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ADVERSARIAL SPEECH-TEXT
PROTECTION AGAINST AUTOMATED
ANALYSIS

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with Government support under
HRO001120C0013 awarded by the Defense Advanced
Research Projects Agency (DARPA). The Government has
certain rights to this invention.

BACKGROUND

The present disclosure relates to data protection and, more
specifically, to adversarial content protection.

Digital text documents and audio signals (e.g., recorded
speech) are used for communication and collaboration. In
parallel, recent developments within the field of machine
learning (e.g., natural language processing (NLP)) have
enabled large scale automated text analysis using artificial
intelligence (Al) to perform classification or information
extraction (e.g., analysis of intents, named-entity recogni-
tion). However, if text and/or audio data is accessed by
unauthorized third-parties, these parties may obtain personal
and/or confidential information using automated text analy-
sis.

SUMMARY

Various embodiments are directed to a method, which
includes processing an audio signal that includes speech data
and transcribing the speech data to generate text data. The
audio signal may also include recorded adversarial noise,
which may be removed prior to transcribing the speech data.
The method also includes identifying a vulnerable portion of
the text data and, in response to this identification, applying
adversarial text to the text data to generate robust text data.
Identifying the vulnerable portion can include generating
importance scores for portions of the text data, and the
vulnerable portion may be a portion of the text data with the
highest importance score. Generating the adversarial text
can include identifying a text portion that is semantically
equivalent to the vulnerable portion and determining that
replacing the vulnerable portion with this text portion
reduces a confidence score associated with a prediction of a
target machine-learning model. Adversarial noise corre-
sponding to the robust text data is generated and applied to
the speech data. In some embodiments, generating the
corresponding adversarial noise includes designing the cor-
responding adversarial noise to cause speech-to-text models
to produce a targeted transcription matching the robust text
data. The targeted transcription can be at least 90% similar
to the robust text data.

Further embodiments are directed to a system, which
includes a memory and a processor communicatively
coupled to the memory, wherein the processor is configured
to perform the method. Additional embodiments are directed
to a computer program product, which includes a computer
readable storage medium having program instructions
embodied therewith, the program instructions executable by
a processor to cause a device to perform the method.

The above summary is not intended to describe each
illustrated embodiment or every implementation of the pres-
ent disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings included in the present disclosure are
incorporated into, and form part of, the specification. They
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2

illustrate embodiments of the present disclosure and, along
with the description, serve to explain the principles of the
disclosure. The drawings are only illustrative of typical
embodiments and do not limit the disclosure.

FIG. 1 is a block diagram illustrating an adversarial
protection environment, according to some embodiments of
the present disclosure.

FIG. 2 is a flow diagram illustrating a process of provid-
ing adversarial content protection, according to some
embodiments of the present disclosure.

FIG. 3 is a block diagram illustrating a computer system,
according to some embodiments of the present disclosure.

FIG. 4 is a block diagram illustrating a cloud computing
environment, according to some embodiments of the present
disclosure.

FIG. 5 is a block diagram illustrating a set of functional
abstraction model layers provided by the cloud computing
environment, according to some embodiments of the present
disclosure.

DETAILED DESCRIPTION

Aspects of the present disclosure relate generally to the
field of adversarial content protection. While the present
disclosure is not necessarily limited to such applications,
various aspects of the disclosure may be appreciated through
a discussion of various examples using this context.

State-of-the-art artificial intelligence (Al) can enable the
automated analysis of massive amounts of audio signals
(e.g., recorded speech) as well as digital text. Speech-to-text
models allow the transcription of spoken language into text
format, which can then be used in further processing (e.g.,
clustering, text mining, filtering by key words, etc.). Text
analysis can then be carried out by models that perform
classification or information extraction (e.g., analysis of
intent, named-entity recognition, etc.). Various techniques
exist today that defend against an attacker accessing text or
audio data. For example, adversarial patch injection is a
technique that fools machine learning models without pre-
venting communication between authorized parties.

Adversarial patch injection can protect an audio signal by
modifying the audio signal to prevent automated analysis
while making minimal changes to human perception of the
audio. For example, a telephone call between two parties
may apply adversarial noise to the signal, thereby preventing
transcription of the audio data. Instead, the adversarial noise
may cause automated analysis to detect silence or random
utterances. However, the adversarial noise may be imper-
ceptible to humans or at least minimal enough to allow
effective communication between the two parties. Adver-
sarial patch injection can also protect against an attacker
with access to text, such as a transcription of an audio signal.
For example, a transcription can be altered to include
adversarial text that preserves semantic meaning while fool-
ing Al models (e.g., text classification models, information
extraction models, etc.).

However, existing techniques may be inadequate for
situations in which an attacker has access to information in
both audio and text formats. For example, a user or group of
users may control a text editor via speech-to-text (e.g., to
compose an email or take minutes in a meeting). In another
example, users communicating via conferencing software
may enable transcription in order to provide captions and/or
keep records. In these examples, information exists as an
audio recording with corresponding digital text. Both adver-
sarial noise and adversarial text may be employed to protect
the information. However, an automated analysis system
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may detect resulting differences between the altered audio
and text. This may cause the system to flag the information
as having adversarial protections in place and, therefore,
potentially containing important content.

