the crossbar. 
When the crossbar receives the returning frame pulse from the IPP, it 
determines how many cycles the IPP must delay its frame transmission to 
align with the crossbar frame timing.

The crossbar 220 then sends another frame to the IPP 222 with 
a Sync2 command 232, which includes the additional required delay. The 
IPP responds to the Sync2 command from the crossbar with its own Sync2 
command 234 to the crossbar that echoes the delay value. At this time, the 
IPP requests should be aligned to the crossbar’s frame timing. Upon receipt 
of the Sync2 command from the IPP, the crossbar resets its internal queues 
and is ready to receive requests from the IPP.

Finally, the crossbar 220 sends a Standby command 236 to the 
IPP 222 and starts a frame counter. When the IPP receives the Standby 
command, the IPP responds with at least one empty Standby request 238. 
The crossbar measures the delay between the Standby command it sent and 
the first incoming Standby command from the IPP and uses the determination 
of latency to program a packet transfer completion detection threshold that 
represents the delay that must be accounted for so that the crossbar 
scheduler can correctly pipeline packet transfers.

In order to correctly pipeline packet transfers, the crossbar must 
know the total delay time from the issuance of a request from an IPP to the 
arrival of the switching block that is related to the request at the crossbar.
The delay time from issuance of a request to arrival of a switching block can 
be simply stated as:

"^REQUEST + TGRANT

where TREQUEST equals the delay from the issuance of a request from the IPP 
until the delivery of the response for that request at the IPP, and where TGRANT 
equals the delay from the delivery of the response to the IPP by the crossbar 
until the appearance of the frame carrying the first switching block of that 
transfer at the crossbar. To ensure full pipelining, a channel synchronization 
protocol with the following relationship must be followed:

"^REQUEST + TqrANT = k * TFRAME

where k equals 1,2,3--·.



WO 99/62232 PCT/US99/10614

5

10

15

20

25

30

35

-19-

ln a preferred case, where TFRAME equals eighteen clocks and 
k equals three, the number of clocks allotted to TREQUEST and TGRANT are shown 
in Table 3 and depicted in Fig. 12. Fig. 12 depicts an IPP/OPP 250 and 252 
pair and the associated crossbar 254, where the solid lines represent the 
physical data links 256, 258 and 260 between the three elements and the 
dashed line segments correspond to the transactions of Table 3.

TABLE 3
TRANSACTION BUDGETS FOR k = 3

{request
IPP request to propagate to XBAR 2 Clocks

XBAR to perform arbitration and generate grant 22 Clocks

tGRANT

XBAR grant to propagate to IPP 4 Clocks

IPP grant receipt to first data cell out of IPP 24 Clocks

Data cell to propagate from IPP to XBAR 2 Clocks

The frame transmission cycle begins with a first transaction 262 
of a request propagating in two clocks from the IPP 250 to the crossbar 254. 
In a next transaction 264, the crossbar 254 incorporates the request in an 
arbitration cycle that consumes twenty-two clocks. After the arbitration cycle, 
in a next transaction 268 a response with a set valid response frame vector is 
issued from the crossbar and the response travels through the OPP and to 
the IPP in four clocks. After the grant is received by the IPP, in a next 
transaction 270 the IPP consumes twenty-four clocks before the first 
switching block containing the payload associated with the received response 
exits the IPP. In a next transaction 272, the switching block containing the 
payload associated with the received response takes two clocks to propagate 
from the IPP to the crossbar. Restated, from the time a request is issued 
from the IPP to the time the first related switching block arrives at the 
crossbar, fifty-four clocks will expire. As a result, in order to achieve full 
pipelining of packets through the switch, a request must be issued from the 
IPP fifty-four clocks before the end ofthe current packet transfer.

In accordance with the protocol ofthe invention, the number of 
clocks is translated into a number of switching blocks. The number of switch
ing blocks represents the minimum number of switching blocks that can be



WO 99/62232 PCT/US99/10614

5

10

15

20

25

30

35

-20-

left in the current packet transfer before a request must be released from the 
related IPP in order to maintain full pipelining. The number of switching 
blocks is referred to as the packet transfer completion detection threshold.