Disclosed herein are techniques that may prevent auto-
mated analysis from detecting adversarial protection of
audio data (e.g., recorded speech) and corresponding text
data (e.g., transcript of the recorded speech). In some
embodiments, an audio signal is recorded and processed to
remove adversarial noise. Speech data from the audio signal
can be transcribed to generate text data. Adversarial text can
be generated and applied to the text data to increase the
robustness of the text data. The adversarial text can include
text modifications semantically equivalent to vulnerable
portions of the text data. A “portion” of text and/or speech
data may include characters/letters, words, phrases, sen-
tences, paragraphs, sections, etc. “Semantically equivalent
text” may refer to a replacement for a portion of a text
document that preserves the semantic meaning of the origi-
nal text. Adversarial noise that corresponds to the robust text
data can then be generated and applied to the speech data.
The adversarial noise can cause speech-to-text models to
generate transcriptions that match the robust text data. This
can prevent automatic detection of differences between the
speech and text data that may result from using adversarial
text protection without corresponding adversarial noise.

It is to be understood that the aforementioned advantages
are example advantages and should not be construed as
limiting. Embodiments of the present disclosure can contain
all, some, or none of the aforementioned advantages while
remaining within the spirit and scope of the present disclo-
sure.

Turning now to the figures, FIG. 1 is a schematic diagram
illustrating an adversarial protection environment 100,
according to some embodiments of the present disclosure.
Environment 100 can include a user 110 and/or an audio
generator 113 that can produce speech recorded as an audio
signal 116. Environment 100 can also include an audio
module 120 that can include an audio recorder 119 and an
automatic speech recognition (ASR) component 126. Addi-
tionally, environment 100 can include a defense module 130
that can include a scoring component 133, a text modifica-
tion component 136, and an audio modification component
136.

The audio recorder 119 can dynamically record and store
an audio signal 116 containing speech data from a user 110
and, in some embodiments, additional noise (e.g., generated
noise from the audio generator 113, incidental background
noise). While one user 110 is illustrated in FIG. 1, there can
be at least one additional source of speech data in some
embodiments, such as when the audio recorder 119 is
recording a meeting with multiple participants. These
sources can be in the same physical location (e.g., a con-
ference room, classroom, etc.) or in multiple locations, such
as when users are communicating via telephone, web con-
ferencing application, etc. In some embodiments, speech
data can be provided by the audio generator 113. For
example, the audio generator 113 can include an electronic
speaker.

The audio signal 116 may also include non-speech noise.
For example, adversarial noise may be introduced by the
audio generator 113 and recorded by the audio recorder 119
together with the speech data. The additional noise may
include adversarial noise generated to prevent the automated
analysis of speech data from an unauthorized recording of
the audio signal 116. The audio signal 116 may also include
incidental background noise (e.g., environmental sounds).
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The audio processing component 126 can receive and
analyze physical properties associated with the audio signal
116. For example, the audio processing component 126 may
undergo various data analytics functions to analyze audio
signals 116 communicated from one or more sources (e.g.,
the user 110 and/or audio generator 113). Recorded non-
speech noise (e.g., adversarial and/or background noise)
may be removed from the audio signal 116 by the audio
processing component 126 prior to transcription of the
speech data in the audio signal 116.

The transcription can be carried out by the ASR compo-
nent 129 using natural language processing (NLP) to gen-
erate text data. The ASR component 129 may also perform
additional functions, such as identifying/labeling different
speech sources in some embodiments. This text data can
then be relayed to the defense module 130, which can
identify vulnerable portions of the text data and apply
adversarial text to increase the robustness of the text data.

The scoring component 133 can evaluate the vulnerabil-
ity/robustness of the original text. “Robustness™ can refer to
the ability of text data to withstand automated analysis using
machine learning (ML) models associated with NLP tasks
(e.g., text classification, summarization, named-entity rec-
ognition, machine translation, question answering, etc.). In
some embodiments, a vulnerable portion of the original text
data can be identified by calculating how much modifying
(e.g., deleting or replacing) that portion would alter a
confidence score of a prediction made by a target ML model
before and after the modification. The scoring component
133 can include ML models associated with NLP tasks, such
as, for example, classification, summarization, named-entity
recognition, machine translation, and question answering.
For example, the scoring component 133 may use an ML
model represented by a function F(x)=y, where an input X is
mapped to an output or prediction y with a specific confi-
dence score. This is discussed in greater detail with respect
to FIG. 2.

The text modification component 136 can include at least
one strategy to modify one or more portions of the text data
(e.g., vulnerable portions identified by the scoring compo-
nent 133) to make the text data more robust, while main-
taining the original semantic meaning. The modification
strategies implemented by the text modification component
136 may be based on the adversarial text attacks used by the
scoring component 133 and may include, for example,
deletion, insertion, and/or replacement of characters/letters,
words, phrases/sentences, etc.

For example, the scoring component 133 can determine
whether a confidence score for modified text data is less than
a confidence score generated for the original text data. The
text modification component 136 can test the potential
modifications using the scoring component 133. To do so,
the scoring component 133 may apply each modification to
the text data and input the modified text data into a target ML,
model. A new confidence score associated with a resulting
output from the target ML model can be determined for each
modification. The text modification component 136 may
select adversarial text from a modification that results in the
greatest vulnerability reduction (e.g., the lowest confidence
score).

The adversarial text can be applied to the text data in order
to generate robust text. The robust text data may be stored
(e.g., in a computer memory, a database, cloud storage, etc.)
and/or transmitted to an authorized recipient 140 such as a
second user (e.g., via email, file-sharing, etc.). The audio
modification component 139 can generate adversarial noise
that corresponds to the robust text (see FIG. 2). While the
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adversarial noise affects automated processing (e.g., auto-
matically parsing and analyzing spoken content) of the audio
signal 116, the noise can be low enough for humans to
understand the speech or imperceptible to humans. In some
embodiments, the audio modification component 139 may
relay the corresponding adversarial noise to the audio gen-
erator 113, which can add the adversarial noise to the audio
signal 116, and the audio processing component 126, which
can then remove the adversarial noise prior to transcription.

FIG. 2 is a flow diagram illustrating a process 200 of
providing adversarial content protection, according to some
embodiments of the present disclosure. To illustrate process
200, but not to limit embodiments, FIG. 2 is described
within the context of the adversarial protection environment
100 illustrated in FIG. 1. Where elements referred to in FIG.
2 are identical to elements shown in FIG. 1, the same
reference numbers are used in each figure.

An audio signal 116 is processed. This is illustrated at
operation 210. The audio signal can contain speech data
and/or other noise and can be recorded by the audio recorder
119. Source(s) of the audio signal can include at least one
person (e.g., user 110) and/or other source of sound (e.g.,
audio generator 113). Processing the audio signal 116 can
include removing environmental noise and/or adversarial
noise injected into the audio signal by the audio generator
113. The noise removal can be carried out by the audio
processing component 126. In some embodiments, adver-
sarial noise is not present initially, but is applied at operation
260 (see below). In these instances, the audio processing
component 126 may use information from the defense
module 130 (e.g., the audio modification component 139) to
target and remove the applied adversarial noise. Removal of
adversarial noise from the audio signal results in speech data
that can be automatically analyzed using NLP.

The speech data is transcribed to generate text data. This
is illustrated at operation 220. The ASR component 129 can
transcribe the speech data using any appropriate ASR tech-
niques known in the art, such as natural language processing
(NLP) techniques. The transcription results in text data that
corresponds to the speech data. The text data can be sent to
the defense module 130 in order to evaluate its robustness/
vulnerability to automatic analysis.

The text data can be evaluated by determining whether
there is a vulnerable portion of the text data. This is
illustrated at operation 230. In some embodiments, a vul-
nerable portion of the text data can be identified by the
scoring component 133 based on the effect modifying (e.g.,
deleting or replacing) that portion has on the confidence
score of a prediction made by a target ML, model before and
after the modification. The scoring component 133 can use
adversarial text attacks intended to take advantage of weak-
nesses in a given ML model.

For example, there can be a target ML, model represented
by a function F(x)=y, where an input x is mapped to an
output or prediction y with a specific confidence score. A
minimum modification may be applied to an input portion of
text x to decrease the confidence score associated with the
output/prediction y based on the original text data. In some
embodiments, the modifications to the input x implemented
by the adversarial text attacks can cause the target ML model
to produce an incorrect output or prediction relative to the
original y. Examples of adversarial text attacks may include
character-level attack, word-level attack, and phrase- or
sentence-level attack. The attack type may determine the
type of modification applied to the text data. The scoring
component 133 may implement respective scoring functions
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of the adversarial text attacks to calculate the robustness/
vulnerabilities of the text data at a given level.

In some embodiments, text data may be considered to
have a low vulnerability (e.g., high robustness score) if an
output of an ML, model receiving the text data as input does
not produce a confidence score above a threshold confidence
score. Additionally, text data may be considered to have a
low vulnerability/high robustness score if no minimum
modification can be made to the text data that can signifi-
cantly impact the output (e.g., decrease confidence score by
a threshold amount) of the ML model receiving the modified
text data. Text data may be considered to have a high
vulnerability (e.g., low robustness score) if an output of an
ML model receiving the text data as input produces a high
confidence score. The text data may also have a high
vulnerability if a minimum modification can be made to the
text data (e.g., replacing one word) to significantly impact
the output or prediction of the ML model receiving the
minimally modified text data.

In order to determine the text robustness/vulnerability, the
scoring component 133 may first determine an importance
score associated with each portion of the text data. For
example, an importance score of a portion of text data may
be associated with the contribution or impact of that portion
of the text data to the outcome or prediction of a target ML
model receiving that text data as input.

The importance score may be calculated at the character
level, word level, phrase level, sentence level, etc. based on
the adversarial text attack that is used for the scoring
function. In some embodiments, the scoring component 133
may utilize multiple adversarial text attacks to score portions
of the text data and return a unified importance score for the
text data. For example, the scoring component 133 may
generate the unified importance score based on a weighted
average of the importance scores. The scoring component
133 may apply a greater or lesser weight to adversarial text
attacks based on the strength and/or the frequency of use of
the attack type. For example, adversarial text attacks that are
highly effective and frequently used (e.g., attacks based on
projected gradient descent (PGD)) may be given greater
weight. In other embodiments, the scoring component 133
can apply an equal weight to all of the adversarial text
attacks by default. There may also be an option to customize
the weights applied to the adversarial text attacks.