In the example, since k is an integer multiple of TFRAME where 
k = 3, it can be said that a request for a new packet must be issued from the 
IPP at the point that the third from the last switching block from the current 
packet transfer reaches the crossbar. The cell sequence vector, SEQ, of the 
datalD field is used to track the switching blocks for each packet transfer, 
such that when the vector reaches the value “2,” the packet transfer comple
tion detection threshold is met and the process of supplying a new packet to 
the crossbar is begun.

Fig. 13 is a depiction of various waveforms for a pipelined 
packet transfer in the case where k = 3. The first pair of waveforms repre
sents the frame pulses and request commands exiting an IPP. The second 
pair of waveforms represents the frame pulses for the crossbar output in 
relation to the response (grant) that is issued for the request from the first pair 
of waveforms. The third pair of waveforms represents the frame pulses for 
the OPP and the grant that was issued from the crossbar. As can be seen, 
the first switching block related to the issued request trails the related request 
by three frames, or fifty-four clock periods.

For the general case, TREQUEST is a fixed constant for each cross
bar implementation and TGRANT is discovered during the initial synchronization 
process. After the initial synchronization process is complete for an input 
channel, the crossbar controller adds TGRANT and TREQUEST, converts the 
number of clocks to a whole number of frames, k (which becomes the packet 
transfer completion detection threshold), and stores the threshold so that it 
can be compared against the cell sequence, SEQ, field of each frame to 
decide when an IPP should issue a request and when the scheduler should 
start arbitrating for the next transfer of a packet on the channel.



WO 99/62232 PCT/US99/10614

-21-

5

10

15

20

25

30

35

WHAT IS CLAIMED IS:

1. A method for forwarding variable-length packets between channel-specific 
packet processors and a crossbar of a multiport switch comprising the steps 
of:

segmenting incoming variable-length packets into finite
payloads;

multiplexing said payloads and request information together to 
form first switching blocks, wherein said request information in each said 
switching block includes an indication of an output channel destination of an 
awaiting variable-length packet that is different from the variable-length 
packet related to said payload with which said request information is 
multiplexed;

forwarding said multiplexed switching blocks containing request 
information to said crossbar;

demultiplexing said payloads from said request information such 
that said request information can be used within said crossbar for scheduling 
arbitration;

generating response information from said request information, 
wherein said response information indicates whether or not a particular 
awaiting variable-length packet can be forwarded to said crossbar;

multiplexing said payloads and said response information 
together to form second switching blocks; and

forwarding said multiplexed second switching blocks containing 
response information to a designated packet processor.

2. The method of claim 1 wherein said step of multiplexing said payloads and 
said request information together into first switching blocks includes a step of 
multiplexing data identification information related to said payload into said 
switching blocks, wherein said data identification information contains a vector 
that allows switching blocks of a specific variable-length packet to be tracked.



WO 99/62232 PCT/US99/10614

5

10

15

20

25

30

35

-22-

3. The method of claim 2 further including the steps of:
decrementing said vector for each switching block of said

specific variable-length packet that is transferred through said crossbar; and 
multiplexing a request for a new packet when said vector

indicates that said specific variable-length packet transfer through said 
crossbar is near completion.

4. The method of claim 1 further including the steps of:
tracking the time left to forward a current variable-length packet

through said crossbar;
multiplexing payloads related to said particular awaiting variable- 

length packet with request information into awaiting first switching blocks 
when said tracking indicates that said current variable-length packet has been 
forwarded from said designated packet processor; and

forwarding said awaiting first switching blocks related to said 
particular awaiting packet directly after completion of said forwarding of said 
first switching blocks related to said current variable-length packet.

5. The method of claim 4 wherein said step of tracking includes a step of 
counting the number of first switching blocks related to said current variable- 
length packet that remain to be transferred through said crossbar.