In the aforementioned example of a target ML model
represented by a function F(x)=y, the scoring component
133 may receive the text data “she agrees that it is suitable”
as input. Given the input the text data, the classifier F may
predict an output label P with a confidence score 0f 0.9 (e.g.,
90% probability that the input sentence is output label P).
Then, in order to determine whether the text data is robust,
the scoring component 133 may determine whether the
original prediction of the classifier F can be significantly
changed by a small modification to the text data. For
example, the text modification component 136 may imple-
ment a word-level attack that allows the scoring component
133 to determine the importance of each word within the text
data. In this example, the importance of a specific word
within a sentence may be measured by determining a
difference between outputs of classifier F receiving input
text data with and without the specific word.

Score(“she”)=F(“she agrees that it is suitable”)-F
(“agree that it is suitable™)

Score(“agrees”)=F(“she agrees that it is suitable”)-F
(“she that it is suitable™)
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Score(“that”)=F(“she agrees that it is usable”)-F
(“she agrees it is suitable”)

Score(“it”)=F(“she agrees that it is suitable”)-F(“she
agrees that is suitable™)

Score(“is”)=F(“she agrees that it is suitable”)-F
(“she agrees that it suitable’)

Scorer(“suitable”)=F(“she agrees that it is suit-
able”)-F(“she agrees that it is”)

Based on the above scores, it can be determined which
portion (e.g., word) of the text data has the highest impact
(e.g., highest importance score) on the prediction of the
classifier F. For example, a vulnerable portion of text data
can be detected based on a ranking of importance scores
determined for text data portions and impact of the text data
portions on confidence scores of predictions made by ML
models. In the example above, the scoring component 133
may determine that the word “agrees” had the highest
important score and greatest impact on the confidence score
associated with an output label P predicted by the classifier
F. Further, because the word “agrees” had the highest
importance score, modifying this portion of the sentence
may significantly change the confidence score associated
with the prediction of the classifier F. The scoring compo-
nent 133 may therefore designate the word “agrees”™ as the
least textually robust/most vulnerable portion of “she agrees
that it is suitable”.

If no vulnerable text data portion is detected at operation
230, the original text data may be stored and/or transmitted
to an intended recipient 140. This is illustrated at operation
240. However, if a vulnerable text data portion is identified
at operation 230, adversarial text can be generated and
applied to the text data. This is illustrated at operation 250.

At operation 250, text modification component 136 can
generate adversarial text to modify a vulnerable portion of
the text data identified at operation 230. For example, the
text modification component 136 may implement a word
replacement strategy to modify the vulnerable portion of the
text data. Referring to the example above, this may include
using a word embedding process to search for a nearest
neighbor in the embedding space of the identified vulnerable
word (“agrees”). In some embodiments, the word embed-
ding process maps the word “agrees” to its numerical
representation (or vector) where words that are semantically
equivalent (e.g., words that have the same meaning or are
close in meaning) can have similar numerical representa-
tions in the embedding space. In this example, the word
embedding process applied to the word “agrees” may iden-
tify three replacement words (“approves”, “accepts”, and
“thinks™) as being semantically equivalent.

In order to select a text modification for the adversarial
text, the scoring component 133 may generate new confi-
dence scores based on the text data as modified with the
identified replacement words. That is, the scoring compo-
nent 133 may replace the word having the highest impor-
tance score in the text data (e.g., the vulnerable word
“agrees”) with each of the replacement words and evaluate
the performance of the target ML model (classifier F) based
on the substitution in the text data, as shown below:

F(“she agrees that it is suitable”)=output label P; confi-

dence score: 0.9 [original text]

F(“she approves that it is suitable”)=output label P; con-

fidence score: 0.6
F(“she accepts that it is suitable”)=output label P; confi-
dence score: 0.5
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F(“she thinks that it is suitable”)=output label P; confi-
dence score: 0.3

In some embodiments, the text modification component
136 can rank the potential modifications to the text data in
order to identify the slightest modification having the most
significant impact on the output of a target model. Based on
the calculations above, the text modification component 136
may determine that replacing the word “agrees” with
“thinks” would have the most significant impact on the
output of the target model (e.g., decreasing the confidence
score from 0.9 to 0.3), followed by the words “accepts” and
“approves.” The text modification component 136 may rank
the replacement words based on the amount of decrease
between the original confidence score and the respective
confidence scores produced by each replacement word.

The text modification component 136 can apply the
adversarial text using any adversarial text injection tech-
niques known to those of ordinary skill in the art. In some
embodiments, adversarial text is selected based on ranking.
Referring to the example above, the text modification com-
ponent 136 may replace the word “agrees” with the adver-
sarial text “thinks” in the text data. However, in some
embodiments, there may be only one semantically equiva-
lent text modification identified. In these instances, the
modification may be selected if the resulting confidence
score is less than that of the original text.