6. The method of claim 1 further including the steps of:
determining a first delay from the submission of request

information by a packet processor until the delivery of related response 
information to said packet processor; and

determining a second delay from the delivery of response 
information to said packet processor until the appearance of a first switching 
block carrying a payload related to said response information at said 
crossbar.



WO 99/62232 PCT/US99/10614

5

10

15

20

25

30

35

-23-

7. The method of claim 6 further including the steps of;
adding said first delay and said second delay to obtain a total

clock cycle delay; and
issuing a request from said packet processor for a new packet 

to be forwarded no later than the time interval represented by said total clock 
cycle delay before the end of a current packet that is being forwarded through 
said crossbar.

8. A multiport switch having a multichannel switch fabric for switching 
variable-length packets comprising:

means for supplying a crossbar with a combination of a payload 
and an unrelated request from a packet processing unit over a first data 
connection; and

means for supplying said packet processing unit with a 
combination of said payload and an unrelated response from said crossbar 
over a second data connection.

9. The multiport switch of claim 8 further including means for segmenting 
variable-length packets to fixed-length payloads.

10. The multiport switch of claim 9 further including means for determining 
when a segmented variable-length packet will be completely forwarded 
through said crossbar.

11. The multiport switch of claim 10 further including means for determining a 
delay time between the release of a request from said packet processing unit 
and the arrival of a first switching block related to said request at said 
crossbar.



WO 99/62232 PCT/US99/10614

5

10

15

20

25

30

35

-24-

12. The multiport switch of claim 8 further including means for pipelining 
through said crossbar a second series of switching blocks from a second 
variable-length packet with a series of switching blocks from a first variable- 
length packet that is currently being transferred through said crossbar, said 
switching blocks being said combinations.

13. The multiport switch of claim 8 wherein said means for supplying said 
crossbar includes an input packet processor that is connected to said 
crossbar by a physical connection that carries said combination of said 
payload and said unrelated request, wherein said input packet processor 
includes a multiplexer for outputting said combination as a switching block 
that includes said payload and said unrelated request.

14. The multiport switch of claim 13 wherein said means for supplying said 
packet processing unit includes a physical connection between said crossbar 
and an output packet processor that carries said combination of said payload 
and said unrelated response, wherein said crossbar includes a multiplexer for 
outputting said combination as a switching block that includes said payload 
and said unrelated response.

15. The multiport switch of claim 14 wherein said crossbar includes channel- 
specific channel modules, each having a demultiplexer and a multiplexer, 
wherein said demultiplexer has an input for receiving a multiplexed payload 
and unrelated request and has two separate outputs for transmitting said 
payload and said unrelated request, and wherein said multiplexer has two 
separate inputs for receiving a payload and an unrelated response and has a 
single output for transmitting a switching block that includes said payload and 
said unrelated response.



WO 99/62232 PCT/US99/10614

5

10

15

20

25

30

35

-25-

16. A method for controlling the flow of variable-length packets through a 
multichannel switch fabric of a multiport switch wherein said multichannel 
switch fabric includes channel-specific packet processing units and a 
crossbar, wherein said crossbar includes a data path multiplexer and a 
scheduler, comprising the steps of:

segmenting a first incoming variable-length packet into fixed- 
length payloads;

multiplexing header information with at least one of said fixed- 
length payloads to create a first fixed-length switching block, wherein said 
header information includes a request header that is related to a second 
incoming variable-length packet, said request header indicating at least one 
destination output channel of said second variable-length packet;

forwarding said first fixed-length switching block via a switch 
channel to said crossbar of said multiport switch;

demultiplexing said fixed-length payload from said request
header;

forwarding said fixed-length payload to said data path 
multiplexer of said crossbar; and

forwarding said request header to said scheduler of said
crossbar;

generating first response information from said request header 
that is related to said second variable-length packet, wherein said response 
information indicates whether or not said second variable-length packet can 
be forwarded through said crossbar;

multiplexing said fixed-length payload from said first fixed-length 
switching block with second response information that is unrelated to said first 
incoming variable-length packet to create a second fixed-length switching 
block;

forwarding said second fixed-length switching block to a packet 
processor of said multiport switch;

multiplexing said first response information related to said 
second variable-length packet with a second fixed-length payload that is 
unrelated to said second variable-length packet to create a third fixed-length 
switching block; and

forwarding said third fixed-length switching block to said switch 
channel from which said first switching block was forwarded.