Adversarial noise corresponding to the robust text data
can then be generated and applied to the audio signal 116.
This is illustrated at operation 260. The adversarial noise can
be designed to cause speech-to-text models to produce
targeted transcriptions matching the robust text data. For
example, the adversarial noise may result in a transcript of
the speech data that is above a threshold similarity to the
robust text data (e.g., a transcript at least 90% similar to the
robust text data). Continuing the example above, the audio
modification component 139 can generate adversarial noise
causing the recorded utterance of the word “agrees” to be
transcribed as “thinks”. In some embodiments, the adver-
sarial noise is applied using the audio generator 113. The
audio processing component 126 may be updated with the
generated adversarial noise in order to facilitate removal of
the noise at operation 210 (e.g., when a new audio signal is
received at operation 270). The robust text generated at
operation 250 can be stored in a computer memory (e.g.,
memory 304 illustrated in FIG. 3) and/or transmitted to an
authorized recipient 140 at operation 240.

It can then be determined whether a new audio signal has
been received by the audio recorder 119. This is illustrated
at operation 270. If the audio processing component 126
determines that a new audio signal has not been received,
process 200 can end. However, if a new audio signal is
received and recorded, process 200 can return to operation
210 to process the new audio signal. While not illustrated in
FIG. 2, if the audio signal does not include speech data,
process 200 may end at operation 210 or 220. Process 200
may be repeated until no audio signal is detected at operation
270 or until otherwise instructed to stop.

FIG. 3 is a block diagram illustrating an exemplary
computer system 300 that can be used in implementing one
or more of the methods, tools, components, and any related
functions described herein (e.g., using one or more proces-
sor circuits or computer processors of the computer). In
some embodiments, the major components of the computer
system 300 comprise one or more processors 302, a memory
subsystem 304, a terminal interface 312, a storage interface
316, an input/output device interface 314, and a network
interface 318, all of which can be communicatively coupled,
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directly or indirectly, for inter-component communication
via a memory bus 303, an input/output bus 308, bus interface
unit 307, and an input/output bus interface unit 310.

The computer system 300 contains one or more general-
purpose programmable central processing units (CPUs)
302A, 302B, and 302-N, herein collectively referred to as
the CPU 302. In some embodiments, the computer system
300 contains multiple processors typical of a relatively large
system; however, in other embodiments the computer sys-
tem 300 can alternatively be a single CPU system. Each
CPU 302 may execute instructions stored in the memory
subsystem 304 and can include one or more levels of
on-board cache.

The memory 304 can include a random-access semicon-
ductor memory, storage device, or storage medium (either
volatile or non-volatile) for storing or encoding data and
programs. In some embodiments, the memory 304 repre-
sents the entire virtual memory of the computer system 300
and may also include the virtual memory of other computer
systems coupled to the computer system 300 or connected
via a network. The memory 304 is conceptually a single
monolithic entity, but in other embodiments the memory 304
is a more complex arrangement, such as a hierarchy of
caches and other memory devices. For example, memory
may exist in multiple levels of caches, and these caches may
be further divided by function, so that one cache holds
instructions while another holds non-instruction data, which
is used by the processor or processors. Memory can be
further distributed and associated with different CPUs or sets
of CPUs, as is known in any of various so-called non-
uniform memory access (NUMA) computer architectures.

The audio module 120 and defense module 130 (FIG. 1),
are illustrated as being included within the memory 304 in
the computer system 300. However, in other embodiments,
some or all of these components may be on different
computer systems and may be accessed remotely, e.g., via a
network. The computer system 300 may use virtual address-
ing mechanisms that allow the programs of the computer
system 300 to behave as if they only have access to a large,
single storage entity instead of access to multiple, smaller
storage entities. Thus, though the audio module 120 and
defense module 130 are illustrated as being included within
the memory 304, components of the memory 304 are not
necessarily all completely contained in the same storage
device at the same time. Further, although these components
are illustrated as being separate entities, in other embodi-
ments some of these components, portions of some of these
components, or all of these components may be packaged
together.

In an embodiment, the audio module 120 and the defense
module 130 include instructions that execute on the proces-
sor 302 or instructions that are interpreted by instructions
that execute on the processor 302 to carry out the functions
as further described in this disclosure. In another embodi-
ment, the audio module 120 and the defense module 130 are
implemented in hardware via semiconductor devices, chips,
logical gates, circuits, circuit cards, and/or other physical
hardware devices in lieu of, or in addition to, a processor-
based system. In another embodiment, the audio module 120
and the defense module 130 include data in addition to
instructions.

Although the memory bus 303 is shown in FIG. 3 as a
single bus structure providing a direct communication path
among the CPUs 302, the memory subsystem 304, the
display system 306, the bus interface 307, and the input/
output bus interface 310, the memory bus 303 can, in some
embodiments, include multiple different buses or commu-
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nication paths, which may be arranged in any of various
forms, such as point-to-point links in hierarchical, star or
web configurations, multiple hierarchical buses, parallel and
redundant paths, or any other appropriate type of configu-
ration. Furthermore, while the input/output bus interface 310
and the input/output bus 308 are shown as single respective
units, the computer system 300 may, in some embodiments,
contain multiple input/output bus interface units 310, mul-
tiple input/output buses 308, or both. Further, while multiple
input/output interface units are shown, which separate the
input/output bus 308 from various communications paths
running to the various input/output devices, in other embodi-
ments some or all of the input/output devices may be
connected directly to one or more system input/output buses.

The computer system 300 may include a bus interface unit
307 to handle communications among the processor 302, the
memory 304, a display system 306, and the input/output bus
interface unit 310. The input/output bus interface unit 310
may be coupled with the input/output bus 308 for transfer-
ring data to and from the various input/output units. The
input/output bus interface unit 310 communicates with mul-
tiple input/output interface units 312, 314, 316, and 318,
which are also known as input/output processors (IOPs) or
input/output adapters (I0As), through the input/output bus
308. The display system 306 may include a display control-
ler. The display controller may provide visual, audio, or both
types of data to a display device 305. The display system 306
may be coupled with a display device 305, such as a
standalone display screen, computer monitor, television, or
a tablet or handheld device display. In alternate embodi-
ments, one or more of the functions provided by the display
system 306 may be on board a processor 302 integrated
circuit. In addition, one or more of the functions provided by
the bus interface unit 307 may be on board a processor 302
integrated circuit.

In some embodiments, the computer system 300 is a
multi-user mainframe computer system, a single-user sys-
tem, or a server computer or similar device that has little or
no direct user interface but receives requests from other
computer systems (clients). Further, in some embodiments,
the computer system 300 is implemented as a desktop
computer, portable computer, laptop or notebook computer,
tablet computer, pocket computer, telephone, smart phone,
network switches or routers, or any other appropriate type of
electronic device.

It is noted that FIG. 3 is intended to depict the represen-
tative major components of an exemplary computer system
300. In some embodiments, however, individual compo-
nents may have greater or lesser complexity than as repre-
sented in FIG. 3, Components other than or in addition to
those shown in FIG. 3 may be present, and the number, type,
and configuration of such components may vary.

In some embodiments, the data storage and retrieval
processes described herein could be implemented in a cloud
computing environment, which is described below with
respect to FIGS. 4 and 5. It is to be understood that although
this disclosure includes a detailed description on cloud
computing, implementation of the teachings recited herein
are not limited to a cloud computing environment. Rather,
embodiments of the present invention are capable of being
implemented in conjunction with any other type of comput-
ing environment now known or later developed.

Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
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rapidly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.
Characteristics are as Follows:

On-demand self-service: a cloud consumer can unilater-
ally provision computing capabilities, such as server time
and network storage, as needed automatically without
requiring human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that
promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer
generally has no control or knowledge over the exact
location of the provided resources but may be able to specify
location at a higher-level of abstraction (e.g., country, state,
or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale
out and rapidly released to quickly scale in. To the consumer,
the capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa-
bility at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported, providing transparency for both the provider and
consumer of the utilized service.

Service Models are as Follows:

Software as a Service (SaaS): the capability provided to
the consumer is to use the provider’s applications running on
a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as
a web browser (e.g., web-based e-mail). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to
the consumer is to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages and tools supported by the provider.
The consumer does not manage or control the underlying
cloud infrastructure including networks, servers, operating
systems, or storage, but has control over the deployed
applications and possibly application hosting environment
configurations.

Infrastructure as a Service (laaS): the capability provided
to the consumer is to provision processing, storage, net-
works, and other fundamental computing resources where
the consumer is able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, stor-
age, deployed applications, and possibly limited control of
select networking components (e.g., host firewalls).
Deployment Models are as Follows:

Private cloud: the cloud infrastructure is operated solely
for an organization. It may be managed by the organization
or a third party and may exist on-premises or off-premises.
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Community cloud: the cloud infrastructure is shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-
premises or off-premises.

Public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standard-
ized or proprietary technology that enables data and appli-
cation portability (e.g., cloud bursting for load-balancing
between clouds).

A cloud computing environment is service oriented with
a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing is
an infrastructure that includes a network of interconnected
nodes.

FIG. 4 is a block diagram illustrating a cloud computing
environment 400, according to some embodiments of the
present disclosure. As shown, cloud computing environment
400 includes one or more cloud computing nodes 410 with
which local computing devices used by cloud consumers,
such as, for example, personal digital assistant (PDA) or
cellular telephone 420A, desktop computer 420B, laptop
computer 420C, and/or automobile computer system 420D
may communicate. Nodes 410 may communicate with one
another. They may be grouped (not shown) physically or
virtually, in one or more networks, such as Private, Com-
munity, Public, or Hybrid clouds as described hereinabove,
or a combination thereof. This allows cloud computing
environment 400 to offer infrastructure, platforms and/or
software as services for which a cloud consumer does not
need to maintain resources on a local computing device. It
is understood that the types of computing devices 420A-
420D shown in FIG. 4 are intended to be illustrative only
and that computing nodes 410 and cloud computing envi-
ronment 400 can communicate with any type of computer-
ized device over any type of network and/or network
addressable connection (e.g., using a web browser).