WO 99/62232 PCT/US99/10614

5

10

15

20

25

30

35

-26-

17. The method of claim 16 wherein said step of multiplexing header 
information includes steps of:

multiplexing a data identification header with said first fixed- 
length switching block, wherein said data identification header includes a cell 
sequence vector that indicates the number of payload segments that remain 
to be transferred in said first incoming variable-length packet; and

decrementing said cell sequence vector each time a payload 
related to said first incoming variable-length packet is forwarded through said 
crossbar.

18. The method of claim 17 further including steps of:
establishing a packet transfer completion detection threshold

that indicates the minimum number of payload segments that remain to be 
transferred before new header information is multiplexed with a payload; and

multiplexing said new header information with a payload from 
said first incoming variable-length packet when said cell sequence vector of 
said payloads that are related to said first incoming variable-length packet is 
equivalent to said packet transfer completion detection threshold.

19. The method of claim 16 further including steps of:
synchronizing switching block transmission timings between a

channel-specific processor and said crossbar on a channel-by-channel basis; 
and

using said synchronized switching block transmission timings to 
establish a packet transfer completion detection threshold on a channel-by
channel basis.



WO 99/62232 PCT/US99/10614

5

10

15

20

25

30

35

-27-

20. The method of claim 19 further including steps of:
tracking the number of switching blocks that are left to be trans

ferred where said tracked switching blocks are related to a packet that is 
currently being transferred; and

issuing a request from a packet processor when said tracking 
indicates that said number of switching blocks that are left to be transferred is 
equal to said packet transfer completion detection threshold.



WO 99/62232 PCT/US99/10614

1/11

LL

(P
R

IO
R 

AR
T)



WO 99/62232 PCT/US99/10614

2/11

C
RO

SS
BA

R 
60



WO 99/62232 PCT/US99/10614

3/11

c_> CO
Xt

pa
ck

et
 1

50

o
Xl-

o_o
JO
CD

JO_o
1
ω

X

oo

co

co

xf

co

CM

O

σ>

oo

r-

co

no

xt

co

CM coXt

FI
G

. 3



WO 99/62232 PCT/US99/10614

4/11

160

FIG. 4

REQUEST
COMMAND

166

FIG. 5



WO 99/62232 PCT/US99/10614

5/11

170

FIG. 6

}DatalD 178N D SEQ

RESPONSE
COMMAND'

176

R V PK1
CRC

FIG. 7



WO 99/62232 PCT/US99/10614

6/11

FIG. 8



WO 99/62232 PCT/US99/10614

7/11

FIG. 9



WO 99/62232 PCT/US99/10614

8/11

FR
A
M

E

o 
. I

c
I

CX
CX CX

CXto_Ωx

TOJO
X

FI
G

. 1
0



WO 99/62232 PCT/US99/10614

9/11

CL
CL

CNI
CN
CNI

N"
CN
CN

CO
LU
DC

DC
<
CQ
X

co
CN
CN

LU
CO
LU
QC

CL
CL

co A CN ♦ 
CN

o
Z
>-co
DC
<
CQX

CO
CO
CN

oz
>-co
D_
CL

CN
co
CN

CN
Oz
>-co
Cd
<
CQX

N"
CO
CN

CN
Oz
>-co
CL
CL

co
CN

A co

>-
CQ
O

CO

Cd<
CQX

co
CN

K|

>-
CQQ
Z
<
I—co
CL
CL FI

G
. 11

P



WO 99/62232 PCT/US99/10614

10/11

FIG. 12



WO 99/62232 PCT/US99/10614

11/11

FI
G

. 1
3