FIG. 5 is a block diagram illustrating a set of functional
abstraction model layers 500 provided by the cloud com-
puting environment 400, according to some embodiments of
the present disclosure. It should be understood in advance
that the components, layers, and functions shown in FIG. §
are intended to be illustrative only and embodiments of the
invention are not limited thereto. As depicted, the following
layers and corresponding functions are provided:

Hardware and software layer 510 includes hardware and
software components. Examples of hardware components
include: mainframes 511; RISC (Reduced Instruction Set
Computer) architecture-based servers 512; servers 513;
blade servers 514; storage devices 515; and networks and
networking components 516. In some embodiments, soft-
ware components include network application server soft-
ware 517 and database software 518.

Virtualization layer 520 provides an abstraction layer
from which the following examples of virtual entities may
be provided: virtual servers 521; virtual storage 522; virtual
networks 523, including virtual private networks; virtual
applications and operating systems 524; and virtual clients
525.

In one example, management layer 530 provides the
functions described below. Resource provisioning 531 pro-
vides dynamic procurement of computing resources and
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other resources that are utilized to perform tasks within the
cloud computing environment. Metering and Pricing 532
provide cost tracking as resources are utilized within the
cloud computing environment, and billing or invoicing for
consumption of these resources. In one example, these
resources may include application software licenses. Secu-
rity provides identity verification for cloud consumers and
tasks, as well as protection for data and other resources. User
portal 533 provides access to the cloud computing environ-
ment for consumers and system administrators. Service level
management 534 provides cloud computing resource allo-
cation and management such that required service levels are
met. Service Level Agreement (SLA) planning and fulfill-
ment 535 provide pre-arrangement for, and procurement of,
cloud computing resources for which a future requirement is
anticipated in accordance with an SLA.

Workloads layer 540 provides examples of functionality
for which the cloud computing environment can be utilized.
Examples of workloads and functions that can be provided
from this layer include: mapping and navigation 541; soft-
ware development and lifecycle management 542; virtual
classroom education delivery 543; data analytics processing
544; transaction processing 545; and adversarial speech-text
protection 546.

The present invention may be a system, a method, and/or
a computer program product at any possible technical detail
level of integration. The computer program product may
include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
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network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written in any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a computer, or other program-
mable data processing apparatus to produce a machine, such
that the instructions, which execute via the processor of the
computer or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
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gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted in the Figures. For example, two blocks shown in
succession may, in fact, be accomplished as one step,
executed concurrently, substantially concurrently, in a par-
tially or wholly temporally overlapping manner, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

The descriptions of the various embodiments of the
present disclosure have been presented for purposes of
illustration but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

Although the present disclosure has been described in
terms of specific embodiments, it is anticipated that altera-
tions and modification thereof will become apparent to the
skilled in the art. Therefore, it is intended that the following
claims be interpreted as covering all such alterations and
modifications as fall within the true spirit and scope of the
present disclosure.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the various embodiments. As used herein, the
singular forms “a,” “an,” and “the” are intended to include
the plural forms as well, unless the context clearly indicates
otherwise. It will be further understood that the terms
“includes” and/or “including,” when used in this specifica-
tion, specify the presence of the stated features, integers,
steps, operations, elements, and/or components, but do not
preclude the presence or addition of one or more other
features, integers, steps, operations, elements, components,
and/or groups thereof.

In the previous detailed description of example embodi-
ments of the various embodiments, reference was made to
the accompanying drawings (where like numbers represent
like elements), which form a part hereof, and in which is
shown by way of illustration specific example embodiments
in which the various embodiments may be practiced. These
embodiments were described in sufficient detail to enable
those skilled in the art to practice the embodiments, but other
embodiments may be used and logical, mechanical, electri-
cal, and other changes may be made without departing from
the scope of the various embodiments. In the previous
description, numerous specific details were set forth to
provide a thorough understanding the various embodiments.
But, the various embodiments may be practiced without
these specific details. In other instances, well-known cir-
cuits, structures, and techniques have not been shown in
detail in order not to obscure embodiments.
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When different reference numbers comprise a common
number followed by differing letters (e.g., 100a, 1005, 100c¢)
or punctuation followed by differing numbers (e.g., 100-1,
100-2, or 100.1, 100.2), use of the reference character only
without the letter or following numbers (e.g., 100) may refer
to the group of elements as a whole, any subset of the group,
or an example specimen of the group.

As used herein, “a number of” when used with reference
to items, means one or more items. For example, “a number
of different types of networks” is one or more different types
of networks.

Further, the phrase “at least one of,” when used with a list
of items, means different combinations of one or more of the
listed items can be used, and only one of each item in the list
may be needed. In other words, “at least one of”” means any
combination of items and number of items may be used from
the list, but not all of the items in the list are required. The
item can be a particular object, a thing, or a category.

For example, without limitation, “at least one of item A,
item B, and item C” may include item A, item A and item B,
or item B. This example also may include item A, item B,
and item C or item B and item C. Of course, any combina-
tions of these items can be present. In some illustrative
examples, “at least one of” can be, for example, without
limitation, two of item A; one of item B; ten of item C; four
of item B and seven of item C; or other suitable combina-
tions.

What is claimed is:

1. A method, comprising:

processing an audio signal comprising speech data;

transcribing the speech data to generate text data;

identifying a vulnerable portion of the text data;

in response to the identifying, modifying the text data to

generate a robust transcript, wherein the modifying
comprises replacing the vulnerable portion of the text
data with adversarial text;

designing adversarial noise corresponding to the adver-

sarial text; and

applying the corresponding adversarial noise to the audio

signal to generate a robust audio signal comprising
modified speech data that, when transcribed, generates
a transcript with a similarity to the robust transcript that
is above a threshold similarity.

2. The method of claim 1, wherein the corresponding
adversarial noise comprises adversarial speech data
designed to cause speech-to-text models to produce a tar-
geted transcription of the modified speech data matching the
robust transcript.

3. The method of claim 2, wherein the targeted transcrip-
tion is at least 90% similar to the robust transcript.

4. The method of claim 1, wherein the identifying the
vulnerable portion comprises generating importance scores
for portions of the text data, and wherein the vulnerable
portion is a portion of the text data with a highest importance
score.

5. The method of claim 1, further comprising selecting the
adversarial text, wherein the selecting the adversarial text
comprises:

identifying, in an embedding space of a word from the

vulnerable portion, a word that is semantically equiva-
lent to the word from the vulnerable portion; and
determining that replacing the word from the vulnerable
portion with the identified semantically equivalent
word reduces a confidence score associated with a
prediction of a target machine-learning model.

6. The method of claim 1, wherein the audio signal further

comprises adversarial non-speech noise.
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7. The method of claim 6, wherein the processing the
audio signal comprises removing the adversarial non-speech
noise prior to transcribing the speech data.

8. The method of claim 1, wherein the replacing the
vulnerable portion comprises using a word embedding pro-
cess to replace a word in the vulnerable portion with a
semantically equivalent word.

9. The method of claim 8, wherein the applying the
corresponding adversarial noise replaces an utterance of the
word in the audio signal with an utterance of the semanti-
cally equivalent word.

10. The method of claim 1, wherein:

the modifying the text data comprises deleting a word

from the vulnerable portion; and

the applying the corresponding adversarial noise com-

prises deleting an utterance of the word from the audio
signal.

11. A system, comprising:

a memory; and

a processor communicatively coupled to the memory,

wherein the processor is configured to perform a

method comprising:

processing an audio signal comprising speech data;

transcribing the speech data to generate text data;

identifying a vulnerable portion of the text data;

in response to the identifying, modifying the text data
to generate a robust transcript, wherein the modify-
ing comprises replacing the vulnerable portion of the
text data with adversarial text;

designing adversarial noise corresponding to the adver-
sarial text; and

applying the corresponding adversarial noise to the
audio signal to generate a robust audio signal com-
prising modified speech data that, when transcribed,
generates a transcript with a similarity to the robust
transcript that is above a threshold similarity.

12. The system of claim 11, wherein the corresponding
adversarial noise comprises adversarial speech data
designed to cause speech-to-text models to produce a tar-
geted transcription of the modified speech data matching the
robust transcript.

13. The system of claim 11, wherein the identifying the
vulnerable portion comprises generating importance scores
for portions of the text data, and wherein the vulnerable
portion is a portion of the text data with a highest importance
score.

14. The system of claim 11, further comprising selecting
the adversarial text, wherein the selecting the adversarial
text comprises:
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identifying, in an embedding space of a word from the
vulnerable portion, a word that is semantically equiva-
lent to the word from the vulnerable portion; and

determining that replacing the word from the vulnerable
portion with the identified semantically equivalent
word reduces a confidence score associated with a
prediction of a target machine-learning model.

15. The system of claim 11, wherein the audio signal
further comprises adversarial non-speech noise.

16. The system of claim 15, wherein the processing the
audio signal comprises removing the adversarial non-speech
noise prior to transcribing the speech data.

17. A computer program product, the computer program
product comprising a computer readable storage medium
having program instructions embodied therewith, the pro-
gram instructions executable by a processor to cause a
device to perform a method, the method comprising:

processing an audio signal comprising speech data;

transcribing the speech data to generate text data;
identifying a vulnerable portion of the text data;

in response to the identifying, modifying the text data to

generate a robust transcript, wherein the modifying
comprises replacing the vulnerable portion of the text
data with adversarial text;

designing adversarial noise corresponding to the adver-

sarial text; and

applying the corresponding adversarial noise to the audio

signal to generate a robust audio signal comprising
modified speech data that, when transcribed, generates
a transcript with a similarity to the robust transcript that
is above a threshold similarity.

18. The computer program product of claim 17, wherein
the identifying the vulnerable portion comprises generating
importance scores for portions of the text data, and wherein
the vulnerable portion is a portion of the text data with a
highest importance score.

19. The computer program product of claim 17, further
comprising selecting the adversarial text, wherein the select-
ing the adversarial text comprises:

identifying, in an embedding space of a word from the

vulnerable portion, a word that is semantically equiva-
lent to the word from the vulnerable portion; and
determining that replacing the word from the vulnerable
portion with the identified semantically equivalent
word reduces a confidence score associated with a
prediction of a target machine-learning model.

20. The computer program product of claim 17, wherein
the processing the audio signal comprises removing adver-
sarial non-speech noise prior to transcribing the speech data.
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